WorldWideScience

Sample records for whole-genome gene sets

  1. Whole genome DNA methylation: beyond genes silencing

    OpenAIRE

    Tirado-Magallanes, Roberto; Rebbani, Khadija; Lim, Ricky; Pradhan, Sriharsa; Benoukraf, Touati

    2016-01-01

    The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the ...

  2. Differential retention of metabolic genes following whole-genome duplication.

    Science.gov (United States)

    Gout, Jean-François; Duret, Laurent; Kahn, Daniel

    2009-05-01

    Classical studies in Metabolic Control Theory have shown that metabolic fluxes usually exhibit little sensitivity to changes in individual enzyme activity, yet remain sensitive to global changes of all enzymes in a pathway. Therefore, little selective pressure is expected on the dosage or expression of individual metabolic genes, yet entire pathways should still be constrained. However, a direct estimate of this selective pressure had not been evaluated. Whole-genome duplications (WGDs) offer a good opportunity to address this question by analyzing the fates of metabolic genes during the massive gene losses that follow. Here, we take advantage of the successive rounds of WGD that occurred in the Paramecium lineage. We show that metabolic genes exhibit different gene retention patterns than nonmetabolic genes. Contrary to what was expected for individual genes, metabolic genes appeared more retained than other genes after the recent WGD, which was best explained by selection for gene expression operating on entire pathways. Metabolic genes also tend to be less retained when present at high copy number before WGD, contrary to other genes that show a positive correlation between gene retention and preduplication copy number. This is rationalized on the basis of the classical concave relationship relating metabolic fluxes with enzyme expression.

  3. Whole genome homology-based identification of candidate genes ...

    African Journals Online (AJOL)

    Josephine Erhiakporeh

    2016-07-06

    Jul 6, 2016 ... candidate genes for drought tolerance in sesame. (Sesamum ... Our results provided genomic resources for further functional analysis and genetic engineering .... reverse transcribed using the Reverse Transcription System.

  4. Whole genome homology-based identification of candidate genes ...

    African Journals Online (AJOL)

    Sesame (Sesamum indicum L.) is one of the most important oilseed crops. It is mainly grown in arid and semi-arid regions with occurrence of unpredictable drought which is one of the major constraints of its production. However, the lack of gene resources associated with drought tolerance hinders sesame genetic ...

  5. Gene discovery by chemical mutagenesis and whole-genome sequencing in Dictyostelium.

    Science.gov (United States)

    Li, Cheng-Lin Frank; Santhanam, Balaji; Webb, Amanda Nicole; Zupan, Blaž; Shaulsky, Gad

    2016-09-01

    Whole-genome sequencing is a useful approach for identification of chemical-induced lesions, but previous applications involved tedious genetic mapping to pinpoint the causative mutations. We propose that saturation mutagenesis under low mutagenic loads, followed by whole-genome sequencing, should allow direct implication of genes by identifying multiple independent alleles of each relevant gene. We tested the hypothesis by performing three genetic screens with chemical mutagenesis in the social soil amoeba Dictyostelium discoideum Through genome sequencing, we successfully identified mutant genes with multiple alleles in near-saturation screens, including resistance to intense illumination and strong suppressors of defects in an allorecognition pathway. We tested the causality of the mutations by comparison to published data and by direct complementation tests, finding both dominant and recessive causative mutations. Therefore, our strategy provides a cost- and time-efficient approach to gene discovery by integrating chemical mutagenesis and whole-genome sequencing. The method should be applicable to many microbial systems, and it is expected to revolutionize the field of functional genomics in Dictyostelium by greatly expanding the mutation spectrum relative to other common mutagenesis methods. © 2016 Li et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Whole-genome gene expression profiling of formalin-fixed, paraffin-embedded tissue samples.

    Directory of Open Access Journals (Sweden)

    Craig April

    2009-12-01

    Full Text Available We have developed a gene expression assay (Whole-Genome DASL, capable of generating whole-genome gene expression profiles from degraded samples such as formalin-fixed, paraffin-embedded (FFPE specimens.We demonstrated a similar level of sensitivity in gene detection between matched fresh-frozen (FF and FFPE samples, with the number and overlap of probes detected in the FFPE samples being approximately 88% and 95% of that in the corresponding FF samples, respectively; 74% of the differentially expressed probes overlapped between the FF and FFPE pairs. The WG-DASL assay is also able to detect 1.3-1.5 and 1.5-2 -fold changes in intact and FFPE samples, respectively. The dynamic range for the assay is approximately 3 logs. Comparing the WG-DASL assay with an in vitro transcription-based labeling method yielded fold-change correlations of R(2 approximately 0.83, while fold-change comparisons with quantitative RT-PCR assays yielded R(2 approximately 0.86 and R(2 approximately 0.55 for intact and FFPE samples, respectively. Additionally, the WG-DASL assay yielded high self-correlations (R(2>0.98 with low intact RNA inputs ranging from 1 ng to 100 ng; reproducible expression profiles were also obtained with 250 pg total RNA (R(2 approximately 0.92, with approximately 71% of the probes detected in 100 ng total RNA also detected at the 250 pg level. When FFPE samples were assayed, 1 ng total RNA yielded self-correlations of R(2 approximately 0.80, while still maintaining a correlation of R(2 approximately 0.75 with standard FFPE inputs (200 ng.Taken together, these results show that WG-DASL assay provides a reliable platform for genome-wide expression profiling in archived materials. It also possesses utility within clinical settings where only limited quantities of samples may be available (e.g. microdissected material or when minimally invasive procedures are performed (e.g. biopsied specimens.

  7. The genome BLASTatlas - a GeneWiz extension for visualization of whole-genome homology

    DEFF Research Database (Denmark)

    Hallin, Peter Fischer; Binnewies, Tim Terence; Ussery, David

    2008-01-01

    ://www.cbs.dtu.dk/ws/BLASTatlas), where programming examples are available in Perl. By providing an interoperable method to carry out whole genome visualization of homology, this service offers bioinformaticians as well as biologists an easy-to-adopt workflow that can be directly called from the programming language of the user, hence......The development of fast and inexpensive methods for sequencing bacterial genomes has led to a wealth of data, often with many genomes being sequenced of the same species or closely related organisms. Thus, there is a need for visualization methods that will allow easy comparison of many sequenced...... genomes to a defined reference strain. The BLASTatlas is one such tool that is useful for mapping and visualizing whole genome homology of genes and proteins within a reference strain compared to other strains or species of one or more prokaryotic organisms. We provide examples of BLASTatlases, including...

  8. Integration of transcriptome and whole genomic resequencing data to identify key genes affecting swine fat deposition.

    Directory of Open Access Journals (Sweden)

    Kai Xing

    Full Text Available Fat deposition is highly correlated with the growth, meat quality, reproductive performance and immunity of pigs. Fatty acid synthesis takes place mainly in the adipose tissue of pigs; therefore, in this study, a high-throughput massively parallel sequencing approach was used to generate adipose tissue transcriptomes from two groups of Songliao black pigs that had opposite backfat thickness phenotypes. The total number of paired-end reads produced for each sample was in the range of 39.29-49.36 millions. Approximately 188 genes were differentially expressed in adipose tissue and were enriched for metabolic processes, such as fatty acid biosynthesis, lipid synthesis, metabolism of fatty acids, etinol, caffeine and arachidonic acid and immunity. Additionally, many genetic variations were detected between the two groups through pooled whole-genome resequencing. Integration of transcriptome and whole-genome resequencing data revealed important genomic variations among the differentially expressed genes for fat deposition, for example, the lipogenic genes. Further studies are required to investigate the roles of candidate genes in fat deposition to improve pig breeding programs.

  9. Tracing Mycobacterium tuberculosis transmission by whole genome sequencing in a high incidence setting

    DEFF Research Database (Denmark)

    Bjorn-Mortensen, K; Soborg, B; Koch, A

    2016-01-01

    In East Greenland, a dramatic increase of tuberculosis (TB) incidence has been observed in recent years. Classical genotyping suggests a genetically similar Mycobacterium tuberculosis (Mtb) strain population as cause, however, precise transmission patterns are unclear. We performed whole genome...

  10. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    Science.gov (United States)

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  11. Rapid high resolution genotyping of Francisella tularensis by whole genome sequence comparison of annotated genes ("MLST+".

    Directory of Open Access Journals (Sweden)

    Markus H Antwerpen

    Full Text Available The zoonotic disease tularemia is caused by the bacterium Francisella tularensis. This pathogen is considered as a category A select agent with potential to be misused in bioterrorism. Molecular typing based on DNA-sequence like canSNP-typing or MLVA has become the accepted standard for this organism. Due to the organism's highly clonal nature, the current typing methods have reached their limit of discrimination for classifying closely related subpopulations within the subspecies F. tularensis ssp. holarctica. We introduce a new gene-by-gene approach, MLST+, based on whole genome data of 15 sequenced F. tularensis ssp. holarctica strains and apply this approach to investigate an epidemic of lethal tularemia among non-human primates in two animal facilities in Germany. Due to the high resolution of MLST+ we are able to demonstrate that three independent clones of this highly infectious pathogen were responsible for these spatially and temporally restricted outbreaks.

  12. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder

    Science.gov (United States)

    Yuen, Ryan KC; Merico, Daniele; Bookman, Matt; Howe, Jennifer L; Thiruvahindrapuram, Bhooma; Patel, Rohan V; Whitney, Joe; Deflaux, Nicole; Bingham, Jonathan; Wang, Zhuozhi; Pellecchia, Giovanna; Buchanan, Janet A; Walker, Susan; Marshall, Christian R; Uddin, Mohammed; Zarrei, Mehdi; Deneault, Eric; D’Abate, Lia; Chan, Ada JS; Koyanagi, Stephanie; Paton, Tara; Pereira, Sergio L; Hoang, Ny; Engchuan, Worrawat; Higginbotham, Edward J; Ho, Karen; Lamoureux, Sylvia; Li, Weili; MacDonald, Jeffrey R; Nalpathamkalam, Thomas; Sung, Wilson WL; Tsoi, Fiona J; Wei, John; Xu, Lizhen; Tasse, Anne-Marie; Kirby, Emily; Van Etten, William; Twigger, Simon; Roberts, Wendy; Drmic, Irene; Jilderda, Sanne; Modi, Bonnie MacKinnon; Kellam, Barbara; Szego, Michael; Cytrynbaum, Cheryl; Weksberg, Rosanna; Zwaigenbaum, Lonnie; Woodbury-Smith, Marc; Brian, Jessica; Senman, Lili; Iaboni, Alana; Doyle-Thomas, Krissy; Thompson, Ann; Chrysler, Christina; Leef, Jonathan; Savion-Lemieux, Tal; Smith, Isabel M; Liu, Xudong; Nicolson, Rob; Seifer, Vicki; Fedele, Angie; Cook, Edwin H; Dager, Stephen; Estes, Annette; Gallagher, Louise; Malow, Beth A; Parr, Jeremy R; Spence, Sarah J; Vorstman, Jacob; Frey, Brendan J; Robinson, James T; Strug, Lisa J; Fernandez, Bridget A; Elsabbagh, Mayada; Carter, Melissa T; Hallmayer, Joachim; Knoppers, Bartha M; Anagnostou, Evdokia; Szatmari, Peter; Ring, Robert H; Glazer, David; Pletcher, Mathew T; Scherer, Stephen W

    2017-01-01

    We are performing whole genome sequencing (WGS) of families with Autism Spectrum Disorder (ASD) to build a resource, named MSSNG, to enable the sub-categorization of phenotypes and underlying genetic factors involved. Here, we report WGS of 5,205 samples from families with ASD, accompanied by clinical information, creating a database accessible in a cloud platform, and through an internet portal with controlled access. We found an average of 73.8 de novo single nucleotide variants and 12.6 de novo insertion/deletions (indels) or copy number variations (CNVs) per ASD subject. We identified 18 new candidate ASD-risk genes such as MED13 and PHF3, and found that participants bearing mutations in susceptibility genes had significantly lower adaptive ability (p=6×10−4). In 294/2,620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried CNV/chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD. PMID:28263302

  13. Single Cell Analysis of Dystrophin and SRY Gene by Using Whole Genome Amplification

    Institute of Scientific and Technical Information of China (English)

    徐晨明; 金帆; 黄荷凤; 陶冶; 叶英辉

    2001-01-01

    Objective To develop a reliable and sensitive method for detection of sex and multiloci of Duchenne muscular dystrophy (DMD) gene in single cell Materials & methods Whole genome of single cell were amplified by using 15-base random primers (primer extension preamplification, PEP), then a small aliquot of PEP product were analyzed by using locus-specific nest PCR amplification. The procedure was evaluated by detection dystrophin exons 8, 17, 19, 44, 45, 48 and human testis-determining gene (SRY)in single lymphocytes from known sources and single blastomeres from the couples with no family history of DMD.Results The amplification efficiency rate of six dystrophin exons from single lymphocytes and single blastomeres were 97. 2% (175/180) and 100% (60/60) respectively.Results of SRY showed that 100% (15/15) amplification in single male-derived lymphocytes and 0% (0/15) amplification in single female-derived lymphocytes. Conclusion The technique of single cell PEP-nest PCR for dystrophin exons 8, 17,19, 44, 45, 48 and SRY is highly specifc. PEP-nest PCR is suitable for Preimplantation genetic diagnosis (PGD) of DMD at single cell level.

  14. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling

    Science.gov (United States)

    Sato, Yukuto; Tsukamoto, Katsumi; Nishida, Mutsumi

    2015-01-01

    Whole-genome duplication (WGD) is believed to be a significant source of major evolutionary innovation. Redundant genes resulting from WGD are thought to be lost or acquire new functions. However, the rates of gene loss and thus temporal process of genome reshaping after WGD remain unclear. The WGD shared by all teleost fish, one-half of all jawed vertebrates, was more recent than the two ancient WGDs that occurred before the origin of jawed vertebrates, and thus lends itself to analysis of gene loss and genome reshaping. Using a newly developed orthology identification pipeline, we inferred the post–teleost-specific WGD evolutionary histories of 6,892 protein-coding genes from nine phylogenetically representative teleost genomes on a time-calibrated tree. We found that rapid gene loss did occur in the first 60 My, with a loss of more than 70–80% of duplicated genes, and produced similar genomic gene arrangements within teleosts in that relatively short time. Mathematical modeling suggests that rapid gene loss occurred mainly by events involving simultaneous loss of multiple genes. We found that the subsequent 250 My were characterized by slow and steady loss of individual genes. Our pipeline also identified about 1,100 shared single-copy genes that are inferred to have become singletons before the divergence of clupeocephalan teleosts. Therefore, our comparative genome analysis suggests that rapid gene loss just after the WGD reshaped teleost genomes before the major divergence, and provides a useful set of marker genes for future phylogenetic analysis. PMID:26578810

  15. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family

    Directory of Open Access Journals (Sweden)

    Bowerman Bruce

    2009-08-01

    Full Text Available Abstract Background GATA transcription factors influence many developmental processes, including the specification of embryonic germ layers. The GATA gene family has significantly expanded in many animal lineages: whereas diverse cnidarians have only one GATA transcription factor, six GATA genes have been identified in many vertebrates, five in many insects, and eleven to thirteen in Caenorhabditis nematodes. All bilaterian animal genomes have at least one member each of two classes, GATA123 and GATA456. Results We have identified one GATA123 gene and one GATA456 gene from the genomic sequence of two invertebrate deuterostomes, a cephalochordate (Branchiostoma floridae and a hemichordate (Saccoglossus kowalevskii. We also have confirmed the presence of six GATA genes in all vertebrate genomes, as well as additional GATA genes in teleost fish. Analyses of conserved sequence motifs and of changes to the exon-intron structure, and molecular phylogenetic analyses of these deuterostome GATA genes support their origin from two ancestral deuterostome genes, one GATA 123 and one GATA456. Comparison of the conserved genomic organization across vertebrates identified eighteen paralogous gene families linked to multiple vertebrate GATA genes (GATA paralogons, providing the strongest evidence yet for expansion of vertebrate GATA gene families via genome duplication events. Conclusion From our analysis, we infer the evolutionary birth order and relationships among vertebrate GATA transcription factors, and define their expansion via multiple rounds of whole genome duplication events. As the genomes of four independent invertebrate deuterostome lineages contain single copy GATA123 and GATA456 genes, we infer that the 0R (pre-genome duplication invertebrate deuterostome ancestor also had two GATA genes, one of each class. Synteny analyses identify duplications of paralogous chromosomal regions (paralogons, from single ancestral vertebrate GATA123 and GATA456

  16. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genome shotgun sequencing as a method for predicting antimicrobial resistance properties, one meropenem resistant and five multidrug-resistant blood culture isolates were sequenced and antimicrobial resistance genes and IS elements identified using ResFinder 2.1 (http...

  17. Discovery of Gene Sources for Economic Traits in Hanwoo by Whole-genome Resequencing

    Directory of Open Access Journals (Sweden)

    Younhee Shin

    2016-09-01

    Full Text Available Hanwoo, a Korean native cattle (Bos taurus coreana, has great economic value due to high meat quality. Also, the breed has genetic variations that are associated with production traits such as health, disease resistance, reproduction, growth as well as carcass quality. In this study, next generation sequencing technologies and the availability of an appropriate reference genome were applied to discover a large amount of single nucleotide polymorphisms (SNPs in ten Hanwoo bulls. Analysis of whole-genome resequencing generated a total of 26.5 Gb data, of which 594,716,859 and 592,990,750 reads covered 98.73% and 93.79% of the bovine reference genomes of UMD 3.1 and Btau 4.6.1, respectively. In total, 2,473,884 and 2,402,997 putative SNPs were discovered, of which 1,095,922 (44.3% and 982,674 (40.9% novel SNPs were discovered against UMD3.1 and Btau 4.6.1, respectively. Among the SNPs, the 46,301 (UMD 3.1 and 28,613 SNPs (Btau 4.6.1 that were identified as Hanwoo-specific SNPs were included in the functional genes that may be involved in the mechanisms of milk production, tenderness, juiciness, marbling of Hanwoo beef and yellow hair. Most of the Hanwoo-specific SNPs were identified in the promoter region, suggesting that the SNPs influence differential expression of the regulated genes relative to the relevant traits. In particular, the non-synonymous (ns SNPs found in CORIN, which is a negative regulator of Agouti, might be a causal variant to determine yellow hair of Hanwoo. Our results will provide abundant genetic sources of variation to characterize Hanwoo genetics and for subsequent breeding.

  18. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder

    NARCIS (Netherlands)

    Yuen, Ryan K C; Merico, Daniele; Bookman, Matt; Howe, Jennifer L.; Thiruvahindrapuram, Bhooma; Patel, Rohan V.; Whitney, Joe; Deflaux, Nicole; Bingham, Jonathan; Wang, Zhuozhi; Pellecchia, Giovanna; Buchanan, Janet A.; Walker, Susan; Marshall, Christian R.; Uddin, Mohammed; Zarrei, Mehdi; Deneault, Eric; D'Abate, Lia; Chan, Ada J S; Koyanagi, Stephanie; Paton, Tara; Pereira, Sergio L.; Hoang, Ny; Engchuan, Worrawat; Higginbotham, Edward J.; Ho, Karen; Lamoureux, Sylvia; Li, Weili; MacDonald, Jeffrey R.; Nalpathamkalam, Thomas; Sung, Wilson W L; Tsoi, Fiona J.; Wei, John; Xu, Lizhen; Tasse, Anne Marie; Kirby, Emily; Van Etten, William; Twigger, Simon; Roberts, Wendy; Drmic, Irene; Jilderda, Sanne; Modi, Bonnie Mackinnon; Kellam, Barbara; Szego, Michael; Cytrynbaum, Cheryl; Weksberg, Rosanna; Zwaigenbaum, Lonnie; Woodbury-Smith, Marc; Brian, Jessica; Senman, Lili; Iaboni, Alana; Doyle-Thomas, Krissy; Thompson, Ann; Chrysler, Christina; Leef, Jonathan; Savion-Lemieux, Tal; Smith, Isabel M.; Liu, Xudong; Nicolson, Rob; Seifer, Vicki; Fedele, Angie; Cook, Edwin H.; Dager, Stephen; Estes, Annette; Gallagher, Louise; Malow, Beth A.; Parr, Jeremy R.; Spence, Sarah J.; Vorstman, Jacob; Frey, Brendan J.; Robinson, James T.; Strug, Lisa J.; Fernandez, Bridget A.; Elsabbagh, Mayada; Carter, Melissa T.; Hallmayer, Joachim; Knoppers, Bartha M.; Anagnostou, Evdokia; Szatmari, Peter; Ring, Robert H.; Glazer, David; Pletcher, Mathew T.; Scherer, Stephen W.

    2017-01-01

    We are performing whole-genome sequencing of families with autism spectrum disorder (ASD) to build a resource (MSSNG) for subcategorizing the phenotypes and underlying genetic factors involved. Here we report sequencing of 5,205 samples from families with ASD, accompanied by clinical information,

  19. Ultrahigh-dimensional variable selection method for whole-genome gene-gene interaction analysis

    Directory of Open Access Journals (Sweden)

    Ueki Masao

    2012-05-01

    Full Text Available Abstract Background Genome-wide gene-gene interaction analysis using single nucleotide polymorphisms (SNPs is an attractive way for identification of genetic components that confers susceptibility of human complex diseases. Individual hypothesis testing for SNP-SNP pairs as in common genome-wide association study (GWAS however involves difficulty in setting overall p-value due to complicated correlation structure, namely, the multiple testing problem that causes unacceptable false negative results. A large number of SNP-SNP pairs than sample size, so-called the large p small n problem, precludes simultaneous analysis using multiple regression. The method that overcomes above issues is thus needed. Results We adopt an up-to-date method for ultrahigh-dimensional variable selection termed the sure independence screening (SIS for appropriate handling of numerous number of SNP-SNP interactions by including them as predictor variables in logistic regression. We propose ranking strategy using promising dummy coding methods and following variable selection procedure in the SIS method suitably modified for gene-gene interaction analysis. We also implemented the procedures in a software program, EPISIS, using the cost-effective GPGPU (General-purpose computing on graphics processing units technology. EPISIS can complete exhaustive search for SNP-SNP interactions in standard GWAS dataset within several hours. The proposed method works successfully in simulation experiments and in application to real WTCCC (Wellcome Trust Case–control Consortium data. Conclusions Based on the machine-learning principle, the proposed method gives powerful and flexible genome-wide search for various patterns of gene-gene interaction.

  20. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis.

    Science.gov (United States)

    Patil, Gunvant; Valliyodan, Babu; Deshmukh, Rupesh; Prince, Silvas; Nicander, Bjorn; Zhao, Mingzhe; Sonah, Humira; Song, Li; Lin, Li; Chaudhary, Juhi; Liu, Yang; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-07-11

    SWEET (MtN3_saliva) domain proteins, a recently identified group of efflux transporters, play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction and reproductive tissue development. The SWEET gene family is predominantly studied in Arabidopsis and members of the family are being investigated in rice. To date, no transcriptome or genomics analysis of soybean SWEET genes has been reported. In the present investigation, we explored the evolutionary aspect of the SWEET gene family in diverse plant species including primitive single cell algae to angiosperms with a major emphasis on Glycine max. Evolutionary features showed expansion and duplication of the SWEET gene family in land plants. Homology searches with BLAST tools and Hidden Markov Model-directed sequence alignments identified 52 SWEET genes that were mapped to 15 chromosomes in the soybean genome as tandem duplication events. Soybean SWEET (GmSWEET) genes showed a wide range of expression profiles in different tissues and developmental stages. Analysis of public transcriptome data and expression profiling using quantitative real time PCR (qRT-PCR) showed that a majority of the GmSWEET genes were confined to reproductive tissue development. Several natural genetic variants (non-synonymous SNPs, premature stop codons and haplotype) were identified in the GmSWEET genes using whole genome re-sequencing data analysis of 106 soybean genotypes. A significant association was observed between SNP-haplogroup and seed sucrose content in three gene clusters on chromosome 6. Present investigation utilized comparative genomics, transcriptome profiling and whole genome re-sequencing approaches and provided a systematic description of soybean SWEET genes and identified putative candidates with probable roles in the reproductive tissue development. Gene expression profiling at different developmental stages and genomic variation data will aid as an important resource for the soybean research

  1. Effects of a diet high in monounsaturated fat and a full Mediterranean diet on PBMC whole genome gene expression and plasma proteins

    OpenAIRE

    Dijk, van, Susan; Feskens, Edith; Bos, M.B.; Groot, de, Lisette; Vries, de, Jeanne; Muller, Michael; Afman, Lydia

    2012-01-01

    This study aimed to identify the effects of replacement of saturated fat (SFA) by monunsaturated fat (MUFA) in a western-type diet and the effects of a full Mediterranean (MED) diet on whole genome PBMC gene expression and plasma protein profiles. Abdominally overweight subjects were randomized to a 8 wk completely controlled SFA-rich diet, a SFA-by-MUFA-replaced diet (MUFA diet) or a MED diet. Concentrations of 124 plasma proteins and PBMCs whole genome transcriptional profiles were assessed...

  2. Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication.

    Science.gov (United States)

    Dong, Heng; Liu, Dandan; Han, Tianyu; Zhao, Yuxue; Sun, Ji; Lin, Sue; Cao, Jiashu; Chen, Zhong-Hua; Huang, Li

    2015-11-24

    Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci.

  3. Whole genome expression array profiling highlights differences in mucosal defense genes in Barrett's esophagus and esophageal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Derek J Nancarrow

    Full Text Available Esophageal adenocarcinoma (EAC has become a major concern in Western countries due to rapid rises in incidence coupled with very poor survival rates. One of the key risk factors for the development of this cancer is the presence of Barrett's esophagus (BE, which is believed to form in response to repeated gastro-esophageal reflux. In this study we performed comparative, genome-wide expression profiling (using Illumina whole-genome Beadarrays on total RNA extracted from esophageal biopsy tissues from individuals with EAC, BE (in the absence of EAC and those with normal squamous epithelium. We combined these data with publically accessible raw data from three similar studies to investigate key gene and ontology differences between these three tissue states. The results support the deduction that BE is a tissue with enhanced glycoprotein synthesis machinery (DPP4, ATP2A3, AGR2 designed to provide strong mucosal defenses aimed at resisting gastro-esophageal reflux. EAC exhibits the enhanced extracellular matrix remodeling (collagens, IGFBP7, PLAU effects expected in an aggressive form of cancer, as well as evidence of reduced expression of genes associated with mucosal (MUC6, CA2, TFF1 and xenobiotic (AKR1C2, AKR1B10 defenses. When our results are compared to previous whole-genome expression profiling studies keratin, mucin, annexin and trefoil factor gene groups are the most frequently represented differentially expressed gene families. Eleven genes identified here are also represented in at least 3 other profiling studies. We used these genes to discriminate between squamous epithelium, BE and EAC within the two largest cohorts using a support vector machine leave one out cross validation (LOOCV analysis. While this method was satisfactory for discriminating squamous epithelium and BE, it demonstrates the need for more detailed investigations into profiling changes between BE and EAC.

  4. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array

    Directory of Open Access Journals (Sweden)

    Sugnet Charles

    2006-12-01

    Full Text Available Abstract Background Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. Results We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic

  5. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches.

    Science.gov (United States)

    Schürch, A C; Arredondo-Alonso, S; Willems, R J L; Goering, R V

    2018-04-01

    Whole genome sequence (WGS)-based strain typing finds increasing use in the epidemiologic analysis of bacterial pathogens in both public health as well as more localized infection control settings. This minireview describes methodologic approaches that have been explored for WGS-based epidemiologic analysis and considers the challenges and pitfalls of data interpretation. Personal collection of relevant publications. When applying WGS to study the molecular epidemiology of bacterial pathogens, genomic variability between strains is translated into measures of distance by determining single nucleotide polymorphisms in core genome alignments or by indexing allelic variation in hundreds to thousands of core genes, assigning types to unique allelic profiles. Interpreting isolate relatedness from these distances is highly organism specific, and attempts to establish species-specific cutoffs are unlikely to be generally applicable. In cases where single nucleotide polymorphism or core gene typing do not provide the resolution necessary for accurate assessment of the epidemiology of bacterial pathogens, inclusion of accessory gene or plasmid sequences may provide the additional required discrimination. As with all epidemiologic analysis, realizing the full potential of the revolutionary advances in WGS-based approaches requires understanding and dealing with issues related to the fundamental steps of data generation and interpretation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Use of deep whole-genome sequencing data to identify structure risk variants in breast cancer susceptibility genes.

    Science.gov (United States)

    Guo, Xingyi; Shi, Jiajun; Cai, Qiuyin; Shu, Xiao-Ou; He, Jing; Wen, Wanqing; Allen, Jamie; Pharoah, Paul; Dunning, Alison; Hunter, David J; Kraft, Peter; Easton, Douglas F; Zheng, Wei; Long, Jirong

    2018-03-01

    Functional disruptions of susceptibility genes by large genomic structure variant (SV) deletions in germlines are known to be associated with cancer risk. However, few studies have been conducted to systematically search for SV deletions in breast cancer susceptibility genes. We analysed deep (> 30x) whole-genome sequencing (WGS) data generated in blood samples from 128 breast cancer patients of Asian and European descent with either a strong family history of breast cancer or early cancer onset disease. To identify SV deletions in known or suspected breast cancer susceptibility genes, we used multiple SV calling tools including Genome STRiP, Delly, Manta, BreakDancer and Pindel. SV deletions were detected by at least three of these bioinformatics tools in five genes. Specifically, we identified heterozygous deletions covering a fraction of the coding regions of BRCA1 (with approximately 80kb in two patients), and TP53 genes (with ∼1.6 kb in two patients), and of intronic regions (∼1 kb) of the PALB2 (one patient), PTEN (three patients) and RAD51C genes (one patient). We confirmed the presence of these deletions using real-time quantitative PCR (qPCR). Our study identified novel SV deletions in breast cancer susceptibility genes and the identification of such SV deletions may improve clinical testing.

  7. Whole genome transcript profiling of drug induced steatosis in rats reveals a gene signature predictive of outcome.

    Directory of Open Access Journals (Sweden)

    Nishika Sahini

    Full Text Available Drug induced steatosis (DIS is characterised by excess triglyceride accumulation in the form of lipid droplets (LD in liver cells. To explore mechanisms underlying DIS we interrogated the publically available microarray data from the Japanese Toxicogenomics Project (TGP to study comprehensively whole genome gene expression changes in the liver of treated rats. For this purpose a total of 17 and 12 drugs which are diverse in molecular structure and mode of action were considered based on their ability to cause either steatosis or phospholipidosis, respectively, while 7 drugs served as negative controls. In our efforts we focused on 200 genes which are considered to be mechanistically relevant in the process of lipid droplet biogenesis in hepatocytes as recently published (Sahini and Borlak, 2014. Based on mechanistic considerations we identified 19 genes which displayed dose dependent responses while 10 genes showed time dependency. Importantly, the present study defined 9 genes (ANGPTL4, FABP7, FADS1, FGF21, GOT1, LDLR, GK, STAT3, and PKLR as signature genes to predict DIS. Moreover, cross tabulation revealed 9 genes to be regulated ≥10 times amongst the various conditions and included genes linked to glucose metabolism, lipid transport and lipogenesis as well as signalling events. Additionally, a comparison between drugs causing phospholipidosis and/or steatosis revealed 26 genes to be regulated in common including 4 signature genes to predict DIS (PKLR, GK, FABP7 and FADS1. Furthermore, a comparison between in vivo single dose (3, 6, 9 and 24 h and findings from rat hepatocyte studies (2 h, 8 h, 24 h identified 10 genes which are regulated in common and contained 2 DIS signature genes (FABP7, FGF21. Altogether, our studies provide comprehensive information on mechanistically linked gene expression changes of a range of drugs causing steatosis and phospholipidosis and encourage the screening of DIS signature genes at the preclinical stage.

  8. Whole genome sequencing reveals a novel deletion variant in the KIT gene in horses with white spotted coat colour phenotypes.

    Science.gov (United States)

    Dürig, N; Jude, R; Holl, H; Brooks, S A; Lafayette, C; Jagannathan, V; Leeb, T

    2017-08-01

    White spotting phenotypes in horses can range in severity from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for such phenotypes in horses. For the present study, we re-investigated a large horse family segregating a variable white spotting phenotype, for which conventional Sanger sequencing of the candidate genes' individual exons had failed to reveal the causative variant. We obtained whole genome sequence data from an affected horse and specifically searched for structural variants in the known candidate genes. This analysis revealed a heterozygous ~1.9-kb deletion spanning exons 10-13 of the KIT gene (chr3:77,740,239_77,742,136del1898insTATAT). In continuity with previously named equine KIT variants we propose to designate the newly identified deletion variant W22. We had access to 21 horses carrying the W22 allele. Four of them were compound heterozygous W20/W22 and had a completely white phenotype. Our data suggest that W22 represents a true null allele of the KIT gene, whereas the previously identified W20 leads to a partial loss of function. These findings will enable more precise genetic testing for depigmentation phenotypes in horses. © 2017 Stichting International Foundation for Animal Genetics.

  9. Disturbance of gene expression in primary human hepatocytes by hepatotoxic pyrrolizidine alkaloids: A whole genome transcriptome analysis.

    Science.gov (United States)

    Luckert, Claudia; Hessel, Stefanie; Lenze, Dido; Lampen, Alfonso

    2015-10-01

    1,2-unsaturated pyrrolizidine alkaloids (PA) are plant metabolites predominantly occurring in the plant families Asteraceae and Boraginaceae. Acute and chronic PA poisoning causes severe hepatotoxicity. So far, the molecular mechanisms of PA toxicity are not well understood. To analyze its mode of action, primary human hepatocytes were exposed to a non-cytotoxic dose of 100 μM of four structurally different PA: echimidine, heliotrine, senecionine, senkirkine. Changes in mRNA expression were analyzed by a whole genome microarray. Employing cut-off values with a |fold change| of 2 and a q-value of 0.01, data analysis revealed numerous changes in gene expression. In total, 4556, 1806, 3406 and 8623 genes were regulated by echimidine, heliotrine, senecione and senkirkine, respectively. 1304 genes were identified as commonly regulated. PA affected pathways related to cell cycle regulation, cell death and cancer development. The transcription factors TP53, MYC, NFκB and NUPR1 were predicted to be activated upon PA treatment. Furthermore, gene expression data showed a considerable interference with lipid metabolism and bile acid flow. The associated transcription factors FXR, LXR, SREBF1/2, and PPARα/γ/δ were predicted to be inhibited. In conclusion, though structurally different, all four PA significantly regulated a great number of genes in common. This proposes similar molecular mechanisms, although the extent seems to differ between the analyzed PA as reflected by the potential hepatotoxicity and individual PA structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. FGF: A web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    to efficiently search for and identify gene families. The FGF output displays the results as visual phylogenetic trees including information on gene structure, chromosome position, duplication fate and selective pressure. It is particularly useful to identify pseudogenes and detect changes in gene structure. FGF...

  11. FGF: A web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) progr...... is freely available on a web server at http://fgf.genomics.org.cn/...

  12. Whole-genome analysis of herbicide-tolerant mutant rice generated by Agrobacterium-mediated gene targeting.

    Science.gov (United States)

    Endo, Masaki; Kumagai, Masahiko; Motoyama, Ritsuko; Sasaki-Yamagata, Harumi; Mori-Hosokawa, Satomi; Hamada, Masao; Kanamori, Hiroyuki; Nagamura, Yoshiaki; Katayose, Yuichi; Itoh, Takeshi; Toki, Seiichi

    2015-01-01

    Gene targeting (GT) is a technique used to modify endogenous genes in target genomes precisely via homologous recombination (HR). Although GT plants are produced using genetic transformation techniques, if the difference between the endogenous and the modified gene is limited to point mutations, GT crops can be considered equivalent to non-genetically modified mutant crops generated by conventional mutagenesis techniques. However, it is difficult to guarantee the non-incorporation of DNA fragments from Agrobacterium in GT plants created by Agrobacterium-mediated GT despite screening with conventional Southern blot and/or PCR techniques. Here, we report a comprehensive analysis of herbicide-tolerant rice plants generated by inducing point mutations in the rice ALS gene via Agrobacterium-mediated GT. We performed genome comparative genomic hybridization (CGH) array analysis and whole-genome sequencing to evaluate the molecular composition of GT rice plants. Thus far, no integration of Agrobacterium-derived DNA fragments has been detected in GT rice plants. However, >1,000 single nucleotide polymorphisms (SNPs) and insertion/deletion (InDels) were found in GT plants. Among these mutations, 20-100 variants might have some effect on expression levels and/or protein function. Information about additive mutations should be useful in clearing out unwanted mutations by backcrossing. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  13. Alignment of whole genomes.

    Science.gov (United States)

    Delcher, A L; Kasif, S; Fleischmann, R D; Peterson, J; White, O; Salzberg, S L

    1999-01-01

    A new system for aligning whole genome sequences is described. Using an efficient data structure called a suffix tree, the system is able to rapidly align sequences containing millions of nucleotides. Its use is demonstrated on two strains of Mycoplasma tuberculosis, on two less similar species of Mycoplasma bacteria and on two syntenic sequences from human chromosome 12 and mouse chromosome 6. In each case it found an alignment of the input sequences, using between 30 s and 2 min of computation time. From the system output, information on single nucleotide changes, translocations and homologous genes can easily be extracted. Use of the algorithm should facilitate analysis of syntenic chromosomal regions, strain-to-strain comparisons, evolutionary comparisons and genomic duplications. PMID:10325427

  14. Teleost Fish-Specific Preferential Retention of Pigmentation Gene-Containing Families After Whole Genome Duplications in Vertebrates

    Science.gov (United States)

    Lorin, Thibault; Brunet, Frédéric G.; Laudet, Vincent; Volff, Jean-Nicolas

    2018-01-01

    Vertebrate pigmentation is a highly diverse trait mainly determined by neural crest cell derivatives. It has been suggested that two rounds (1R/2R) of whole-genome duplications (WGDs) at the basis of vertebrates allowed changes in gene regulation associated with neural crest evolution. Subsequently, the teleost fish lineage experienced other WGDs, including the teleost-specific Ts3R before teleost radiation and the more recent Ss4R at the basis of salmonids. As the teleost lineage harbors the highest number of pigment cell types and pigmentation diversity in vertebrates, WGDs might have contributed to the evolution and diversification of the pigmentation gene repertoire in teleosts. We have compared the impact of the basal vertebrate 1R/2R duplications with that of the teleost-specific Ts3R and salmonid-specific Ss4R WGDs on 181 gene families containing genes involved in pigmentation. We show that pigmentation genes (PGs) have been globally more frequently retained as duplicates than other genes after Ts3R and Ss4R but not after the early 1R/2R. This is also true for non-pigmentary paralogs of PGs, suggesting that the function in pigmentation is not the sole key driver of gene retention after WGDs. On the long-term, specific categories of PGs have been repeatedly preferentially retained after ancient 1R/2R and Ts3R WGDs, possibly linked to the molecular nature of their proteins (e.g., DNA binding transcriptional regulators) and their central position in protein-protein interaction networks. Taken together, our results support a major role of WGDs in the diversification of the pigmentation gene repertoire in the teleost lineage, with a possible link with the diversity of pigment cell lineages observed in these animals compared to other vertebrates. PMID:29599177

  15. Gene expression profiling to characterize sediment toxicity – a pilot study using Caenorhabditis elegans whole genome microarrays

    Directory of Open Access Journals (Sweden)

    Reifferscheid Georg

    2009-04-01

    Full Text Available Abstract Background Traditionally, toxicity of river sediments is assessed using whole sediment tests with benthic organisms. The challenge, however, is the differentiation between multiple effects caused by complex contaminant mixtures and the unspecific toxicity endpoints such as survival, growth or reproduction. The use of gene expression profiling facilitates the identification of transcriptional changes at the molecular level that are specific to the bio-available fraction of pollutants. Results In this pilot study, we exposed the nematode Caenorhabditis elegans to three sediments of German rivers with varying (low, medium and high levels of heavy metal and organic contamination. Beside chemical analysis, three standard bioassays were performed: reproduction of C. elegans, genotoxicity (Comet assay and endocrine disruption (YES test. Gene expression was profiled using a whole genome DNA-microarray approach to identify overrepresented functional gene categories and derived cellular processes. Disaccharide and glycogen metabolism were found to be affected, whereas further functional pathways, such as oxidative phosphorylation, ribosome biogenesis, metabolism of xenobiotics, aging and several developmental processes were found to be differentially regulated only in response to the most contaminated sediment. Conclusion This study demonstrates how ecotoxicogenomics can identify transcriptional responses in complex mixture scenarios to distinguish different samples of river sediments.

  16. Effects of a diet high in monounsaturated fat and a full Mediterranean diet on PBMC whole genome gene expression and plasma proteins

    NARCIS (Netherlands)

    Dijk, van Susan; Feskens, Edith; Bos, M.B.; Groot, de Lisette; Vries, de Jeanne; Muller, Michael; Afman, Lydia

    2012-01-01

    This study aimed to identify the effects of replacement of saturated fat (SFA) by monunsaturated fat (MUFA) in a western-type diet and the effects of a full Mediterranean (MED) diet on whole genome PBMC gene expression and plasma protein profiles. Abdominally overweight subjects were randomized to a

  17. Prediction of Genes Related to Positive Selection Using Whole-Genome Resequencing in Three Commercial Pig Breeds

    Directory of Open Access Journals (Sweden)

    HyoYoung Kim

    2015-12-01

    Full Text Available Selective sweep can cause genetic differentiation across populations, which allows for the identification of possible causative regions/genes underlying important traits. The pig has experienced a long history of allele frequency changes through artificial selection in the domestication process. We obtained an average of 329,482,871 sequence reads for 24 pigs from three pig breeds: Yorkshire (n = 5, Landrace (n = 13, and Duroc (n = 6. An average read depth of 11.7 was obtained using whole-genome resequencing on an Illumina HiSeq2000 platform. In this study, cross-population extended haplotype homozygosity and cross-population composite likelihood ratio tests were implemented to detect genes experiencing positive selection for the genome-wide resequencing data generated from three commercial pig breeds. In our results, 26, 7, and 14 genes from Yorkshire, Landrace, and Duroc, respectively were detected by two kinds of statistical tests. Significant evidence for positive selection was identified on genes ST6GALNAC2 and EPHX1 in Yorkshire, PARK2 in Landrace, and BMP6, SLA-DQA1, and PRKG1 in Duroc.These genes are reportedly relevant to lactation, reproduction, meat quality, and growth traits. To understand how these single nucleotide polymorphisms (SNPs related positive selection affect protein function, we analyzed the effect of non-synonymous SNPs. Three SNPs (rs324509622, rs80931851, and rs80937718 in the SLA-DQA1 gene were significant in the enrichment tests, indicating strong evidence for positive selection in Duroc. Our analyses identified genes under positive selection for lactation, reproduction, and meat-quality and growth traits in Yorkshire, Landrace, and Duroc, respectively.

  18. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data

    DEFF Research Database (Denmark)

    Clausen, Philip T. L. C.; Zankari, Ea; Aarestrup, Frank Møller

    2016-01-01

    to two different methods in current use for identification of antibiotic resistance genes in bacterial WGS data. A novel method, KmerResistance, which examines the co-occurrence of k-mers between the WGS data and a database of resistance genes, was developed. The performance of this method was compared...... with two previously described methods; ResFinder and SRST2, which use an assembly/BLAST method and BWA, respectively, using two datasets with a total of 339 isolates, covering five species, originating from the Oxford University Hospitals NHS Trust and Danish pig farms. The predicted resistance...... was compared with the observed phenotypes for all isolates. To challenge further the sensitivity of the in silico methods, the datasets were also down-sampled to 1% of the reads and reanalysed. The best results were obtained by identification of resistance genes by mapping directly against the raw reads...

  19. QTL Mapping by Whole Genome Re-sequencing and Analysis of Candidate Genes for Nitrogen Use Efficiency in Rice

    Directory of Open Access Journals (Sweden)

    Xinghai Yang

    2017-09-01

    Full Text Available Nitrogen is a major nutritional element in rice production. However, excessive application of nitrogen fertilizer has caused severe environmental pollution. Therefore, development of rice varieties with improved nitrogen use efficiency (NUE is urgent for sustainable agriculture. In this study, bulked segregant analysis (BSA combined with whole genome re-sequencing (WGS technology was applied to finely map quantitative trait loci (QTL for NUE. A key QTL, designated as qNUE6 was identified on chromosome 6 and further validated by Insertion/Deletion (InDel marker-based substitutional mapping in recombinants from F2 population (NIL-13B4 × GH998. Forty-four genes were identified in this 266.5-kb region. According to detection and annotation analysis of variation sites, 39 genes with large-effect single-nucleotide polymorphisms (SNPs and large-effect InDels were selected as candidates and their expression levels were analyzed by qRT-PCR. Significant differences in the expression levels of LOC_Os06g15370 (peptide transporter PTR2 and LOC_Os06g15420 (asparagine synthetase were observed between two parents (Y11 and GH998. Phylogenetic analysis in Arabidopsis thaliana identified two closely related homologs, AT1G68570 (AtNPF3.1 and AT5G65010 (ASN2, which share 72.3 and 87.5% amino acid similarity with LOC_Os06g15370 and LOC_Os06g15420, respectively. Taken together, our results suggested that qNUE6 is a possible candidate gene for NUE in rice. The fine mapping and candidate gene analysis of qNUE6 provide the basis of molecular breeding for genetic improvement of rice varieties with high NUE, and lay the foundation for further cloning and functional analysis.

  20. Whole genome population genetics analysis of Sudanese goats identifies regions harboring genes associated with major traits.

    Science.gov (United States)

    Rahmatalla, Siham A; Arends, Danny; Reissmann, Monika; Said Ahmed, Ammar; Wimmers, Klaus; Reyer, Henry; Brockmann, Gudrun A

    2017-10-23

    Sudan is endowed with a variety of indigenous goat breeds which are used for meat and milk production and which are well adapted to the local environment. The aim of the present study was to determine the genetic diversity and relationship within and between the four main Sudanese breeds of Nubian, Desert, Taggar and Nilotic goats. Using the 50 K SNP chip, 24 animals of each breed were genotyped. More than 96% of high quality SNPs were polymorphic with an average minor allele frequency of 0.3. In all breeds, no significant difference between observed (0.4) and expected (0.4) heterozygosity was found and the inbreeding coefficients (F IS ) did not differ from zero. F st coefficients for the genetic distance between breeds also did not significantly deviate from zero. In addition, the analysis of molecular variance revealed that 93% of the total variance in the examined population can be explained by differences among individuals, while only 7% result from differences between the breeds. These findings provide evidence for high genetic diversity and little inbreeding within breeds on one hand, and low diversity between breeds on the other hand. Further examinations using Nei's genetic distance and STRUCTURE analysis clustered Taggar goats distinct from the other breeds. In a principal component (PC) analysis, PC1 could separate Taggar, Nilotic and a mix of Nubian and Desert goats into three groups. The SNPs that contributed strongly to PC1 showed high F st values in Taggar goat versus the other goat breeds. PCA allowed us to identify target genomic regions which contain genes known to influence growth, development, bone formation and the immune system. The information on the genetic variability and diversity in this study confirmed that Taggar goat is genetically different from the other goat breeds in Sudan. The SNPs identified by the first principal components show high F st values in Taggar goat and allowed to identify candidate genes which can be used in the

  1. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    Science.gov (United States)

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-07-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  2. Whole-Genome Sequence Analysis of Antimicrobial Resistance Genes in Streptococcus uberis and Streptococcus dysgalactiae Isolates from Canadian Dairy Herds

    Directory of Open Access Journals (Sweden)

    Julián Reyes Vélez

    2017-05-01

    Full Text Available The objectives of this study are to determine the occurrence of antimicrobial resistance (AMR genes using whole-genome sequence (WGS of Streptococcus uberis (S. uberis and Streptococcus dysgalactiae (S. dysgalactiae isolates, recovered from dairy cows in the Canadian Maritime Provinces. A secondary objective included the exploration of the association between phenotypic AMR and the genomic characteristics (genome size, guanine–cytosine content, and occurrence of unique gene sequences. Initially, 91 isolates were sequenced, and of these isolates, 89 were assembled. Furthermore, 16 isolates were excluded due to larger than expected genomic sizes (>2.3 bp × 1,000 bp. In the final analysis, 73 were used with complete WGS and minimum inhibitory concentration records, which were part of the previous phenotypic AMR study, representing 18 dairy herds from the Maritime region of Canada (1. A total of 23 unique AMR gene sequences were found in the bacterial genomes, with a mean number of 8.1 (minimum: 5; maximum: 13 per genome. Overall, there were 10 AMR genes [ANT(6, TEM-127, TEM-163, TEM-89, TEM-95, Linb, Lnub, Ermb, Ermc, and TetS] present only in S. uberis genomes and 2 genes unique (EF-TU and TEM-71 to the S. dysgalactiae genomes; 11 AMR genes [APH(3′, TEM-1, TEM-136, TEM-157, TEM-47, TetM, bl2b, gyrA, parE, phoP, and rpoB] were found in both bacterial species. Two-way tabulations showed association between the phenotypic susceptibility to lincosamides and the presence of linB (P = 0.002 and lnuB (P < 0.001 genes and the between the presence of tetM (P = 0.015 and tetS (P = 0.064 genes and phenotypic resistance to tetracyclines only for the S. uberis isolates. The logistic model showed that the odds of resistance (to any of the phenotypically tested antimicrobials was 4.35 times higher when there were >11 AMR genes present in the genome, compared with <7 AMR genes (P < 0.001. The odds of resistance was lower for S

  3. Prevalent Role of Gene Features in Determining Evolutionary Fates of Whole-Genome Duplication Duplicated Genes in Flowering Plants1[W][OA

    Science.gov (United States)

    Jiang, Wen-kai; Liu, Yun-long; Xia, En-hua; Gao, Li-zhi

    2013-01-01

    The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs. PMID:23396833

  4. The Use of a Combined Bioinformatics Approach to Locate Antibiotic Resistance Genes on Plasmids From Whole Genome Sequences of Salmonella enterica Serovars From Humans in Ghana

    Directory of Open Access Journals (Sweden)

    Egle Kudirkiene

    2018-05-01

    Full Text Available In the current study, we identified plasmids carrying antimicrobial resistance genes in draft whole genome sequences of 16 selected Salmonella enterica isolates representing six different serovars from humans in Ghana. The plasmids and the location of resistance genes in the genomes were predicted using a combination of PlasmidFinder, ResFinder, plasmidSPAdes and BLAST genomic analysis tools. Subsequently, S1-PFGE was employed for analysis of plasmid profiles. Whole genome sequencing confirmed the presence of antimicrobial resistance genes in Salmonella isolates showing multidrug resistance phenotypically. ESBL, either blaTEM52−B or blaCTX−M15 were present in two cephalosporin resistant isolates of S. Virchow and S. Poona, respectively. The systematic genome analysis revealed the presence of different plasmids in different serovars, with or without insertion of antimicrobial resistance genes. In S. Enteritidis, resistance genes were carried predominantly on plasmids of IncN type, in S. Typhimurium on plasmids of IncFII(S/IncFIB(S/IncQ1 type. In S. Virchow and in S. Poona, resistance genes were detected on plasmids of IncX1 and TrfA/IncHI2/IncHI2A type, respectively. The latter two plasmids were described for the first time in these serovars. The combination of genomic analytical tools allowed nearly full mapping of the resistance plasmids in all Salmonella strains analyzed. The results suggest that the improved analytical approach used in the current study may be used to identify plasmids that are specifically associated with resistance phenotypes in whole genome sequences. Such knowledge would allow the development of rapid multidrug resistance tracking tools in Salmonella populations using WGS.

  5. Comparative genomics of an IncA/C multidrug resistance plasmid from Escherichia coli and Klebsiella isolates from intensive care unit patients and the utility of whole-genome sequencing in health care settings.

    Science.gov (United States)

    Hazen, Tracy H; Zhao, LiCheng; Boutin, Mallory A; Stancil, Angela; Robinson, Gwen; Harris, Anthony D; Rasko, David A; Johnson, J Kristie

    2014-08-01

    The IncA/C plasmids have been implicated for their role in the dissemination of β-lactamases, including gene variants that confer resistance to expanded-spectrum cephalosporins, which are often the treatment of last resort against multidrug-resistant, hospital-associated pathogens. A bla(FOX-5) gene was detected in 14 Escherichia coli and 16 Klebsiella isolates that were cultured from perianal swabs of patients admitted to an intensive care unit (ICU) of the University of Maryland Medical Center (UMMC) in Baltimore, MD, over a span of 3 years. Four of the FOX-encoding isolates were obtained from subsequent samples of patients that were initially negative for an AmpC β-lactamase upon admission to the ICU, suggesting that the AmpC β-lactamase-encoding plasmid was acquired while the patient was in the ICU. The genomes of five E. coli isolates and six Klebsiella isolates containing bla(FOX-5) were selected for sequencing based on their plasmid profiles. An ∼ 167-kb IncA/C plasmid encoding the FOX-5 β-lactamase, a CARB-2 β-lactamase, additional antimicrobial resistance genes, and heavy metal resistance genes was identified. Another FOX-5-encoding IncA/C plasmid that was nearly identical except for a variable region associated with the resistance genes was also identified. To our knowledge, these plasmids represent the first FOX-5-encoding plasmids sequenced. We used comparative genomics to describe the genetic diversity of a plasmid encoding a FOX-5 β-lactamase relative to the whole-genome diversity of 11 E. coli and Klebsiella isolates that carry this plasmid. Our findings demonstrate the utility of whole-genome sequencing for tracking of plasmid and antibiotic resistance gene distribution in health care settings. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Whole-genome transcription and DNA methylation analysis of peripheral blood mononuclear cells identified aberrant gene regulation pathways in systemic lupus erythematosus.

    Science.gov (United States)

    Zhu, Honglin; Mi, Wentao; Luo, Hui; Chen, Tao; Liu, Shengxi; Raman, Indu; Zuo, Xiaoxia; Li, Quan-Zhen

    2016-07-13

    Recent achievement in genetics and epigenetics has led to the exploration of the pathogenesis of systemic lupus erythematosus (SLE). Identification of differentially expressed genes and their regulatory mechanism(s) at whole-genome level will provide a comprehensive understanding of the development of SLE and its devastating complications, lupus nephritis (LN). We performed whole-genome transcription and DNA methylation analysis in PBMC of 30 SLE patients, including 15 with LN (SLE LN(+)) and 15 without LN (SLE LN(-)), and 25 normal controls (NC) using HumanHT-12 Beadchips and Illumina Human Methy450 chips. The serum proinflammatory cytokines were quantified using Bio-plex Human Cytokine 27-plex assay. Differentially expressed genes and differentially methylated CpG were analyzed with GenomeStudio, R, and SAM software. The association between DNA methylation and gene expression were tested. Gene interaction pathways of the differentially expressed genes were analyzed by IPA software. We identified 552 upregulated genes and 550 downregulated genes in PBMC of SLE. Integration of DNA methylation and gene expression profiling showed that 334 upregulated genes were hypomethylated, and 479 downregulated genes were hypermethylated. Pathway analysis on the differential genes in SLE revealed significant enrichment in interferon (IFN) signaling and toll-like receptor (TLR) signaling pathways. Nine IFN- and seven TLR-related genes were identified and displayed step-wise increase in SLE LN(-) and SLE LN(+). Hypomethylated CpG sites were detected on these genes. The gene expressions for MX1, GPR84, and E2F2 were increased in SLE LN(+) as compared to SLE LN(-) patients. The serum levels of inflammatory cytokines, including IL17A, IP-10, bFGF, TNF-α, IL-6, IL-15, GM-CSF, IL-1RA, IL-5, and IL-12p70, were significantly elevated in SLE compared with NC. The levels of IL-15 and IL1RA correlated with their mRNA expression. The upregulation of IL-15 may be regulated by hypomethylated

  7. Mining whole genomes and transcriptomes of Jatropha (Jatropha curcas) and Castor bean (Ricinus communis) for NBS-LRR genes and defense response associated transcription factors.

    Science.gov (United States)

    Sood, Archit; Jaiswal, Varun; Chanumolu, Sree Krishna; Malhotra, Nikhil; Pal, Tarun; Chauhan, Rajinder Singh

    2014-11-01

    Jatropha (Jatropha curcas L.) and Castor bean (Ricinus communis) are oilseed crops of family Euphorbiaceae with the potential of producing high quality biodiesel and having industrial value. Both the bioenergy plants are becoming susceptible to various biotic stresses directly affecting the oil quality and content. No report exists as of today on analysis of Nucleotide Binding Site-Leucine Rich Repeat (NBS-LRR) gene repertoire and defense response transcription factors in both the plant species. In silico analysis of whole genomes and transcriptomes identified 47 new NBS-LRR genes in both the species and 122 and 318 defense response related transcription factors in Jatropha and Castor bean, respectively. The identified NBS-LRR genes and defense response transcription factors were mapped onto the respective genomes. Common and unique NBS-LRR genes and defense related transcription factors were identified in both the plant species. All NBS-LRR genes in both the species were characterized into Toll/interleukin-1 receptor NBS-LRRs (TNLs) and coiled-coil NBS-LRRs (CNLs), position on contigs, gene clusters and motifs and domains distribution. Transcript abundance or expression values were measured for all NBS-LRR genes and defense response transcription factors, suggesting their functional role. The current study provides a repertoire of NBS-LRR genes and transcription factors which can be used in not only dissecting the molecular basis of disease resistance phenotype but also in developing disease resistant genotypes in Jatropha and Castor bean through transgenic or molecular breeding approaches.

  8. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    Science.gov (United States)

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling. © 2014 CIRAD New Phytologist © 2014 New Phytologist Trust.

  9. Aligning the unalignable: bacteriophage whole genome alignments.

    Science.gov (United States)

    Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M

    2016-01-13

    In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).

  10. Effects of temperature on gene expression patterns in Leptospira interrogans serovar Lai as assessed by whole-genome microarrays.

    Science.gov (United States)

    Lo, Miranda; Bulach, Dieter M; Powell, David R; Haake, David A; Matsunaga, James; Paustian, Michael L; Zuerner, Richard L; Adler, Ben

    2006-10-01

    Leptospirosis is an important zoonosis of worldwide distribution. Humans become infected via exposure to pathogenic Leptospira spp. from infected animals or contaminated water or soil. The availability of genome sequences for Leptospira interrogans, serovars Lai and Copenhageni, has opened up opportunities to examine global transcription profiles using microarray technology. Temperature is a key environmental factor known to affect leptospiral protein expression. Leptospira spp. can grow in artificial media at a range of temperatures reflecting conditions found in the environment and the mammalian host. Therefore, transcriptional changes were compared between cultures grown at 20 degrees C, 30 degrees C, 37 degrees C, and 39 degrees C to represent ambient temperatures in the environment, growth under laboratory conditions, and temperatures in healthy and febrile hosts. Data from direct pairwise comparisons of the four temperatures were consolidated to examine transcriptional changes at two generalized biological conditions representing mammalian physiological temperatures (37 degrees C and 39 degrees C) versus environmental temperatures (20 degrees C and 30 degrees C). Additionally, cultures grown at 30 degrees C then shifted overnight to 37 degrees C were compared with those grown long-term at 30 degrees C and 37 degrees C to identify genes potentially expressed in the early stages of infection. Comparison of data sets from physiological versus environmental experiments with upshift experiments provided novel insights into possible transcriptional changes at different stages of infection. Changes included differential expression of chemotaxis and motility genes, signal transduction systems, and genes encoding proteins involved in alteration of the outer membrane. These findings indicate that temperature is an important factor regulating expression of proteins that facilitate invasion and establishment of disease.

  11. Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number.

    Directory of Open Access Journals (Sweden)

    Joseph Andrews

    2010-01-01

    Full Text Available We have previously identified genome-wide DNA methylation changes in a cell line model of breast cancer metastasis. These complex epigenetic changes that we observed, along with concurrent karyotype analyses, have led us to hypothesize that complex genomic alterations in cancer cells (deletions, translocations and ploidy are superimposed over promoter-specific methylation events that are responsible for gene-specific expression changes observed in breast cancer metastasis.We undertook simultaneous high-resolution, whole-genome analyses of MDA-MB-468GFP and MDA-MB-468GFP-LN human breast cancer cell lines (an isogenic, paired lymphatic metastasis cell line model using Affymetrix gene expression (U133, promoter (1.0R, and SNP/CNV (SNP 6.0 microarray platforms to correlate data from gene expression, epigenetic (DNA methylation, and combination copy number variant/single nucleotide polymorphism microarrays. Using Partek Software and Ingenuity Pathway Analysis we integrated datasets from these three platforms and detected multiple hypomethylation and hypermethylation events. Many of these epigenetic alterations correlated with gene expression changes. In addition, gene dosage events correlated with the karyotypic differences observed between the cell lines and were reflected in specific promoter methylation patterns. Gene subsets were identified that correlated hyper (and hypo methylation with the loss (or gain of gene expression and in parallel, with gene dosage losses and gains, respectively. Individual gene targets from these subsets were also validated for their methylation, expression and copy number status, and susceptible gene pathways were identified that may indicate how selective advantage drives the processes of tumourigenesis and metastasis.Our approach allows more precisely profiling of functionally relevant epigenetic signatures that are associated with cancer progression and metastasis.

  12. Whole-genome gene expression modifications associated with nitrosamine exposure and micronucleus frequency in human blood cells

    DEFF Research Database (Denmark)

    Hebels, Dennie G A J; Jennen, Danyel G J; van Herwijnen, Marcel H M

    2011-01-01

    association between MN frequency and urinary NOCs (r = 0.41, P = 0.025) and identified modifications in among others cytoskeleton remodeling, cell cycle, apoptosis and survival, signal transduction, immune response, G-protein signaling and development pathways, which indicate a response to NOC......-induced genotoxicity. Moreover, we established a network of genes, the most important ones of which include FBXW7, BUB3, Caspase 2, Caspase 8, SMAD3, Huntingtin and MGMT, which are involved in processes relevant in carcinogenesis. The modified genetic processes and genes found in this study may be of interest...

  13. Functional Genome Mining for Metabolites Encoded by Large Gene Clusters through Heterologous Expression of a Whole-Genome Bacterial Artificial Chromosome Library in Streptomyces spp.

    Science.gov (United States)

    Xu, Min; Wang, Yemin; Zhao, Zhilong; Gao, Guixi; Huang, Sheng-Xiong; Kang, Qianjin; He, Xinyi; Lin, Shuangjun; Pang, Xiuhua; Deng, Zixin

    2016-01-01

    ABSTRACT Genome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries in Streptomyces spp. We demonstrate mining from a strain of Streptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate host Streptomyces lividans SBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic from S. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways. IMPORTANCE Microbial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites from Streptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including

  14. Combined approach for finding susceptibility genes in DISH/chondrocalcinosis families: whole-genome-wide linkage and IBS/IBD studies.

    Science.gov (United States)

    Couto, Ana Rita; Parreira, Bruna; Thomson, Russell; Soares, Marta; Power, Deborah M; Stankovich, Jim; Armas, Jácome Bruges; Brown, Matthew A

    2017-01-01

    Twelve families with exuberant and early-onset calcium pyrophosphate dehydrate chondrocalcinosis (CC) and diffuse idiopathic skeletal hyperostosis (DISH), hereafter designated DISH/CC, were identified in Terceira Island, the Azores, Portugal. Ninety-two (92) individuals from these families were selected for whole-genome-wide linkage analysis. An identity-by-descent (IBD) analysis was performed in 10 individuals from 5 of the investigated pedigrees. The chromosome area with the maximal logarithm of the odds score (1.32; P =0.007) was not identified using the IBD/identity-by-state (IBS) analysis; therefore, it was not investigated further. From the IBD/IBS analysis, two candidate genes, LEMD3 and RSPO4 , were identified and sequenced. Nine genetic variants were identified in the RSPO4 gene; one regulatory variant (rs146447064) was significantly more frequent in control individuals than in DISH/CC patients ( P =0.03). Four variants were identified in LEMD3 , and the rs201930700 variant was further investigated using segregation analysis. None of the genetic variants in RSPO4 or LEMD3 segregated within the studied families. Therefore, although a major genetic effect was shown to determine DISH/CC occurrence within these families, the specific genetic variants involved were not identified.

  15. Use of whole genome deep sequencing to define emerging minority variants in virus envelope genes in herpesvirus treated with novel antimicrobial K21.

    Science.gov (United States)

    Tweedy, Joshua G; Prusty, Bhupesh K; Gompels, Ursula A

    2017-10-01

    New antivirals are required to prevent rising antimicrobial resistance from replication inhibitors. The aim of this study was to analyse the range of emerging mutations in herpesvirus by whole genome deep sequencing. We tested human herpesvirus 6 treatment with novel antiviral K21, where evidence indicated distinct effects on virus envelope proteins. We treated BACmid cloned virus in order to analyse mechanisms and candidate targets for resistance. Illumina based next generation sequencing technology enabled analyses of mutations in 85 genes to depths of 10,000 per base detecting low prevalent minority variants (<1%). After four passages in tissue culture the untreated virus accumulated mutations in infected cells giving an emerging mixed population (45-73%) of non-synonymous SNPs in six genes including two envelope glycoproteins. Strikingly, treatment with K21 did not accumulate the passage mutations; instead a high frequency mutation was selected in envelope protein gQ2, part of the gH/gL complex essential for herpesvirus infection. This introduced a stop codon encoding a truncation mutation previously observed in increased virion production. There was reduced detection of the glycoprotein complex in infected cells. This supports a novel pathway for K21 targeting virion envelopes distinct from replication inhibition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Whole Genome and Global Gene Expression Analyses of the Model Mushroom Flammulina velutipes Reveal a High Capacity for Lignocellulose Degradation

    Science.gov (United States)

    Park, Young-Jin; Baek, Jeong Hun; Lee, Seonwook; Kim, Changhoon; Rhee, Hwanseok; Kim, Hyungtae; Seo, Jeong-Sun; Park, Hae-Ran; Yoon, Dae-Eun; Nam, Jae-Young; Kim, Hong-Il; Kim, Jong-Guk; Yoon, Hyeokjun; Kang, Hee-Wan; Cho, Jae-Yong; Song, Eun-Sung; Sung, Gi-Ho; Yoo, Young-Bok; Lee, Chang-Soo; Lee, Byoung-Moo; Kong, Won-Sik

    2014-01-01

    Flammulina velutipes is a fungus with health and medicinal benefits that has been used for consumption and cultivation in East Asia. F. velutipes is also known to degrade lignocellulose and produce ethanol. The overlapping interests of mushroom production and wood bioconversion make F. velutipes an attractive new model for fungal wood related studies. Here, we present the complete sequence of the F. velutipes genome. This is the first sequenced genome for a commercially produced edible mushroom that also degrades wood. The 35.6-Mb genome contained 12,218 predicted protein-encoding genes and 287 tRNA genes assembled into 11 scaffolds corresponding with the 11 chromosomes of strain KACC42780. The 88.4-kb mitochondrial genome contained 35 genes. Well-developed wood degrading machinery with strong potential for lignin degradation (69 auxiliary activities, formerly FOLymes) and carbohydrate degradation (392 CAZymes), along with 58 alcohol dehydrogenase genes were highly expressed in the mycelium, demonstrating the potential application of this organism to bioethanol production. Thus, the newly uncovered wood degrading capacity and sequential nature of this process in F. velutipes, offer interesting possibilities for more detailed studies on either lignin or (hemi-) cellulose degradation in complex wood substrates. The mutual interest in wood degradation by the mushroom industry and (ligno-)cellulose biomass related industries further increase the significance of F. velutipes as a new model. PMID:24714189

  17. Enriched whole genome sequencing identified compensatory mutations in the RNA polymerase gene of rifampicin-resistant Mycobacterium leprae strains.

    Science.gov (United States)

    Lavania, Mallika; Singh, Itu; Turankar, Ravindra P; Gupta, Anuj Kumar; Ahuja, Madhvi; Pathak, Vinay; Sengupta, Utpal

    2018-01-01

    Despite more than three decades of multidrug therapy (MDT), leprosy remains a major public health issue in several endemic countries, including India. The emergence of drug resistance in Mycobacterium leprae (M. leprae) is a cause of concern and poses a threat to the leprosy-control program, which might ultimately dampen the achievement of the elimination program of the country. Rifampicin resistance in clinical strains of M. leprae are supposed to arise from harboring bacterial strains with mutations in the 81-bp rifampicin resistance determining region (RRDR) of the rpoB gene. However, complete dynamics of rifampicin resistance are not explained only by this mutation in leprosy strains. To understand the role of other compensatory mutations and transmission dynamics of drug-resistant leprosy, a genome-wide sequencing of 11 M. leprae strains - comprising five rifampicin-resistant strains, five sensitive strains, and one reference strain - was done in this study. We observed the presence of compensatory mutations in two rifampicin-resistant strains in rpoC and mmpL7 genes, along with rpoB , that may additionally be responsible for conferring resistance in those strains. Our findings support the role for compensatory mutation(s) in RNA polymerase gene(s), resulting in rifampicin resistance in relapsed leprosy patients.

  18. Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow

    Science.gov (United States)

    Árnason, Úlfur; Kumar, Vikas

    2018-01-01

    Reconstructing the evolution of baleen whales (Mysticeti) has been problematic because morphological and genetic analyses have produced different scenarios. This might be caused by genomic admixture that may have taken place among some rorquals. We present the genomes of six whales, including the blue whale (Balaenoptera musculus), to reconstruct a species tree of baleen whales and to identify phylogenetic conflicts. Evolutionary multilocus analyses of 34,192 genome fragments reveal a fast radiation of rorquals at 10.5 to 7.5 million years ago coinciding with oceanic circulation shifts. The evolutionarily enigmatic gray whale (Eschrichtius robustus) is placed among rorquals, and the blue whale genome shows a high degree of heterozygosity. The nearly equal frequency of conflicting gene trees suggests that speciation of rorqual evolution occurred under gene flow, which is best depicted by evolutionary networks. Especially in marine environments, sympatric speciation might be common; our results raise questions about how genetic divergence can be established. PMID:29632892

  19. Enriched whole genome sequencing identified compensatory mutations in the RNA polymerase gene of rifampicin-resistant Mycobacterium leprae strains

    Directory of Open Access Journals (Sweden)

    Lavania M

    2018-01-01

    Full Text Available Mallika Lavania,1 Itu Singh,1 Ravindra P Turankar,1 Anuj Kumar Gupta,2 Madhvi Ahuja,1 Vinay Pathak,1 Utpal Sengupta1 1Stanley Browne Laboratory, The Leprosy Mission Trust India, TLM Community Hospital Nand Nagari, 2Agilent Technologies India Pvt Ltd, Jasola District Centre, New Delhi, India Abstract: Despite more than three decades of multidrug therapy (MDT, leprosy remains a major public health issue in several endemic countries, including India. The emergence of drug resistance in Mycobacterium leprae (M. leprae is a cause of concern and poses a threat to the leprosy-control program, which might ultimately dampen the achievement of the elimination program of the country. Rifampicin resistance in clinical strains of M. leprae are supposed to arise from harboring bacterial strains with mutations in the 81-bp rifampicin resistance determining region (RRDR of the rpoB gene. However, complete dynamics of rifampicin resistance are not explained only by this mutation in leprosy strains. To understand the role of other compensatory mutations and transmission dynamics of drug-resistant leprosy, a genome-wide sequencing of 11 M. leprae strains – comprising five rifampicin-resistant strains, five sensitive strains, and one reference strain – was done in this study. We observed the presence of compensatory mutations in two rifampicin-resistant strains in rpoC and mmpL7 genes, along with rpoB, that may additionally be responsible for conferring resistance in those strains. Our findings support the role for compensatory mutation(s in RNA polymerase gene(s, resulting in rifampicin resistance in relapsed leprosy patients. Keywords: leprosy, rifampicin resistance, compensatory mutations, next generation sequencing, relapsed, MDT, India

  20. Whole genome DNA methylation profiling of oral cancer in ethnic population of Meghalaya, North East India reveals novel genes.

    Science.gov (United States)

    Khongsti, Shngainlang; Lamare, Frederick A; Shunyu, Neizekhotuo Brian; Ghosh, Sahana; Maitra, Arindam; Ghosh, Srimoyee

    2018-03-01

    Oral Squamous Cell Carcinoma (OSCC) is a serious and one of the most common and highly aggressive malignancies. Epigenetic factors such as DNA methylation have been known to be implicated in a number of cancer etiologies. The main objective of this study was to investigate physiognomies of Promoter DNA methylation patterns associated with oral cancer epigenome with special reference to the ethnic population of Meghalaya, North East India. The present study identifies 27,205 CpG sites and 3811 regions that are differentially methylated in oral cancer when compared to matched normal. 45 genes were found to be differentially methylated within the promoter region, of which 38 were hypermethylated and 7 hypomethylated. 14 of the hypermethylated genes were found to be similar to that of the TCGA-HNSCC study some of which are TSGs and few novel genes which may serve as candidate methylation biomarkers for OSCC in this poorly characterized ethnic group. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Analysis of antisense expression by whole genome tiling microarrays and siRNAs suggests mis-annotation of Arabidopsis orphan protein-coding genes.

    Directory of Open Access Journals (Sweden)

    Casey R Richardson

    2010-05-01

    Full Text Available MicroRNAs (miRNAs and trans-acting small-interfering RNAs (tasi-RNAs are small (20-22 nt long RNAs (smRNAs generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery.We explored rice (Oryza sativa sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis 'orphan' hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the "ancient" (deeply conserved class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for "new" rapidly-evolving MIRNA genes.Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non-coding RNAs in plants and potentially other

  2. A whole genome screening and RNA interference identify a juvenile hormone esterase-like gene of the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Gu, Xiaojun; Kumar, Sunil; Kim, Eunjin; Kim, Yonggyun

    2015-09-01

    Juvenile hormone (JH) plays a crucial role in preventing precocious metamorphosis and stimulating reproduction. Thus, its hemolymph titer should be under a tight control. As a negative controller, juvenile hormone esterase (JHE) performs a rapid breakdown of residual JH in the hemolymph during last instar to induce a larval-to-pupal metamorphosis. A whole genome of the diamondback moth (DBM), Plutella xylostella, has been annotated and proposed 11 JHE candidates. Sequence analysis using conserved motifs commonly found in other JHEs proposed a putative JHE (Px004817). Px004817 (64.61 kDa, pI=5.28) exhibited a characteristic JHE expression pattern by showing high peak at the early last instar, at which JHE enzyme activity was also at a maximal level. RNA interference of Px004817 reduced JHE activity and interrupted pupal development with a significant increase of larval period. This study identifies Px004817 as a JHE-like gene of P. xylostella. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions

    Directory of Open Access Journals (Sweden)

    Andrew C. Kotze

    2014-12-01

    Full Text Available Anthelmintic resistance has a great impact on livestock production systems worldwide, is an emerging concern in companion animal medicine, and represents a threat to our ongoing ability to control human soil-transmitted helminths. The Consortium for Anthelmintic Resistance and Susceptibility (CARS provides a forum for scientists to meet and discuss the latest developments in the search for molecular markers of anthelmintic resistance. Such markers are important for detecting drug resistant worm populations, and indicating the likely impact of the resistance on drug efficacy. The molecular basis of resistance is also important for understanding how anthelmintics work, and how drug resistant populations arise. Changes to target receptors, drug efflux and other biological processes can be involved. This paper reports on the CARS group meeting held in August 2013 in Perth, Australia. The latest knowledge on the development of molecular markers for resistance to each of the principal classes of anthelmintics is reviewed. The molecular basis of resistance is best understood for the benzimidazole group of compounds, and we examine recent work to translate this knowledge into useful diagnostics for field use. We examine recent candidate-gene and whole-genome approaches to understanding anthelmintic resistance and identify markers. We also look at drug transporters in terms of providing both useful markers for resistance, as well as opportunities to overcome resistance through the targeting of the transporters themselves with inhibitors. Finally, we describe the tools available for the application of the newest high-throughput sequencing technologies to the study of anthelmintic resistance.

  4. Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies

    Energy Technology Data Exchange (ETDEWEB)

    Catfish Genome Consortium; Wang, Shaolin; Peatman, Eric; Abernathy, Jason; Waldbieser, Geoff; Lindquist, Erika; Richardson, Paul; Lucas, Susan; Wang, Mei; Li, Ping; Thimmapuram, Jyothi; Liu, Lei; Vullaganti, Deepika; Kucuktas, Huseyin; Murdock, Christopher; Small, Brian C; Wilson, Melanie; Liu, Hong; Jiang, Yanliang; Lee, Yoona; Chen, Fei; Lu, Jianguo; Wang, Wenqi; Xu, Peng; Somridhivej, Benjaporn; Baoprasertkul, Puttharat; Quilang, Jonas; Sha, Zhenxia; Bao, Baolong; Wang, Yaping; Wang, Qun; Takano, Tomokazu; Nandi, Samiran; Liu, Shikai; Wong, Lilian; Kaltenboeck, Ludmilla; Quiniou, Sylvie; Bengten, Eva; Miller, Norman; Trant, John; Rokhsar, Daniel; Liu, Zhanjiang

    2010-03-23

    Background-Through the Community Sequencing Program, a catfish EST sequencing project was carried out through a collaboration between the catfish research community and the Department of Energy's Joint Genome Institute. Prior to this project, only a limited EST resource from catfish was available for the purpose of SNP identification. Results-A total of 438,321 quality ESTs were generated from 8 channel catfish (Ictalurus punctatus) and 4 blue catfish (Ictalurus furcatus) libraries, bringing the number of catfish ESTs to nearly 500,000. Assembly of all catfish ESTs resulted in 45,306 contigs and 66,272 singletons. Over 35percent of the unique sequences had significant similarities to known genes, allowing the identification of 14,776 unique genes in catfish. Over 300,000 putative SNPs have been identified, of which approximately 48,000 are high-quality SNPs identified from contigs with at least four sequences and the minor allele presence of at least two sequences in the contig. The EST resource should be valuable for identification of microsatellites, genome annotation, large-scale expression analysis, and comparative genome analysis. Conclusions-This project generated a large EST resource for catfish that captured the majority of the catfish transcriptome. The parallel analysis of ESTs from two closely related Ictalurid catfishes should also provide powerful means for the evaluation of ancient and recent gene duplications, and for the development of high-density microarrays in catfish. The inter- and intra-specific SNPs identified from all catfish EST dataset assembly will greatly benefit the catfish introgression breeding program and whole genome association studies.

  5. The Present and Future of Whole Genome Sequencing (WGS and Whole Metagenome Sequencing (WMS for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain

    Directory of Open Access Journals (Sweden)

    Elena A. Oniciuc

    2018-05-01

    Full Text Available Antimicrobial resistance (AMR surveillance is a critical step within risk assessment schemes, as it is the basis for informing global strategies, monitoring the effectiveness of public health interventions, and detecting new trends and emerging threats linked to food. Surveillance of AMR is currently based on the isolation of indicator microorganisms and the phenotypic characterization of clinical, environmental and food strains isolated. However, this approach provides very limited information on the mechanisms driving AMR or on the presence or spread of AMR genes throughout the food chain. Whole-genome sequencing (WGS of bacterial pathogens has shown potential for epidemiological surveillance, outbreak detection, and infection control. In addition, whole metagenome sequencing (WMS allows for the culture-independent analysis of complex microbial communities, providing useful information on AMR genes occurrence. Both technologies can assist the tracking of AMR genes and mobile genetic elements, providing the necessary information for the implementation of quantitative risk assessments and allowing for the identification of hotspots and routes of transmission of AMR across the food chain. This review article summarizes the information currently available on the use of WGS and WMS for surveillance of AMR in foodborne pathogenic bacteria and food-related samples and discusses future needs that will have to be considered for the routine implementation of these next-generation sequencing methodologies with this aim. In particular, methodological constraints that impede the use at a global scale of these high-throughput sequencing (HTS technologies are identified, and the standardization of methods and protocols is suggested as a measure to upgrade HTS-based AMR surveillance schemes.

  6. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2004-01-01

    .... However, this is only part of the picture. Increasingly, we are learning that epigenetic changes, that is, changes in chromatin structure, are critically important in regulating cellular gene expression...

  7. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2005-01-01

    .... However, this is only part of the picture. Increasingly, we are learning that epigenetic changes, that is, changes in chromatin structure, are critically important in regulating cellular gene expression...

  8. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle

    2003-01-01

    .... However, this is only part of the picture. Increasingly, we are learning that epigenetic changes, that is, changes in chromatin structure, are critically important in regulation cellular gene expression...

  9. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Wang, Linhai; Dossa, Komivi; Zhang, Xiurong; Ke, Tao; Liao, Boshou

    2017-09-18

    The cytochrome P450 monooxygenase (P450) superfamily is involved in the biosynthesis of various primary and secondary metabolites. However, little is known about the effects of whole genome duplication (WGD) and tandem duplication (TD) events on the evolutionary history and functional divergence of P450s in Brassica after splitting from a common ancestor with Arabidopsis thaliana. Using Hidden Markov Model search and manual curation, we detected that Brassica species have nearly 1.4-fold as many P450 members as A. thaliana. Most P450s in A. thaliana and Brassica species were located on pseudo-chromosomes. The inferred phylogeny indicated that all P450s were clustered into two different subgroups. Analysis of WGD event revealed that different P450 gene families had appeared after evolutionary events of species. For the TD event analyses, the P450s from TD events in Brassica species can be divided into ancient and recent parts. Our comparison of influence of WGD and TD events on the P450 gene superfamily between A. thaliana and Brassica species indicated that the family-specific evolution in the Brassica lineage can be attributed to both WGD and TD, whereas WGD was recognized as the major mechanism for the recent evolution of the P450 super gene family. Expression analysis of P450s from A. thaliana and Brassica species indicated that WGD-type P450s showed the same expression pattern but completely different expression with TD-type P450s across different tissues in Brassica species. Selection force analysis suggested that P450 orthologous gene pairs between A. thaliana and Brassica species underwent negative selection, but no significant differences were found between P450 orthologous gene pairs in A. thaliana-B. rapa and A. thaliana-B. oleracea lineages, as well as in different subgenomes in B. rapa or B. oleracea compared with A. thaliana. This study is the first to investigate the effects of WGD and TD on the evolutionary history and functional divergence of P450

  10. Development and validation of concurrent preimplantation genetic diagnosis for single gene disorders and comprehensive chromosomal aneuploidy screening without whole genome amplification.

    Science.gov (United States)

    Zimmerman, Rebekah S; Jalas, Chaim; Tao, Xin; Fedick, Anastasia M; Kim, Julia G; Pepe, Russell J; Northrop, Lesley E; Scott, Richard T; Treff, Nathan R

    2016-02-01

    To develop a novel and robust protocol for multifactorial preimplantation genetic testing of trophectoderm biopsies using quantitative polymerase chain reaction (qPCR). Prospective and blinded. Not applicable. Couples indicated for preimplantation genetic diagnosis (PGD). None. Allele dropout (ADO) and failed amplification rate, genotyping consistency, chromosome screening success rate, and clinical outcomes of qPCR-based screening. The ADO frequency on a single cell from a fibroblast cell line was 1.64% (18/1,096). When two or more cells were tested, the ADO frequency dropped to 0.02% (1/4,426). The rate of amplification failure was 1.38% (55/4,000) overall, with 2.5% (20/800) for single cells and 1.09% (35/3,200) for samples that had two or more cells. Among 152 embryos tested in 17 cases by qPCR-based PGD and CCS, 100% were successfully given a diagnosis, with 0% ADO or amplification failure. Genotyping consistency with reference laboratory results was >99%. Another 304 embryos from 43 cases were included in the clinical application of qPCR-based PGD and CCS, for which 99.7% (303/304) of the embryos were given a definitive diagnosis, with only 0.3% (1/304) having an inconclusive result owing to recombination. In patients receiving a transfer with follow-up, the pregnancy rate was 82% (27/33). This study demonstrates that the use of qPCR for PGD testing delivers consistent and more reliable results than existing methods and that single gene disorder PGD can be run concurrently with CCS without the need for additional embryo biopsy or whole genome amplification. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A

    Czech Academy of Sciences Publication Activity Database

    Poursarebani, N.; Nussbaumer, T.; Šimková, Hana; Šafář, Jan; Witsenboer, H.; van Oeveren, J.; Doležel, Jaroslav; Mayer, K. F. X.; Stein, N.; Schnurbusch, T.

    2014-01-01

    Roč. 79, č. 2 (2014), s. 334-347 ISSN 0960-7412 Institutional support: RVO:61389030 Keywords : bread wheat chromosome 6A * whole-genome profiling * LINEAR TOPOLOGICAL CONTIGS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.972, year: 2014

  12. Whole-genome sequencing of veterinary pathogens

    DEFF Research Database (Denmark)

    Ronco, Troels

    -electrophoresis and single-locus sequencing has been widely used to characterize such types of veterinary pathogens. However, DNA sequencing techniques have become fast and cost effective in recent years and whole-genome sequencing data provide a much higher discriminative power and reproducibility than any...... genetic background. This indicates that dairy cows can be natural carriers of S. aureus subtypes that in certain cases lead to CM. A group of isolates that mostly belonged to ST151 carried three pathogenicity islands that were primarily found in this group. The prevalence of resistance genes was generally...

  13. Harnessing Whole Genome Sequencing in Medical Mycology.

    Science.gov (United States)

    Cuomo, Christina A

    2017-01-01

    Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens. Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host. Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.

  14. Multiple Whole Genome Alignments Without a Reference Organism

    Energy Technology Data Exchange (ETDEWEB)

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-01-16

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and sixDrosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families?perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  15. Whole genome amplification in preimplantation genetic diagnosis*

    Science.gov (United States)

    Zheng, Ying-ming; Wang, Ning; Li, Lei; Jin, Fan

    2011-01-01

    Preimplantation genetic diagnosis (PGD) refers to a procedure for genetically analyzing embryos prior to implantation, improving the chance of conception for patients at high risk of transmitting specific inherited disorders. This method has been widely used for a large number of genetic disorders since the first successful application in the early 1990s. Polymerase chain reaction (PCR) and fluorescent in situ hybridization (FISH) are the two main methods in PGD, but there are some inevitable shortcomings limiting the scope of genetic diagnosis. Fortunately, different whole genome amplification (WGA) techniques have been developed to overcome these problems. Sufficient DNA can be amplified and multiple tasks which need abundant DNA can be performed. Moreover, WGA products can be analyzed as a template for multi-loci and multi-gene during the subsequent DNA analysis. In this review, we will focus on the currently available WGA techniques and their applications, as well as the new technical trends from WGA products. PMID:21194180

  16. Forward genetics screen coupled with whole-genome resequencing identifies novel gene targets for improving heterologous enzyme production in Aspergillus niger.

    Science.gov (United States)

    Reilly, Morgann C; Kim, Joonhoon; Lynn, Jed; Simmons, Blake A; Gladden, John M; Magnuson, Jon K; Baker, Scott E

    2018-02-01

    Plant biomass, once reduced to its composite sugars, can be converted to fuel substitutes. One means of overcoming the recalcitrance of lignocellulose is pretreatment followed by enzymatic hydrolysis. However, currently available commercial enzyme cocktails are inhibited in the presence of residual pretreatment chemicals. Recent studies have identified a number of cellulolytic enzymes from bacteria that are tolerant to pretreatment chemicals such as ionic liquids. The challenge now is generation of these enzymes in copious amounts, an arena where fungal organisms such as Aspergillus niger have proven efficient. Fungal host strains still need to be engineered to increase production titers of heterologous protein over native enzymes, which has been a difficult task. Here, we developed a forward genetics screen coupled with whole-genome resequencing to identify specific lesions responsible for a protein hyper-production phenotype in A. niger. This strategy successfully identified novel targets, including a low-affinity glucose transporter, MstC, whose deletion significantly improved secretion of recombinant proteins driven by a glucoamylase promoter.

  17. The zebrafish maternal-effect gene cellular atoll encodes the centriolar component sas-6 and defects in its paternal function promote whole genome duplication.

    Science.gov (United States)

    Yabe, Taijiro; Ge, Xiaoyan; Pelegri, Francisco

    2007-12-01

    A female-sterile zebrafish maternal-effect mutation in cellular atoll (cea) results in defects in the initiation of cell division starting at the second cell division cycle. This phenomenon is caused by defects in centrosome duplication, which in turn affect the formation of a bipolar spindle. We show that cea encodes the centriolar coiled-coil protein Sas-6, and that zebrafish Cea/Sas-6 protein localizes to centrosomes. cea also has a genetic paternal contribution, which when mutated results in an arrested first cell division followed by normal cleavage. Our data supports the idea that, in zebrafish, paternally inherited centrosomes are required for the first cell division while maternally derived factors are required for centrosomal duplication and cell divisions in subsequent cell cycles. DNA synthesis ensues in the absence of centrosome duplication, and the one-cycle delay in the first cell division caused by cea mutant sperm leads to whole genome duplication. We discuss the potential implications of these findings with regards to the origin of polyploidization in animal species. In addition, the uncoupling of developmental time and cell division count caused by the cea mutation suggests the presence of a time window, normally corresponding to the first two cell cycles, which is permissive for germ plasm recruitment.

  18. Forward genetics screen coupled with whole-genome resequencing identifies novel gene targets for improving heterologous enzyme production in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Morgann C. [Joint BioEnergy Institute, Emeryville, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Joonhoon [Joint BioEnergy Institute, Emeryville, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lynn, Jed [Joint BioEnergy Institute, Emeryville, CA (United States); Wright-Patterson Air Force Base, Dayton, OH (United States); Simmons, Blake A. [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gladden, John M. [Joint BioEnergy Institute, Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Magnuson, Jon K. [Joint BioEnergy Institute, Emeryville, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Joint BioEnergy Institute, Emeryville, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-01-06

    Plant biomass, once reduced to its composite sugars, can be converted to fuel substitutes. One means of overcoming the recalcitrance of lignocellulose is pretreatment followed by enzymatic hydrolysis. However, currently available commercial enzyme cocktails are inhibited in the presence of residual pretreatment chemicals. Recent studies have identified a number of cellulolytic enzymes from bacteria that are tolerant to pretreatment chemicals such as ionic liquids. The challenge now is generation of these enzymes in copious amounts, an arena where fungal organisms such as Aspergillus niger have proven efficient. Fungal host strains still need to be engineered to increase production titers of heterologous protein over native enzymes, which has been a difficult task. Here, we developed a forward genetics screen coupled with whole-genome resequencing to identify specific lesions responsible for a protein hyper-production phenotype in A. niger. This strategy successfully identified novel targets, including a low-affinity glucose transporter, MstC, whose deletion significantly improved secretion of recombinant proteins driven by a glucoamylase promoter.

  19. A high-resolution whole genome radiation hybrid map of human chromosome 17q22-q25.3 across the genes for GH and TK

    Energy Technology Data Exchange (ETDEWEB)

    Foster, J.W.; Schafer, A.J.; Critcher, R. [Univ. of Cambridge (United Kingdom)] [and others

    1996-04-15

    We have constructed a whole genome radiation hybrid (WG-RH) map across a region of human chromosome 17q, from growth hormone (GH) to thymidine kinase (TK). A panel of 128 WG-RH hybrid cell lines generated by X-irradiation and fusion has been tested for the retention of 39 sequence-tagged site (STS) markers by the polymerase chain reaction. This genome mapping technique has allowed the integration of existing VNTR and microsatellite markers with additional new markers and existing STS markers previously mapped to this region by other means. The WG-RH map includes eight expressed sequence tag (EST) and three anonymous markers developed for this study, together with 23 anonymous microsatellites and five existing ESTs. Analysis of these data resulted in a high-density comprehensive map across this region of the genome. A subset of these markers has been used to produce a framework map consisting of 20 loci ordered with odds greater than 1000:1. The markers are of sufficient density to build a YAC contig across this region based on marker content. We have developed sequence tags for both ends of a 2.1-Mb YAC and mapped these using the WG-RH panel, allowing a direct comparison of cRay{sub 6000} to physical distance. 31 refs., 3 figs., 2 tabs.

  20. Thiopurine treatment in patients with Crohn's disease leads to a selective reduction of an effector cytotoxic gene expression signature revealed by whole-genome expression profiling.

    Science.gov (United States)

    Bouma, G; Baggen, J M; van Bodegraven, A A; Mulder, C J J; Kraal, G; Zwiers, A; Horrevoets, A J; van der Pouw Kraan, C T M

    2013-07-01

    Crohn's disease (CD) is characterized by chronic inflammation of the gastrointestinal tract, as a result of aberrant activation of the innate immune system through TLR stimulation by bacterial products. The conventional immunosuppressive thiopurine derivatives (azathioprine and mercaptopurine) are used to treat CD. The effects of thiopurines on circulating immune cells and TLR responsiveness are unknown. To obtain a global view of affected gene expression of the immune system in CD patients and the treatment effect of thiopurine derivatives, we performed genome-wide transcriptome analysis on whole blood samples from 20 CD patients in remission, of which 10 patients received thiopurine treatment, compared to 16 healthy controls, before and after TLR4 stimulation with LPS. Several immune abnormalities were observed, including increased baseline interferon activity, while baseline expression of ribosomal genes was reduced. After LPS stimulation, CD patients showed reduced cytokine and chemokine expression. None of these effects were related to treatment. Strikingly, only one highly correlated set of 69 genes was affected by treatment, not influenced by LPS stimulation and consisted of genes reminiscent of effector cytotoxic NK cells. The most reduced cytotoxicity-related gene in CD was the cell surface marker CD160. Concordantly, we could demonstrate an in vivo reduction of circulating CD160(+)CD3(-)CD8(-) cells in CD patients after treatment with thiopurine derivatives in an independent cohort. In conclusion, using genome-wide profiling, we identified a disturbed immune activation status in peripheral blood cells from CD patients and a clear treatment effect of thiopurine derivatives selectively affecting effector cytotoxic CD160-positive cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Extracting phylogenetic signal and accounting for bias in whole-genome data sets supports the Ctenophora as sister to remaining Metazoa.

    Science.gov (United States)

    Borowiec, Marek L; Lee, Ernest K; Chiu, Joanna C; Plachetzki, David C

    2015-11-23

    Understanding the phylogenetic relationships among major lineages of multicellular animals (the Metazoa) is a prerequisite for studying the evolution of complex traits such as nervous systems, muscle tissue, or sensory organs. Transcriptome-based phylogenies have dramatically improved our understanding of metazoan relationships in recent years, although several important questions remain. The branching order near the base of the tree, in particular the placement of the poriferan (sponges, phylum Porifera) and ctenophore (comb jellies, phylum Ctenophora) lineages is one outstanding issue. Recent analyses have suggested that the comb jellies are sister to all remaining metazoan phyla including sponges. This finding is surprising because it suggests that neurons and other complex traits, present in ctenophores and eumetazoans but absent in sponges or placozoans, either evolved twice in Metazoa or were independently, secondarily lost in the lineages leading to sponges and placozoans. To address the question of basal metazoan relationships we assembled a novel dataset comprised of 1080 orthologous loci derived from 36 publicly available genomes representing major lineages of animals. From this large dataset we procured an optimized set of partitions with high phylogenetic signal for resolving metazoan relationships. This optimized data set is amenable to the most appropriate and computationally intensive analyses using site-heterogeneous models of sequence evolution. We also employed several strategies to examine the potential for long-branch attraction to bias our inferences. Our analyses strongly support the Ctenophora as the sister lineage to other Metazoa. We find no support for the traditional view uniting the ctenophores and Cnidaria. Our findings are supported by Bayesian comparisons of topological hypotheses and we find no evidence that they are biased by long-branch attraction. Our study further clarifies relationships among early branching metazoan lineages

  2. Whole genomes redefine the mutational landscape of pancreatic cancer

    OpenAIRE

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K.; Kassahn, Karin S.; Bailey, Peter; Johns, Amber L.; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C. J.; Robertson, Alan J.; Fadlullah, Muhammad Z. H.; Bruxner, Tim J. C.; Christ, Angelika N.

    2015-01-01

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (...

  3. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants.

    Science.gov (United States)

    Yuan, Fengjie; Yu, Xiaomin; Dong, Dekun; Yang, Qinghua; Fu, Xujun; Zhu, Shenlong; Zhu, Danhua

    2017-01-18

    Seed germination is important to soybean (Glycine max) growth and development, ultimately affecting soybean yield. A lower seed field emergence has been the main hindrance for breeding soybeans low in phytate. Although this reduction could be overcome by additional breeding and selection, the mechanisms of seed germination in different low phytate mutants remain unknown. In this study, we performed a comparative transcript analysis of two low phytate soybean mutants (TW-1 and TW-1-M), which have the same mutation, a 2 bp deletion in GmMIPS1, but show a significant difference in seed field emergence, TW-1-M was higher than that of TW-1 . Numerous genes analyzed by RNA-Seq showed markedly different expression levels between TW-1-M and TW-1 mutants. Approximately 30,000-35,000 read-mapped genes and ~21000-25000 expressed genes were identified for each library. There were ~3900-9200 differentially expressed genes (DEGs) in each contrast library, the number of up-regulated genes was similar with down-regulated genes in the mutant TW-1and TW-1-M. Gene ontology functional categories of DEGs indicated that the ethylene-mediated signaling pathway, the abscisic acid-mediated signaling pathway, response to hormone, ethylene biosynthetic process, ethylene metabolic process, regulation of hormone levels, and oxidation-reduction process, regulation of flavonoid biosynthetic process and regulation of abscisic acid-activated signaling pathway had high correlations with seed germination. In total, 2457 DEGs involved in the above functional categories were identified. Twenty-two genes with 20 biological functions were the most highly up/down- regulated (absolute value Log2FC >5) in the high field emergence mutant TW-1-M and were related to metabolic or signaling pathways. Fifty-seven genes with 36 biological functions had the greatest expression abundance (FRPM >100) in germination-related pathways. Seed germination in the soybean low phytate mutants is a very complex process

  4. Whole-Genome Microarray and Gene Deletion Studies Reveal Regulation of the Polyhydroxyalkanoate Production Cycle by the Stringent Response in Ralstonia eutropha H16

    Energy Technology Data Exchange (ETDEWEB)

    Brigham, CJ; Speth, DR; Rha, C; Sinskey, AJ

    2012-10-22

    Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectively repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor sigma(54) increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with DL-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process.

  5. Identification of antibiotic resistance genes in the multidrug-resistant Acinetobacter baumannii strain, MDR-SHH02, using whole-genome sequencing.

    Science.gov (United States)

    Wang, Hualiang; Wang, Jinghua; Yu, Peijuan; Ge, Ping; Jiang, Yanqun; Xu, Rong; Chen, Rong; Liu, Xuejie

    2017-02-01

    This study aimed to investigate antibiotic resistance genes in the multidrug-resistant (MDR) Acinetobacter baumannii (A. baumanii) strain, MDR-SHH02, using whole‑genome sequencing (WGS). The antibiotic resistance of MDR-SHH02 isolated from a patient with breast cancer to 19 types of antibiotics was determined using the Kirby‑Bauer method. WGS of MDR-SHH02 was then performed. Following quality control and transcriptome assembly, functional annotation of genes was conducted, and the phylogenetic tree of MDR-SHH02, along with another 5 A. baumanii species and 2 Acinetobacter species, was constructed using PHYLIP 3.695 and FigTree v1.4.2. Furthermore, pathogenicity islands (PAIs) were predicted by the pathogenicity island database. Potential antibiotic resistance genes in MDR-SHH02 were predicted based on the information in the Antibiotic Resistance Genes Database (ARDB). MDR-SHH02 was found to be resistant to all of the tested antibiotics. The total draft genome length of MDR-SHH02 was 4,003,808 bp. There were 74.25% of coding sequences to be annotated into 21 of the Clusters of Orthologous Groups (COGs) of protein terms, such as 'transcription' and 'amino acid transport and metabolism'. Furthermore, there were 45 PAIs homologous to the sequence MDRSHH02000806. Additionally, a total of 12 gene sequences in MDR-SHH02 were highly similar to the sequences of antibiotic resistance genes in ARDB, including genes encoding aminoglycoside‑modifying enzymes [e.g., aac(3)-Ia, ant(2'')‑Ia, aph33ib and aph(3')-Ia], β-lactamase genes (bl2b_tem and bl2b_tem1), sulfonamide-resistant dihydropteroate synthase genes (sul1 and sul2), catb3 and tetb. These results suggest that numerous genes mediate resistance to various antibiotics in MDR-SHH02, and provide a clinical guidance for the personalized therapy of A. baumannii-infected patients.

  6. Whole Genome Association Study in a Homogenous Population in Shandong Peninsula of China Reveals JARID2 as a Susceptibility Gene for Schizophrenia

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2009-01-01

    Full Text Available DNA pooling can provide an economic and efficient way to detect susceptibility loci to complex diseases. We carried out a genome screen with 400 microsatellite markers spaced at approximately 10 cm in two DNA pools consisting of 119 schizophrenia (SZ patients and 119 controls recruited from a homogenous population in the Chang Le area of the Shandong peninsula of China. Association of D6S289, a dinucleotide repeat polymorphism in the JARID2 gene with SZ, was found and confirmed by individual genotyping (X2=17.89; P=.047. In order to refine the signal, we genotyped 14 single nucleotide polymorphisms (SNPs covering JARID2 and the neighboring gene, DNTBP1, in an extended sample of 309 cases and 309 controls from Shandong peninsula (including the samples from the pools. However, rs2235258 and rs9654600 in JARID2 showed association in allelic, genotypic and haplotypic tests with SZ patients from Chang Le area. This was not replicates in the extended sample, we conclude that JARID2 could be a susceptibility gene for SZ.

  7. Whole Genome Association Study in a Homogenous Population in Shandong Peninsula of China Reveals JARID2 as a Susceptibility Gene for Schizophrenia

    Science.gov (United States)

    Liu, Yang; Chen, Gang; Norton, Nadine; Liu, Wenmin; Zhu, Haining; Zhou, Peng; Luan, Meng; Yang, Shulin; Chen, Xing; Carroll, Liam; Williams, Nigel M.; O'Donovan, Michael C.; Kirov, George; Owen, Michael J.

    2009-01-01

    DNA pooling can provide an economic and efficient way to detect susceptibility loci to complex diseases. We carried out a genome screen with 400 microsatellite markers spaced at approximately 10 cm in two DNA pools consisting of 119 schizophrenia (SZ) patients and 119 controls recruited from a homogenous population in the Chang Le area of the Shandong peninsula of China. Association of D6S289, a dinucleotide repeat polymorphism in the JARID2 gene with SZ, was found and confirmed by individual genotyping (X2 = 17.89; P = .047). In order to refine the signal, we genotyped 14 single nucleotide polymorphisms (SNPs) covering JARID2 and the neighboring gene, DNTBP1, in an extended sample of 309 cases and 309 controls from Shandong peninsula (including the samples from the pools). However, rs2235258 and rs9654600 in JARID2 showed association in allelic, genotypic and haplotypic tests with SZ patients from Chang Le area. This was not replicates in the extended sample, we conclude that JARID2 could be a susceptibility gene for SZ. PMID:19884986

  8. A generic approach for the design of whole-genome oligoarrays, validated for genomotyping, deletion mapping and gene expression analysis on Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Renzoni Adriana

    2005-06-01

    Full Text Available Abstract Background DNA microarray technology is widely used to determine the expression levels of thousands of genes in a single experiment, for a broad range of organisms. Optimal design of immobilized nucleic acids has a direct impact on the reliability of microarray results. However, despite small genome size and complexity, prokaryotic organisms are not frequently studied to validate selected bioinformatics approaches. Relying on parameters shown to affect the hybridization of nucleic acids, we designed freely available software and validated experimentally its performance on the bacterial pathogen Staphylococcus aureus. Results We describe an efficient procedure for selecting 40–60 mer oligonucleotide probes combining optimal thermodynamic properties with high target specificity, suitable for genomic studies of microbial species. The algorithm for filtering probes from extensive oligonucleotides libraries fitting standard thermodynamic criteria includes positional information of predicted target-probe binding regions. This algorithm efficiently selected probes recognizing homologous gene targets across three different sequenced genomes of Staphylococcus aureus. BLAST analysis of the final selection of 5,427 probes yielded >97%, 93%, and 81% of Staphylococcus aureus genome coverage in strains N315, Mu50, and COL, respectively. A manufactured oligoarray including a subset of control Escherichia coli probes was validated for applications in the fields of comparative genomics and molecular epidemiology, mapping of deletion mutations and transcription profiling. Conclusion This generic chip-design process merging sequence information from several related genomes improves genome coverage even in conserved regions.

  9. Rapid whole genome sequencing and precision neonatology.

    Science.gov (United States)

    Petrikin, Joshua E; Willig, Laurel K; Smith, Laurie D; Kingsmore, Stephen F

    2015-12-01

    Traditionally, genetic testing has been too slow or perceived to be impractical to initial management of the critically ill neonate. Technological advances have led to the ability to sequence and interpret the entire genome of a neonate in as little as 26 h. As the cost and speed of testing decreases, the utility of whole genome sequencing (WGS) of neonates for acute and latent genetic illness increases. Analyzing the entire genome allows for concomitant evaluation of the currently identified 5588 single gene diseases. When applied to a select population of ill infants in a level IV neonatal intensive care unit, WGS yielded a diagnosis of a causative genetic disease in 57% of patients. These diagnoses may lead to clinical management changes ranging from transition to palliative care for uniformly lethal conditions for alteration or initiation of medical or surgical therapy to improve outcomes in others. Thus, institution of 2-day WGS at time of acute presentation opens the possibility of early implementation of precision medicine. This implementation may create opportunities for early interventional, frequently novel or off-label therapies that may alter disease trajectory in infants with what would otherwise be fatal disease. Widespread deployment of rapid WGS and precision medicine will raise ethical issues pertaining to interpretation of variants of unknown significance, discovery of incidental findings related to adult onset conditions and carrier status, and implementation of medical therapies for which little is known in terms of risks and benefits. Despite these challenges, precision neonatology has significant potential both to decrease infant mortality related to genetic diseases with onset in newborns and to facilitate parental decision making regarding transition to palliative care. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Molecular phylogenetic analysis of Chinese indigenous blue-shelled chickens inferred from whole genomic region of the SLCO1B3 gene.

    Science.gov (United States)

    Dalirsefat, Seyed Benyamin; Dong, Xianggui; Deng, Xuemei

    2015-08-01

    In total, 246 individuals from 8 Chinese indigenous blue- and brown-shelled chicken populations (Yimeng Blue, Wulong Blue, Lindian Blue, Dongxiang Blue, Lushi Blue, Jingmen Blue, Dongxiang Brown, and Lushi Brown) were genotyped for 21 SNP markers from the SLCO1B3 gene to evaluate phylogenetic relationships. As a representative of nonblue-shelled breeds, White Leghorn was included in the study for reference. A high proportion of SNP polymorphism was observed in Chinese chicken populations, ranging from 89% in Jingmen Blue to 100% in most populations, with a mean of 95% across all populations. The White Leghorn breed showed the lowest polymorphism, accounting for 43% of total SNPs. The mean expected heterozygosity varied from 0.11 in Dongxiang Blue to 0.46 in Yimeng Blue. Analysis of molecular variation (AMOVA) for 2 groups of Chinese chickens based on eggshell color type revealed 52% within-group and 43% between-group variations of the total genetic variation. As expected, FST and Reynolds' genetic distance were greatest between White Leghorn and Chinese chicken populations, with average values of 0.40 and 0.55, respectively. The first and second principal coordinates explained approximately 92% of the total variation and supported the clustering of the populations according to their eggshell color type and historical origins. STRUCTURE analysis showed a considerable source of variation among populations for the clustering into blue-shelled and nonblue-shelled chicken populations. The low estimation of genetic differentiation (FST) between Chinese chicken populations is possibly due to a common historical origin and high gene flow. Remarkably similar population classifications were obtained with all methods used in the study. Aligning endogenous avian retroviral (EAV)-HP insertion sequences showed no difference among the blue-shelled chickens. © 2015 Poultry Science Association Inc.

  11. Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri) fruit.

    Science.gov (United States)

    Cheng, Xi; Li, Manli; Li, Dahui; Zhang, Jinyun; Jin, Qing; Sheng, Lingling; Cai, Yongping; Lin, Yi

    2017-11-15

    The content of stone cells has significant effects on the flavour and quality of pear fruit. Previous research suggested that lignin deposition is closely related to stone cell formation. In the lignin biosynthetic pathway, cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD), dehydrogenase/reductase family members, catalyse the last two steps in monolignol synthesis. However, there is little knowledge of the characteristics of the CCR and CAD families in pear and their involvement in lignin synthesis of stone cells. In this study, 31 CCR s and 26 CAD s were identified in the pear genome. Phylogenetic trees for CCR s and CAD s were constructed; key amino acid residues were analysed, and three-dimensional structures were predicted. Using quantitative real-time polymerase chain reaction (qRT-PCR), PbCAD2 , PbCCR1 , -2 and - 3 were identified as participating in lignin synthesis of stone cells in pear fruit. Subcellular localization analysis showed that the expressed proteins (PbCAD2, PbCCR1, -2 and -3) are found in the cytoplasm or at the cell membrane. These results reveal the evolutionary features of the CCR and CAD families in pear as well as the genes responsible for regulation of lignin synthesis and stone cell development in pear fruit. © 2017. Published by The Company of Biologists Ltd.

  12. Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri fruit

    Directory of Open Access Journals (Sweden)

    Xi Cheng

    2017-11-01

    Full Text Available The content of stone cells has significant effects on the flavour and quality of pear fruit. Previous research suggested that lignin deposition is closely related to stone cell formation. In the lignin biosynthetic pathway, cinnamoyl-CoA reductase (CCR and cinnamyl alcohol dehydrogenase (CAD, dehydrogenase/reductase family members, catalyse the last two steps in monolignol synthesis. However, there is little knowledge of the characteristics of the CCR and CAD families in pear and their involvement in lignin synthesis of stone cells. In this study, 31 CCRs and 26 CADs were identified in the pear genome. Phylogenetic trees for CCRs and CADs were constructed; key amino acid residues were analysed, and three-dimensional structures were predicted. Using quantitative real-time polymerase chain reaction (qRT-PCR, PbCAD2, PbCCR1, -2 and -3 were identified as participating in lignin synthesis of stone cells in pear fruit. Subcellular localization analysis showed that the expressed proteins (PbCAD2, PbCCR1, -2 and -3 are found in the cytoplasm or at the cell membrane. These results reveal the evolutionary features of the CCR and CAD families in pear as well as the genes responsible for regulation of lignin synthesis and stone cell development in pear fruit.

  13. Whole Genome Epidemiological Typing of Escherichia coli

    DEFF Research Database (Denmark)

    Kaas, Rolf Sommer

    validating each position analyzed and ignoring the positions that cannot be validated thereby creating a distance matrix that is used as input to an UPGMA method that creates the final phylogeny. The ND method was also implemented as a web server and published. If whole genome sequencing is to be used...

  14. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data

    Directory of Open Access Journals (Sweden)

    Tintle Nathan L

    2012-08-01

    Full Text Available Abstract Background Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. Results We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Conclusions Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  15. Robust and rapid algorithms facilitate large-scale whole genome sequencing downstream analysis in an integrative framework.

    Science.gov (United States)

    Li, Miaoxin; Li, Jiang; Li, Mulin Jun; Pan, Zhicheng; Hsu, Jacob Shujui; Liu, Dajiang J; Zhan, Xiaowei; Wang, Junwen; Song, Youqiang; Sham, Pak Chung

    2017-05-19

    Whole genome sequencing (WGS) is a promising strategy to unravel variants or genes responsible for human diseases and traits. However, there is a lack of robust platforms for a comprehensive downstream analysis. In the present study, we first proposed three novel algorithms, sequence gap-filled gene feature annotation, bit-block encoded genotypes and sectional fast access to text lines to address three fundamental problems. The three algorithms then formed the infrastructure of a robust parallel computing framework, KGGSeq, for integrating downstream analysis functions for whole genome sequencing data. KGGSeq has been equipped with a comprehensive set of analysis functions for quality control, filtration, annotation, pathogenic prediction and statistical tests. In the tests with whole genome sequencing data from 1000 Genomes Project, KGGSeq annotated several thousand more reliable non-synonymous variants than other widely used tools (e.g. ANNOVAR and SNPEff). It took only around half an hour on a small server with 10 CPUs to access genotypes of ∼60 million variants of 2504 subjects, while a popular alternative tool required around one day. KGGSeq's bit-block genotype format used 1.5% or less space to flexibly represent phased or unphased genotypes with multiple alleles and achieved a speed of over 1000 times faster to calculate genotypic correlation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  17. Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data.

    Science.gov (United States)

    Nishito, Yukari; Osana, Yasunori; Hachiya, Tsuyoshi; Popendorf, Kris; Toyoda, Atsushi; Fujiyama, Asao; Itaya, Mitsuhiro; Sakakibara, Yasubumi

    2010-04-16

    Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although re-sequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for gamma-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B. subtilis natto harbors but B. subtilis 168 lacks

  18. Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data

    Directory of Open Access Journals (Sweden)

    Fujiyama Asao

    2010-04-01

    Full Text Available Abstract Background Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although re-sequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. Results We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for γ-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. Conclusions The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B

  19. Integrating Crop Growth Models with Whole Genome Prediction through Approximate Bayesian Computation.

    Directory of Open Access Journals (Sweden)

    Frank Technow

    Full Text Available Genomic selection, enabled by whole genome prediction (WGP methods, is revolutionizing plant breeding. Existing WGP methods have been shown to deliver accurate predictions in the most common settings, such as prediction of across environment performance for traits with additive gene effects. However, prediction of traits with non-additive gene effects and prediction of genotype by environment interaction (G×E, continues to be challenging. Previous attempts to increase prediction accuracy for these particularly difficult tasks employed prediction methods that are purely statistical in nature. Augmenting the statistical methods with biological knowledge has been largely overlooked thus far. Crop growth models (CGMs attempt to represent the impact of functional relationships between plant physiology and the environment in the formation of yield and similar output traits of interest. Thus, they can explain the impact of G×E and certain types of non-additive gene effects on the expressed phenotype. Approximate Bayesian computation (ABC, a novel and powerful computational procedure, allows the incorporation of CGMs directly into the estimation of whole genome marker effects in WGP. Here we provide a proof of concept study for this novel approach and demonstrate its use with synthetic data sets. We show that this novel approach can be considerably more accurate than the benchmark WGP method GBLUP in predicting performance in environments represented in the estimation set as well as in previously unobserved environments for traits determined by non-additive gene effects. We conclude that this proof of concept demonstrates that using ABC for incorporating biological knowledge in the form of CGMs into WGP is a very promising and novel approach to improving prediction accuracy for some of the most challenging scenarios in plant breeding and applied genetics.

  20. Phylogenetics and differentiation of Salmonella Newport lineages by whole genome sequencing.

    Directory of Open Access Journals (Sweden)

    Guojie Cao

    Full Text Available Salmonella Newport has ranked in the top three Salmonella serotypes associated with foodborne outbreaks from 1995 to 2011 in the United States. In the current study, we selected 26 S. Newport strains isolated from diverse sources and geographic locations and then conducted 454 shotgun pyrosequencing procedures to obtain 16-24 × coverage of high quality draft genomes for each strain. Comparative genomic analysis of 28 S. Newport strains (including 2 reference genomes and 15 outgroup genomes identified more than 140,000 informative SNPs. A resulting phylogenetic tree consisted of four sublineages and indicated that S. Newport had a clear geographic structure. Strains from Asia were divergent from those from the Americas. Our findings demonstrated that analysis using whole genome sequencing data resulted in a more accurate picture of phylogeny compared to that using single genes or small sets of genes. We selected loci around the mutS gene of S. Newport to differentiate distinct lineages, including those between invH and mutS genes at the 3' end of Salmonella Pathogenicity Island 1 (SPI-1, ste fimbrial operon, and Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR associated-proteins (cas. These genes in the outgroup genomes held high similarity with either S. Newport Lineage II or III at the same loci. S. Newport Lineages II and III have different evolutionary histories in this region and our data demonstrated genetic flow and homologous recombination events around mutS. The findings suggested that S. Newport Lineages II and III diverged early in the serotype evolution and have evolved largely independently. Moreover, we identified genes that could delineate sublineages within the phylogenetic tree and that could be used as potential biomarkers for trace-back investigations during outbreaks. Thus, whole genome sequencing data enabled us to better understand the genetic background of pathogenicity and evolutionary history of S

  1. Whole Genome Epidemiological Typing of Salmonella

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas

    available Salmonella enterica genomes (accessed in April 2011). A consensus tree based on variation of the core genes gives better resolution than 16S rRNA and MLST that rarely provide separation between closely related strains. The performance of the pan-genome tree which is based on the presence....../absence of all genes across genomes, is similar to the consensus tree but with higher branching confidence value. The core genes can be divided into two categories: a few highly variable genes and a larger set of conserved core genes, with low variance. These core genes are useful for investigating molecular...... evolution and remain useful as candidate genes for bacterial genome typing-even if they cannot be expected to differentiate highly clonal isolates e.g. outbreak cases of Salmonella [I]. To achieve successful ‘real-time’ monitoring and identification of outbreaks, rapid and reliable sub-typing is essential...

  2. Whole genome sequencing: an efficient approach to ensuring food safety

    Science.gov (United States)

    Lakicevic, B.; Nastasijevic, I.; Dimitrijevic, M.

    2017-09-01

    Whole genome sequencing is an effective, powerful tool that can be applied to a wide range of public health and food safety applications. A major difference between WGS and the traditional typing techniques is that WGS allows all genes to be included in the analysis, instead of a well-defined subset of genes or variable intergenic regions. Also, the use of WGS can facilitate the understanding of contamination/colonization routes of foodborne pathogens within the food production environment, and can also afford efficient tracking of pathogens’ entry routes and distribution from farm-to-consumer. Tracking foodborne pathogens in the food processing-distribution-retail-consumer continuum is of the utmost importance for facilitation of outbreak investigations and rapid action in controlling/preventing foodborne outbreaks. Therefore, WGS likely will replace most of the numerous workflows used in public health laboratories to characterize foodborne pathogens into one consolidated, efficient workflow.

  3. Whole genome sequence analysis of Mycobacterium suricattae

    KAUST Repository

    Dippenaar, Anzaan; Parsons, Sven David Charles; Sampson, Samantha Leigh; Van Der Merwe, Ruben Gerhard; Drewe, Julian Ashley; Abdallah, Abdallah; Siame, Kabengele Keith; Gey Van Pittius, Nicolaas Claudius; Van Helden, Paul David; Pain, Arnab; Warren, Robin Mark

    2015-01-01

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi.

  4. Whole genome sequence analysis of Mycobacterium suricattae

    KAUST Repository

    Dippenaar, Anzaan

    2015-10-21

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi.

  5. Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression

    DEFF Research Database (Denmark)

    Ren, Shancheng; Wei, Gong-Hong; Liu, Dongbing

    2018-01-01

    BACKGROUND: Global disparities in prostate cancer (PCa) incidence highlight the urgent need to identify genomic abnormalities in prostate tumors in different ethnic populations including Asian men. OBJECTIVE: To systematically explore the genomic complexity and define disease-driven genetic......-scale and comprehensive genomic data of prostate cancer from Asian population. Identification of these genetic alterations may help advance prostate cancer diagnosis, prognosis, and treatment....... alterations in PCa. DESIGN, SETTING, AND PARTICIPANTS: The study sequenced whole-genome and transcriptome of tumor-benign paired tissues from 65 treatment-naive Chinese PCa patients. Subsequent targeted deep sequencing of 293 PCa-relevant genes was performed in another cohort of 145 prostate tumors. OUTCOME...

  6. Prokaryotic Phylogenies Inferred from Whole-Genome Sequence and Annotation Data

    Directory of Open Access Journals (Sweden)

    Wei Du

    2013-01-01

    Full Text Available Phylogenetic trees are used to represent the evolutionary relationship among various groups of species. In this paper, a novel method for inferring prokaryotic phylogenies using multiple genomic information is proposed. The method is called CGCPhy and based on the distance matrix of orthologous gene clusters between whole-genome pairs. CGCPhy comprises four main steps. First, orthologous genes are determined by sequence similarity, genomic function, and genomic structure information. Second, genes involving potential HGT events are eliminated, since such genes are considered to be the highly conserved genes across different species and the genes located on fragments with abnormal genome barcode. Third, we calculate the distance of the orthologous gene clusters between each genome pair in terms of the number of orthologous genes in conserved clusters. Finally, the neighbor-joining method is employed to construct phylogenetic trees across different species. CGCPhy has been examined on different datasets from 617 complete single-chromosome prokaryotic genomes and achieved applicative accuracies on different species sets in agreement with Bergey's taxonomy in quartet topologies. Simulation results show that CGCPhy achieves high average accuracy and has a low standard deviation on different datasets, so it has an applicative potential for phylogenetic analysis.

  7. Two Rounds of Whole Genome Duplication in the AncestralVertebrate

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir; Boore, Jeffrey L.

    2005-04-12

    The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish-tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of 4-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage.

  8. Whole genome sequencing in clinical and public health microbiology.

    Science.gov (United States)

    Kwong, J C; McCallum, N; Sintchenko, V; Howden, B P

    2015-04-01

    Genomics and whole genome sequencing (WGS) have the capacity to greatly enhance knowledge and understanding of infectious diseases and clinical microbiology.The growth and availability of bench-top WGS analysers has facilitated the feasibility of genomics in clinical and public health microbiology.Given current resource and infrastructure limitations, WGS is most applicable to use in public health laboratories, reference laboratories, and hospital infection control-affiliated laboratories.As WGS represents the pinnacle for strain characterisation and epidemiological analyses, it is likely to replace traditional typing methods, resistance gene detection and other sequence-based investigations (e.g., 16S rDNA PCR) in the near future.Although genomic technologies are rapidly evolving, widespread implementation in clinical and public health microbiology laboratories is limited by the need for effective semi-automated pipelines, standardised quality control and data interpretation, bioinformatics expertise, and infrastructure.

  9. Genomic V exons from whole genome shotgun data in reptiles.

    Science.gov (United States)

    Olivieri, D N; von Haeften, B; Sánchez-Espinel, C; Faro, J; Gambón-Deza, F

    2014-08-01

    Reptiles and mammals diverged over 300 million years ago, creating two parallel evolutionary lineages amongst terrestrial vertebrates. In reptiles, two main evolutionary lines emerged: one gave rise to Squamata, while the other gave rise to Testudines, Crocodylia, and Aves. In this study, we determined the genomic variable (V) exons from whole genome shotgun sequencing (WGS) data in reptiles corresponding to the three main immunoglobulin (IG) loci and the four main T cell receptor (TR) loci. We show that Squamata lack the TRG and TRD genes, and snakes lack the IGKV genes. In representative species of Testudines and Crocodylia, the seven major IG and TR loci are maintained. As in mammals, genes of the IG loci can be grouped into well-defined IMGT clans through a multi-species phylogenetic analysis. We show that the reptilian IGHV and IGLV genes are distributed amongst the established mammalian clans, while their IGKV genes are found within a single clan, nearly exclusive from the mammalian sequences. The reptilian and mammalian TRAV genes cluster into six common evolutionary clades (since IMGT clans have not been defined for TR). In contrast, the reptilian TRBV genes cluster into three clades, which have few mammalian members. In this locus, the V exon sequences from mammals appear to have undergone different evolutionary diversification processes that occurred outside these shared reptilian clans. These sequences can be obtained in a freely available public repository (http://vgenerepertoire.org).

  10. Whole Genome and Tandem Duplicate Retention facilitated Glucosinolate Pathway Diversification in the Mustard Family.

    NARCIS (Netherlands)

    Hofberger, J.A.; Lyons, E.; Edger, P.P.; Pires, J.C.; Schranz, M.E.

    2013-01-01

    Plants share a common history of successive whole genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence

  11. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation

    NARCIS (Netherlands)

    Cuypers, Thomas D; Hogeweg, Paulien; Hogeweg, P.

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes.

  12. Determination of Elizabethkingia Diversity by MALDI-TOF Mass Spectrometry and Whole-Genome Sequencing

    DEFF Research Database (Denmark)

    Eriksen, Helle Brander; Gumpert, Heidi; Faurholt, Cecilie Haase

    2017-01-01

    In a hospital-acquired infection with multidrug-resistant Elizabethkingia, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene analysis identified the pathogen as Elizabethkingia miricola. Whole-genome sequencing, genus-level core genome analysis, and in...

  13. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer

    NARCIS (Netherlands)

    Wang, Kai; Yuen, Siu Tsan; Xu, Jiangchun; Lee, Siu Po; Yan, Helen H N; Shi, Stephanie T; Siu, Hoi Cheong; Deng, Shibing; Chu, Kent Man; Law, Simon; Chan, Kok Hoe; Chan, Annie S Y; Tsui, Wai Yin; Ho, Siu Lun; Chan, Anthony K W; Man, Jonathan L K; Foglizzo, Valentina; Ng, Man Kin; Chan, April S; Ching, Yick Pang; Cheng, Grace H W; Xie, Tao; Fernandez, Julio; Li, Vivian S W; Clevers, Hans; Rejto, Paul A; Mao, Mao; Leung, Suet Yi

    Gastric cancer is a heterogeneous disease with diverse molecular and histological subtypes. We performed whole-genome sequencing in 100 tumor-normal pairs, along with DNA copy number, gene expression and methylation profiling, for integrative genomic analysis. We found subtype-specific genetic and

  14. Microbial species delineation using whole genome sequences.

    Science.gov (United States)

    Varghese, Neha J; Mukherjee, Supratim; Ivanova, Natalia; Konstantinidis, Konstantinos T; Mavrommatis, Kostas; Kyrpides, Nikos C; Pati, Amrita

    2015-08-18

    Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Small sample whole-genome amplification

    Science.gov (United States)

    Hara, Christine; Nguyen, Christine; Wheeler, Elizabeth; Sorensen, Karen; Arroyo, Erin; Vrankovich, Greg; Christian, Allen

    2005-11-01

    Many challenges arise when trying to amplify and analyze human samples collected in the field due to limitations in sample quantity, and contamination of the starting material. Tests such as DNA fingerprinting and mitochondrial typing require a certain sample size and are carried out in large volume reactions; in cases where insufficient sample is present whole genome amplification (WGA) can be used. WGA allows very small quantities of DNA to be amplified in a way that enables subsequent DNA-based tests to be performed. A limiting step to WGA is sample preparation. To minimize the necessary sample size, we have developed two modifications of WGA: the first allows for an increase in amplified product from small, nanoscale, purified samples with the use of carrier DNA while the second is a single-step method for cleaning and amplifying samples all in one column. Conventional DNA cleanup involves binding the DNA to silica, washing away impurities, and then releasing the DNA for subsequent testing. We have eliminated losses associated with incomplete sample release, thereby decreasing the required amount of starting template for DNA testing. Both techniques address the limitations of sample size by providing ample copies of genomic samples. Carrier DNA, included in our WGA reactions, can be used when amplifying samples with the standard purification method, or can be used in conjunction with our single-step DNA purification technique to potentially further decrease the amount of starting sample necessary for future forensic DNA-based assays.

  16. Whole-genome sequence-based analysis of thyroid function

    DEFF Research Database (Denmark)

    Taylor, Peter N.; Porcu, Eleonora; Chew, Shelby

    2015-01-01

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N = 2,287). Using additional whole-genome seque...

  17. Genomic Prediction from Whole Genome Sequence in Livestock: The 1000 Bull Genomes Project

    DEFF Research Database (Denmark)

    Hayes, Benjamin J; MacLeod, Iona M; Daetwyler, Hans D

    Advantages of using whole genome sequence data to predict genomic estimated breeding values (GEBV) include better persistence of accuracy of GEBV across generations and more accurate GEBV across breeds. The 1000 Bull Genomes Project provides a database of whole genome sequenced key ancestor bulls....... In a dairy data set, predictions using BayesRC and imputed sequence data from 1000 Bull Genomes were 2% more accurate than with 800k data. We could demonstrate the method identified causal mutations in some cases. Further improvements will come from more accurate imputation of sequence variant genotypes...

  18. Whole-genome landscape of pancreatic neuroendocrine tumours.

    Science.gov (United States)

    Scarpa, Aldo; Chang, David K; Nones, Katia; Corbo, Vincenzo; Patch, Ann-Marie; Bailey, Peter; Lawlor, Rita T; Johns, Amber L; Miller, David K; Mafficini, Andrea; Rusev, Borislav; Scardoni, Maria; Antonello, Davide; Barbi, Stefano; Sikora, Katarzyna O; Cingarlini, Sara; Vicentini, Caterina; McKay, Skye; Quinn, Michael C J; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; McLean, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wilson, Peter J; Anderson, Matthew J; Fink, J Lynn; Newell, Felicity; Waddell, Nick; Holmes, Oliver; Kazakoff, Stephen H; Leonard, Conrad; Wood, Scott; Xu, Qinying; Nagaraj, Shivashankar Hiriyur; Amato, Eliana; Dalai, Irene; Bersani, Samantha; Cataldo, Ivana; Dei Tos, Angelo P; Capelli, Paola; Davì, Maria Vittoria; Landoni, Luca; Malpaga, Anna; Miotto, Marco; Whitehall, Vicki L J; Leggett, Barbara A; Harris, Janelle L; Harris, Jonathan; Jones, Marc D; Humphris, Jeremy; Chantrill, Lorraine A; Chin, Venessa; Nagrial, Adnan M; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia; Rooman, Ilse; Toon, Christopher; Wu, Jianmin; Pinese, Mark; Cowley, Mark; Barbour, Andrew; Mawson, Amanda; Humphrey, Emily S; Colvin, Emily K; Chou, Angela; Lovell, Jessica A; Jamieson, Nigel B; Duthie, Fraser; Gingras, Marie-Claude; Fisher, William E; Dagg, Rebecca A; Lau, Loretta M S; Lee, Michael; Pickett, Hilda A; Reddel, Roger R; Samra, Jaswinder S; Kench, James G; Merrett, Neil D; Epari, Krishna; Nguyen, Nam Q; Zeps, Nikolajs; Falconi, Massimo; Simbolo, Michele; Butturini, Giovanni; Van Buren, George; Partelli, Stefano; Fassan, Matteo; Khanna, Kum Kum; Gill, Anthony J; Wheeler, David A; Gibbs, Richard A; Musgrove, Elizabeth A; Bassi, Claudio; Tortora, Giampaolo; Pederzoli, Paolo; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2017-03-02

    The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.

  19. Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study.

    Science.gov (United States)

    Lane, William J; Westhoff, Connie M; Gleadall, Nicholas S; Aguad, Maria; Smeland-Wagman, Robin; Vege, Sunitha; Simmons, Daimon P; Mah, Helen H; Lebo, Matthew S; Walter, Klaudia; Soranzo, Nicole; Di Angelantonio, Emanuele; Danesh, John; Roberts, David J; Watkins, Nick A; Ouwehand, Willem H; Butterworth, Adam S; Kaufman, Richard M; Rehm, Heidi L; Silberstein, Leslie E; Green, Robert C

    2018-06-01

    There are more than 300 known red blood cell (RBC) antigens and 33 platelet antigens that differ between individuals. Sensitisation to antigens is a serious complication that can occur in prenatal medicine and after blood transfusion, particularly for patients who require multiple transfusions. Although pre-transfusion compatibility testing largely relies on serological methods, reagents are not available for many antigens. Methods based on single-nucleotide polymorphism (SNP) arrays have been used, but typing for ABO and Rh-the most important blood groups-cannot be done with SNP typing alone. We aimed to develop a novel method based on whole-genome sequencing to identify RBC and platelet antigens. This whole-genome sequencing study is a subanalysis of data from patients in the whole-genome sequencing arm of the MedSeq Project randomised controlled trial (NCT01736566) with no measured patient outcomes. We created a database of molecular changes in RBC and platelet antigens and developed an automated antigen-typing algorithm based on whole-genome sequencing (bloodTyper). This algorithm was iteratively improved to address cis-trans haplotype ambiguities and homologous gene alignments. Whole-genome sequencing data from 110 MedSeq participants (30 × depth) were used to initially validate bloodTyper through comparison with conventional serology and SNP methods for typing of 38 RBC antigens in 12 blood-group systems and 22 human platelet antigens. bloodTyper was further validated with whole-genome sequencing data from 200 INTERVAL trial participants (15 × depth) with serological comparisons. We iteratively improved bloodTyper by comparing its typing results with conventional serological and SNP typing in three rounds of testing. The initial whole-genome sequencing typing algorithm was 99·5% concordant across the first 20 MedSeq genomes. Addressing discordances led to development of an improved algorithm that was 99·8% concordant for the remaining 90 Med

  20. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation.

    Science.gov (United States)

    Yu, Dong; Hui, Yiming; Zai, Xiaodong; Xu, Junjie; Liang, Long; Wang, Bingxiang; Yue, Junjie; Li, Shanhu

    2015-01-01

    The Brucella abortus strain 104M, a spontaneously attenuated strain, has been used as a vaccine strain in humans against brucellosis for 6 decades in China. Despite many studies, the molecular mechanisms that cause the attenuation are still unclear. Here, we determined the whole-genome sequence of 104M and conducted a comprehensive comparative analysis against the whole genome sequences of the virulent strain, A13334, and other reference strains. This analysis revealed a highly similar genome structure between 104M and A13334. The further comparative genomic analysis between 104M and A13334 revealed a set of genes missing in 104M. Some of these genes were identified to be directly or indirectly associated with virulence. Similarly, a set of mutations in the virulence-related genes was also identified, which may be related to virulence alteration. This study provides a set of candidate genes associated with virulence attenuation in B.abortus vaccine strain 104M.

  1. Whole genomes redefine the mutational landscape of pancreatic cancer.

    Science.gov (United States)

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K; Kassahn, Karin S; Bailey, Peter; Johns, Amber L; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C J; Robertson, Alan J; Fadlullah, Muhammad Z H; Bruxner, Tim J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen H; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Lee, Hong C; Jones, Marc D; Nagrial, Adnan M; Humphris, Jeremy; Chantrill, Lorraine A; Chin, Venessa; Steinmann, Angela M; Mawson, Amanda; Humphrey, Emily S; Colvin, Emily K; Chou, Angela; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Pettitt, Jessica A; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B; Graham, Janet S; Niclou, Simone P; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A; Gill, Anthony J; Eshleman, James R; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A; Pearson, John V; Biankin, Andrew V; Grimmond, Sean M

    2015-02-26

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.

  2. Whole genomes redefine the mutational landscape of pancreatic cancer

    Science.gov (United States)

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K.; Kassahn, Karin S.; Bailey, Peter; Johns, Amber L.; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C. J.; Robertson, Alan J.; Fadlullah, Muhammad Z. H.; Bruxner, Tim J. C.; Christ, Angelika N.; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J.; Fink, J. Lynn; Holmes, Oliver; Kazakoff, Stephen H.; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J.; Lee, Hong C.; Jones, Marc D.; Nagrial, Adnan M.; Humphris, Jeremy; Chantrill, Lorraine A.; Chin, Venessa; Steinmann, Angela M.; Mawson, Amanda; Humphrey, Emily S.; Colvin, Emily K.; Chou, Angela; Scarlett, Christopher J.; Pinho, Andreia V.; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S.; Kench, James G.; Pettitt, Jessica A.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B.; Graham, Janet S.; Niclou, Simone P.; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A.; Gill, Anthony J.; Eshleman, James R.; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A.; Pearson, John V.; Biankin, Andrew V.; Grimmond, Sean M.

    2015-01-01

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded. PMID:25719666

  3. Whole-Genome Sequencing for National Surveillance of Shigella flexneri

    Directory of Open Access Journals (Sweden)

    Marie A. Chattaway

    2017-09-01

    Full Text Available National surveillance of Shigella flexneri ensures the rapid detection of outbreaks to facilitate public health investigation and intervention strategies. In this study, we used whole-genome sequencing (WGS to type S. flexneri in order to detect linked cases and support epidemiological investigations. We prospectively analyzed 330 isolates of S. flexneri received at the Gastrointestinal Bacteria Reference Unit at Public Health England between August 2015 and January 2016. Traditional phenotypic and WGS sub-typing methods were compared. PCR was carried out on isolates exhibiting phenotypic/genotypic discrepancies with respect to serotype. Phylogenetic relationships between isolates were analyzed by WGS using single nucleotide polymorphism (SNP typing to facilitate cluster detection. For 306/330 (93% isolates there was concordance between serotype derived from the genome and phenotypic serology. Discrepant results between the phenotypic and genotypic tests were attributed to novel O-antigen synthesis/modification gene combinations or indels identified in O-antigen synthesis/modification genes rendering them dysfunctional. SNP typing identified 36 clusters of two isolates or more. WGS provided microbiological evidence of epidemiologically linked clusters and detected novel O-antigen synthesis/modification gene combinations associated with two outbreaks. WGS provided reliable and robust data for monitoring trends in the incidence of different serotypes over time. SNP typing can be used to facilitate outbreak investigations in real-time thereby informing surveillance strategies and providing the opportunities for implementing timely public health interventions.

  4. Whole genome sequencing as the ultimate tool to diagnose tuberculosis

    Directory of Open Access Journals (Sweden)

    Dick van Soolingen

    2016-01-01

    Full Text Available In the past two decades, DNA techniques have been increasingly used in the laboratory diagnosis of tuberculosis (TB. The (sub species of the Mycobacterium tuberculosis complex are usually identified using reverse line blot techniques. The resistance is predicted by the detection of mutations in genes associated with resistance. Nevertheless, all cases are still subjected to cumbersome phenotypic resistance testing. The production of a strain-characteristic DNA fingerprint, to investigate the epidemiology of TB, is done by the 24-locus variable number tandem repeat (VNTR typing. However, most of the molecular techniques in the diagnosis of TB can eventually be replaced by whole genome sequencing (WGS. Many international TB reference laboratories are currently working on the introduction of WGS; however, standardization in the international context is lacking. The European Centre for Infectious Disease Prevention and Control in Stockholm, Sweden organizes a yearly round of quality control on VNTR typing and in 2015 for the first time also WGS. In this first proficiency study, only three out of eight international TB laboratories produced WGS results in line with those of the reference laboratory. The whole process of DNA isolation, purification, quantification, sequencing, and analysis/interpretation of data is still under development. In this presentation, many aspects will be covered that influence the quality and interpretation of WGS results. The turn-around-time, analysis, and utility of WGS will be discussed. Moreover, the experiences in the use of WGS in the molecular epidemiology of TB in The Netherlands are detailed. It can be concluded that many difficulties still have to be conquered. The state of the art is that bacteria still have to be cultured to have sufficient quality and quantity of DNA for succesful WGS. The quality of sequencing has improved significantly over the past 7 years, and the detection of mutations has, therefore

  5. Whole-genome methylation caller designed for methyl- DNA ...

    African Journals Online (AJOL)

    etchie

    2013-02-20

    Feb 20, 2013 ... Our method uses a single-CpG-resolution, whole-genome methylation ... Key words: Methyl-DNA immunoprecipitation, next-generation sequencing, ...... methylation is prevalent in embryonic stem cells andmaybe mediated.

  6. Whole-Genome Characterization and Strain Comparison of VT2f-Producing Escherichia coli Causing Hemolytic Uremic Syndrome

    Science.gov (United States)

    Michelacci, Valeria; Bondì, Roslen; Gigliucci, Federica; Franz, Eelco; Badouei, Mahdi Askari; Schlager, Sabine; Minelli, Fabio; Tozzoli, Rosangela; Caprioli, Alfredo; Morabito, Stefano

    2016-01-01

    Verotoxigenic Escherichia coli infections in humans cause disease ranging from uncomplicated intestinal illnesses to bloody diarrhea and systemic sequelae, such as hemolytic uremic syndrome (HUS). Previous research indicated that pigeons may be a reservoir for a population of verotoxigenic E. coli producing the VT2f variant. We used whole-genome sequencing to characterize a set of VT2f-producing E. coli strains from human patients with diarrhea or HUS and from healthy pigeons. We describe a phage conveying the vtx2f genes and provide evidence that the strains causing milder diarrheal disease may be transmitted to humans from pigeons. The strains causing HUS could derive from VT2f phage acquisition by E. coli strains with a virulence genes asset resembling that of typical HUS-associated verotoxigenic E. coli. PMID:27584691

  7. Gene set analysis for GWAS

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Soerensen, Mette

    2014-01-01

    Abstract We discuss the use of modified Kolmogorov-Smirnov (KS) statistics in the context of gene set analysis and review corresponding null and alternative hypotheses. Especially, we show that, when enhancing the impact of highly significant genes in the calculation of the test statistic, the co...

  8. A human genome-wide library of local phylogeny predictions for whole-genome inference problems

    Directory of Open Access Journals (Sweden)

    Schwartz Russell

    2008-08-01

    Full Text Available Abstract Background Many common inference problems in computational genetics depend on inferring aspects of the evolutionary history of a data set given a set of observed modern sequences. Detailed predictions of the full phylogenies are therefore of value in improving our ability to make further inferences about population history and sources of genetic variation. Making phylogenetic predictions on the scale needed for whole-genome analysis is, however, extremely computationally demanding. Results In order to facilitate phylogeny-based predictions on a genomic scale, we develop a library of maximum parsimony phylogenies within local regions spanning all autosomal human chromosomes based on Haplotype Map variation data. We demonstrate the utility of this library for population genetic inferences by examining a tree statistic we call 'imperfection,' which measures the reuse of variant sites within a phylogeny. This statistic is significantly predictive of recombination rate, shows additional regional and population-specific conservation, and allows us to identify outlier genes likely to have experienced unusual amounts of variation in recent human history. Conclusion Recent theoretical advances in algorithms for phylogenetic tree reconstruction have made it possible to perform large-scale inferences of local maximum parsimony phylogenies from single nucleotide polymorphism (SNP data. As results from the imperfection statistic demonstrate, phylogeny predictions encode substantial information useful for detecting genomic features and population history. This data set should serve as a platform for many kinds of inferences one may wish to make about human population history and genetic variation.

  9. Review:Whole genome amplification in preimplantation genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    Ying-ming ZHENG; Ning WANG; Lei LI; Fan JIN

    2011-01-01

    Preimplantation genetic diagnosis(PGD)refers to a procedure for genetically analyzing embryos prior to implantation,improving the chance of conception for patients at high risk of transmitting specific inherited disorders.This method has been widely used for a large number of genetic disorders since the first successful application in the early 1990s.Polymerase chain reaction(PCR)and fluorescent in situ hybridization(FISH)are the two main methods in PGD,but there are some inevitable shortcomings limiting the scope of genetic diagnosis.Fortunately,different whole genome amplification(WGA)techniques have been developed to overcome these problems.Sufficient DNA can be amplified and multiple tasks which need abundant DNA can be performed.Moreover,WGA products can be analyzed as a template for multi-loci and multi-gene during the subsequent DNA analysis.In this review,we will focus on the currently available WGA techniques and their applications,as well as the new technical trends from WGA products.

  10. Signatures of selection in tilapia revealed by whole genome resequencing.

    Science.gov (United States)

    Xia, Jun Hong; Bai, Zhiyi; Meng, Zining; Zhang, Yong; Wang, Le; Liu, Feng; Jing, Wu; Wan, Zi Yi; Li, Jiale; Lin, Haoran; Yue, Gen Hua

    2015-09-16

    Natural selection and selective breeding for genetic improvement have left detectable signatures within the genome of a species. Identification of selection signatures is important in evolutionary biology and for detecting genes that facilitate to accelerate genetic improvement. However, selection signatures, including artificial selection and natural selection, have only been identified at the whole genome level in several genetically improved fish species. Tilapia is one of the most important genetically improved fish species in the world. Using next-generation sequencing, we sequenced the genomes of 47 tilapia individuals. We identified a total of 1.43 million high-quality SNPs and found that the LD block sizes ranged from 10-100 kb in tilapia. We detected over a hundred putative selective sweep regions in each line of tilapia. Most selection signatures were located in non-coding regions of the tilapia genome. The Wnt signaling, gonadotropin-releasing hormone receptor and integrin signaling pathways were under positive selection in all improved tilapia lines. Our study provides a genome-wide map of genetic variation and selection footprints in tilapia, which could be important for genetic studies and accelerating genetic improvement of tilapia.

  11. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing.

    Directory of Open Access Journals (Sweden)

    Margaret Staton

    Full Text Available Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence.

  12. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate.

    Directory of Open Access Journals (Sweden)

    Benjamin Georgi

    2014-03-01

    Full Text Available Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders.

  13. Genomic View of Bipolar Disorder Revealed by Whole Genome Sequencing in a Genetic Isolate

    Science.gov (United States)

    Georgi, Benjamin; Craig, David; Kember, Rachel L.; Liu, Wencheng; Lindquist, Ingrid; Nasser, Sara; Brown, Christopher; Egeland, Janice A.; Paul, Steven M.; Bućan, Maja

    2014-01-01

    Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders. PMID:24625924

  14. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation

    OpenAIRE

    Cuypers, Thomas D; Hogeweg, Paulien; Hogeweg, P.

    2014-01-01

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and ada...

  15. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation.

    OpenAIRE

    Thomas D Cuypers; Paulien Hogeweg

    2014-01-01

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and ada...

  16. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  17. Current Developments in Prokaryotic Single Cell Whole Genome Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, Danielle; Nath, Nandita; Ciobanu, Doina; Cheng, Jan-Fang; Malmstrom, Rex

    2014-03-14

    Our approach to prokaryotic single-cell Whole Genome Amplification at the JGI continues to evolve. To increase both the quality and number of single-cell genomes produced, we explore all aspects of the process from cell sorting to sequencing. For example, we now utilize specialized reagents, acoustic liquid handling, and reduced reaction volumes eliminate non-target DNA contamination in WGA reactions. More specifically, we use a cleaner commercial WGA kit from Qiagen that employs a UV decontamination procedure initially developed at the JGI, and we use the Labcyte Echo for tip-less liquid transfer to set up 2uL reactions. Acoustic liquid handling also dramatically reduces reagent costs. In addition, we are exploring new cell lysis methods including treatment with Proteinase K, lysozyme, and other detergents, in order to complement standard alkaline lysis and allow for more efficient disruption of a wider range of cells. Incomplete lysis represents a major hurdle for WGA on some environmental samples, especially rhizosphere, peatland, and other soils. Finding effective lysis strategies that are also compatible with WGA is challenging, and we are currently assessing the impact of various strategies on genome recovery.

  18. MIPS: analysis and annotation of proteins from whole genomes.

    Science.gov (United States)

    Mewes, H W; Amid, C; Arnold, R; Frishman, D; Güldener, U; Mannhaupt, G; Münsterkötter, M; Pagel, P; Strack, N; Stümpflen, V; Warfsmann, J; Ruepp, A

    2004-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein-protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  19. Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavender Foal Syndrome.

    Directory of Open Access Journals (Sweden)

    Samantha A Brooks

    2010-04-01

    Full Text Available Lavender Foal Syndrome (LFS is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A and myosin Va (MYO5A. Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR-based Restriction Fragment Length Polymorphism (PCR-RFLP assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals.

  20. Whole-genome DNA methylation status associated with clinical PTSD measures of OIF/OEF veterans

    Science.gov (United States)

    Hammamieh, R; Chakraborty, N; Gautam, A; Muhie, S; Yang, R; Donohue, D; Kumar, R; Daigle, B J; Zhang, Y; Amara, D A; Miller, S-A; Srinivasan, S; Flory, J; Yehuda, R; Petzold, L; Wolkowitz, O M; Mellon, S H; Hood, L; Doyle, F J; Marmar, C; Jett, M

    2017-01-01

    Emerging knowledge suggests that post-traumatic stress disorder (PTSD) pathophysiology is linked to the patients’ epigenetic changes, but comprehensive studies examining genome-wide methylation have not been performed. In this study, we examined genome-wide DNA methylation in peripheral whole blood in combat veterans with and without PTSD to ascertain differentially methylated probes. Discovery was initially made in a training sample comprising 48 male Operation Enduring Freedom (OEF)/Operation Iraqi Freedom (OIF) veterans with PTSD and 51 age/ethnicity/gender-matched combat-exposed PTSD-negative controls. Agilent whole-genome array detected ~5600 differentially methylated CpG islands (CpGI) annotated to ~2800 differently methylated genes (DMGs). The majority (84.5%) of these CpGIs were hypermethylated in the PTSD cases. Functional analysis was performed using the DMGs encoding the promoter-bound CpGIs to identify networks related to PTSD. The identified networks were further validated by an independent test set comprising 31 PTSD+/29 PTSD− veterans. Targeted bisulfite sequencing was also used to confirm the methylation status of 20 DMGs shown to be highly perturbed in the training set. To improve the statistical power and mitigate the assay bias and batch effects, a union set combining both training and test set was assayed using a different platform from Illumina. The pathways curated from this analysis confirmed 65% of the pool of pathways mined from training and test sets. The results highlight the importance of assay methodology and use of independent samples for discovery and validation of differentially methylated genes mined from whole blood. Nonetheless, the current study demonstrates that several important epigenetically altered networks may distinguish combat-exposed veterans with and without PTSD. PMID:28696412

  1. Whole genome analysis of a Vietnamese trio

    Indian Academy of Sciences (India)

    2015-02-04

    Feb 4, 2015 ... De novo assembly of high-quality unmapped reads yielded 789 contigs with the ..... The first 11 genes are zinc finger protein family and ... quality, in terms of concentration determination and sample integrity, was tested using ...

  2. Whole genome shotgun sequencing of Indian strains of Streptococcus agalactiae

    Directory of Open Access Journals (Sweden)

    Balaji Veeraraghavan

    2017-12-01

    Full Text Available Group B streptococcus is known as a leading cause of neonatal infections in developing countries. The present study describes the whole genome shotgun sequences of four Group B Streptococcus (GBS isolates. Molecular data on clonality is lacking for GBS in India. The present genome report will add important information on the scarce genome data of GBS and will help in deriving comparative genome studies of GBS isolates at global level. This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession numbers NHPL00000000 – NHPO00000000.

  3. Whole-Genome Sequencing and Comparative Analysis of Mycobacterium brisbanense Reveals a Possible Soil Origin and Capability in Fertiliser Synthesis.

    Directory of Open Access Journals (Sweden)

    Wei Yee Wee

    Full Text Available Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.

  4. Whole-Genome Sequencing and Comparative Analysis of Mycobacterium brisbanense Reveals a Possible Soil Origin and Capability in Fertiliser Synthesis.

    Science.gov (United States)

    Wee, Wei Yee; Tan, Tze King; Jakubovics, Nicholas S; Choo, Siew Woh

    2016-01-01

    Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp) is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.

  5. The "most wanted" taxa from the human microbiome for whole genome sequencing.

    Directory of Open Access Journals (Sweden)

    Anthony A Fodor

    Full Text Available The goal of the Human Microbiome Project (HMP is to generate a comprehensive catalog of human-associated microorganisms including reference genomes representing the most common species. Toward this goal, the HMP has characterized the microbial communities at 18 body habitats in a cohort of over 200 healthy volunteers using 16S rRNA gene (16S sequencing and has generated nearly 1,000 reference genomes from human-associated microorganisms. To determine how well current reference genome collections capture the diversity observed among the healthy microbiome and to guide isolation and future sequencing of microbiome members, we compared the HMP's 16S data sets to several reference 16S collections to create a 'most wanted' list of taxa for sequencing. Our analysis revealed that the diversity of commonly occurring taxa within the HMP cohort microbiome is relatively modest, few novel taxa are represented by these OTUs and many common taxa among HMP volunteers recur across different populations of healthy humans. Taken together, these results suggest that it should be possible to perform whole-genome sequencing on a large fraction of the human microbiome, including the 'most wanted', and that these sequences should serve to support microbiome studies across multiple cohorts. Also, in stark contrast to other taxa, the 'most wanted' organisms are poorly represented among culture collections suggesting that novel culture- and single-cell-based methods will be required to isolate these organisms for sequencing.

  6. Prediction of maize phenotype based on whole-genome single nucleotide polymorphisms using deep belief networks

    Science.gov (United States)

    Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.

    2017-05-01

    Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.

  7. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing.

    Science.gov (United States)

    Aflitos, Saulo; Schijlen, Elio; de Jong, Hans; de Ridder, Dick; Smit, Sandra; Finkers, Richard; Wang, Jun; Zhang, Gengyun; Li, Ning; Mao, Likai; Bakker, Freek; Dirks, Rob; Breit, Timo; Gravendeel, Barbara; Huits, Henk; Struss, Darush; Swanson-Wagner, Ruth; van Leeuwen, Hans; van Ham, Roeland C H J; Fito, Laia; Guignier, Laëtitia; Sevilla, Myrna; Ellul, Philippe; Ganko, Eric; Kapur, Arvind; Reclus, Emannuel; de Geus, Bernard; van de Geest, Henri; Te Lintel Hekkert, Bas; van Haarst, Jan; Smits, Lars; Koops, Andries; Sanchez-Perez, Gabino; van Heusden, Adriaan W; Visser, Richard; Quan, Zhiwu; Min, Jiumeng; Liao, Li; Wang, Xiaoli; Wang, Guangbiao; Yue, Zhen; Yang, Xinhua; Xu, Na; Schranz, Eric; Smets, Erik; Vos, Rutger; Rauwerda, Johan; Ursem, Remco; Schuit, Cees; Kerns, Mike; van den Berg, Jan; Vriezen, Wim; Janssen, Antoine; Datema, Erwin; Jahrman, Torben; Moquet, Frederic; Bonnet, Julien; Peters, Sander

    2014-10-01

    We explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative of the Lycopersicon, Arcanum, Eriopersicon and Neolycopersicon groups, which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new reference genomes were reconstructed to support our comparative genome analyses. Comparative sequence alignment revealed group-, species- and accession-specific polymorphisms, explaining characteristic fruit traits and growth habits in the various cultivars. Using gene models from the annotated Heinz 1706 reference genome, we observed differences in the ratio between non-synonymous and synonymous SNPs (dN/dS) in fruit diversification and plant growth genes compared to a random set of genes, indicating positive selection and differences in selection pressure between crop accessions and wild species. In wild species, the number of single-nucleotide polymorphisms (SNPs) exceeds 10 million, i.e. 20-fold higher than found in most of the crop accessions, indicating dramatic genetic erosion of crop and heirloom tomatoes. In addition, the highest levels of heterozygosity were found for allogamous self-incompatible wild species, while facultative and autogamous self-compatible species display a lower heterozygosity level. Using whole-genome SNP information for maximum-likelihood analysis, we achieved complete tree resolution, whereas maximum-likelihood trees based on SNPs from ten fruit and growth genes show incomplete resolution for the crop accessions, partly due to the effect of heterozygous SNPs. Finally, results suggest that phylogenetic relationships are correlated with habitat, indicating the occurrence of geographical races within these groups, which is of practical importance for Solanum genome evolution studies. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. Significance of functional disease-causal/susceptible variants identified by whole-genome analyses for the understanding of human diseases.

    Science.gov (United States)

    Hitomi, Yuki; Tokunaga, Katsushi

    2017-01-01

    Human genome variation may cause differences in traits and disease risks. Disease-causal/susceptible genes and variants for both common and rare diseases can be detected by comprehensive whole-genome analyses, such as whole-genome sequencing (WGS), using next-generation sequencing (NGS) technology and genome-wide association studies (GWAS). Here, in addition to the application of an NGS as a whole-genome analysis method, we summarize approaches for the identification of functional disease-causal/susceptible variants from abundant genetic variants in the human genome and methods for evaluating their functional effects in human diseases, using an NGS and in silico and in vitro functional analyses. We also discuss the clinical applications of the functional disease causal/susceptible variants to personalized medicine.

  9. A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Ahrenfeldt, Johanne; Bellod Cisneros, Jose Luis

    2016-01-01

    and made publicly available, providing easy-to-use automated analysis of bacterial whole genome sequencing data. The platform may be of immediate relevance as a guide for investigators using whole genome sequencing for clinical diagnostics and surveillance. The platform is freely available at: https://cge.cbs.dtu.dk/services...... and antimicrobial resistance genes. A short printable report for each sample will be provided and an Excel spreadsheet containing all the metadata and a summary of the results for all submitted samples can be downloaded. The pipeline was benchmarked using datasets previously used to test the individual services...

  10. Whole-Genome Sequences of Three Symbiotic Endozoicomonas Bacteria

    KAUST Repository

    Neave, Matthew J.

    2014-08-14

    Members of the genus Endozoicomonas associate with a wide range of marine organisms. Here, we report on the whole-genome sequencing, assembly, and annotation of three Endozoicomonas type strains. These data will assist in exploring interactions between Endozoicomonas organisms and their hosts, and it will aid in the assembly of genomes from uncultivated Endozoicomonas spp.

  11. Whole-Genome Sequences of Three Symbiotic Endozoicomonas Bacteria

    KAUST Repository

    Neave, Matthew J.; Michell, Craig; Apprill, Amy; Voolstra, Christian R.

    2014-01-01

    Members of the genus Endozoicomonas associate with a wide range of marine organisms. Here, we report on the whole-genome sequencing, assembly, and annotation of three Endozoicomonas type strains. These data will assist in exploring interactions between Endozoicomonas organisms and their hosts, and it will aid in the assembly of genomes from uncultivated Endozoicomonas spp.

  12. Rapid Identification of Potential Drugs for Diabetic Nephropathy Using Whole-Genome Expression Profiles of Glomeruli

    Directory of Open Access Journals (Sweden)

    Jingsong Shi

    2016-01-01

    Full Text Available Objective. To investigate potential drugs for diabetic nephropathy (DN using whole-genome expression profiles and the Connectivity Map (CMAP. Methodology. Eighteen Chinese Han DN patients and six normal controls were included in this study. Whole-genome expression profiles of microdissected glomeruli were measured using the Affymetrix human U133 plus 2.0 chip. Differentially expressed genes (DEGs between late stage and early stage DN samples and the CMAP database were used to identify potential drugs for DN using bioinformatics methods. Results. (1 A total of 1065 DEGs (FDR 1.5 were found in late stage DN patients compared with early stage DN patients. (2 Piperlongumine, 15d-PGJ2 (15-delta prostaglandin J2, vorinostat, and trichostatin A were predicted to be the most promising potential drugs for DN, acting as NF-κB inhibitors, histone deacetylase inhibitors (HDACIs, PI3K pathway inhibitors, or PPARγ agonists, respectively. Conclusion. Using whole-genome expression profiles and the CMAP database, we rapidly predicted potential DN drugs, and therapeutic potential was confirmed by previously published studies. Animal experiments and clinical trials are needed to confirm both the safety and efficacy of these drugs in the treatment of DN.

  13. Microarray-based whole-genome hybridization as a tool for determining procaryotic species relatedness

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L.; Liu, X.; Fields, M.W.; Thompson, D.K.; Bagwell, C.E.; Tiedje, J. M.; Hazen, T.C.; Zhou, J.

    2008-01-15

    The definition and delineation of microbial species are of great importance and challenge due to the extent of evolution and diversity. Whole-genome DNA-DNA hybridization is the cornerstone for defining procaryotic species relatedness, but obtaining pairwise DNA-DNA reassociation values for a comprehensive phylogenetic analysis of procaryotes is tedious and time consuming. A previously described microarray format containing whole-genomic DNA (the community genome array or CGA) was rigorously evaluated as a high-throughput alternative to the traditional DNA-DNA reassociation approach for delineating procaryotic species relationships. DNA similarities for multiple bacterial strains obtained with the CGA-based hybridization were comparable to those obtained with various traditional whole-genome hybridization methods (r=0.87, P<0.01). Significant linear relationships were also observed between the CGA-based genome similarities and those derived from small subunit (SSU) rRNA gene sequences (r=0.79, P<0.0001), gyrB sequences (r=0.95, P<0.0001) or REP- and BOX-PCR fingerprinting profiles (r=0.82, P<0.0001). The CGA hybridization-revealed species relationships in several representative genera, including Pseudomonas, Azoarcus and Shewanella, were largely congruent with previous classifications based on various conventional whole-genome DNA-DNA reassociation, SSU rRNA and/or gyrB analyses. These results suggest that CGA-based DNA-DNA hybridization could serve as a powerful, high-throughput format for determining species relatedness among microorganisms.

  14. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group

    DEFF Research Database (Denmark)

    Iacono, M.; Villa, L.; Fortini, D.

    2008-01-01

    The whole-genome sequence of an epidemic, multidrug-resistant Acinetobacter baumannii strain (strain ACICU) belonging to the European clone II group and carrying the plasmid-mediated bla(OXA-58) carbapenem resistance gene was determined. The A. baumannii ACICU genome was compared with the genomes...

  15. The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants.

    Science.gov (United States)

    Reuter, Miriam S; Walker, Susan; Thiruvahindrapuram, Bhooma; Whitney, Joe; Cohn, Iris; Sondheimer, Neal; Yuen, Ryan K C; Trost, Brett; Paton, Tara A; Pereira, Sergio L; Herbrick, Jo-Anne; Wintle, Richard F; Merico, Daniele; Howe, Jennifer; MacDonald, Jeffrey R; Lu, Chao; Nalpathamkalam, Thomas; Sung, Wilson W L; Wang, Zhuozhi; Patel, Rohan V; Pellecchia, Giovanna; Wei, John; Strug, Lisa J; Bell, Sherilyn; Kellam, Barbara; Mahtani, Melanie M; Bassett, Anne S; Bombard, Yvonne; Weksberg, Rosanna; Shuman, Cheryl; Cohn, Ronald D; Stavropoulos, Dimitri J; Bowdin, Sarah; Hildebrandt, Matthew R; Wei, Wei; Romm, Asli; Pasceri, Peter; Ellis, James; Ray, Peter; Meyn, M Stephen; Monfared, Nasim; Hosseini, S Mohsen; Joseph-George, Ann M; Keeley, Fred W; Cook, Ryan A; Fiume, Marc; Lee, Hin C; Marshall, Christian R; Davies, Jill; Hazell, Allison; Buchanan, Janet A; Szego, Michael J; Scherer, Stephen W

    2018-02-05

    The Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers. Volunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant. Whole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set ( n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants - associated with cancer, cardiac or neurodegenerative phenotypes - remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual. Our analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care. © 2018 Joule Inc. or its licensors.

  16. Assessing molecular initiating events (MIEs), key events (KEs) and modulating factors (MFs) for styrene responses in mouse lungs using whole genome gene expression profiling following 1-day and multi-week exposures.

    Science.gov (United States)

    Andersen, Melvin E; Cruzan, George; Black, Michael B; Pendse, Salil N; Dodd, Darol; Bus, James S; Sarang, Satinder S; Banton, Marcy I; Waites, Robbie; McMullen, Patrick D

    2017-11-15

    Styrene increased lung tumors in mice at chronic inhalation exposures of 20ppm and greater. MIEs, KEs and MFs were examined using gene expression in three strains of male mice (the parental C57BL/6 strain, a CYP2F2(-/-) knock out and a CYP2F2(-/-) transgenic containing human CYP2F1, 2A13 and 2B6). Exposures were for 1-day and 1, 4 and 26weeks. After 1-day exposures at 1, 5, 10, 20, 40 and 120ppm significant increases in differentially expressed genes (DEGs) occurred only in parental strain lungs where there was already an increase in DEGs at 5ppm and then many thousands of DEGs by 120ppm. Enrichment for 1-day and 1-week exposures included cell cycle, mitotic M-M/G1 phases, DNA-synthesis and metabolism of lipids and lipoproteins pathways. The numbers of DEGs decreased steadily over time with no DEGs meeting both statistical significance and fold-change criteria at 26weeks. At 4 and 26weeks, some key transcription factors (TFs) - Nr1d1, Nr1d2, Dbp, Tef, Hlf, Per3, Per2 and Bhlhe40 - were upregulated (|FC|>1.5), while others - Npas, Arntl, Nfil3, Nr4a1, Nr4a2, and Nr4a3 - were down-regulated. At all times, consistent changes in gene expression only occurred in the parental strain. Our results support a MIE for styrene of direct mitogenicity from mouse-specific CYP2F2-mediated metabolites activating Nr4a signaling. Longer-term MFs include down-regulation of Nr4a genes and shifts in both circadian clock TFs and other TFs, linking circadian clock to cellular metabolism. We found no gene expression changes indicative of cytotoxicity or activation of p53-mediated DNA-damage pathways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing.

    Science.gov (United States)

    Huo, Heqiang; Henry, Isabelle M; Coppoolse, Eric R; Verhoef-Post, Miriam; Schut, Johan W; de Rooij, Han; Vogelaar, Aat; Joosen, Ronny V L; Woudenberg, Leo; Comai, Luca; Bradford, Kent J

    2016-11-01

    Lettuce (Lactuca sativa) seeds exhibit thermoinhibition, or failure to complete germination when imbibed at warm temperatures. Chemical mutagenesis was employed to develop lettuce lines that exhibit germination thermotolerance. Two independent thermotolerant lettuce seed mutant lines, TG01 and TG10, were generated through ethyl methanesulfonate mutagenesis. Genetic and physiological analyses indicated that these two mutations were allelic and recessive. To identify the causal gene(s), we applied bulked segregant analysis by whole genome sequencing. For each mutant, bulked DNA samples of segregating thermotolerant (mutant) seeds were sequenced and analyzed for homozygous single-nucleotide polymorphisms. Two independent candidate mutations were identified at different physical positions in the zeaxanthin epoxidase gene (ABSCISIC ACID DEFICIENT 1/ZEAXANTHIN EPOXIDASE, or ABA1/ZEP) in TG01 and TG10. The mutation in TG01 caused an amino acid replacement, whereas the mutation in TG10 resulted in alternative mRNA splicing. Endogenous abscisic acid contents were reduced in both mutants, and expression of the ABA1 gene from wild-type lettuce under its own promoter fully complemented the TG01 mutant. Conventional genetic mapping confirmed that the causal mutations were located near the ZEP/ABA1 gene, but the bulked segregant whole genome sequencing approach more efficiently identified the specific gene responsible for the phenotype. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  18. Impact of antenatal glucocorticosteroids on whole-genome expression in preterm babies.

    Science.gov (United States)

    Saugstad, Ola Didrik; Kwinta, Przemko; Wollen, Embjørg Julianne; Bik-Multanowski, Mirosław; Madetko-Talowska, Anna; Jagła, Mateusz; Tomasik, Tomasz; Pietrzyk, Jacek Józef

    2013-04-01

    To study the impact that using antenatal steroid to treat threatened preterm delivery has on whole-genome expression. A prospective whole-genome expression study was carried out on 50 newborn infants, delivered before 32 weeks gestation, who had been exposed to antenatal steroids, including 40 who had received a full antenatal steroid course. Seventy infants not exposed to antenatal steroids formed the control group. Microarray analyses were performed five and 28 days after delivery, and the results were validated by real-time PCR. The study was conducted between September 2008 and November 2010. Twenty thousand six hundred and ninety-three genes were studied in the infants' leucocytes. Thirteen were differentially expressed 5 days after delivery, but there were no differences at day 28. Four genes related to cancer or inflammation were up-regulated. Nine genes were down-regulated: six were Y-linked and associated with malignancies, graft-versus-host disease, male infertility and cell differentiation and three were associated with pre-eclampsia, oxidative stress and chloride/bicarbonate exchange. Seven gene pathways were up-regulated at day five and only one at day 28. These were associated with cell growth, cell cycle regulation, metabolism and apoptosis. Antenatal steroid therapy affects a limited number of genes and gene pathways in leucocytes in preterm babies at day five of life. The effect is short-lived, but long-term effects cannot be ruled out. ©2013 The Author(s)/Acta Paediatrica ©2013 Foundation Acta Paediatrica.

  19. Using Whole Genome Analysis to Examine Recombination across Diverse Sequence Types of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Driebe

    Full Text Available Staphylococcus aureus is an important clinical pathogen worldwide and understanding this organism's phylogeny and, in particular, the role of recombination, is important both to understand the overall spread of virulent lineages and to characterize outbreaks. To further elucidate the phylogeny of S. aureus, 35 diverse strains were sequenced using whole genome sequencing. In addition, 29 publicly available whole genome sequences were included to create a single nucleotide polymorphism (SNP-based phylogenetic tree encompassing 11 distinct lineages. All strains of a particular sequence type fell into the same clade with clear groupings of the major clonal complexes of CC8, CC5, CC30, CC45 and CC1. Using a novel analysis method, we plotted the homoplasy density and SNP density across the whole genome and found evidence of recombination throughout the entire chromosome, but when we examined individual clonal lineages we found very little recombination. However, when we analyzed three branches of multiple lineages, we saw intermediate and differing levels of recombination between them. These data demonstrate that in S. aureus, recombination occurs across major lineages that subsequently expand in a clonal manner. Estimated mutation rates for the CC8 and CC5 lineages were different from each other. While the CC8 lineage rate was similar to previous studies, the CC5 lineage was 100-fold greater. Fifty known virulence genes were screened in all genomes in silico to determine their distribution across major clades. Thirty-three genes were present variably across clades, most of which were not constrained by ancestry, indicating horizontal gene transfer or gene loss.

  20. Use of whole genome expression analysis in the toxicity screening of nanoparticles

    International Nuclear Information System (INIS)

    Fröhlich, Eleonore; Meindl, Claudia; Wagner, Karin; Leitinger, Gerd; Roblegg, Eva

    2014-01-01

    The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays for NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay

  1. Use of whole genome expression analysis in the toxicity screening of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fröhlich, Eleonore, E-mail: eleonore.froehlich@medunigraz.at [Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz (Austria); Meindl, Claudia; Wagner, Karin [Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz (Austria); Leitinger, Gerd [Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz (Austria); Institute for Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz (Austria); Roblegg, Eva [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of Graz, Universitätsplatz 1, 8010 Graz (Austria)

    2014-10-15

    The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays for NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay.

  2. Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Kevin; Wiest, Aric E.; Grigoriev, Igor V.; Lipzen, Anna; Martin, Joel; Schackwitz, Wendy; Baker, Scott E.

    2011-06-02

    Classical forward genetics has been foundational to modern biology, and has been the paradigm for characterizing the role of genes in shaping phenotypes for decades. In recent years, reverse genetics has been used to identify the functions of genes, via the intentional introduction of variation and subsequent evaluation in physiological, molecular, and even population contexts. These approaches are complementary and whole genome analysis serves as a bridge between the two. We report in this article the whole genome sequencing of eighteen classical mutant strains of Neurospora crassa and the putative identification of the mutations associated with corresponding mutant phenotypes. Although some strains carry multiple unique nonsynonymous, nonsense, or frameshift mutations, the combined power of limiting the scope of the search based on genetic markers and of using a comparative analysis among the eighteen genomes provides strong support for the association between mutation and phenotype. For ten of the mutants, the mutant phenotype is recapitulated in classical or gene deletion mutants in Neurospora or other filamentous fungi. From thirteen to 137 nonsense mutations are present in each strain and indel sizes are shown to be highly skewed in gene coding sequence. Significant additional genetic variation was found in the eighteen mutant strains, and this variability defines multiple alleles of many genes. These alleles may be useful in further genetic and molecular analysis of known and yet-to-be-discovered functions and they invite new interpretations of molecular and genetic interactions in classical mutant strains.

  3. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    Science.gov (United States)

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  4. Whole genome amplification - Review of applications and advances

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, Trevor L.; Detter, J.C.; Richardson, Paul

    2001-11-15

    The concept of Whole Genome Amplification is something that has arisen in the past few years as modifications to the polymerase chain reaction (PCR) have been adapted to replicate regions of genomes which are of biological interest. The applications here are many--forensics, embryonic disease diagnosis, bio terrorism genome detection, ''imoralization'' of clinical samples, microbial diversity, and genotyping. The key question is if DNA can be replicated a genome at a time without bias or non random distribution of the target. Several papers published in the last year and currently in preparation may lead to the conclusion that whole genome amplification may indeed be possible and therefore open up a new avenue to molecular biology.

  5. Bioinformatics for whole-genome shotgun sequencing of microbial communities.

    Directory of Open Access Journals (Sweden)

    Kevin Chen

    2005-07-01

    Full Text Available The application of whole-genome shotgun sequencing to microbial communities represents a major development in metagenomics, the study of uncultured microbes via the tools of modern genomic analysis. In the past year, whole-genome shotgun sequencing projects of prokaryotic communities from an acid mine biofilm, the Sargasso Sea, Minnesota farm soil, three deep-sea whale falls, and deep-sea sediments have been reported, adding to previously published work on viral communities from marine and fecal samples. The interpretation of this new kind of data poses a wide variety of exciting and difficult bioinformatics problems. The aim of this review is to introduce the bioinformatics community to this emerging field by surveying existing techniques and promising new approaches for several of the most interesting of these computational problems.

  6. WGSQuikr: fast whole-genome shotgun metagenomic classification.

    Directory of Open Access Journals (Sweden)

    David Koslicki

    Full Text Available With the decrease in cost and increase in output of whole-genome shotgun technologies, many metagenomic studies are utilizing this approach in lieu of the more traditional 16S rRNA amplicon technique. Due to the large number of relatively short reads output from whole-genome shotgun technologies, there is a need for fast and accurate short-read OTU classifiers. While there are relatively fast and accurate algorithms available, such as MetaPhlAn, MetaPhyler, PhyloPythiaS, and PhymmBL, these algorithms still classify samples in a read-by-read fashion and so execution times can range from hours to days on large datasets. We introduce WGSQuikr, a reconstruction method which can compute a vector of taxonomic assignments and their proportions in the sample with remarkable speed and accuracy. We demonstrate on simulated data that WGSQuikr is typically more accurate and up to an order of magnitude faster than the aforementioned classification algorithms. We also verify the utility of WGSQuikr on real biological data in the form of a mock community. WGSQuikr is a Whole-Genome Shotgun QUadratic, Iterative, K-mer based Reconstruction method which extends the previously introduced 16S rRNA-based algorithm Quikr. A MATLAB implementation of WGSQuikr is available at: http://sourceforge.net/projects/wgsquikr.

  7. Whole-genome shotgun optical mapping of rhodospirillumrubrum

    Energy Technology Data Exchange (ETDEWEB)

    Reslewic, Susan; Zhou, Shiguo; Place, Mike; Zhang, Yaoping; Briska, Adam; Goldstein, Steve; Churas, Chris; Runnheim, Rod; Forrest,Dan; Lim, Alex; Lapidus, Alla; Han, Cliff S.; Roberts, Gary P.; Schwartz,David C.

    2004-07-01

    Rhodospirillum rubrum is a phototrophic purple non-sulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems, and as a source of hydrogen and biodegradable plastics production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction maps (Xba I, Nhe I, and Hind III) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction maps from randomly sheared genomic DNA molecules extracted directly from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the Hind III map acted as a scaffold for high resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and validation of genome sequence, our work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a ''molecular cytogenetics'' approach to solving problems in genomic analysis.

  8. Whole-genome shotgun optical mapping of Rhodospirillum rubrum

    Energy Technology Data Exchange (ETDEWEB)

    Reslewic, S. [Univ. Wisc.-Madison; Zhou, S. [Univ. Wisc.-Madison; Place, M. [Univ. Wisc.-Madison; Zhang, Y. [Univ. Wisc.-Madison; Briska, A. [Univ. Wisc.-Madison; Goldstein, S. [Univ. Wisc.-Madison; Churas, C. [Univ. Wisc.-Madison; Runnheim, R. [Univ. Wisc.-Madison; Forrest, D. [Univ. Wisc.-Madison; Lim, A. [Univ. Wisc.-Madison; Lapidus, A. [Univ. Wisc.-Madison; Han, C. S. [Univ. Wisc.-Madison; Roberts, G. P. [Univ. Wisc.-Madison; Schwartz, D. C. [Univ. Wisc.-Madison

    2005-09-01

    Rhodospirillum rubrum is a phototrophic purple nonsulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems and as a source of hydrogen and biodegradable plastic production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction endonuclease maps (XbaI, NheI, and HindIII) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction endonuclease maps from randomly sheared genomic DNA molecules extracted from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the HindIII map acted as a scaffold for high-resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and confirmation of genome sequence, this work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a "molecular cytogenetics" approach to solving problems in genomic analysis.

  9. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing

    DEFF Research Database (Denmark)

    Li, Ying-hui; Zhao, Shan-cen; Ma, Jian-xin

    2013-01-01

    and genetic improvement were identified.CONCLUSIONS:Given the uniqueness of the soybean germplasm sequenced, this study drew a clear picture of human-mediated evolution of the soybean genomes. The genomic resources and information provided by this study would also facilitate the discovery of genes......BACKGROUND:Artificial selection played an important role in the origin of modern Glycine max cultivars from the wild soybean Glycine soja. To elucidate the consequences of artificial selection accompanying the domestication and modern improvement of soybean, 25 new and 30 published whole-genome re...

  10. Recommendations to address the difficulties encountered when determining linezolid resistance from whole genome sequencing data.

    Science.gov (United States)

    Beukers, Alicia G; Hasman, Henrik; Hegstad, Kristin; van Hal, Sebastiaan J

    2018-05-29

    Mutations associated with linezolid resistance within the V domain of 23S rRNA are annotated using an Escherichia coli numbering system. The 23S rRNA gene varies in length, nucleotide sequence and copy number between bacterial species. Consequently, this numbering system is not intuitive and can lead to confusion when locating mutation sites using whole genome sequencing data. Using the mutation G2576T as an example, we demonstrate the difficulties associated with using the E. coli numbering system. © Crown copyright 2018.

  11. Whole genome transcript profiling from fingerstick blood samples: a comparison and feasibility study

    Directory of Open Access Journals (Sweden)

    Williams Adam R

    2009-12-01

    Full Text Available Abstract Background Whole genome gene expression profiling has revolutionized research in the past decade especially with the advent of microarrays. Recently, there have been significant improvements in whole blood RNA isolation techniques which, through stabilization of RNA at the time of sample collection, avoid bias and artifacts introduced during sample handling. Despite these improvements, current human whole blood RNA stabilization/isolation kits are limited by the requirement of a venous blood sample of at least 2.5 mL. While fingerstick blood collection has been used for many different assays, there has yet to be a kit developed to isolate high quality RNA for use in gene expression studies from such small human samples. The clinical and field testing advantages of obtaining reliable and reproducible gene expression data from a fingerstick are many; it is less invasive, time saving, more mobile, and eliminates the need of a trained phlebotomist. Furthermore, this method could also be employed in small animal studies, i.e. mice, where larger sample collections often require sacrificing the animal. In this study, we offer a rapid and simple method to extract sufficient amounts of high quality total RNA from approximately 70 μl of whole blood collected via a fingerstick using a modified protocol of the commercially available Qiagen PAXgene RNA Blood Kit. Results From two sets of fingerstick collections, about 70 uL whole blood collected via finger lancet and capillary tube, we recovered an average of 252.6 ng total RNA with an average RIN of 9.3. The post-amplification yields for 50 ng of total RNA averaged at 7.0 ug cDNA. The cDNA hybridized to Affymetrix HG-U133 Plus 2.0 GeneChips had an average % Present call of 52.5%. Both fingerstick collections were highly correlated with r2 values ranging from 0.94 to 0.97. Similarly both fingerstick collections were highly correlated to the venous collection with r2 values ranging from 0.88 to 0

  12. WGSSAT: A High-Throughput Computational Pipeline for Mining and Annotation of SSR Markers From Whole Genomes.

    Science.gov (United States)

    Pandey, Manmohan; Kumar, Ravindra; Srivastava, Prachi; Agarwal, Suyash; Srivastava, Shreya; Nagpure, Naresh S; Jena, Joy K; Kushwaha, Basdeo

    2018-03-16

    Mining and characterization of Simple Sequence Repeat (SSR) markers from whole genomes provide valuable information about biological significance of SSR distribution and also facilitate development of markers for genetic analysis. Whole genome sequencing (WGS)-SSR Annotation Tool (WGSSAT) is a graphical user interface pipeline developed using Java Netbeans and Perl scripts which facilitates in simplifying the process of SSR mining and characterization. WGSSAT takes input in FASTA format and automates the prediction of genes, noncoding RNA (ncRNA), core genes, repeats and SSRs from whole genomes followed by mapping of the predicted SSRs onto a genome (classified according to genes, ncRNA, repeats, exonic, intronic, and core gene region) along with primer identification and mining of cross-species markers. The program also generates a detailed statistical report along with visualization of mapped SSRs, genes, core genes, and RNAs. The features of WGSSAT were demonstrated using Takifugu rubripes data. This yielded a total of 139 057 SSR, out of which 113 703 SSR primer pairs were uniquely amplified in silico onto a T. rubripes (fugu) genome. Out of 113 703 mined SSRs, 81 463 were from coding region (including 4286 exonic and 77 177 intronic), 7 from RNA, 267 from core genes of fugu, whereas 105 641 SSR and 601 SSR primer pairs were uniquely mapped onto the medaka genome. WGSSAT is tested under Ubuntu Linux. The source code, documentation, user manual, example dataset and scripts are available online at https://sourceforge.net/projects/wgssat-nbfgr.

  13. Whole genome investigation of a divergent clade of the pathogen Streptococcus suis

    Directory of Open Access Journals (Sweden)

    Abiyad eBaig

    2015-11-01

    Full Text Available Streptococcus suis is a major porcine and zoonotic pathogen responsible for significant economic losses in the pig industry and an increasing number of human cases. Multiple isolates of S. suis show marked genomic diversity. Here we report the analysis of whole genome sequences of nine pig isolates that caused disease typical of S. suis and had phenotypic characteristics of S. suis, but their genomes were divergent from those of many other S. suis isolates. Comparison of protein sequences predicted from divergent genomes with those from normal S. suis reduced the size of core genome from 793 to only 397 genes. Divergence was clear if phylogenetic analysis was performed on reduced core genes and MLST alleles. Phylogenies based on certain other genes (16S rRNA, sodA, recN and cpn60 did not show divergence for all isolates, suggesting recombination between some divergent isolates with normal S. suis for these genes. Indeed, there is evidence of recent recombination between the divergent and normal S. suis genomes for 249 of 397 core genes. In addition, phylogenetic analysis based on the 16S rRNA gene and 132 genes that were conserved between the divergent isolates and representatives of the broader Streptococcus genus showed that divergent isolates were more closely related to S. suis. Six out of nine divergent isolates possessed a S. suis-like capsule region with variation in capsular gene sequences but the remaining three did not have a discrete capsule locus. The majority (40/70, of virulence-associated genes in normal S. suis were present in the divergent genomes. Overall, the divergent isolates extend the current diversity of S. suis species but the phenotypic similarities and the large amount of gene exchange with normal S. suis gives insufficient evidence to assign these isolates to a new species or subspecies. Further sampling and whole genome analysis of more isolates is warranted to understand the diversity of the species.

  14. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts.

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Guo

    Full Text Available Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya. However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage.

  15. Construction of a phylogenetic tree of photosynthetic prokaryotes based on average similarities of whole genome sequences.

    Directory of Open Access Journals (Sweden)

    Soichirou Satoh

    Full Text Available Phylogenetic trees have been constructed for a wide range of organisms using gene sequence information, especially through the identification of orthologous genes that have been vertically inherited. The number of available complete genome sequences is rapidly increasing, and many tools for construction of genome trees based on whole genome sequences have been proposed. However, development of a reasonable method of using complete genome sequences for construction of phylogenetic trees has not been established. We have developed a method for construction of phylogenetic trees based on the average sequence similarities of whole genome sequences. We used this method to examine the phylogeny of 115 photosynthetic prokaryotes, i.e., cyanobacteria, Chlorobi, proteobacteria, Chloroflexi, Firmicutes and nonphotosynthetic organisms including Archaea. Although the bootstrap values for the branching order of phyla were low, probably due to lateral gene transfer and saturated mutation, the obtained tree was largely consistent with the previously reported phylogenetic trees, indicating that this method is a robust alternative to traditional phylogenetic methods.

  16. SV2: accurate structural variation genotyping and de novo mutation detection from whole genomes.

    Science.gov (United States)

    Antaki, Danny; Brandler, William M; Sebat, Jonathan

    2018-05-15

    Structural variation (SV) detection from short-read whole genome sequencing is error prone, presenting significant challenges for population or family-based studies of disease. Here, we describe SV2, a machine-learning algorithm for genotyping deletions and duplications from paired-end sequencing data. SV2 can rapidly integrate variant calls from multiple structural variant discovery algorithms into a unified call set with high genotyping accuracy and capability to detect de novo mutations. SV2 is freely available on GitHub (https://github.com/dantaki/SV2). jsebat@ucsd.edu. Supplementary data are available at Bioinformatics online.

  17. Using OWL reasoning to support the generation of novel gene sets for enrichment analysis.

    Science.gov (United States)

    Osumi-Sutherland, David J; Ponta, Enrico; Courtot, Melanie; Parkinson, Helen; Badi, Laura

    2018-02-14

    The Gene Ontology (GO) consists of over 40,000 terms for biological processes, cell components and gene product activities linked into a graph structure by over 90,000 relationships. It has been used to annotate the functions and cellular locations of several million gene products. The graph structure is used by a variety of tools to group annotated genes into sets whose products share function or location. These gene sets are widely used to interpret the results of genomics experiments by assessing which sets are significantly over- or under-represented in results lists. F Hoffmann-La Roche Ltd. has developed a bespoke, manually maintained controlled vocabulary (RCV) for use in over-representation analysis. Many terms in this vocabulary group GO terms in novel ways that cannot easily be derived using the graph structure of the GO. For example, some RCV terms group GO terms by the cell, chemical or tissue type they refer to. Recent improvements in the content and formal structure of the GO make it possible to use logical queries in Web Ontology Language (OWL) to automatically map these cross-cutting classifications to sets of GO terms. We used this approach to automate mapping between RCV and GO, largely replacing the increasingly unsustainable manual mapping process. We then tested the utility of the resulting groupings for over-representation analysis. We successfully mapped 85% of RCV terms to logical OWL definitions and showed that these could be used to recapitulate and extend manual mappings between RCV terms and the sets of GO terms subsumed by them. We also show that gene sets derived from the resulting GO terms sets can be used to detect the signatures of cell and tissue types in whole genome expression data. The rich formal structure of the GO makes it possible to use reasoning to dynamically generate novel, biologically relevant groupings of GO terms. GO term groupings generated with this approach can be used in. over-representation analysis to detect

  18. High depth, whole-genome sequencing of cholera isolates from Haiti and the Dominican Republic.

    Science.gov (United States)

    Sealfon, Rachel; Gire, Stephen; Ellis, Crystal; Calderwood, Stephen; Qadri, Firdausi; Hensley, Lisa; Kellis, Manolis; Ryan, Edward T; LaRocque, Regina C; Harris, Jason B; Sabeti, Pardis C

    2012-09-11

    Whole-genome sequencing is an important tool for understanding microbial evolution and identifying the emergence of functionally important variants over the course of epidemics. In October 2010, a severe cholera epidemic began in Haiti, with additional cases identified in the neighboring Dominican Republic. We used whole-genome approaches to sequence four Vibrio cholerae isolates from Haiti and the Dominican Republic and three additional V. cholerae isolates to a high depth of coverage (>2000x); four of the seven isolates were previously sequenced. Using these sequence data, we examined the effect of depth of coverage and sequencing platform on genome assembly and identification of sequence variants. We found that 50x coverage is sufficient to construct a whole-genome assembly and to accurately call most variants from 100 base pair paired-end sequencing reads. Phylogenetic analysis between the newly sequenced and thirty-three previously sequenced V. cholerae isolates indicates that the Haitian and Dominican Republic isolates are closest to strains from South Asia. The Haitian and Dominican Republic isolates form a tight cluster, with only four variants unique to individual isolates. These variants are located in the CTX region, the SXT region, and the core genome. Of the 126 mutations identified that separate the Haiti-Dominican Republic cluster from the V. cholerae reference strain (N16961), 73 are non-synonymous changes, and a number of these changes cluster in specific genes and pathways. Sequence variant analyses of V. cholerae isolates, including multiple isolates from the Haitian outbreak, identify coverage-specific and technology-specific effects on variant detection, and provide insight into genomic change and functional evolution during an epidemic.

  19. High depth, whole-genome sequencing of cholera isolates from Haiti and the Dominican Republic

    Directory of Open Access Journals (Sweden)

    Sealfon Rachel

    2012-09-01

    Full Text Available Abstract Background Whole-genome sequencing is an important tool for understanding microbial evolution and identifying the emergence of functionally important variants over the course of epidemics. In October 2010, a severe cholera epidemic began in Haiti, with additional cases identified in the neighboring Dominican Republic. We used whole-genome approaches to sequence four Vibrio cholerae isolates from Haiti and the Dominican Republic and three additional V. cholerae isolates to a high depth of coverage (>2000x; four of the seven isolates were previously sequenced. Results Using these sequence data, we examined the effect of depth of coverage and sequencing platform on genome assembly and identification of sequence variants. We found that 50x coverage is sufficient to construct a whole-genome assembly and to accurately call most variants from 100 base pair paired-end sequencing reads. Phylogenetic analysis between the newly sequenced and thirty-three previously sequenced V. cholerae isolates indicates that the Haitian and Dominican Republic isolates are closest to strains from South Asia. The Haitian and Dominican Republic isolates form a tight cluster, with only four variants unique to individual isolates. These variants are located in the CTX region, the SXT region, and the core genome. Of the 126 mutations identified that separate the Haiti-Dominican Republic cluster from the V. cholerae reference strain (N16961, 73 are non-synonymous changes, and a number of these changes cluster in specific genes and pathways. Conclusions Sequence variant analyses of V. cholerae isolates, including multiple isolates from the Haitian outbreak, identify coverage-specific and technology-specific effects on variant detection, and provide insight into genomic change and functional evolution during an epidemic.

  20. High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies.

    Directory of Open Access Journals (Sweden)

    Anjana Srivatsan

    2008-08-01

    Full Text Available Whole-genome sequencing is a powerful technique for obtaining the reference sequence information of multiple organisms. Its use can be dramatically expanded to rapidly identify genomic variations, which can be linked with phenotypes to obtain biological insights. We explored these potential applications using the emerging next-generation sequencing platform Solexa Genome Analyzer, and the well-characterized model bacterium Bacillus subtilis. Combining sequencing with experimental verification, we first improved the accuracy of the published sequence of the B. subtilis reference strain 168, then obtained sequences of multiple related laboratory strains and different isolates of each strain. This provides a framework for comparing the divergence between different laboratory strains and between their individual isolates. We also demonstrated the power of Solexa sequencing by using its results to predict a defect in the citrate signal transduction pathway of a common laboratory strain, which we verified experimentally. Finally, we examined the molecular nature of spontaneously generated mutations that suppress the growth defect caused by deletion of the stringent response mediator relA. Using whole-genome sequencing, we rapidly mapped these suppressor mutations to two small homologs of relA. Interestingly, stable suppressor strains had mutations in both genes, with each mutation alone partially relieving the relA growth defect. This supports an intriguing three-locus interaction module that is not easily identifiable through traditional suppressor mapping. We conclude that whole-genome sequencing can drastically accelerate the identification of suppressor mutations and complex genetic interactions, and it can be applied as a standard tool to investigate the genetic traits of model organisms.

  1. Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery

    Directory of Open Access Journals (Sweden)

    Stothard Paul

    2011-11-01

    Full Text Available Abstract Background One of the goals of livestock genomics research is to identify the genetic differences responsible for variation in phenotypic traits, particularly those of economic importance. Characterizing the genetic variation in livestock species is an important step towards linking genes or genomic regions with phenotypes. The completion of the bovine genome sequence and recent advances in DNA sequencing technology allow for in-depth characterization of the genetic variations present in cattle. Here we describe the whole-genome resequencing of two Bos taurus bulls from distinct breeds for the purpose of identifying and annotating novel forms of genetic variation in cattle. Results The genomes of a Black Angus bull and a Holstein bull were sequenced to 22-fold and 19-fold coverage, respectively, using the ABI SOLiD system. Comparisons of the sequences with the Btau4.0 reference assembly yielded 7 million single nucleotide polymorphisms (SNPs, 24% of which were identified in both animals. Of the total SNPs found in Holstein, Black Angus, and in both animals, 81%, 81%, and 75% respectively are novel. In-depth annotations of the data identified more than 16 thousand distinct non-synonymous SNPs (85% novel between the two datasets. Alignments between the SNP-altered proteins and orthologues from numerous species indicate that many of the SNPs alter well-conserved amino acids. Several SNPs predicted to create or remove stop codons were also found. A comparison between the sequencing SNPs and genotyping results from the BovineHD high-density genotyping chip indicates a detection rate of 91% for homozygous SNPs and 81% for heterozygous SNPs. The false positive rate is estimated to be about 2% for both the Black Angus and Holstein SNP sets, based on follow-up genotyping of 422 and 427 SNPs, respectively. Comparisons of read depth between the two bulls along the reference assembly identified 790 putative copy-number variations (CNVs. Ten

  2. Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi

    Energy Technology Data Exchange (ETDEWEB)

    Schutzer S. E.; Dunn J.; Fraser-Liggett, C. M.; Casjens, S. R.; Qiu, W.-G.; Mongodin, E. F.; Luft, B. J.

    2011-02-01

    Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

  3. Gene set analysis using variance component tests.

    Science.gov (United States)

    Huang, Yen-Tsung; Lin, Xihong

    2013-06-28

    Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.

  4. Gene set analysis of the EADGENE chicken data-set

    DEFF Research Database (Denmark)

    Skarman, Axel; Jiang, Li; Hornshøj, Henrik

    2009-01-01

     Abstract Background: Gene set analysis is considered to be a way of improving our biological interpretation of the observed expression patterns. This paper describes different methods applied to analyse expression data from a chicken DNA microarray dataset. Results: Applying different gene set...... analyses to the chicken expression data led to different ranking of the Gene Ontology terms tested. A method for prediction of possible annotations was applied. Conclusion: Biological interpretation based on gene set analyses dependent on the statistical method used. Methods for predicting the possible...

  5. Whole Genome Sequences of Three Treponema pallidum ssp. pertenue Strains: Yaws and Syphilis Treponemes Differ in Less than 0.2% of the Genome Sequence

    Science.gov (United States)

    Chen, Lei; Pospíšilová, Petra; Strouhal, Michal; Qin, Xiang; Mikalová, Lenka; Norris, Steven J.; Muzny, Donna M.; Gibbs, Richard A.; Fulton, Lucinda L.; Sodergren, Erica; Weinstock, George M.; Šmajs, David

    2012-01-01

    Background The yaws treponemes, Treponema pallidum ssp. pertenue (TPE) strains, are closely related to syphilis causing strains of Treponema pallidum ssp. pallidum (TPA). Both yaws and syphilis are distinguished on the basis of epidemiological characteristics, clinical symptoms, and several genetic signatures of the corresponding causative agents. Methodology/Principal Findings To precisely define genetic differences between TPA and TPE, high-quality whole genome sequences of three TPE strains (Samoa D, CDC-2, Gauthier) were determined using next-generation sequencing techniques. TPE genome sequences were compared to four genomes of TPA strains (Nichols, DAL-1, SS14, Chicago). The genome structure was identical in all three TPE strains with similar length ranging between 1,139,330 bp and 1,139,744 bp. No major genome rearrangements were found when compared to the four TPA genomes. The whole genome nucleotide divergence (dA) between TPA and TPE subspecies was 4.7 and 4.8 times higher than the observed nucleotide diversity (π) among TPA and TPE strains, respectively, corresponding to 99.8% identity between TPA and TPE genomes. A set of 97 (9.9%) TPE genes encoded proteins containing two or more amino acid replacements or other major sequence changes. The TPE divergent genes were mostly from the group encoding potential virulence factors and genes encoding proteins with unknown function. Conclusions/Significance Hypothetical genes, with genetic differences, consistently found between TPE and TPA strains are candidates for syphilitic treponemes virulence factors. Seventeen TPE genes were predicted under positive selection, and eleven of them coded either for predicted exported proteins or membrane proteins suggesting their possible association with the cell surface. Sequence changes between TPE and TPA strains and changes specific to individual strains represent suitable targets for subspecies- and strain-specific molecular diagnostics. PMID:22292095

  6. Genome U-Plot: a whole genome visualization.

    Science.gov (United States)

    Gaitatzes, Athanasios; Johnson, Sarah H; Smadbeck, James B; Vasmatzis, George

    2018-05-15

    The ability to produce and analyze whole genome sequencing (WGS) data from samples with structural variations (SV) generated the need to visualize such abnormalities in simplified plots. Conventional two-dimensional representations of WGS data frequently use either circular or linear layouts. There are several diverse advantages regarding both these representations, but their major disadvantage is that they do not use the two-dimensional space very efficiently. We propose a layout, termed the Genome U-Plot, which spreads the chromosomes on a two-dimensional surface and essentially quadruples the spatial resolution. We present the Genome U-Plot for producing clear and intuitive graphs that allows researchers to generate novel insights and hypotheses by visualizing SVs such as deletions, amplifications, and chromoanagenesis events. The main features of the Genome U-Plot are its layered layout, its high spatial resolution and its improved aesthetic qualities. We compare conventional visualization schemas with the Genome U-Plot using visualization metrics such as number of line crossings and crossing angle resolution measures. Based on our metrics, we improve the readability of the resulting graph by at least 2-fold, making apparent important features and making it easy to identify important genomic changes. A whole genome visualization tool with high spatial resolution and improved aesthetic qualities. An implementation and documentation of the Genome U-Plot is publicly available at https://github.com/gaitat/GenomeUPlot. vasmatzis.george@mayo.edu. Supplementary data are available at Bioinformatics online.

  7. Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea.

    Science.gov (United States)

    Han, Joon-Hee; Chon, Jae-Kyung; Ahn, Jong-Hwa; Choi, Ik-Young; Lee, Yong-Hwan; Kim, Kyoung Su

    2016-06-01

    Colletotrichum acutatum is a destructive fungal pathogen which causes anthracnose in a wide range of crops. Here we report the whole genome sequence and annotation of C. acutatum strain KC05, isolated from an infected pepper in Kangwon, South Korea. Genomic DNA from the KC05 strain was used for the whole genome sequencing using a PacBio sequencer and the MiSeq system. The KC05 genome was determined to be 52,190,760 bp in size with a G + C content of 51.73% in 27 scaffolds and to contain 13,559 genes with an average length of 1516 bp. Gene prediction and annotation were performed by incorporating RNA-Seq data. The genome sequence of the KC05 was deposited at DDBJ/ENA/GenBank under the accession number LUXP00000000.

  8. Whole-Genome Sequences of Two Carbapenem-Resistant Klebsiella quasipneumoniae Strains Isolated from a Tertiary Hospital in Johor, Malaysia.

    Science.gov (United States)

    Gan, Han Ming; Rajasekaram, Ganeswrie; Eng, Wilhelm Wei Han; Kaniappan, Priyatharisni; Dhanoa, Amreeta

    2017-08-10

    We report the whole-genome sequences of two carbapenem-resistant clinical isolates of Klebsiella quasipneumoniae subsp. similipneumoniae obtained from two different patients. Both strains contained three different extended-spectrum β-lactamase genes and showed strikingly high pairwise average nucleotide identity of 99.99% despite being isolated 3 years apart from the same hospital. Copyright © 2017 Gan et al.

  9. Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing?

    Science.gov (United States)

    Robins-Browne, Roy M.; Holt, Kathryn E.; Ingle, Danielle J.; Hocking, Dianna M.; Yang, Ji; Tauschek, Marija

    2016-01-01

    The empirical and pragmatic nature of diagnostic microbiology has given rise to several different schemes to subtype E.coli, including biotyping, serotyping, and pathotyping. These schemes have proved invaluable in identifying and tracking outbreaks, and for prognostication in individual cases of infection, but they are imprecise and potentially misleading due to the malleability and continuous evolution of E. coli. Whole genome sequencing can be used to accurately determine E. coli subtypes that are based on allelic variation or differences in gene content, such as serotyping and pathotyping. Whole genome sequencing also provides information about single nucleotide polymorphisms in the core genome of E. coli, which form the basis of sequence typing, and is more reliable than other systems for tracking the evolution and spread of individual strains. A typing scheme for E. coli based on genome sequences that includes elements of both the core and accessory genomes, should reduce typing anomalies and promote understanding of how different varieties of E. coli spread and cause disease. Such a scheme could also define pathotypes more precisely than current methods. PMID:27917373

  10. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations

    Directory of Open Access Journals (Sweden)

    Légaré Danielle

    2011-10-01

    Full Text Available Abstract Background Several mutations were present in the genome of Streptococcus pneumoniae linezolid-resistant strains but the role of several of these mutations had not been experimentally tested. To analyze the role of these mutations, we reconstituted resistance by serial whole genome transformation of a novel resistant isolate into two strains with sensitive background. We sequenced the parent mutant and two independent transformants exhibiting similar minimum inhibitory concentration to linezolid. Results Comparative genomic analyses revealed that transformants acquired G2576T transversions in every gene copy of 23S rRNA and that the number of altered copies correlated with the level of linezolid resistance and cross-resistance to florfenicol and chloramphenicol. One of the transformants also acquired a mutation present in the parent mutant leading to the overexpression of an ABC transporter (spr1021. The acquisition of these mutations conferred a fitness cost however, which was further enhanced by the acquisition of a mutation in a RNA methyltransferase implicated in resistance. Interestingly, the fitness of the transformants could be restored in part by the acquisition of altered copies of the L3 and L16 ribosomal proteins and by mutations leading to the overexpression of the spr1887 ABC transporter that were present in the original linezolid-resistant mutant. Conclusions Our results demonstrate the usefulness of whole genome approaches at detecting major determinants of resistance as well as compensatory mutations that alleviate the fitness cost associated with resistance.

  11. Dirofilaria immitis JYD-34 isolate: whole genome analysis

    Directory of Open Access Journals (Sweden)

    Catherine Bourguinat

    2017-11-01

    Full Text Available Abstract Background Macrocyclic lactone (ML anthelmintics are used for chemoprophylaxis for heartworm infection in dogs and cats. Cases of dogs becoming infected with heartworms, despite apparent compliance to recommended chemoprophylaxis with approved preventives, has led to such cases being considered as suspected lack of efficacy (LOE. Recently, microfilariae collected from a small number of LOE isolates were used as a source of infection of new host dogs and confirmed to have reduced susceptibility to ML in controlled efficacy studies using L3 challenge in dogs. A specific Dirofilaria immitis laboratory isolate named JYD-34 has also been confirmed to have less than 100% susceptibility to ML-based preventives. For preventive claims against heartworm disease, evidence of 100% efficacy is required by FDA-CVM. It was therefore of interest to determine whether JYD-34 has a genetic profile similar to other documented LOE and confirmed reduced susceptibility isolates or has a genetic profile similar to known ML-susceptible isolates. Methods In this study, the 90Mbp whole genome of the JYD-34 strain was sequenced. This genome was compared using bioinformatics tools to pooled whole genomes of four well-characterized susceptible D. immitis populations, one susceptible Missouri laboratory isolate, as well as the pooled whole genomes of four LOE D. immitis populations. Fixation indexes (FST, which allow the genetic structure of each population (isolate to be compared at the level of single nucleotide polymorphisms (SNP across the genome, have been calculated. Forty-one previously reported SNP, that appeared to differentiate between susceptible and LOE and confirmed reduced susceptibility isolates, were also investigated in the JYD-34 isolate. Results The FST analysis, and the analysis of the 41 SNP that appeared to differentiate reduced susceptibility from fully susceptible isolates, confirmed that the JYD-34 isolate has a genome similar to previously

  12. Mapping genomic features to functional traits through microbial whole genome sequences.

    Science.gov (United States)

    Zhang, Wei; Zeng, Erliang; Liu, Dan; Jones, Stuart E; Emrich, Scott

    2014-01-01

    Recently, the utility of trait-based approaches for microbial communities has been identified. Increasing availability of whole genome sequences provide the opportunity to explore the genetic foundations of a variety of functional traits. We proposed a machine learning framework to quantitatively link the genomic features with functional traits. Genes from bacteria genomes belonging to different functional traits were grouped to Cluster of Orthologs (COGs), and were used as features. Then, TF-IDF technique from the text mining domain was applied to transform the data to accommodate the abundance and importance of each COG. After TF-IDF processing, COGs were ranked using feature selection methods to identify their relevance to the functional trait of interest. Extensive experimental results demonstrated that functional trait related genes can be detected using our method. Further, the method has the potential to provide novel biological insights.

  13. Small homologous blocks in phytophthora genomes do not point to an ancient whole-genome duplication.

    Science.gov (United States)

    van Hooff, Jolien J E; Snel, Berend; Seidl, Michael F

    2014-05-01

    Genomes of the plant-pathogenic genus Phytophthora are characterized by small duplicated blocks consisting of two consecutive genes (2HOM blocks) and by an elevated abundance of similarly aged gene duplicates. Both properties, in particular the presence of 2HOM blocks, have been attributed to a whole-genome duplication (WGD) at the last common ancestor of Phytophthora. However, large intraspecies synteny-compelling evidence for a WGD-has not been detected. Here, we revisited the WGD hypothesis by deducing the age of 2HOM blocks. Two independent timing methods reveal that the majority of 2HOM blocks arose after divergence of the Phytophthora lineages. In addition, a large proportion of the 2HOM block copies colocalize on the same scaffold. Therefore, the presence of 2HOM blocks does not support a WGD at the last common ancestor of Phytophthora. Thus, genome evolution of Phytophthora is likely driven by alternative mechanisms, such as bursts of transposon activity.

  14. SNPassoc: an R package to perform whole genome association studies.

    Science.gov (United States)

    González, Juan R; Armengol, Lluís; Solé, Xavier; Guinó, Elisabet; Mercader, Josep M; Estivill, Xavier; Moreno, Víctor

    2007-03-01

    The popularization of large-scale genotyping projects has led to the widespread adoption of genetic association studies as the tool of choice in the search for single nucleotide polymorphisms (SNPs) underlying susceptibility to complex diseases. Although the analysis of individual SNPs is a relatively trivial task, when the number is large and multiple genetic models need to be explored it becomes necessary a tool to automate the analyses. In order to address this issue, we developed SNPassoc, an R package to carry out most common analyses in whole genome association studies. These analyses include descriptive statistics and exploratory analysis of missing values, calculation of Hardy-Weinberg equilibrium, analysis of association based on generalized linear models (either for quantitative or binary traits), and analysis of multiple SNPs (haplotype and epistasis analysis). Package SNPassoc is available at CRAN from http://cran.r-project.org. A tutorial is available on Bioinformatics online and in http://davinci.crg.es/estivill_lab/snpassoc.

  15. Methyl-Analyzer--whole genome DNA methylation profiling.

    Science.gov (United States)

    Xin, Yurong; Ge, Yongchao; Haghighi, Fatemeh G

    2011-08-15

    Methyl-Analyzer is a python package that analyzes genome-wide DNA methylation data produced by the Methyl-MAPS (methylation mapping analysis by paired-end sequencing) method. Methyl-MAPS is an enzymatic-based method that uses both methylation-sensitive and -dependent enzymes covering >80% of CpG dinucleotides within mammalian genomes. It combines enzymatic-based approaches with high-throughput next-generation sequencing technology to provide whole genome DNA methylation profiles. Methyl-Analyzer processes and integrates sequencing reads from methylated and unmethylated compartments and estimates CpG methylation probabilities at single base resolution. Methyl-Analyzer is available at http://github.com/epigenomics/methylmaps. Sample dataset is available for download at http://epigenomicspub.columbia.edu/methylanalyzer_data.html. fgh3@columbia.edu Supplementary data are available at Bioinformatics online.

  16. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  17. Optical Whole-Genome Restriction Mapping as a Tool for Rapidly Distinguishing and Identifying Bacterial Contaminants in Clinical Samples

    Science.gov (United States)

    2015-08-01

    Article 3. DATES COVERED (From – To) Oct 2011 – Aug 2012 4. TITLE AND SUBTITLE Optical Whole-Genome Restriction Mapping as a Tool for Rapidly...multiple bacteria could be uniquely identified within mixtures. In the first set of experiments, three unique organisms ( Bacillus subtilis subsp. globigii...be useful in monitoring nosocomial outbreaks in neonatal and intensive care wards, or even as an initial screen for antibiotic resistant strains

  18. Whole-Genome DNA Methylation Status Associated with Clinical PTSD Measures of OIF/OEF Veterans (Open Access)

    Science.gov (United States)

    2017-07-11

    OIF) veterans with PTSD and 51 age/ethnicity/ gender -matched combat-exposed PTSD-negative controls. Agilent whole-genome array detected ~ 5600...exclusion criteria were used19,20 to identify a training set comprising 48 male veterans with PTSD (PTSD+) and 51 age-/ethnicity-/ gender -matched controls...568 Doughten Drive, Fort Detrick, Frederick, MD 21702-5010, USA. E-mail: Rasha.Hammamieh1.civ@mail.mil 11These authors contributed equally to this

  19. Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data

    DEFF Research Database (Denmark)

    Joensen, Katrine Grimstrup; Tetzschner, Anna M. M.; Iguchi, Atsushi

    2015-01-01

    typing and surveillance. The aim of this study was to establish a valid and publicly available tool for WGS-based in silico serotyping of E. coli applicable for routine typing and surveillance. A FASTA database of specific O-antigen processing system genes for O typing and flagellin genes for H typing...... tool. SerotypeFinder was evaluated on 682 E. coli genomes, 108 of which were sequenced for this study, where both the whole genome and the serotype were available. In total, 601 and 509 isolates were included for O and H typing, respectively. The O-antigen genes wzx, wzy, wzm, and wzt and the flagellin...

  20. Whole-genome sequence analysis of the Mycobacterium avium complex and proposal of the transfer of Mycobacterium yongonense to Mycobacterium intracellulare subsp. yongonense subsp. nov.

    Science.gov (United States)

    Castejon, Maria; Menéndez, Maria Carmen; Comas, Iñaki; Vicente, Ana; Garcia, Maria J

    2018-06-01

    Bacterial whole-genome sequences contain informative features of their evolutionary pathways. Comparison of whole-genome sequences have become the method of choice for classification of prokaryotes, thus allowing the identification of bacteria from an evolutionary perspective, and providing data to resolve some current controversies. Currently, controversy exists about the assignment of members of the Mycobacterium avium complex, as is for the cases of Mycobacterium yongonense and 'Mycobacterium indicus pranii'. These two mycobacteria, closely related to Mycobacterium intracellulare on the basis of standard phenotypic and single gene-sequences comparisons, were not considered a member of such species on the basis on some particular differences displayed by a single strain. Whole-genome sequence comparison procedures, namely the average nucleotide identity and the genome distance, showed that those two mycobacteria should be considered members of the species M. intracellulare. The results were confirmed with other whole-genome comparison supplementary methods. According to the data provided, Mycobacterium yongonense and 'Mycobacterium indicus pranii' should be considered and renamed and included as members of M. intracellulare. This study highlights the problems caused when a novel species is accepted on the basis of a single strain, as was the case for M. yongonense. Based mainly on whole-genome sequence analysis, we conclude that M. yongonense should be reclassified as a subspecies of Mycobacterium intracellulareas Mycobacterium intracellularesubsp. yongonense and 'Mycobacterium indicus pranii' classified in the same subspecies as the type strain of Mycobacterium intracellulare and classified as Mycobacterium intracellularesubsp. intracellulare.

  1. Novel gene sets improve set-level classification of prokaryotic gene expression data.

    Science.gov (United States)

    Holec, Matěj; Kuželka, Ondřej; Železný, Filip

    2015-10-28

    Set-level classification of gene expression data has received significant attention recently. In this setting, high-dimensional vectors of features corresponding to genes are converted into lower-dimensional vectors of features corresponding to biologically interpretable gene sets. The dimensionality reduction brings the promise of a decreased risk of overfitting, potentially resulting in improved accuracy of the learned classifiers. However, recent empirical research has not confirmed this expectation. Here we hypothesize that the reported unfavorable classification results in the set-level framework were due to the adoption of unsuitable gene sets defined typically on the basis of the Gene ontology and the KEGG database of metabolic networks. We explore an alternative approach to defining gene sets, based on regulatory interactions, which we expect to collect genes with more correlated expression. We hypothesize that such more correlated gene sets will enable to learn more accurate classifiers. We define two families of gene sets using information on regulatory interactions, and evaluate them on phenotype-classification tasks using public prokaryotic gene expression data sets. From each of the two gene-set families, we first select the best-performing subtype. The two selected subtypes are then evaluated on independent (testing) data sets against state-of-the-art gene sets and against the conventional gene-level approach. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. Novel gene sets defined on the basis of regulatory interactions improve set-level classification of gene expression data. The experimental scripts and other material needed to reproduce the experiments are available at http://ida.felk.cvut.cz/novelgenesets.tar.gz.

  2. Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing

    Directory of Open Access Journals (Sweden)

    Plant Ramona N

    2006-08-01

    Full Text Available Abstract Background Whole genome amplification is an increasingly common technique through which minute amounts of DNA can be multiplied to generate quantities suitable for genetic testing and analysis. Questions of amplification-induced error and template bias generated by these methods have previously been addressed through either small scale (SNPs or large scale (CGH array, FISH methodologies. Here we utilized whole genome sequencing to assess amplification-induced bias in both coding and non-coding regions of two bacterial genomes. Halobacterium species NRC-1 DNA and Campylobacter jejuni were amplified by several common, commercially available protocols: multiple displacement amplification, primer extension pre-amplification and degenerate oligonucleotide primed PCR. The amplification-induced bias of each method was assessed by sequencing both genomes in their entirety using the 454 Sequencing System technology and comparing the results with those obtained from unamplified controls. Results All amplification methodologies induced statistically significant bias relative to the unamplified control. For the Halobacterium species NRC-1 genome, assessed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 119 times greater than those from unamplified material, 164.0 times greater for Repli-G, 165.0 times greater for PEP-PCR and 252.0 times greater than the unamplified controls for DOP-PCR. For Campylobacter jejuni, also analyzed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 15 times greater than those from unamplified material, 19.8 times greater for Repli-G, 61.8 times greater for PEP-PCR and 220.5 times greater than the unamplified controls for DOP-PCR. Conclusion Of the amplification methodologies examined in this paper, the multiple displacement amplification products generated the least bias, and produced significantly higher yields of amplified DNA.

  3. Real time application of whole genome sequencing for outbreak investigation - What is an achievable turnaround time?

    Science.gov (United States)

    McGann, Patrick; Bunin, Jessica L; Snesrud, Erik; Singh, Seema; Maybank, Rosslyn; Ong, Ana C; Kwak, Yoon I; Seronello, Scott; Clifford, Robert J; Hinkle, Mary; Yamada, Stephen; Barnhill, Jason; Lesho, Emil

    2016-07-01

    Whole genome sequencing (WGS) is increasingly employed in clinical settings, though few assessments of turnaround times (TAT) have been performed in real-time. In this study, WGS was used to investigate an unfolding outbreak of vancomycin resistant Enterococcus faecium (VRE) among 3 patients in the ICU of a tertiary care hospital. Including overnight culturing, a TAT of just 48.5 h for a comprehensive report was achievable using an Illumina Miseq benchtop sequencer. WGS revealed that isolates from patient 2 and 3 differed from that of patient 1 by a single nucleotide polymorphism (SNP), indicating nosocomial transmission. However, the unparalleled resolution provided by WGS suggested that nosocomial transmission involved two separate events from patient 1 to patient 2 and 3, and not a linear transmission suspected by the time line. Rapid TAT's are achievable using WGS in the clinical setting and can provide an unprecedented level of resolution for outbreak investigations. Published by Elsevier Inc.

  4. The Whole-Genome and Transcriptome of the Manila Clam (Ruditapes philippinarum).

    Science.gov (United States)

    Mun, Seyoung; Kim, Yun-Ji; Markkandan, Kesavan; Shin, Wonseok; Oh, Sumin; Woo, Jiyoung; Yoo, Jongsu; An, Hyesuck; Han, Kyudong

    2017-06-01

    The manila clam, Ruditapes philippinarum, is an important bivalve species in worldwide aquaculture including Korea. The aquaculture production of R. philippinarum is under threat from diverse environmental factors including viruses, microorganisms, parasites, and water conditions with subsequently declining production. In spite of its importance as a marine resource, the reference genome of R. philippinarum for comprehensive genetic studies is largely unexplored. Here, we report the de novo whole-genome and transcriptome assembly of R. philippinarum across three different tissues (foot, gill, and adductor muscle), and provide the basic data for advanced studies in selective breeding and disease control in order to obtain successful aquaculture systems. An approximately 2.56 Gb high quality whole-genome was assembled with various library construction methods. A total of 108,034 protein coding gene models were predicted and repetitive elements including simple sequence repeats and noncoding RNAs were identified to further understanding of the genetic background of R. philippinarum for genomics-assisted breeding. Comparative analysis with the bivalve marine invertebrates uncover that the gene family related to complement C1q was enriched. Furthermore, we performed transcriptome analysis with three different tissues in order to support genome annotation and then identified 41,275 transcripts which were annotated. The R. philippinarum genome resource will markedly advance a wide range of potential genetic studies, a reference genome for comparative analysis of bivalve species and unraveling mechanisms of biological processes in molluscs. We believe that the R. philippinarum genome will serve as an initial platform for breeding better-quality clams using a genomic approach. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Reliable reconstruction of HIV-1 whole genome haplotypes reveals clonal interference and genetic hitchhiking among immune escape variants

    Science.gov (United States)

    2014-01-01

    Background Following transmission, HIV-1 evolves into a diverse population, and next generation sequencing enables us to detect variants occurring at low frequencies. Studying viral evolution at the level of whole genomes was hitherto not possible because next generation sequencing delivers relatively short reads. Results We here provide a proof of principle that whole HIV-1 genomes can be reliably reconstructed from short reads, and use this to study the selection of immune escape mutations at the level of whole genome haplotypes. Using realistically simulated HIV-1 populations, we demonstrate that reconstruction of complete genome haplotypes is feasible with high fidelity. We do not reconstruct all genetically distinct genomes, but each reconstructed haplotype represents one or more of the quasispecies in the HIV-1 population. We then reconstruct 30 whole genome haplotypes from published short sequence reads sampled longitudinally from a single HIV-1 infected patient. We confirm the reliability of the reconstruction by validating our predicted haplotype genes with single genome amplification sequences, and by comparing haplotype frequencies with observed epitope escape frequencies. Conclusions Phylogenetic analysis shows that the HIV-1 population undergoes selection driven evolution, with successive replacement of the viral population by novel dominant strains. We demonstrate that immune escape mutants evolve in a dependent manner with various mutations hitchhiking along with others. As a consequence of this clonal interference, selection coefficients have to be estimated for complete haplotypes and not for individual immune escapes. PMID:24996694

  6. Deep whole-genome sequencing of 90 Han Chinese genomes.

    Science.gov (United States)

    Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen

    2017-09-01

    Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000

  7. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation

    DEFF Research Database (Denmark)

    Zhao, Shancen; Zheng, Pingping; Dong, Shanshan

    2013-01-01

    The panda lineage dates back to the late Miocene and ultimately leads to only one extant species, the giant panda (Ailuropoda melanoleuca). Although global climate change and anthropogenic disturbances are recognized to shape animal population demography their contribution to panda population...... dynamics remains largely unknown. We sequenced the whole genomes of 34 pandas at an average 4.7-fold coverage and used this data set together with the previously deep-sequenced panda genome to reconstruct a continuous demographic history of pandas from their origin to the present. We identify two...... panda populations that show genetic adaptation to their environments. However, in all three populations, anthropogenic activities have negatively affected pandas for 3,000 years....

  8. Whole-genome sequence variation, population structure and demographic history of the Dutch population

    NARCIS (Netherlands)

    Francioli, Laurent C.; Menelaou, Andronild; Pulit, Sara L.; Van Dijk, Freerk; Palamara, Pier Francesco; Elbers, Clara C.; Neerincx, Pieter B. T.; Ye, Kai; Guryev, Victor; Kloosterman, Wigard P.; Deelen, Patrick; Abdellaoui, Abdel; Van Leeuwen, Elisabeth M.; Van Oven, Mannis; Vermaat, Martijn; Li, Mingkun; Laros, Jeroen F. J.; Karssen, Lennart C.; Kanterakis, Alexandros; Amin, Najaf; Hottenga, Jouke Jan; Lameijer, Eric-Wubbo; Kattenberg, Mathijs; Dijkstra, Martijn; Byelas, Heorhiy; Van Settenl, Jessica; Van Schaik, Barbera D. C.; Bot, Jan; Nijman, Isaac J.; Renkens, Ivo; Marscha, Tobias; Schonhuth, Alexander; Hehir-Kwa, Jayne Y.; Handsaker, Robert E.; Polak, Paz; Sohail, Mashaal; Vuzman, Dana; Hormozdiari, Fereydoun; Van Enckevort, David; Mei, Hailiang; Koval, Vyacheslav; Moed, Ma-Tthijs H.; Van der Velde, K. Joeri; Rivadeneira, Fernando; Estrada, Karol; Medina-Gomez, Carolina; Isaacs, Aaron; Platteel, Mathieu; Swertz, Morris A.; Wijmenga, Cisca

    Whole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch parent-offspring

  9. Whole-genome sequence variation, population structure and demographic history of the Dutch population

    NARCIS (Netherlands)

    The Genome of the Netherlands Consortium; T. Marschall (Tobias); A. Schönhuth (Alexander)

    2014-01-01

    htmlabstractWhole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch

  10. Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis.

    Science.gov (United States)

    Norton, Gareth J; Lou-Hing, Daniel E; Meharg, Andrew A; Price, Adam H

    2008-01-01

    Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 muM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the BalaxAzucena mapping population.

  11. Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis

    Science.gov (United States)

    Norton, Gareth J.; Lou-Hing, Daniel E.; Meharg, Andrew A.; Price, Adam H.

    2008-01-01

    Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 μM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the Bala×Azucena mapping population. PMID:18453530

  12. Whole-genome analysis of a patient with early-stage small-cell lung cancer.

    Science.gov (United States)

    Han, J-Y; Lee, Y-S; Kim, B C; Lee, G K; Lee, S; Kim, E-H; Kim, H-M; Bhak, J

    2014-12-01

    We performed whole-genome sequencing (WGS) of a case of early-stage small-cell lung cancer (SCLC) to analyze the genomic features. WGS revealed a lot of single-nucleotide variations (SNVs), small insertion/deletions and chromosomal abnormality. Chromosomes 4p, 5q, 13q, 15q, 17p and 22q contained many block deletions. Especially, copy loss was observed in tumor suppressor genes RB1 and TP53, and copy gain in oncogene hTERT. Somatic mutations were found in TP53 and CREBBP. Novel nonsynonymous (ns) SNVs in C6ORF103 and SLC5A4 genes were also found. Sanger sequencing of the SLC5A4 gene in 23 independent SCLC samples showed another nsSNV in the SLC5A4 gene, indicating that nsSNVs in the SLC5A4 gene are recurrent in SCLC. WGS of an early-stage SCLC identified novel recurrent mutations and validated known variations, including copy number variations. These findings provide insight into the genomic landscape contributing to SCLC development.

  13. Comprehensive Phylogenetic Analysis of Bovine Non-aureus Staphylococci Species Based on Whole-Genome Sequencing

    Science.gov (United States)

    Naushad, Sohail; Barkema, Herman W.; Luby, Christopher; Condas, Larissa A. Z.; Nobrega, Diego B.; Carson, Domonique A.; De Buck, Jeroen

    2016-01-01

    Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity. PMID:28066335

  14. Environmental whole-genome amplification to access microbial populations in contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, Carl B [Diversa Corporation; Wyborski, Denise L. [Diversa Corporation; Garcia, Joseph A. [Diversa Corporation; Podar, Mircea [ORNL; Chen, Wenqiong [Diversa Corporation; Chang, Sherman H. [Diversa Corporation; Chang, Hwai W. [Diversa Corporation; Watson, David B [ORNL; Brodie, Eoin L. [Lawrence Berkeley National Laboratory (LBNL); Hazen, Terry [Lawrence Berkeley National Laboratory (LBNL); Keller, Martin [ORNL

    2006-05-01

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using {phi}29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2% genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small-subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9% of the sequences had significant similarities to known proteins, and 'clusters of orthologous groups' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  15. Whole genome sequence phylogenetic analysis of four Mexican rabies viruses isolated from cattle.

    Science.gov (United States)

    Bárcenas-Reyes, I; Loza-Rubio, E; Cantó-Alarcón, G J; Luna-Cozar, J; Enríquez-Vázquez, A; Barrón-Rodríguez, R J; Milián-Suazo, F

    2017-08-01

    Phylogenetic analysis of the rabies virus in molecular epidemiology has been traditionally performed on partial sequences of the genome, such as the N, G, and P genes; however, that approach raises concerns about the discriminatory power compared to whole genome sequencing. In this study we characterized four strains of the rabies virus isolated from cattle in Querétaro, Mexico by comparing the whole genome sequence to that of strains from the American, European and Asian continents. Four cattle brain samples positive to rabies and characterized as AgV11, genotype 1, were used in the study. A cDNA sequence was generated by reverse transcription PCR (RT-PCR) using oligo dT. cDNA samples were sequenced in an Illumina NextSeq 500 platform. The phylogenetic analysis was performed with MEGA 6.0. Minimum evolution phylogenetic trees were constructed with the Neighbor-Joining method and bootstrapped with 1000 replicates. Three large and seven small clusters were formed with the 26 sequences used. The largest cluster grouped strains from different species in South America: Brazil, and the French Guyana. The second cluster grouped five strains from Mexico. A Mexican strain reported in a different study was highly related to our four strains, suggesting common source of infection. The phylogenetic analysis shows that the type of host is different for the different regions in the American Continent; rabies is more related to bats. It was concluded that the rabies virus in central Mexico is genetically stable and that it is transmitted by the vampire bat Desmodus rotundus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Environmental Whole-Genome Amplification to Access Microbial Diversity in Contaminated Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, C.B.; Wyborski, D.L.; Garcia, J.; Podar, M.; Chen, W.; Chang, S.H.; Chang, H.W.; Watson, D.; Brodie,E.I.; Hazen, T.C.; Keller, M.

    2005-12-10

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using ?29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2 percent genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9 percent of the sequences had significant similarities to known proteins, and ''clusters of orthologous groups'' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  17. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  18. Screening of whole genome sequences identified high-impact variants for stallion fertility.

    Science.gov (United States)

    Schrimpf, Rahel; Gottschalk, Maren; Metzger, Julia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar

    2016-04-14

    Stallion fertility is an economically important trait due to the increase of artificial insemination in horses. The availability of whole genome sequence data facilitates identification of rare high-impact variants contributing to stallion fertility. The aim of our study was to genotype rare high-impact variants retrieved from next-generation sequencing (NGS)-data of 11 horses in order to unravel harmful genetic variants in large samples of stallions. Gene ontology (GO) terms and search results from public databases were used to obtain a comprehensive list of human und mice genes predicted to participate in the regulation of male reproduction. The corresponding equine orthologous genes were searched in whole genome sequence data of seven stallions and four mares and filtered for high-impact genetic variants using SnpEFF, SIFT and Polyphen 2 software. All genetic variants with the missing homozygous mutant genotype were genotyped on 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. Mixed linear model analysis was employed for an association analysis with de-regressed estimated breeding values of the paternal component of the pregnancy rate per estrus (EBV-PAT). We screened next generation sequenced data of whole genomes from 11 horses for equine genetic variants in 1194 human and mice genes involved in male fertility and linked through common gene ontology (GO) with male reproductive processes. Variants were filtered for high-impact on protein structure and validated through SIFT and Polyphen 2. Only those genetic variants were followed up when the homozygote mutant genotype was missing in the detection sample comprising 11 horses. After this filtering process, 17 single nucleotide polymorphism (SNPs) were left. These SNPs were genotyped in 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. An association analysis in 216 Hanoverian stallions revealed a significant association of the splice-site disruption variant

  19. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

    Science.gov (United States)

    Schwager, Evelyn E; Sharma, Prashant P; Clarke, Thomas; Leite, Daniel J; Wierschin, Torsten; Pechmann, Matthias; Akiyama-Oda, Yasuko; Esposito, Lauren; Bechsgaard, Jesper; Bilde, Trine; Buffry, Alexandra D; Chao, Hsu; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dugan, Shannon; Eibner, Cornelius; Extavour, Cassandra G; Funch, Peter; Garb, Jessica; Gonzalez, Luis B; Gonzalez, Vanessa L; Griffiths-Jones, Sam; Han, Yi; Hayashi, Cheryl; Hilbrant, Maarten; Hughes, Daniel S T; Janssen, Ralf; Lee, Sandra L; Maeso, Ignacio; Murali, Shwetha C; Muzny, Donna M; Nunes da Fonseca, Rodrigo; Paese, Christian L B; Qu, Jiaxin; Ronshaugen, Matthew; Schomburg, Christoph; Schönauer, Anna; Stollewerk, Angelika; Torres-Oliva, Montserrat; Turetzek, Natascha; Vanthournout, Bram; Werren, John H; Wolff, Carsten; Worley, Kim C; Bucher, Gregor; Gibbs, Richard A; Coddington, Jonathan; Oda, Hiroki; Stanke, Mario; Ayoub, Nadia A; Prpic, Nikola-Michael; Flot, Jean-François; Posnien, Nico; Richards, Stephen; McGregor, Alistair P

    2017-07-31

    The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.

  20. A whole genome association study to detect additive and dominant single nucleotide polymorphisms for growth and carcass traits in Korean native cattle, Hanwoo

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-01-01

    Full Text Available Objective A whole genome association study was conducted to identify single nucleotide polymorphisms (SNPs with additive and dominant effects for growth and carcass traits in Korean native cattle, Hanwoo. Methods The data set comprised 61 sires and their 486 Hanwoo steers that were born between spring of 2005 and fall of 2007. The steers were genotyped with the 35,968 SNPs that were embedded in the Illumina bovine SNP 50K beadchip and six growth and carcass quality traits were measured for the steers. A series of lack-of-fit tests between the models was applied to classify gene expression pattern as additive or dominant. Results A total of 18 (0, 15 (3, 12 (8, 15 (18, 11 (7, and 21 (1 SNPs were detected at the 5% chromosome (genome - wise level for weaning weight (WWT, yearling weight (YWT, carcass weight (CWT, backfat thickness (BFT, longissimus dorsi muscle area (LMA and marbling score, respectively. Among the significant 129 SNPs, 56 SNPs had additive effects, 20 SNPs dominance effects, and 53 SNPs both additive and dominance effects, suggesting that dominance inheritance mode be considered in genetic improvement for growth and carcass quality in Hanwoo. The significant SNPs were located at 33 quantitative trait locus (QTL regions on 18 Bos Taurus chromosomes (i.e. BTA 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 23, 26, 28, and 29 were detected. There is strong evidence that BTA14 is the key chromosome affecting CWT. Also, BTA20 is the key chromosome for almost all traits measured (WWT, YWT, LMA. Conclusion The application of various additive and dominance SNP models enabled better characterization of SNP inheritance mode for growth and carcass quality traits in Hanwoo, and many of the detected SNPs or QTL had dominance effects, suggesting that dominance be considered for the whole-genome SNPs data and implementation of successive molecular breeding schemes in Hanwoo.

  1. Whole-genome sequencing of two North American Drosophila melanogaster populations reveals genetic differentiation and positive selection.

    Science.gov (United States)

    Campo, D; Lehmann, K; Fjeldsted, C; Souaiaia, T; Kao, J; Nuzhdin, S V

    2013-10-01

    The prevailing demographic model for Drosophila melanogaster suggests that the colonization of North America occurred very recently from a subset of European flies that rapidly expanded across the continent. This model implies a sudden population growth and range expansion consistent with very low or no population subdivision. As flies adapt to new environments, local adaptation events may be expected. To describe demographic and selective events during North American colonization, we have generated a data set of 35 individual whole-genome sequences from inbred lines of D. melanogaster from a west coast US population (Winters, California, USA) and compared them with a public genome data set from Raleigh (Raleigh, North Carolina, USA). We analysed nuclear and mitochondrial genomes and described levels of variation and divergence within and between these two North American D. melanogaster populations. Both populations exhibit negative values of Tajima's D across the genome, a common signature of demographic expansion. We also detected a low but significant level of genome-wide differentiation between the two populations, as well as multiple allele surfing events, which can be the result of gene drift in local subpopulations on the edge of an expansion wave. In contrast to this genome-wide pattern, we uncovered a 50-kilobase segment in chromosome arm 3L that showed all the hallmarks of a soft selective sweep in both populations. A comparison of allele frequencies within this divergent region among six populations from three continents allowed us to cluster these populations in two differentiated groups, providing evidence for the action of natural selection on a global scale. © 2013 John Wiley & Sons Ltd.

  2. Whole-genome sequencing reveals the mechanisms for evolution of streptomycin resistance in Lactobacillus plantarum.

    Science.gov (United States)

    Zhang, Fuxin; Gao, Jiayuan; Wang, Bini; Huo, Dongxue; Wang, Zhaoxia; Zhang, Jiachao; Shao, Yuyu

    2018-04-01

    In this research, we investigated the evolution of streptomycin resistance in Lactobacillus plantarum ATCC14917, which was passaged in medium containing a gradually increasing concentration of streptomycin. After 25 d, the minimum inhibitory concentration (MIC) of L. plantarum ATCC14917 had reached 131,072 µg/mL, which was 8,192-fold higher than the MIC of the original parent isolate. The highly resistant L. plantarum ATCC14917 isolate was then passaged in antibiotic-free medium to determine the stability of resistance. The MIC value of the L. plantarum ATCC14917 isolate decreased to 2,048 µg/mL after 35 d but remained constant thereafter, indicating that resistance was irreversible even in the absence of selection pressure. Whole-genome sequencing of parent isolates, control isolates, and isolates following passage was used to study the resistance mechanism of L. plantarum ATCC14917 to streptomycin and adaptation in the presence and absence of selection pressure. Five mutated genes (single nucleotide polymorphisms and structural variants) were verified in highly resistant L. plantarum ATCC14917 isolates, which were related to ribosomal protein S12, LPXTG-motif cell wall anchor domain protein, LrgA family protein, Ser/Thr phosphatase family protein, and a hypothetical protein that may correlate with resistance to streptomycin. After passage in streptomycin-free medium, only the mutant gene encoding ribosomal protein S12 remained; the other 4 mutant genes had reverted to the wild type as found in the parent isolate. Although the MIC value of L. plantarum ATCC14917 was reduced in the absence of selection pressure, it remained 128-fold higher than the MIC value of the parent isolate, indicating that ribosomal protein S12 may play an important role in streptomycin resistance. Using the mobile elements database, we demonstrated that streptomycin resistance-related genes in L. plantarum ATCC14917 were not located on mobile elements. This research offers a way of

  3. Whole genome analysis of Leptospira licerasiae provides insight into leptospiral evolution and pathogenicity.

    Directory of Open Access Journals (Sweden)

    Jessica N Ricaldi

    Full Text Available The whole genome analysis of two strains of the first intermediately pathogenic leptospiral species to be sequenced (Leptospira licerasiae strains VAR010 and MMD0835 provides insight into their pathogenic potential and deepens our understanding of leptospiral evolution. Comparative analysis of eight leptospiral genomes shows the existence of a core leptospiral genome comprising 1547 genes and 452 conserved genes restricted to infectious species (including L. licerasiae that are likely to be pathogenicity-related. Comparisons of the functional content of the genomes suggests that L. licerasiae retains several proteins related to nitrogen, amino acid and carbohydrate metabolism which might help to explain why these Leptospira grow well in artificial media compared with pathogenic species. L. licerasiae strains VAR010(T and MMD0835 possess two prophage elements. While one element is circular and shares homology with LE1 of L. biflexa, the second is cryptic and homologous to a previously identified but unnamed region in L. interrogans serovars Copenhageni and Lai. We also report a unique O-antigen locus in L. licerasiae comprised of a 6-gene cluster that is unexpectedly short compared with L. interrogans in which analogous regions may include >90 such genes. Sequence homology searches suggest that these genes were acquired by lateral gene transfer (LGT. Furthermore, seven putative genomic islands ranging in size from 5 to 36 kb are present also suggestive of antecedent LGT. How Leptospira become naturally competent remains to be determined, but considering the phylogenetic origins of the genes comprising the O-antigen cluster and other putative laterally transferred genes, L. licerasiae must be able to exchange genetic material with non-invasive environmental bacteria. The data presented here demonstrate that L. licerasiae is genetically more closely related to pathogenic than to saprophytic Leptospira and provide insight into the genomic bases for

  4. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation.

    Science.gov (United States)

    Cuypers, Thomas D; Hogeweg, Paulien

    2014-04-01

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and adaptation remains unknown. Here, we study the duplicate retention pattern postWGD, by letting virtual cells adapt to environmental changes. The virtual cells have structured genomes that encode a regulatory network and simple metabolism. Populations are under selection for homeostasis and evolve by point mutations, small indels and WGD. After populations had initially adapted fully to fluctuating resource conditions re-adaptation to a broad range of novel environments was studied by tracking mutations in the line of descent. WGD was established in a minority (≈30%) of lineages, yet, these were significantly more successful at re-adaptation. Unexpectedly, WGD lineages conserved more seemingly redundant genes, yet had higher per gene mutation rates. While WGD duplicates of all functional classes were significantly over-retained compared to a model of neutral losses, duplicate retention was clearly biased towards highly connected TFs. Importantly, no subfunctionalization occurred in conserved pairs, strongly suggesting that dosage balance shaped retention. Meanwhile, singles diverged significantly. WGD, therefore, is a powerful mechanism to cope with environmental change, allowing conservation of a core machinery, while adapting the peripheral network to accommodate change.

  5. Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence.

    Science.gov (United States)

    McGrath, Casey L; Gout, Jean-Francois; Doak, Thomas G; Yanagi, Akira; Lynch, Michael

    2014-08-01

    Paramecium has long been a model eukaryote. The sequence of the Paramecium tetraurelia genome reveals a history of three successive whole-genome duplications (WGDs), and the sequences of P. biaurelia and P. sexaurelia suggest that these WGDs are shared by all members of the aurelia species complex. Here, we present the genome sequence of P. caudatum, a species closely related to the P. aurelia species group. P. caudatum shares only the most ancient of the three WGDs with the aurelia complex. We found that P. caudatum maintains twice as many paralogs from this early event as the P. aurelia species, suggesting that post-WGD gene retention is influenced by subsequent WGDs and supporting the importance of selection for dosage in gene retention. The availability of P. caudatum as an outgroup allows an expanded analysis of the aurelia intermediate and recent WGD events. Both the Guanine+Cytosine (GC) content and the expression level of preduplication genes are significant predictors of duplicate retention. We find widespread asymmetrical evolution among aurelia paralogs, which is likely caused by gradual pseudogenization rather than by neofunctionalization. Finally, cases of divergent resolution of intermediate WGD duplicates between aurelia species implicate this process acts as an ongoing reinforcement mechanism of reproductive isolation long after a WGD event. Copyright © 2014 by the Genetics Society of America.

  6. Alignment-free phylogeny of whole genomes using underlying subwords

    Directory of Open Access Journals (Sweden)

    Comin Matteo

    2012-12-01

    Full Text Available Abstract Background With the progress of modern sequencing technologies a large number of complete genomes are now available. Traditionally the comparison of two related genomes is carried out by sequence alignment. There are cases where these techniques cannot be applied, for example if two genomes do not share the same set of genes, or if they are not alignable to each other due to low sequence similarity, rearrangements and inversions, or more specifically to their lengths when the organisms belong to different species. For these cases the comparison of complete genomes can be carried out only with ad hoc methods that are usually called alignment-free methods. Methods In this paper we propose a distance function based on subword compositions called Underlying Approach (UA. We prove that the matching statistics, a popular concept in the field of string algorithms able to capture the statistics of common words between two sequences, can be derived from a small set of “independent” subwords, namely the irredundant common subwords. We define a distance-like measure based on these subwords, such that each region of genomes contributes only once, thus avoiding to count shared subwords a multiple number of times. In a nutshell, this filter discards subwords occurring in regions covered by other more significant subwords. Results The Underlying Approach (UA builds a scoring function based on this set of patterns, called underlying. We prove that this set is by construction linear in the size of input, without overlaps, and can be efficiently constructed. Results show the validity of our method in the reconstruction of phylogenetic trees, where the Underlying Approach outperforms the current state of the art methods. Moreover, we show that the accuracy of UA is achieved with a very small number of subwords, which in some cases carry meaningful biological information. Availability http://www.dei.unipd.it/∼ciompin/main/underlying.html

  7. Whole-Genome Expression Analysis of Human Mesenchymal Stromal Cells Exposed to Ultrasmooth Tantalum vs. Titanium Oxide Surfaces

    DEFF Research Database (Denmark)

    Stiehler, C.; Bunger, C.; Overall, R. W.

    2013-01-01

    to titanium (Ti) surface. The aim of this study was to extend the previous investigation of biocompatibility by monitoring temporal gene expression of MSCs on topographically comparable smooth Ta and Ti surfaces using whole-genome gene expression analysis. Total RNA samples from telomerase-immortalized human...... MSCs cultivated on plain sputter-coated surfaces of Ta or Ti for 1, 2, 4, and 8 days were hybridized to n = 16 U133 Plus 2.0 arrays (Affymetrix(A (R))). Functional annotation, cluster and pathway analyses were performed. The vast majority of genes were differentially regulated after 4 days...... of cultivation and genes upregulated by MSCs exposed to Ta and Ti were predominantly related to the processes of differentiation and transcription, respectively. Functional annotation analysis of the 1,000 temporally most significantly regulated genes suggests earlier cellular differentiation on Ta compared...

  8. Gene set analysis for interpreting genetic studies

    DEFF Research Database (Denmark)

    Pers, Tune H

    2016-01-01

    Interpretation of genome-wide association study (GWAS) results is lacking behind the discovery of new genetic associations. Consequently, there is an urgent need for data-driven methods for interpreting genetic association studies. Gene set analysis (GSA) can identify aetiologic pathways...

  9. New perspectives on microbial community distortion after whole-genome amplification

    Science.gov (United States)

    Whole-genome amplification (WGA) has become an important tool to explore the genomic information of microorganisms in an environmental sample with limited biomass, however potential selective biases during the amplification processes are poorly understood. Here, we describe the e...

  10. Systematic evaluation of bias in microbial community profiles induced by whole genome amplification.

    NARCIS (Netherlands)

    Direito, S.; Zaura, E.; Little, M.; Ehrenfreund, P.; Roling, W.F.M.

    2014-01-01

    Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used [multiple displacement

  11. Supplementary Material for: Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA; Vos, M. de; Louw, GE; Merwe, RG van der; Dippenaar, A.; Streicher, EM; Abdallah, AM; Sampson, SL; Victor, TC; Dolby, T.; Simpson, JA; Helden, PD van; Warren, RM; Pain, Arnab

    2015-01-01

    Abstract Background Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug

  12. Systematic evaluation of bias in microbial community profiles induced by whole genome amplification

    NARCIS (Netherlands)

    Direito, S.O.L.; Zaura, E.; Little, M.; Ehrenfreund, P.; Röling, W.F.M.

    2014-01-01

    Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used [multiple displacement

  13. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences

    KAUST Repository

    Coll, Francesc; McNerney, Ruth; Preston, Mark D; Guerra-Assunç ã o, José Afonso; Warry, Andrew; Hill-Cawthorne, Grant A.; Mallard, Kim; Nair, Mridul; Miranda, Anabela; Alves, Adriana; Perdigã o, Joã o; Viveiros, Miguel; Portugal, Isabel; Hasan, Zahra; Hasan, Rumina; Glynn, Judith R; Martin, Nigel; Pain, Arnab; Clark, Taane G

    2015-01-01

    Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data

  14. Whole genome sequencing reveals a de novo SHANK3 mutation in familial autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Sergio I Nemirovsky

    Full Text Available Clinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD. Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS for the diagnostic approach to ASD.We identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents.Three male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6.We reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder.

  15. Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic

    Directory of Open Access Journals (Sweden)

    Samantha B. Foley

    2015-01-01

    Full Text Available Despite the potential of whole-genome sequencing (WGS to improve patient diagnosis and care, the empirical value of WGS in the cancer genetics clinic is unknown. We performed WGS on members of two cohorts of cancer genetics patients: those with BRCA1/2 mutations (n = 176 and those without (n = 82. Initial analysis of potentially pathogenic variants (PPVs, defined as nonsynonymous variants with allele frequency < 1% in ESP6500 in 163 clinically-relevant genes suggested that WGS will provide useful clinical results. This is despite the fact that a majority of PPVs were novel missense variants likely to be classified as variants of unknown significance (VUS. Furthermore, previously reported pathogenic missense variants did not always associate with their predicted diseases in our patients. This suggests that the clinical use of WGS will require large-scale efforts to consolidate WGS and patient data to improve accuracy of interpretation of rare variants. While loss-of-function (LoF variants represented only a small fraction of PPVs, WGS identified additional cancer risk LoF PPVs in patients with known BRCA1/2 mutations and led to cancer risk diagnoses in 21% of non-BRCA cancer genetics patients after expanding our analysis to 3209 ClinVar genes. These data illustrate how WGS can be used to improve our ability to discover patients' cancer genetic risks.

  16. Mechanisms of Linezolid Resistance among Coagulase-Negative Staphylococci Determined by Whole-Genome Sequencing

    Science.gov (United States)

    Tewhey, Ryan; Gu, Bing; Kelesidis, Theodoros; Charlton, Carmen; Bobenchik, April; Hindler, Janet; Schork, Nicholas J.

    2014-01-01

    ABSTRACT Linezolid resistance is uncommon among staphylococci, but approximately 2% of clinical isolates of coagulase-negative staphylococci (CoNS) may exhibit resistance to linezolid (MIC, ≥8 µg/ml). We performed whole-genome sequencing (WGS) to characterize the resistance mechanisms and genetic backgrounds of 28 linezolid-resistant CoNS (21 Staphylococcus epidermidis isolates and 7 Staphylococcus haemolyticus isolates) obtained from blood cultures at a large teaching health system in California between 2007 and 2012. The following well-characterized mutations associated with linezolid resistance were identified in the 23S rRNA: G2576U, G2447U, and U2504A, along with the mutation C2534U. Mutations in the L3 and L4 riboproteins, at sites previously associated with linezolid resistance, were also identified in 20 isolates. The majority of isolates harbored more than one mutation in the 23S rRNA and L3 and L4 genes. In addition, the cfr methylase gene was found in almost half (48%) of S. epidermidis isolates. cfr had been only rarely identified in staphylococci in the United States prior to this study. Isolates of the same sequence type were identified with unique mutations associated with linezolid resistance, suggesting independent acquisition of linezolid resistance in each isolate. PMID:24915435

  17. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma.

    Science.gov (United States)

    Kiel, Mark J; Velusamy, Thirunavukkarasu; Betz, Bryan L; Zhao, Lili; Weigelin, Helmut G; Chiang, Mark Y; Huebner-Chan, David R; Bailey, Nathanael G; Yang, David T; Bhagat, Govind; Miranda, Roberto N; Bahler, David W; Medeiros, L Jeffrey; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2012-08-27

    Splenic marginal zone lymphoma (SMZL), the most common primary lymphoma of spleen, is poorly understood at the genetic level. In this study, using whole-genome DNA sequencing (WGS) and confirmation by Sanger sequencing, we observed mutations identified in several genes not previously known to be recurrently altered in SMZL. In particular, we identified recurrent somatic gain-of-function mutations in NOTCH2, a gene encoding a protein required for marginal zone B cell development, in 25 of 99 (∼25%) cases of SMZL and in 1 of 19 (∼5%) cases of nonsplenic MZLs. These mutations clustered near the C-terminal proline/glutamate/serine/threonine (PEST)-rich domain, resulting in protein truncation or, rarely, were nonsynonymous substitutions affecting the extracellular heterodimerization domain (HD). NOTCH2 mutations were not present in other B cell lymphomas and leukemias, such as chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; n = 15), mantle cell lymphoma (MCL; n = 15), low-grade follicular lymphoma (FL; n = 44), hairy cell leukemia (HCL; n = 15), and reactive lymphoid hyperplasia (n = 14). NOTCH2 mutations were associated with adverse clinical outcomes (relapse, histological transformation, and/or death) among SMZL patients (P = 0.002). These results suggest that NOTCH2 mutations play a role in the pathogenesis and progression of SMZL and are associated with a poor prognosis.

  18. Whole Genome Sequence Analysis of Pig Respiratory Bacterial Pathogens with Elevated Minimum Inhibitory Concentrations for Macrolides.

    Science.gov (United States)

    Dayao, Denise Ann Estarez; Seddon, Jennifer M; Gibson, Justine S; Blackall, Patrick J; Turni, Conny

    2016-10-01

    Macrolides are often used to treat and control bacterial pathogens causing respiratory disease in pigs. This study analyzed the whole genome sequences of one clinical isolate of Actinobacillus pleuropneumoniae, Haemophilus parasuis, Pasteurella multocida, and Bordetella bronchiseptica, all isolated from Australian pigs to identify the mechanism underlying the elevated minimum inhibitory concentrations (MICs) for erythromycin, tilmicosin, or tulathromycin. The H. parasuis assembled genome had a nucleotide transition at position 2059 (A to G) in the six copies of the 23S rRNA gene. This mutation has previously been associated with macrolide resistance but this is the first reported mechanism associated with elevated macrolide MICs in H. parasuis. There was no known macrolide resistance mechanism identified in the other three bacterial genomes. However, strA and sul2, aminoglycoside and sulfonamide resistance genes, respectively, were detected in one contiguous sequence (contig 1) of A. pleuropneumoniae assembled genome. This contig was identical to plasmids previously identified in Pasteurellaceae. This study has provided one possible explanation of elevated MICs to macrolides in H. parasuis. Further studies are necessary to clarify the mechanism causing the unexplained macrolide resistance in other Australian pig respiratory pathogens including the role of efflux systems, which were detected in all analyzed genomes.

  19. Bacterial whole genome-based phylogeny: construction of a new benchmarking dataset and assessment of some existing methods.

    Science.gov (United States)

    Ahrenfeldt, Johanne; Skaarup, Carina; Hasman, Henrik; Pedersen, Anders Gorm; Aarestrup, Frank Møller; Lund, Ole

    2017-01-05

    Whole genome sequencing (WGS) is increasingly used in diagnostics and surveillance of infectious diseases. A major application for WGS is to use the data for identifying outbreak clusters, and there is therefore a need for methods that can accurately and efficiently infer phylogenies from sequencing reads. In the present study we describe a new dataset that we have created for the purpose of benchmarking such WGS-based methods for epidemiological data, and also present an analysis where we use the data to compare the performance of some current methods. Our aim was to create a benchmark data set that mimics sequencing data of the sort that might be collected during an outbreak of an infectious disease. This was achieved by letting an E. coli hypermutator strain grow in the lab for 8 consecutive days, each day splitting the culture in two while also collecting samples for sequencing. The result is a data set consisting of 101 whole genome sequences with known phylogenetic relationship. Among the sequenced samples 51 correspond to internal nodes in the phylogeny because they are ancestral, while the remaining 50 correspond to leaves. We also used the newly created data set to compare three different online available methods that infer phylogenies from whole-genome sequencing reads: NDtree, CSI Phylogeny and REALPHY. One complication when comparing the output of these methods with the known phylogeny is that phylogenetic methods typically build trees where all observed sequences are placed as leafs, even though some of them are in fact ancestral. We therefore devised a method for post processing the inferred trees by collapsing short branches (thus relocating some leafs to internal nodes), and also present two new measures of tree similarity that takes into account the identity of both internal and leaf nodes. Based on this analysis we find that, among the investigated methods, CSI Phylogeny had the best performance, correctly identifying 73% of all branches in the

  20. Whole Genome DNA Sequence Analysis of Salmonella subspecies enterica serotype Tennessee obtained from related peanut butter foodborne outbreaks.

    Directory of Open Access Journals (Sweden)

    Mark R Wilson

    Full Text Available Establishing an association between possible food sources and clinical isolates requires discriminating the suspected pathogen from an environmental background, and distinguishing it from other closely-related foodborne pathogens. We used whole genome sequencing (WGS to Salmonella subspecies enterica serotype Tennessee (S. Tennessee to describe genomic diversity across the serovar as well as among and within outbreak clades of strains associated with contaminated peanut butter. We analyzed 71 isolates of S. Tennessee from disparate food, environmental, and clinical sources and 2 other closely-related Salmonella serovars as outgroups (S. Kentucky and S. Cubana, which were also shot-gun sequenced. A whole genome single nucleotide polymorphism (SNP analysis was performed using a maximum likelihood approach to infer phylogenetic relationships. Several monophyletic lineages of S. Tennessee with limited SNP variability were identified that recapitulated several food contamination events. S. Tennessee clades were separated from outgroup salmonellae by more than sixteen thousand SNPs. Intra-serovar diversity of S. Tennessee was small compared to the chosen outgroups (1,153 SNPs, suggesting recent divergence of some S. Tennessee clades. Analysis of all 1,153 SNPs structuring an S. Tennessee peanut butter outbreak cluster revealed that isolates from several food, plant, and clinical isolates were very closely related, as they had only a few SNP differences between them. SNP-based cluster analyses linked specific food sources to several clinical S. Tennessee strains isolated in separate contamination events. Environmental and clinical isolates had very similar whole genome sequences; no markers were found that could be used to discriminate between these sources. Finally, we identified SNPs within variable S. Tennessee genes that may be useful markers for the development of rapid surveillance and typing methods, potentially aiding in traceback efforts

  1. Identification of somatic mutations in postmortem human brains by whole genome sequencing and their implications for psychiatric disorders.

    Science.gov (United States)

    Nishioka, Masaki; Bundo, Miki; Ueda, Junko; Katsuoka, Fumiki; Sato, Yukuto; Kuroki, Yoko; Ishii, Takao; Ukai, Wataru; Murayama, Shigeo; Hashimoto, Eri; Nagasaki, Masao; Yasuda, Jun; Kasai, Kiyoto; Kato, Tadafumi; Iwamoto, Kazuya

    2018-04-01

    Somatic mutations in the human brain are hypothesized to contribute to the functional diversity of brain cells as well as the pathophysiology of neuropsychiatric diseases. However, there are still few reports on somatic mutations in non-neoplastic human brain tissues. This study attempted to unveil the landscape of somatic mutations in the human brain. We explored the landscape of somatic mutations in human brain tissues derived from three individuals with no neuropsychiatric diseases by whole-genome deep sequencing at a depth of around 100. The candidate mutations underwent multi-layered filtering, and were validated by ultra-deep target amplicon sequencing at a depth of around 200 000. Thirty-one somatic mutations were identified in the human brain, demonstrating the utility of whole-genome sequencing of bulk brain tissue. The mutations were enriched in neuron-expressed genes, and two-thirds of the identified somatic single nucleotide variants in the brain tissues were cytosine-to-thymine transitions, half of which were in CpG dinucleotides. Our developed filtering and validation approaches will be useful to identify somatic mutations in the human brain. The vulnerability of neuron-expressed genes to mutational events suggests their potential relevance to neuropsychiatric diseases. © 2017 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  2. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants.

    Science.gov (United States)

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-11-01

    MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is

  3. Whole genome sequencing of multidrug-resistant Salmonella enterica serovar Typhimurium isolated from humans and poultry in Burkina Faso.

    Science.gov (United States)

    Kagambèga, Assèta; Lienemann, Taru; Frye, Jonathan G; Barro, Nicolas; Haukka, Kaisa

    2018-01-01

    Multidrug-resistant Salmonella is an important cause of morbidity and mortality in developing countries. The aim of this study was to characterize and compare multidrug-resistant Salmonella enterica serovar Typhimurium isolates from patients and poultry feces. Salmonella strains were isolated from poultry and patients using standard bacteriological methods described in previous studies. The strains were serotype according to Kaufmann-White scheme and tested for antibiotic susceptibility to 12 different antimicrobial agents using the disk diffusion method. The whole genome of the S. Typhimurium isolates was analyzed using Illumina technology and compared with 20 isolates of S. Typhimurium for which the ST has been deposited in a global MLST database.The ResFinder Web server was used to find the antibiotic resistance genes from whole genome sequencing (WGS) data. For comparative genomics, publicly available complete and draft genomes of different S. Typhimurium laboratory-adapted strains were downloaded from GenBank. All the tested Salmonella serotype Typhimurium were multiresistant to five commonly used antibiotics (ampicillin, chloramphenicol, streptomycin, sulfonamide, and trimethoprim). The multilocus sequence type ST313 was detected from all the strains. Our sequences were very similar to S. Typhimurium ST313 strain D23580 isolated from a patient with invasive non-typhoid Salmonella (NTS) infection in Malawi, also located in sub-Saharan Africa. The use of ResFinder web server on the whole genome of the strains showed a resistance to aminoglycoside associated with carriage of the following resistances genes: strA , strB , and aadA1 ; resistance to β-lactams associated with carriage of a bla TEM-1B genes; resistance to phenicol associated with carriage of catA1 gene; resistance to sulfonamide associated with carriage of sul1 and sul2 genes; resistance to tetracycline associated with carriage of tet B gene; and resistance to trimethoprim associated to dfrA1 gene

  4. Functional regression method for whole genome eQTL epistasis analysis with sequencing data.

    Science.gov (United States)

    Xu, Kelin; Jin, Li; Xiong, Momiao

    2017-05-18

    Epistasis plays an essential rule in understanding the regulation mechanisms and is an essential component of the genetic architecture of the gene expressions. However, interaction analysis of gene expressions remains fundamentally unexplored due to great computational challenges and data availability. Due to variation in splicing, transcription start sites, polyadenylation sites, post-transcriptional RNA editing across the entire gene, and transcription rates of the cells, RNA-seq measurements generate large expression variability and collectively create the observed position level read count curves. A single number for measuring gene expression which is widely used for microarray measured gene expression analysis is highly unlikely to sufficiently account for large expression variation across the gene. Simultaneously analyzing epistatic architecture using the RNA-seq and whole genome sequencing (WGS) data poses enormous challenges. We develop a nonlinear functional regression model (FRGM) with functional responses where the position-level read counts within a gene are taken as a function of genomic position, and functional predictors where genotype profiles are viewed as a function of genomic position, for epistasis analysis with RNA-seq data. Instead of testing the interaction of all possible pair-wises SNPs, the FRGM takes a gene as a basic unit for epistasis analysis, which tests for the interaction of all possible pairs of genes and use all the information that can be accessed to collectively test interaction between all possible pairs of SNPs within two genome regions. By large-scale simulations, we demonstrate that the proposed FRGM for epistasis analysis can achieve the correct type 1 error and has higher power to detect the interactions between genes than the existing methods. The proposed methods are applied to the RNA-seq and WGS data from the 1000 Genome Project. The numbers of pairs of significantly interacting genes after Bonferroni correction

  5. Whole-genome sequencing reveals a potential causal mutation for dwarfism in the Miniature Shetland pony.

    Science.gov (United States)

    Metzger, Julia; Gast, Alana Christina; Schrimpf, Rahel; Rau, Janina; Eikelberg, Deborah; Beineke, Andreas; Hellige, Maren; Distl, Ottmar

    2017-04-01

    The Miniature Shetland pony represents a horse breed with an extremely small body size. Clinical examination of a dwarf Miniature Shetland pony revealed a lowered size at the withers, malformed skull and brachygnathia superior. Computed tomography (CT) showed a shortened maxilla and a cleft of the hard and soft palate which protruded into the nasal passage leading to breathing difficulties. Pathological examination confirmed these findings but did not reveal histopathological signs of premature ossification in limbs or cranial sutures. Whole-genome sequencing of this dwarf Miniature Shetland pony and comparative sequence analysis using 26 reference equids from NCBI Sequence Read Archive revealed three probably damaging missense variants which could be exclusively found in the affected foal. Validation of these three missense mutations in 159 control horses from different horse breeds and five donkeys revealed only the aggrecan (ACAN)-associated g.94370258G>C variant as homozygous wild-type in all control samples. The dwarf Miniature Shetland pony had the homozygous mutant genotype C/C of the ACAN:g.94370258G>C variant and the normal parents were heterozygous G/C. An unaffected full sib and 3/5 unaffected half-sibs were heterozygous G/C for the ACAN:g.94370258G>C variant. In summary, we could demonstrate a dwarf phenotype in a miniature pony breed perfectly associated with a missense mutation within the ACAN gene.

  6. Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR.

    Science.gov (United States)

    Wang, Yunzhou; Tao, Geru; Cui, Yujuan; Lv, Qiyao; Xie, Li; Li, Yuan; Suo, Xun; Qin, Yinghe; Xiao, Lihua; Liu, Xianyong

    2014-09-01

    PCR-based molecular tools are widely used for the identification and characterization of protozoa. Here we report the molecular analysis of Eimeria species using combined methods of whole genome amplification (WGA) and nested PCR. Single oocyst of Eimeria stiedai or Eimeriamedia was directly used for random amplification of the genomic DNA with either primer extension preamplification (PEP) or multiple displacement amplification (MDA), and then the WGA product was used as template in nested PCR with species-specific primers for ITS-1, 18S rDNA and 23S rDNA of E. stiedai and E. media. WGA-based PCR was successful for the amplification of these genes from single oocyst. For the species identification of single oocyst isolated from mixed E. stiedai or E. media, the results from WGA-based PCR were exactly in accordance with those from morphological identification, suggesting the availability of this method in molecular analysis of eimerian parasites at the single oocyst level. WGA-based PCR method can also be applied for the identification and genetic characterization of other protists. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Whole-genome transcriptional analysis of heavy metal stresses inCaulobacter crescentus

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ping; Brodie, Eoin L.; Suzuki, Yohey; McAdams, Harley H.; Andersen, Gary L.

    2005-09-21

    The bacterium Caulobacter crescentus and related stalkbacterial species are known for their distinctive ability to live in lownutrient environments, a characteristic of most heavy metal contaminatedsites. Caulobacter crescentus is a model organism for studying cell cycleregulation with well developed genetics. We have identified the pathwaysresponding to heavy metal toxicity in C. crescentus to provide insightsfor possible application of Caulobacter to environmental restoration. Weexposed C. crescentus cells to four heavy metals (chromium, cadmium,selenium and uranium) and analyzed genome wide transcriptional activitiespost exposure using a Affymetrix GeneChip microarray. C. crescentusshowed surprisingly high tolerance to uranium, a possible mechanism forwhich may be formation of extracellular calcium-uranium-phosphateprecipitates. The principal response to these metals was protectionagainst oxidative stress (up-regulation of manganese-dependent superoxidedismutase, sodA). Glutathione S-transferase, thioredoxin, glutaredoxinsand DNA repair enzymes responded most strongly to cadmium and chromate.The cadmium and chromium stress response also focused on reducing theintracellular metal concentration, with multiple efflux pumps employed toremove cadmium while a sulfate transporter was down-regulated to reducenon-specific uptake of chromium. Membrane proteins were also up-regulatedin response to most of the metals tested. A two-component signaltransduction system involved in the uranium response was identified.Several differentially regulated transcripts from regions previously notknown to encode proteins were identified, demonstrating the advantage ofevaluating the transcriptome using whole genome microarrays.

  8. MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.

    Science.gov (United States)

    Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G

    2012-12-07

    MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.

  9. Whole-genome sequencing of a laboratory-evolved yeast strain

    Directory of Open Access Journals (Sweden)

    Dunham Maitreya J

    2010-02-01

    Full Text Available Abstract Background Experimental evolution of microbial populations provides a unique opportunity to study evolutionary adaptation in response to controlled selective pressures. However, until recently it has been difficult to identify the precise genetic changes underlying adaptation at a genome-wide scale. New DNA sequencing technologies now allow the genome of parental and evolved strains of microorganisms to be rapidly determined. Results We sequenced >93.5% of the genome of a laboratory-evolved strain of the yeast Saccharomyces cerevisiae and its ancestor at >28× depth. Both single nucleotide polymorphisms and copy number amplifications were found, with specific gains over array-based methodologies previously used to analyze these genomes. Applying a segmentation algorithm to quantify structural changes, we determined the approximate genomic boundaries of a 5× gene amplification. These boundaries guided the recovery of breakpoint sequences, which provide insights into the nature of a complex genomic rearrangement. Conclusions This study suggests that whole-genome sequencing can provide a rapid approach to uncover the genetic basis of evolutionary adaptations, with further applications in the study of laboratory selections and mutagenesis screens. In addition, we show how single-end, short read sequencing data can provide detailed information about structural rearrangements, and generate predictions about the genomic features and processes that underlie genome plasticity.

  10. Automated whole-genome multiple alignment of rat, mouse, and human

    Energy Technology Data Exchange (ETDEWEB)

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  11. Whole genome sequence to decipher the resistome of Shewanella algae, a multidrug-resistant bacterium responsible for pneumonia, Marseille, France.

    Science.gov (United States)

    Cimmino, Teresa; Olaitan, Abiola Olumuyiwa; Rolain, Jean-Marc

    2016-01-01

    We characterize and decipher the resistome and the virulence factors of Shewanella algae MARS 14, a multidrug-resistant clinical strain using the whole genome sequencing (WGS) strategy. The bacteria were isolated from the bronchoalveolar lavage of a hospitalized patient in the Timone Hospital in Marseille, France who developed pneumonia after plunging into the Mediterranean Sea. The genome size of S. algae MARS 14 was 5,005,710 bp with 52.8% guanine cytosine content. The resistome includes members of class C and D beta-lactamases and numerous multidrug-efflux pumps. We also found the presence of several hemolysins genes, a complete flagellum system gene cluster and genes responsible for biofilm formation. Moreover, we reported for the first time in a clinical strain of Shewanella spp. the presence of a bacteriocin (marinocin). The WGS analysis of this pathogen provides insight into its virulence factors and resistance to antibiotics.

  12. SCCmecFinder, a Web-Based Tool for Typing of Staphylococcal Cassette Chromosome mec in Staphylococcus aureus Using Whole-Genome Sequence Data.

    Science.gov (United States)

    Kaya, Hülya; Hasman, Henrik; Larsen, Jesper; Stegger, Marc; Johannesen, Thor Bech; Allesøe, Rosa Lundbye; Lemvigh, Camilla Koldbæk; Aarestrup, Frank Møller; Lund, Ole; Larsen, Anders Rhod

    2018-01-01

    Typing of methicillin-resistant Staphylococcus aureus (MRSA) is important in infection control and surveillance. The current nomenclature of MRSA includes the genetic background of the S. aureus strain determined by multilocus sequence typing (MLST) or equivalent methods like spa typing and typing of the mobile genetic element staphylococcal cassette chromosome mec (SCC mec ), which carries the mecA or mecC gene. Whereas MLST and spa typing are relatively simple, typing of SCC mec is less trivial because of its heterogeneity. Whole-genome sequencing (WGS) provides the essential data for typing of the genetic background and SCC mec , but so far, no bioinformatic tools for SCC mec typing have been available. Here, we report the development and evaluation of SCC mec Finder for characterization of the SCC mec element from S. aureus WGS data. SCC mec Finder is able to identify all SCC mec element types, designated I to XIII, with subtyping of SCC mec types IV (2B) and V (5C2). SCC mec elements are characterized by two different gene prediction approaches to achieve correct annotation, a Basic Local Alignment Search Tool (BLAST)-based approach and a k -mer-based approach. Evaluation of SCC mec Finder by using a diverse collection of clinical isolates ( n = 93) showed a high typeability level of 96.7%, which increased to 98.9% upon modification of the default settings. In conclusion, SCC mec Finder can be an alternative to more laborious SCC mec typing methods and is freely available at https://cge.cbs.dtu.dk/services/SCCmecFinder. IMPORTANCE SCC mec in MRSA is acknowledged to be of importance not only because it contains the mecA or mecC gene but also for staphylococcal adaptation to different environments, e.g., in hospitals, the community, and livestock. Typing of SCC mec by PCR techniques has, because of its heterogeneity, been challenging, and whole-genome sequencing has only partially solved this since no good bioinformatic tools have been available. In this

  13. Characterisation of a multidrug-resistant Bacteroides fragilis isolate recovered from blood of a patient in Denmark using whole-genome sequencing

    DEFF Research Database (Denmark)

    Ank, Nina; Sydenham, Thomas V; Iversen, Lene H

    2015-01-01

    Here we describe a patient undergoing extensive abdominal surgery and hyperthermic intraperitoneal chemotherapy due to primary adenocarcinoma in the sigmoid colon with peritoneal carcinomatosis. During hospitalisation the patient suffered from bacteraemia with a multidrug-resistant Bacteroides fr...... fragilis isolate. Whole-genome sequencing of the isolate resulted in identification of nimE, cfiA and ermF genes corresponding to metronidazole, carbapenem and clindamycin resistance....

  14. Prediction of Phenotypic Antimicrobial Resistance Profiles From Whole Genome Sequences of Non-typhoidal Salmonella enterica.

    Science.gov (United States)

    Neuert, Saskia; Nair, Satheesh; Day, Martin R; Doumith, Michel; Ashton, Philip M; Mellor, Kate C; Jenkins, Claire; Hopkins, Katie L; Woodford, Neil; de Pinna, Elizabeth; Godbole, Gauri; Dallman, Timothy J

    2018-01-01

    Surveillance of antimicrobial resistance (AMR) in non-typhoidal Salmonella enterica (NTS), is essential for monitoring transmission of resistance from the food chain to humans, and for establishing effective treatment protocols. We evaluated the prediction of phenotypic resistance in NTS from genotypic profiles derived from whole genome sequencing (WGS). Genes and chromosomal mutations responsible for phenotypic resistance were sought in WGS data from 3,491 NTS isolates received by Public Health England's Gastrointestinal Bacteria Reference Unit between April 2014 and March 2015. Inferred genotypic AMR profiles were compared with phenotypic susceptibilities determined for fifteen antimicrobials using EUCAST guidelines. Discrepancies between phenotypic and genotypic profiles for one or more antimicrobials were detected for 76 isolates (2.18%) although only 88/52,365 (0.17%) isolate/antimicrobial combinations were discordant. Of the discrepant results, the largest number were associated with streptomycin (67.05%, n = 59). Pan-susceptibility was observed in 2,190 isolates (62.73%). Overall, resistance to tetracyclines was most common (26.27% of isolates, n = 917) followed by sulphonamides (23.72%, n = 828) and ampicillin (21.43%, n = 748). Multidrug resistance (MDR), i.e., resistance to three or more antimicrobial classes, was detected in 848 isolates (24.29%) with resistance to ampicillin, streptomycin, sulphonamides and tetracyclines being the most common MDR profile ( n = 231; 27.24%). For isolates with this profile, all but one were S . Typhimurium and 94.81% ( n = 219) had the resistance determinants bla TEM-1, strA-strB, sul2 and tet (A). Extended-spectrum β-lactamase genes were identified in 41 isolates (1.17%) and multiple mutations in chromosomal genes associated with ciprofloxacin resistance in 82 isolates (2.35%). This study showed that WGS is suitable as a rapid means of determining AMR patterns of NTS for public health surveillance.

  15. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation.

    Directory of Open Access Journals (Sweden)

    Thomas D Cuypers

    2014-04-01

    Full Text Available Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and adaptation remains unknown. Here, we study the duplicate retention pattern postWGD, by letting virtual cells adapt to environmental changes. The virtual cells have structured genomes that encode a regulatory network and simple metabolism. Populations are under selection for homeostasis and evolve by point mutations, small indels and WGD. After populations had initially adapted fully to fluctuating resource conditions re-adaptation to a broad range of novel environments was studied by tracking mutations in the line of descent. WGD was established in a minority (≈30% of lineages, yet, these were significantly more successful at re-adaptation. Unexpectedly, WGD lineages conserved more seemingly redundant genes, yet had higher per gene mutation rates. While WGD duplicates of all functional classes were significantly over-retained compared to a model of neutral losses, duplicate retention was clearly biased towards highly connected TFs. Importantly, no subfunctionalization occurred in conserved pairs, strongly suggesting that dosage balance shaped retention. Meanwhile, singles diverged significantly. WGD, therefore, is a powerful mechanism to cope with environmental change, allowing conservation of a core machinery, while adapting the peripheral network to accommodate change.

  16. DNA-based identification of spices: DNA isolation, whole genome amplification, and polymerase chain reaction.

    Science.gov (United States)

    Focke, Felix; Haase, Ilka; Fischer, Markus

    2011-01-26

    Usually spices are identified morphologically using simple methods like magnifying glasses or microscopic instruments. On the other hand, molecular biological methods like the polymerase chain reaction (PCR) enable an accurate and specific detection also in complex matrices. Generally, the origins of spices are plants with diverse genetic backgrounds and relationships. The processing methods used for the production of spices are complex and individual. Consequently, the development of a reliable DNA-based method for spice analysis is a challenging intention. However, once established, this method will be easily adapted to less difficult food matrices. In the current study, several alternative methods for the isolation of DNA from spices have been developed and evaluated in detail with regard to (i) its purity (photometric), (ii) yield (fluorimetric methods), and (iii) its amplifiability (PCR). Whole genome amplification methods were used to preamplify isolates to improve the ratio between amplifiable DNA and inhibiting substances. Specific primer sets were designed, and the PCR conditions were optimized to detect 18 spices selectively. Assays of self-made spice mixtures were performed to proof the applicability of the developed methods.

  17. A Proposed Clinical Decision Support Architecture Capable of Supporting Whole Genome Sequence Information

    Directory of Open Access Journals (Sweden)

    Brandon M. Welch

    2014-04-01

    Full Text Available Whole genome sequence (WGS information may soon be widely available to help clinicians personalize the care and treatment of patients. However, considerable barriers exist, which may hinder the effective utilization of WGS information in a routine clinical care setting. Clinical decision support (CDS offers a potential solution to overcome such barriers and to facilitate the effective use of WGS information in the clinic. However, genomic information is complex and will require significant considerations when developing CDS capabilities. As such, this manuscript lays out a conceptual framework for a CDS architecture designed to deliver WGS-guided CDS within the clinical workflow. To handle the complexity and breadth of WGS information, the proposed CDS framework leverages service-oriented capabilities and orchestrates the interaction of several independently-managed components. These independently-managed components include the genome variant knowledge base, the genome database, the CDS knowledge base, a CDS controller and the electronic health record (EHR. A key design feature is that genome data can be stored separately from the EHR. This paper describes in detail: (1 each component of the architecture; (2 the interaction of the components; and (3 how the architecture attempts to overcome the challenges associated with WGS information. We believe that service-oriented CDS capabilities will be essential to using WGS information for personalized medicine.

  18. A proposed clinical decision support architecture capable of supporting whole genome sequence information.

    Science.gov (United States)

    Welch, Brandon M; Loya, Salvador Rodriguez; Eilbeck, Karen; Kawamoto, Kensaku

    2014-04-04

    Whole genome sequence (WGS) information may soon be widely available to help clinicians personalize the care and treatment of patients. However, considerable barriers exist, which may hinder the effective utilization of WGS information in a routine clinical care setting. Clinical decision support (CDS) offers a potential solution to overcome such barriers and to facilitate the effective use of WGS information in the clinic. However, genomic information is complex and will require significant considerations when developing CDS capabilities. As such, this manuscript lays out a conceptual framework for a CDS architecture designed to deliver WGS-guided CDS within the clinical workflow. To handle the complexity and breadth of WGS information, the proposed CDS framework leverages service-oriented capabilities and orchestrates the interaction of several independently-managed components. These independently-managed components include the genome variant knowledge base, the genome database, the CDS knowledge base, a CDS controller and the electronic health record (EHR). A key design feature is that genome data can be stored separately from the EHR. This paper describes in detail: (1) each component of the architecture; (2) the interaction of the components; and (3) how the architecture attempts to overcome the challenges associated with WGS information. We believe that service-oriented CDS capabilities will be essential to using WGS information for personalized medicine.

  19. [Whole Genome Sequencing of Human mtDNA Based on Ion Torrent PGM™ Platform].

    Science.gov (United States)

    Cao, Y; Zou, K N; Huang, J P; Ma, K; Ping, Y

    2017-08-01

    To analyze and detect the whole genome sequence of human mitochondrial DNA (mtDNA) by Ion Torrent PGM™ platform and to study the differences of mtDNA sequence in different tissues. Samples were collected from 6 unrelated individuals by forensic postmortem examination, including chest blood, hair, costicartilage, nail, skeletal muscle and oral epithelium. Amplification of whole genome sequence of mtDNA was performed by 4 pairs of primer. Libraries were constructed with Ion Shear™ Plus Reagents kit and Ion Plus Fragment Library kit. Whole genome sequencing of mtDNA was performed using Ion Torrent PGM™ platform. Sanger sequencing was used to determine the heteroplasmy positions and the mutation positions on HVⅠ region. The whole genome sequence of mtDNA from all samples were amplified successfully. Six unrelated individuals belonged to 6 different haplotypes. Different tissues in one individual had heteroplasmy difference. The heteroplasmy positions and the mutation positions on HVⅠ region were verified by Sanger sequencing. After a consistency check by the Kappa method, it was found that the results of mtDNA sequence had a high consistency in different tissues. The testing method used in present study for sequencing the whole genome sequence of human mtDNA can detect the heteroplasmy difference in different tissues, which have good consistency. The results provide guidance for the further applications of mtDNA in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine

  20. Whole-genome typing and characterization of blaVIM19-harbouring ST383 Klebsiella pneumoniae by PFGE, whole-genome mapping and WGS.

    Science.gov (United States)

    Sabirova, Julia S; Xavier, Basil Britto; Coppens, Jasmine; Zarkotou, Olympia; Lammens, Christine; Janssens, Lore; Burggrave, Ronald; Wagner, Trevor; Goossens, Herman; Malhotra-Kumar, Surbhi

    2016-06-01

    We utilized whole-genome mapping (WGM) and WGS to characterize 12 clinical carbapenem-resistant Klebsiella pneumoniae strains (TGH1-TGH12). All strains were screened for carbapenemase genes by PCR, and typed by MLST, PFGE (XbaI) and WGM (AflII) (OpGen, USA). WGS (Illumina) was performed on TGH8 and TGH10. Reads were de novo assembled and annotated [SPAdes, Rapid Annotation Subsystem Technology (RAST)]. Contigs were aligned directly, and after in silico AflII restriction, with corresponding WGMs (MapSolver, OpGen; BioNumerics, Applied Maths). All 12 strains were ST383. Of the 12 strains, 11 were carbapenem resistant, 7 harboured blaKPC-2 and 11 harboured blaVIM-19. Varying the parameters for assigning WGM clusters showed that these were comparable to STs and to the eight PFGE types or subtypes (difference of three or more bands). A 95% similarity coefficient assigned all 12 WGMs to a single cluster, whereas a 99% similarity coefficient (or ≥10 unmatched-fragment difference) assigned the 12 WGMs to eight (sub)clusters. Based on a difference of three or more bands between PFGE profiles, the Simpson's diversity indices (SDIs) of WGM (0.94, Jackknife pseudo-values CI: 0.883-0.996) and PFGE (0.93, Jackknife pseudo-values CI: 0.828-1.000) were similar (P = 0.649). However, the discriminatory power of WGM was significantly higher (SDI: 0.94, Jackknife pseudo-values CI: 0.883-0.996) than that of PFGE profiles typed on a difference of seven or more bands (SDI: 0.53, Jackknife pseudo-values CI: 0.212-0.849) (P = 0.007). This study demonstrates the application of WGM to understanding the epidemiology of hospital-associated K. pneumoniae. Utilizing a combination of WGM and WGS, we also present here the first longitudinal genomic characterization of the highly dynamic carbapenem-resistant ST383 K. pneumoniae clone that is rapidly gaining importance in Europe. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial

  1. When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes.

    Science.gov (United States)

    Gardner, Shea N; Hall, Barry G

    2013-01-01

    Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four "raw read" genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths.

  2. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria.

    Science.gov (United States)

    Liu, Guoqiang; Kong, Yingying; Fan, Yajing; Geng, Ce; Peng, Donghai; Sun, Ming

    2017-05-10

    Bacillus velezensis LS69 was found to exhibit antagonistic activity against a diverse spectrum of pathogenic bacteria. It has one circular chromosome of 3,917,761bp with 3,643 open reading frames. Genome analysis identified ten gene clusters involved in nonribosomal synthesis of polyketides (macrolactin, bacillaene and difficidin), lipopeptides (surfactin, fengycin, bacilysin and iturin A) and bacteriocins (amylolysin and amylocyclicin). In addition, B. velezensis LS69 was found to contain a series of genes involved in enhancing plant growth and triggering plant immunity. Whole genome sequencing of Bacillus velezensis LS69 will provide a basis for elucidation of its biocontrol mechanisms and facilitate its applications in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Delimiting Coalescence Genes (C-Genes) in Phylogenomic Data Sets.

    Science.gov (United States)

    Springer, Mark S; Gatesy, John

    2018-02-26

    coalescence methods have emerged as a popular alternative for inferring species trees with large genomic datasets, because these methods explicitly account for incomplete lineage sorting. However, statistical consistency of summary coalescence methods is not guaranteed unless several model assumptions are true, including the critical assumption that recombination occurs freely among but not within coalescence genes (c-genes), which are the fundamental units of analysis for these methods. Each c-gene has a single branching history, and large sets of these independent gene histories should be the input for genome-scale coalescence estimates of phylogeny. By contrast, numerous studies have reported the results of coalescence analyses in which complete protein-coding sequences are treated as c-genes even though exons for these loci can span more than a megabase of DNA. Empirical estimates of recombination breakpoints suggest that c-genes may be much shorter, especially when large clades with many species are the focus of analysis. Although this idea has been challenged recently in the literature, the inverse relationship between c-gene size and increased taxon sampling in a dataset-the 'recombination ratchet'-is a fundamental property of c-genes. For taxonomic groups characterized by genes with long intron sequences, complete protein-coding sequences are likely not valid c-genes and are inappropriate units of analysis for summary coalescence methods unless they occur in recombination deserts that are devoid of incomplete lineage sorting (ILS). Finally, it has been argued that coalescence methods are robust when the no-recombination within loci assumption is violated, but recombination must matter at some scale because ILS, a by-product of recombination, is the raison d'etre for coalescence methods. That is, extensive recombination is required to yield the large number of independently segregating c-genes used to infer a species tree. If coalescent methods are powerful

  4. Whole-genome copy number variation analysis in anophthalmia and microphthalmia.

    Science.gov (United States)

    Schilter, K F; Reis, L M; Schneider, A; Bardakjian, T M; Abdul-Rahman, O; Kozel, B A; Zimmerman, H H; Broeckel, U; Semina, E V

    2013-11-01

    Anophthalmia/microphthalmia (A/M) represent severe developmental ocular malformations. Currently, mutations in known genes explain less than 40% of A/M cases. We performed whole-genome copy number variation analysis in 60 patients affected with isolated or syndromic A/M. Pathogenic deletions of 3q26 (SOX2) were identified in four independent patients with syndromic microphthalmia. Other variants of interest included regions with a known role in human disease (likely pathogenic) as well as novel rearrangements (uncertain significance). A 2.2-Mb duplication of 3q29 in a patient with non-syndromic anophthalmia and an 877-kb duplication of 11p13 (PAX6) and a 1.4-Mb deletion of 17q11.2 (NF1) in two independent probands with syndromic microphthalmia and other ocular defects were identified; while ocular anomalies have been previously associated with 3q29 duplications, PAX6 duplications, and NF1 mutations in some cases, the ocular phenotypes observed here are more severe than previously reported. Three novel regions of possible interest included a 2q14.2 duplication which cosegregated with microphthalmia/microcornea and congenital cataracts in one family, and 2q21 and 15q26 duplications in two additional cases; each of these regions contains genes that are active during vertebrate ocular development. Overall, this study identified causative copy number mutations and regions with a possible role in ocular disease in 17% of A/M cases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Whole genome grey and white matter DNA methylation profiles in dorsolateral prefrontal cortex.

    Science.gov (United States)

    Sanchez-Mut, Jose Vicente; Heyn, Holger; Vidal, Enrique; Delgado-Morales, Raúl; Moran, Sebastian; Sayols, Sergi; Sandoval, Juan; Ferrer, Isidre; Esteller, Manel; Gräff, Johannes

    2017-06-01

    The brain's neocortex is anatomically organized into grey and white matter, which are mainly composed by neuronal and glial cells, respectively. The neocortex can be further divided in different Brodmann areas according to their cytoarchitectural organization, which are associated with distinct cortical functions. There is increasing evidence that brain development and function are governed by epigenetic processes, yet their contribution to the functional organization of the neocortex remains incompletely understood. Herein, we determined the DNA methylation patterns of grey and white matter of dorsolateral prefrontal cortex (Brodmann area 9), an important region for higher cognitive skills that is particularly affected in various neurological diseases. For avoiding interindividual differences, we analyzed white and grey matter from the same donor using whole genome bisulfite sequencing, and for validating their biological significance, we used Infinium HumanMethylation450 BeadChip and pyrosequencing in ten and twenty independent samples, respectively. The combination of these analysis indicated robust grey-white matter differences in DNA methylation. What is more, cell type-specific markers were enriched among the most differentially methylated genes. Interestingly, we also found an outstanding number of grey-white matter differentially methylated genes that have previously been associated with Alzheimer's, Parkinson's, and Huntington's disease, as well as Multiple and Amyotrophic lateral sclerosis. The data presented here thus constitute an important resource for future studies not only to gain insight into brain regional as well as grey and white matter differences, but also to unmask epigenetic alterations that might underlie neurological and neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.

  6. The whole-genome landscape of medulloblastoma subtypes

    NARCIS (Netherlands)

    Northcott, Paul A.; Buchhalter, Ivo; Morrissy, A. Sorana; Hovestadt, Volker; Weischenfeldt, Joachim; Ehrenberger, Tobias; Gröbner, Susanne; Segura-Wang, Maia; Zichner, Thomas; Rudneva, Vasilisa A.; Warnatz, Hans-Jörg; Sidiropoulos, Nikos; Phillips, Aaron H.; Schumacher, Steven; Kleinheinz, Kortine; Waszak, Sebastian M.; Erkek, Serap; Jones, David T. W.; Worst, Barbara C.; Kool, Marcel; Zapatka, Marc; Jäger, Natalie; Chavez, Lukas; Hutter, Barbara; Bieg, Matthias; Paramasivam, Nagarajan; Heinold, Michael; Gu, Zuguang; Ishaque, Naveed; Jäger-Schmidt, Christina; Imbusch, Charles D.; Jugold, Alke; Hübschmann, Daniel; Risch, Thomas; Amstislavskiy, Vyacheslav; Gonzalez, Francisco German Rodriguez; Weber, Ursula D.; Wolf, Stephan; Robinson, Giles W.; Zhou, Xin; Wu, Gang; Finkelstein, David; Liu, Yanling; Cavalli, Florence M. G.; Luu, Betty; Ramaswamy, Vijay; Wu, Xiaochong; Koster, Jan; Ryzhova, Marina; Cho, Yoon-Jae; Pomeroy, Scott L.; Herold-Mende, Christel; Schuhmann, Martin; Ebinger, Martin; Liau, Linda M.; Mora, Jaume; McLendon, Roger E.; Jabado, Nada; Kumabe, Toshihiro; Chuah, Eric; Ma, Yussanne; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen L.; Thiessen, Nina; Tse, Kane; Wong, Tina; Jones, Steven J. M.; Witt, Olaf; Milde, Till; von Deimling, Andreas; Capper, David; Korshunov, Andrey; Yaspo, Marie-Laure; Kriwacki, Richard; Gajjar, Amar; Zhang, Jinghui; Beroukhim, Rameen; Fraenkel, Ernest; Korbel, Jan O.; Brors, Benedikt; Schlesner, Matthias; Eils, Roland; Marra, Marco A.; Pfister, Stefan M.; Taylor, Michael D.; Lichter, Peter

    2017-01-01

    Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and

  7. Whole-genome analyses of speciation events in pathogenic Brucellae

    Energy Technology Data Exchange (ETDEWEB)

    Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Comerci, Diego J. [Universidad Nacional de General San Martin; Tolmasky, Marcelo E. [California State University; Larimer, Frank W [ORNL; Malfatti, Stephanie [Lawrence Livermore National Laboratory (LLNL); Vergez, Lisa [Lawrence Livermore National Laboratory (LLNL); Aguero, Fernan [Universidad Nacional de General San Martin; Land, Miriam L [ORNL; Ugalde, Rodolfo A. [Universidad Nacional de General San Martin; Garcia, Emilio [Lawrence Livermore National Laboratory (LLNL)

    2005-12-01

    Despite their high DNA identity and a proposal to group classical Brucella species as biovars of Brucella melitensis, the commonly recognized Brucella species can be distinguished by distinct biochemical and fatty acid characters, as well as by a marked host range (e.g., Brucella suis for swine, B. melitensis for sheep and goats, and Brucella abortus for cattle). Here we present the genome of B. abortus 2308, the virulent prototype biovar 1 strain, and its comparison to the two other human pathogenic Brucella species and to B. abortus field isolate 9-941. The global distribution of pseudogenes, deletions, and insertions supports previous indications that B. abortus and B. melitensis share a common ancestor that diverged from B. suis. With the exception of a dozen genes, the genetic complements of both B. abortus strains are identical, whereas the three species differ in gene content and pseudogenes. The pattern of species-specific gene inactivations affecting transcriptional regulators and outer membrane proteins suggests that these inactivations may play an important role in the establishment of host specificity and may have been a primary driver of speciation in the genus Brucella. Despite being nonmotile, the brucellae contain flagellum gene clusters and display species-specific flagellar gene inactivations, which lead to the putative generation of different versions of flagellum-derived structures and may contribute to differences in host specificity and virulence. Metabolic changes such as the lack of complete metabolic pathways for the synthesis of numerous compounds (e.g., glycogen, biotin, NAD, and choline) are consistent with adaptation of brucellae to an intracellular life-style.

  8. Whole-Genome de novo Sequencing Of Quail And Grey Partridge

    DEFF Research Database (Denmark)

    Holm, Lars-Erik; Panitz, Frank; Burt, Dave

    2011-01-01

    The development in sequencing methods has made it possible to perform whole genome de novo sequencing of species without large commercial interests. Within the EU-financed QUANTOMICS project (KBBE-2A-222664), we have performed de novo sequencing of quail (Coturnix coturnix) and grey partridge...... (Perdix perdix) on a Genome Analyzer GAII (Illumina) using paired-end sequencing. The amount of generated sequences amounts to 8 to 9 Gb for each species. The analysis and assembly of the generated sequences is ongoing. Access to the whole genome sequence from these two species will enable enhanced...... comparative studies towards the chicken genome and will aid in identifying evolutionarily conserved sequences within the Galliformes. The obtained sequences from quail and partridge represent a beginning of generating the whole genome sequence for these species. The continuation of establishing the genome...

  9. Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds.

    Directory of Open Access Journals (Sweden)

    Yao Xu

    Full Text Available Whole-genome sequencing provides a powerful tool to obtain more genetic variability that could produce a range of benefits for cattle breeding industry. Nanyang (Bos indicus and Qinchuan (Bos taurus are two important Chinese indigenous cattle breeds with distinct phenotypes. To identify the genetic characteristics responsible for variation in phenotypes between the two breeds, in the present study, we for the first time sequenced the genomes of four Nanyang and four Qinchuan cattle with 10 to 12 fold on average of 97.86% and 98.98% coverage of genomes, respectively. Comparison with the Bos_taurus_UMD_3.1 reference assembly yielded 9,010,096 SNPs for Nanyang, and 6,965,062 for Qinchuan cattle, 51% and 29% of which were novel SNPs, respectively. A total of 154,934 and 115,032 small indels (1 to 3 bp were found in the Nanyang and Qinchuan genomes, respectively. The SNP and indel distribution revealed that Nanyang showed a genetically high diversity as compared to Qinchuan cattle. Furthermore, a total of 2,907 putative cases of copy number variation (CNV were identified by aligning Nanyang to Qinchuan genome, 783 of which (27% encompassed the coding regions of 495 functional genes. The gene ontology (GO analysis revealed that many CNV genes were enriched in the immune system and environment adaptability. Among several CNV genes related to lipid transport and fat metabolism, Lepin receptor gene (LEPR overlapping with CNV_1815 showed remarkably higher copy number in Qinchuan than Nanyang (log2 (ratio = -2.34988; P value = 1.53E-102. Further qPCR and association analysis investigated that the copy number of the LEPR gene presented positive correlations with transcriptional expression and phenotypic traits, suggesting the LEPR CNV may contribute to the higher fat deposition in muscles of Qinchuan cattle. Our findings provide evidence that the distinct phenotypes of Nanyang and Qinchuan breeds may be due to the different genetic variations including SNPs

  10. The whole-genome landscape of medulloblastoma subtypes

    Science.gov (United States)

    Northcott, Paul A.; Buchhalter, Ivo; Morrissy, A. Sorana; Hovestadt, Volker; Weischenfeldt, Joachim; Ehrenberger, Tobias; Groebner, Susanne; Segura-Wang, Maia; Zichner, Thomas; Rudneva, Vasilisa; Warnatz, Hans-Jörg; Sidiropoulos, Nikos; Phillips, Aaron H.; Schumacher, Steven; Kleinheinz, Kortine; Waszak, Sebastian M.; Erkek, Serap; Jones, David T.W.; Worst, Barbara C.; Kool, Marcel; Zapatka, Marc; Jäger, Natalie; Chavez, Lukas; Hutter, Barbara; Bieg, Matthias; Paramasivam, Nagarajan; Heinold, Michael; Gu, Zuguang; Ishaque, Naveed; Jäger-Schmidt, Christina; Imbusch, Charles D.; Jugold, Alke; Hübschmann, Daniel; Risch, Thomas; Amstislavskiy, Vyacheslav; Gonzalez, Francisco German Rodriguez; Weber, Ursula D.; Wolf, Stephan; Robinson, Giles W.; Zhou, Xin; Wu, Gang; Finkelstein, David; Liu, Yanling; Cavalli, Florence M.G.; Luu, Betty; Ramaswamy, Vijay; Wu, Xiaochong; Koster, Jan; Ryzhova, Marina; Cho, Yoon-Jae; Pomeroy, Scott L.; Herold-Mende, Christel; Schuhmann, Martin; Ebinger, Martin; Liau, Linda M.; Mora, Jaume; McLendon, Roger E.; Jabado, Nada; Kumabe, Toshihiro; Chuah, Eric; Ma, Yussanne; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen L.; Thiessen, Nina; Tse, Kane; Wong, Tina; Jones, Steven J.M.; Witt, Olaf; Milde, Till; Von Deimling, Andreas; Capper, David; Korshunov, Andrey; Yaspo, Marie-Laure; Kriwacki, Richard; Gajjar, Amar; Zhang, Jinghui; Beroukhim, Rameen; Fraenkel, Ernest; Korbel, Jan O.; Brors, Benedikt; Schlesner, Matthias; Eils, Roland; Marra, Marco A.; Pfister, Stefan M.; Taylor, Michael D.; Lichter, Peter

    2018-01-01

    Summary Current therapies for medulloblastoma (MB), a highly malignant childhood brain tumor, impose debilitating effects on the developing child, warranting deployment of molecularly targeted treatments with reduced toxicities. Prior studies failed to disclose the full spectrum of driver genes and molecular processes operative in MB subgroups. Herein, we detail the somatic landscape across 491 sequenced MBs and molecular heterogeneity amongst 1,256 epigenetically analyzed cases, identifying subgroup-specific driver alterations including previously unappreciated actionable targets. Driver mutations explained the majority of Group 3 and Group 4 patients, remarkably enhancing previous knowledge. Novel molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions targeting KBTBD4 and ‘enhancer hijacking’ driving PRDM6 activation. Thus, application of integrative genomics to an unprecedented cohort of clinical samples derived from a single childhood cancer entity disclosed a series of new cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for treating MB patients. PMID:28726821

  11. Comparative genome analysis and characterization of the Salmonella Typhimurium strain CCRJ_26 isolated from swine carcasses using whole-genome sequencing approach.

    Science.gov (United States)

    Panzenhagen, P H N; Cabral, C C; Suffys, P N; Franco, R M; Rodrigues, D P; Conte-Junior, C A

    2018-04-01

    Salmonella pathogenicity relies on virulence factors many of which are clustered within the Salmonella pathogenicity islands. Salmonella also harbours mobile genetic elements such as virulence plasmids, prophage-like elements and antimicrobial resistance genes which can contribute to increase its pathogenicity. Here, we have genetically characterized a selected S. Typhimurium strain (CCRJ_26) from our previous study with Multiple Drugs Resistant profile and high-frequency PFGE clonal profile which apparently persists in the pork production centre of Rio de Janeiro State, Brazil. By whole-genome sequencing, we described the strain's genome virulent content and characterized the repertoire of bacterial plasmids, antibiotic resistance genes and prophage-like elements. Here, we have shown evidence that strain CCRJ_26 genome possible represent a virulence-associated phenotype which may be potentially virulent in human infection. Whole-genome sequencing technologies are still costly and remain underexplored for applied microbiology in Brazil. Hence, this genomic description of S. Typhimurium strain CCRJ_26 will provide help in future molecular epidemiological studies. The analysis described here reveals a quick and useful pipeline for bacterial virulence characterization using whole-genome sequencing approach. © 2018 The Society for Applied Microbiology.

  12. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains.

    Science.gov (United States)

    Bwogi, Josephine; Jere, Khuzwayo C; Karamagi, Charles; Byarugaba, Denis K; Namuwulya, Prossy; Baliraine, Frederick N; Desselberger, Ulrich; Iturriza-Gomara, Miren

    2017-01-01

    Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.

  13. Whole-Genome Sequences of Two Borrelia afzelii and Two Borrelia garinii Lyme Disease Agent Isolates

    Energy Technology Data Exchange (ETDEWEB)

    Casjens, S.R.; Dunn, J.; Mongodin, E. F.; Qiu, W.-G.; Luft, B. J.; Fraser-Liggett, C. M.; Schutzer, S. E.

    2011-12-01

    Human Lyme disease is commonly caused by several species of spirochetes in the Borrelia genus. In Eurasia these species are largely Borrelia afzelii, B. garinii, B. burgdorferi, and B. bavariensis sp. nov. Whole-genome sequencing is an excellent tool for investigating and understanding the influence of bacterial diversity on the pathogenesis and etiology of Lyme disease. We report here the whole-genome sequences of four isolates from two of the Borrelia species that cause human Lyme disease, B. afzelii isolates ACA-1 and PKo and B. garinii isolates PBr and Far04.

  14. Whole-genome methylation caller designed for methyl- DNA ...

    African Journals Online (AJOL)

    etchie

    2013-02-20

    Feb 20, 2013 ... Key words: Methyl-DNA immunoprecipitation, next-generation sequencing, Hidden ... its response to environmental cues. .... have a great potential to become the most cost-effective ... hg18 reference genome (set to 0 if not present in retrieved reads). ..... DNA methylation patterns and epigenetic memory.

  15. The whole-genome landscape of medulloblastoma subtypes

    DEFF Research Database (Denmark)

    Northcott, Paul A.; Buchhalter, Ivo; Morrissy, A. Sorana

    2017-01-01

    actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target...... KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive...

  16. In vivo capsular switch in Streptococcus pneumoniae--analysis by whole genome sequencing.

    Directory of Open Access Journals (Sweden)

    Fen Z Hu

    Full Text Available Two multidrug resistant strains of Streptococcus pneumoniae - SV35-T23 (capsular type 23F and SV36-T3 (capsular type 3 were recovered from the nasopharynx of two adult patients during an outbreak of pneumococcal disease in a New York hospital in 1996. Both strains belonged to the pandemic lineage PMEN1 but they differed strikingly in virulence when tested in the mouse model of IP infection: as few as 1000 CFU of SV36 killed all mice within 24 hours after inoculation while SV35-T23 was avirulent.Whole genome sequencing (WGS of the two isolates was performed (i to test if these two isolates belonging to the same clonal type and recovered from an identical epidemiological scenario only differed in their capsular genes? and (ii to test if the vast difference in virulence between the strains was mostly - or exclusively - due to the type III capsule. WGS demonstrated extensive differences between the two isolates including over 2500 single nucleotide polymorphisms in core genes and also differences in 36 genetic determinants: 25 of which were unique to SV35-T23 and 11 unique to strain SV36-T3. Nineteen of these differences were capsular genes and 9 bacteriocin genes.Using genetic transformation in the laboratory, the capsular region of SV35-T23 was replaced by the type 3 capsular genes from SV36-T3 to generate the recombinant SV35-T3* which was as virulent as the parental strain SV36-T3* in the murine model and the type 3 capsule was the major virulence factor in the chinchilla model as well. On the other hand, a careful comparison of strains SV36-T3 and the laboratory constructed SV35-T3* in the chinchilla model suggested that some additional determinants present in SV36 but not in the laboratory recombinant may also contribute to the progression of middle ear disease. The nature of this determinants remains to be identified.

  17. Germline contamination and leakage in whole genome somatic single nucleotide variant detection.

    Science.gov (United States)

    Sendorek, Dorota H; Caloian, Cristian; Ellrott, Kyle; Bare, J Christopher; Yamaguchi, Takafumi N; Ewing, Adam D; Houlahan, Kathleen E; Norman, Thea C; Margolin, Adam A; Stuart, Joshua M; Boutros, Paul C

    2018-01-31

    The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.

  18. A whole genome screen for HIV restriction factors

    Directory of Open Access Journals (Sweden)

    Liu Li

    2011-11-01

    Full Text Available Abstract Background Upon cellular entry retroviruses must avoid innate restriction factors produced by the host cell. For human immunodeficiency virus (HIV human restriction factors, APOBEC3 (apolipoprotein-B-mRNA-editing-enzyme, p21 and tetherin are well characterised. Results To identify intrinsic resistance factors to HIV-1 replication we screened 19,121 human genes and identified 114 factors with significant inhibition of infection. Those with a known function are involved in a broad spectrum of cellular processes including receptor signalling, vesicle trafficking, transcription, apoptosis, cross-nuclear membrane transport, meiosis, DNA damage repair, ubiquitination and RNA processing. We focused on the PAF1 complex which has been previously implicated in gene transcription, cell cycle control and mRNA surveillance. Knockdown of all members of the PAF1 family of proteins enhanced HIV-1 reverse transcription and integration of provirus. Over-expression of PAF1 in host cells renders them refractory to HIV-1. Simian Immunodeficiency Viruses and HIV-2 are also restricted in PAF1 expressing cells. PAF1 is expressed in primary monocytes, macrophages and T-lymphocytes and we demonstrate strong activity in MonoMac1, a monocyte cell line. Conclusions We propose that the PAF1c establishes an anti-viral state to prevent infection by incoming retroviruses. This previously unrecognised mechanism of restriction could have implications for invasion of cells by any pathogen.

  19. Whole-genome resequencing reveals candidate mutations for pig prolificacy.

    Science.gov (United States)

    Li, Wen-Ting; Zhang, Meng-Meng; Li, Qi-Gang; Tang, Hui; Zhang, Li-Fan; Wang, Ke-Jun; Zhu, Mu-Zhen; Lu, Yun-Feng; Bao, Hai-Gang; Zhang, Yuan-Ming; Li, Qiu-Yan; Wu, Ke-Liang; Wu, Chang-Xin

    2017-12-20

    Changes in pig fertility have occurred as a result of domestication, but are not understood at the level of genetic variation. To identify variations potentially responsible for prolificacy, we sequenced the genomes of the highly prolific Taihu pig breed and four control breeds. Genes involved in embryogenesis and morphogenesis were targeted in the Taihu pig, consistent with the morphological differences observed between the Taihu pig and others during pregnancy. Additionally, excessive functional non-coding mutations have been specifically fixed or nearly fixed in the Taihu pig. We focused attention on an oestrogen response element (ERE) within the first intron of the bone morphogenetic protein receptor type-1B gene ( BMPR1B ) that overlaps with a known quantitative trait locus (QTL) for pig fecundity. Using 242 pigs from 30 different breeds, we confirmed that the genotype of the ERE was nearly fixed in the Taihu pig. ERE function was assessed by luciferase assays, examination of histological sections, chromatin immunoprecipitation, quantitative polymerase chain reactions, and western blots. The results suggest that the ERE may control pig prolificacy via the cis-regulation of BMPR1B expression. This study provides new insight into changes in reproductive performance and highlights the role of non-coding mutations in generating phenotypic diversity between breeds. © 2017 The Author(s).

  20. Whole-genome-based Mycobacterium tuberculosis surveillance: a standardized, portable, and expandable approach.

    Science.gov (United States)

    Kohl, Thomas A; Diel, Roland; Harmsen, Dag; Rothgänger, Jörg; Walter, Karen Meywald; Merker, Matthias; Weniger, Thomas; Niemann, Stefan

    2014-07-01

    Whole-genome sequencing (WGS) allows for effective tracing of Mycobacterium tuberculosis complex (MTBC) (tuberculosis pathogens) transmission. However, it is difficult to standardize and, therefore, is not yet employed for interlaboratory prospective surveillance. To allow its widespread application, solutions for data standardization and storage in an easily expandable database are urgently needed. To address this question, we developed a core genome multilocus sequence typing (cgMLST) scheme for clinical MTBC isolates using the Ridom SeqSphere(+) software, which transfers the genome-wide single nucleotide polymorphism (SNP) diversity into an allele numbering system that is standardized, portable, and not computationally intensive. To test its performance, we performed WGS analysis of 26 isolates with identical IS6110 DNA fingerprints and spoligotyping patterns from a longitudinal outbreak in the federal state of Hamburg, Germany (notified between 2001 and 2010). The cgMLST approach (3,041 genes) discriminated the 26 strains with a resolution comparable to that of SNP-based WGS typing (one major cluster of 22 identical or closely related and four outlier isolates with at least 97 distinct SNPs or 63 allelic variants). Resulting tree topologies are highly congruent and grouped the isolates in both cases analogously. Our data show that SNP- and cgMLST-based WGS analyses facilitate high-resolution discrimination of longitudinal MTBC outbreaks. cgMLST allows for a meaningful epidemiological interpretation of the WGS genotyping data. It enables standardized WGS genotyping for epidemiological investigations, e.g., on the regional public health office level, and the creation of web-accessible databases for global TB surveillance with an integrated early warning system. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Prediction of expected years of life using whole-genome markers.

    Directory of Open Access Journals (Sweden)

    Gustavo de los Campos

    Full Text Available Genetic factors are believed to account for 25% of the interindividual differences in Years of Life (YL among humans. However, the genetic loci that have thus far been found to be associated with YL explain a very small proportion of the expected genetic variation in this trait, perhaps reflecting the complexity of the trait and the limitations of traditional association studies when applied to traits affected by a large number of small-effect genes. Using data from the Framingham Heart Study and statistical methods borrowed largely from the field of animal genetics (whole-genome prediction, WGP, we developed a WGP model for the study of YL and evaluated the extent to which thousands of genetic variants across the genome examined simultaneously can be used to predict interindividual differences in YL. We find that a sizable proportion of differences in YL--which were unexplained by age at entry, sex, smoking and BMI--can be accounted for and predicted using WGP methods. The contribution of genomic information to prediction accuracy was even higher than that of smoking and body mass index (BMI combined; two predictors that are considered among the most important life-shortening factors. We evaluated the impacts of familial relationships and population structure (as described by the first two marker-derived principal components and concluded that in our dataset population structure explained partially, but not fully the gains in prediction accuracy obtained with WGP. Further inspection of prediction accuracies by age at death indicated that most of the gains in predictive ability achieved with WGP were due to the increased accuracy of prediction of early mortality, perhaps reflecting the ability of WGP to capture differences in genetic risk to deadly diseases such as cancer, which are most often responsible for early mortality in our sample.

  2. Whole Genome Sequencing Increases Molecular Diagnostic Yield Compared with Current Diagnostic Testing for Inherited Retinal Disease.

    Science.gov (United States)

    Ellingford, Jamie M; Barton, Stephanie; Bhaskar, Sanjeev; Williams, Simon G; Sergouniotis, Panagiotis I; O'Sullivan, James; Lamb, Janine A; Perveen, Rahat; Hall, Georgina; Newman, William G; Bishop, Paul N; Roberts, Stephen A; Leach, Rick; Tearle, Rick; Bayliss, Stuart; Ramsden, Simon C; Nemeth, Andrea H; Black, Graeme C M

    2016-05-01

    To compare the efficacy of whole genome sequencing (WGS) with targeted next-generation sequencing (NGS) in the diagnosis of inherited retinal disease (IRD). Case series. A total of 562 patients diagnosed with IRD. We performed a direct comparative analysis of current molecular diagnostics with WGS. We retrospectively reviewed the findings from a diagnostic NGS DNA test for 562 patients with IRD. A subset of 46 of 562 patients (encompassing potential clinical outcomes of diagnostic analysis) also underwent WGS, and we compared mutation detection rates and molecular diagnostic yields. In addition, we compared the sensitivity and specificity of the 2 techniques to identify known single nucleotide variants (SNVs) using 6 control samples with publically available genotype data. Diagnostic yield of genomic testing. Across known disease-causing genes, targeted NGS and WGS achieved similar levels of sensitivity and specificity for SNV detection. However, WGS also identified 14 clinically relevant genetic variants through WGS that had not been identified by NGS diagnostic testing for the 46 individuals with IRD. These variants included large deletions and variants in noncoding regions of the genome. Identification of these variants confirmed a molecular diagnosis of IRD for 11 of the 33 individuals referred for WGS who had not obtained a molecular diagnosis through targeted NGS testing. Weighted estimates, accounting for population structure, suggest that WGS methods could result in an overall 29% (95% confidence interval, 15-45) uplift in diagnostic yield. We show that WGS methods can detect disease-causing genetic variants missed by current NGS diagnostic methodologies for IRD and thereby demonstrate the clinical utility and additional value of WGS. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  3. Quantification of trace-level DNA by real-time whole genome amplification.

    Science.gov (United States)

    Kang, Min-Jung; Yu, Hannah; Kim, Sook-Kyung; Park, Sang-Ryoul; Yang, Inchul

    2011-01-01

    Quantification of trace amounts of DNA is a challenge in analytical applications where the concentration of a target DNA is very low or only limited amounts of samples are available for analysis. PCR-based methods including real-time PCR are highly sensitive and widely used for quantification of low-level DNA samples. However, ordinary PCR methods require at least one copy of a specific gene sequence for amplification and may not work for a sub-genomic amount of DNA. We suggest a real-time whole genome amplification method adopting the degenerate oligonucleotide primed PCR (DOP-PCR) for quantification of sub-genomic amounts of DNA. This approach enabled quantification of sub-picogram amounts of DNA independently of their sequences. When the method was applied to the human placental DNA of which amount was accurately determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES), an accurate and stable quantification capability for DNA samples ranging from 80 fg to 8 ng was obtained. In blind tests of laboratory-prepared DNA samples, measurement accuracies of 7.4%, -2.1%, and -13.9% with analytical precisions around 15% were achieved for 400-pg, 4-pg, and 400-fg DNA samples, respectively. A similar quantification capability was also observed for other DNA species from calf, E. coli, and lambda phage. Therefore, when provided with an appropriate standard DNA, the suggested real-time DOP-PCR method can be used as a universal method for quantification of trace amounts of DNA.

  4. Comparison of Control of Clostridium difficile Infection in Six English Hospitals Using Whole-Genome Sequencing.

    Science.gov (United States)

    Eyre, David W; Fawley, Warren N; Rajgopal, Anu; Settle, Christopher; Mortimer, Kalani; Goldenberg, Simon D; Dawson, Susan; Crook, Derrick W; Peto, Tim E A; Walker, A Sarah; Wilcox, Mark H

    2017-08-01

    Variation in Clostridium difficile infection (CDI) rates between healthcare institutions suggests overall incidence could be reduced if the lowest rates could be achieved more widely. We used whole-genome sequencing (WGS) of consecutive C. difficile isolates from 6 English hospitals over 1 year (2013-14) to compare infection control performance. Fecal samples with a positive initial screen for C. difficile were sequenced. Within each hospital, we estimated the proportion of cases plausibly acquired from previous cases. Overall, 851/971 (87.6%) sequenced samples contained toxin genes, and 451 (46.4%) were fecal-toxin-positive. Of 652 potentially toxigenic isolates >90-days after the study started, 128 (20%, 95% confidence interval [CI] 17-23%) were genetically linked (within ≤2 single nucleotide polymorphisms) to a prior patient's isolate from the previous 90 days. Hospital 2 had the fewest linked isolates, 7/105 (7%, 3-13%), hospital 1, 9/70 (13%, 6-23%), and hospitals 3-6 had similar proportions of linked isolates (22-26%) (P ≤ .002 comparing hospital-2 vs 3-6). Results were similar adjusting for locally circulating ribotypes. Adjusting for hospital, ribotype-027 had the highest proportion of linked isolates (57%, 95% CI 29-81%). Fecal-toxin-positive and toxin-negative patients were similarly likely to be a potential transmission donor, OR = 1.01 (0.68-1.49). There was no association between the estimated proportion of linked cases and testing rates. WGS can be used as a novel surveillance tool to identify varying rates of C. difficile transmission between institutions and therefore to allow targeted efforts to reduce CDI incidence. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  5. Identification of Escherichia coli and Shigella Species from Whole-Genome Sequences.

    Science.gov (United States)

    Chattaway, Marie A; Schaefer, Ulf; Tewolde, Rediat; Dallman, Timothy J; Jenkins, Claire

    2017-02-01

    Escherichia coli and Shigella species are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species of Shigella are therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982 Escherichia coli and Shigella sp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasive E. coli isolates that were misidentified as Shigella flexneri or S. boydii by the kmer ID, and 8 were S. flexneri isolates misidentified by TB&S as S. boydii due to nonfunctional S. flexneri O antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising both S. boydii and S. dysenteriae strains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data. Shigella can be differentiated from E. coli and accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species of Shigella, and identified emerging pathoadapted lineages. © Crown copyright 2017.

  6. Advanced Whole-Genome Sequencing and Analysis of Fetal Genomes from Amniotic Fluid.

    Science.gov (United States)

    Mao, Qing; Chin, Robert; Xie, Weiwei; Deng, Yuqing; Zhang, Wenwei; Xu, Huixin; Zhang, Rebecca Yu; Shi, Quan; Peters, Erin E; Gulbahce, Natali; Li, Zhenyu; Chen, Fang; Drmanac, Radoje; Peters, Brock A

    2018-04-01

    Amniocentesis is a common procedure, the primary purpose of which is to collect cells from the fetus to allow testing for abnormal chromosomes, altered chromosomal copy number, or a small number of genes that have small single- to multibase defects. Here we demonstrate the feasibility of generating an accurate whole-genome sequence of a fetus from either the cellular or cell-free DNA (cfDNA) of an amniotic sample. cfDNA and DNA isolated from the cell pellet of 31 amniocenteses were sequenced to approximately 50× genome coverage by use of the Complete Genomics nanoarray platform. In a subset of the samples, long fragment read libraries were generated from DNA isolated from cells and sequenced to approximately 100× genome coverage. Concordance of variant calls between the 2 DNA sources and with parental libraries was >96%. Two fetal genomes were found to harbor potentially detrimental variants in chromodomain helicase DNA binding protein 8 ( CHD8 ) and LDL receptor-related protein 1 ( LRP1 ), variations of which have been associated with autism spectrum disorder and keratosis pilaris atrophicans, respectively. We also discovered drug sensitivities and carrier information of fetuses for a variety of diseases. We were able to elucidate the complete genome sequence of 31 fetuses from amniotic fluid and demonstrate that the cfDNA or DNA from the cell pellet can be analyzed with little difference in quality. We believe that current technologies could analyze this material in a highly accurate and complete manner and that analyses like these should be considered for addition to current amniocentesis procedures. © 2018 American Association for Clinical Chemistry.

  7. Application of whole genome sequence data in analyzing the molecular epidemiology of Shiga toxin-producing Escherichia coli O157:H7/H.

    Science.gov (United States)

    Yokoyama, Eiji; Hirai, Shinichiro; Ishige, Taichiro; Murakami, Satoshi

    2018-01-02

    Seventeen clusters of Shiga toxin-producing Escherichia coli O157:H7/- (O157) strains, determined by cluster analysis of pulsed-field gel electrophoresis patterns, were analyzed using whole genome sequence (WGS) data to investigate this pathogen's molecular epidemiology. The 17 clusters included 136 strains containing strains from nine outbreaks, with each outbreak caused by a single source contaminated with the organism, as shown by epidemiological contact surveys. WGS data of these strains were used to identify single nucleotide polymorphisms (SNPs) by two methods: short read data were directly mapped to a reference genome (mapping derived SNPs) and common SNPs between the mapping derived SNPs and SNPs in assembled data of short read data (common SNPs). Among both SNPs, those that were detected in genes with a gap were excluded to remove ambiguous SNPs from further analysis. The effectiveness of both SNPs was investigated among all the concatenated SNPs that were detected (whole SNP set); SNPs were divided into three categories based on the genes in which they were located (i.e., backbone SNP set, O-island SNP set, and mobile element SNP set); and SNPs in non-coding regions (intergenic region SNP set). When SNPs from strains isolated from the nine single source derived outbreaks were analyzed using an unweighted pair group method with arithmetic mean tree (UPGMA) and a minimum spanning tree (MST), the maximum pair-wise distances of the backbone SNP set of the mapping derived SNPs were significantly smaller than those of the whole and intergenic region SNP set on both UPGMAs and MSTs. This significant difference was also observed when the backbone SNP set of the common SNPs were examined (Steel-Dwass test, P≤0.01). When the maximum pair-wise distances were compared between the mapping derived and common SNPs, significant differences were observed in those of the whole, mobile element, and intergenic region SNP set (Wilcoxon signed rank test, P≤0.01). When all

  8. Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing.

    Science.gov (United States)

    Zhang, Tifu; Gu, Minfeng; Liu, Yuhe; Lv, Yuanda; Zhou, Ling; Lu, Haiyan; Liang, Shuaiqiang; Bao, Huabin; Zhao, Han

    2017-09-05

    Quinoa (Chenopodium quinoa Willd.) is a balanced nutritional crop, but its breeding improvement has been limited by the lack of information on its genetics and genomics. Therefore, it is necessary to obtain knowledge on genomic variation, population structure, and genetic diversity and to develop novel Insertion/Deletion (InDel) markers for quinoa by whole-genome re-sequencing. We re-sequenced 11 quinoa accessions and obtained a coverage depth between approximately 7× to 23× the quinoa genome. Based on the 1453-megabase (Mb) assembly from the reference accession Riobamba, 8,441,022 filtered bi-allelic single nucleotide polymorphisms (SNPs) and 842,783 filtered InDels were identified, with an estimated SNP and InDel density of 5.81 and 0.58 per kilobase (kb). From the genomic InDel variations, 85 dimorphic InDel markers were newly developed and validated. Together with the 62 simple sequence repeat (SSR) markers reported, a total of 147 markers were used for genotyping the 129 quinoa accessions. Molecular grouping analysis showed classification into two major groups, the Andean highland (composed of the northern and southern highland subgroups) and Chilean coastal, based on combined STRUCTURE, phylogenetic tree and PCA (Principle Component Analysis) analyses. Further analysis of the genetic diversity exhibited a decreasing tendency from the Chilean coast group to the Andean highland group, and the gene flow between subgroups was more frequent than that between the two subgroups and the Chilean coastal group. The majority of the variations (approximately 70%) were found through an analysis of molecular variation (AMOVA) due to the diversity between the groups. This was congruent with the observation of a highly significant F ST value (0.705) between the groups, demonstrating significant genetic differentiation between the Andean highland type of quinoa and the Chilean coastal type. Moreover, a core set of 16 quinoa germplasms that capture all 362 alleles was

  9. Whole Genome Sequencing Based Characterization of Extensively Drug-Resistant Mycobacterium tuberculosis Isolates from Pakistan

    KAUST Repository

    Ali, Asho; Hasan, Zahra; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant A.; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G.; Hasan, Rumina

    2015-01-01

    Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91-94 codons in 81% of strains; four strains had only gyr B mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded

  10. Whole Genome Sequencing Based Characterization of Extensively Drug-Resistant Mycobacterium tuberculosis Isolates from Pakistan

    KAUST Repository

    Ali, Asho

    2015-02-26

    Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91-94 codons in 81% of strains; four strains had only gyr B mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded

  11. Whole-Genome Sequencing of Invasion-Resistant Cells Identifies Laminin α2 as a Host Factor for Bacterial Invasion

    DEFF Research Database (Denmark)

    van Wijk, Xander M.; Döhrmann, Simon; Hallstrom, Bjorn

    2017-01-01

    cells. Whole-genome sequencing and transcriptome sequencing (RNA-Seq) uncovered a deletion in the gene encoding the laminin subunit α2 (Lama2) that eliminated much of domain L4a. Silencing of the long Lama2 isoform in wild-type cells strongly reduced bacterial invasion, whereas transfection with human...... LAMA2 cDNA significantly enhanced invasion in pgsA745 cells. The addition of exogenous laminin-α2β1γ1/laminin-α2β2γ1 strongly increased bacterial invasion in CHO cells, as well as in human alveolar basal epithelial and human brain microvascular endothelial cells. Thus, the L4a domain in laminin α2...

  12. Whole-genome comparison of urinary pathogenic Escherichia coli and faecal isolates of UTI patients and healthy controls

    DEFF Research Database (Denmark)

    Nielsen, Karen Leth; Stegger, Marc; Kiil, Kristoffer

    2017-01-01

    The faecal flora is a common reservoir for urinary tract infection (UTI), and Escherichia coli (E. coli) is frequently found in this reservoir without causing extraintestinal infection. We investigated these E. coli reservoirs by whole-genome sequencing a large collection of E. coli from healthy...... controls (faecal), who had never previously had UTI, and from UTI patients (faecal and urinary) sampled from the same geographical area. We compared MLST types, phylogenetic relationship, accessory genome content and FimH type between patient and control faecal isolates as well as between UTI and faecal......-only isolates, respectively. Comparison of the accessory genome of UTI isolates to faecal isolates revealed 35 gene families which were significantly more prevalent in the UTI isolates compared to the faecal isolates, although none of these were unique to one of the two groups. Of these 35, 22 belonged...

  13. Gene set analysis of purine and pyrimidine antimetabolites cancer therapies.

    Science.gov (United States)

    Fridley, Brooke L; Batzler, Anthony; Li, Liang; Li, Fang; Matimba, Alice; Jenkins, Gregory D; Ji, Yuan; Wang, Liewei; Weinshilboum, Richard M

    2011-11-01

    Responses to therapies, either with regard to toxicities or efficacy, are expected to involve complex relationships of gene products within the same molecular pathway or functional gene set. Therefore, pathways or gene sets, as opposed to single genes, may better reflect the true underlying biology and may be more appropriate units for analysis of pharmacogenomic studies. Application of such methods to pharmacogenomic studies may enable the detection of more subtle effects of multiple genes in the same pathway that may be missed by assessing each gene individually. A gene set analysis of 3821 gene sets is presented assessing the association between basal messenger RNA expression and drug cytotoxicity using ethnically defined human lymphoblastoid cell lines for two classes of drugs: pyrimidines [gemcitabine (dFdC) and arabinoside] and purines [6-thioguanine and 6-mercaptopurine]. The gene set nucleoside-diphosphatase activity was found to be significantly associated with both dFdC and arabinoside, whereas gene set γ-aminobutyric acid catabolic process was associated with dFdC and 6-thioguanine. These gene sets were significantly associated with the phenotype even after adjusting for multiple testing. In addition, five associated gene sets were found in common between the pyrimidines and two gene sets for the purines (3',5'-cyclic-AMP phosphodiesterase activity and γ-aminobutyric acid catabolic process) with a P value of less than 0.0001. Functional validation was attempted with four genes each in gene sets for thiopurine and pyrimidine antimetabolites. All four genes selected from the pyrimidine gene sets (PSME3, CANT1, ENTPD6, ADRM1) were validated, but only one (PDE4D) was validated for the thiopurine gene sets. In summary, results from the gene set analysis of pyrimidine and purine therapies, used often in the treatment of various cancers, provide novel insight into the relationship between genomic variation and drug response.

  14. Whole-Genome Resequencing of Experimental Populations Reveals Polygenic Basis of Egg-Size Variation in Drosophila melanogaster.

    Science.gov (United States)

    Jha, Aashish R; Miles, Cecelia M; Lippert, Nodia R; Brown, Christopher D; White, Kevin P; Kreitman, Martin

    2015-10-01

    Complete genome resequencing of populations holds great promise in deconstructing complex polygenic traits to elucidate molecular and developmental mechanisms of adaptation. Egg size is a classic adaptive trait in insects, birds, and other taxa, but its highly polygenic architecture has prevented high-resolution genetic analysis. We used replicated experimental evolution in Drosophila melanogaster and whole-genome sequencing to identify consistent signatures of polygenic egg-size adaptation. A generalized linear-mixed model revealed reproducible allele frequency differences between replicated experimental populations selected for large and small egg volumes at approximately 4,000 single nucleotide polymorphisms (SNPs). Several hundred distinct genomic regions contain clusters of these SNPs and have lower heterozygosity than the genomic background, consistent with selection acting on polymorphisms in these regions. These SNPs are also enriched among genes expressed in Drosophila ovaries and many of these genes have well-defined functions in Drosophila oogenesis. Additional genes regulating egg development, growth, and cell size show evidence of directional selection as genes regulating these biological processes are enriched for highly differentiated SNPs. Genetic crosses performed with a subset of candidate genes demonstrated that these genes influence egg size, at least in the large genetic background. These findings confirm the highly polygenic architecture of this adaptive trait, and suggest the involvement of many novel candidate genes in regulating egg size. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Whole genome sequencing and bioinformatics analysis of two Egyptian genomes.

    Science.gov (United States)

    ElHefnawi, Mahmoud; Jeon, Sungwon; Bhak, Youngjune; ElFiky, Asmaa; Horaiz, Ahmed; Jun, JeHoon; Kim, Hyunho; Bhak, Jong

    2018-05-15

    We report two Egyptian male genomes (EGP1 and EGP2) sequenced at ~ 30× sequencing depths. EGP1 had 4.7 million variants, where 198,877 were novel variants while EGP2 had 209,109 novel variants out of 4.8 million variants. The mitochondrial haplogroup of the two individuals were identified to be H7b1 and L2a1c, respectively. We also identified the Y haplogroup of EGP1 (R1b) and EGP2 (J1a2a1a2 > P58 > FGC11). EGP1 had a mutation in the NADH gene of the mitochondrial genome ND4 (m.11778 G > A) that causes Leber's hereditary optic neuropathy. Some SNPs shared by the two genomes were associated with an increased level of cholesterol and triglycerides, probably related with Egyptians obesity. Comparison of these genomes with African and Western-Asian genomes can provide insights on Egyptian ancestry and genetic history. This resource can be used to further understand genomic diversity and functional classification of variants as well as human migration and evolution across Africa and Western-Asia. Copyright © 2017. Published by Elsevier B.V.

  16. Whole-genome regression and prediction methods applied to plant and animal breeding

    NARCIS (Netherlands)

    Los Campos, De G.; Hickey, J.M.; Pong-Wong, R.; Daetwyler, H.D.; Calus, M.P.L.

    2013-01-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding, and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of

  17. Direct whole-genome sequencing of Plasmodium falciparum specimens from dried erythrocyte spots

    DEFF Research Database (Denmark)

    Nag, Sidsel; Kofoed, Poul Erik; Ursing, Johan

    2018-01-01

    -infected individuals living in rural areas, away from main infrastructure and the electrical grid. The aim of this study was to describe a low-tech procedure to sample P. falciparum specimens for direct whole genome sequencing (WGS), without use of electricity and cold-chain. Methods: Venous blood samples were...

  18. Bos taurus strain:dairy beef (cattle): 1000 Bull Genomes Run 2, Bovine Whole Genome Sequence

    NARCIS (Netherlands)

    Bouwman, A.C.; Daetwyler, H.D.; Chamberlain, Amanda J.; Ponce, Carla Hurtado; Sargolzaei, Mehdi; Schenkel, Flavio S.; Sahana, Goutam; Govignon-Gion, Armelle; Boitard, Simon; Dolezal, Marlies; Pausch, Hubert; Brøndum, Rasmus F.; Bowman, Phil J.; Thomsen, Bo; Guldbrandtsen, Bernt; Lund, Mogens S.; Servin, Bertrand; Garrick, Dorian J.; Reecy, James M.; Vilkki, Johanna; Bagnato, Alessandro; Wang, Min; Hoff, Jesse L.; Schnabel, Robert D.; Taylor, Jeremy F.; Vinkhuyzen, Anna A.E.; Panitz, Frank; Bendixen, Christian; Holm, Lars-Erik; Gredler, Birgit; Hozé, Chris; Boussaha, Mekki; Sanchez, Marie Pierre; Rocha, Dominique; Capitan, Aurelien; Tribout, Thierry; Barbat, Anne; Croiseau, Pascal; Drögemüller, Cord; Jagannathan, Vidhya; Vander Jagt, Christy; Crowley, John J.; Bieber, Anna; Purfield, Deirdre C.; Berry, Donagh P.; Emmerling, Reiner; Götz, Kay Uwe; Frischknecht, Mirjam; Russ, Ingolf; Sölkner, Johann; Tassell, van Curtis P.; Fries, Ruedi; Stothard, Paul; Veerkamp, R.F.; Boichard, Didier; Goddard, Mike E.; Hayes, Ben J.

    2014-01-01

    Whole genome sequence data (BAM format) of 234 bovine individuals aligned to UMD3.1. The aim of the study was to identify genetic variants (SNPs and indels) for downstream analysis such as imputation, GWAS, and detection of lethal recessives. Additional sequences for later 1000 bull genomes runs can

  19. Genotype call for chromosomal deletions using read-depth from whole genome sequence variants in cattle

    DEFF Research Database (Denmark)

    Mesbah-Uddin, Md; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2018-01-01

    We presented a deletion genotyping (copy-number estimation) method that leverages population-scale whole genome sequence variants data from 1K bull genomes project (1KBGP) to build reference panel for imputation. To estimate deletion-genotype likelihood, we extracted read-depth (RD) data of all...

  20. Tolerance of Whole-Genome Doubling Propagates Chromosomal Instability and Accelerates Cancer Genome Evolution

    DEFF Research Database (Denmark)

    Dewhurst, Sally M.; McGranahan, Nicholas; Burrell, Rebecca A.

    2014-01-01

    The contribution of whole-genome doubling to chromosomal instability (CIN) and tumor evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells...

  1. Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits

    NARCIS (Netherlands)

    I. Tachmazidou (Ioanna); Süveges, D. (Dániel); J. Min (Josine); G.R.S. Ritchie (Graham R.S.); Steinberg, J. (Julia); K. Walter (Klaudia); V. Iotchkova (Valentina); J.A. Schwartzentruber (Jeremy); J. Huang (Jian); Y. Memari (Yasin); McCarthy, S. (Shane); Crawford, A.A. (Andrew A.); C. Bombieri (Cristina); M. Cocca (Massimiliano); A.-E. Farmaki (Aliki-Eleni); T.R. Gaunt (Tom); P. Jousilahti (Pekka); M.N. Kooijman (Marjolein ); Lehne, B. (Benjamin); G. Malerba (Giovanni); S. Männistö (Satu); A. Matchan (Angela); M.C. Medina-Gomez (Carolina); S. Metrustry (Sarah); A. Nag (Abhishek); I. Ntalla (Ioanna); L. Paternoster (Lavinia); N.W. Rayner (Nigel William); C. Sala (Cinzia); W.R. Scott (William R.); H.A. Shihab (Hashem A.); L. Southam (Lorraine); B. St Pourcain (Beate); M. Traglia (Michela); K. Trajanoska (Katerina); Zaza, G. (Gialuigi); W. Zhang (Weihua); M.S. Artigas; Bansal, N. (Narinder); M. Benn (Marianne); Chen, Z. (Zhongsheng); P. Danecek (Petr); Lin, W.-Y. (Wei-Yu); A. Locke (Adam); J. Luan (Jian'An); A.K. Manning (Alisa); Mulas, A. (Antonella); C. Sidore (Carlo); A. Tybjaerg-Hansen; A. Varbo (Anette); M. Zoledziewska (Magdalena); C. Finan (Chris); Hatzikotoulas, K. (Konstantinos); A.E. Hendricks (Audrey E.); J.P. Kemp (John); A. Moayyeri (Alireza); Panoutsopoulou, K. (Kalliope); Szpak, M. (Michal); S.G. Wilson (Scott); M. Boehnke (Michael); F. Cucca (Francesco); Di Angelantonio, E. (Emanuele); C. Langenberg (Claudia); C.M. Lindgren (Cecilia M.); McCarthy, M.I. (Mark I.); A.P. Morris (Andrew); B.G. Nordestgaard (Børge); R.A. Scott (Robert); M.D. Tobin (Martin); N.J. Wareham (Nick); P.R. Burton (Paul); J.C. Chambers (John); Smith, G.D. (George Davey); G.V. Dedoussis (George); J.F. Felix (Janine); O.H. Franco (Oscar); Gambaro, G. (Giovanni); P. Gasparini (Paolo); C.J. Hammond (Christopher J.); A. Hofman (Albert); V.W.V. Jaddoe (Vincent); M.E. Kleber (Marcus); J.S. Kooner (Jaspal S.); M. Perola (Markus); C.L. Relton (Caroline); S.M. Ring (Susan); F. Rivadeneira Ramirez (Fernando); V. Salomaa (Veikko); T.D. Spector (Timothy); O. Stegle (Oliver); D. Toniolo (Daniela); A.G. Uitterlinden (André); I.E. Barroso (Inês); C.M.T. Greenwood (Celia); Perry, J.R.B. (John R.B.); Walker, B.R. (Brian R.); A.S. Butterworth (Adam); Y. Xue (Yali); R. Durbin (Richard); K.S. Small (Kerrin); N. Soranzo (Nicole); N.J. Timpson (Nicholas); E. Zeggini (Eleftheria)

    2016-01-01

    textabstractDeep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the

  2. Whole-Genome Sequence and Classification of 11 Endophytic Bacteria from Poison Ivy (Toxicodendron radicans).

    Science.gov (United States)

    Tran, Phuong N; Tan, Nicholas E H; Lee, Yin Peng; Gan, Han Ming; Polter, Steven J; Dailey, Lucas K; Hudson, André O; Savka, Michael A

    2015-11-19

    Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy. Copyright © 2015 Tran et al.

  3. Whole-Genome Sequence and Classification of 11 Endophytic Bacteria from Poison Ivy (Toxicodendron radicans)

    OpenAIRE

    Tran, Phuong N.; Tan, Nicholas E. H.; Lee, Yin Peng; Gan, Han Ming; Polter, Steven J.; Dailey, Lucas K.; Hudson, Andr? O.; Savka, Michael A.

    2015-01-01

    Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy.

  4. The effect of whole genome amplification on samples originating from more than one donor

    DEFF Research Database (Denmark)

    Thacker, C.R.; Balogh, M.K.; Børsting, Claus

    2006-01-01

    In this study, the GenomiPhi(TM) DNA Amplification Kit (Amersham Biosciences) was used to investigate the potential of whole genome amplification (WGA) when considering samples originating from more than one donor. DNA was extracted from blood samples, quantified and normalised before being mixed...

  5. Evolutionary insight from whole-genome sequencing of Pseudomonas aeruginosa from cystic fibrosis patients

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Madsen Sommer, Lea Mette; Jelsbak, Lars

    2015-01-01

    is suggested to be due to the large genetic repertoire of P. aeruginosa and its ability to genetically adapt to the host environment. Here, we review the recent work that has applied whole-genome sequencing to understand P. aeruginosa population genomics, within-host microevolution and diversity, mutational...

  6. Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits

    DEFF Research Database (Denmark)

    Tachmazidou, Ioanna; Süveges, Dániel; Min, Josine L

    2017-01-01

    Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader alleli...

  7. Whole genome analysis of Klebsiella pneumoniae T2-1-1 from human oral cavity

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2016-03-01

    Full Text Available Klebsiella pneumoniae T2-1-1 was isolated from the human tongue debris and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession JAQL00000000. Keywords: Human tongue surface, Oral cavity, Oral bacteria, Virulence

  8. Challenges and opportunities for whole-genome sequencing–based surveillance of antibiotic resistance

    NARCIS (Netherlands)

    Schürch, Anita C.; van Schaik, Willem

    2017-01-01

    Infections caused by drug-resistant bacteria are increasingly reported across the planet, and drug-resistant bacteria are recognized to be a major threat to public health and modern medicine. In this review, we discuss how whole-genome sequencing (WGS)–based approaches can contribute to the

  9. Rapid whole genome sequencing for the detection and characterization of microorganisms directly from clinical samples

    DEFF Research Database (Denmark)

    Hasman, Henrik; Saputra, Dhany; Sicheritz-Pontén, Thomas

    2014-01-01

    Whole genome sequencing (WGS) is becoming available as a routine tool for clinical microbiology. If applied directly on clinical samples this could further reduce diagnostic time and thereby improve control and treatment. A major bottle-neck is the availability of fast and reliable bioinformatics...

  10. Effective Normalization for Copy Number Variation Detection from Whole Genome Sequencing

    NARCIS (Netherlands)

    Janevski, A.; Varadan, V.; Kamalakaran, S.; Banerjee, N.; Dimitrova, D.

    2012-01-01

    Background Whole genome sequencing enables a high resolution view ofthe human genome and provides unique insights into genome structureat an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools while validatedalso include a number of

  11. Whole-genome sequence of the bacteriophage-sensitive strain Campylobacter jejuni NCTC12662

    DEFF Research Database (Denmark)

    Gencay, Yilmaz Emre; Sørensen, Martine C.H.; Brøndsted, Lone

    2017-01-01

    Campylobacter jejuni NCTC12662 has been the choice bacteriophage isolation strain due to its susceptibility to C. jejuni bacteriophages. This trait makes it a good candidate for studying bacteriophage-host interactions. We report here the whole-genome sequence of NCTC12662, allowing future...

  12. MAGMA: generalized gene-set analysis of GWAS data.

    NARCIS (Netherlands)

    de Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D.

    2015-01-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical

  13. MAGMA: Generalized Gene-Set Analysis of GWAS Data

    NARCIS (Netherlands)

    de Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D.

    2015-01-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical

  14. SNP detection for massively parallel whole-genome resequencing

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Fang, Xiaodong

    2009-01-01

    -genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All...... of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36x coverage and assembled a high-quality nonrepetitive consensus sequence for 92.......25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered...

  15. A Bayesian antedependence model for whole genome prediction.

    Science.gov (United States)

    Yang, Wenzhao; Tempelman, Robert J

    2012-04-01

    Hierarchical mixed effects models have been demonstrated to be powerful for predicting genomic merit of livestock and plants, on the basis of high-density single-nucleotide polymorphism (SNP) marker panels, and their use is being increasingly advocated for genomic predictions in human health. Two particularly popular approaches, labeled BayesA and BayesB, are based on specifying all SNP-associated effects to be independent of each other. BayesB extends BayesA by allowing a large proportion of SNP markers to be associated with null effects. We further extend these two models to specify SNP effects as being spatially correlated due to the chromosomally proximal effects of causal variants. These two models, that we respectively dub as ante-BayesA and ante-BayesB, are based on a first-order nonstationary antedependence specification between SNP effects. In a simulation study involving 20 replicate data sets, each analyzed at six different SNP marker densities with average LD levels ranging from r(2) = 0.15 to 0.31, the antedependence methods had significantly (P 0. 24) with differences exceeding 3%. A cross-validation study was also conducted on the heterogeneous stock mice data resource (http://mus.well.ox.ac.uk/mouse/HS/) using 6-week body weights as the phenotype. The antedependence methods increased cross-validation prediction accuracies by up to 3.6% compared to their classical counterparts (P benchmark data sets and demonstrated that the antedependence methods were more accurate than their classical counterparts for genomic predictions, even for individuals several generations beyond the training data.

  16. Whole Genome Re-Sequencing and Characterization of Powdery Mildew Disease-Associated Allelic Variation in Melon.

    Directory of Open Access Journals (Sweden)

    Sathishkumar Natarajan

    Full Text Available Powdery mildew is one of the most common fungal diseases in the world. This disease frequently affects melon (Cucumis melo L. and other Cucurbitaceous family crops in both open field and greenhouse cultivation. One of the goals of genomics is to identify the polymorphic loci responsible for variation in phenotypic traits. In this study, powdery mildew disease assessment scores were calculated for four melon accessions, 'SCNU1154', 'Edisto47', 'MR-1', and 'PMR5'. To investigate the genetic variation of these accessions, whole genome re-sequencing using the Illumina HiSeq 2000 platform was performed. A total of 754,759,704 quality-filtered reads were generated, with an average of 82.64% coverage relative to the reference genome. Comparisons of the sequences for the melon accessions revealed around 7.4 million single nucleotide polymorphisms (SNPs, 1.9 million InDels, and 182,398 putative structural variations (SVs. Functional enrichment analysis of detected variations classified them into biological process, cellular component and molecular function categories. Further, a disease-associated QTL map was constructed for 390 SNPs and 45 InDels identified as related to defense-response genes. Among them 112 SNPs and 12 InDels were observed in powdery mildew responsive chromosomes. Accordingly, this whole genome re-sequencing study identified SNPs and InDels associated with defense genes that will serve as candidate polymorphisms in the search for sources of resistance against powdery mildew disease and could accelerate marker-assisted breeding in melon.

  17. Whole Genome Re-Sequencing and Characterization of Powdery Mildew Disease-Associated Allelic Variation in Melon.

    Science.gov (United States)

    Natarajan, Sathishkumar; Kim, Hoy-Taek; Thamilarasan, Senthil Kumar; Veerappan, Karpagam; Park, Jong-In; Nou, Ill-Sup

    2016-01-01

    Powdery mildew is one of the most common fungal diseases in the world. This disease frequently affects melon (Cucumis melo L.) and other Cucurbitaceous family crops in both open field and greenhouse cultivation. One of the goals of genomics is to identify the polymorphic loci responsible for variation in phenotypic traits. In this study, powdery mildew disease assessment scores were calculated for four melon accessions, 'SCNU1154', 'Edisto47', 'MR-1', and 'PMR5'. To investigate the genetic variation of these accessions, whole genome re-sequencing using the Illumina HiSeq 2000 platform was performed. A total of 754,759,704 quality-filtered reads were generated, with an average of 82.64% coverage relative to the reference genome. Comparisons of the sequences for the melon accessions revealed around 7.4 million single nucleotide polymorphisms (SNPs), 1.9 million InDels, and 182,398 putative structural variations (SVs). Functional enrichment analysis of detected variations classified them into biological process, cellular component and molecular function categories. Further, a disease-associated QTL map was constructed for 390 SNPs and 45 InDels identified as related to defense-response genes. Among them 112 SNPs and 12 InDels were observed in powdery mildew responsive chromosomes. Accordingly, this whole genome re-sequencing study identified SNPs and InDels associated with defense genes that will serve as candidate polymorphisms in the search for sources of resistance against powdery mildew disease and could accelerate marker-assisted breeding in melon.

  18. Whole-genome sequencing reveals that Shewanella haliotis Kim et al. 2007 can be considered a later heterotypic synonym of Shewanella algae Simidu et al. 1990.

    Science.gov (United States)

    Szeinbaum, Nadia; Kellum, Cailin E; Glass, Jennifer B; Janda, J Michael; DiChristina, Thomas J

    2018-04-01

    Previously, experimental DNA-DNA hybridization (DDH) between Shewanellahaliotis JCM 14758 T and Shewanellaalgae JCM 21037 T had suggested that the two strains could be considered different species, despite minimal phenotypic differences. The recent isolation of Shewanella sp. MN-01, with 99 % 16S rRNA gene identity to S. algae and S. haliotis, revealed a potential taxonomic problem between these two species. In this study, we reassessed the nomenclature of S. haliotis and S. algae using available whole-genome sequences. The whole-genome sequence of S. haliotis JCM 14758 T and ten S. algae strains showed ≥97.7 % average nucleotide identity and >78.9 % digital DDH, clearly above the recommended species thresholds. According to the rules of priority and in view of the results obtained, S. haliotis is to be considered a later heterotypic synonym of S. algae. Because the whole-genome sequence of Shewanella sp. strain MN-01 shares >99 % ANI with S. algae JCM 14758 T , it can be confidently identified as S. algae.

  19. Whole genome typing of the recently emerged Canadian serogroup W Neisseria meningitidis sequence type 11 clonal complex isolates associated with invasive meningococcal disease

    Directory of Open Access Journals (Sweden)

    Raymond S.W. Tsang

    2018-04-01

    Full Text Available Objectives: This study was performed to analyze the Canadian invasive serogroup W Neisseria meningitidis (MenW sequence type 11 (ST-11 clonal complex (CC isolates by whole genome typing and to compare Canadian isolates with similar isolates from elsewhere. Methods: Whole genome typing of 30 MenW ST-11 CC, 20 meningococcal group C (MenC ST-11 CC, and 31 MenW ST-22 CC isolates was performed on the Bacterial Isolate Genome Sequence database platform. Canadian MenW ST-11 CC isolates were compared with the 2000 MenW Hajj outbreak strain, as well as with MenW ST-11 CC from other countries. Results: Whole genome typing showed that the Canadian MenW ST-11 CC isolates were distinct from the traditional MenW ST-22 CC; they were not capsule-switched contemporary MenC strains that incorporated MenW capsules. While some recent MenW disease cases in Canada were caused by MenW ST-11 CC isolates showing relatedness to the 2000 MenW Hajj strain, many were non-Hajj isolates similar to current MenW ST-11 isolates found globally. Geographical and temporal variations in genotypes and surface protein antigen genes were found among the MenW ST-11 CC isolates. Conclusions: The current MenW ST-11 isolates did not arise by capsule switching from contemporary MenC ST-11 isolates. Both the Hajj-related and non-Hajj MenW ST-11 CC strains were associated with invasive meningococcal disease in Canada. Keywords: Neisseria meningitidis, Invasive meningococcal disease, Whole genome typing

  20. Public attitudes in Japan toward participation in whole genome sequencing studies.

    Science.gov (United States)

    Okita, Taketoshi; Ohashi, Noriko; Kabata, Daijiro; Shintani, Ayumi; Kato, Kazuto

    2018-04-13

    Recent innovations in gene analysis technology have allowed for rapid and inexpensive sequencing of entire genomes. Thus, both conducting a study using whole genome sequencing (WGS) in a large population and the clinical application of research findings from such studies are currently feasible. However, to promote WGS studies, understanding and voluntary participation by the general public is needed. Therefore, it is essential to investigate the general public's attitude toward and understanding of WGS studies. The primary goal of our research is to investigate these issues and to discover how they relate to research participation in WGS studies. A survey of awareness regarding WGS and studies using WGS was conducted with a sample of 2000 or more participants using a self-administered questionnaire posted on the Internet between February 20 and 21, 2015. Prior to the survey, we briefly explained WGS and WGS study-related issues to the respondents in order to provide them with the minimum knowledge required to answer the questionnaire. We then conducted an analysis, including cross-classification. For the question regarding interest in WGS, 46.6% of participants responded "Yes." 70.7% of all respondents said that they were interested in some kinds of findings that could be obtained from WGS studies. Regarding participation in WGS studies, 29.0% were interested in participating. The demographic factors significantly related to attitudes toward research participation were age, level of education, and employment status. The results also suggest that concerns about WGS have a positive effect on people's willingness to participate. Furthermore, it was shown that for people who were not interested in their gene-related information, concerns about WGS negatively impacted their willingness to participate. However, for people who were interested in their gene-related information, their concerns might not have impacted their willingness to participate. This research has shown

  1. The Whole-Genome Sequence of Bacillus velezensis Strain SB1216 Isolated from the Great Salt Plains of Oklahoma Reveals the Presence of a Novel Extracellular RNase with Antitumor Activity.

    Science.gov (United States)

    Marasini, Daya; Cornell, Carolyn R; Oyewole, Opeoluwa; Sheaff, Robert J; Fakhr, Mohamed K

    2017-11-22

    The whole-genome sequence of Bacillus velezensis strain SB1216, isolated from the Great Salt Plains of Oklahoma, showed the presence of a 3,814,720-bp circular chromosome and no plasmids. The presence of a novel 870-bp extracellular RNase gene is predicted to be responsible for this strain's antitumor activity. Copyright © 2017 Marasini et al.

  2. The Whole-Genome Sequence of Bacillus velezensis Strain SB1216 Isolated from the Great Salt Plains of Oklahoma Reveals the Presence of a Novel Extracellular RNase with Antitumor Activity

    OpenAIRE

    Marasini, Daya; Cornell, Carolyn R.; Oyewole, Opeoluwa; Sheaff, Robert J.; Fakhr, Mohamed K.

    2017-01-01

    ABSTRACT The whole-genome sequence of Bacillus velezensis strain SB1216, isolated from the Great Salt Plains of Oklahoma, showed the presence of a 3,814,720-bp circular chromosome and no plasmids. The presence of a novel 870-bp extracellular RNase gene is predicted to be responsible for this strain’s antitumor activity.

  3. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    Directory of Open Access Journals (Sweden)

    Mario Huerta

    2014-01-01

    Full Text Available Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  4. High diversity of beta-lactamases in the General Hospital Vienna verified by whole genome sequencing and statistical analysis.

    Science.gov (United States)

    Barišić, Ivan; Mitteregger, Dieter; Hirschl, Alexander M; Noehammer, Christa; Wiesinger-Mayr, Herbert

    2014-10-01

    The detailed analysis of antibiotic resistance mechanisms is essential for understanding the underlying evolutionary processes, the implementation of appropriate intervention strategies and to guarantee efficient treatment options. In the present study, 110 β-lactam-resistant, clinical isolates of Enterobacteriaceae sampled in 2011 in one of Europe's largest hospitals, the General Hospital Vienna, were screened for the presence of 31 β-lactamase genes. Twenty of those isolates were selected for whole genome sequencing (WGS). In addition, the number of β-lactamase genes was estimated using biostatistical models. The carbapenemase genes blaKPC-2, blaKPC-3, and blaVIM-4 were identified in carbapenem-resistant and intermediate susceptible isolates, blaOXA-72 in an extended-spectrum β-lactamase (ESBL)-positive one. Furthermore, the observed high prevalence of the acquired blaDHA-1 and blaCMY AmpC β-lactamase genes (70%) in phenotypically AmpC-positive isolates is alarming due to their capability to become carbapenem-resistant upon changes in membrane permeability. The statistical analyses revealed that approximately 55% of all β-lactamase genes present in the General Hospital Vienna were detected by this study. In summary, this work gives a very detailed picture on the disseminated β-lactamases and other resistance genes in one of Europe's largest hospitals. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus.

    Science.gov (United States)

    Montero-Pau, Javier; Blanca, José; Bombarely, Aureliano; Ziarsolo, Peio; Esteras, Cristina; Martí-Gómez, Carlos; Ferriol, María; Gómez, Pedro; Jamilena, Manuel; Mueller, Lukas; Picó, Belén; Cañizares, Joaquín

    2017-11-07

    The Cucurbita genus (squashes, pumpkins and gourds) includes important domesticated species such as C. pepo, C. maxima and C. moschata. In this study, we present a high-quality draft of the zucchini (C. pepo) genome. The assembly has a size of 263 Mb, a scaffold N50 of 1.8 Mb and 34 240 gene models. It includes 92% of the conserved BUSCO core gene set, and it is estimated to cover 93.0% of the genome. The genome is organized in 20 pseudomolecules that represent 81.4% of the assembly, and it is integrated with a genetic map of 7718 SNPs. Despite the small genome size, three independent lines of evidence support that the C. pepo genome is the result of a whole-genome duplication: the topology of the gene family phylogenies, the karyotype organization and the distribution of 4DTv distances. Additionally, 40 transcriptomes of 12 species of the genus were assembled and analysed together with all the other published genomes of the Cucurbitaceae family. The duplication was detected in all the Cucurbita species analysed, including C. maxima and C. moschata, but not in the more distant cucurbits belonging to the Cucumis and Citrullus genera, and it is likely to have occurred 30 ± 4 Mya in the ancestral species that gave rise to the genus. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Whole-genome analyses of DS-1-like human G2P[4] and G8P[4] rotavirus strains from Eastern, Western and Southern Africa.

    Science.gov (United States)

    Nyaga, Martin M; Stucker, Karla M; Esona, Mathew D; Jere, Khuzwayo C; Mwinyi, Bakari; Shonhai, Annie; Tsolenyanu, Enyonam; Mulindwa, Augustine; Chibumbya, Julia N; Adolfine, Hokororo; Halpin, Rebecca A; Roy, Sunando; Stockwell, Timothy B; Berejena, Chipo; Seheri, Mapaseka L; Mwenda, Jason M; Steele, A Duncan; Wentworth, David E; Mphahlele, M Jeffrey

    2014-10-01

    Group A rotaviruses (RVAs) with distinct G and P genotype combinations have been reported globally. We report the genome composition and possible origin of seven G8P[4] and five G2P[4] human RVA strains based on the genetic evolution of all 11 genome segments at the nucleotide level. Twelve RVA ELISA positive stool samples collected in the representative countries of Eastern, Southern and West Africa during the 2007-2012 surveillance seasons were subjected to sequencing using the Ion Torrent PGM and Illumina MiSeq platforms. A reference-based assembly was performed using CLC Bio's clc_ref_assemble_long program, and full-genome consensus sequences were obtained. With the exception of the neutralising antigen, VP7, all study strains exhibited the DS-1-like genome constellation (P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2) and clustered phylogenetically with reference strains having a DS-1-like genetic backbone. Comparison of the nucleotide and amino acid sequences with selected global cognate genome segments revealed nucleotide and amino acid sequence identities of 81.7-100 % and 90.6-100 %, respectively, with NSP4 gene segment showing the most diversity among the strains. Bayesian analyses of all gene sequences to estimate the time of divergence of the lineage indicated that divergence times ranged from 16 to 44 years, except for the NSP4 gene where the lineage seemed to arise in the more distant past at an estimated 203 years ago. However, the long-term effects of changes found within the NSP4 genome segment should be further explored, and thus we recommend continued whole-genome analyses from larger sample sets to determine the evolutionary mechanisms of the DS-1-like strains collected in Africa.

  7. MAGMA: generalized gene-set analysis of GWAS data.

    Science.gov (United States)

    de Leeuw, Christiaan A; Mooij, Joris M; Heskes, Tom; Posthuma, Danielle

    2015-04-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical power for most methods is strongly affected by linkage disequilibrium between markers, multi-marker associations are often hard to detect, and the reliance on permutation to compute p-values tends to make the analysis computationally very expensive. To address these issues we have developed MAGMA, a novel tool for gene and gene-set analysis. The gene analysis is based on a multiple regression model, to provide better statistical performance. The gene-set analysis is built as a separate layer around the gene analysis for additional flexibility. This gene-set analysis also uses a regression structure to allow generalization to analysis of continuous properties of genes and simultaneous analysis of multiple gene sets and other gene properties. Simulations and an analysis of Crohn's Disease data are used to evaluate the performance of MAGMA and to compare it to a number of other gene and gene-set analysis tools. The results show that MAGMA has significantly more power than other tools for both the gene and the gene-set analysis, identifying more genes and gene sets associated with Crohn's Disease while maintaining a correct type 1 error rate. Moreover, the MAGMA analysis of the Crohn's Disease data was found to be considerably faster as well.

  8. Whole Genome Analyses of a Well-Differentiated Liposarcoma Reveals Novel SYT1 and DDR2 Rearrangements

    Science.gov (United States)

    Egan, Jan B.; Barrett, Michael T.; Champion, Mia D.; Middha, Sumit; Lenkiewicz, Elizabeth; Evers, Lisa; Francis, Princy; Schmidt, Jessica; Shi, Chang-Xin; Van Wier, Scott; Badar, Sandra; Ahmann, Gregory; Kortuem, K. Martin; Boczek, Nicole J.; Fonseca, Rafael; Craig, David W.; Carpten, John D.; Borad, Mitesh J.; Stewart, A. Keith

    2014-01-01

    Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR) where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2. PMID:24505276

  9. Whole genome analyses of a well-differentiated liposarcoma reveals novel SYT1 and DDR2 rearrangements.

    Directory of Open Access Journals (Sweden)

    Jan B Egan

    Full Text Available Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2.

  10. Maximum likelihood phylogenetic reconstruction from high-resolution whole-genome data and a tree of 68 eukaryotes.

    Science.gov (United States)

    Lin, Yu; Hu, Fei; Tang, Jijun; Moret, Bernard M E

    2013-01-01

    The rapid accumulation of whole-genome data has renewed interest in the study of the evolution of genomic architecture, under such events as rearrangements, duplications, losses. Comparative genomics, evolutionary biology, and cancer research all require tools to elucidate the mechanisms, history, and consequences of those evolutionary events, while phylogenetics could use whole-genome data to enhance its picture of the Tree of Life. Current approaches in the area of phylogenetic analysis are limited to very small collections of closely related genomes using low-resolution data (typically a few hundred syntenic blocks); moreover, these approaches typically do not include duplication and loss events. We describe a maximum likelihood (ML) approach for phylogenetic analysis that takes into account genome rearrangements as well as duplications, insertions, and losses. Our approach can handle high-resolution genomes (with 40,000 or more markers) and can use in the same analysis genomes with very different numbers of markers. Because our approach uses a standard ML reconstruction program (RAxML), it scales up to large trees. We present the results of extensive testing on both simulated and real data showing that our approach returns very accurate results very quickly. In particular, we analyze a dataset of 68 high-resolution eukaryotic genomes, with from 3,000 to 42,000 genes, from the eGOB database; the analysis, including bootstrapping, takes just 3 hours on a desktop system and returns a tree in agreement with all well supported branches, while also suggesting resolutions for some disputed placements.

  11. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel

  12. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  13. Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data.

    Science.gov (United States)

    Pesesky, Mitchell W; Hussain, Tahir; Wallace, Meghan; Patel, Sanket; Andleeb, Saadia; Burnham, Carey-Ann D; Dantas, Gautam

    2016-01-01

    The time-to-result for culture-based microorganism recovery and phenotypic antimicrobial susceptibility testing necessitates initial use of empiric (frequently broad-spectrum) antimicrobial therapy. If the empiric therapy is not optimal, this can lead to adverse patient outcomes and contribute to increasing antibiotic resistance in pathogens. New, more rapid technologies are emerging to meet this need. Many of these are based on identifying resistance genes, rather than directly assaying resistance phenotypes, and thus require interpretation to translate the genotype into treatment recommendations. These interpretations, like other parts of clinical diagnostic workflows, are likely to be increasingly automated in the future. We set out to evaluate the two major approaches that could be amenable to automation pipelines: rules-based methods and machine learning methods. The rules-based algorithm makes predictions based upon current, curated knowledge of Enterobacteriaceae resistance genes. The machine-learning algorithm predicts resistance and susceptibility based on a model built from a training set of variably resistant isolates. As our test set, we used whole genome sequence data from 78 clinical Enterobacteriaceae isolates, previously identified to represent a variety of phenotypes, from fully-susceptible to pan-resistant strains for the antibiotics tested. We tested three antibiotic resistance determinant databases for their utility in identifying the complete resistome for each isolate. The predictions of the rules-based and machine learning algorithms for these isolates were compared to results of phenotype-based diagnostics. The rules based and machine-learning predictions achieved agreement with standard-of-care phenotypic diagnostics of 89.0 and 90.3%, respectively, across twelve antibiotic agents from six major antibiotic classes. Several sources of disagreement between the algorithms were identified. Novel variants of known resistance factors and

  14. Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data

    Directory of Open Access Journals (Sweden)

    Mitchell Pesesky

    2016-11-01

    Full Text Available The time-to-result for culture-based microorganism recovery and phenotypic antimicrobial susceptibility testing necessitate initial use of empiric (frequently broad-spectrum antimicrobial therapy. If the empiric therapy is not optimal, this can lead to adverse patient outcomes and contribute to increasing antibiotic resistance in pathogens. New, more rapid technologies are emerging to meet this need. Many of these are based on identifying resistance genes, rather than directly assaying resistance phenotypes, and thus require interpretation to translate the genotype into treatment recommendations. These interpretations, like other parts of clinical diagnostic workflows, are likely to be increasingly automated in the future. We set out to evaluate the two major approaches that could be amenable to automation pipelines: rules-based methods and machine learning methods. The rules-based algorithm makes predictions based upon current, curated knowledge of Enterobacteriaceae resistance genes. The machine-learning algorithm predicts resistance and susceptibility based on a model built from a training set of variably resistant isolates. As our test set, we used whole genome sequence data from 78 clinical Enterobacteriaceae isolates, previously identified to represent a variety of phenotypes, from fully-susceptible to pan-resistant strains for the antibiotics tested. We tested three antibiotic resistance determinant databases for their utility in identifying the complete resistome for each isolate. The predictions of the rules-based and machine learning algorithms for these isolates were compared to results of phenotype-based diagnostics. The rules based and machine-learning predictions achieved agreement with standard-of-care phenotypic diagnostics of 89.0% and 90.3%, respectively, across twelve antibiotic agents from six major antibiotic classes. Several sources of disagreement between the algorithms were identified. Novel variants of known resistance

  15. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli.

    Science.gov (United States)

    van Koningsbruggen, Silvana; Gierlinski, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J; Ariyurek, Yavuz; den Dunnen, Johan T; Lamond, Angus I

    2010-11-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope.

  16. Whole genome DNA copy number changes identified by high density oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Huang Jing

    2004-05-01

    Full Text Available Abstract Changes in DNA copy number are one of the hallmarks of the genetic instability common to most human cancers. Previous micro-array-based methods have been used to identify chromosomal gains and losses; however, they are unable to genotype alleles at the level of single nucleotide polymorphisms (SNPs. Here we describe a novel algorithm that uses a recently developed high-density oligonucleotide array-based SNP genotyping method, whole genome sampling analysis (WGSA, to identify genome-wide chromosomal gains and losses at high resolution. WGSA simultaneously genotypes over 10,000 SNPs by allele-specific hybridisation to perfect match (PM and mismatch (MM probes synthesised on a single array. The copy number algorithm jointly uses PM intensity and discrimination ratios between paired PM and MM intensity values to identify and estimate genetic copy number changes. Values from an experimental sample are compared with SNP-specific distributions derived from a reference set containing over 100 normal individuals to gain statistical power. Genomic regions with statistically significant copy number changes can be identified using both single point analysis and contiguous point analysis of SNP intensities. We identified multiple regions of amplification and deletion using a panel of human breast cancer cell lines. We verified these results using an independent method based on quantitative polymerase chain reaction and found that our approach is both sensitive and specific and can tolerate samples which contain a mixture of both tumour and normal DNA. In addition, by using known allele frequencies from the reference set, statistically significant genomic intervals can be identified containing contiguous stretches of homozygous markers, potentially allowing the detection of regions undergoing loss of heterozygosity (LOH without the need for a matched normal control sample. The coupling of LOH analysis, via SNP genotyping, with copy number

  17. Whole genome sequence of Enterobacter ludwigii type strain EN-119T, isolated from clinical specimens.

    Science.gov (United States)

    Li, Gengmi; Hu, Zonghai; Zeng, Ping; Zhu, Bing; Wu, Lijuan

    2015-04-01

    Enterobacter ludwigii strain EN-119(T) is the type strain of E. ludwigii, which belongs to the E. cloacae complex (Ecc). This strain was first reported and nominated in 2005 and later been found in many hospitals. In this paper, the whole genome sequencing of this strain was carried out. The total genome size of EN-119(T) is 4952,770 bp with 4578 coding sequences, 88 tRNAs and 10 rRNAs. The genome sequence of EN-119(T) is the first whole genome sequence of E. ludwigii, which will further our understanding of Ecc. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Whole genome sequencing of Mycobacterium tuberculosis SB24 isolated from Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Noraini Philip

    2016-09-01

    Full Text Available Mycobacterium tuberculosis (M. tuberculosis is the causative agent of tuberculosis (TB that causes millions of death every year. We have sequenced the genome of M. tuberculosis isolated from cerebrospinal fluid (CSF of a patient diagnosed with tuberculous meningitis (TBM. The isolated strain was referred as M. tuberculosis SB24. Genomic DNA of the M. tuberculosis SB24 was extracted and subjected to whole genome sequencing using PacBio platform. The draft genome size of M. tuberculosis SB24 was determined to be 4,452,489 bp with a G + C content of 65.6%. The whole genome shotgun project has been deposited in NCBI SRA under the accession number SRP076503.

  19. Single Cell HLA Matching Feasibility by Whole Genomic Amplification and Nested PCR

    Institute of Scientific and Technical Information of China (English)

    Xiao-hong Li; Fang-yin Meng

    2004-01-01

    @@ PCR based single-cell DNA analysis has been widely used in forensic science, preimplantation genetic diagnosis and so on. However, the original sample cannot be efficiently retrieved following single cell PCR, consequently the amount of information gained is limited. HLA system is too sophisticated that it is very hard to complete HLA typing by single cell. A Taq polymerase-based method using random primers to amplify whole genome termed as whole genome amplification (WGA) has demonstrated to be a useful method in increasing the copies of minimum sample. We establish a technique in this study to amplify HLA-A and HLA-B loci at same time in a single cell using WGA.

  20. Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications.

    Science.gov (United States)

    Huang, Lei; Ma, Fei; Chapman, Alec; Lu, Sijia; Xie, Xiaoliang Sunney

    2015-01-01

    We present a survey of single-cell whole-genome amplification (WGA) methods, including degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycles (MALBAC). The key parameters to characterize the performance of these methods are defined, including genome coverage, uniformity, reproducibility, unmappable rates, chimera rates, allele dropout rates, false positive rates for calling single-nucleotide variations, and ability to call copy-number variations. Using these parameters, we compare five commercial WGA kits by performing deep sequencing of multiple single cells. We also discuss several major applications of single-cell genomics, including studies of whole-genome de novo mutation rates, the early evolution of cancer genomes, circulating tumor cells (CTCs), meiotic recombination of germ cells, preimplantation genetic diagnosis (PGD), and preimplantation genomic screening (PGS) for in vitro-fertilized embryos.

  1. Determining the cause of recurrent Clostridium difficile infection using whole genome sequencing.

    Science.gov (United States)

    Sim, James Heng Chiak; Truong, Cynthia; Minot, Samuel S; Greenfield, Nick; Budvytiene, Indre; Lohith, Akshar; Anikst, Victoria; Pourmand, Nader; Banaei, Niaz

    2017-01-01

    Understanding the contribution of relapse and reinfection to recurrent Clostridium difficile infection (CDI) has implications for therapy and infection prevention, respectively. We used whole genome sequencing to determine the relation of C. difficile strains isolated from patients with recurrent CDI at an academic medical center in the United States. Thirty-five toxigenic C. difficile isolates from 16 patients with 19 recurrent CDI episodes with median time of 53.5days (range, 13-362) between episodes were whole genome sequenced on the Illumina MiSeq platform. In 84% (16) of recurrences, the cause of recurrence was relapse with prior strain of C. difficile. In 16% (3) of recurrent episodes, reinfection with a new strain of C. difficile was the cause. In conclusion, the majority of CDI recurrences at our institution were due to infection with the same strain rather than infection with a new strain. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Comparison of whole genome amplification techniques for human single cell exome sequencing.

    Science.gov (United States)

    Borgström, Erik; Paterlini, Marta; Mold, Jeff E; Frisen, Jonas; Lundeberg, Joakim

    2017-01-01

    Whole genome amplification (WGA) is currently a prerequisite for single cell whole genome or exome sequencing. Depending on the method used the rate of artifact formation, allelic dropout and sequence coverage over the genome may differ significantly. The largest difference between the evaluated protocols was observed when analyzing the target coverage and read depth distribution. These differences also had impact on the downstream variant calling. Conclusively, the products from the AMPLI1 and MALBAC kits were shown to be most similar to the bulk samples and are therefore recommended for WGA of single cells. In this study four commercial kits for WGA (AMPLI1, MALBAC, Repli-G and PicoPlex) were used to amplify human single cells. The WGA products were exome sequenced together with non-amplified bulk samples from the same source. The resulting data was evaluated in terms of genomic coverage, allelic dropout and SNP calling.

  3. How could disclosing incidental information from whole-genome sequencing affect patient behavior?

    Science.gov (United States)

    Christensen, Kurt D; Green, Robert C

    2013-06-01

    In this article, we argue that disclosure of incidental findings from whole-genome sequencing has the potential to motivate individuals to change health behaviors through psychological mechanisms that differ from typical risk assessment interventions. Their ability to do so, however, is likely to be highly contingent upon the nature of the incidental findings and how they are disclosed, the context of the disclosure and the characteristics of the patient. Moreover, clinicians need to be aware that behavioral responses may occur in unanticipated ways. This article argues for commentators and policy makers to take a cautious but optimistic perspective while empirical evidence is collected through ongoing research involving whole-genome sequencing and the disclosure of incidental information.

  4. Taxonomically Different Co-Microsymbionts of a Relict Legume, Oxytropis popoviana, Have Complementary Sets of Symbiotic Genes and Together Increase the Efficiency of Plant Nodulation.

    Science.gov (United States)

    Safronova, Vera I; Belimov, Andrey A; Sazanova, Anna L; Chirak, Elizaveta R; Verkhozina, Alla V; Kuznetsova, Irina G; Andronov, Evgeny E; Puhalsky, Jan V; Tikhonovich, Igor A

    2018-06-20

    Ten rhizobial strains were isolated from root nodules of a relict legume Oxytropis popoviana Peschkova. For identification of the isolates, sequencing of rrs, the internal transcribed spacer region, and housekeeping genes recA, glnII, and rpoB was used. Nine fast-growing isolates were Mesorhizobium-related; eight strains were identified as M. japonicum and one isolate belonged to M. kowhaii. The only slow-growing isolate was identified as a Bradyrhizobium sp. Two strains, M. japonicum Opo-242 and Bradyrhizobium sp. strain Opo-243, were isolated from the same nodule. Symbiotic genes of these isolates were searched throughout the whole-genome sequences. The common nodABC genes and other symbiotic genes required for plant nodulation and nitrogen fixation were present in the isolate Opo-242. Strain Opo-243 did not contain the principal nod, nif, and fix genes; however, five genes (nodP, nodQ, nifL, nolK, and noeL) affecting the specificity of plant-rhizobia interactions but absent in isolate Opo-242 were detected. Strain Opo-243 could not induce nodules but significantly accelerated the root nodule formation after coinoculation with isolate Opo-242. Thus, we demonstrated that taxonomically different strains of the archaic symbiotic system can be co-microsymbionts infecting the same nodule and promoting the nodulation process due to complementary sets of symbiotic genes.

  5. The need for high-quality whole-genome sequence databases in microbial forensics.

    Science.gov (United States)

    Sjödin, Andreas; Broman, Tina; Melefors, Öjar; Andersson, Gunnar; Rasmusson, Birgitta; Knutsson, Rickard; Forsman, Mats

    2013-09-01

    Microbial forensics is an important part of a strengthened capability to respond to biocrime and bioterrorism incidents to aid in the complex task of distinguishing between natural outbreaks and deliberate acts. The goal of a microbial forensic investigation is to identify and criminally prosecute those responsible for a biological attack, and it involves a detailed analysis of the weapon--that is, the pathogen. The recent development of next-generation sequencing (NGS) technologies has greatly increased the resolution that can be achieved in microbial forensic analyses. It is now possible to identify, quickly and in an unbiased manner, previously undetectable genome differences between closely related isolates. This development is particularly relevant for the most deadly bacterial diseases that are caused by bacterial lineages with extremely low levels of genetic diversity. Whole-genome analysis of pathogens is envisaged to be increasingly essential for this purpose. In a microbial forensic context, whole-genome sequence analysis is the ultimate method for strain comparisons as it is informative during identification, characterization, and attribution--all 3 major stages of the investigation--and at all levels of microbial strain identity resolution (ie, it resolves the full spectrum from family to isolate). Given these capabilities, one bottleneck in microbial forensics investigations is the availability of high-quality reference databases of bacterial whole-genome sequences. To be of high quality, databases need to be curated and accurate in terms of sequences, metadata, and genetic diversity coverage. The development of whole-genome sequence databases will be instrumental in successfully tracing pathogens in the future.

  6. Demographic history and biologically relevant genetic variation of Native Mexicans inferred from whole-genome sequencing

    OpenAIRE

    Romero-Hidalgo, Sandra; Ochoa-Leyva, Adrián; Garcíarrubio, Alejandro; Acuña-Alonzo, Victor; Antúnez-Argüelles, Erika; Balcazar-Quintero, Martha; Barquera-Lozano, Rodrigo; Carnevale, Alessandra; Cornejo-Granados, Fernanda; Fernández-López, Juan Carlos; García-Herrera, Rodrigo; García-Ortíz, Humberto; Granados-Silvestre, Ángeles; Granados, Julio; Guerrero-Romero, Fernando

    2017-01-01

    Understanding the genetic structure of Native American populations is important to clarify their diversity, demographic history, and to identify genetic factors relevant for biomedical traits. Here, we show a demographic history reconstruction from 12 Native American whole genomes belonging to six distinct ethnic groups representing the three main described genetic clusters of Mexico (Northern, Southern, and Maya). Effective population size estimates of all Native American groups remained bel...

  7. Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds

    OpenAIRE

    Xu, Yao; Jiang, Yu; Shi, Tao; Cai, Hanfang; Lan, Xianyong; Zhao, Xin; Plath, Martin; Chen, Hong

    2017-01-01

    Whole-genome sequencing provides a powerful tool to obtain more genetic variability that could produce a range of benefits for cattle breeding industry. Nanyang (Bos indicus) and Qinchuan (Bos taurus) are two important Chinese indigenous cattle breeds with distinct phenotypes. To identify the genetic characteristics responsible for variation in phenotypes between the two breeds, in the present study, we for the first time sequenced the genomes of four Nanyang and four Qinchuan cattle with 10 ...

  8. Whole-Genome Sequence of Chlamydia abortus Strain GN6 Isolated from Aborted Yak Fetus

    OpenAIRE

    Li, Zhaocai; Cai, Jinshan; Cao, Xiaoan; Lou, Zhongzi; Chao, Yilin; Kan, Wei; Zhou, Jizhang

    2017-01-01

    ABSTRACT The obligate intracellular Gram-negative bacterium Chlamydia abortus is one of the causative agents of abortion and fetal loss in sheep, goats, and cattle in many countries. It also affects the reproductivity of yaks (Bos grunniens). This study reports the whole-genome sequence of Chlamydia abortus strain GN6, which was isolated from aborted yak fetus in Qinghai-Tibetan Plateau, China.

  9. Whole-Genome Sequence of Chlamydia abortus Strain GN6 Isolated from Aborted Yak Fetus.

    Science.gov (United States)

    Li, Zhaocai; Cai, Jinshan; Cao, Xiaoan; Lou, Zhongzi; Chao, Yilin; Kan, Wei; Zhou, Jizhang

    2017-08-31

    The obligate intracellular Gram-negative bacterium Chlamydia abortus is one of the causative agents of abortion and fetal loss in sheep, goats, and cattle in many countries. It also affects the reproductivity of yaks ( Bos grunniens ). This study reports the whole-genome sequence of Chlamydia abortus strain GN6, which was isolated from aborted yak fetus in Qinghai-Tibetan Plateau, China. Copyright © 2017 Li et al.

  10. The Future of Whole-Genome Sequencing for Public Health and the Clinic

    OpenAIRE

    Allard, Marc W.

    2016-01-01

    An American Society for Microbiology (ASM) conference titled the Conference on Rapid Next-Generation Sequencing and Bioinformatic Pipelines for Enhanced Molecular Epidemiological Investigation of Pathogens provided a venue for discussing how technologies surrounding whole-genome sequencing (WGS) are advancing microbiology. Several applications in microbial taxonomy, microbial forensics, and genomics for public health pathogen surveillance were presented at the meeting and are reviewed. All of...

  11. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing

    DEFF Research Database (Denmark)

    Hou, Yong; Wu, Kui; Shi, Xulian

    2015-01-01

    methods, focusing particularly on variations detection. Low-coverage whole-genome sequencing revealed that DOP-PCR had the highest duplication ratio, but an even read distribution and the best reproducibility and accuracy for detection of copy-number variations (CNVs). However, MDA had significantly...... performance using SCRS amplified by different WGA methods. It will guide researchers to determine which WGA method is best suited to individual experimental needs at single-cell level....

  12. Whole-genome sequence of the orchid anthracnose pathogen Colletotrichum orchidophilum.

    Science.gov (United States)

    Baroncelli, Riccardo; Sukno, Serenella; Sarrocco, Sabrina; Cafà, Giovanni; Le Floch, Gaetan; Thon, Michael R

    2018-04-12

    Colletotrichum orchidophilum is a plant pathogenic fungus infecting a wide range of plant species belonging to the family Orchidaceae. Besides its economic impact, C. orchidophilum has been used in recent years in evolutionary studies as it represents the closest related species to the C. acutatum species complex. Here we present the first draft whole-genome sequence of C. orchidophilum IMI 309357, providing a resource for future research on anthracnose of Orchidaceae and other hosts.

  13. Whole-Genome Sequencing in Microbial Forensic Analysis of Gamma-Irradiated Microbial Materials.

    Science.gov (United States)

    Broomall, Stacey M; Ait Ichou, Mohamed; Krepps, Michael D; Johnsky, Lauren A; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; Betters, Janet L; Redmond, Brady W; Rivers, Bryan A; Liem, Alvin T; Hill, Jessica M; Fochler, Edward T; Roth, Pierce A; Rosenzweig, C Nicole; Skowronski, Evan W; Gibbons, Henry S

    2016-01-15

    Effective microbial forensic analysis of materials used in a potential biological attack requires robust methods of morphological and genetic characterization of the attack materials in order to enable the attribution of the materials to potential sources and to exclude other potential sources. The genetic homogeneity and potential intersample variability of many of the category A to C bioterrorism agents offer a particular challenge to the generation of attributive signatures, potentially requiring whole-genome or proteomic approaches to be utilized. Currently, irradiation of mail is standard practice at several government facilities judged to be at particularly high risk. Thus, initial forensic signatures would need to be recovered from inactivated (nonviable) material. In the study described in this report, we determined the effects of high-dose gamma irradiation on forensic markers of bacterial biothreat agent surrogate organisms with a particular emphasis on the suitability of genomic DNA (gDNA) recovered from such sources as a template for whole-genome analysis. While irradiation of spores and vegetative cells affected the retention of Gram and spore stains and sheared gDNA into small fragments, we found that irradiated material could be utilized to generate accurate whole-genome sequence data on the Illumina and Roche 454 sequencing platforms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Using the gene ontology to scan multilevel gene sets for associations in genome wide association studies.

    Science.gov (United States)

    Schaid, Daniel J; Sinnwell, Jason P; Jenkins, Gregory D; McDonnell, Shannon K; Ingle, James N; Kubo, Michiaki; Goss, Paul E; Costantino, Joseph P; Wickerham, D Lawrence; Weinshilboum, Richard M

    2012-01-01

    Gene-set analyses have been widely used in gene expression studies, and some of the developed methods have been extended to genome wide association studies (GWAS). Yet, complications due to linkage disequilibrium (LD) among single nucleotide polymorphisms (SNPs), and variable numbers of SNPs per gene and genes per gene-set, have plagued current approaches, often leading to ad hoc "fixes." To overcome some of the current limitations, we developed a general approach to scan GWAS SNP data for both gene-level and gene-set analyses, building on score statistics for generalized linear models, and taking advantage of the directed acyclic graph structure of the gene ontology when creating gene-sets. However, other types of gene-set structures can be used, such as the popular Kyoto Encyclopedia of Genes and Genomes (KEGG). Our approach combines SNPs into genes, and genes into gene-sets, but assures that positive and negative effects of genes on a trait do not cancel. To control for multiple testing of many gene-sets, we use an efficient computational strategy that accounts for LD and provides accurate step-down adjusted P-values for each gene-set. Application of our methods to two different GWAS provide guidance on the potential strengths and weaknesses of our proposed gene-set analyses. © 2011 Wiley Periodicals, Inc.

  15. The MedSeq Project: a randomized trial of integrating whole genome sequencing into clinical medicine.

    Science.gov (United States)

    Vassy, Jason L; Lautenbach, Denise M; McLaughlin, Heather M; Kong, Sek Won; Christensen, Kurt D; Krier, Joel; Kohane, Isaac S; Feuerman, Lindsay Z; Blumenthal-Barby, Jennifer; Roberts, J Scott; Lehmann, Lisa Soleymani; Ho, Carolyn Y; Ubel, Peter A; MacRae, Calum A; Seidman, Christine E; Murray, Michael F; McGuire, Amy L; Rehm, Heidi L; Green, Robert C

    2014-03-20

    Whole genome sequencing (WGS) is already being used in certain clinical and research settings, but its impact on patient well-being, health-care utilization, and clinical decision-making remains largely unstudied. It is also unknown how best to communicate sequencing results to physicians and patients to improve health. We describe the design of the MedSeq Project: the first randomized trials of WGS in clinical care. This pair of randomized controlled trials compares WGS to standard of care in two clinical contexts: (a) disease-specific genomic medicine in a cardiomyopathy clinic and (b) general genomic medicine in primary care. We are recruiting 8 to 12 cardiologists, 8 to 12 primary care physicians, and approximately 200 of their patients. Patient participants in both the cardiology and primary care trials are randomly assigned to receive a family history assessment with or without WGS. Our laboratory delivers a genome report to physician participants that balances the needs to enhance understandability of genomic information and to convey its complexity. We provide an educational curriculum for physician participants and offer them a hotline to genetics professionals for guidance in interpreting and managing their patients' genome reports. Using varied data sources, including surveys, semi-structured interviews, and review of clinical data, we measure the attitudes, behaviors and outcomes of physician and patient participants at multiple time points before and after the disclosure of these results. The impact of emerging sequencing technologies on patient care is unclear. We have designed a process of interpreting WGS results and delivering them to physicians in a way that anticipates how we envision genomic medicine will evolve in the near future. That is, our WGS report provides clinically relevant information while communicating the complexity and uncertainty of WGS results to physicians and, through physicians, to their patients. This project will not only

  16. Case of 7p22.1 Microduplication Detected by Whole Genome Microarray (REVEAL) in Workup of Child Diagnosed with Autism

    OpenAIRE

    Goitia, Veronica; Oquendo, Marcial; Stratton, Robert

    2015-01-01

    Introduction. More than 60 cases of 7p22 duplications and deletions have been reported with over 16 of them occurring without concomitant chromosomal abnormalities. Patient and Methods. We report a 29-month-old male diagnosed with autism. Whole genome chromosome SNP microarray (REVEAL) demonstrated a 1.3?Mb interstitial duplication of 7p22.1 ->p22.1 arr 7p22.1 (5,436,367?6,762,394), the second smallest interstitial 7p duplication reported to date. This interval included 14 OMIM annotated gene...

  17. Whole-genome sequencing of monozygotic twins discordant for schizophrenia indicates multiple genetic risk factors for schizophrenia

    Institute of Scientific and Technical Information of China (English)

    Jinsong Tang; Fan He; Fengyu Zhang; Yin Yao Shugart; Chunyu Liu; Yanqing Tang; Raymond C.K.Chan; Chuan-Yue Wang; Yong-Gang Yao; Xiaogang Chen; Yu Fan; Hong Li; Qun Xiang; Deng-Feng Zhang; Zongchang Li; Ying He; Yanhui Liao; Ya Wang

    2017-01-01

    Schizophrenia is a common disorder with a high heritability,but its genetic architecture is still elusive.We implemented whole-genome sequencing (WGS) analysis of 8 families with monozygotic (MZ) twin pairs discordant for schizophrenia to assess potential association of de novo mutations (DNMs) or inherited variants with susceptibility to schizophrenia.Eight non-synonymous DNMs (including one splicing site) were identified and shared by twins,which were either located in previously reported schizophrenia risk genes (p.V24689I mutation in TTN,p.S2506T mutation in GCN1L1,IVS3+1G > T in DOCK1) or had a benign to damaging effect according to in silico prediction analysis.By searching the inherited rare damaging or loss-of-function (LOF) variants and common susceptible alleles from three classes of schizophrenia candidate genes,we were able to distill genetic alterations in several schizophrenia risk genes,including GAD1,PLXNA2,RELN and FEZ1.Four inherited copy number variations (CNVs;including a large deletion at 16p13.11) implicated for schizophrenia were identified in four families,respectively.Most of families carried both missense DNMs and inherited risk variants,which might suggest that DNMs,inherited rare damaging variants and common risk alleles together conferred to schizophrenia susceptibility.Our results support that schizophrenia is caused by a combination of multiple genetic factors,with each DNM/variant showing a relatively small effect size.

  18. Principles for the organization of gene-sets.

    Science.gov (United States)

    Li, Wentian; Freudenberg, Jan; Oswald, Michaela

    2015-12-01

    A gene-set, an important concept in microarray expression analysis and systems biology, is a collection of genes and/or their products (i.e. proteins) that have some features in common. There are many different ways to construct gene-sets, but a systematic organization of these ways is lacking. Gene-sets are mainly organized ad hoc in current public-domain databases, with group header names often determined by practical reasons (such as the types of technology in obtaining the gene-sets or a balanced number of gene-sets under a header). Here we aim at providing a gene-set organization principle according to the level at which genes are connected: homology, physical map proximity, chemical interaction, biological, and phenotypic-medical levels. We also distinguish two types of connections between genes: actual connection versus sharing of a label. Actual connections denote direct biological interactions, whereas shared label connection denotes shared membership in a group. Some extensions of the framework are also addressed such as overlapping of gene-sets, modules, and the incorporation of other non-protein-coding entities such as microRNAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Whole genome sequencing for deciphering the resistome of Chryseobacterium indologenes, an emerging multidrug-resistant bacterium isolated from a cystic fibrosis patient in Marseille, France

    Directory of Open Access Journals (Sweden)

    T. Cimmino

    2016-07-01

    Full Text Available We decipher the resistome of Chryseobacterium indologenes MARS15, an emerging multidrug-resistant clinical strain, using the whole genome sequencing strategy. The bacterium was isolated from the sputum of a hospitalized patient with cystic fibrosis in the Timone Hospital in Marseille, France. Genome sequencing was done with Illumina MiSeq using a paired-end strategy. The in silico analysis was done by RAST, the resistome by the ARG-ANNOT database and detection of polyketide synthase (PKS by ANTISMAH. The genome size of C. indologenes MARS15 is 4 972 580 bp with 36.4% GC content. This multidrug-resistant bacterium was resistant to all β-lactams, including imipenem, and also to colistin. The resistome of C. indologenes MARS15 includes Ambler class A and B β-lactams encoding blaCIA and blaIND-2 genes and MBL (metallo-β-lactamase genes, the CAT (chloramphenicol acetyltransferase gene and the multidrug efflux pump AcrB. Specific features include the presence of an urease operon, an intact prophage and a carotenoid biosynthesis pathway. Interestingly, we report for the first time in C. indologenes a PKS cluster that might be responsible for secondary metabolite biosynthesis, similar to erythromycin. The whole genome sequence analysis provides insight into the resistome and the discovery of new details, such as the PKS cluster.

  20. Whole genome sequencing for deciphering the resistome of Chryseobacterium indologenes, an emerging multidrug-resistant bacterium isolated from a cystic fibrosis patient in Marseille, France.

    Science.gov (United States)

    Cimmino, T; Rolain, J-M

    2016-07-01

    We decipher the resistome of Chryseobacterium indologenes MARS15, an emerging multidrug-resistant clinical strain, using the whole genome sequencing strategy. The bacterium was isolated from the sputum of a hospitalized patient with cystic fibrosis in the Timone Hospital in Marseille, France. Genome sequencing was done with Illumina MiSeq using a paired-end strategy. The in silico analysis was done by RAST, the resistome by the ARG-ANNOT database and detection of polyketide synthase (PKS) by ANTISMAH. The genome size of C. indologenes MARS15 is 4 972 580 bp with 36.4% GC content. This multidrug-resistant bacterium was resistant to all β-lactams, including imipenem, and also to colistin. The resistome of C. indologenes MARS15 includes Ambler class A and B β-lactams encoding bla CIA and bla IND-2 genes and MBL (metallo-β-lactamase) genes, the CAT (chloramphenicol acetyltransferase) gene and the multidrug efflux pump AcrB. Specific features include the presence of an urease operon, an intact prophage and a carotenoid biosynthesis pathway. Interestingly, we report for the first time in C. indologenes a PKS cluster that might be responsible for secondary metabolite biosynthesis, similar to erythromycin. The whole genome sequence analysis provides insight into the resistome and the discovery of new details, such as the PKS cluster.

  1. A Bayesian variable selection procedure for ranking overlapping gene sets

    DEFF Research Database (Denmark)

    Skarman, Axel; Mahdi Shariati, Mohammad; Janss, Luc

    2012-01-01

    Background Genome-wide expression profiling using microarrays or sequence-based technologies allows us to identify genes and genetic pathways whose expression patterns influence complex traits. Different methods to prioritize gene sets, such as the genes in a given molecular pathway, have been de...

  2. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody; Coll, Francesc; McNerney, Ruth; Ascher, David; Pires, Douglas; Furnham, Nick; Coeck, Nele; Hill-Cawthorne, Grant; Nair, Mridul; Mallard, Kim; Ramsay, Andrew; Campino, Susana; Hibberd, Martin; Pain, Arnab; Rigouts, Leen; Clark, Taane

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure

  3. Whole-genome expression analyses of type 2 diabetes in human skin reveal altered immune function and burden of infection.

    Science.gov (United States)

    Wu, Chun; Chen, Xiaopan; Shu, Jing; Lee, Chun-Ting

    2017-05-23

    Skin disorders are among most common complications associated with type 2 diabetes mellitus (T2DM). Although T2DM patients are known to have increased risk of infections and other T2DM-related skin disorders, their molecular mechanisms are largely unknown. This study aims to identify dysregulated genes and gene networks that are associated with T2DM in human skin. We compared the expression profiles of 56,318 transcribed genes on 74 T2DM cases and 148 gender- age-, and race-matched non-diabetes controls from the Genotype-Tissue Expression (GTEx) database. RNA-Sequencing data indicates that diabetic skin is characterized by increased expression of genes that are related to immune responses (CCL20, CXCL9, CXCL10, CXCL11, CXCL13, and CCL18), JAK/STAT signaling pathway (JAK3, STAT1, and STAT2), tumor necrosis factor superfamily (TNFSF10 and TNFSF15), and infectious disease pathways (OAS1, OAS2, OAS3, and IFIH1). Genes in cell adhesion molecules pathway (NCAM1 and L1CAM) and collagen family (PCOLCE2 and COL9A3) are downregulated, suggesting structural changes in the skin of T2DM. For the first time, to the best of our knowledge, this pioneer analytic study reports comprehensive unbiased gene expression changes and dysregulated pathways in the non-diseased skin of T2DM patients. This comprehensive understanding derived from whole-genome expression profiles could advance our knowledge in determining molecular targets for the prevention and treatment of T2DM-associated skin disorders.

  4. Evaluation of an Optimal Epidemiological Typing Scheme for Legionella pneumophila with Whole-Genome Sequence Data Using Validation Guidelines.

    Science.gov (United States)

    David, Sophia; Mentasti, Massimo; Tewolde, Rediat; Aslett, Martin; Harris, Simon R; Afshar, Baharak; Underwood, Anthony; Fry, Norman K; Parkhill, Julian; Harrison, Timothy G

    2016-08-01

    Sequence-based typing (SBT), analogous to multilocus sequence typing (MLST), is the current "gold standard" typing method for investigation of legionellosis outbreaks caused by Legionella pneumophila However, as common sequence types (STs) cause many infections, some investigations remain unresolved. In this study, various whole-genome sequencing (WGS)-based methods were evaluated according to published guidelines, including (i) a single nucleotide polymorphism (SNP)-based method, (ii) extended MLST using different numbers of genes, (iii) determination of gene presence or absence, and (iv) a kmer-based method. L. pneumophila serogroup 1 isolates (n = 106) from the standard "typing panel," previously used by the European Society for Clinical Microbiology Study Group on Legionella Infections (ESGLI), were tested together with another 229 isolates. Over 98% of isolates were considered typeable using the SNP- and kmer-based methods. Percentages of isolates with complete extended MLST profiles ranged from 99.1% (50 genes) to 86.8% (1,455 genes), while only 41.5% produced a full profile with the gene presence/absence scheme. Replicates demonstrated that all methods offer 100% reproducibility. Indices of discrimination range from 0.972 (ribosomal MLST) to 0.999 (SNP based), and all values were higher than that achieved with SBT (0.940). Epidemiological concordance is generally inversely related to discriminatory power. We propose that an extended MLST scheme with ∼50 genes provides optimal epidemiological concordance while substantially improving the discrimination offered by SBT and can be used as part of a hierarchical typing scheme that should maintain backwards compatibility and increase discrimination where necessary. This analysis will be useful for the ESGLI to design a scheme that has the potential to become the new gold standard typing method for L. pneumophila. Copyright © 2016 David et al.

  5. Facile mutant identification via a single parental backcross method and application of whole genome sequencing based mapping pipelines

    Directory of Open Access Journals (Sweden)

    Robert Silas Allen

    2013-09-01

    Full Text Available Forward genetic screens have identified numerous genes involved in development and metabolism, and remain a cornerstone of biological research. However to locate a causal mutation, the practice of crossing to a polymorphic background to generate a mapping population can be problematic if the mutant phenotype is difficult to recognise in the hybrid F2 progeny, or dependent on parental specific traits. Here in a screen for leaf hyponasty mutants, we have performed a single backcross of an Ethane Methyl Sulphonate (EMS generated hyponastic mutant to its parent. Whole genome deep sequencing of a bulked homozygous F2 population and analysis via the Next Generation EMS mutation mapping pipeline (NGM unambiguously determined the causal mutation to be a single nucleotide polymorphisim (SNP residing in HASTY, a previously characterised gene involved in microRNA biogenesis. We have evaluated the feasibility of this backcross approach using three additional SNP mapping pipelines; SHOREmap, the GATK pipeline, and the samtools pipeline. Although there was variance in the identification of EMS SNPs, all returned the same outcome in clearly identifying the causal mutation in HASTY. The simplicity of performing a single parental backcross and genome sequencing a small pool of segregating mutants has great promise for identifying mutations that may be difficult to map using conventional approaches.

  6. Phenotypic H-Antigen Typing by Mass Spectrometry Combined with Genetic Typing of H Antigens, O Antigens, and Toxins by Whole-Genome Sequencing Enhances Identification of Escherichia coli Isolates.

    Science.gov (United States)

    Cheng, Keding; Chui, Huixia; Domish, Larissa; Sloan, Angela; Hernandez, Drexler; McCorrister, Stuart; Robinson, Alyssia; Walker, Matthew; Peterson, Lorea A M; Majcher, Miles; Ratnam, Sam; Haldane, David J M; Bekal, Sadjia; Wylie, John; Chui, Linda; Tyler, Shaun; Xu, Bianli; Reimer, Aleisha; Nadon, Celine; Knox, J David; Wang, Gehua

    2016-08-01

    Mass spectrometry-based phenotypic H-antigen typing (MS-H) combined with whole-genome-sequencing-based genetic identification of H antigens, O antigens, and toxins (WGS-HOT) was used to type 60 clinical Escherichia coli isolates, 43 of which were previously identified as nonmotile, H type undetermined, or O rough by serotyping or having shown discordant MS-H and serotyping results. Whole-genome sequencing confirmed that MS-H was able to provide more accurate data regarding H antigen expression than serotyping. Further, enhanced and more confident O antigen identification resulted from gene cluster based typing in combination with conventional typing based on the gene pair comprising wzx and wzy and that comprising wzm and wzt The O antigen was identified in 94.6% of the isolates when the two genetic O typing approaches (gene pair and gene cluster) were used in conjunction, in comparison to 78.6% when the gene pair database was used alone. In addition, 98.2% of the isolates showed the existence of genes for various toxins and/or virulence factors, among which verotoxins (Shiga toxin 1 and/or Shiga toxin 2) were 100% concordant with conventional PCR based testing results. With more applications of mass spectrometry and whole-genome sequencing in clinical microbiology laboratories, this combined phenotypic and genetic typing platform (MS-H plus WGS-HOT) should be ideal for pathogenic E. coli typing. Copyright © 2016 Cheng et al.

  7. Whole-genome characterization in pedigreed non-human primates using Genotyping-By-Sequencing and imputation.

    OpenAIRE

    Cervera-Juanes, Rita; Vinson, Amanda; Ferguson, Betsy; Carbone, Lucia; Spindel, Eliot; Mccouch, Susan; Spindel, Jennifer; Nevonen, Kimberly; Letaw, John; Raboin, Michael; Bimber, Ben

    2016-01-01

    Background: Rhesus macaques are widely used in biomedical research, but the application of genomic information in this species to better understand human disease is still undeveloped. Whole-genome sequence (WGS) data in pedigreed macaque colonies could provide substantial experimental power, but the collection of WGS data in large cohorts remains a formidable expense. Here, we describe a cost-effective approach that selects the most informative macaques in a pedigree for whole-genome sequenci...

  8. Whole-genome sequence of Clostridium lituseburense L74, isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus

    OpenAIRE

    Lee, Yookyung; Lim, Sooyeon; Rhee, Moon-Soo; Chang, Dong-Ho; Kim, Byoung-Chan

    2016-01-01

    Clostridium lituseburense L74 was isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus collected in Yeong-dong, Chuncheongbuk-do, South Korea and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession NZ_LITJ00000000. Keywords: Insect, Larval gut, Whole genome shot-gun sequencing

  9. Whole-genome sequence of Clostridium lituseburense L74, isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus

    Directory of Open Access Journals (Sweden)

    Yookyung Lee

    2016-03-01

    Full Text Available Clostridium lituseburense L74 was isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus collected in Yeong-dong, Chuncheongbuk-do, South Korea and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession NZ_LITJ00000000. Keywords: Insect, Larval gut, Whole genome shot-gun sequencing

  10. IGSA: Individual Gene Sets Analysis, including Enrichment and Clustering.

    Science.gov (United States)

    Wu, Lingxiang; Chen, Xiujie; Zhang, Denan; Zhang, Wubing; Liu, Lei; Ma, Hongzhe; Yang, Jingbo; Xie, Hongbo; Liu, Bo; Jin, Qing

    2016-01-01

    Analysis of gene sets has been widely applied in various high-throughput biological studies. One weakness in the traditional methods is that they neglect the heterogeneity of genes expressions in samples which may lead to the omission of some specific and important gene sets. It is also difficult for them to reflect the severities of disease and provide expression profiles of gene sets for individuals. We developed an application software called IGSA that leverages a powerful analytical capacity in gene sets enrichment and samples clustering. IGSA calculates gene sets expression scores for each sample and takes an accumulating clustering strategy to let the samples gather into the set according to the progress of disease from mild to severe. We focus on gastric, pancreatic and ovarian cancer data sets for the performance of IGSA. We also compared the results of IGSA in KEGG pathways enrichment with David, GSEA, SPIA, ssGSEA and analyzed the results of IGSA clustering and different similarity measurement methods. Notably, IGSA is proved to be more sensitive and specific in finding significant pathways, and can indicate related changes in pathways with the severity of disease. In addition, IGSA provides with significant gene sets profile for each sample.

  11. A survey of single nucleotide polymorphisms identified from whole-genome sequencing and their functional effect in the porcine genome.

    Science.gov (United States)

    Keel, B N; Nonneman, D J; Rohrer, G A

    2017-08-01

    Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a more significant effect on phenotypic variation than do other types of genetic variants. Hence, a comprehensive list of these functional variants would be of considerable interest in swine genomic studies, particularly those targeting fertility and production traits. Whole-genome sequence was obtained from 72 of the founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the founding boars (12 Duroc and 12 Landrace) and 48 Yorkshire-Landrace composite sows. Sequence reads were mapped to the Sscrofa10.2 genome build, resulting in a mean of 6.1 fold (×) coverage per genome. A total of 22 342 915 high confidence SNPs were identified from the sequenced genomes. These included 21 million previously reported SNPs and 79% of the 62 163 SNPs on the PorcineSNP60 BeadChip assay. Variation was detected in the coding sequence or untranslated regions (UTRs) of 87.8% of the genes in the porcine genome: loss-of-function variants were predicted in 504 genes, 10 202 genes contained nonsynonymous variants, 10 773 had variation in UTRs and 13 010 genes contained synonymous variants. Approximately 139 000 SNPs were classified as loss-of-function, nonsynonymous or regulatory, which suggests that over 99% of the variation detected in our pigs could potentially be ignored, allowing us to focus on a much smaller number of functional SNPs during future analyses. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  12. Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies.

    Science.gov (United States)

    Jung, Sook; Cestaro, Alessandro; Troggio, Michela; Main, Dorrie; Zheng, Ping; Cho, Ilhyung; Folta, Kevin M; Sosinski, Bryon; Abbott, Albert; Celton, Jean-Marc; Arús, Pere; Shulaev, Vladimir; Verde, Ignazio; Morgante, Michele; Rokhsar, Daniel; Velasco, Riccardo; Sargent, Daniel James

    2012-04-04

    Rosaceae include numerous economically important and morphologically diverse species. Comparative mapping between the member species in Rosaceae have indicated some level of synteny. Recently the whole genome of three crop species, peach, apple and strawberry, which belong to different genera of the Rosaceae family, have been sequenced, allowing in-depth comparison of these genomes. Our analysis using the whole genome sequences of peach, apple and strawberry identified 1399 orthologous regions between the three genomes, with a mean length of around 100 kb. Each peach chromosome showed major orthology mostly to one strawberry chromosome, but to more than two apple chromosomes, suggesting that the apple genome went through more chromosomal fissions in addition to the whole genome duplication after the divergence of the three genera. However, the distribution of contiguous ancestral regions, identified using the multiple genome rearrangements and ancestors (MGRA) algorithm, suggested that the Fragaria genome went through a greater number of small scale rearrangements compared to the other genomes since they diverged from a common ancestor. Using the contiguous ancestral regions, we reconstructed a hypothetical ancestral genome for the Rosaceae 7 composed of nine chromosomes and propose the evolutionary steps from the ancestral genome to the extant Fragaria, Prunus and Malus genomes. Our analysis shows that different modes of evolution may have played major roles in different subfamilies of Rosaceae. The hypothetical ancestral genome of Rosaceae and the evolutionary steps that lead to three different lineages of Rosaceae will facilitate our understanding of plant genome evolution as well as have a practical impact on knowledge transfer among member species of Rosaceae.

  13. Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies

    Directory of Open Access Journals (Sweden)

    Jung Sook

    2012-04-01

    Full Text Available Abstract Background Rosaceae include numerous economically important and morphologically diverse species. Comparative mapping between the member species in Rosaceae have indicated some level of synteny. Recently the whole genome of three crop species, peach, apple and strawberry, which belong to different genera of the Rosaceae family, have been sequenced, allowing in-depth comparison of these genomes. Results Our analysis using the whole genome sequences of peach, apple and strawberry identified 1399 orthologous regions between the three genomes, with a mean length of around 100 kb. Each peach chromosome showed major orthology mostly to one strawberry chromosome, but to more than two apple chromosomes, suggesting that the apple genome went through more chromosomal fissions in addition to the whole genome duplication after the divergence of the three genera. However, the distribution of contiguous ancestral regions, identified using the multiple genome rearrangements and ancestors (MGRA algorithm, suggested that the Fragaria genome went through a greater number of small scale rearrangements compared to the other genomes since they diverged from a common ancestor. Using the contiguous ancestral regions, we reconstructed a hypothetical ancestral genome for the Rosaceae 7 composed of nine chromosomes and propose the evolutionary steps from the ancestral genome to the extant Fragaria, Prunus and Malus genomes. Conclusion Our analysis shows that different modes of evolution may have played major roles in different subfamilies of Rosaceae. The hypothetical ancestral genome of Rosaceae and the evolutionary steps that lead to three different lineages of Rosaceae will facilitate our understanding of plant genome evolution as well as have a practical impact on knowledge transfer among member species of Rosaceae.

  14. Whole genome typing of the recently emerged Canadian serogroup W Neisseria meningitidis sequence type 11 clonal complex isolates associated with invasive meningococcal disease.

    Science.gov (United States)

    Tsang, Raymond S W; Ahmad, Tauqeer; Tyler, Shaun; Lefebvre, Brigitte; Deeks, Shelley L; Gilca, Rodica; Hoang, Linda; Tyrrell, Gregory; Van Caeseele, Paul; Van Domselaar, Gary; Jamieson, Frances B

    2018-04-01

    This study was performed to analyze the Canadian invasive serogroup W Neisseria meningitidis (MenW) sequence type 11 (ST-11) clonal complex (CC) isolates by whole genome typing and to compare Canadian isolates with similar isolates from elsewhere. Whole genome typing of 30 MenW ST-11 CC, 20 meningococcal group C (MenC) ST-11 CC, and 31 MenW ST-22 CC isolates was performed on the Bacterial Isolate Genome Sequence database platform. Canadian MenW ST-11 CC isolates were compared with the 2000 MenW Hajj outbreak strain, as well as with MenW ST-11 CC from other countries. Whole genome typing showed that the Canadian MenW ST-11 CC isolates were distinct from the traditional MenW ST-22 CC; they were not capsule-switched contemporary MenC strains that incorporated MenW capsules. While some recent MenW disease cases in Canada were caused by MenW ST-11 CC isolates showing relatedness to the 2000 MenW Hajj strain, many were non-Hajj isolates similar to current MenW ST-11 isolates found globally. Geographical and temporal variations in genotypes and surface protein antigen genes were found among the MenW ST-11 CC isolates. The current MenW ST-11 isolates did not arise by capsule switching from contemporary MenC ST-11 isolates. Both the Hajj-related and non-Hajj MenW ST-11 CC strains were associated with invasive meningococcal disease in Canada. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Whole genome sequences and annotation of Micrococcus luteus SUBG006, a novel phytopathogen of mango.

    Science.gov (United States)

    Rakhashiya, Purvi M; Patel, Pooja P; Thaker, Vrinda S

    2015-12-01

    Actinobaceria, Micrococcus luteus SUBG006 was isolated from infected leaves of Mangifera indica L. vr. Nylon in Rajkot, (22.30°N, 70.78°E), Gujarat, India. The genome size is 3.86 Mb with G + C content of 69.80% and contains 112 rRNA sequences (5S, 16S and 23S). The whole genome sequencing has been deposited in DDBJ/EMBL/GenBank under the accession number JOKP00000000.

  16. Refining QTL with high-density SNP genotyping and whole genome sequence in three cattle breeds

    DEFF Research Database (Denmark)

    Sahana, Goutam; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2012-01-01

    Genome-wide association study was carried out in Nordic Holsteins, Nordic Red and Jersey breeds for functional traits using BovineHD Genotyping BreadChip (Illumina, San Diego, CA). The association analyses were carried out using both linear mixed model approach and a Bayesian variable selection...... method. Principal components were used to account for population structure. The QTL segregating in all three breeds were selected and a few of the most significant ones were followed in further analyses. The polymorphisms in the identified QTL regions were imputed using 90 whole genome sequences...

  17. A Danish Salmonella Bareilly outbreak investigated by the use of whole genome sequencing

    DEFF Research Database (Denmark)

    Torpdahl, M.; Kiil, K.; Litrup, E.

    2013-01-01

    with several band changes and others are defined by one PFGE profile thereby excluding closely related profiles. We decided to investigate whether whole genome sequencing (WGS) could resolve this issue and be useful in outbreak investigations. Several analyses were performed, including a SNP tree based...... on the core genome, MLST profiles and detection of phages in the genome. The human cluster and the broiler isolates belonged to the same ST, but the isolates were divided into two groups, 9 SNPs apart, according to an MP phylogeny. When using PHAST, we found that two phage regions were a 100% similar...

  18. Whole-genome sequencing for identification of the source in hospital-acquired Legionnaires' disease

    DEFF Research Database (Denmark)

    Rosendahl Madsen, A M; Holm, A; Jensen, T G

    2017-01-01

    Acquisition of Legionnaires' disease is a serious complication of hospitalization. Rapid determination of whether or not the infection is caused by strains of Legionella pneumophila in the hospital environment is crucial to avoid further cases. This study investigated the use of whole-genome sequ......Acquisition of Legionnaires' disease is a serious complication of hospitalization. Rapid determination of whether or not the infection is caused by strains of Legionella pneumophila in the hospital environment is crucial to avoid further cases. This study investigated the use of whole...

  19. Isolation and whole-genome sequencing of a Crimean-Congo hemorrhagic fever virus strain, Greece.

    Science.gov (United States)

    Papa, Anna; Papadopoulou, Elpida; Tsioka, Katerina; Kontana, Anastasia; Pappa, Styliani; Melidou, Ageliki; Giadinis, Nektarios D

    2018-03-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) was isolated from a pool of two adult Rhipicephalus bursa ticks removed from a goat in 2015 in Greece. The strain clusters into lineage Europe 2 representing the second available whole-genome sequenced isolate of this lineage. CCHFV IgG antibodies were detected in 8 of 19 goats of the farm. Currently CCHFV is not associated with disease in mammals other than humans. Studies in animal models are needed to investigate the pathogenicity level of lineage Europe 2 and compare it with that of other lineages. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Association analysis of whole genome sequencing data accounting for longitudinal and family designs.

    Science.gov (United States)

    Hu, Yijuan; Hui, Qin; Sun, Yan V

    2014-01-01

    Using the whole genome sequencing data and the simulated longitudinal phenotypes for 849 pedigree-based individuals from Genetic Analysis Workshop 18, we investigated various approaches to detecting the association of rare and common variants with blood pressure traits. We compared three strategies for longitudinal data: (a) using the baseline measurement only, (b) using the average from multiple visits, and (c) using all individual measurements. We also compared the power of using all of the pedigree-based data and the unrelated subset. The analyses were performed without knowledge of the underlying simulating model.

  1. Reflections on the cost of "low-cost" whole genome sequencing: framing the health policy debate.

    Directory of Open Access Journals (Sweden)

    Timothy Caulfield

    2013-11-01

    Full Text Available The cost of whole genome sequencing is dropping rapidly. There has been a great deal of enthusiasm about the potential for this technological advance to transform clinical care. Given the interest and significant investment in genomics, this seems an ideal time to consider what the evidence tells us about potential benefits and harms, particularly in the context of health care policy. The scale and pace of adoption of this powerful new technology should be driven by clinical need, clinical evidence, and a commitment to put patients at the centre of health care policy.

  2. Copy number and loss of heterozygosity detected by SNP array of formalin-fixed tissues using whole-genome amplification.

    Directory of Open Access Journals (Sweden)

    Angela Stokes

    Full Text Available The requirement for large amounts of good quality DNA for whole-genome applications prohibits their use for small, laser capture micro-dissected (LCM, and/or rare clinical samples, which are also often formalin-fixed and paraffin-embedded (FFPE. Whole-genome amplification of DNA from these samples could, potentially, overcome these limitations. However, little is known about the artefacts introduced by amplification of FFPE-derived DNA with regard to genotyping, and subsequent copy number and loss of heterozygosity (LOH analyses. Using a ligation adaptor amplification method, we present data from a total of 22 Affymetrix SNP 6.0 experiments, using matched paired amplified and non-amplified DNA from 10 LCM FFPE normal and dysplastic oral epithelial tissues, and an internal method control. An average of 76.5% of SNPs were called in both matched amplified and non-amplified DNA samples, and concordance was a promising 82.4%. Paired analysis for copy number, LOH, and both combined, showed that copy number changes were reduced in amplified DNA, but were 99.5% concordant when detected, amplifications were the changes most likely to be 'missed', only 30% of non-amplified LOH changes were identified in amplified pairs, and when copy number and LOH are combined ∼50% of gene changes detected in the unamplified DNA were also detected in the amplified DNA and within these changes, 86.5% were concordant for both copy number and LOH status. However, there are also changes introduced as ∼20% of changes in the amplified DNA are not detected in the non-amplified DNA. An integrative network biology approach revealed that changes in amplified DNA of dysplastic oral epithelium localize to topologically critical regions of the human protein-protein interaction network, suggesting their functional implication in the pathobiology of this disease. Taken together, our results support the use of amplification of FFPE-derived DNA, provided sufficient samples are used

  3. Exploring evidence of positive selection reveals genetic basis of meat quality traits in Berkshire pigs through whole genome sequencing.

    Science.gov (United States)

    Jeong, Hyeonsoo; Song, Ki-Duk; Seo, Minseok; Caetano-Anollés, Kelsey; Kim, Jaemin; Kwak, Woori; Oh, Jae-Don; Kim, EuiSoo; Jeong, Dong Kee; Cho, Seoae; Kim, Heebal; Lee, Hak-Kyo

    2015-08-20

    Natural and artificial selection following domestication has led to the existence of more than a hundred pig breeds, as well as incredible variation in phenotypic traits. Berkshire pigs are regarded as having superior meat quality compared to other breeds. As the meat production industry seeks selective breeding approaches to improve profitable traits such as meat quality, information about genetic determinants of these traits is in high demand. However, most of the studies have been performed using trained sensory panel analysis without investigating the underlying genetic factors. Here we investigate the relationship between genomic composition and this phenotypic trait by scanning for signatures of positive selection in whole-genome sequencing data. We generated genomes of 10 Berkshire pigs at a total of 100.6 coverage depth, using the Illumina Hiseq2000 platform. Along with the genomes of 11 Landrace and 13 Yorkshire pigs, we identified genomic variants of 18.9 million SNVs and 3.4 million Indels in the mapped regions. We identified several associated genes related to lipid metabolism, intramuscular fatty acid deposition, and muscle fiber type which attribute to pork quality (TG, FABP1, AKIRIN2, GLP2R, TGFBR3, JPH3, ICAM2, and ERN1) by applying between population statistical tests (XP-EHH and XP-CLR). A statistical enrichment test was also conducted to detect breed specific genetic variation. In addition, de novo short sequence read assembly strategy identified several candidate genes (SLC25A14, IGF1, PI4KA, CACNA1A) as also contributing to lipid metabolism. Results revealed several candidate genes involved in Berkshire meat quality; most of these genes are involved in lipid metabolism and intramuscular fat deposition. These results can provide a basis for future research on the genomic characteristics of Berkshire pigs.

  4. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis

    Directory of Open Access Journals (Sweden)

    Chavez Adela

    2008-07-01

    Full Text Available Abstract Background Anaplasma phagocytophilum (Ap is an obligate intracellular bacterium and the agent of human granulocytic anaplasmosis, an emerging tick-borne disease. Ap alternately infects ticks and mammals and a variety of cell types within each. Understanding the biology behind such versatile cellular parasitism may be derived through the use of tiling microarrays to establish high resolution, genome-wide transcription profiles of the organism as it infects cell lines representative of its life cycle (tick; ISE6 and pathogenesis (human; HL-60 and HMEC-1. Results Detailed, host cell specific transcriptional behavior was revealed. There was extensive differential Ap gene transcription between the tick (ISE6 and the human (HL-60 and HMEC-1 cell lines, with far fewer differentially transcribed genes between the human cell lines, and all disproportionately represented by membrane or surface proteins. There were Ap genes exclusively transcribed in each cell line, apparent human- and tick-specific operons and paralogs, and anti-sense transcripts that suggest novel expression regulation processes. Seven virB2 paralogs (of the bacterial type IV secretion system showed human or tick cell dependent transcription. Previously unrecognized genes and coding sequences were identified, as were the expressed p44/msp2 (major surface proteins paralogs (of 114 total, through elevated signal produced to the unique hypervariable region of each – 2/114 in HL-60, 3/114 in HMEC-1, and none in ISE6. Conclusion Using these methods, whole genome transcription profiles can likely be generated for Ap, as well as other obligate intracellular organisms, in any host cells and for all stages of the cell infection process. Visual representation of comprehensive transcription data alongside an annotated map of the genome renders complex transcription into discernable patterns.

  5. Patterns of somatic alterations between matched primary and metastatic colorectal tumors characterized by whole-genome sequencing.

    Science.gov (United States)

    Xie, Tao; Cho, Yong Beom; Wang, Kai; Huang, Donghui; Hong, Hye Kyung; Choi, Yoon-La; Ko, Young Hyeh; Nam, Do-Hyun; Jin, Juyoun; Yang, Heekyoung; Fernandez, Julio; Deng, Shibing; Rejto, Paul A; Lee, Woo Yong; Mao, Mao

    2014-10-01

    Colorectal cancer (CRC) patients have poor prognosis after formation of distant metastasis. Understanding the molecular mechanisms by which genetic changes facilitate metastasis is critical for the development of targeted therapeutic strategies aimed at controlling disease progression while minimizing toxic side effects. A comprehensive portrait of somatic alterations in CRC and the changes between primary and metastatic tumors has yet to be developed. We performed whole genome sequencing of two primary CRC tumors and their matched liver metastases. By comparing to matched germline DNA, we catalogued somatic alterations at multiple scales, including single nucleotide variations, small insertions and deletions, copy number aberrations and structural variations in both the primary and matched metastasis. We found that the majority of these somatic alterations are present in both sites. Despite the overall similarity, several de novo alterations in the metastases were predicted to be deleterious, in genes including FBXW7, DCLK1 and FAT2, which might contribute to the initiation and progression of distant metastasis. Through careful examination of the mutation prevalence among tumor cells at each site, we also proposed distinct clonal evolution patterns between primary and metastatic tumors in the two cases. These results suggest that somatic alterations may play an important role in driving the development of colorectal cancer metastasis and present challenges and opportunities when considering the choice of treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Whole-genome sequencing analysis of phenotypic heterogeneity and anticipation in Li-Fraumeni cancer predisposition syndrome.

    Science.gov (United States)

    Ariffin, Hany; Hainaut, Pierre; Puzio-Kuter, Anna; Choong, Soo Sin; Chan, Adelyne Sue Li; Tolkunov, Denis; Rajagopal, Gunaretnam; Kang, Wenfeng; Lim, Leon Li Wen; Krishnan, Shekhar; Chen, Kok-Siong; Achatz, Maria Isabel; Karsa, Mawar; Shamsani, Jannah; Levine, Arnold J; Chan, Chang S

    2014-10-28

    The Li-Fraumeni syndrome (LFS) and its variant form (LFL) is a familial predisposition to multiple forms of childhood, adolescent, and adult cancers associated with germ-line mutation in the TP53 tumor suppressor gene. Individual disparities in tumor patterns are compounded by acceleration of cancer onset with successive generations. It has been suggested that this apparent anticipation pattern may result from germ-line genomic instability in TP53 mutation carriers, causing increased DNA copy-number variations (CNVs) with successive generations. To address the genetic basis of phenotypic disparities of LFS/LFL, we performed whole-genome sequencing (WGS) of 13 subjects from two generations of an LFS kindred. Neither de novo CNV nor significant difference in total CNV was detected in relation with successive generations or with age at cancer onset. These observations were consistent with an experimental mouse model system showing that trp53 deficiency in the germ line of father or mother did not increase CNV occurrence in the offspring. On the other hand, individual records on 1,771 TP53 mutation carriers from 294 pedigrees were compiled to assess genetic anticipation patterns (International Agency for Research on Cancer TP53 database). No strictly defined anticipation pattern was observed. Rather, in multigeneration families, cancer onset was delayed in older compared with recent generations. These observations support an alternative model for apparent anticipation in which rare variants from noncarrier parents may attenuate constitutive resistance to tumorigenesis in the offspring of TP53 mutation carriers with late cancer onset.

  7. Yeast "make-accumulate-consume" life strategy evolved as a multi-step process that predates the whole genome duplication.

    Science.gov (United States)

    Hagman, Arne; Säll, Torbjörn; Compagno, Concetta; Piskur, Jure

    2013-01-01

    When fruits ripen, microbial communities start a fierce competition for the freely available fruit sugars. Three yeast lineages, including baker's yeast Saccharomyces cerevisiae, have independently developed the metabolic activity to convert simple sugars into ethanol even under fully aerobic conditions. This fermentation capacity, named Crabtree effect, reduces the cell-biomass production but provides in nature a tool to out-compete other microorganisms. Here, we analyzed over forty Saccharomycetaceae yeasts, covering over 200 million years of the evolutionary history, for their carbon metabolism. The experiments were done under strictly controlled and uniform conditions, which has not been done before. We show that the origin of Crabtree effect in Saccharomycetaceae predates the whole genome duplication and became a settled metabolic trait after the split of the S. cerevisiae and Kluyveromyces lineages, and coincided with the origin of modern fruit bearing plants. Our results suggest that ethanol fermentation evolved progressively, involving several successive molecular events that have gradually remodeled the yeast carbon metabolism. While some of the final evolutionary events, like gene duplications of glucose transporters and glycolytic enzymes, have been deduced, the earliest molecular events initiating Crabtree effect are still to be determined.

  8. Whole-Genome Sequencing for Routine Pathogen Surveillance in Public Health: a Population Snapshot of Invasive Staphylococcus aureus in Europe

    Directory of Open Access Journals (Sweden)

    David M. Aanensen

    2016-05-01

    Full Text Available The implementation of routine whole-genome sequencing (WGS promises to transform our ability to monitor the emergence and spread of bacterial pathogens. Here we combined WGS data from 308 invasive Staphylococcus aureus isolates corresponding to a pan-European population snapshot, with epidemiological and resistance data. Geospatial visualization of the data is made possible by a generic software tool designed for public health purposes that is available at the project URL (http://www.microreact.org/project/EkUvg9uY?tt=rc. Our analysis demonstrates that high-risk clones can be identified on the basis of population level properties such as clonal relatedness, abundance, and spatial structuring and by inferring virulence and resistance properties on the basis of gene content. We also show that in silico predictions of antibiotic resistance profiles are at least as reliable as phenotypic testing. We argue that this work provides a comprehensive road map illustrating the three vital components for future molecular epidemiological surveillance: (i large-scale structured surveys, (ii WGS, and (iii community-oriented database infrastructure and analysis tools.

  9. High-resolution whole-genome analysis of skull base chordomas implicates FHIT loss in chordoma pathogenesis.

    Science.gov (United States)

    Diaz, Roberto Jose; Guduk, Mustafa; Romagnuolo, Rocco; Smith, Christian A; Northcott, Paul; Shih, David; Berisha, Fitim; Flanagan, Adrienne; Munoz, David G; Cusimano, Michael D; Pamir, M Necmettin; Rutka, James T

    2012-09-01

    Chordoma is a rare tumor arising in the sacrum, clivus, or vertebrae. It is often not completely resectable and shows a high incidence of recurrence and progression with shortened patient survival and impaired quality of life. Chemotherapeutic options are limited to investigational therapies at present. Therefore, adjuvant therapy for control of tumor recurrence and progression is of great interest, especially in skull base lesions where complete tumor resection is often not possible because of the proximity of cranial nerves. To understand the extent of genetic instability and associated chromosomal and gene losses or gains in skull base chordoma, we undertook whole-genome single-nucleotide polymorphism microarray analysis of flash frozen surgical chordoma specimens, 21 from the clivus and 1 from C1 to C2 vertebrae. We confirm the presence of a deletion at 9p involving CDKN2A, CDKN2B, and MTAP but at a much lower rate (22%) than previously reported for sacral chordoma. At a similar frequency (21%), we found aneuploidy of chromosome 3. Tissue microarray immunohistochemistry demonstrated absent or reduced fragile histidine triad (FHIT) protein expression in 98% of sacral chordomas and 67%of skull base chordomas. Our data suggest that chromosome 3 aneuploidy and epigenetic regulation of FHIT contribute to loss of the FHIT tumor suppressor in chordoma. The finding that FHIT is lost in a majority of chordomas provides new insight into chordoma pathogenesis and points to a potential new therapeutic target for this challenging neoplasm.

  10. High-resolution Whole-Genome Analysis of Skull Base Chordomas Implicates FHIT Loss in Chordoma Pathogenesis

    Directory of Open Access Journals (Sweden)

    Roberto Jose Diaz

    2012-09-01

    Full Text Available Chordoma is a rare tumor arising in the sacrum, clivus, or vertebrae. It is often not completely resectable and shows a high incidence of recurrence and progression with shortened patient survival and impaired quality of life. Chemotherapeutic options are limited to investigational therapies at present. Therefore, adjuvant therapy for control of tumor recurrence and progression is of great interest, especially in skull base lesions where complete tumor resection is often not possible because of the proximity of cranial nerves. To understand the extent of genetic instability and associated chromosomal and gene losses or gains in skull base chordoma, we undertook whole-genome single-nucleotide polymorphism microarray analysis of flash frozen surgical chordoma specimens, 21 from the clivus and 1 from C1 to C2 vertebrae. We confirm the presence of a deletion at 9p involving CDKN2A, CDKN2B, and MTAP but at a much lower rate (22% than previously reported for sacral chordoma. At a similar frequency (21%, we found aneuploidy of chromosome 3. Tissue microarray immunohistochemistry demonstrated absent or reduced fragile histidine triad (FHIT protein expression in 98% of sacral chordomas and 67%of skull base chordomas. Our data suggest that chromosome 3 aneuploidy and epigenetic regulation of FHIT contribute to loss of the FHIT tumor suppressor in chordoma. The finding that FHIT is lost in a majority of chordomas provides new insight into chordoma pathogenesis and points to a potential new therapeutic target for this challenging neoplasm.

  11. Whole Genome Sequencing Identifies a Missense Mutation in HES7 Associated with Short Tails in Asian Domestic Cats.

    Science.gov (United States)

    Xu, Xiao; Sun, Xin; Hu, Xue-Song; Zhuang, Yan; Liu, Yue-Chen; Meng, Hao; Miao, Lin; Yu, He; Luo, Shu-Jin

    2016-08-25

    Domestic cats exhibit abundant variations in tail morphology and serve as an excellent model to study the development and evolution of vertebrate tails. Cats with shortened and kinked tails were first recorded in the Malayan archipelago by Charles Darwin in 1868 and remain quite common today in Southeast and East Asia. To elucidate the genetic basis of short tails in Asian cats, we built a pedigree of 13 cats segregating at the trait with a founder from southern China and performed linkage mapping based on whole genome sequencing data from the pedigree. The short-tailed trait was mapped to a 5.6 Mb region of Chr E1, within which the substitution c. 5T > C in the somite segmentation-related gene HES7 was identified as the causal mutation resulting in a missense change (p.V2A). Validation in 245 unrelated cats confirmed the correlation between HES7-c. 5T > C and Chinese short-tailed feral cats as well as the Japanese Bobtail breed, indicating a common genetic basis of the two. In addition, some of our sampled kinked-tailed cats could not be explained by either HES7 or the Manx-related T-box, suggesting at least three independent events in the evolution of domestic cats giving rise to short-tailed traits.

  12. Whole-Genome Sequencing and Comparative Genome Analysis of Bacillus subtilis Strains Isolated from Non-Salted Fermented Soybean Foods.

    Directory of Open Access Journals (Sweden)

    Mayumi Kamada

    Full Text Available Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA, we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from "Tua Nao" of Thailand traces a different evolutionary process from other strains.

  13. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes.

    Science.gov (United States)

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M; Murphy, Robert W; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-03-17

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies.

  14. A hybrid approach of gene sets and single genes for the prediction of survival risks with gene expression data.

    Science.gov (United States)

    Seok, Junhee; Davis, Ronald W; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn't been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge.

  15. Highly efficient PCR assay to discriminate allelic DNA methylation status using whole genome amplification

    Directory of Open Access Journals (Sweden)

    Ito Takashi

    2011-06-01

    Full Text Available Abstract Background We previously developed a simple method termed HpaII-McrBC PCR (HM-PCR to discriminate allelic methylation status of the genomic sites of interest, and successfully applied it to a comprehensive analysis of CpG islands (CGIs on human chromosome 21q. However, HM-PCR requires 200 ng of genomic DNA to examine one target site, thereby precluding its application to such samples that are limited in quantity. Findings We developed HpaII-McrBC whole-genome-amplification PCR (HM-WGA-PCR that uses whole-genome-amplified DNA as the template. HM-WGA-PCR uses only 1/100th the genomic template material required for HM-PCR. Indeed, we successfully analyzed 147 CGIs by HM-WGA-PCR using only ~300 ng of DNA, whereas previous HM-PCR study had required ~30 μg. Furthermore, we confirmed that allelic methylation status revealed by HM-WGA-PCR is identical to that by HM-PCR in every case of the 147 CGIs tested, proving high consistency between the two methods. Conclusions HM-WGA-PCR would serve as a reliable alternative to HM-PCR in the analysis of allelic methylation status when the quantity of DNA available is limited.

  16. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Directory of Open Access Journals (Sweden)

    Can Alkan

    2007-09-01

    Full Text Available The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  17. Whole genome sequence typing to investigate the Apophysomyces outbreak following a tornado in Joplin, Missouri, 2011.

    Science.gov (United States)

    Etienne, Kizee A; Gillece, John; Hilsabeck, Remy; Schupp, Jim M; Colman, Rebecca; Lockhart, Shawn R; Gade, Lalitha; Thompson, Elizabeth H; Sutton, Deanna A; Neblett-Fanfair, Robyn; Park, Benjamin J; Turabelidze, George; Keim, Paul; Brandt, Mary E; Deak, Eszter; Engelthaler, David M

    2012-01-01

    Case reports of Apophysomyces spp. in immunocompetent hosts have been a result of traumatic deep implantation of Apophysomyces spp. spore-contaminated soil or debris. On May 22, 2011 a tornado occurred in Joplin, MO, leaving 13 tornado victims with Apophysomyces trapeziformis infections as a result of lacerations from airborne material. We used whole genome sequence typing (WGST) for high-resolution phylogenetic SNP analysis of 17 outbreak Apophysomyces isolates and five additional temporally and spatially diverse Apophysomyces control isolates (three A. trapeziformis and two A. variabilis isolates). Whole genome SNP phylogenetic analysis revealed three clusters of genotypically related or identical A. trapeziformis isolates and multiple distinct isolates among the Joplin group; this indicated multiple genotypes from a single or multiple sources. Though no linkage between genotype and location of exposure was observed, WGST analysis determined that the Joplin isolates were more closely related to each other than to the control isolates, suggesting local population structure. Additionally, species delineation based on WGST demonstrated the need to reassess currently accepted taxonomic classifications of phylogenetic species within the genus Apophysomyces.

  18. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing.

    Science.gov (United States)

    Thoendel, Matthew; Jeraldo, Patricio R; Greenwood-Quaintance, Kerryl E; Yao, Janet Z; Chia, Nicholas; Hanssen, Arlen D; Abdel, Matthew P; Patel, Robin

    2016-08-01

    Metagenomic whole genome sequencing for detection of pathogens in clinical samples is an exciting new area for discovery and clinical testing. A major barrier to this approach is the overwhelming ratio of human to pathogen DNA in samples with low pathogen abundance, which is typical of most clinical specimens. Microbial DNA enrichment methods offer the potential to relieve this limitation by improving this ratio. Two commercially available enrichment kits, the NEBNext Microbiome DNA Enrichment Kit and the Molzym MolYsis Basic kit, were tested for their ability to enrich for microbial DNA from resected arthroplasty component sonicate fluids from prosthetic joint infections or uninfected sonicate fluids spiked with Staphylococcus aureus. Using spiked uninfected sonicate fluid there was a 6-fold enrichment of bacterial DNA with the NEBNext kit and 76-fold enrichment with the MolYsis kit. Metagenomic whole genome sequencing of sonicate fluid revealed 13- to 85-fold enrichment of bacterial DNA using the NEBNext enrichment kit. The MolYsis approach achieved 481- to 9580-fold enrichment, resulting in 7 to 59% of sequencing reads being from the pathogens known to be present in the samples. These results demonstrate the usefulness of these tools when testing clinical samples with low microbial burden using next generation sequencing. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Systematic evaluation of bias in microbial community profiles induced by whole genome amplification.

    Science.gov (United States)

    Direito, Susana O L; Zaura, Egija; Little, Miranda; Ehrenfreund, Pascale; Röling, Wilfred F M

    2014-03-01

    Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used [multiple displacement amplification (MDA)] and one new primer-free method [primase-based whole genome amplification (pWGA)] were compared using a polymerase chain reaction (PCR)-based method as control. Pyrosequencing of an environmental sample and principal component analysis revealed that MDA impacted community profiles more strongly than pWGA and indicated that this related to species GC content, although an influence of DNA integrity could not be excluded. Subsequently, biases by species GC content, DNA integrity and fragment size were separately analysed using defined mixtures of DNA from various species. We found significantly less amplification of species with the highest GC content for MDA-based templates and, to a lesser extent, for pWGA. DNA fragmentation also interfered severely: species with more fragmented DNA were less amplified with MDA and pWGA. pWGA was unable to amplify low molecular weight DNA (microbial communities in low-biomass environments and for currently planned astrobiological missions to Mars. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Whole genome duplication affects evolvability of flowering time in an autotetraploid plant.

    Directory of Open Access Journals (Sweden)

    Sara L Martin

    Full Text Available Whole genome duplications have occurred recurrently throughout the evolutionary history of eukaryotes. The resulting genetic and phenotypic changes can influence physiological and ecological responses to the environment; however, the impact of genome copy number on evolvability has rarely been examined experimentally. Here, we evaluate the effect of genome duplication on the ability to respond to selection for early flowering time in lines drawn from naturally occurring diploid and autotetraploid populations of the plant Chamerion angustifolium (fireweed. We contrast this with the result of four generations of selection on synthesized neoautotetraploids, whose genic variability is similar to diploids but genome copy number is similar to autotetraploids. In addition, we examine correlated responses to selection in all three groups. Diploid and both extant tetraploid and neoautotetraploid lines responded to selection with significant reductions in time to flowering. Evolvability, measured as realized heritability, was significantly lower in extant tetraploids (^b(T =  0.31 than diploids (^b(T =  0.40. Neotetraploids exhibited the highest evolutionary response (^b(T  =  0.55. The rapid shift in flowering time in neotetraploids was associated with an increase in phenotypic variability across generations, but not with change in genome size or phenotypic correlations among traits. Our results suggest that whole genome duplications, without hybridization, may initially alter evolutionary rate, and that the dynamic nature of neoautopolyploids may contribute to the prevalence of polyploidy throughout eukaryotes.

  1. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Science.gov (United States)

    Alkan, Can; Ventura, Mario; Archidiacono, Nicoletta; Rocchi, Mariano; Sahinalp, S Cenk; Eichler, Evan E

    2007-09-01

    The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  2. Epidemiological analysis of Salmonella clusters identified by whole genome sequencing, England and Wales 2014.

    Science.gov (United States)

    Waldram, Alison; Dolan, Gayle; Ashton, Philip M; Jenkins, Claire; Dallman, Timothy J

    2018-05-01

    The unprecedented level of bacterial strain discrimination provided by whole genome sequencing (WGS) presents new challenges with respect to the utility and interpretation of the data. Whole genome sequences from 1445 isolates of Salmonella belonging to the most commonly identified serotypes in England and Wales isolated between April and August 2014 were analysed. Single linkage single nucleotide polymorphism thresholds at the 10, 5 and 0 level were explored for evidence of epidemiological links between clustered cases. Analysis of the WGS data organised 566 of the 1445 isolates into 32 clusters of five or more. A statistically significant epidemiological link was identified for 17 clusters. The clusters were associated with foreign travel (n = 8), consumption of Chinese takeaways (n = 4), chicken eaten at home (n = 2), and one each of the following; eating out, contact with another case in the home and contact with reptiles. In the same time frame, one cluster was detected using traditional outbreak detection methods. WGS can be used for the highly specific and highly sensitive detection of biologically related isolates when epidemiological links are obscured. Improvements in the collection of detailed, standardised exposure information would enhance cluster investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Kernel-based whole-genome prediction of complex traits: a review.

    Science.gov (United States)

    Morota, Gota; Gianola, Daniel

    2014-01-01

    Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.

  4. Kernel-based whole-genome prediction of complex traits: a review

    Directory of Open Access Journals (Sweden)

    Gota eMorota

    2014-10-01

    Full Text Available Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways, thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.

  5. Bacterial phylogenetic reconstruction from whole genomes is robust to recombination but demographic inference is not.

    Science.gov (United States)

    Hedge, Jessica; Wilson, Daniel J

    2014-11-25

    Phylogenetic inference in bacterial genomics is fundamental to understanding problems such as population history, antimicrobial resistance, and transmission dynamics. The field has been plagued by an apparent state of contradiction since the distorting effects of recombination on phylogeny were discovered more than a decade ago. Researchers persist with detailed phylogenetic analyses while simultaneously acknowledging that recombination seriously misleads inference of population dynamics and selection. Here we resolve this paradox by showing that phylogenetic tree topologies based on whole genomes robustly reconstruct the clonal frame topology but that branch lengths are badly skewed. Surprisingly, removing recombining sites can exacerbate branch length distortion caused by recombination. Phylogenetic tree reconstruction is a popular approach for understanding the relatedness of bacteria in a population from differences in their genome sequences. However, bacteria frequently exchange regions of their genomes by a process called homologous recombination, which violates a fundamental assumption of phylogenetic methods. Since many researchers continue to use phylogenetics for recombining bacteria, it is important to understand how recombination affects the conclusions drawn from these analyses. We find that whole-genome sequences afford great accuracy in reconstructing evolutionary relationships despite concerns surrounding the presence of recombination, but the branch lengths of the phylogenetic tree are indeed badly distorted. Surprisingly, methods to reduce the impact of recombination on branch lengths can exacerbate the problem. Copyright © 2014 Hedge and Wilson.

  6. Zebrafish Expression Ontology of Gene Sets (ZEOGS): a tool to analyze enrichment of zebrafish anatomical terms in large gene sets.

    Science.gov (United States)

    Prykhozhij, Sergey V; Marsico, Annalisa; Meijsing, Sebastiaan H

    2013-09-01

    The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene expression

  7. Zebrafish Expression Ontology of Gene Sets (ZEOGS): A Tool to Analyze Enrichment of Zebrafish Anatomical Terms in Large Gene Sets

    Science.gov (United States)

    Marsico, Annalisa

    2013-01-01

    Abstract The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene

  8. Discovery of cancer common and specific driver gene sets

    Science.gov (United States)

    2017-01-01

    Abstract Cancer is known as a disease mainly caused by gene alterations. Discovery of mutated driver pathways or gene sets is becoming an important step to understand molecular mechanisms of carcinogenesis. However, systematically investigating commonalities and specificities of driver gene sets among multiple cancer types is still a great challenge, but this investigation will undoubtedly benefit deciphering cancers and will be helpful for personalized therapy and precision medicine in cancer treatment. In this study, we propose two optimization models to de novo discover common driver gene sets among multiple cancer types (ComMDP) and specific driver gene sets of one certain or multiple cancer types to other cancers (SpeMDP), respectively. We first apply ComMDP and SpeMDP to simulated data to validate their efficiency. Then, we further apply these methods to 12 cancer types from The Cancer Genome Atlas (TCGA) and obtain several biologically meaningful driver pathways. As examples, we construct a common cancer pathway model for BRCA and OV, infer a complex driver pathway model for BRCA carcinogenesis based on common driver gene sets of BRCA with eight cancer types, and investigate specific driver pathways of the liquid cancer lymphoblastic acute myeloid leukemia (LAML) versus other solid cancer types. In these processes more candidate cancer genes are also found. PMID:28168295

  9. Whole-genome sequencing of monozygotic twins discordant for schizophrenia indicates multiple genetic risk factors for schizophrenia.

    Science.gov (United States)

    Tang, Jinsong; Fan, Yu; Li, Hong; Xiang, Qun; Zhang, Deng-Feng; Li, Zongchang; He, Ying; Liao, Yanhui; Wang, Ya; He, Fan; Zhang, Fengyu; Shugart, Yin Yao; Liu, Chunyu; Tang, Yanqing; Chan, Raymond C K; Wang, Chuan-Yue; Yao, Yong-Gang; Chen, Xiaogang

    2017-06-20

    Schizophrenia is a common disorder with a high heritability, but its genetic architecture is still elusive. We implemented whole-genome sequencing (WGS) analysis of 8 families with monozygotic (MZ) twin pairs discordant for schizophrenia to assess potential association of de novo mutations (DNMs) or inherited variants with susceptibility to schizophrenia. Eight non-synonymous DNMs (including one splicing site) were identified and shared by twins, which were either located in previously reported schizophrenia risk genes (p.V24689I mutation in TTN, p.S2506T mutation in GCN1L1, IVS3+1G > T in DOCK1) or had a benign to damaging effect according to in silico prediction analysis. By searching the inherited rare damaging or loss-of-function (LOF) variants and common susceptible alleles from three classes of schizophrenia candidate genes, we were able to distill genetic alterations in several schizophrenia risk genes, including GAD1, PLXNA2, RELN and FEZ1. Four inherited copy number variations (CNVs; including a large deletion at 16p13.11) implicated for schizophrenia were identified in four families, respectively. Most of families carried both missense DNMs and inherited risk variants, which might suggest that DNMs, inherited rare damaging variants and common risk alleles together conferred to schizophrenia susceptibility. Our results support that schizophrenia is caused by a combination of multiple genetic factors, with each DNM/variant showing a relatively small effect size. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. All rights reserved.

  10. Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli

    Science.gov (United States)

    Scheutz, Flemming; Lund, Ole; Hasman, Henrik; Kaas, Rolf S.; Nielsen, Eva M.; Aarestrup, Frank M.

    2014-01-01

    Fast and accurate identification and typing of pathogens are essential for effective surveillance and outbreak detection. The current routine procedure is based on a variety of techniques, making the procedure laborious, time-consuming, and expensive. With whole-genome sequencing (WGS) becoming cheaper, it has huge potential in both diagnostics and routine surveillance. The aim of this study was to perform a real-time evaluation of WGS for routine typing and surveillance of verocytotoxin-producing Escherichia coli (VTEC). In Denmark, the Statens Serum Institut (SSI) routinely receives all suspected VTEC isolates. During a 7-week period in the fall of 2012, all incoming isolates were concurrently subjected to WGS using IonTorrent PGM. Real-time bioinformatics analysis was performed using web-tools (www.genomicepidemiology.org) for species determination, multilocus sequence type (MLST) typing, and determination of phylogenetic relationship, and a specific VirulenceFinder for detection of E. coli virulence genes was developed as part of this study. In total, 46 suspected VTEC isolates were characterized in parallel during the study. VirulenceFinder proved successful in detecting virulence genes included in routine typing, explicitly verocytotoxin 1 (vtx1), verocytotoxin 2 (vtx2), and intimin (eae), and also detected additional virulence genes. VirulenceFinder is also a robust method for assigning verocytotoxin (vtx) subtypes. A real-time clustering of isolates in agreement with the epidemiology was established from WGS, enabling discrimination between sporadic and outbreak isolates. Overall, WGS typing produced results faster and at a lower cost than the current routine. Therefore, WGS typing is a superior alternative to conventional typing strategies. This approach may also be applied to typing and surveillance of other pathogens. PMID:24574290

  11. Clonality and Resistome analysis of KPC-producing Klebsiella pneumoniae strain isolated in Korea using whole genome sequencing.

    Science.gov (United States)

    Lee, Yangsoon; Kim, Bong-Soo; Chun, Jongsik; Yong, Ji Hyun; Lee, Yeong Seon; Yoo, Jung Sik; Yong, Dongeun; Hong, Seong Geun; D'Souza, Roshan; Thomson, Kenneth S; Lee, Kyungwon; Chong, Yunsop

    2014-01-01

    We analyzed the whole genome sequence and resistome of the outbreak Klebsiella pneumoniae strain MP14 and compared it with those of K. pneumoniae carbapenemase- (KPC-) producing isolates that showed high similarity in the NCBI genome database. A KPC-2-producing multidrug-resistant (MDR) K. pneumoniae clinical isolate was obtained from a patient admitted to a Korean hospital in 2011. The strain MP14 was resistant to all tested β-lactams including monobactam, amikacin, levofloxacin, and cotrimoxazole, but susceptible to tigecycline and colistin. Resistome analysis showed the presence of β-lactamase genes including bla KPC-2, bla SHV-11, bla TEM-169, and bla OXA-9. MP14 also possessed aac(6'-)Ib, aadA2, and aph(3'-)Ia as aminoglycoside resistance-encoding genes, mph(A) for macrolides, oqxA and oqxB for quinolone, catA1 for phenicol, sul1 for sulfonamide, and dfrA12 for trimethoprim. Both SNP tree and cgMLST analysis showed the close relatedness with the KPC producers (KPNIH strains) isolated from an outbreak in the USA and colistin-resistant strains isolated in Italy. The plasmid-scaffold genes in plasmids pKpQil, pKpQil-IT, pKPN3, or pKPN-IT were identified in MP14, KPNIH, and Italian strains. The KPC-2-producing MDR K. pneumoniae ST258 stain isolated in Korea was highly clonally related with MDR K. pneumoniae strains from the USA and Italy. Global spread of KPC-producing K. pneumoniae is a worrying phenomenon.

  12. Clonality and Resistome Analysis of KPC-Producing Klebsiella pneumoniae Strain Isolated in Korea Using Whole Genome Sequencing

    Directory of Open Access Journals (Sweden)

    Yangsoon Lee

    2014-01-01

    Full Text Available We analyzed the whole genome sequence and resistome of the outbreak Klebsiella pneumoniae strain MP14 and compared it with those of K. pneumoniae carbapenemase- (KPC- producing isolates that showed high similarity in the NCBI genome database. A KPC-2-producing multidrug-resistant (MDR K. pneumoniae clinical isolate was obtained from a patient admitted to a Korean hospital in 2011. The strain MP14 was resistant to all tested β-lactams including monobactam, amikacin, levofloxacin, and cotrimoxazole, but susceptible to tigecycline and colistin. Resistome analysis showed the presence of β-lactamase genes including blaKPC-2, blaSHV-11, blaTEM-169, and blaOXA-9. MP14 also possessed aac(6′-Ib, aadA2, and aph(3′-Ia as aminoglycoside resistance-encoding genes, mph(A for macrolides, oqxA and oqxB for quinolone, catA1 for phenicol, sul1 for sulfonamide, and dfrA12 for trimethoprim. Both SNP tree and cgMLST analysis showed the close relatedness with the KPC producers (KPNIH strains isolated from an outbreak in the USA and colistin-resistant strains isolated in Italy. The plasmid-scaffold genes in plasmids pKpQil, pKpQil-IT, pKPN3, or pKPN-IT were identified in MP14, KPNIH, and Italian strains. The KPC-2-producing MDR K. pneumoniae ST258 stain isolated in Korea was highly clonally related with MDR K. pneumoniae strains from the USA and Italy. Global spread of KPC-producing K. pneumoniae is a worrying phenomenon.

  13. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli.

    Science.gov (United States)

    Joensen, Katrine Grimstrup; Scheutz, Flemming; Lund, Ole; Hasman, Henrik; Kaas, Rolf S; Nielsen, Eva M; Aarestrup, Frank M

    2014-05-01

    Fast and accurate identification and typing of pathogens are essential for effective surveillance and outbreak detection. The current routine procedure is based on a variety of techniques, making the procedure laborious, time-consuming, and expensive. With whole-genome sequencing (WGS) becoming cheaper, it has huge potential in both diagnostics and routine surveillance. The aim of this study was to perform a real-time evaluation of WGS for routine typing and surveillance of verocytotoxin-producing Escherichia coli (VTEC). In Denmark, the Statens Serum Institut (SSI) routinely receives all suspected VTEC isolates. During a 7-week period in the fall of 2012, all incoming isolates were concurrently subjected to WGS using IonTorrent PGM. Real-time bioinformatics analysis was performed using web-tools (www.genomicepidemiology.org) for species determination, multilocus sequence type (MLST) typing, and determination of phylogenetic relationship, and a specific VirulenceFinder for detection of E. coli virulence genes was developed as part of this study. In total, 46 suspected VTEC isolates were characterized in parallel during the study. VirulenceFinder proved successful in detecting virulence genes included in routine typing, explicitly verocytotoxin 1 (vtx1), verocytotoxin 2 (vtx2), and intimin (eae), and also detected additional virulence genes. VirulenceFinder is also a robust method for assigning verocytotoxin (vtx) subtypes. A real-time clustering of isolates in agreement with the epidemiology was established from WGS, enabling discrimination between sporadic and outbreak isolates. Overall, WGS typing produced results faster and at a lower cost than the current routine. Therefore, WGS typing is a superior alternative to conventional typing strategies. This approach may also be applied to typing and surveillance of other pathogens.

  14. Whole genome amplification and microsatellite genotyping of herbarium DNA revealed the identity of an ancient grapevine cultivar

    Science.gov (United States)

    Malenica, Nenad; Šimon, Silvio; Besendorfer, Višnja; Maletić, Edi; Karoglan Kontić, Jasminka; Pejić, Ivan

    2011-09-01

    Reconstruction of the grapevine cultivation history has advanced tremendously during the last decade. Identification of grapevine cultivars by using microsatellite DNA markers has mostly become a routine. The parentage of several renowned grapevine cultivars, like Cabernet Sauvignon and Chardonnay, has been elucidated. However, the assembly of a complete grapevine genealogy is not yet possible because missing links might no longer be in cultivation or are even extinct. This problem could be overcome by analyzing ancient DNA from grapevine herbarium specimens and other historical remnants of once cultivated varieties. Here, we present the first successful genotyping of a grapevine herbarium specimen and the identification of the corresponding grapevine cultivar. Using a set of nine grapevine microsatellite markers, in combination with a whole genome amplification procedure, we found the 90-year-old Tribidrag herbarium specimen to display the same microsatellite profile as the popular American cultivar Zinfandel. This work, together with information from several historical documents, provides a new clue of Zinfandel cultivation in Croatia as early as the beginning of fifteenth century, under the native name Tribidrag. Moreover, it emphasizes substantial information potential of existing grapevine and other herbarium collections worldwide.

  15. Reporting results from whole-genome and whole-exome sequencing in clinical practice: a proposal for Canada?

    Science.gov (United States)

    Zawati, Ma'n H; Parry, David; Thorogood, Adrian; Nguyen, Minh Thu; Boycott, Kym M; Rosenblatt, David; Knoppers, Bartha Maria

    2014-01-01

    This article proposes recommendations for the use of whole-genome and whole-exome (WGS/WES) sequencing in clinical practice, endorsed by the board of directors of the Canadian College of Medical Geneticists. The publication of statements and recommendations by several international and national organisations on clinical WGS/WES has prompted a need for Canadian-specific guidance. A multi-disciplinary group consisting of lawyers, ethicists, genetic researchers, and clinical geneticists was assembled to review existing guidelines on WGS/WES and identify provisions relevant to the Canadian context. Definitions were provided to orient the recommendations and to minimize confusion with other recommendations. Recommendations include the following: WGS/WES should be used in a judicious and cost-efficient manner; WGS/WES should be used to answer a clinical question; and physicians need to explain to adult patients the nature of the results that could arise, so as to allow them to make informed choices over whether to take the test and which results they wish to receive. Recommendations are also provided for WGS/WES in the pediatric context, and for when results implicate patients' family members. These recommendations are only a proposal to be developed into comprehensive Canadian-based guidelines. They aim to promote discussion about the reporting of WGS/WES results, and to encourage the ethical implementation of these new technologies in the clinical setting.

  16. Development of a real-time PCR for detection of Staphylococcus pseudintermedius using a novel automated comparison of whole-genome sequences.

    Directory of Open Access Journals (Sweden)

    Koen M Verstappen

    Full Text Available Staphylococcus pseudintermedius is an opportunistic pathogen in dogs and cats and occasionally causes infections in humans. S. pseudintermedius is often resistant to multiple classes of antimicrobials. It requires a reliable detection so that it is not misidentified as S. aureus. Phenotypic and currently-used molecular-based diagnostic assays lack specificity or are labour-intensive using multiplex PCR or nucleic acid sequencing. The aim of this study was to identify a specific target for real-time PCR by comparing whole genome sequences of S. pseudintermedius and non-pseudintermedius.Genome sequences were downloaded from public repositories and supplemented by isolates that were sequenced in this study. A Perl-script was written that analysed 300-nt fragments from a reference genome sequence of S. pseudintermedius and checked if this sequence was present in other S. pseudintermedius genomes (n = 74 and non-pseudintermedius genomes (n = 138. Six sequences specific for S. pseudintermedius were identified (sequence length between 300-500 nt. One sequence, which was located in the spsJ gene, was used to develop primers and a probe. The real-time PCR showed 100% specificity when testing for S. pseudintermedius isolates (n = 54, and eight other staphylococcal species (n = 43. In conclusion, a novel approach by comparing whole genome sequences identified a sequence that is specific for S. pseudintermedius and provided a real-time PCR target for rapid and reliable detection of S. pseudintermedius.

  17. Hospital Epidemiology of Methicillin-Resistant Staphylococcus aureus in a Tertiary Care Hospital in Moshi, Tanzania, as Determined by Whole Genome Sequencing

    DEFF Research Database (Denmark)

    Kumburu, Happiness H.; Sonda, Tolbert; Leekitcharoenphon, Pimlapas

    2018-01-01

    Objective. To determine molecular epidemiology of methicillin-resistant S. aureus in Tanzania using whole genome sequencing. Methods. DNA from 33 Staphylococcus species was recovered from subcultured archived Staphylococcus isolates. Whole genome sequencing was performed on IlluminaMiseq using...... among the 30 S. aureus isolates, with ST-8 (n = seven, 23%) being the most common. Gene detection in S. aureus stains were as follows: mecA, 10 (33.3%); pvl, 5 (16.7%); tst, 2 (6.7%). The SNP difference among the six Tanzanian ST-8MRSA isolates ranged from 24 to 196 SNPs and from 16 to 446 SNPs when...... using the USA300_FPR3757 or the USA500 2395 as a reference, respectively. The mutation rate was 1.38 x 10(-11) SNPs/site/year or 1.4 x 10(-6) SNPs/site/year as estimated by USA300 FPR3757 or the USA500 2395, respectively. Conclusion. S. aureus isolates causing infections in hospitalized patients...

  18. Whole-Genome Sequencing and iPLEX MassARRAY Genotyping Map an EMS-Induced Mutation Affecting Cell Competition in Drosophila melanogaster.

    Science.gov (United States)

    Lee, Chang-Hyun; Rimesso, Gerard; Reynolds, David M; Cai, Jinlu; Baker, Nicholas E

    2016-10-13

    Cell competition, the conditional loss of viable genotypes only when surrounded by other cells, is a phenomenon observed in certain genetic mosaic conditions. We conducted a chemical mutagenesis and screen to recover new mutations that affect cell competition between wild-type and RpS3 heterozygous cells. Mutations were identified by whole-genome sequencing, making use of software tools that greatly facilitate the distinction between newly induced mutations and other sources of apparent sequence polymorphism, thereby reducing false-positive and false-negative identification rates. In addition, we utilized iPLEX MassARRAY for genotyping recombinant chromosomes. These approaches permitted the mapping of a new mutation affecting cell competition when only a single allele existed, with a phenotype assessed only in genetic mosaics, without the benefit of complementation with existing mutations, deletions, or duplications. These techniques expand the utility of chemical mutagenesis and whole-genome sequencing for mutant identification. We discuss mutations in the Atm and Xrp1 genes identified in this screen. Copyright © 2016 Lee et al.

  19. Whole-Genome Sequencing and iPLEX MassARRAY Genotyping Map an EMS-Induced Mutation Affecting Cell Competition in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Chang-Hyun Lee

    2016-10-01

    Full Text Available Cell competition, the conditional loss of viable genotypes only when surrounded by other cells, is a phenomenon observed in certain genetic mosaic conditions. We conducted a chemical mutagenesis and screen to recover new mutations that affect cell competition between wild-type and RpS3 heterozygous cells. Mutations were identified by whole-genome sequencing, making use of software tools that greatly facilitate the distinction between newly induced mutations and other sources of apparent sequence polymorphism, thereby reducing false-positive and false-negative identification rates. In addition, we utilized iPLEX MassARRAY for genotyping recombinant chromosomes. These approaches permitted the mapping of a new mutation affecting cell competition when only a single allele existed, with a phenotype assessed only in genetic mosaics, without the benefit of complementation with existing mutations, deletions, or duplications. These techniques expand the utility of chemical mutagenesis and whole-genome sequencing for mutant identification. We discuss mutations in the Atm and Xrp1 genes identified in this screen.

  20. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data.

    Directory of Open Access Journals (Sweden)

    Boris P Hejblum

    2015-06-01

    Full Text Available Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial, and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package.

  1. Effect of the absolute statistic on gene-sampling gene-set analysis methods.

    Science.gov (United States)

    Nam, Dougu

    2017-06-01

    Gene-set enrichment analysis and its modified versions have commonly been used for identifying altered functions or pathways in disease from microarray data. In particular, the simple gene-sampling gene-set analysis methods have been heavily used for datasets with only a few sample replicates. The biggest problem with this approach is the highly inflated false-positive rate. In this paper, the effect of absolute gene statistic on gene-sampling gene-set analysis methods is systematically investigated. Thus far, the absolute gene statistic has merely been regarded as a supplementary method for capturing the bidirectional changes in each gene set. Here, it is shown that incorporating the absolute gene statistic in gene-sampling gene-set analysis substantially reduces the false-positive rate and improves the overall discriminatory ability. Its effect was investigated by power, false-positive rate, and receiver operating curve for a number of simulated and real datasets. The performances of gene-set analysis methods in one-tailed (genome-wide association study) and two-tailed (gene expression data) tests were also compared and discussed.

  2. Rainbow: a tool for large-scale whole-genome sequencing data analysis using cloud computing.

    Science.gov (United States)

    Zhao, Shanrong; Prenger, Kurt; Smith, Lance; Messina, Thomas; Fan, Hongtao; Jaeger, Edward; Stephens, Susan

    2013-06-27

    Technical improvements have decreased sequencing costs and, as a result, the size and number of genomic datasets have increased rapidly. Because of the lower cost, large amounts of sequence data are now being produced by small to midsize research groups. Crossbow is a software tool that can detect single nucleotide polymorphisms (SNPs) in whole-genome sequencing (WGS) data from a single subject; however, Crossbow has a number of limitations when applied to multiple subjects from large-scale WGS projects. The data storage and CPU resources that are required for large-scale whole genome sequencing data analyses are too large for many core facilities and individual laboratories to provide. To help meet these challenges, we have developed Rainbow, a cloud-based software package that can assist in the automation of large-scale WGS data analyses. Here, we evaluated the performance of Rainbow by analyzing 44 different whole-genome-sequenced subjects. Rainbow has the capacity to process genomic data from more than 500 subjects in two weeks using cloud computing provided by the Amazon Web Service. The time includes the import and export of the data using Amazon Import/Export service. The average cost of processing a single sample in the cloud was less than 120 US dollars. Compared with Crossbow, the main improvements incorporated into Rainbow include the ability: (1) to handle BAM as well as FASTQ input files; (2) to split large sequence files for better load balance downstream; (3) to log the running metrics in data processing and monitoring multiple Amazon Elastic Compute Cloud (EC2) instances; and (4) to merge SOAPsnp outputs for multiple individuals into a single file to facilitate downstream genome-wide association studies. Rainbow is a scalable, cost-effective, and open-source tool for large-scale WGS data analysis. For human WGS data sequenced by either the Illumina HiSeq 2000 or HiSeq 2500 platforms, Rainbow can be used straight out of the box. Rainbow is available

  3. Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA

    2015-10-24

    Background Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug resistance. In an age where whole genome sequencing is increasingly relied upon for defining the structure of bacterial genomes, it is important to investigate the reliability of next generation sequencing to identify clonal variants present in a minor percentage of the population. This study aimed to define a reliable cut-off for identification of low frequency sequence variants and to subsequently investigate genetic heterogeneity and the evolution of drug resistance in M. tuberculosis. Methods Genomic DNA was isolated from single colonies from 14 rifampicin mono-resistant M. tuberculosis isolates, as well as the primary cultures and follow up MDR cultures from two of these patients. The whole genomes of the M. tuberculosis isolates were sequenced using either the Illumina MiSeq or Illumina HiSeq platforms. Sequences were analysed with an in-house pipeline. Results Using next-generation sequencing in combination with Sanger sequencing and statistical analysis we defined a read frequency cut-off of 30 % to identify low frequency M. tuberculosis variants with high confidence. Using this cut-off we demonstrated a high rate of genetic diversity between single colonies isolated from one population, showing that by using the current sequencing technology, single colonies are not a true reflection of the genetic diversity within a whole population and vice versa. We further showed that numerous heterogeneous variants emerge and then disappear during the evolution of isoniazid resistance within individual patients. Our findings allowed us to formulate a model for the selective bottleneck which occurs during the course of infection, acting as a genomic purification event. Conclusions Our study demonstrated true levels of genetic diversity

  4. Supplementary Material for: Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA

    2015-01-01

    Abstract Background Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug resistance. In an age where whole genome sequencing is increasingly relied upon for defining the structure of bacterial genomes, it is important to investigate the reliability of next generation sequencing to identify clonal variants present in a minor percentage of the population. This study aimed to define a reliable cut-off for identification of low frequency sequence variants and to subsequently investigate genetic heterogeneity and the evolution of drug resistance in M. tuberculosis. Methods Genomic DNA was isolated from single colonies from 14 rifampicin mono-resistant M. tuberculosis isolates, as well as the primary cultures and follow up MDR cultures from two of these patients. The whole genomes of the M. tuberculosis isolates were sequenced using either the Illumina MiSeq or Illumina HiSeq platforms. Sequences were analysed with an in-house pipeline. Results Using next-generation sequencing in combination with Sanger sequencing and statistical analysis we defined a read frequency cut-off of 30 % to identify low frequency M. tuberculosis variants with high confidence. Using this cut-off we demonstrated a high rate of genetic diversity between single colonies isolated from one population, showing that by using the current sequencing technology, single colonies are not a true reflection of the genetic diversity within a whole population and vice versa. We further showed that numerous heterogeneous variants emerge and then disappear during the evolution of isoniazid resistance within individual patients. Our findings allowed us to formulate a model for the selective bottleneck which occurs during the course of infection, acting as a genomic purification event. Conclusions Our study demonstrated true levels of genetic

  5. Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Kane, Staci R; Chakicherla, Anu Y; Chain, Patrick S G; Schmidt, Radomir; Shin, Maria W; Legler, Tina C; Scow, Kate M; Larimer, Frank W; Lucas, Susan M; Richardson, Paul M; Hristova, Krassimira R

    2007-03-01

    Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C(5) to C(12)) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an approximately 4-Mb circular chromosome and an approximately 600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (approximately 99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria.

  6. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.

    Science.gov (United States)

    Zhou, Hong; Zhou, Michael; Li, Daisy; Manthey, Joseph; Lioutikova, Ekaterina; Wang, Hong; Zeng, Xiao

    2017-11-17

    The beauty and power of the genome editing mechanism, CRISPR Cas9 endonuclease system, lies in the fact that it is RNA-programmable such that Cas9 can be guided to any genomic loci complementary to a 20-nt RNA, single guide RNA (sgRNA), to cleave double stranded DNA, allowing the introduction of wanted mutations. Unfortunately, it has been reported repeatedly that the sgRNA can also guide Cas9 to off-target sites where the DNA sequence is homologous to sgRNA. Using human genome and Streptococcus pyogenes Cas9 (SpCas9) as an example, this article mathematically analyzed the probabilities of off-target homologies of sgRNAs and discovered that for large genome size such as human genome, potential off-target homologies are inevitable for sgRNA selection. A highly efficient computationl algorithm was developed for whole genome sgRNA design and off-target homology searches. By means of a dynamically constructed sequence-indexed database and a simplified sequence alignment method, this algorithm achieves very high efficiency while guaranteeing the identification of all existing potential off-target homologies. Via this algorithm, 1,876,775 sgRNAs were designed for the 19,153 human mRNA genes and only two sgRNAs were found to be free of off-target homology. By means of the novel and efficient sgRNA homology search algorithm introduced in this article, genome wide sgRNA design and off-target analysis were conducted and the results confirmed the mathematical analysis that for a sgRNA sequence, it is almost impossible to escape potential off-target homologies. Future innovations on the CRISPR Cas9 gene editing technology need to focus on how to eliminate the Cas9 off-target activity.

  7. Whole Genome Sequencing of Mycobacterium africanum Strains from Mali Provides Insights into the Mechanisms of Geographic Restriction.

    Science.gov (United States)

    Winglee, Kathryn; Manson McGuire, Abigail; Maiga, Mamoudou; Abeel, Thomas; Shea, Terrance; Desjardins, Christopher A; Diarra, Bassirou; Baya, Bocar; Sanogo, Moumine; Diallo, Souleymane; Earl, Ashlee M; Bishai, William R

    2016-01-01

    Mycobacterium africanum, made up of lineages 5 and 6 within the Mycobacterium tuberculosis complex (MTC), causes up to half of all tuberculosis cases in West Africa, but is rarely found outside of this region. The reasons for this geographical restriction remain unknown. Possible reasons include a geographically restricted animal reservoir, a unique preference for hosts of West African ethnicity, and an inability to compete with other lineages outside of West Africa. These latter two hypotheses could be caused by loss of fitness or altered interactions with the host immune system. We sequenced 92 MTC clinical isolates from Mali, including two lineage 5 and 24 lineage 6 strains. Our genome sequencing assembly, alignment, phylogeny and average nucleotide identity analyses enabled us to identify features that typify lineages 5 and 6 and made clear that these lineages do not constitute a distinct species within the MTC. We found that in Mali, lineage 6 and lineage 4 strains have similar levels of diversity and evolve drug resistance through similar mechanisms. In the process, we identified a putative novel streptomycin resistance mutation. In addition, we found evidence of person-to-person transmission of lineage 6 isolates and showed that lineage 6 is not enriched for mutations in virulence-associated genes. This is the largest collection of lineage 5 and 6 whole genome sequences to date, and our assembly and alignment data provide valuable insights into what distinguishes these lineages from other MTC lineages. Lineages 5 and 6 do not appear to be geographically restricted due to an inability to transmit between West African hosts or to an elevated number of mutations in virulence-associated genes. However, lineage-specific mutations, such as mutations in cell wall structure, secretion systems and cofactor biosynthesis, provide alternative mechanisms that may lead to host specificity.

  8. Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data.

    Directory of Open Access Journals (Sweden)

    Niedzica Camacho

    2017-09-01

    Full Text Available A variety of models have been proposed to explain regions of recurrent somatic copy number alteration (SCNA in human cancer. Our study employs Whole Genome DNA Sequence (WGS data from tumor samples (n = 103 to comprehensively assess the role of the Knudson two hit genetic model in SCNA generation in prostate cancer. 64 recurrent regions of loss and gain were detected, of which 28 were novel, including regions of loss with more than 15% frequency at Chr4p15.2-p15.1 (15.53%, Chr6q27 (16.50% and Chr18q12.3 (17.48%. Comprehensive mutation screens of genes, lincRNA encoding sequences, control regions and conserved domains within SCNAs demonstrated that a two-hit genetic model was supported in only a minor proportion of recurrent SCNA losses examined (15/40. We found that recurrent breakpoints and regions of inversion often occur within Knudson model SCNAs, leading to the identification of ZNF292 as a target gene for the deletion at 6q14.3-q15 and NKX3.1 as a two-hit target at 8p21.3-p21.2. The importance of alterations of lincRNA sequences was illustrated by the identification of a novel mutational hotspot at the KCCAT42, FENDRR, CAT1886 and STCAT2 loci at the 16q23.1-q24.3 loss. Our data confirm that the burden of SCNAs is predictive of biochemical recurrence, define nine individual regions that are associated with relapse, and highlight the possible importance of ion channel and G-protein coupled-receptor (GPCR pathways in cancer development. We concluded that a two-hit genetic model accounts for about one third of SCNA indicating that mechanisms, such haploinsufficiency and epigenetic inactivation, account for the remaining SCNA losses.

  9. Whole-genome comparison of meticillin-resistant Staphylococcus aureus CC22 SCCmecIV from people and their in-contact pets.

    Science.gov (United States)

    Loeffler, Anette; McCarthy, Alex; Lloyd, David H; Musilová, Eva; Pfeiffer, Dirk U; Lindsay, Jodi A

    2013-10-01

    Meticillin-resistant Staphylococcus aureus (MRSA) infections remain important medical and veterinary challenges. The MRSA isolated from dogs and cats typically belong to dominant hospital-associated clones, in the UK mostly EMRSA-15 (CC22 SCCmecIV), suggesting original human-to-animal transmission. Nevertheless, little is known about host-specific genetic variation within the same S. aureus lineage. To identify host-specific variation amongst MRSA CC22 SCCmecIV by comparing isolates from pets with those from in-contact humans using whole-genome microarray. Six pairs of MRSA CC22 SCCmecIV from human carriers (owners and veterinary staff) and their respective infected in-contact pets were compared using a 62-strain whole-genome S. aureus microarray (SAM-62). The presence of putative host-specific genes was subsequently determined in a larger number of human (n = 47) and pet isolates (n = 93) by PCR screening. Variation in mobile genetic elements (MGEs) occurred frequently and appeared largely independent of host and in-contact pair. A plasmid (SAP078A) encoding heavy-metal resistance genes (arsR, arsA, cadA, cadC, mco and copB) was found in three of six human and none of six animal isolates. However, only two of four resistance genes were associated with human hosts (P = 0.015 for arsA and cadA). The variation found amongst MGEs highlights that genetic adaptation in MRSA continues. However, host-specific MGEs were not detected, which supports the hypothesis that pets may not be natural hosts of MRSA CC22 and emphasizes that rigorous hygiene measures are critical to prevent contamination and infection of dogs and cats. The host specificity of individual heavy-metal resistance genes warrants further investigation into different selection pressures in humans and animals. © 2013 ESVD and ACVD.

  10. High-Quality Exome Sequencing of Whole-Genome Amplified Neonatal Dried Blood Spot DNA

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Lescai, Francesco; Grove, Jakob

    2016-01-01

    Stored neonatal dried blood spot (DBS) samples from neonatal screening programmes are a valuable diagnostic and research resource. Combined with information from national health registries they can be used in population-based studies of genetic diseases. DNA extracted from neonatal DBSs can...... be amplified to obtain micrograms of an otherwise limited resource, referred to as whole-genome amplified DNA (wgaDNA). Here we investigate the robustness of exome sequencing of wgaDNA of neonatal DBS samples. We conducted three pilot studies of seven, eight and seven subjects, respectively. For each subject...... we analysed a neonatal DBS sample and corresponding adult whole-blood (WB) reference sample. Different DNA sample types were prepared for each of the subjects. Pilot 1: wgaDNA of 2x3.2mm neonatal DBSs (DBS_2x3.2) and raw DNA extract of the WB reference sample (WB_ref). Pilot 2: DBS_2x3.2, WB...

  11. Whole-Genome Scans Provide Evidence of Adaptive Evolution in Malawian Plasmodium falciparum Isolates

    DEFF Research Database (Denmark)

    Ocholla, Harold; Preston, Mark D; Mipando, Mwapatsa

    2014-01-01

    BACKGROUND:  Selection by host immunity and antimalarial drugs has driven extensive adaptive evolution in Plasmodium falciparum and continues to produce ever-changing landscapes of genetic variation. METHODS:  We performed whole-genome sequencing of 69 P. falciparum isolates from Malawi and used......, an area of high malaria transmission. Allele frequency-based tests provided evidence of recent population growth in Malawi and detected potential targets of host immunity and candidate vaccine antigens. Comparison of the sequence variation between isolates from Malawi and those from 5 geographically...... dispersed countries (Kenya, Burkina Faso, Mali, Cambodia, and Thailand) detected population genetic differences between Africa and Asia, within Southeast Asia, and within Africa. Haplotype-based tests of selection to sequence data from all 6 populations identified signals of directional selection at known...

  12. Whole-genome analyses resolve early branches in the tree of life of modern birds

    DEFF Research Database (Denmark)

    Sicheritz-Pontén, Thomas; Li, Cai; Li, Bo

    2014-01-01

    To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister...... or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator...... and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high...

  13. Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas; Nielsen, Eva M.; Kaas, Rolf Sommer

    2014-01-01

    Salmonella enterica is a common cause of minor and large food borne outbreaks. To achieve successful and nearly ‘real-time’ monitoring and identification of outbreaks, reliable sub-typing is essential. Whole genome sequencing (WGS) shows great promises for using as a routine epidemiological typing....... Enteritidis and 5 S. Derby were also sequenced and used for comparison. A number of different bioinformatics approaches were applied on the data; including pan-genome tree, k-mer tree, nucleotide difference tree and SNP tree. The outcome of each approach was evaluated in relation to the association...... of the isolates to specific outbreaks. The pan-genome tree clustered 65% of the S. Typhimurium isolates according to the pre-defined epidemiology, the k-mer tree 88%, the nucleotide difference tree 100% and the SNP tree 100% of the strains within S. Typhimurium. The resulting outcome of the four phylogenetic...

  14. A strategic stakeholder approach for addressing further analysis requests in whole genome sequencing research.

    Science.gov (United States)

    Thornock, Bradley Steven O

    2016-01-01

    Whole genome sequencing (WGS) can be a cost-effective and efficient means of diagnosis for some children, but it also raises a number of ethical concerns. One such concern is how researchers derive and communicate results from WGS, including future requests for further analysis of stored sequences. The purpose of this paper is to think about what is at stake, and for whom, in any solution that is developed to deal with such requests. To accomplish this task, this paper will utilize stakeholder theory, a common method used in business ethics. Several scenarios that connect stakeholder concerns and WGS will also posited and analyzed. This paper concludes by developing criteria composed of a series of questions that researchers can answer in order to more effectively address requests for further analysis of stored sequences.

  15. Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding

    Science.gov (United States)

    de los Campos, Gustavo; Hickey, John M.; Pong-Wong, Ricardo; Daetwyler, Hans D.; Calus, Mario P. L.

    2013-01-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade. PMID:22745228

  16. Evaluation of whole genome amplified DNA to decrease material expenditure and increase quality

    Directory of Open Access Journals (Sweden)

    Marie Bækvad-Hansen

    2017-06-01

    Discussion: Whole genome amplified DNA samples from dried blood spots is well suited for array genotyping and produces robust and reliable genotype data. However, the amplification process introduces additional noise to the data, making detection of structural variants such as copy number variants difficult. With this study, we explore ways of optimizing the amplification protocol in order to reduce noise and increase data quality. We found, that the amplification process was very robust, and that changes in amplification time or temperature did not alter the genotyping calls or quality of the array data. Adding additional replicates of each sample also lead to insignificant changes in the array data. Thus, the amount of noise introduced by the amplification process was consistent regardless of changes made to the amplification protocol. We also explored ways of decreasing material expenditure by reducing the spot size or the amplification reaction volume. The reduction did not affect the quality of the genotyping data.

  17. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Su, Guosheng; Janss, Luc

    2015-01-01

    This study investigated the effect on the reliability of genomic prediction when a small number of significant variants from single marker analysis based on whole genome sequence data were added to the regular 54k single nucleotide polymorphism (SNP) array data. The extra markers were selected...... with the aim of augmenting the custom low-density Illumina BovineLD SNP chip (San Diego, CA) used in the Nordic countries. The single-marker analysis was done breed-wise on all 16 index traits included in the breeding goals for Nordic Holstein, Danish Jersey, and Nordic Red cattle plus the total merit index...... itself. Depending on the trait’s economic weight, 15, 10, or 5 quantitative trait loci (QTL) were selected per trait per breed and 3 to 5 markers were selected to tag each QTL. After removing duplicate markers (same marker selected for more than one trait or breed) and filtering for high pairwise linkage...

  18. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast

    DEFF Research Database (Denmark)

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L.

    2015-01-01

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing...... interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV...... mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant a-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330...

  19. Clinical decision support for whole genome sequence information leveraging a service-oriented architecture: a prototype.

    Science.gov (United States)

    Welch, Brandon M; Rodriguez-Loya, Salvador; Eilbeck, Karen; Kawamoto, Kensaku

    2014-01-01

    Whole genome sequence (WGS) information could soon be routinely available to clinicians to support the personalized care of their patients. At such time, clinical decision support (CDS) integrated into the clinical workflow will likely be necessary to support genome-guided clinical care. Nevertheless, developing CDS capabilities for WGS information presents many unique challenges that need to be overcome for such approaches to be effective. In this manuscript, we describe the development of a prototype CDS system that is capable of providing genome-guided CDS at the point of care and within the clinical workflow. To demonstrate the functionality of this prototype, we implemented a clinical scenario of a hypothetical patient at high risk for Lynch Syndrome based on his genomic information. We demonstrate that this system can effectively use service-oriented architecture principles and standards-based components to deliver point of care CDS for WGS information in real-time.

  20. Whole-genome sequencing of bloodstream Staphylococcus aureus isolates does not distinguish bacteraemia from endocarditis

    DEFF Research Database (Denmark)

    Lilje, Berit; Rasmussen, Rasmus Vedby; Dahl, Anders

    2017-01-01

    Most Staphylococcus aureus isolates can cause invasive disease given the right circumstances, but it is unknown if some isolates are more likely to cause severe infections than others. S. aureus bloodstream isolates from 120 patients with definite infective endocarditis and 121 with S. aureus...... bacteraemia without infective endocarditis underwent whole-genome sequencing. Genome-wide association analysis was performed using a variety of bioinformatics approaches including SNP analysis, accessory genome analysis and k-mer based analysis. Core and accessory genome analyses found no association...... with either of the two clinical groups. In this study, the genome sequences of S. aureus bloodstream isolates did not discriminate between bacteraemia and infective endocarditis. Based on our study and the current literature, it is not convincing that a specific S. aureus genotype is clearly associated...

  1. Whole-genome sequencing of a malignant granular cell tumor with metabolic response to pazopanib

    Science.gov (United States)

    Wei, Lei; Liu, Song; Conroy, Jeffrey; Wang, Jianmin; Papanicolau-Sengos, Antonios; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Hu, Qiang; Conroy, Jacob; Miles, Kiersten Marie; Nowak, David E.; Liu, Biao; Qin, Maochun; Bshara, Wiam; Omilian, Angela R.; Head, Karen; Bianchi, Michael; Burgher, Blake; Darlak, Christopher; Kane, John; Merzianu, Mihai; Cheney, Richard; Fabiano, Andrew; Salerno, Kilian; Talati, Chetasi; Khushalani, Nikhil I.; Trump, Donald L.; Johnson, Candace S.; Morrison, Carl D.

    2015-01-01

    Granular cell tumors are an uncommon soft tissue neoplasm. Malignant granular cell tumors comprise T transitions, particularly when immediately preceded by a 5′ G. A loss-of-function mutation was detected in a newly recognized tumor suppressor candidate, BRD7. No mutations were found in known targets of pazopanib. However, we identified a receptor tyrosine kinase pathway mutation in GFRA2 that warrants further evaluation. To the best of our knowledge, this is only the second reported case of a malignant granular cell tumor exhibiting a response to pazopanib, and the first whole-genome sequencing of this uncommon tumor type. The findings provide insight into the genetic basis of malignant granular cell tumors and identify potential targets for further investigation. PMID:27148567

  2. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences

    KAUST Repository

    Coll, Francesc

    2015-05-27

    Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data complexity has restricted their clinical application. A library (1,325 mutations) predictive of DR for 15 anti-tuberculosis drugs was compiled and validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online ‘TB-Profiler’ tool was developed to report DR and strain-type profiles directly from raw sequences. Using our DR mutation library, in silico diagnostic accuracy was superior to some commercial diagnostics and alternative databases. The library will facilitate sequence-based drug-susceptibility testing.

  3. Practical Value of Food Pathogen Traceability through Building a Whole-Genome Sequencing Network and Database.

    Science.gov (United States)

    Allard, Marc W; Strain, Errol; Melka, David; Bunning, Kelly; Musser, Steven M; Brown, Eric W; Timme, Ruth

    2016-08-01

    The FDA has created a United States-based open-source whole-genome sequencing network of state, federal, international, and commercial partners. The GenomeTrakr network represents a first-of-its-kind distributed genomic food shield for characterizing and tracing foodborne outbreak pathogens back to their sources. The GenomeTrakr network is leading investigations of outbreaks of foodborne illnesses and compliance actions with more accurate and rapid recalls of contaminated foods as well as more effective monitoring of preventive controls for food manufacturing environments. An expanded network would serve to provide an international rapid surveillance system for pathogen traceback, which is critical to support an effective public health response to bacterial outbreaks. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology.

    Science.gov (United States)

    Rossen, J W A; Friedrich, A W; Moran-Gilad, J

    2018-04-01

    Next generation sequencing (NGS) is increasingly being used in clinical microbiology. Like every new technology adopted in microbiology, the integration of NGS into clinical and routine workflows must be carefully managed. To review the practical aspects of implementing bacterial whole genome sequencing (WGS) in routine diagnostic laboratories. Review of the literature and expert opinion. In this review, we discuss when and how to integrate whole genome sequencing (WGS) in the routine workflow of the clinical laboratory. In addition, as the microbiology laboratories have to adhere to various national and international regulations and criteria for their accreditation, we deliberate on quality control issues for using WGS in microbiology, including the importance of proficiency testing. Furthermore, the current and future place of this technology in the diagnostic hierarchy of microbiology is described as well as the necessity of maintaining backwards compatibility with already established methods. Finally, we speculate on the question of whether WGS can entirely replace routine microbiology in the future and the tension between the fact that most sequencers are designed to process multiple samples in parallel whereas for optimal diagnosis a one-by-one processing of the samples is preferred. Special reference is made to the cost and turnaround time of WGS in diagnostic laboratories. Further development is required to improve the workflow for WGS, in particular to shorten the turnaround time, reduce costs, and streamline downstream data analyses. Only when these processes reach maturity will reliance on WGS for routine patient management and infection control management become feasible, enabling the transformation of clinical microbiology into a genome-based and personalized diagnostic field. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs)

    Science.gov (United States)

    Sims, Gregory E.; Kim, Sung-Hou

    2011-01-01

    A whole-genome phylogeny of the Escherichia coli/Shigella group was constructed by using the feature frequency profile (FFP) method. This alignment-free approach uses the frequencies of l-mer features of whole genomes to infer phylogenic distances. We present two phylogenies that accentuate different aspects of E. coli/Shigella genomic evolution: (i) one based on the compositions of all possible features of length l = 24 (∼8.4 million features), which are likely to reveal the phenetic grouping and relationship among the organisms and (ii) the other based on the compositions of core features with low frequency and low variability (∼0.56 million features), which account for ∼69% of all commonly shared features among 38 taxa examined and are likely to have genome-wide lineal evolutionary signal. Shigella appears as a single clade when all possible features are used without filtering of noncore features. However, results using core features show that Shigella consists of at least two distantly related subclades, implying that the subclades evolved into a single clade because of a high degree of convergence influenced by mobile genetic elements and niche adaptation. In both FFP trees, the basal group of the E. coli/Shigella phylogeny is the B2 phylogroup, which contains primarily uropathogenic strains, suggesting that the E. coli/Shigella ancestor was likely a facultative or opportunistic pathogen. The extant commensal strains diverged relatively late and appear to be the result of reductive evolution of genomes. We also identify clade distinguishing features and their associated genomic regions within each phylogroup. Such features may provide useful information for understanding evolution of the groups and for quick diagnostic identification of each phylogroup. PMID:21536867

  6. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks.

    Science.gov (United States)

    Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S K; Mammel, Mark K; Tarr, Phillip I; Eppinger, Mark

    2016-01-01

    Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and

  7. Light whole genome sequence for SNP discovery across domestic cat breeds

    Directory of Open Access Journals (Sweden)

    Driscoll Carlos

    2010-06-01

    Full Text Available Abstract Background The domestic cat has offered enormous genomic potential in the veterinary description of over 250 hereditary disease models as well as the occurrence of several deadly feline viruses (feline leukemia virus -- FeLV, feline coronavirus -- FECV, feline immunodeficiency virus - FIV that are homologues to human scourges (cancer, SARS, and AIDS respectively. However, to realize this bio-medical potential, a high density single nucleotide polymorphism (SNP map is required in order to accomplish disease and phenotype association discovery. Description To remedy this, we generated 3,178,297 paired fosmid-end Sanger sequence reads from seven cats, and combined these data with the publicly available 2X cat whole genome sequence. All sequence reads were assembled together to form a 3X whole genome assembly allowing the discovery of over three million SNPs. To reduce potential false positive SNPs due to the low coverage assembly, a low upper-limit was placed on sequence coverage and a high lower-limit on the quality of the discrepant bases at a potential variant site. In all domestic cats of different breeds: female Abyssinian, female American shorthair, male Cornish Rex, female European Burmese, female Persian, female Siamese, a male Ragdoll and a female African wildcat were sequenced lightly. We report a total of 964 k common SNPs suitable for a domestic cat SNP genotyping array and an additional 900 k SNPs detected between African wildcat and domestic cats breeds. An empirical sampling of 94 discovered SNPs were tested in the sequenced cats resulting in a SNP validation rate of 99%. Conclusions These data provide a large collection of mapped feline SNPs across the cat genome that will allow for the development of SNP genotyping platforms for mapping feline diseases.

  8. Whole-genome sequencing approaches for conservation biology: Advantages, limitations and practical recommendations.

    Science.gov (United States)

    Fuentes-Pardo, Angela P; Ruzzante, Daniel E

    2017-10-01

    Whole-genome resequencing (WGR) is a powerful method for addressing fundamental evolutionary biology questions that have not been fully resolved using traditional methods. WGR includes four approaches: the sequencing of individuals to a high depth of coverage with either unresolved or resolved haplotypes, the sequencing of population genomes to a high depth by mixing equimolar amounts of unlabelled-individual DNA (Pool-seq) and the sequencing of multiple individuals from a population to a low depth (lcWGR). These techniques require the availability of a reference genome. This, along with the still high cost of shotgun sequencing and the large demand for computing resources and storage, has limited their implementation in nonmodel species with scarce genomic resources and in fields such as conservation biology. Our goal here is to describe the various WGR methods, their pros and cons and potential applications in conservation biology. WGR offers an unprecedented marker density and surveys a wide diversity of genetic variations not limited to single nucleotide polymorphisms (e.g., structural variants and mutations in regulatory elements), increasing their power for the detection of signatures of selection and local adaptation as well as for the identification of the genetic basis of phenotypic traits and diseases. Currently, though, no single WGR approach fulfils all requirements of conservation genetics, and each method has its own limitations and sources of potential bias. We discuss proposed ways to minimize such biases. We envision a not distant future where the analysis of whole genomes becomes a routine task in many nonmodel species and fields including conservation biology. © 2017 John Wiley & Sons Ltd.

  9. Shifts in the evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication.

    Science.gov (United States)

    Zhao, Meixia; Du, Jianchang; Lin, Feng; Tong, Chaobo; Yu, Jingyin; Huang, Shunmou; Wang, Xiaowu; Liu, Shengyi; Ma, Jianxin

    2013-10-01

    Recent sequencing of the Brassica rapa and Brassica oleracea genomes revealed extremely contrasting genomic features such as the abundance and distribution of transposable elements between the two genomes. However, whether and how these structural differentiations may have influenced the evolutionary rates of the two genomes since their split from a common ancestor are unknown. Here, we investigated and compared the rates of nucleotide substitution between two long terminal repeats (LTRs) of individual orthologous LTR-retrotransposons, the rates of synonymous and non-synonymous substitution among triplicated genes retained in both genomes from a shared whole genome triplication event, and the rates of genetic recombination estimated/deduced by the comparison of physical and genetic distances along chromosomes and ratios of solo LTRs to intact elements. Overall, LTR sequences and genic sequences showed more rapid nucleotide substitution in B. rapa than in B. oleracea. Synonymous substitution of triplicated genes retained from a shared whole genome triplication was detected at higher rates in B. rapa than in B. oleracea. Interestingly, non-synonymous substitution was observed at lower rates in the former than in the latter, indicating shifted densities of purifying selection between the two genomes. In addition to evolutionary asymmetry, orthologous genes differentially regulated and/or disrupted by transposable elements between the two genomes were also characterized. Our analyses suggest that local genomic and epigenomic features, such as recombination rates and chromatin dynamics reshaped by independent proliferation of transposable elements and elimination between the two genomes, are perhaps partially the causes and partially the outcomes of the observed inter-specific asymmetric evolution. © 2013 Purdue University The Plant Journal © 2013 John Wiley & Sons Ltd.

  10. APPRIS 2017: principal isoforms for multiple gene sets

    Science.gov (United States)

    Rodriguez-Rivas, Juan; Di Domenico, Tomás; Vázquez, Jesús; Valencia, Alfonso

    2018-01-01

    Abstract The APPRIS database (http://appris-tools.org) uses protein structural and functional features and information from cross-species conservation to annotate splice isoforms in protein-coding genes. APPRIS selects a single protein isoform, the ‘principal’ isoform, as the reference for each gene based on these annotations. A single main splice isoform reflects the biological reality for most protein coding genes and APPRIS principal isoforms are the best predictors of these main proteins isoforms. Here, we present the updates to the database, new developments that include the addition of three new species (chimpanzee, Drosophila melangaster and Caenorhabditis elegans), the expansion of APPRIS to cover the RefSeq gene set and the UniProtKB proteome for six species and refinements in the core methods that make up the annotation pipeline. In addition APPRIS now provides a measure of reliability for individual principal isoforms and updates with each release of the GENCODE/Ensembl and RefSeq reference sets. The individual GENCODE/Ensembl, RefSeq and UniProtKB reference gene sets for six organisms have been merged to produce common sets of splice variants. PMID:29069475

  11. Population and Whole Genome Sequence Based Characterization of Invasive Group A Streptococci Recovered in the United States during 2015

    Directory of Open Access Journals (Sweden)

    Sopio Chochua

    2017-09-01

    Full Text Available Group A streptococci (GAS are genetically diverse. Determination of strain features can reveal associations with disease and resistance and assist in vaccine formulation. We employed whole-genome sequence (WGS-based characterization of 1,454 invasive GAS isolates recovered in 2015 by Active Bacterial Core Surveillance and performed conventional antimicrobial susceptibility testing. Predictions were made for genotype, GAS carbohydrate, antimicrobial resistance, surface proteins (M family, fibronectin binding, T, R28, secreted virulence proteins (Sda1, Sic, exotoxins, hyaluronate capsule, and an upregulated nga operon (encodes NADase and streptolysin O promoter (Pnga3. Sixty-four M protein gene (emm types were identified among 69 clonal complexes (CCs, including one CC of Streptococcus dysgalactiae subsp. equisimilis. emm types predicted the presence or absence of active sof determinants and were segregated into sof-positive or sof-negative genetic complexes. Only one “emm type switch” between strains was apparent. sof-negative strains showed a propensity to cause infections in the first quarter of the year, while sof+ strain infections were more likely in summer. Of 1,454 isolates, 808 (55.6% were Pnga3 positive and 637 (78.9% were accounted for by types emm1, emm89, and emm12. Theoretical coverage of a 30-valent M vaccine combined with an M-related protein (Mrp vaccine encompassed 98% of the isolates. WGS data predicted that 15.3, 13.8, 12.7, and 0.6% of the isolates were nonsusceptible to tetracycline, erythromycin plus clindamycin, erythromycin, and fluoroquinolones, respectively, with only 19 discordant phenotypic results. Close phylogenetic clustering of emm59 isolates was consistent with recent regional emergence. This study revealed strain traits informative for GAS disease incidence tracking, outbreak detection, vaccine strategy, and antimicrobial therapy.

  12. Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater.

    Science.gov (United States)

    Foong, Choon Pin; Lau, Nyok-Sean; Deguchi, Shigeru; Toyofuku, Takashi; Taylor, Todd D; Sudesh, Kumar; Matsui, Minami

    2014-12-24

    Special features of the Japanese ocean include its ranges of latitude and depth. This study is the first to examine the diversity of Class I and II PHA synthases (PhaC) in DNA samples from pelagic seawater taken from the Japan Trench and Nankai Trough from a range of depths from 24 m to 5373 m. PhaC is the key enzyme in microorganisms that determines the types of monomer units that are polymerized into polyhydroxyalkanoate (PHA) and thus affects the physicochemical properties of this thermoplastic polymer. Complete putative PhaC sequences were determined via genome walking, and the activities of newly discovered PhaCs were evaluated in a heterologous host. A total of 76 putative phaC PCR fragments were amplified from the whole genome amplified seawater DNA. Of these 55 clones contained conserved PhaC domains and were classified into 20 genetic groups depending on their sequence similarity. Eleven genetic groups have undisclosed PhaC activity based on their distinct phylogenetic lineages from known PHA producers. Three complete DNA coding sequences were determined by IAN-PCR, and one PhaC was able to produce poly(3-hydroxybutyrate) in recombinant Cupriavidus necator PHB-4 (PHB-negative mutant). A new functional PhaC that has close identity to Marinobacter sp. was discovered in this study. Phylogenetic classification for all the phaC genes isolated from uncultured bacteria has revealed that seawater and other environmental resources harbor a great diversity of PhaCs with activities that have not yet been investigated. Functional evaluation of these in silico-based PhaCs via genome walking has provided new insights into the polymerizing ability of these enzymes.

  13. The Use of Non-Variant Sites to Improve the Clinical Assessment of Whole-Genome Sequence Data.

    Directory of Open Access Journals (Sweden)

    Alberto Ferrarini

    Full Text Available Genetic testing, which is now a routine part of clinical practice and disease management protocols, is often based on the assessment of small panels of variants or genes. On the other hand, continuous improvements in the speed and per-base costs of sequencing have now made whole exome sequencing (WES and whole genome sequencing (WGS viable strategies for targeted or complete genetic analysis, respectively. Standard WGS/WES data analytical workflows generally rely on calling of sequence variants respect to the reference genome sequence. However, the reference genome sequence contains a large number of sites represented by rare alleles, by known pathogenic alleles and by alleles strongly associated to disease by GWAS. It's thus critical, for clinical applications of WGS and WES, to interpret whether non-variant sites are homozygous for the reference allele or if the corresponding genotype cannot be reliably called. Here we show that an alternative analytical approach based on the analysis of both variant and non-variant sites from WGS data allows to genotype more than 92% of sites corresponding to known SNPs compared to 6% genotyped by standard variant analysis. These include homozygous reference sites of clinical interest, thus leading to a broad and comprehensive characterization of variation necessary to an accurate evaluation of disease risk. Altogether, our findings indicate that characterization of both variant and non-variant clinically informative sites in the genome is necessary to allow an accurate clinical assessment of a personal genome. Finally, we propose a highly efficient extended VCF (eVCF file format which allows to store genotype calls for sites of clinical interest while remaining compatible with current variant interpretation software.

  14. An information-theoretic approach to the modeling and analysis of whole-genome bisulfite sequencing data.

    Science.gov (United States)

    Jenkinson, Garrett; Abante, Jordi; Feinberg, Andrew P; Goutsias, John

    2018-03-07

    DNA methylation is a stable form of epigenetic memory used by cells to control gene expression. Whole genome bisulfite sequencing (WGBS) has emerged as a gold-standard experimental technique for studying DNA methylation by producing high resolution genome-wide methylation profiles. Statistical modeling and analysis is employed to computationally extract and quantify information from these profiles in an effort to identify regions of the genome that demonstrate crucial or aberrant epigenetic behavior. However, the performance of most currently available methods for methylation analysis is hampered by their inability to directly account for statistical dependencies between neighboring methylation sites, thus ignoring significant information available in WGBS reads. We present a powerful information-theoretic approach for genome-wide modeling and analysis of WGBS data based on the 1D Ising model of statistical physics. This approach takes into account correlations in methylation by utilizing a joint probability model that encapsulates all information available in WGBS methylation reads and produces accurate results even when applied on single WGBS samples with low coverage. Using the Shannon entropy, our approach provides a rigorous quantification of methylation stochasticity in individual WGBS samples genome-wide. Furthermore, it utilizes the Jensen-Shannon distance to evaluate differences in methylation distributions between a test and a reference sample. Differential performance assessment using simulated and real human lung normal/cancer data demonstrate a clear superiority of our approach over DSS, a recently proposed method for WGBS data analysis. Critically, these results demonstrate that marginal methods become statistically invalid when correlations are present in the data. This contribution demonstrates clear benefits and the necessity of modeling joint probability distributions of methylation using the 1D Ising model of statistical physics and of

  15. Ranking metrics in gene set enrichment analysis: do they matter?

    Science.gov (United States)

    Zyla, Joanna; Marczyk, Michal; Weiner, January; Polanska, Joanna

    2017-05-12

    There exist many methods for describing the complex relation between changes of gene expression in molecular pathways or gene ontologies under different experimental conditions. Among them, Gene Set Enrichment Analysis seems to be one of the most commonly used (over 10,000 citations). An important parameter, which could affect the final result, is the choice of a metric for the