WorldWideScience

Sample records for whole-body irradiated rats

  1. Natural β-carotene and whole body irradiation in rats

    International Nuclear Information System (INIS)

    Ben-Amotz, A.; Rachmilevich, B.; Greenberg, S.; Sela, M.; Weshler, Z.

    1996-01-01

    β-Carotene and other carotenoids are reported to be potent free radical quenchers, singlet oxygen scavengers, and lipid antioxidants. Whole-body irradiation is known to cause an immunosuppression effect in mammals through the possible initiation and production of reactive oxygen species. We decided to test the possible antioxidative effect against whole-body irradiation of a natural β-carotene, composed of equal amounts of the all-trans and 9-cis isomers, obtained from the unicellular alga Dunaliella bardawil. Rats were fed on ground commercial food enriched with natural β-carotene (50 mg/kg diet). On completion of 1 week with β-carotene, the rats were exposed to a single dose of 4 Gy whole-body irradiation, after which their livers and blood were removed for β-carotene and retinol analysis in comparison with control livers of animals irradiated or not, or supplemented with β-carotene after irradiation. A normal increase in body weight with no ill effects was noted in the groups of rats whose diet was supplemented by β-carotene before and after irradiation, compared with the reduction in the specific growth rate in the group of rats irradiated without β-carotene. Liver β-carotene and retinol decreased significantly after irradiation compared with the rats which were not irradiated. This decrease was not shown in rats fed β-carotene prior to irradiation, and the effect of irradiation was partially cured by supplementation with β-carotene after irradiation. High-pressure liquid chromatography (HPLC) analysis of the irradiated animals showed a selective decline in 9-cis β-carotene and in retinol over all-trans β-carotene and retinyl esters. These results suggest that 9-cis β-carotene and retinol protect in vivo against the cellular damage by free radicals induced after whole-body irradiation. (orig.). With 1 fig., 2 tabs

  2. Whole-body γ-irradiation decelerates rat hepatocyte polyploidization.

    Science.gov (United States)

    Ikhtiar, Adnan M

    2015-07-01

    To characterize hepatocyte polyploidization induced by intermediate dose of γ-ray. Male Wistar strain rats were whole-body irradiated (WBI) with 2 Gy of γ-ray at the age of 1 month, and 5-6 rats were sacrificed monthly at 0-25 months after irradiation. The nuclear DNA content of individual hepatocytes was measured by flow cytometry, then hepatocytes were classified into various ploidy classes. Survival percentage, after exposure up to the end of the study, did not indicate any differences between the irradiated groups and controls. The degree of polyploidization in hepatocytes of irradiated rats, was significantly lower than that for the control after 1 month of exposure, and it continued to be lower after up to 8 months. Thereafter, the degree of polyploidization in the irradiated group slowly returned to the control level when the irradiated rats reached the age of 10 months. Intermediate dose of ionizing radiation, in contrast to high doses, decelerate hepatocyte polyploidization, which may coincides with the hypothesis of the beneficial effects of low doses of ionizing radiation.

  3. Morphological studies on the healing process of tooth extraction wounds in whole body irradiated rats

    International Nuclear Information System (INIS)

    Hosokawa, Yoichiro

    1991-01-01

    The present studies were performed to investigate the healing process of the tooth extraction wound in whole body irradiated rats and to clarify the effect of irradiation on bone metabolism. One hundred and seven Wistar rats of about 100 g body weight were used and divided into 3 groups. Whole body irradiated rats were given single exposure with a dose of 8 Gy. The region of the left upper molars of local irradiated rats as controls, was exposed to 8 Gy. On the 7th day after irradiation, the left upper first molar of each rat was extracted. The rats were sacrificed at intervals of 1 to 14 days after extraction. Non-irradiated rats were sacrificed at the same intervals after extraction. The maxillary bone including the extraction wound was evaluated, histologically, histometrically and ultrastructurally. From the histological and histometrical findings, the difference of the healing process between non-irradiated rats and locally irradiated rats is not significant. In whole body irradiated rats, the healing process especially in the socket was disturbed. The osteoblastic new bone formation following production of granulation tissue was interfered with. Ultrastructurally, the cytoplasmic organellae were poorly developed in the osteoblast and osteoid formation was reduced in the socket. But periosteal new bone formation was the same as that of the locally irradiated rats. In whole body irradiated rats, the osteoclasts in the interradicular alveolar bone were decreased and have smaller nuclei, compared with non-irradiated and locally irradiated rats. Histometrically, the amount of bone loss was decreased in whole body irradiated rats. Ultrastructurally, the cyoplasmic organellae and ruffled border were poorly developed in the osteoclasts of whole body irradiated rats. The findings suggested that irradiation induced cytological changes not only in osteoblasts but in osteoclasts and these changes resulted in the delayed healing of extraction wound. (author) 106 refs

  4. Morphological studies on the healing process of tooth extraction wounds in whole body irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Yoichiro (Hokkaido Univ., Sapporo (Japan). School of Dentistry)

    1991-06-01

    The present studies were performed to investigate the healing process of the tooth extraction wound in whole body irradiated rats and to clarify the effect of irradiation on bone metabolism. One hundred and seven Wistar rats of about 100 g body weight were used and divided into 3 groups. Whole body irradiated rats were given single exposure with a dose of 8 Gy. The region of the left upper molars of local irradiated rats as controls, was exposed to 8 Gy. On the 7th day after irradiation, the left upper first molar of each rat was extracted. The rats were sacrificed at intervals of 1 to 14 days after extraction. Non-irradiated rats were sacrificed at the same intervals after extraction. The maxillary bone including the extraction wound was evaluated, histologically, histometrically and ultrastructurally. From the histological and histometrical findings, the difference of the healing process between non-irradiated rats and locally irradiated rats is not significant. In whole body irradiated rats, the healing process especially in the socket was disturbed. The osteoblastic new bone formation following production of granulation tissue was interfered with. Ultrastructurally, the cytoplasmic organellae were poorly developed in the osteoblast and osteoid formation was reduced in the socket. But periosteal new bone formation was the same as that of the locally irradiated rats. In whole body irradiated rats, the osteoclasts in the interradicular alveolar bone were decreased and have smaller nuclei, compared with non-irradiated and locally irradiated rats. Histometrically, the amount of bone loss was decreased in whole body irradiated rats. Ultrastructurally, the cyoplasmic organellae and ruffled border were poorly developed in the osteoclasts of whole body irradiated rats. The findings suggested that irradiation induced cytological changes not only in osteoblasts but in osteoclasts and these changes resulted in the delayed healing of extraction wound. (author) 106 refs.

  5. Response of irradiated diet fed rats to whole body X irradiation

    International Nuclear Information System (INIS)

    Hasan, S.S.; Kushwaha, A.K.S.

    1985-01-01

    The response to whole body X irradiation has been studied in the brain of rats fed both on a normal diet (consisting of equal parts of wheat and gram flour) and on a low protein irradiated diet (consisting of a part of normal diet and three parts of wheat). The activity of enzymes related to the glucose metabolism (glucose 6-phosphate dehydrogenase and fructose diphosphate aldolase) is reduced, while that of peroxidant enzymes (catalase and lipid peroxidase) increased in the brain of rats that received a diet poor in proteins and irradiated diets (normal or hypoproteic). DNA and RNA levels and protein content show a significant reduction in the brain of rats with hypoproteic and irradiated diets. The total body irradiation causes serious alterations in the brain in animals with a hypoproteic malnutritions due both to a low protein and an irradiated diet. The brain of rats fed on a low protein and irradiated diet exhibits after whole body irradiation damages more severe than those in rats fed on a normal irradiated diet

  6. Mitochondrial monoaminoxidase activity and serotonin content in rat brain after whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Savitskij, I.V.; Tsybul'skij, V.V.; Grivtsev, B.A.

    1985-01-01

    It is shown that γ-irradiation of albino rats with a dose of 30 Gy leads to pronounced phase changes in monoaminoxidase activity and serotonin content in rat brain at early times after whole-body exposure. These is a similar direction of changes in the activity of the enzyme and in the content of the substrate adequate to the latter

  7. Effect of cholinesterase inhibitor malathion on whole body irradiated rats

    International Nuclear Information System (INIS)

    Gupta, P.K.; Dhar, U.; Kapoor, V.; Bawa, S.R.

    1976-01-01

    Two groups of rats were treated with gamma radiation and propylene glycol or malathion in propylene glycol and two groups of unirradiated rats were given propylene glycol or malathion in propylene glycol. Measurements were made on blood glucose, plasma sodium and potassium. Radiation caused an increase in blood glucose and plasma potassium and a fall in plasma sodium. Malathion increased the effects of radiation on blood glucose and reduced the effects of plasma electrolytes

  8. Autoradiographic changes in the kidney of the whole-body sublethally x-ray irradiated rat

    Energy Technology Data Exchange (ETDEWEB)

    Olinic, A; Uray, Z

    1977-01-01

    203Hg-hydroxymersalyl uptake/gram of kidney (HU), renal autoradiographic and histologic aspect after 800 R x-ray whole-body rat irradiation was studied. Twenty-four to seventy-two hours after irradiation, HU increased, while tubular autoradiographic granularity decreased. Their return to the control levels occurred gradually within two weeks. The relations of these findings to the early circulatory and dystrophic changes, as well as to the subsequent postirradiation restoring renal process are discussed.

  9. Influence of whole-body irradiation on calcium and phosphate homeostasis in the rat

    International Nuclear Information System (INIS)

    Pento, J.T.; Kenny, A.D.

    1975-01-01

    Previous irradiation studies have revealed marked alterations in calcium metabolism. Moreover, the maintenance of calcium homeostasis with parathyroid hormone or calcium salts has been reported to reduce radiation lethality. Therefore, the present study was designed to evaluate the influence of irradiation on calcium homeostasis in the rat. Nine hundred rad of whole-body irradiation produced a significant depression of both plasma calcium and phosphate at 4 days postirradiation. This effect of irradiation was observed to be dose-dependent over a range of 600 to 1200 rad, and possibly related to irradiation-induced anorexia. The physiological significance of these observations is discussed

  10. Protection from radiation induced changes in liver and serum transaminase of whole body gamma irradiated rats

    International Nuclear Information System (INIS)

    Elkashef, H.S.; Roushdy, H.M.; Saada, H.N.; Abdelsamie, M.

    1986-01-01

    Whole body gamma irradiation of rats with a dose of 5.5 Gy induced significant changes in the activity of liver and serum transaminase. The results indicated that this radiation dose caused a significant increase in the activity of serum Got and GPT on the third and seventh days after irradiation. This was followed by significant decreases on the fourteenth post-irradiation day. The activity of Got returned to is control activity, while the activity of GPT was significantly above the control on the twenty ones post-irradiation day. The activity of Got, in the liver of irradiated rats was elevated during the post-irradiation days, but on the twenty one day activity was about the normal value. The activity of liver GPT firstly decreased and then increased very much but attained the control level on the fourteenth after irradiation. The intraperitoneal injection of testosterone-vitamin E mixture 10 days before whole body gamma irradiation caused complete recovery for the activity of liver and serum Got. No indication of remarkable recovery in the case of GPT activity was recorded either in liver or in serum of irradiated rats. The applied mixture could protect against radiation induced changes in Got activity of liver and serum but could not protect or ameliorate the changes which occurred in the activity of GPT of the two tissues. 2 tab

  11. Mechanisms of taurine hyperexcretion after whole-body irradiation of rats

    International Nuclear Information System (INIS)

    Beskrovnaya, L.A.; Lapteva, T.A.; Dokshina, G.A.; Baranova, M.I.

    1976-01-01

    Mechanisms of postirradiation hyperexcretion of taurine with urine have been investigated. In the course of three days after a whole-body exposure of rats (700 rads), the excretion of taurine increases. The experiments in vitro have demonstrated that taurine synthesis decreases in the thymus and liver of irradiated animals. The experiments conducted have shown that the postirradiation hyperexcretion of taurine is partly due to its release from the lymohoid tissue (thymus)

  12. Effects of local and whole body irradiation on appearance of osteoclasts during wound healing of tooth extraction sockets in rats

    International Nuclear Information System (INIS)

    Hosokawa, Yoichiro; Sakakura, Yasunori; Tanaka, Likinobu; Okumura, Kazuhiko; Yajima, Toshihiko; Kaneko, Masayuki

    2007-01-01

    We examined effects of local and whole body irradiation before tooth extraction on appearance and differentiation of osteoclasts in the alveolar bone of rat maxillary first molars. Wistar rats weighting 100 g were divided into three groups: non-irradiation group, local irradiation group, and whole body irradiation group. In the local irradiation group, a field made with lead blocks was placed over the maxillary left first molar tooth. In the whole body irradiation group, the animals were irradiated in cages. Both groups were irradiated at 8 Gy. The number of osteoclasts around the interradicular alveolar bone showed chronological changes common to non-irradiated and irradiated animals. Several osteoclasts appeared one day after tooth extraction, and the maximal peak was observed 3 days after extraction. Local irradiation had no difference from non-irradiated controls. In animals receiving whole body irradiation, tooth extraction one day after irradiation caused smaller number of osteoclasts than that 7 day after irradiation during the experimental period. Whole body-irradiated rats had small osteoclasts with only a few nuclei and narrow resorption lacunae, indicating deficiency of radioresistant osteoclast precursor cells. Injection of intact bone marrow cells to whole body-irradiated animals immediately after tooth extraction recovered to some content the number of osteoclasts. These findings suggest that bone resorption in the wound healing of alveolar socket requires radioresistant, postmitotic osteoclast precursor cells from hematopoietic organs, but not from local sources around the alveolar socket, at the initial phase of wound healing. (author)

  13. Effects of local and whole body irradiation on appearance of osteoclasts during wound healing of tooth extraction sockets in rats.

    Science.gov (United States)

    Hosokawa, Yoichiro; Sakakura, Yasunori; Tanaka, Likinobu; Okumura, Kazuhiko; Yajima, Toshihiko; Kaneko, Masayuki

    2007-07-01

    We examined effects of local and whole body irradiation before tooth extraction on appearance and differentiation of osteoclasts in the alveolar bone of rat maxillary first molars. Wistar rats weighting 100 g were divided into three groups: non-irradiation group, local irradiation group, and whole body irradiation group. In the local irradiation group, a field made with lead blocks was placed over the maxillary left first molar tooth. In the whole body irradiation group, the animals were irradiated in cages. Both groups were irradiated at 8 Gy. The number of osteoclasts around the interradicular alveolar bone showed chronological changes common to non-irradiated and irradiated animals. Several osteoclasts appeared one day after tooth extraction, and the maximal peak was observed 3 days after extraction. Local irradiation had no difference from non-irradiated controls. In animals receiving whole body irradiation, tooth extraction one day after irradiation caused smaller number of osteoclasts than that 7 day after irradiation during the experimental period. Whole body-irradiated rats had small osteoclasts with only a few nuclei and narrow resorption lacunae, indicating deficiency of radioresistant osteoclast precursor cells. Injection of intact bone marrow cells to whole body-irradiated animals immediately after tooth extraction recovered to some content the number of osteoclasts. These findings suggest that bone resorption in the wound healing of alveolar socket requires radioresistant, postmitotic osteoclast precursor cells from hematopoietic organs, but not from local sources around the alveolar socket, at the initial phase of wound healing.

  14. Effects of whole-body x irradiation on the biogenesis of creatine in the rat

    International Nuclear Information System (INIS)

    Thyagarajan, P.; Vakil, U.K.; Sreenivasan, A.

    1977-01-01

    Influences of whole-body x irradiation on various aspects of creatine metabolism have been studied. Exposures to sublethal or lethal doses of x radiation results in excessive urinary excretion as well as higher accumulation of creatine in the skeletal muscle of x-irradiated rats. A sudden fall in CPK activity in muscle with a concomitant rise in serum suggests that changes in serum and tissue CPK activity are of an adaptive nature in rats exposed to sublethal doses of x radiation. In vitro studies on creatine synthesis shows that transaminidase and methyl transferase activities in kidneys and liver, respectively, are decreased on the 5th day in the x-irradiated, are decreased on the 5th day in the x-irradiated rat. However, on the 8th day, the enzyme activities are restored to normal

  15. Changes in Serum Zinc, Copper and Ceruloplasmin Levels of Whole Body Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    Abdou, M.I.; Shaban, H.A.; El Gohary, M.I.

    2011-01-01

    Rats are whole body irradiated with different Gamma radiation doses. Zinc and Copper, two important trace elements in the biological processes and Ceruloplasmin, a protein which carries more than 95% of serum Cu and has important roles in many vital processes are followed up in the irradiated rat sera. This work aimed to determine the changes in the serum levels of the three parameters (Zinc, Copper and Ceruloplasmin) through eight weeks follow up period (1st, 2nd, 3rd, 4th, 6th, and 8th week) post whole body gamma irradiation with three sub-lethal doses (2, 3.5 and 5 Gy) of rats. All the experimental animals did not receive any medical treatment. Zinc and Copper were measured using discrete nebulization flame atomic absorption spectrometry. Ceruloplasmin was measured using a colorimetric method. The statistical analyses of the results show that the Zinc levels of the irradiated groups decreased significantly post irradiation and then were recovered at the 6th week post irradiation. The Copper levels of the irradiated groups increased significantly and then were recovered at 6th week post irradiation. The levels of Ceruloplasmin in the same groups increased significantly throughout the whole follow up period. The conclusion is that, Zinc, Copper and Ceruloplasmin levels changed significantly in the irradiated groups compared to the control group with a maximum effect noted in the groups irradiated with the higher doses and that the lower dose irradiated groups recover earlier than the higher ones. Also the correlation between Copper and Zinc is reversible at different doses and that between Copper and Ceruloplasmin is direct

  16. Effect of Hippophae leaves on neurotransmitters and hematological parameters in whole body irradiated rats

    International Nuclear Information System (INIS)

    Gupta, Vanita; Prasad, Jagdish; Madhu Bala

    2012-01-01

    Till date no approved radio-protective agent is available world over. WR-2721 had severe side effects and was behaviourally toxic even at sub-lethal doses of ionizing radiation. Seabuckthorn (Hippophae rhamnoides L.) is known for its nutraceutical and therapeutic values. Our studies demonstrated that treatment with leaves of H. rhamnoides rendered > 90% whole body radioprotection in 60 Co-g-irradiated (10 Gy) mice population in comparison to 100% death in non-Hippophae treated irradiated (10 Gy) mice population. Our studies also demonstrated that treatment with leaves of H. rhamnoides prevented conditioned taste aversion (CTA) in irradiated (2 Gy) Sprague-Dawley rats. The present study was planned to evaluate the effects of aqueous extract of Hippophae leaves on changes in levels of neurotransmitters ((acetylcholine esterase (AChE) and dopamine (DA)) in plasma and brain, haematological parameters in blood/plasma; and brain histology in Sprague-Dawley rats showing CTA after 60 Co-g-irradiation (2 Gy). The results showed that whole body 60 Co-g-irradiation (2 Gy) (i) increased the levels of Ach, Eepinephrine (E) and norepinephrine (NE); oxidative stress (MDA and NO), and (ii) decreased the levels of DA; WBC counts and RBC counts and antioxidants (GSH), in comparison to untreated control. Treatment with 12 mg/kg b.w. drug concentration, prior to irradiation significantly (p<0.05) (i) decreased the levels of AChE, E and NE, and MDA and NO levels in plasma and brain, and (ii) increased the WBC counts; RBC counts and levels of antioxidants (GSH), in comparison to radiation control group. Histological changes in brain were also recorded. The results demonstrated that Hippophae leaves extract had neuro-protective and reduced oxidative stress in brain of whole body irradiated mice and could be, thereby contributing to behavioural protection. (author)

  17. Melatonin, a potential effective protector in whole body γ-irradiated rats

    International Nuclear Information System (INIS)

    Tawfik, S.S; El-Nashar, D.E; Ahmed, M.M; Hanafy, Z.E

    2010-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), the chief hormone of pineal gland, is widely distributed in animal kingdom. It is claimed for its antioxidant and free radical properties. The present study aimed to examine the radio protective potentiality and efficacy of melatonin against damages induced in whole body γ-irradiated rats. Animals received melatonin (10 mg/ kg body wt/ day) for 10 successive days pre-exposure to 3 Gy of γ-radiation (acute dose). Rats sacrificed at 10 and 20 days post the irradiation time. The results revealed that the prolonged administration of melatonin has ameliorated the radiation- induced depletion in brain, testis and serum glutathione (GSH) level and a decrease in serum glutathione peroxidase (GPX) activity when compared with their matched values in irradiated rats. In addition, remarkable decreases in the concentration of lipid peroxidation (LPO) product; malondialdhyde (MDA) was observed in brain, testis and serum of rats received melatonin pre-radiation exposure. As well as, significant decreases in disulphide glutathione (GSSG) were observed in serum.Histopathological examination of brain and testis showed that administration of melatonin pre-irradiation according to the present regimen has attenuated radiation induced tissue damages and improved tissue architecture. Cytogenetically, the chromosomal aberration (CA) assay in bone marrow pointed out a significant difference between rats received melatonin pre-irradiation and γ-irradiated rats in most CA types. Accordingly, it could be postulated the tissue diversity and cytogenetic impact of the administrated melatonin against acute ion syndrome in rat model.

  18. Protective Role Of Fresh Pomegranate Against Oxidative Damage In Whole Body Gamma Irradiated Male Albino Rats

    International Nuclear Information System (INIS)

    Kassab, F.M.A.; Taha, M.S.

    2013-01-01

    Twenty four male albino rats, body weight 100-130 g, were used to evaluate the protective role of fresh pomegranate fruit intake for 30 days on the damage induced by single dose of 6 Gy whole body gamma irradiation. The rats were randomly and equally divided into four groups: group (1): control, group (2): irradiated with 6 Gy, group (3): pomegranate for 30 days and group (4): pomegranate for 30 days followed by 6 Gy whole body irradiation. At the end of the experiment, all rats were sacrificed after 12 hours fasting then sera were separated for the determination of sugar, total antioxidant, lipid profile and liver and kidney functions. Results showed that gamma radiation caused significant decline (P<0.05) in serum total antioxidant, total protein, albumin, HDL-C and blood glucose with significant elevation (P<0.05) in other hepato-renal markers in addition to serum total cholesterol, triglycerides and LDL-C. These changes were significantly attenuated in irradiated animals pre-treated with whole fresh pomegranate fruit leading to the conclusion that pre-intake of pomegranate fruit had a radio- protective effect. This protection of this whole fruit may be due to the increased total antioxidant level leading to free radical scavenging

  19. Enhancement recovery of haemostatic system by tocopherol-monoglucoside (TMG) in whole body gamma irradiated rats

    International Nuclear Information System (INIS)

    Elshamy, E.

    2007-01-01

    A preparation of α-tocopherol monoglucoside (TMG) administered intraperitoneally (i.p.) at a dose of 600 mg/kg body wt immediately after whole body gamma-irradiation was examined for its radioprotective efficacy towards some haemostatic parameters (protein C, antithrombin III and tissue plasminogen activators). When rats received gamma-rays at a dose of 6.0 Gy, a marked decrease in plasma protein C and antithrombin 111 activities within the early post-irradiated period was observed. On the other hand, increase in tissue plasminogen activators had been found. Accordingly, whole body y-radiation was found to modulate the coagulation system by down regulating the expression of activated protein C (APC), antithrombins and induction of the fibrinolytic systems by hyper regulating the tissue plasminogen activators, modifying in this way, the balance between pro coagulant and anticoagulant activities and so disturbing the homeostasis. This may lead to micro circulatory disturbance, which plays a role in ischemic organ dysfunction. However, these changes were attenuated in TMG-treated mice. Significant protection of the previous parameters was found for the TMG group of rats. The return to normal value of the reduced protein C and antithrombin Ill starting from the 5th day and the increased plasminogen activators starting from the 12 h interval were less in TMG-treated rats than in untreated irradiated rats. Accordingly, TMG administration was found to enhance haemostatic recovery

  20. Total proteins and protein fractions levels in pregnant rats subjected to whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Mansour, M.A.; Roushdy, H.M.; Mazhar, F.M.; Abu-Gabal, H.A.

    1986-01-01

    A total number of 180 mature rats (120 females and 60 males) weighing from 120-140 g were used to study the effect of two doses (2 and 4 Gy) whole-body gamma irradiation on the level of total protein and protein fractions in serum of pregnant rats during the period of organogenesis. It was found that the levels of total protein, albumin and gamma globulins significantly decreased according to the doses of exposure. The levels of alpha and beta globulins significantly increased more in the serum of rats exposed to 2 Gy than in rats exposed to 4 Gy. The level of A/G ratio significantly decreased more in the serum of rats exposed to 2Gy than in those exposed to 4 Gy

  1. Rrol of Zinc Cystenine in the Regulation of Metallothionnein Induction in whole body gamma irradiation rats

    International Nuclear Information System (INIS)

    Azab, Kh. Sh.; Zaharn, A.M.; Noaman, E.

    2004-01-01

    The antioxidant competence of metallothionein (MT) in cellular injury lunched by free radicals released in view of ionizing radiation has been proposed. The present work was conducted to elucidate the role of Zinc cysteine in the regulation of metallothionein induction in whole body gamma irradiated rats. cysteine was delivered to rats via intraperitoneal (i.p) injection at a concentration of 25-mg/kg body weight/day for two successive 2 days. The second injection was 30- min. pre irradiation. Whole body γ- irradiation at dose level 6.5 Gy induced significant increase in the levels of metallothionein in all investigated tissues (serum, liver and kidney) accompanied with significant increase in the levels of Zn in the liver. Cu concentrations increased in serum and kidney and decreased significantly in liver tissues. Data of lipid peroxidation demonstrated significant increase in TBARS as compared with control valuws in serum, liver and kidney. Iron was decreased significantly in serum and liver but a significant increase was recorded in kidney at 7 days after irradiation. Ca increased significantly in the liver only as compared with control rats. In addition, K concentration increased significantly in serum, liver and kidney while, P increased in serum and liver when compared with control values. The administration of zinc cysteine pre-irradiation induces significant increases in liver metallothionin from irradiated rat's value. It is only serum show significant decrease in level of MT from the irradiated rat's value on the 1st day post irradiation. However, the changes observed in the levels of Zn, Cu, Iron and Ca, K and P are less manifested when compared with values of irradiated animals. The reduction in the levels of TBARS was obvious comparing with irradiated rat's data. The amelioration occurred in the levels of Zn, Cu, Fe, Ca, P and K when, zinc cysteine administrated before irradiation postulate the positive role zinc cysteine in the adjustment of

  2. Influence of whole-body gamma irradiation upon arachidonic acid metabolism in rat platelets

    International Nuclear Information System (INIS)

    Lognonne, J.L.; Ducousso, R.; Rocquet, G.; Kergonou, J.F.

    1985-01-01

    The effects of whole-body gamma irradiation (8.4 Gy) were studied on arachidonic acid (AA) metabolism in rat's blood platelets, from day D + 1 to day D + 10 after irradiation. AA conversion into thromboxane B 2 (TxB 2 ) increased at D + 1 and then gradually decreased to very low values from D + 7 to D + 10. This decrease in the conversion of exogenous AA into TxB 2 was due to a lower AA incorporation into platelets and not to a decrease of cyclooxygenase and thromboxane-synthetase activities. AA incorporation into membrane phospholipids of blood platelets was much more decreased than AA incorporation into whole platelets; moreover, the lipid composition of the platelet membranes was markedly modified after irradiation, which must have resulted in structural and functional changes in these membranes; from these effects of whole-body gamma irradiation on platelets, the latter's membranes appeared as a major site of in vivo radiation damage in these cells

  3. Alterations in tissue lipids of rats subjected to whole-body X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    De, A K; Aiyar, A S [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1978-02-01

    Whole-body irradiation of rats at sublethal doses leads to hepatic lipid accumulation which reaches a maximum by the sixth day; this effect on lipid metabolism does not appear to be due to accompanying inanition but due to irradiation per se. The female rats show a greater and more consistent increase in liver lipids than males and this better response of the females is not abolished by prolonged administration of testosterone to these animals. An accumulation of triglycerides accounts for almost all the increases in total liver lipids, although smaller elevations in the levels of free fatty acids and cholesterol are also seen. Free fatty acids of liver show a marked decrease on the second day following irradiation. Serum lipids do not show any appreciable changes while adipose lipids progressively decrease reaching a minimum by the sixth day. Although an insufficiency of ATP may be responsible for lipid accumulation in the irradiated rat as in the case in rats treated with ethionine or orotic acid, adenine administration, which prevents fatty infiltration due to these chemical agents, does not protect against the radiation-induced increase in liver triglycerides.

  4. Study of food intake dynamics in rats following acute whole-body irradiation with X rays

    International Nuclear Information System (INIS)

    Smajda, B.; Ahlers, I.; Datelinka, I.

    1987-01-01

    The effects were studied of whole-body X-irradiation with sublethal (2.39 Gy) and medium lethal (5.74 Gy) doses on food intake by rats. The lower dose caused a temporary decrease in food intake, with a minimum of 63.3% of the control level on the 2nd day after irradiation. The decrease was statistically significant up to the 4th day after irradiation. No substantial changes were observed in the parameters of the circadian rhythm in food intake with the maximum on the 3rd day after irradiation, with only 8% of the initial value. The food intake was reduced until the 9th day after irradiation. The daily thythm of food intake was strongly disturbed during the first three days after irradiation, then restoring gradually and on the 9th day showing the original phasing and shape. The results obtained were in agreement with the assumed neural regulation mechanism of food intake and its circadian rhythm in the rat. (author). 5 figs., 12 refs

  5. Radioprotection of liver lipids of whole-body gamma-irradiated female rats by cystamine

    International Nuclear Information System (INIS)

    Ramanathan, R.; Misra, U.K.

    1976-01-01

    The effect of administration of cystamine (5 mg/100 g body weight) before 1,200 R whole-body gamma irradiation has been studied on irradiation-induced changes in liver and its subcellular fractions'lipids of fasted female rats. Cystamine prevented the irradiation-induced increase in liver triglycerides and liver mitochondrial total phospholipids, but it decreased microsomal total phospholipids and proteins. Cystamine prevented the radiation-induced increased 32 P-radioactivity (counts/min/μmole phospholipid phosphorus) of microsomal phosphatidyl choline. Cystamine prevented the radiation-induced increased uptake of NaH 2 32 PO 4 (counts/min/g liver) in liver microsomal phosphatidyl ethanolamine and supernatant phosphatidyl choline; but in microsomal phosphatidyl choline, cystamine did not do so, but on the other hand it itself increased the uptake in control rats. Cystamine did not prevent the irradiation-induced decreased incorporation of (U- 14 C)glucose into liver triglycerides, total phospholipids and phosphatidyl choline. Cystamine itself decreased the incorporation of (U- 14 C)glucose into liver triglycerides and phosphoglycerides of control rats. (orig.) [de

  6. Cardiac ultrastructural changes in rats following 250 Gy whole body. gamma. -irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Guo; Mingyue, Zhu; Zhiqin, Zhao

    1985-10-01

    Sixteen rats were whole body irradiated with 250 Gy of /sup 60/Co ..gamma..-rays, killed at different intervals after exposure, and then observed by electron microscope. We found lysis of part of myofilaments in specimen obtained at 10 minutes after exposure, and resolution of Z-band at 30 minutes after exposure. These changes were more significant in sections at 12 hours postirradiation, but there also appeared cell regeneration at the same time. The vascular changes were more obvious with the endothelial cytoplasma projected in capillary lumen, nearly obstructing it. All of above described changes may be found in hematologic or intestinal forms of radiation sickness, but they must take place more late after exposure. In cardiovascular form, however, these changes were found as early as 10-30 minutes after exposure; this is a special feature helpful to diagnosis.

  7. Modulator Effect of Turmeric on Oxidative Damage in Whole Body Gamma Irradiated rats

    International Nuclear Information System (INIS)

    Amin, H.H.; Abdou, M.I.

    2012-01-01

    Because of its penetrating power and its ability to travel great distances, gamma rays are considered the primary hazard to the population during most radiological emergencies. So, there is a need to develop medical countermeasures to protect the first responders and remediation workers from biomedical effect of ionizing radiation. Turmeric has been reported to have many beneficial health effects, including a strong anti-oxidant effect, anti-inflammatory and anti-microbial properties. In the present study, turmeric was investigated as a therapeutic agent against hazards induced by ionizing radiation on kidney, liver, urinary and serum calcium levels and blood counts. A daily dose of 0.5 g/kg body weight was used in whole body gamma irradiated female rats with 3 Gy. Radiation effects were followed up for four weeks post irradiation. The results revealed that the administration of turmeric post-irradiation resulted in a significant inhibition in the frequency of radiation induced oxidative damage. It could be concluded that definite turmeric dose exerts a vital modulator role against gamma irradiation hazard

  8. Changes in melatonin in epiphysis after whole-body irradiation of rats with gamma rays

    International Nuclear Information System (INIS)

    Ahlersova, E.; Kassayova, M.; Ahlers, I.

    1998-01-01

    Male Wistar rats were exposed to a whole-body gamma dose of 14.4 or 9.6 Gy in darkness. Other groups were exposed to fractionated irradiation with 2.4 Gy twice a week up to 9.6 and 14.4 Gy. At 30 and 60 min after acute lethal irradiation, a decrease in the melatonin (Mel) concentration in the epiphysis was observed; the activity of N-acetyltransferase (NAT) did not differ from that in the control group. Later, signs of increased synthesis of Mel were observed. NAT activity and Mel concentration in the serum increased on day 3 following exposure to 14.4 Gy. Concentration of Mel in epiphysis and serum increased 5 days after exposure to 9.6 Gy. Fractionated irradiation up to 9.6 Gy brought about a decrease in NAT activity 6 h after exposure, without changes in Mel in epiphysis. In rats with an accumulated dose of 14.4 Gy, NAT activity and Mel concentration in epiphysis (serum) decreased 6 h and 3 days, respectively, after exposure, and monoaminooxidase (MAO) increased appreciably on day 3. On day 5, the enzyme activities and Mel concentrations did not differ from those in the control group. Fractionated irradiation up to 14.4 Gy brought about temporary decrease in the synthesis of Mel in epiphysis, which may be due to preferential oxidative deamination of serotonin as compared to its N-acetylation leading to the synthesis of melatonin. The temporary decrease in the Mel concentration in epiphysis in 60 min after single-dose exposure to 14.4 or 9.6 Gy may be a result of similar metabolic changes. The increased synthesis of Mel in epiphysis at a later stage following acute lethal exposure is seen as an adaptive effort of the organism to produce a sufficient amount of hormone with an antioxidative, antistress and immunomodulative effect

  9. Changes in rat plasma fibrinolytic factors during long term follow up after whole body irradiation

    International Nuclear Information System (INIS)

    Dudek-Wojciechowska, G.; Dancewicz, A.M.

    1989-01-01

    Rats were whole body irradiated with a dose of 7.0 Gy and then bled at different times after exposure, from 1 day to 12 months; in their plasma the activity of plasmin, the level of plasminogen, the activity of plasminogen activator as well as α 2 -antiplasmin and α 2 -macroglobulin were determined. In comparison to control values obtained in parallel determinations it was found that during the acute phase of radiation disease (up to 30 days after irradiation) the activity of plasmin and the level of plasminogen underwent fluctuation: at the beginning there was an increase, followed by a decrease at later time intervals. There was also a distinct decrease (over 50%) in the activity of plasminogen activator. During the 2 to 4 weeks after exposure the activity of inhibitors was somewhat decreased, especially that of α 2 -macroglobulin. At later periods the level of plasminogen and the activity of plasminogen activator returned to normal but that of plasmin underwent fluctuation again, reaching a significant decrease in activity 6 and 12 months after exposure. At these time points also some decrease in activity of inhibitors was observed, especially in that of α 2 -macroglobulin. 11 refs., 1 fig., 2 tabs. (author)

  10. Protective Effect Of Avocado Oil Against Biochemical And Histological Changes In Whole Body Gamma Irradiation In Albino Rats

    International Nuclear Information System (INIS)

    Abd El-Rahman, N.A.; Abd El Azime, A.SH.; Sherif, N.H.

    2013-01-01

    Avocado oil, extracted from the pulp of the fruit, is rich in poly-unsaturated fatty acids, linoleic, linolenic, oleic acids and the monounsaturated fatty acid. It also contains B-sitosterol, B-carotene, lecithin, minerals and vitamins A, C, D and E. Avocado oil lowers the blood levels of serum lipids and has antioxidant properties as a free radical scavenger. Male albino rats were divided into 5 groups. 1- Control group: rats not subjected to any treatment, 2- Avocado treated group: rats received avocado oil (0.1 ml/kg/day) via intraperitoneal injection during 21 days, 3- Irradiated group: rats were whole body gamma irradiated with 7 Gy, 4- Avocado + irradiated group: rats received avocado oil for 21 days then exposed to whole body gamma irradiation with 7 Gy and 5- Radiation + avocado group: rats were exposed to 7 Gy whole body gamma irradiation then received avocado oil for 21 days. Avocado oil (0.1 ml/kg/day) was given to rats, receiving a standard diet, for 21 days before exposure to 7 Gy whole body gamma irradiation then the treatment was continued for 10 days after irradiation. Several investigations were carried out such as superoxide dismutase (SOD), malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT), lipid profile and blood sugar. High significant increase in MDA was observed and treatment with avocado before irradiation caused significant increase in GSH, CAT and SOD and significant decrease in MDA as compared to the irradiated groups. The results also showed that treatment with avocado oil significantly diminished the radiation-induced alterations observed in the levels of lipid profile and glucose. The results demonstrated that whole body gamma irradiated rats showed significant increase in alanine aminotransferase (ALT), aspartate amino-transferase (AST), alkaline phosphatase (ALP) and glucose. By studying the lipid profile, significant increases in cholesterol, triglycerides and LDL-C levels were recorded while significant decrease was

  11. Effects of whole-body gamma irradiation on oxygen transport by rat erythrocytes

    International Nuclear Information System (INIS)

    Thiriot, Christian; Kergonou, J.F.; Rocquet, Guy; Allary, Michel; Saint-Blancard, Jacques

    1982-01-01

    In this work, we studied the influence of whole-body gamma irradiation (8 Gy) upon oxygen transport by erythrocytes, through the erythrocyte count and related parameters, and through the factors affecting the oxygen affinity of hemoglobin. The oxygen affinity of hemoglobin is increased from day D + 5 after irradiation, and a severe erythropenia develops from day D + 8. These modifications probably result in tissue hypoxia via diminished oxygen transport from lungs to tissues, and decreased oxygen release from oxyhemoglobin in tissues

  12. Caffeine-induced hematological changes after whole-body irradiation in rat

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Ji Hyang; Yoon Yong Dal [Hanyang University, Seoul (Korea, Republic of)

    2004-07-01

    Recent research indicated dietary antioxidants were useful radioprotectors to protect organisms against radiation-induced tissue lethality and other deleterious effects. Radioprotective effects of vitamin C have been demonstrated in certain cells and animals, which would result from scavenging free radicals. Moreover, the previous studies indicated that caffeine had been shown to potently act the radioprotector in irradiated mice. However it is not clear exactly about effects of caffeine treatments chronically after irradiation. So the present studies were designed to identify the hematological effect of caffeine treatments chronically one month after whole-body gamma irradiation.

  13. Late biochemical changes in the rat lung after whole body irradiation

    International Nuclear Information System (INIS)

    Dancewicz, A.M.; Kubicka, T.

    1976-01-01

    Young Wistar rats were exposed to 650 R of whole body X-rays then sacrificed at different times after exposure up to one year, and various biochemical parameters in lung tissue were determined. Decrease in protein and elastin content and elevation in fibrinolytic and catheptic activity lasted during the whole observation period. In other parameters a fluctuation, mostly decrease followed by an increase, was seen only during the acute phase of radiation disease. (author)

  14. The effects of whole-body irradiation on the serum levels and kinetics of thyroid hormones in rats

    International Nuclear Information System (INIS)

    Gray, W.M.

    1980-01-01

    The effects of a single whole-body dose of X-rays on the serum levels and kinetics of thyroid hormones in rats were studied. The influence of radiation-induced anorexia was monitored by using pair fed control groups. A dose of 800 rad caused a reduction in T 4 levels and 750 rad had a similar effect on T 3 ; in each case the control group showed a smaller reduction. The kinetic results indicated that, in the control groups, the early reduction in hormone concentrations was caused by decreased production, whereas, in the irradiated groups, it was caused by a change in the distribution of the hormone; however the continuing reduction in hormone levels in the irradiated rats appeared to result from decreased production. The results suggest that the thyroid system may play an active part in the early metabolic changes which follow whole-body irradiation. (author)

  15. Caffeine and Aspirin Protecting Albino Rats A gainst Biochemical and Histological Disorders Induced by Whole Body Gamma Irradiation

    International Nuclear Information System (INIS)

    Abd El-Rahman, N.A.; Sherif, N.H.

    2015-01-01

    Caffeine is an alkaloid (purine derivative) that contains flavonoids, where as aspirin, natural component of mammalian tissue ( acetylsalicylic acid) is one of the most commonly used non steroidal anti - inflammatory , and it is a necessary factor in the utilization of long - chain fatty acids to produce energy. Furthermore, it has been shown to protect cells from per oxidative stress. Th e objective of the present study is to evaluate the efficacy of caffeine (1,3,7 - trimethyl xanthine) 80 mg/kg b.wt. a nd aspirin ( acetylsalicylic acid) in the amelioration of the physiological and histological changes in stomach and intestine of rats exposed to gamma irradiation . Male albino rats were divided into 8 groups. 1 - Control group: rats not subject to any treatment, 2 - Caffeine group: rats received caffeine ( 80 ml/Kg body weight )via intraperitoneal injection for 21 days, 3 - Aspirin group: rats received aspirin (150 mg / kg body) via intraperitoneal injection for 21 days , 4 - Caffeine + Aspirin group: rats received caffeine a nd aspirin treatment, 5 - Radiation groups: rats were whole body gamma irradiated at 8 Gy , 6 - Caffeine + Radiation group: rats received caffeine for 21 days before whole body gamma irradiation at 8 Gy, 7 - Aspirin + Radiation group: rats received aspirin during 21 days before w hole body gamma irradiation , 8 - Caffeine + Aspirin + Radiation group: rats received caffeine parallel to aspirin for 21 days before whole body gamma irradiation. Animals were sacrificed 24 hrs post irradiation. The results demonstrated that rats exposed to whole body gamma irradiation showed a significant increase in alanine amino transferase (AL ) , aspartate amino transferase ( AST), and alkaline phosphatase (ALP) activities, and a significant decrease in total protein indicating liver injury. A significant increase in urea, creatinine, Na + ,and K + were recorded indicating kidney damage. Alteration of liver and kidney functions was accompanied by a significant

  16. Arginine-esterase activity of kallikrein in the sera of whole-body irradiated rats and guinea-pigs

    Energy Technology Data Exchange (ETDEWEB)

    Pouckova, P; Pospisil, J; Dienstbier, Z [Karlova Univ., Prague (Czechoslovakia). Biofyzikalni Ustav

    1977-09-01

    In whole-body irradiated rats (800 R=LDsub(50/30)) and guinea pigs (300 R=LDsub(50/30)) changes were investigated in the arginine esterase activity of kallikrein in native serum as well as in serum exposed to contact with a clay suspension. From the values obtained the activity of prekallikrein was calculated. While in the rat serum significant changes in the arginine esterase activity of kallikrein were found, in the guinea pig serum the kallikrein activity did not change markedly. The activity of prekallikrein immediately after irradiation assumes a similar course in both types of laboratory animals while during later intervals a reverse pattern was observed.

  17. Biochemical and histological changes in whole body gamma-irradiated rats feed on wheat, barely and corn bran

    International Nuclear Information System (INIS)

    Soliman, S.M.; Hassan, A.A.; Ragab, E.A.

    2003-01-01

    The present work aims to study the effect of adding 3 different of dietary fibers (wheat, barley or corn bran) to normal balanced diet on liver function, blood, cholesterol, triglycerides and blood glucose level to counteract their elevation in whole body gamma irradiation rats. The experimental diets (balanced diet + fibre additive) were fed for 4 weeks. Samples (blood and tissue) were collected at intervals of times 7, 14 and 28 days post exposure to single dose (7 Gy) gamma irradiation. The control group consumed a fibre diet for 4 weeks, but not irradiated. The minimum aspartate amino-transferase (AST) and alanine aminotransferase (ALT) activities and the lowest blood total cholestrol, triglycerides and blood glucose were observed in rats (irradiated and non-irradiated rats) fed on wheat bran experimental diet (barley or corn bran). It could be concluded that wheat fibers were more effective, as compared with other fibers contained in balanced diet, in improving the investigated parameters observed after whole body gamma irradiation exposure

  18. Studies on the lipid peroxidation in mitochondria of x-ray whole-body irradiated rat liver, 2

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroshi

    1976-01-01

    The results of investigation made on the mitochondria of rat liver on the 3rd day after irradiation of 650 R are as follows: After lipid peroxidation, the mitochondria showed a decrease of polyenoic acids (C-20:4, C-22:6) suggesting that polyenoic acids are the substrate of the reaction. Unsaturated fatty acids were decreased due to the decrement of C-18:1 and C-18:2, and polyenoic acid was relatively increased. These changes were transient, reaching a maximum on the 3rd day after irradiation. The rate of peroxidation in total lipids extracted form normal mitochondria was the same as that from whole-body irradiated mitochondria. There was no lag in the induction period in either reaction. Marked peroxidation of the total lipid was seen in the phospholipid fraction and slight peroxidation in the simple lipid fractions. No significant effect of whole-body irradiation on the peroxidation activities of the phospholipid was observed. With thin-layer chromatography, peroxidation of subfractionated phospholipid showed marked activity in the lecithin and aminophosphatide fractions containing large amounts of C-20:4 and C-22.6. Recovery of activity in the subfractions was greater than that in the total phospholipid. The effect of whole-body irradiation appeared to be significant in these subfractions. However no relationships could be seen between the activities peroxidation and the fatty acid composition of the subfractions. The ratio of phospholipid to total lipid increased in whole-body irradiated samples. From these findings there was a discussion of whether or not Fe ++ -induced lipid peroxidation at the mitochondrial level is due to change in the composition of fatty acid and the association of lipid in the membrane. (Evans, J.)

  19. Rapid decrease in brain enkephalin content after low-dose whole-body X-irradiation of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Miyachi, Yukihisa (Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.); Ogawa, Norio; Mori, Akitane

    1992-03-01

    Methionine-eckephalin (ME) contents in the hypothalamus and other rat brain structures were measured immediately after 10 or 20 cGy whole-body X-irradiation. The ME contents of homogenates of the striatum, hypothalamus, midbrain + thalamus, hindbrain and pituitary were assayed radioimmunologically with {sup 125}I. The contents of all the structure, except the pituitary, decreased significantly after 20 cGy irradiation. The reduction in the hypothalamus was transient, ME content gradually recovering with time. These results suggest that the central nervous system of mammals is one of the most radiosensitive organs as judged by changes in stress-induced mediators such as ME. (author).

  20. Epinephrine ameliorating response of serum proteins and protein fractions to whole body gamma irradiation in albino rats

    International Nuclear Information System (INIS)

    Mohamed, M.A.; Saada, H.N.; Roushdy, H.M.; Awad, O.M.; El-Sayed, M.M.; Azab, Kh.Sh.

    1997-01-01

    The present study was carried out to investigate the role of epinephrine in modifying the radiation induced effects on serum protein as presented by total protein, protein fractions and albumin/globulin (A/G) ratio in adult albino rats. Epinephrine was intraperitoneally injected at a concentration of 200 M/g body weight, 15 min, pre-9 or just after 0 whole body gamma-irradiation of rats at a dose of 6 Gy (single dose). Studies have been undertaken at periods of 1 hr, 4 hrs, 1,3 and 7 days after irradiation. Data of the present study revealed that whole body gamma-irradiation induced significant decreased in the total content of serum protein and albumin at 1,3 and 7 days post radiation exposure alpha 1-globulin significantly increased only on the 1 st hr post-irradiation, however alpha 1-globulin significantly increased along all the experimental periods. B-globulin insignificantly changed after irradiation but gamma-globulin significantly decreased during the experimental periods. These changes were associated with significant decreases in A/G ratio at 3 and 7 days post-irradiation. Administration of epinephrine pre-or after radiation exposure produced some amelioration in the radiation induced changes in the studied parameters. So, it could be concluded that epinephrine plays a beneficial radioprotective role through its pharmacologic properties

  1. Liver dysfunction following whole-body Co-60 irradiation in gerbil (Meriones hurrianae Jerdon) and house rat (Rattus rattus rufescens)

    International Nuclear Information System (INIS)

    Dixit, V.P.; Agrawal, M.; Gupta, C.

    1976-01-01

    Liver dysfunction following whole-body Co-60 irradiation has been studied in domestic and desert rat species. A significant elevation in the serum transaminases activity was noticed both in gerbil and house rat. Alkaline phosphatase and plasma cholesterol levels were also increased indicating an early radiation impairment of the liver tissue, which was later confirmed by histological studies. A steady fall in liver glycogen in irradiated gerbils was strikingly in contrast to an increase in irradiated house rat. Drastic depletion in liver glycogen, changes in the serum enzyme levels and the severity of the hepatic necrosis in gerbils point out that desert mammalian species are much more sensitive to radiation hazard as compared with domestic ones. (orig.) [de

  2. Effect of rat whole-body irradiation on oxidase chain and glucose-6-phosphatase of liver microsome: influence of cysteamine

    International Nuclear Information System (INIS)

    Bernard, Pierre.

    1979-11-01

    Three enzymatic systems of the male rat liver endoplasmic reticulum were studied by biochemical methods. Two means of investigation were used: - whole-body irradiation of the animal, - administration of cysteamine. The results obtained are discussed, in view of the functioning of these enzymatic systems, from two viewpoints: - the study of enzymatic radiolesions in relation to the radiobiological effect on the animal, the organ and the sub-cellular organite, - the study of chemical radioprotection. After a 900 R whole-body gamma irradiation a severe drop was observed in the enzymatic activity of two essential elements of the microsome oxydase chain: NADPH cytochrome P450 reductase and ethylmorphine N-demethylation. Glucose 6 phosphatase is also impaired by irradiation. Here it seems that the microsomal protein fraction could be responsible for the change in the enzyme activity. The irradiation effect is therefore not specific to one enzyme. The changes in these enzymatic activities correspond to the different phases of the acute irradiation syndrome which also affects the weight of the experimental animal and of the organ studied. Cysteamine used under chemical radioprotection conditions was found to be especially useful as a means of investigation complementary to the study of enzymatic radiolesions. From the combined action of irradiation and of the radioprotector it was possible to obtain a partial idea of the mechanisms of these radiolesions [fr

  3. Protective Effect of Exogenous Dehydro-epiandrosterone Sulfate (DHEAS) on Liver Cell Organs of Whole Body y-Irradiated Rats

    International Nuclear Information System (INIS)

    Abdel-Fattah, K.I.; El-Gawish, M.A.; Abou-Safi, H.M.

    2005-01-01

    Dehydroepiandrosterone (DHEA) and its sulfate (DHES) are adrenal hormones. They are powerful endogenous antioxidants and are important in protecting the cells from damage. The present work aimed to evaluate the exogenous DHEAS as a protector against the whole body exposure to gamma radiation damages on DNA and RNA content of the nuclear fraction, calcium and acid phosphatase in the mitochondria fraction and glutathione (GSH) and malonaldehyde (MDA) in the cytosol fraction in the liver of male rats. Fifty male albino rats weighing 130-150 g were categorized into the following groups: 1-Control untreated. 2-Exposed to whole body gamma irradiation (6.5 Gy). 3-Received a single oral administration of DHEAS at a dose level of 200 mg/kg b.wt. 4-Administered with DHEAS (200 mg/kg) two h pre-exposure to whole body gamma irradiation (6.5 Gy). Three time intervals were determined for tissue sampling: after one day, one week and two weeks post irradiation (groups 2 and 4) and post administration of DHEAS (group 3). The results showed that: 1- DHEAS has a radioprotective effect on DNA and RNA content decreases in the liver nuclear fraction. 2- It significantly ameliorated the changes in mitochondria Ca21 content and acid phosphatase activity. 3- It improved both GSH and MDA contents in the cytosolic fraction. It could be concluded that, DHEAS showed an obvious protective role against the hazard of gamma radiation on liver cells. Several mechanisms were discussed about its effects. Therefore, more investigations are needed to understand well the role of DHEAS in protecting the animal tissues against ionizing radiation hazard

  4. Hemorrhagic tendency following whole-body irradiation of conventional and decontaminated rats

    International Nuclear Information System (INIS)

    Hiemeyer, V.; Hohage, R.

    1974-01-01

    Female SIV 50 rats were irradiated with 700 r, and the blood platelets were counted in blood obtained by aortal puncture. A significant decrease could be observed already after a few days. The ADP-induced platelet aggregation showed only a little increase of the aggregation amplitude and a prolongation of the desaggregation time in irradiated animals. The increase of the collagen-induced platelet aggregation might be due to a reduced release of endogenic ADP rather than to reduced sensitivity to ADP. In order to examine the question whether the haemorrhagic tendency of decontaminated animals is reduced after irradiation, female rats were orally given Bacitracin, Neomycin, and Streptomycin over a period of 10 days. Increasing anaemia could be observed from the 7th day p.t. on. In decontaminated animals, anaemia occurrence was not as high as in conventional ones. The erythrocyte count of the lymph in the conventional animals was remarkably higher than in decontaminated animals, which as also the case in the haemoglobin content in the lymph notes. This proves definitely that rats kept conventionally have a stronger tendency to bleeding than decontaminated rats. (MG) [de

  5. The Effect of A Single Sub-Lethal Dose of Whole Body Irradiation on the Small Intestine of Rats

    International Nuclear Information System (INIS)

    Al-Ramli, M. A.; Kubba, M. A.; Al-Bassam, L. S.; Belhaj, K.; Al-shawish, N. M.

    2007-01-01

    The effect of whole body radiation with a single sub-lethal dose at 4 Gy on rat small intestine was studied histologically and quantitatively. Irradiated animals were euthanized at 24 hours, 3, 7, 14, 21 and 28 days post- irradiation. Crypts of Leiberkuhn and peyer's patches were especially targeted by irradiation. The crypts showed severe cellular fragmentation in the germinal cellular compartments twenty Four hours after irradiation resulting in partial denudation of villi especially at their Tips. At three days, these cells resumed their proliferative activity with the appearance of unusually large numbers of mitotic figures. Cellular regeneration in the crypts and on the villous surface showed improvement with advancing time till day 28 when the villi had complete epithelial covering and the proliferative activity of the germinal cryptic cells returned to normal. The quantitative study included the measurement of about fifty villi at each time after irradiation. A significant decrease in villous length was noticed at twenty four hours post-irradiation compared to the control values. The length of villi plateaued at about this level till day twenty one when it slightly increased to reach a sub normal mean length on day 28. We concluded that whole body irradiation with a single dose at 4 Gy was enough to induce cryptic cellular necrosis with sloughing of epithelial villous columnar covering. This cellular damage was, however, sub- total since quick regenerative cellular activity was noticed three days post-irradiation. The decrease in the villous length paralleled the cryptic cellular damage whereas full recovery was not achieved despite obvious cellular regeneration.

  6. Low Dietary Protein Status Potentiating Risk of Health Hazard in Whole Body Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    El-Gawish, M.A.M.; Yousri, R.M.; Roushdy, H.M.; Abdel-Reheem, K.A.; Al-Mossallamy, N.A.

    1998-01-01

    Investigations were planned to assess the changes in certain biochemical parameters as affected by the synergistic effect of exposure to fractionated doses of rays and / or feeding on different protein levels. The date showed that animals kept on normal or low protein diet exhibited a significant decrease in serum total protein and glucose. Also , a significant increase was recorded in insulin level in rats exposed at the radiation dose level of 20 Gy. Exposure to cumulative doses of irradiation has aggrevated the hyperglycemic effect of high protein diet with a significant and marked increase of insulin at all the applied doses. Animals fed normal high or low protein diet were found to exert significant decreases in T3, T4 while a significant increase in TSH of high protein group occurred as a result of exposure to cumulative doses of gamma-irradiation. Rats kept on low protein diet exhibited losses in body weight, hypercholesterolemia, low levels of phospholipids and triglycerides as compared with the normal protein diet group. In contrast high protein diet group showed no serious effects. Irradiation has potentiated body weight losses, hypotriglyceridemia and hypercholesterolemia in animal group fed low protein diet with a significant increase in serum phospholipids due to the higher radiation dose of 20 Gy. Protein deficiency acted synergistically with gamma irradiation and increased the susceptibility of body organs to radiation damage. Such findings contributed to the knowledge which stimulated the decrease of the internationally recognized occupational dose limits from 50 down to 20 m Sv (ICRP 1991)

  7. Effects of a whole body gamma irradiation on GABA repartition in infant rats cerebellum and hippocampal formation

    International Nuclear Information System (INIS)

    Menetrier, F.; Vernois, Y.; Court, L.

    1992-01-01

    'Full-Text:' Thirteen-day-old rats were exposed to a single dose of 4 or 0,5 Gy of gamma at a dose rate of 0,25 Gy/min and were killed about 5h after. Fixation was achieved in situ using glutaraldehyde. For GABA immunocytochemistry transversal sections were incubated with antiserum against GABA, then with PAP and revealed with diaminobenzidine. Proliferative layers are still observed in the infant rat cerebellum (external granular layer) and hippocampal formation (subgranular layer of the dentate gyrus). When irradiation occurs a high percent of these two layers cells are pycnotic. In the normal cerebellum, no immunostaining is observed in external granular layer cell bodies. The only labelled structures are few cytoplasmic expansions coming from subjacent layers. When irradiated, a strong GABA staining appears around pycnotic cells as a network with labelled meshes. GABA staining and pycnotic cells were more especially important when the irradiation increases. Further studies are needed to specify the nature of labelled meshes. In the normal hippocampal formation, subgranular cells are not GABA stained. Staining occurs in cells which are not granule cells. They are scattered throughout cell layers of the dentate gyrus with predominance in the hilus. After irradiation, GABA repartition is not modified. After a 4 Gy whole body gamma irradiation, the inhibitory GABA system is not injured. Other amino-acid neurotransmitters such as Glutamate could be modified. (author)

  8. Effects of local and whole body irradiation on the appearance of osteoblasts during wound healing in tooth extraction sockets in rats

    International Nuclear Information System (INIS)

    Hosokawa, Yoichiro; Kudo, Kohsei; Kashiwakura, Ikuo; Sakakura, Yasunori; Irie, Kazuharu

    2010-01-01

    Irradiation before tooth extraction delays wound healing in the alveolar socket. This study examined the influences of local and whole body irradiation before tooth extraction on appearance of osteoblasts in the alveolar bone of rat maxillary first molars because bone formation is observed at the initial phase of wound healing. Several osteoblasts were generated 3 days after tooth extraction, and the number of cells increased day by day. Morphological studies showed there were little differences between local irradiation and non-irradiated controls. In contrast, the extraction wound in the whole body irradiation group showed delayed healing, and there was poor granulation tissue and very few osteoblasts at the bottom of the socket. An ultrastructural study showed that the osteoblasts in the extraction socket of whole body irradiation rats were smaller, and had poorly developed organelles. Injection of bone marrow cells to whole body-irradiated animals immediately after tooth extraction partially restored the number of osteoblasts. New periosteal bone formations outside of sockets showed little delay in the whole body irradiation group. These findings suggest that bone formation in the wound healing of extraction socket requires bone marrow cells from hematopoietic organs such as the bone marrow as well as local sources around the alveolar socket, during the initial phase of wound healing. (author)

  9. Effects of local and whole body irradiation on the appearance of osteoblasts during wound healing in tooth extraction sockets in rats.

    Science.gov (United States)

    Hosokawa, Yoichiro; Sakakura, Yasunori; Irie, Kazuharu; Kudo, Kohsei; Kashiwakura, Ikuo

    2010-01-01

    Irradiation before tooth extraction delays wound healing in the alveolar socket. This study examined the influences of local and whole body irradiation before tooth extraction on appearance of osteoblasts in the alveolar bone of rat maxillary first molars because bone formation is observed at the initial phase of wound healing. Several osteoblasts were generated 3 days after tooth extraction, and the number of cells increased day by day. Morphological studies showed there were little differences between local irradiation and non-irradiated controls. In contrast, the extraction wound in the whole body irradiation group showed delayed healing, and there was poor granulation tissue and very few osteoblasts at the bottom of the socket. An ultrastructural study showed that the osteoblasts in the extraction socket of whole body irradiation rats were smaller, and had poorly developed organelles. Injection of bone marrow cells to whole body-irradiated animals immediately after tooth extraction partially restored the number of osteoblasts. New periosteal bone formations outside of sockets showed little delay in the whole body irradiation group. These findings suggest that bone formation in the wound healing of extraction socket requires bone marrow cells from hematopoietic organs such as the bone marrow as well as local sources around the alveolar socket, during the initial phase of wound healing.

  10. Biogenic amines in brain areas of rats and response to varying dose levels of whole body gamma irradiation

    International Nuclear Information System (INIS)

    Abdelhamid, F.M.; Elmossalamy, N.; Othman, S.A.; Roushdy, H.M.; Abdelraheem, K.

    1994-01-01

    The levels of norepinephrine (NE), dopamine (DA), 5-hydroxy-tryptamine (5-HT) and 5-hydroxy-indole acetic acid (5-HIAA) were examined in the brain areas:cortex,: cerebellum, striatum and pons in rats exposed to whole body gamma-irradiation at the dose levels 6.5 and 10 Gy. The data obtained indicated that: 6.5 Gy induced in all brain areas, a slight increase in 5-HT concomitant with significant decrease in NE, DA levels, besides a significant increase in 5-HTAA in cerebellum and pons. After the dose 10 Gy the maximum excitation of 5-HT level was in striatum whereas declines in NE, DA were recorded in all brain areas. 5-HIAA displayed significant increase in cerebellum and pons and maximum decline in the cortex. 4 tab

  11. The influence of whole-body γ-irradiation with low doses on enzyme activity of rat adrenal medulla

    International Nuclear Information System (INIS)

    Amvros'ev, A.P.; Shostak, Yu.A.

    1991-01-01

    A study was made of the pattern of changes in histological indices of key enzymes of the tricarbonic acid cycle (succinate dehydrogenase) and glycolysis (lactate dehydrogenase) as well as of catecholamines (monoamine oxidase) in cells of the adrenal medulla of young and adult albino rats subjected to external whole-body γ-irradiation with doses of 0.5 and 1.0 Gy (dose-rate of 2.7·10 -4 Gy/s). Radiosensitivity of the enzyme systems under study in the adrenal gland cells of young animals was higher than in that of adult. Changes of their levels in different periods of observation were mainly of phase nature and indicated the development of adaptation syndrome in the animal organism

  12. Serotonin exerting protection of serum lipid pattern in male albino rat subjected to shot or intermittent whole body gamma irradiation

    International Nuclear Information System (INIS)

    El-Dighidy, E.A.M.; El-Kady, M.H.R.

    1995-01-01

    Certain cancer patients are subjected to varying levels of intermittent radiation delivered in certain cases as whole body exposure. Effective control of many haematological complications built up during radiation treatment would necessarily contribute to up-grading of cancer radiotherapy. In the present study, the effect of either shot or intermittent whole body gamma irradiation at cumulative dose levels up to 6 and 10 Gy, have been evaluated on the levels of total lipids and lipid fractions in blood serum of male albino rats. The pharmacological role of serotonin and its potential radioprotective capacity have been assessed on the serum lipid pattern. The results indicated generally significant increases in the levels of blood lipid fractions especially HDL-cholesterol. On the other hand, the level of LDL-cholesterol recorded a significant decrease on the third day post either shot or cumulative dose levels at 6 or 10 Gy and also post 4 successive doses of serotonin administration. The only exceptions were recorded in the case of LDL-cholesterol post administration of single dose of serotonin and serotonin prior to shot dose levels of 6 or 10 Gy. 2 tabs

  13. Animal experiments with rats as a contribution to the question of whole body irradiation

    International Nuclear Information System (INIS)

    Schraub, A.; Doell, G.; Jonas, H.; Kindt, A.; Sattler, E.L.

    1975-01-01

    Recovery after sublethal radiation damage was studied in the white blood count which shows a fast reaction to attacks caused by radiation. The so-called 'fractionated-dose method' was used. This method detrmines to what extent the total dose must be raised for two partial doses given at different times to produce the same amount of damage as a single irradiation. The second dose was applied after 7. days. A dose reduction by protraction of the first dose over 2 days was only found after doses of 300 to 400 rad. Regarding the anorexia connected with the radiation syndrome, no differences were found at low doses between protracted and one-time irradiation. This suggests that there is no repair. (MG) [de

  14. Phosphorylation of histone H2AX as an indicator of received dose of gamma radiation after whole-body irradiation of rats

    Directory of Open Access Journals (Sweden)

    Radim Havelek

    2011-01-01

    Full Text Available The aim of our study was to determine whether phosphorylation of histone H2AX can be used as an indicator of received dose of gamma radiation after whole-body irradiation of rats. Wistar rats were irradiated by 1-10 Gy of gamma radiation by 60Co source. Value LD50/60 was 7.37 (4.68-8.05 Gy. Histone H2AX is phosphorylated by ATM kinase on serine 139 (γH2AX quickly after the irradiation. It forms microscopically visible foci in the site of double strand breaks of DNA. Flow-cytometric method was used for quantitative detection. This study is the first one that evaluated dose-dependency of H2AX phosphorylation in peripheral lymphocytes of rats irradiated by whole-body dose 1-10 Gy. Our data show a dose-dependent increase in γH2AX in rat peripheral blood lymphocytes 1 h after whole-body irradiation by the dose of 1-10 Gy. We proved that phosphorylation of histone H2AX is a prompt and reliable indicator of the received radiation dose suitable for rapid measurement before the number of lymphocytes in peripheral blood starts to decrease. It can be used already 1 h after the irradiation for an estimation of the received dose of radiation. Blood samples can be stored in 4 °C for 23 h without significantly affecting the result.

  15. Alterations in rat cardiac myosin isozymes induced by whole-body irradiation are prevented by 3,5,3'-L-triiodothyronine

    International Nuclear Information System (INIS)

    Litten, R.Z.; Fein, H.G.; Gainey, G.T.; Walden, T.L.; Smallridge, R.C.

    1990-01-01

    Changes in cardiac myosin isozymes and serum thyroid hormone levels were investigated in rats following 10 Gy whole-body gamma irradiation. The percent beta-myosin heavy chain increased from 21.3 ± 1.8 to 28.1 ± 6.8 (NS) at 3-day postirradiation, 37.7 ± 1.9 (P less than .001) at 6-day postirradiation, and 43.8 ± 3.3 (P less than .001) at 9-day postirradiation. Along with the change in myosin isozymes was a significant 53% decrease (P less than .001) in the serum thyroxine (T4) level by day 3 postirradiation, remaining depressed through day 9 postirradiation. The serum 3,5,3'-triiodothyronine (T3) level, however, was normal until day 9, when significant depression was also observed. In contrast, the thyroid-stimulating hormone (TSH) level was significantly increased by fourfold at day 3, returning to near normal values by day 9 postirradiation. Daily injections of physiological doses of T3 (0.3 microgram/100 g body weight) prevented the change in the myosin isozymes following whole-body irradiation. Daily pharmacological injections of T3 (3.0 micrograms/100 g body weight) to the irradiated rats produced a further decrease in the percent beta-myosin heavy chain (below control values) indicating tissue hyperthyroidism. Thus, this study suggests that the change in myosin isozymes following whole-body irradiation is caused by an alteration in thyroid hormone activity

  16. Effects of whole body x-ray irradiation on induction by phenobarbital of rat liver glucose-6-phosphate dehydrogenase and glutathione reductase

    Energy Technology Data Exchange (ETDEWEB)

    Bitny-Szlachto, S.; Szyszko, A. (Wojskowy Inst. Higieny i Epidemiologii, Warsaw (Poland))

    1979-01-01

    In rats treated with phenobarbital (3x100 mg/kg, i.p.), liver G-6-P dehydrogenase activity increased by 70% in the cytosol and in the 9.000xg supernatant, and only by 20% in microsomes. Moreover, the phenobarbital treatment increased rat liver GSSG reductase activity by 30%. On the other hand, activity of the liver microsomal G-6-P dehydrogenase was found to increase by some 20% in whole body irradiated, both control and phenobarbital treated rats. In rats irradiated with 600 R prior to the first dose of the inducer there was not noted any increase in G-6-P dehydrogenase of the 9.000xg supernatant, and increase in the cytosol activity dropped to 38%. Thus, induction of the soluble liver G-6-P dehydrogenase by phenobarbital has turned out to be radiosensitive, whereas phenobarbital induction of GSSG reductase was unaffected by irradiation.

  17. Change in concentration of inorganic phosphate and phosphocreatine in the rat diaphragm under the influence of whole-body gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, M A; Gaber, M; Abdel-Fatah, K I

    1987-01-01

    The influence of irradiation on the concentration of creatine phosphate and inorganic phosphate in the diaphragm muscle were studied in rats exposed to 400 rad and 800 rad whole-body gamma radiation. The results showed that on the first day of post-exposure with 400 rad, the creatine phosphate concentration significantly increased, while the level significantly decreased on the third up to the fourteenth days of post exposure. In animals exposed to 800 rad, the diaphragm phosphocreatine showed a significant decrease on the first up to the ninth day post-irradiation as compared with the control group.

  18. Change in concentration of inorganic phosphate and phosphocreatine in the rat diaphragm under the influence of whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Mansour, M.A.; Gaber, M.; Abdel-Fatah, K.I.

    1987-01-01

    The influence of irradiation on the concentration of creatine phosphate and inorganic phosphate in the diaphragm muscle were studied in rats exposed to 400 rad and 800 rad whole-body gamma radiation. The results showed that on the first day of post-exposure with 400 rad, the creatine phosphate concentration significantly increased, while the level significantly decreased on the third up to the fourteenth days of post exposure. In animals exposed to 800 rad, the diaphragm phosphocreatine showed a significant decrease on the first up to the ninth day post-irradiation as compared with the control group

  19. Myelopoiesis in whole-body-irradiated beagles

    International Nuclear Information System (INIS)

    Stevenson, A.F.G.

    1985-01-01

    The influence of dose-rate (DR) (either 5.2 or 52 cGy/min.) on the regeneration of bone marrow (BM) myelopoietic progenitor cells was studied in beagles after exposure to whole-body-irradiation (235, 375 and 1500 cGy + autologous BM-transplantation). Myelopoietic progenitor cells were assayed as colony-forming units in agar cultures (GM-CFU), in correlation with the colony-stimulation activity (CSA) in serum. At 235 cGy, the influence of DR on the recovery of GM-CFU was insignificant. However, at 375 cGy, the recovery was critically dependent on the DR. Depletion of GM-CFU numbers elevated CSA levels above pre-irradiation values. The DR determines the regenerative ability when the dose itself is critical to survival of the least number of hematopoietic stem cells (HSC) necessary for restitution. (author)

  20. Whole body X-irradiation and impact of dietary factors on brain and testes of albino rats

    International Nuclear Information System (INIS)

    Hasan, S.S.; Chaturvedi, P.K.

    1988-01-01

    The study was undertaken to investigate the radioprotective effect of protein diet on the irradiated brain and testes. The study indicated that the less availability of protein in the diet caused a marked reduction in the protein and nucleic acid (DNA and RNA) contents of brain after irradiation. Further, the protein deficiency in diet brought about an increased deamination of protein in the brain of irradiated rats. It was noted that in response to irradiation the testes of protein deficient diet fed rats got adversely affected as compared to high protein diet fed animals. This paper gives evidence that feeding of protein enriched diet provides protection against ionizing radiation. (orig.) [de

  1. Effect of whole body irradiation on different tissues

    International Nuclear Information System (INIS)

    Casati, V.; Nardino, A.; Tomassi, I.; Becciolini, A.; Rizzi, M.; Martelli, T.

    1979-01-01

    The uptake and elimination of 14 C leucine were analysed in controls and in rats irradiated 2 h before injection with 8 Gy whole-body irradiation. Plasma, small intestine, kidney and skin were assayed after homogenization for TCA soluble and insoluble activity curves. In highly differentiated tissues with poor proliferative activity and low protein turnover, the uptake and elimination of the tracer did not appear to be affected by irradiation. In the small intestine differences between control and irradiated animals seemed significant. (Auth.)

  2. Changes in some blood lipid fractions in whole-body irradiated rats as influenced by some radioprotectors

    International Nuclear Information System (INIS)

    Yousri, R.M.; Roushdy, H.; Gawish, M.A.M.

    1991-01-01

    The effect of sublethal and lethal total body gamma irradiation on some serum lipid fractions in male rats was investigated. The protective efficacy of estradiol and/or α-tocopherol was also studied. The results of this study demonstrate that the lethally irradiated rats showed significant alteration in serum triglycerides, cholesterol, total lipids and phospholipids level. Estradiol exerted a benefical effect on lipid fractions after one and two days post lethal α-irradiation (8 Gy). No consistent radioprotective effect of tocopherol could be detected on the levels of serum lipid fractions. This finding was also observed when both radioprotectors were used. (orig.) [de

  3. Response of plasma and urinary uric acid, creatine and creatinine to dietary protein deficiency and/or whole body gamma-irradiation in desert rodent and albino rats

    International Nuclear Information System (INIS)

    Roushdy, H.M.; El-Husseini, M.; Saleh, F.

    1985-01-01

    The effect of whole body gamma-irradiation on the levels of plasma and urinary uric acid, creatine and creatinine was studied in the desert rodent, Psammomys obesus and albino rats subjected to dietary protein deficiency. In albino rats, the levels of uric acid in plasma and urine were higher in the animals kept on high protein diets than in those maintained on non-protein ones. Radiation exposure caused a significant increase in uric acid concentration both in plasma and urine of albino rats, whereas in Psammomys obesus obesus, it exerted a significant drop in uric acid concentration in blood paralleling a marked rise in the daily uric acid excretion in the urine, especially with the high radiation level of 1170 r. Creatinine concentrations in plasma and urine of albino rats were higher than the corresponding values in Psammomys obesus obesus. Radiation exposure in general caused an increase in the creatinine concentration in blood and a decrease in its concentration in urine. Plasma creatine was shown to increase due to the effect of radiation exposure. This runs in parallel with the increase in the excretion of creatine in urine. Creatinuria observed in whole body irradiation is obviously caused by a defect in the ability of skeletal muscle to take up creatine from blood. Such abnormality could be the result of direct damage to the muscle caused by incident radiation

  4. Response of plasma and urinary uric acid, creatine and creatinine to dietary protein deficiency and/or whole body gamma-irradiation in desert rodent and albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Roushdy, H M; El-Husseini, M; Saleh, F [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1985-01-01

    The effect of whole body gamma-irradiation on the levels of plasma and urinary uric acid, creatine and creatinine was studied in the desert rodent, Psammomys obesus and albino rats subjected to dietary protein deficiency. In albino rats, the levels of uric acid in plasma and urine were higher in the animals kept on high protein diets than in those maintained on non-protein ones. Radiation exposure caused a significant increase in uric acid concentration both in plasma and urine of albino rats, whereas in Psammomys obesus obesus, it exerted a significant drop in uric acid concentration in blood paralleling a marked rise in the daily uric acid excretion in the urine, especially with the high radiation level of 1170 r. Creatinine concentrations in plasma and urine of albino rats were higher than the corresponding values in Psammomys obesus obesus. Radiation exposure in general caused an increase in the creatinine concentration in blood and a decrease in its concentration in urine. Plasma creatine was shown to increase due to the effect of radiation exposure. This runs in parallel with the increase in the excretion of creatine in urine. Creatinuria observed in whole body irradiation is obviously caused by a defect in the ability of skeletal muscle to take up creatine from blood. Such abnormality could be the result of direct damage to the muscle caused by incident radiation.

  5. Alterations in rat cardiac myosin isozymes induced by whole-body irradiation are prevented by 3,5,3'-L-triiodothyronine

    Energy Technology Data Exchange (ETDEWEB)

    Litten, R.Z.; Fein, H.G.; Gainey, G.T.; Walden, T.L.; Smallridge, R.C. (Armed Forces Radiobiology Research Institute, Bethesda, MD (USA))

    1990-01-01

    Changes in cardiac myosin isozymes and serum thyroid hormone levels were investigated in rats following 10 Gy whole-body gamma irradiation. The percent beta-myosin heavy chain increased from 21.3 {plus minus} 1.8 to 28.1 {plus minus} 6.8 (NS) at 3-day postirradiation, 37.7 {plus minus} 1.9 (P less than .001) at 6-day postirradiation, and 43.8 {plus minus} 3.3 (P less than .001) at 9-day postirradiation. Along with the change in myosin isozymes was a significant 53% decrease (P less than .001) in the serum thyroxine (T4) level by day 3 postirradiation, remaining depressed through day 9 postirradiation. The serum 3,5,3'-triiodothyronine (T3) level, however, was normal until day 9, when significant depression was also observed. In contrast, the thyroid-stimulating hormone (TSH) level was significantly increased by fourfold at day 3, returning to near normal values by day 9 postirradiation. Daily injections of physiological doses of T3 (0.3 microgram/100 g body weight) prevented the change in the myosin isozymes following whole-body irradiation. Daily pharmacological injections of T3 (3.0 micrograms/100 g body weight) to the irradiated rats produced a further decrease in the percent beta-myosin heavy chain (below control values) indicating tissue hyperthyroidism. Thus, this study suggests that the change in myosin isozymes following whole-body irradiation is caused by an alteration in thyroid hormone activity.

  6. The effects of the first two rises of adrenal gland activity on survival of rats after whole-body irradiation

    International Nuclear Information System (INIS)

    Coffigny, Herve; Pasquier, Christian.

    1980-04-01

    Lethal irradiation of rats results in two rises of adrenal gland activity around the 3rd hour and the 3rd day following exposure respectively. The effects of each rise on survival of rats were studied during either reaction, 1) by inhibition of corticosterone synthesis by metopirone 2) by corticosterone injection to adrenalectomized rats. The first rise seemed deleterious to survival, whereas the second one was without effect. The specificity of adrenal reaction following exposure might explain the significance of the succession of other stresses for survival in the particular case of combined stresses [fr

  7. Effect of Whole-Body X-Irradiation of the Synthesis of Individual Fatty Acids in Liver Slices from Normal and Fasted Rats

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Hansen, Lisbeth Grænge; Faber, M.

    1965-01-01

    (1) Using (2-14C) acetate and (1-14C) butyrate as precursors, rat-liver fatty acids were synthesized in vitro and assayed by paper chromatography. (2) Whole-body x-irradiation induced a change in the synthetic pattern of hepatic fatty acids towards a relatively enhanced synthesis of palmitic acid....... (3) X-irradiation and fasting seem to have opposite effects on fatty-acid synthesis. X-irradiation counteracts the drop in total synthesis and the relatively enhanced synthesis of palmitoleic acid induced by fasting. The relative enhancement of palmitic-acid synthesis mentioned under (2) stands...... in contrast to the effect of fasting, which specifically decreases the hepatic synthesis of palmitic acid. (4) There is a general similarity between corresponding fatty-acid patterns based on synthesis from (2-14C) acetate and (1-14C) butyrate, respectively....

  8. The influence of whole-body and local irradiation modified by hyperglycemia on metastatic Walker carcinosarcoma 256 in rats

    International Nuclear Information System (INIS)

    Kutlimuratov, A.B.; Ivashkin, A.V.; Zakirkhodzhaev, U.D.

    1990-01-01

    It has been shown that the local radiation therapy, and also radiation therapy modified by the short-term hyperglycemia really increase the life-span of rats with Walker 256 carcinosarcoma. At the same time the metastatic process also increases, especially after the modified radiation therapy. The total irradiation of experimental animals in a dose of 50 sGy before the modified radiation therapy considerably decreases the frequency of metastatic process. A conclusion is drawn that the total irradiation has a prophylactic influence on metastases under conditions of modified radiation therapy

  9. Propolis maintaining the restorative role played by bone marrow transplantation in pregnant rats exposed to whole body gamma irradiation

    International Nuclear Information System (INIS)

    Kafafy, Y.A.; Roushdy, H.M.; El Beih, N.M.; Hussien, E.M.

    2006-01-01

    This work was conducted to evaluate the possible capability of the natural product propolis with its high anti oxidative capacity as a protector for bone marrow graft transplanted to pregnant rats 3 h post irradiation of 3 Gy gamma-rays. Different treatments were performed on days 7 or 13 of gestation and examined at the end of the gestation period. Irradiation significantly elevated serum AST, ALT, ALP, urea, uric acid and creatinine while it declined total proteins and albumin. Haematological parameters showed decrease in RBCs, Hb, Ht, WBCs and their differential counts. BMT (75 x 106 ± 5 cells) 3 h post-irradiation depressed AST, ALT and ALP but were still significantly different from the control. Urea, uric acid and creatinine declined approaching the control level. Less drop in total proteins and globulin and elevation in RBCs, Ht, Hb and WBCs were detected. Rats exposed to 3 Gy and treated with propolis (50 mg/ kg) showed results comparable and even exceeding those of BMT. Combined treatment of BMT and propolis accentuated the recovery process and could restore the physiological and haematological parameters and protect pregnancy which suggests that propolis maintained BMT graft so that they may have future potential value in patients subjected to irradiation and BMT

  10. Radioprotective and Anti-infertility Role of Resveratrol in Adult Male Rats Exposed to Whole-body ?-Irradiation

    International Nuclear Information System (INIS)

    Ahmed, M.M.; Tawfik, S.S.

    2010-01-01

    GAMMA-Radiation destroys the process of spermatogenesis and even leads to male infertility. Moreover, seminal oxidative stress is known to end in per oxidative damage of the sperm plasma membrane and loss of its DNA integrity. Man infertility is defined as one year of regular and unprotected intercourse without conception. Plants provide a treatment option that is affordable and available for infertile couples and phyto therapy is an essential form of treatment in nowadays health system. Resveratrol (RSV) is a natural phytoalexin with a wide range of biological activities. Male rats were divided into six groups under investigation, each of six animals. Control group, two RSV groups which received intra gastric RSV (20 and 40 mg kg-1 day-1) for 7 weeks, irradiated group (2 Gy gamma-rays) and two irradiated and RSV groups which received the same preceding doses of RSV for the same period after 2 Gy gamma-rays exposure. Hormonal assay in serum; testosterone, follicular stimulating hormone (FSH) and prolactin were recorded for fertility assessment. The abnormalities occurred in the reproductive system of the irradiated rats were evaluated: Chromosomal aberration frequencies in spermatocytes, metaphase-1, sperm-head abnormalities and oxidative parameters in testes tissue; malondialdehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH) and nitric oxide (NO). Also, the findings suggest that the anti-fertility effect of melatonin was proved to be transient and reversed completely or in part at the end of the second recovery period. The results showed that RSV has a curative role against the oxidative stress involved by gamma-rays in the rats and showed a significant improvement on the male reproductive functions.

  11. Radioprotection of whole-body γ-irradiation-induced alteration in some haematological parameters by cysteine, vitamin E and their combination in rats

    International Nuclear Information System (INIS)

    Shaheen, A.A.; Hassan, S.M.

    1991-01-01

    Radioprotective effect of cysteine, vitamin E and their combination on γ-irradiation-induced alteration in some haematological parameters in male rats has been studied 24 and 48 hrs after whole-body γ-irradiation at a dose level of 7.5 Gy. The results of this study reveal that γ-irradiation caused a significant decrease in red blood cells (RBCs) count with insignificant change in hemoglobin level, 24 and 48 hrs postirradiation, γ-irradiated rats showed as well a progressive decrease in their blood ATP, and serum-SH levels with a significant increase in blood glutathione (GSH) level. Administration of cysteine or vitamin E preceeding γ-radiation exposure gave a significant radioprotection to the above haematological parameters. However, combination of both agents afforded a better protection, so that most of the measured parameters were restored to the pre-irradiated values. Finally, the data demonstrate that the radioprotection provided by combined adminsistration of vitamin E and cysteine is feasible and perhaps, even more efficient against radiation injury to RBCs. This will appreciate the usage of such combination in protecting the patient during radiotherapy. (orig.) [de

  12. Induction of unscheduled DNA synthesis on the nuclear matrix of rat hepatocytes after whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Bezlepkin, V.G.; Malinovskij, Yu.Yu.; Kuznetsova, E.A.; Namvar, R.A.; Gaziev, A.I.

    1986-01-01

    DNA synthesis in hepatocytes was studied by incorporation of [ 3 H]thymidine administered of portal vein of γ-irradiated (80 Gy) rats. It was shown that the rate of replicative DNA synthesis decreased in hepatocytes of the regenerating liver and unscheduled DNA synthesis was induced at the nuclear matrix of resting cells of the intact liver. In addition to repair synthesis, DNA synthesis resembling replicative one (''aberrant'' DNA synthesis) accounts for a considerable fraction of γ-radiation-induced synthesis of DNA at the nuclear matrix

  13. Pumpkin Seed Oil Attenuates Functional and Structural Disorders in Urogenital System of Male Albino Rats Induced by Whole Body Gamma Irradiation

    International Nuclear Information System (INIS)

    Rezk, R.G.; Darwish, M.R

    2012-01-01

    Pumpkin seeds have long been used for health benefits and the seed oil has been shown to contain active beneficial components that may protect from oxidative stress. The aim of the present study is to evaluate the modulator role of pumpkin seed oil (PSO) supplementation on gamma radiation induced changes in certain biochemical and histological abnormalities in both kidney and testes tissues. Male rats received 5Gy whole body gamma-irradiation delivered as 1 Gy day after day to result in a cumulative dose of 5 Gy. PSO was orally administered to rats (20mg/Kg body weight) for 20 consecutive days before irradiation and during the period of irradiation. On days seven and twenty one after the last irradiation dose, rats were sacrificed. Biochemical analysis in the serum revealed that PSO supplementation diminished the radiation-induced increase in the level of urea, creatinine , follicle stimulating hormone (FSH) and luteinizing hormone (LH). Significant amelioration of the radiation-induced decreases in calcium (Ca +2 ), potassium (K + ) and testosterone levels were also recorded. PSO administration has attenuated the toxic effects of radiation by decreasing the level of lipid peroxides measured as thiobarbituric acid reactive substances (TBARS) and increasing the activity of endogenous antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) and the content of glutathione (GSH). Histological observations of photomicrographs of kidney sections of irradiated rats showed amorphoid glomeruli, renal sclerosis and high content of inflammatory cells and fibroblasts, hemorrhage in glomeruli, ruptured proximal and distal convoluted tubules. Examination of testis tissues showed disappearance of seminiferous tubules, ruptured tunica albuginea, and degeneration of interstitial cells. PSO supplementation has obviously improved the radiation-induced histopathological changes in both tissues. It could be concluded that PSO can be used as a useful adjunct for maintaining

  14. Thyroxine clearance in rats within the first month after the single whole-body {gamma} - irradiation at a dose of 10Gy

    Energy Technology Data Exchange (ETDEWEB)

    Pryadko, Kirill A. [Institute of Radiobiology, National Academy of Sciences, Minsk (Belarus)

    2002-07-01

    The effects of acute whole-body {gamma} -irradiation at a dose of 10 Gy on thyroxine (T{sub 4}) plasma clearance rate (PCR) and thyroidal and blood T4 concentration ([T{sub 4}]) were examined within one month after exposure. The PCR values were measured using the bolus injection, single-compartmental approach. To eliminate the influence of radiation-induced anorexia animals were fasting for two days before the pharmacokinetic experiments. Hormone concentrations in blood and in thyroid tissue were measured by RIA. Throughout the observation period, PCR was elevated in irradiated rats with maximum at day 4 after exposure (0.56{+-}0.04 vs. 0.36{+-}0.03 ml/h100 gbw, P<0.001). [T{sub 4}] in blood was not significantly different from that in control animals. Thyroidal [T{sub 4}] was significantly decreased in irradiated animals 4 days after exposure (151.8{+-}21.7 vs. 258.8{+-}29.9 pmol/mg protein, P<0.01) and gradually increased after day 9. 10 Gy {gamma} -irradiation causes the intensification of T{sub 4} metabolism without the pronounced changes in concentration. Presumably, at early terms the rising local demand in O{sub 4} can not be compensated with the existing level of production. Alterations in the intensity of T{sub 4} metabolism are evident at least one month after exposure but they may not be detected without taking into account kinetic data.

  15. Radio-prophylactic treatment with imidazole and/or Serotonin for Modulation of Tissue Catecholamines in whole body gamma irradiated Rats

    International Nuclear Information System (INIS)

    Hassan, S.H.M.; Roushdy, H.M.; Maklaad, Y.A.; El-Sayed, M.E.

    1995-01-01

    The present study has been conducted to evaluate the radioprotective effects of imidazole, serotonin and their combination on radiation induced reduction in catecholamine contents of the heart and adrenal glands in albino rat. The contribution of catecholamines in the radioprotective role of these agents has been evaluated. Whole-body gamma-irradiation (6 Gy) induced a significant reduction in heart and adrenal glands contents of catecholamine (epinephrine, norepinephrine and dopamine) one day post irradiation. Such reduction in catecholamine contents was more pronounced on the seventh day post exposure. Administration of imidazole (350 mg kg-1) or serotonin. (15 mg. kg-1) controlled the radiation induced reduction in catecholamine contents of heart as well as adrenal glands. Whereas, combination of imidazole (17 mg kg-1) serotonin (15 mg. kg-1) afforded a better protection than either agent given alone, in view that all the measured parameters could be fully restored to the values pre-irradiation. This study appreciate the usage of such combination as a prophylactic treatment for controlling the stress-state induced by irradiation which is associated with disturbed level of endogenous catecholamine contents in those sensitive patients undergoing radiotherapy. 2 tabs

  16. Whole-body irradiation technique: physical aspects

    International Nuclear Information System (INIS)

    Venencia, D.; Bustos, S.; Zunino, S.

    1998-01-01

    The objective of this work has been to implement a Total body irradiation technique that fulfill the following conditions: simplicity, repeatability, fast and comfortable positioning for the patient, homogeneity of the dose between 10-15 %, short times of treatments and In vivo dosimetric verifications. (Author)

  17. Effect of lithium carbonate on the leukocyte number following ionizing radiation. 1. Li/sub 2/CO/sub 3/ as response modifying factor in whole-body irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Kehrberg, G.; Saul, G.; Rose, H.; Pradel, I.; Moldenhauer, H. (Humboldt-Universitaet, Berlin (German Democratic Republic). Bereich Medizin (Charite))

    1984-01-01

    The occurrence of a leukocytosis following Li/sub 2/CO/sub 3/ treatment was examined in rats. The radiation-induced leukocytosis revealed depended on dose and time as well. Li/sub 2/CO/sub 3/ did not prevent radiogenic leukopenia following 7 Gy whole-body irradiation. There was, however, a decrease of the duration of the leukopenia. The small therapeutic range of Li/sub 2/CO/sub 3/ in irradiated animals must by emphasized.

  18. Changes in protein metabolism after irradiation. Pt. 1. Protease activity, protease pattern, protein and free amino acids in cytoplasm and cell organelles of the rat spleen after 600 R whole body x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Valet, G [Max-Planck-Institut fuer Biochemie, Muenchen (F.R. Germany). Abt. fuer Experimentelle Medizin

    1975-12-01

    The protease activity of cytoplasm and cell organelles of the rat spleen against spleen protein and hemoglobin as a substrate increases during a initial reaction phase of the organism on the first day after 600 R whole body X-irradiation. The alkaline protease in the cytoplasm and the acid protease in the cell organelles increase, whereas the protease activity against externally added hemoglobin as substrate decreases below the initial values. The protein, the protease activity and the free amino acids of the cytoplasm and the cell organelles decrease during the disease phase on day 3 and 4 after irradiation. The protein loss of the spleen is therefore not explained by an increased protease activity. Acid proteases appear in the cytoplasm which derive probably from the cell organelles. The protease activity and the free amino acids are increased in the cytoplasm and the cell organelles during the regeneration phase of the organism between day 15 and 18 after irradiation.

  19. Changes in protein metabolism after irradiation. Pt. 2. Protease activity, protease pattern, protein and free amino acids in cytoplasm and cell organelles of the rat liver after 600 R whole body X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Valet, G [Max-Planck-Institut fuer Biochemie, Muenchen (F.R. Germany). Abt. fuer Experimentelle Medizin

    1976-01-01

    The protease activity of cytoplasm and cell organelles of the rat liver against liver protein and hemoglobin as a substrate increases during an initial reaction phase on the first day after 600 R whole body x irradiation. This is probably a consequence of the degradation of cellular debris. The protein, the protease activity and the free amino acids of the cytoplasm and the cell organelles decrease during the disease phase on day 3 and 4 after irradiation. The protein loss of the liver is therefore not explained by an increased protease activity. The protease activity and the free amino acids are increased in the cytoplasm and the cell organelles during the regeneration phase of the organism between day 15 and 18 after irradiation.

  20. Whole-body γ-irradiation effects on catecholamine concentration in animal tissues

    International Nuclear Information System (INIS)

    Makashev, Zh.K.; Uteshev, T.A.; Abylaev, Zh. A.; Zhurnist, A.G.

    2003-01-01

    On the whole-body gamma-radiation activity in the exchanges of catecholamines (adrenalin and non-adrenalin) and their predecessors (dopamine and DOPA) in the rats tissue organism, indicate the infringement of irradiated animals in different links of biological synthesis the bio-gen amines in different phases of the radiation: DOPA→dopamine, dopamine→adrenalin, adrenalin→non-adrenalin. (author)

  1. Evaluation of radio-protective effect of melatonin on whole body irradiation induced liver tissue damage.

    Science.gov (United States)

    Shirazi, Alireza; Mihandoost, Ehsan; Ghobadi, Ghazale; Mohseni, Mehran; Ghazi-Khansari, Mahmoud

    2013-01-01

    Ionizing radiation interacts with biological systems to induce excessive fluxes of free radicals that attack various cellular components. Melatonin has been shown to be a direct free radical scavenger and indirect antioxidant via its stimulatory actions on the antioxidant system.The aim of this study was to evaluate the antioxidant role of melatonin against radiation-induced oxidative injury to the rat liver after whole body irradiation. In this experimental study,thirty-two rats were divided into four groups. Group 1 was the control group, group 2 only received melatonin (30 mg/kg on the first day and 30 mg/kg on the following days), group 3 only received whole body gamma irradiation of 10 Gy, and group 4 received 30 mg/kg melatonin 30 minutes prior to radiation plus whole body irradiation of 10 Gy plus 30 mg/kg melatonin daily through intraperitoneal (IP) injection for three days after irradiation. Three days after irradiation, all rats were sacrificed and their livers were excised to measure the biochemical parameters malondialdehyde (MDA) and glutathione (GSH). Each data point represents mean ± standard error on the mean (SEM) of at least eight animals per group. A one-way analysis of variance (ANOVA) was performed to compare different groups, followed by Tukey's multiple comparison tests (p<0.05). The results demonstrated that whole body irradiation induced liver tissue damage by increasing MDA levels and decreasing GSH levels. Hepatic MDA levels in irradiated rats that were treated with melatonin (30 mg/kg) were significantly decreased, while GSH levels were significantly increased, when compared to either of the control groups or the melatonin only group. The data suggest that administration of melatonin before and after irradiation may reduce liver damage caused by gamma irradiation.

  2. Comparative studies in the cellular immunostimulation by whole body irradiation

    International Nuclear Information System (INIS)

    Dietz, R.; Schwarze, G.

    1992-01-01

    The effect of the cellular immune response by total body irradiation was investigated. The transplant survival (skin grafts) was determined as immune parameter. Donors were colony bred Wistar rats and recipients were colony bred Sprague Dawley rats. The investigations were carried out with irradiated rats and with rats irradiated after thymectomy and/or adrenalectomy as well as with animals without irradiation. A single total-body irradiation (1 and 2 Gy) was administered. The skin graft survival in irradiated rats was significant shorter (radiogenic immunostimulation) than in unirradiated rats; there were no significant differences between the operated (thymectomy and/or adrenalectomy) and not operated animals. Including precedent examinations this radiogenic immunostimulation is caused by relativly selective inactivation of T-suppressor cells. (orig.) [de

  3. Autoradiographic studies on the cell kinetics after the whole body X-irradiation. 2. Regularities of the post-irradiation death of differentiating and proliferating cells of the rat brain subependimal zone

    International Nuclear Information System (INIS)

    Gracheva, N.D.

    1982-01-01

    A wave-like character of death of proliferating and differentiating (D) cells is shown autoradiographically using 3 H-thymidine introduced 60-80 min before the whole body X-ray irradiation in doses of 50, 150 or 300 R on subependymal cells of rat brain. Lethally damaged cells irradiated in G 2 and S-phases, resulted in 4 peaks of death in mitosis by following the first postradiational mitotic cycle (MC). Lethally damaged cells irradiated in G 1 -phase lost ability for DNA synthesis as cells irradiated in a dose of 300 R did not include additionally introduced (3 hrs before death) 14 C-thymidine from 12 to 17 hrs after 3 H-thymidine injection. However, in the first 4 hrs after irradiation there were no cells irradiated in G 1 -phase among dead ones, as indirec showed the calculations of data obtained tly/ while studying Pliss lymphosarcoma. A supposition is made that the death of cells irradiated in G 1 -phase is attributed to mitotic phase of the first MC after irradiation. Waves of death of lethally damaged D-cells repeated the peaks of death and corresponded to the mitotic peaks of proliferating cells, which permitted to presuppose the presence of ''short cycle'' (SC) in D-cells, which have the rhythm similar to MC and their death has been attributed to the final SC phase, which corresponds to MC mitotic phase in time. According to the peaks of cell death position of one hour block independent of dose in six MC(SC) points is determined. The cells have experienced the block in the point of MC(SC) in subphase of which they were caught by irradiation. Dose effect is manifested in the number of dead cells

  4. Biophysical study of mice blood after whole body irradiation

    Science.gov (United States)

    Saad El Din, Alsha A.; Desouky, Omar S.; El Behay, Amin Z.; El Sayed, Anwar A.

    1996-05-01

    The immediate of whole body fractionated doses of 137Cs gamma rays totalling 13 Gy on mice as well as the late effects of accumulative dose of 10 Gy (8 days after exposure) were studied. Changes due to gamma irradiation in hemoglobin conductivity and buffer capacity indicate the appearance of hydrophobic groups and changes in hydrophilic/hydrophobic ratio. These changes demonstrate different degrees of unfolding and refolding of the hemoglobin molecule. The viscosity coefficient of hemoglobin is found to increase at fractionated doses of 7 and 13 Gy. Such effect seems to be due to aggregation of the protein part of hemoglobin. The fractionated dose of 13 Gy causes changes in the electronic state of oxyhemoglobin indicated by an increase in methemoglobin which reduces biological activity.

  5. Influence of whole body irradiation on induction of the hepatic microsomal system metabolizing drugs

    International Nuclear Information System (INIS)

    Szyszko, A.; Bitny-Szlachto, S.

    1977-01-01

    Effects of whole body irradiation (600 R) on rat liver aminophenazone demethylase activities of the liver homogenate 10,000 X g supernatant and its microsomal fraction were compared. Either activities were found to be decreased by irradiation by some 35%. The phenobarbital treatment (3 x 100 mg/kg i.p.) has turned out to provide higher relative augmentation of the liver demethylase activity in irradiated than in unirradiated rats. The cytoplasmic activity was found to be augmented by phenobarbital treatment 2,21-fold in unirradiated, and 3,20-fold in irradiated rats, and the microsomal activity increased 3,28-fold and 3,77-fold, respectively. Microsomal levels of cytochrome P-450 were found to be not affected by irradiation. (author)

  6. The Possible Effect Of Tamoxifen Vs Whole Body Irradiation Treatment On Thyroid Hormones in Female Rats Bearing Mammary Tumors Chemically Induced

    International Nuclear Information System (INIS)

    Abdelgawad, M.R.

    2012-01-01

    Breast cancer is the most common malignancy among women in most developed and developing regions of the world. In women, this drug has tissuespecific effects, acting as an estrogen antagonist on the breast, and as an estrogen agonist on bone, lipid metabolism (increasing high-density lipoprotein cholesterol and decreasing low-density lipoprotein cholesterol), and the endometrium. Thyroid hormones act on almost all organs throughout the body and regulate the basal metabolism of the organism. Thyroid hormone can also stimulate the proliferation in vitro of certain tumor cell lines. The aim of the present study is to evaluate the significant value of tamoxifen and/or irradiation treatment on thyroid hormones in breast cancer bearing female rats. Forty two female Sprague-Dawely rats randomly divided into seven groups and the effect of tamoxifen and post-irradiation was studied on breast cancer chemically induced. The results shows a T 4 and estradiol levels not T 3 were altered in different experimental groups. It could be concluded that irradiation-induced changes in the composition of the mammary microenvironment promote the expression of neoplastic potential by affecting both estradiol and thyroid hormones, and tamoxifen may alter the thyroid hormones. Irradiation and tamoxifen administration may have worth effects on T 4 and estradiol levels and it is recommended to further studies towards the bystander effect of radiation and tamoxifen on the tissue culture and molecular biology scale.

  7. Enhancement of syngeneic murine tumour transplantability by whole body irradiation

    International Nuclear Information System (INIS)

    Peters, L.J.

    1975-01-01

    Experiments were undertaken to test the general validity of the assumption that potentiation of tumour transplantability by sublethal whole body irradiation (WBI) implies some degree of immunological resistance in the intact host. A transplantable carcinoma of spontaneous origin in CBA mice which exhibits a large WBI effect was assayed quantitatively in mice which had been immunologically crippled in terms of allograft acceptance by depletion of thymus derived lymphocytes. The mean number of tumour cells required for 50% successful takes (TD 50 ) in these mice was found to be not significantly different from that in normal controls but highly significantly greater than in WBI mice. On the other hand, in mice which underwent laparotomy immediately before assay, the TD 50 was reduced significantly though not to the same extent as in WBI mice. It was concluded that WBI effect was not due to impaired host immunity but possibly to physiological changes resulting from acute stress. The hypothesis that hyperfibrinogenaemia which occurs after both WBI and laparotomy might increase tumour transplantability was rejected because of the lack of correlation between TD 50 and fibrinogen levels at different times after each procedure. From this and other work it is apparent that TD 50 data, in themselves, give no reliable indication of host immunity. (author)

  8. Influence of hyperoxia on the number of nucleated cells and oxygen tension in rat bone marrow after whole-body irradiation

    International Nuclear Information System (INIS)

    Zima, M.; Vodicka, I.

    1987-01-01

    The cell number in the femur bone marrow of rats determined three days after X-ray or gamma irradiation is inversely proportional to the dose while oxygen tension in the marrow shows direct dependence on the dose. With fractionation of the lethal dose of gamma radiation (9 Gy) into two doses with different time intervals between them, a greater number of bone marrow cells and a smaller oxygen tension are reached on the 3rd day after the second dose, reflecting the extent of bone marrow repair. A short-term hyperoxia (95% O 2 + 5% CO 2 ) lasting 20 min from the end of exposure compared with the euoxic conditions induced, on the 3rd day after the second fraction, a nonsignificant but reproducible increase in the marrow cell number and a decrease in partial oxygen tension in the distal part of femur marrow. The results obtained testify that immediate short-term hyperoxia facilitates regeneration of the marrow and that a greater number of cells accompanied by greater metabolic activity and oxygen consumption decrease the partial oxygen tension measured on the 3rd day following the last exposure. (author). 7 figs., 16 refs

  9. Whole body exposure of rats to sulfur mustard vapor.

    Science.gov (United States)

    Dachir, Shlomit; Rabinovitz, Ishai; Yaacov, Guy; Gutman, Hila; Cohen, Liat; Horwitz, Vered; Cohen, Maayan; Kadar, Tamar

    2017-11-24

    Sulfur mustard (SM) is an incapacitating chemical warfare agent used in numerous conflicts around the world and it is still a major threat for both, army troops and civilians. To evaluate its multiple targets effects in experimental setup, a model of whole body exposure (WBE) to SM vapor was established in rats and its simultaneous effects on lungs and eyes as well as on general wellbeing were examined. Rats were exposed to SM vapor. Evaluation (up to 10 weeks post-exposure) included body weight, general observation, blood counts and histological analysis. Results showed that following a latency-period of several hours, rats typical symptoms developed over a period of more than one week. The initial symptoms, characterized by swollen and erythematic nose, deteriorated into extensive rhinorrhea, eye closure, excessive lacrimation as well as rhonchi, wheezing and breathing difficulties. Alopecia and behavioral abnormality were also recorded. A weight loss of up to 40% was measured within one week with spontaneous recovery to baseline level within three weeks after exposure. Blood counts revealed leukopenia during the first three days post-exposure. Histological evaluation revealed a long lasting damage to the trachea, lungs and eyes. Thus, WBE to SM, was found to closely mimic the deleterious effects of SM on the sensitive tissues previously described in human victims during WWI and the Iran-Iraq war. The use of this animal model will enable comprehensive characterization of changes in biological processes that may lead to the development of therapeutic measures to ameliorate SM induced multi-system injuries.

  10. Effect of whole-body gamma radiation on tissue sulfhydryl contents in experimental rats

    International Nuclear Information System (INIS)

    Sarkar, S.R.; Singh, L.R.; Uniyal, B.P.

    1985-01-01

    It has been postulated that vital constituents of cell membranes concerned with the maintenance of cellular integrity are affected by ionizing radiation. Sulfhydryl contents, which form an integral component of cell membranes play vital roles in maintaining cellular integrity. The purpose was to evaluate non-protein and protein sulfhydryl contents in tissues of irradiated rats. Adult male Sprague Dawley rats were exposed to whole-body gamma irradiation of 4 Gy and 10 Gy and non-protein and protein sulfhydryl contents of blood, heart and spleen were studied on postirradiation day 1, 3 and 6. Both groups of experimental rats exhibited unchanged blood non-protein sulfhydryl contents on first day after irradiation with significant diminution subsequently. In contrast, blood protein sulfhydryl groups of both groups of rats were increased on first day post exposure, which became normal on sixth day. Myocardial non-protein and protein sulfhydryl contents of both groups of rats remained unchanged in the initial stage of radiation exposure indicating radioresistance nature of rat heart. Both groups of rats demonstrated biphasic nature of non-protein sulfhydryl contents in spleen, asrevealed by initial increase with subsequent decrease. Protein sulfhydryl contents of rats of 4 Gy group showed significant diminution post exposure throughout, while the same of 10 Gy behaved in opposite way. (author)

  11. Whole-body irradiation in case of malignant lymphomas of low malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Labedzki, L; Schmidt, R E; Hartlapp, J H; Illiger, H J; Frommhold, H; Boldt, I

    1982-04-01

    27 consecutive patients with malignant lymphomas were submittet to whole-body irradiations with doses of 0.5 to 3 Gy. Among these patients ten had been treated before. There were two complete and 16 partial remissions. The condition of five patients could not be considerably improved. Four patients showed a tumor progression during the time of bone marrow depression. The remission period was 11.5 (3 to 22 +) months. The hematologic side effects were considerable; in ten cases, the whole-body irradiation could not be continued because of a thrombocytopenia or an aplastic syndrome. A remarkable fact was the appearance of symptoms similar to that of lupus erythematodes in two patients. An inefficacy of whole-body irradiation did not exclude a response to subsequent chemotherapy. Our own experiences allow to make the following conclusion: in most of all patients with malignant lymphomas of low malignancy a measurable tumor reduction is achieved by whole-body irradiation. Because of the hematologic side effects a whole-body irradiation should be applied only in cases of malignant lymphomas of low malignancy the slow growth of which is proved by observation and which have not been treated before. The thrombocyte numbers should be above 100 000/..mu..l before therapy. Otherwise, the whole-body irradiation has to be stopped before the intended effective dose is reached because of an inevitably developing thrombocytopenia. A whole-body irradiation in case of a malignant lymphoma of low grade malignancy necessitates strict follow-up examinations conducted at regular intervals for a period of at least six weeks after the irradiation. The whole-body irradiation should never be applied as ultima ratio.

  12. Protective value of piroxicam on the enhanced inflammatory response after whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    el-Ghazaly, M.; Saleh, S.; Kenawy, S.; Roushdy, H.M.; Khayyal, M.T.

    1986-06-01

    The anti-inflammatory activity of piroxicam was assessed after whole body irradiation in rats. Two models of inflammation, the carrageenan-induced edema and the adjuvant-induced arthritis in rats have been utilised. Piroxicam at doses of 1, 5 and 10 mg kg-1 i.p. was effective in inhibiting the paw edema produced in both models of inflammation. The inflammatory response in irradiated was significantly higher than that produced in normal animals and was dependent on the radiation dose level used (0.5-2 Gy). The effect of piroxicam on the late inflammatory response produced by exposure to 2 Gy was studied by measuring the carrageenan-induced edema 4 h after irradiation and on the third and seventh day thereafter. The increase in paw volume was significantly suppressed in animals receiving the drug. Administration of piroxicam (5 mg kg-1) one hour before irradiation of animals at 0.5 Gy, produced inhibition to the exaggerated inflammatory response in irradiated animals. This suggests that piroxicam possibly owes its protective value to prevention of the increase in cellular permeability induced by radiation. Alternatively, the drug may exert this effect by inhibiting PG synthesis, thereby reducing their potentiating influence on the other mediators of inflammation. Furthermore, the inhibition of lysosomal enzyme release possibly induced by the drug may contribute to the probable reduction in the release of inflammatory mediators.

  13. Whole-body irradiation transiently diminishes the adrenocorticotropin response to recombinant human interleukin-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Perlstein, R.S.; Mehta, N.R.; Neta, R.; Whitnall, M.H. [Armed Forces Radiobiology Research Institute, Bethesda, MD (United States); Mougey, E.H. [Walter Reed Army Institute of Research, Washington, DC (United States)

    1995-03-01

    Recombinant human interleukin-1{alpha} (rhIL-1{alpha}) has significant potential as a radioprotector and/or treatment for radiation-induced hematopoietic injury. Both IL-1 and whole-body ionizing irradiation acutely stimulate the hypothalamic-pituitary-adrenal axis. We therefore assessed the interaction of whole-body irradiation and rhIL-1{alpha} in altering the functioning of the axis in mice. Specifically, we determined the adrenocorticotropin (ACTH) and corticosterone responses to rhIL-1{alpha} administered just before and hours to days after whole-body or sham irradiation. Our results indicate that whole-body irradiation does not potentiate the rhIL-1{alpha}-induced increase in ACTH levels at the doses used. In fact, the rhIL-1{alpha}-induced increase in plasma ACTH is transiently impaired when the cytokine is administered 5 h after, but not 1 h before, exposure to whole-body irradiation. The ACTH response may be inhibited by elevated corticosterone levels after whole-body irradiation, or by other radiation-induced effects on the pituitary gland and hypothalamus. 36 refs., 3 figs.

  14. Effect of bifidobacteria implantation on the survival time of whole-body irradiated mice

    International Nuclear Information System (INIS)

    Yokokura, Teruo; Onoue, Masaharu; Mutai, Masahiko

    1980-01-01

    Letahl dose (2 KR) of gamma-ray was irradiated on the whole bodies of mice. Survival time after irradiation was significantly longer in mice with administration of both Bifidobacterium breve YIT 4008 and transgalactosyl oligosaccharide than in mice with administration of either of the two or nothing. (Tsunoda, M.)

  15. Four cases of protracted whole body irradiation (Algerian accident 1978)

    International Nuclear Information System (INIS)

    Jammet, H.; Gongora, R.; Pouillart, P.; Le Go, R.; Parmentier, N.

    1979-01-01

    A 25 Ci iridium-192 source accidentally lost was introduced in a room where among others four young female patients (14 - 20 years old) one of them pregnant were irradiated during 4/5 weeks, 6/8 hours daily, cumulating skin doses in the range of 2500r and mean medullary doses in the range of 1250r. They developed a very protracted infections and haemorragic syndrome during which they were treated successfully by haematologic compensatory therapy with enormous quantities of packed isolated blood cells (R.B.C., W.B.C., platelets) and massive antibiotic, antimycotic and hydro-electrolytic therapy. The dosimetric (physical and biological) problems are discussed and the clinical and biological data are given in detail

  16. Acid base balance in the rabbit following whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Bassant, M.-H.; Touchard, Francoise; Court, Louis

    1981-01-01

    2 hrs. after whole-body gamma irradiation (doses of 1.5 and 4.5 Gy) a metabolic acidosis developed in curarised Rabbits placed under artificial respiration in order to eliminate radiation-induced respiratory effect. The metabolic acidosis was evaluated by measurement of the negative base excess. The results were compared to others obtained under different experimental procedures [fr

  17. Acid base balance in the rabbit following whole-body gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bassant, M.H.; Touchard, F.; Court, L. (CEA Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Dept. de Recherches sur la Fusion Controlee)

    1981-07-06

    2 hrs. after whole-body gamma irradiation (doses of 1.5 and 4.5 Gy) a metabolic acidosis developed in curarised rabbits placed under artificial respiration in order to eliminate radiation-induced respiratory effect. The metabolic acidosis was evaluated by measurement of the negative base excess. The results were compared to others obtained under different experimental procedures.

  18. Changes in plasma (hydrocortisone) levels after whole-body irradiation with ultraviolet rays of defined wavelengths

    International Nuclear Information System (INIS)

    Bartelt, R.N.

    1983-01-01

    One hour after whole-body irradiation with a radiation source having its maximum of emission in the UVB range, at a radiation dose of 0.44 J/cm 2 , a significant fall in the mean values of the blood plasma hydrocortisone level (p [de

  19. Whole body gamma radiation effects on rheological behaviour (deformability) of rat erythrocytes

    International Nuclear Information System (INIS)

    Soliman, M.S.

    2004-01-01

    This study was designed to determine the effect of whole body gamma irradiation on the rheological behaviour of rat erythrocytes (deformability). Animals were divided into 4 irradiated groups and 4 control groups according to their sacrificing time intervals (1 st, 3 rd, 5 th and 7 th days) post-irradiation with dose (6 Gy). In all animals and at the previous time intervals, red blood cell (RBC) membrane proteins electrophoretic pattern, RBC membrane lipids levels (cholesterol and phospholipids), RBC electrolytes levels (sodium, potassium and calcium), corpuscular osmotic fragility and RBC morphological by scanning electron microscopy were determined. Highly significant increase in membrane cholesterol, RBC sodium, calcium and corpuscular osmotic fragility accompanied by highly significant decrease in membrane phospholipids, RBC potassium and RBC deformability were found. No changes in membrane proteins electrophoretic patterns were detected. Morphologically, there were increase in the incidences of echinocytes and spherocytes development, which were time dependent. According to the previous results, irradiation promotes alterations in RBC shape (echinocytosis), membrane skeletal dysfunction, membrane lipid peroxidation, increase in membrane cholesterol/phospholipid content, changes in membrane electrolyte permeability and decrease then increase in osmotic fragility. These alterations in turn led to decrease in cellular deformability as a result of increased membrane rigidity and also due to cells dehydration caused by excess leakage of potassium ions from the RBCs

  20. Effect of whole body irradiation on O2- production in polymorphonuclear leukocyte of guinea pig

    International Nuclear Information System (INIS)

    Niiya, Harutaka

    1987-01-01

    The capacity of superoxide anion production of polymorphonuclear leukocytes (PMNL) has been determined after whole body irradiation. A diminished capacity of superoxide anion production in the presence of opsonized zymosan was found in PMNL taken from guinea pigs irradiated in vivo with 5, 10, and 20 Gy. However, no such diminution was found after a dose of 2 Gy. On the other hand, levels of superoxide anion production stimulated by myristate, N-Formyl-Methionyl-Leucyl-Phenylalanine (FMLP), and Concanavalin A remained unchanged compared to the control. PMNL irradiated in vitro with 20 Gy had a capacity of superoxide anion production similar to that of the control samples in the presence of either opsonized zymosan or FMLP and myristate. These results suggest that the capacity of superoxide anion production stimulated by zymosan is damaged by whole body irradiation. (author)

  1. Hypodontia in the beagle after perinatal whole-body 60Co gamma irradiation

    International Nuclear Information System (INIS)

    Lee, A.C.; Angleton, G.M.; Benjamin, S.A.

    1989-01-01

    As part of a long-term study to evaluate health effects of pre- and postnatal irradiation, dental development was examined. Beagles were irradiated in utero at 8, 28, or 55 days postcoitus or postnatally at 2, 70, or 365 days postpartum. Whole-body 60 Co gamma radiation doses ranged from 0 to 3.8 Gy. There was an age-dependent dose-related increase in premolar hypodontia for animals irradiated at 55 days postcoitus or 2 days postpartum with doses of 0.83 Gy or higher and for those irradiated at 28 days postcoitus with 1.2 Gy or higher

  2. Effects of whole body UV-irradiation on oxygen delivery from the erythrocyte

    International Nuclear Information System (INIS)

    Humpeler, E.; Mairbaeurl, H.; Hoenigsmann, H.

    1982-01-01

    In 16 healthy caucasian volunteers (mean age: 22.2 years) the influence of whole body UV-irradiation on the oxygen transport properties of erythrocytes was investigated. Four hours after irradiation with UV (using the minimal erythema dose, MED) no variation of haemoglobin concentration, hematocrit, mean corpuscular haemoglobin concentration, pH or standard bicarbonate could be found, whereas inorganic plasma phosphate (Psub(i)), calcium, the intraerythrocytic 2,3-diphosphoglycerate (2,3-DPG), the activity of erythrocytic phosphofructokinase (PFK) and pyruvatekinase (PK) increased significantly. The half saturation tension of oxygen (P 50 -value) tended to increase. The increase of Psub(i) causes - via a stimulation of the glycolytic pathway - an increase in 2,3-DPG concentration and thus results in a shift of the oxygen dissociation curve. It is therefore possible to enhance tissue oxygenation by whole body UV-irradiation. (orig.)

  3. Ultrastructural changes in spermatogonia of Wistar strain rats following acute whole-body X-ray exposure

    Energy Technology Data Exchange (ETDEWEB)

    Hrehorovsky, M; Horak, J [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Katedra Vseobecnej Biologie

    1980-01-01

    Changes in spermatogonia ultrastructure in rats of Wistar strain after single whole-body X-ray irradiation with 6.4 mC.kg/sup -1/, 25.8 mC.kg/sup -1/ and 51.6 mC.kg/sup -1/ respectively, were studied. Intracellular spaces were found between spermatogonia enlarged, nuclear membranes were bent, the pheripheral teritories of chromation were electronoptically denser, the morphology of nucleoli was changed, cytoplasm was vacuolised, mitochondria were damaged, the vacuolar dilatation of agranular endoplasmic reticulum was evident and electronoptically empty vacuoles near the Golgi complex occured 48 hours after single whole-body X-ray irradiation. Qualitative changes in the ultrastructure of individual types of spermatogonia after individual exposures were similar.

  4. Acute effects of whole body gamma irradiation on exocrine pancreatic secretion in the pig

    International Nuclear Information System (INIS)

    Monti, P.; Scanff, P.; Joubert, C.; Vergnet, M.; Grison, S.; Griffiths, N.

    2004-01-01

    Reports on radiation damage to the pancreas deal essentially with long-term morphological changes with few data on pancreatic exocrine function. The aim of this work was to study the acute effects of whole body irradiation on volume and enzyme activities in the pancreatic juice. A whole body gamma irradiation (6 Gy) was investigated in pigs with continuous sampling of pancreatic juice before and after exposure via an indwelling catheter in the pancreatic duct. For each sample collected, total protein concentration and enzyme activities of trypsin, chymotrypsin, elastase, lipase and amylase were determined. Pancreatic juice volume was monitored during all periods of collection. The volume of pancreatic juice secreted daily decreased one day after irradiation and remained lower than the control values over the experimental period. Total proteins secreted in the pancreatic juice and total activities of pancreatic enzymes were reduced similarly. On the other hand, only specific activities of elastase and lipase were affected by irradiation. Whole body gamma irradiation resulted in a rapid and marked decrease of exocrine pancreatic secretion, in terms of volume as well as secreted enzymes. This may contribute in part to the intestinal manifestations of the acute and/or late radiation syndrome. (author)

  5. Caffeine protects mice against whole-body lethal dose of {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    George, K.C.; Hebbar, S.A.; Kale, S.P.; Kesavan, P.C. [Biosciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    1999-06-01

    Administration of caffeine (1,3,7-trimethylxanthine), a major component of coffee, to Swiss mice at doses of 80 or 100 mg/kg body weight 60 min prior to whole-body lethal dose of {gamma}-irradiation (7.5 Gy) resulted in the survival of 70 and 63% of animals, respectively, at the above doses in contrast to absolutely no survivors (LD-100/25 days) in the group exposed to radiation alone. Pre-treatment with a lower concentration of caffeine (50 mg/kg) did not confer any radioprotection. The protection exerted by caffeine (80 mg/kg), however, was reduced from 70 to 50% if administered 30 min prior to irradiation. The trend statistics reveal that a dose of 80 mg/kg administered 60 min before whole-body exposure to 7.5 Gy is optimal for maximal radioprotection. However, caffeine (80 mg/kg) administered within 3 min after irradiation offered no protection. While there is documentation in the literature that caffeine is an antioxidant and radioprotector against the toxic pathway of radiation damage in a wide range of cells and organisms, this is the first report demonstrating unequivocally its potent radioprotective action in terms of survival of lethally whole-body irradiated mice. (author)

  6. Effects of whole-body irradiation on neonatally thymectomized mice. Incidence of benign and malignant tumors

    International Nuclear Information System (INIS)

    Anderson, R.E.; Howarth, J.L.; Troup, G.M.

    1978-01-01

    The individual and combined effects of neonatal thymectomy and whole-body irradiation on the prevalence of benign and malignant tumors in germ-free female mice of the Charles Rivers line were studied to determine if a portion of the tumorigenic effects of irradiation can be attributed to injury of the thymic-dependent component of the immune response. Neonatal thymectomy increased (a) the incidence of benign and malignant tumors and (b) the prevalence of multiple primary neoplasms in an individual mouse. Whole-body exposure to 700 rad at 6 weeks of age further increased the incidence of tumors, but the relative magnitude of this increase was less pronounced than in sham-operated controls. Thus, the cumulative effects of thymectomy plus irradiation are less pronounced than the sum of the individual effects. One of several possible explanations for this observation is that a portion of the carcinogenic effects of whole-body irradiation is mediated by suppression of the thymic-dependent component of the immune response

  7. Blood coagulation and fibrinolysis of the whole-body irradiated rabbits

    International Nuclear Information System (INIS)

    Hishikawa-Itoh, Youko; Ayakawa, Yoshio; Miyata, Nobuki

    1984-01-01

    To study the effects of irradiation on blood coagulation and fibrinolysis, rabbits were irradiated with 60 Co γ-rays (whole-body: 0, 100, 400, 800, 1200 rads). Clotting time, activity of plasmin and plasminogen, and fibrinogen contents of irradiated rabbit plasma were measured at 4 days before, immediately after, and at 1, 3, 7, 10, and 14 days after irradiation. Both clotting times obtained by addition of (kaolin+phospholipid) which expressed effects on the total intrinsic coagulation system, and by addition of (Ca 2+ ) which expressed effects on the total extrinsic coagulation system, were prolonged with small dose irradiation (100 rads) immediately and 3 days after irradiation. However, with high dose irradiation (400-1200 rads), these clotting times were prolonged 1 day after irradiation. The times of manifestation of irradiation effects on clotting time were different in small and high dose irradiation. Plasmin activity was decreased immediately, 1 day after and recovered 3 days after irradiation. Plasminogen activity was markedly increased in 800 and 1200 rads irradiated groups from 3 days after irradiation. Conversion of plasminogen into plasmin was impaired by irradiation. Fibrinogen contents increased rapidly in all irradiated rabbits except for 100 rads from 1 day after irradiation. These results revealed decreased coagulation and fibrinolysis activities in rabbit blood, irradiation injury of both coagulation and fibrinolysis activation systems, and accumulation of the precursors of fibrin and plasmin (i.e., fibrinogen and plasminogen). (author)

  8. Pharmacokinetics and whole body distribution of elastase derived angiostatin (k1-3) in rats

    NARCIS (Netherlands)

    Molema, Grietje; van Veen-Hof, Ingrid; van Loenen - Weemaes, Anne-miek; Proost, Johannes; de Leij, Lou F.M.H.; Meijer, Dirk K.F.

    2001-01-01

    In the current study, we determined short-term pharmacokinetics and whole body distribution of elastase derived angiostatin [angiostatin((k1-3))] in rats after i.v. injection of radiolabelled protein. Since In gamma-camera studies, no tumor specific angiostatin((k1-3)) accumulation was observed,

  9. Comparative evaluation of nose-only vs. whole-body inhalation exposures for rats

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, H C; Snipes, M B; Eidson, A F; Hobbs, C H

    1988-12-01

    Two types of rat exposure chambers, nose-only and whole-body chambers, were evaluated simultaneously for the temporal and spatial distribution of the same test aerosols within the chambers, both with and without animals present. Results indicated that both types of exposure chambers performed well, with coefficients of variation less than 10% for both temporal and spatial variations. (author)0.

  10. Comparative evaluation of nose-only vs. whole-body inhalation exposures for rats

    International Nuclear Information System (INIS)

    Yeh, H.C.; Snipes, M.B.; Eidson, A.F.; Hobbs, C.H.

    1988-01-01

    Two types of rat exposure chambers, nose-only and whole-body chambers, were evaluated simultaneously for the temporal and spatial distribution of the same test aerosols within the chambers, both with and without animals present. Results indicated that both types of exposure chambers performed well, with coefficients of variation less than 10% for both temporal and spatial variations. (author)

  11. Whole-body retention of 60Co incorporated into a seaweed in rats

    International Nuclear Information System (INIS)

    Inaba, Jiro; Nishimura, Yoshikazu; Ichikawa, Ryushi

    1979-01-01

    The objective of this study is to compare whole-body retention in the rat of radiocobalt incorporated into a marine green alga with that of 60 Co in inorganic form. Ulva pertusa was incubated in aerated seawater containing 60 Co under fluorescent lamp for 7 days. The radioactive seaweed was homogenated and was given to rats via a stomach tube. The control group of rats was given 60 CoCl 2 with homogenate of non-radioactive seaweed. Whole-body retention of the radionuclide was determined by in vivo counting of the living animal. The result revealed that rats absorbed and retained much more 60 Co incorporated into the seaweed than 60 CoCl 2 . This fact should be taken into account in the estimation of internal dose due to radiocobalt released into marine environment. (author)

  12. Response of peripheral leucocytes to whole body irradiation and vitamin E treatment in white leghorn chick

    International Nuclear Information System (INIS)

    Rana, K.; Malhotra, N.

    1993-01-01

    Radiation induced changes in peripheral blood leucocytes in 1 day old male white leghorn chicks were studied after whole body exposure to 2.25 Gy dose of gamma radiation at the rate of 0.50 Gy/sec with and without vitamin E. The changes in total leucocyte counts, lymphocytes and heterophils were observed at 1,3,5,7,14 and 28 days postirradiation. A pronounced leucocytopenia was noted in the initial post-irradiation period. The lymphocytes and heterophils showed a reciprocal relationship after radiation. With vitamin E treatment, considerable and faster recovery was noticed in the leucocytes after irradiation. (author). 16 refs., 3 figs

  13. Acid-base status after whole-body irradiation in dairy cows

    International Nuclear Information System (INIS)

    Schaefer, M.; Koch, F.; Dyrba, W.; Kirbach, M.

    1989-01-01

    Whole-body irradiation using 9 MeV X-rays of a linear accelerator of 10 clinically healthy lactating cows aged between 3.5 and 8 years produced an acute radiation syndrome in the LD 100/30 range. Blood analysis 1 day after irradiation showed a compensated metabolic acidosis with a low renal net acid-base excretion and hyerphosphaturia. Later the acid-base status indicated a differently marked metabolic alkalosis. In the main reaction period acidotic disturbances occurred, which partially were camouflaged by respiratory alkalosis. (author)

  14. Effect of whole-body irradiation on skeletal growth in rhesus monkeys

    International Nuclear Information System (INIS)

    Sonneveld, P.; van Bekkum, D.W.

    1979-01-01

    Late effects of single whole-body doses of 400 to 500 and 750 to 900 rads on skeletal growth in 32 rhesus monkeys were studied. Findings indicated growth inhibition strongly related to dose and age at irradiation. Doses of 750 to 900 rads before the age of 40 months resulted in significantly greater growth inhibition (11%) than doses given during or shortly after adolescence (p < 0.005). Doses of less than 750 rads were not significant. In view of the close similarity between monkeys and man, irradiation of children at doses greater than 750 rads may carry a strong risk of subsequent growth retardation

  15. Chemical radioprotection to bone marrow stem cells after whole body gamma irradiation to mice

    Energy Technology Data Exchange (ETDEWEB)

    Dey, J.; Dey, T.B.; Ganguly, S.K.; Nagpal, K.K.; Ghose, A.

    1988-11-01

    Protection to mice bone marrow stem cells has been noted as early as two days after whole body gamma ray exposure by prior treatment with combination of hydroxytryptophan (HT) and one of the two thiol drugs viz., aminoethylisothiuronium bromide hydrobromide (AET) (20 mg/kg body weight) and B-mercaptopropionylglicine (MPG). The levels of protection to bone marrow stem cells thus obtained have been compared to that obtained by treating with the optimum radioprotecting dose of AET (200 mg/kg body weight). The study reports the bone marrow stem cells status after two days of 3 Gy, 5 Gy and 10 Gy whole body gamma irradiation in relation to the mentioned radioprotecting treatments as studied by spleen colony forming method.

  16. The effect of whole body irradiation on the action of strong analgesics of mice

    International Nuclear Information System (INIS)

    Cvetkovicj, M.; Milovanovicj, A.; Tanasijevicj, D.

    1987-01-01

    The effect of whole body irradiation of male mice with single doses of 3 and 7 Gy ( 60 Co source) on analgesic action of three morphine-like drugs was studied. Over the first 6 days after irradiation, the analgesic effect of alfentanil and fentanyl was significantly less pronounced in irradiated animals than in control ones. During the subsequent period of 24 days till the end of experiment, the analgesic effect in irradiated animals gradually increased reaching and exceeding the control values. On the contrary, the analgesic effect of butorphanole was less pronounced in irradiated animals than in control ones, although the difference was not significantly. The difference between butorphanole and other two drugs are probably due to chemical structure and the metabolic fate in the body. (author) 8 refs.; 2 figs

  17. Whole-body X-irradiation of mice accelerates polyploidization of hepatocytes

    International Nuclear Information System (INIS)

    Shima, A.; Egami, N.

    1985-01-01

    Male C57BL/6 mice were whole-body irradiated with 4.75 gy of X-rays at the age of 2 months and killed at 2, 6, 12 and 19 months after irradiation. The percentage survival began to decline earlier and faster in the irradiated group than the controls up to 19 months after exposure when the study was terminated. The nuclear DNA content of individual hepatocytes was measured by a Feulgen-DNA microfluorometric method, and hepatocytes were classified into various ploidy classes. In the irradiated mice, the degree of polyploidization was significantly higher than the controls by 2 months after exposure and steadily increased up to 6 months after exposure. Thereafter, however, a slow return to the control level was found up to 19 months after irradiation. These results appear to support a hypothesis that radiation accelerates the ageing process as judged from hepatocyte polyploidization. (author)

  18. Radioprotection of whole-body gamma irradiation induced alterations in lipid metabolism of liver and plasma by AET (S-2, aminoethyl isothiuronium Br. H. Br.) and serotonin in rats

    International Nuclear Information System (INIS)

    Ramanathan, R.; Misra, U.K.

    1975-01-01

    Radioprotective effect of AET, serotonin and their mixture has been studied on liver and plasma lipid metabolism 24 hrs and 48 hrs after irradiation in fasted male rats. AET and serotonin both gave significant radioprotection to certain liver and plasma lipid components, but the mixture of the two afforded a better protection. The non-radioprotection of plasma NEFA, phospholipids and phosphatidyl choline levels by serotonin observed in irradiated rats was because serotonin itself raised the levels of these lipids in control rats. Serotonin alone or in mixture effectively protected the radiation-induced increased incorporation of NaH 2 32 PO 4 into liver phospholipids. Mixture of AET and serotonin failed to protect the increased incorporation of aceae-1-14-C into liver total fatty acids and cholesterol, but it prevented this increased incorporation into liver triglycerides and phospholipids. (orig.) [de

  19. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-11-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.

  20. Development of fibrosis in dogs as a late consequence of whole-body X-irradiation

    International Nuclear Information System (INIS)

    Calvo, W.; Fliedner, T.M.; Steinbach, I.; Alcober, V.; Nothdurft, W.; Fache, I.

    1978-01-01

    Dogs wre whole-body irradiated with a single mid-line dose of 1200 R at 300 kV. This high dose will kill non-treated animals within a few days. To save these animals, leukocytes were previously collected during a four-hour leukapheresis using a continuous-flow centrifuge and were stored under liquid nitrogen. Shortly after the whole-body irradiation each dog received its own cryopreserved cells thawed immediately beforehand. The dogs received between 0.32x10 9 and 1.63x10 9 mononuclear blood cells per kilogram of body weight. The number of colony-forming cells contained in the transfusate ranged between 0.19x10 5 and 1.38x10 5 per kilogram of body weight. This blood stem transfusion, together with general supportive therapy, enabled the dogs to overcome the acute radiation syndrome and to recover. The dogs were subsequently sacrificed in two groups after observation for about 260 days or 700-898 days respectively. Pathological findings are described. A particular situation existed in the marrow, whre non-irradiated stem cells had colonized bone cavities containing irradiated stroma. Progressive fibrosis developed in the endosteal areas of the bone cavities in most of the animals. (author)

  1. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    International Nuclear Information System (INIS)

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-01-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood

  2. Expression of IL-1β mRNA in mice after whole body X-irradiation

    International Nuclear Information System (INIS)

    Nemoto, Kumie; Ishihara, Hiroshi; Tanaka, Izumi; Suzuki, Gen; Tsuneoka, Kazuko; Yoshida, Kazuko; Ohtsu, Hiroshi

    1995-01-01

    IL-1β is a stimulator of hematopoietic and inflammatory systems, and also acts as a radioprotector. After whole-body exposure to sublethal doses of ionizing radiation, the IL-1β mRNA level in spleen cells increases for a short time prior to regeneration of the spleen. We analyzed spleen cells of C3H/He mice after whole-body irradiation with 3 Gy x-rays to determine the cause of this short-term increase in the transcription level. An increase in the level of the message in spleen cells, found by Northern blot hybridization, reached its peak 5 to 7 days after irradiation. There was a low correlation between the curves of the mRNA level and the ratio of monocyte/macrophage lineage cells; a typical source of the message. Spleen macrophages that produce a large amount of the message were found 7 days after irradiation in an in situ hybridization experiment in which heterogeneous spleen cell populations were used. In contrast, spleen cells had no detectable levels of macrophages rich in IL-1β mRNA before and 17 days after irradiation. Additionally, the population of message-rich cells was 9.4% of the total number of monocytes/macrophages in the spleen. These results suggest that the short-term increase in IL-1β mRNA is a result of the heterogeneous differentiation of a subpopulation of spleen macrophages before regeneration of the spleen. (author)

  3. Antibiotic radioprotection of mice exposed to supralethal whole-body irradiation independent of antibacterial activity

    International Nuclear Information System (INIS)

    Mastromarino, A.; Wilson, R.

    1976-01-01

    Oral administration of streptomycin, kanamycin, neomycin, or gentamicin to specific pathogen-free C57 x Af mice in their drinking water (4 mg/ml) for 2 weeks before supralethal whole-body irradiation very significantly prolonged their mean survival times (8.2 to 8.9 days vs 6.9 for controls) to values which exceed those reported for germ-free mice (7.3 days). The total fecal concentrations of aerobes and anaerobes were reduced by kanamycin, neomycin, and gentamicin. Streptomycin reduced the anaerobes significantly, but not the aerobes. Unlike germ-free mice, these antibiotic-treated mice did excrete free bile acids, products of bacterial action. Oral antibiotic treatment was ineffective in altering the transit time of the intestinal mucosal cells. Previously reported studies had indicated a correlation between decreased transit time and increased survival after irradiation. No significant correlation between mean survival time after irradiation and mucosal transit time was observed. The data demonstrate that certain antibiotics alter the character of the intestinal bacterial flora and increase protection against supralethal doses of whole-body irradiation. It is concluded that the mechanisms of radioresistance in antibiotic-treated mice and germ-free mice are different and that in both groups radioresistance is the result of more than elimination of postirradiation infection

  4. Impairment in extinction of contextual and cued, fear following post-training whole body irradiation

    Directory of Open Access Journals (Sweden)

    Reid HJ Olsen

    2014-07-01

    Full Text Available Because of the use of radiation in cancer therapy, the risk of nuclear contamination from power plants, military conflicts, and terrorism, there is a compelling scientific and public health interest in the effects of environmental radiation exposure on brain function, in particular hippocampal function and learning and memory. Previous studies have emphasized changes in learning and memory following radiation exposure. These approaches have ignored the question of how radiation exposure might impact recently acquired memories, which might be acquired under traumatic circumstances (cancer treatment, nuclear disaster, etc.. To address the question of how radiation exposure might affect the processing and recall of recently acquired memories, we employed a fear-conditioning paradigm wherein animals were trained, and subsequently irradiated (whole-body X-ray irradiation 24 hours later. Animals were given two weeks to recover, and were tested for retention and extinction of hippocampus-dependent contextual fear conditioning. Exposure to irradiation following training was associated with reduced daily increases in body weights over the 22 days of the study and resulted in greater freezing levels and aberrant extinction 2 weeks later. This was also observed when the intensity of the training protocol was increased. Cued freezing levels and measures of anxiety 2 weeks after training were also higher in irradiated than sham-irradiated mice. In contrast to contextual freezing levels, cued freezing levels were even higher in irradiated mice receiving 5 shocks during training than sham-irradiated mice receiving 10 shocks during training. In addition, the effects of radiation on extinction of contextual fear were more profound than those on the extinction of cued fear. Thus, whole body irradiation elevates contextual and cued fear memory recall.

  5. Sorption of carbohydrates following the whole-body irradiation and irradiation of the abdominal cavity (Experimental investigation)

    International Nuclear Information System (INIS)

    Neumeister, K.; Koch, F.; Mehlgorn, G.; Panndorf, H.; Iohannsen, U.

    1974-01-01

    Experiments were conducted to determine the effect of fractionated irradiation of the abdominal cavity and the whole body on carbohydrate absorption. It was found that enhanced D-xylose absorption is a function of dose. The relationship between impairment of absorption and the severity of clinical, pathomorphological and roentgenological changes was noted. (V.A.P.)

  6. Neurogenic Effects of Low-Dose Whole-Body HZE (Fe) Ion and Gamma Irradiation.

    Science.gov (United States)

    Sweet, Tara B; Hurley, Sean D; Wu, Michael D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2016-12-01

    Understanding the dose-toxicity profile of radiation is critical when evaluating potential health risks associated with natural and man-made sources in our environment. The purpose of this study was to evaluate the effects of low-dose whole-body high-energy charged (HZE) iron (Fe) ions and low-energy gamma exposure on proliferation and differentiation of adult-born neurons within the dentate gyrus of the hippocampus, cells deemed to play a critical role in memory regulation. To determine the dose-response characteristics of the brain to whole-body Fe-ion vs. gamma-radiation exposure, C57BL/6J mice were irradiated with 1 GeV/n Fe ions or a static 137 Cs source (0.662 MeV) at doses ranging from 0 to 300 cGy. The neurogenesis was analyzed at 48 h and one month postirradiation. These experiments revealed that whole-body exposure to either Fe ions or gamma radiation leads to: 1. An acute decrease in cell division within the dentate gyrus of the hippocampus, detected at doses as low as 30 and 100 cGy for Fe ions and gamma radiation, respectively; and 2. A reduction in newly differentiated neurons (DCX immunoreactivity) at one month postirradiation, with significant decreases detected at doses as low as 100 cGy for both Fe ions and gamma rays. The data presented here contribute to our understanding of brain responses to whole-body Fe ions and gamma rays and may help inform health-risk evaluations related to systemic exposure during a medical or radiologic/nuclear event or as a result of prolonged space travel.

  7. Catecholamine levels in sheep hypothalamus, hypophysis and adrenals following whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Pastorova, B.; Arendarcik, J.; Molnarova, M.

    1985-01-01

    Changes were studied in the levels of catecholamines and L-DOPA in the control system of the reproduction cycle (hypothalamus, hypophysis) and in the adrenal glands of sheep after whole-body irradiation with 60 Co at a total dose of 6.7 Gy for seven days. The output of the radiation source was 0.039 Gy/h. The catecholamines (noradrenaline, dopamine and adrenaline) and L-DOPA were determined after separation from the tissues by the method of spectral fluorometry. After whole-body exposure to gamma radiation, noradrenaline dropped in the hypothalamus in comparison with the control group, most significantly in the rostral (by 74.2%) and caudal (by 40%) parts. A similar drop was also observed in dopamine, the concentrations of which decreased in the rostral hypothalamus by 60%. Adrenaline showed a drop in the hypothalamus, most significant in the caudal region (by 62%). Consequently, the level of the precursor of the synthesis of catecholamines and L-DOPA changed and showed in the studied regions of the hypothalamus significantly lower levels than in the control group. As regards the hypophysis, after irradiation no significant changes in the levels of noradrenaline and adrenaline were recorded, however, dopamine and L-DOPA dropped significantly (P<0.01). The exposure to gamma radiation also causes a decrease in the concentrations of catecholamines and L-DOPA in the adrenal glands of sheep, most significantly in noradrenaline (by 61%). It was thus found that whole-body irradiation of sheep with a dose of 6.7 Gy results in a significant decrease in the level of catecholamines in the hypothalamus, hypophysis and adrenal glands, which is probably in relation to the failure of synthesis and degradation of catecholamines and to the total organism injury

  8. Effect of whole body gamma-irradiation and/or dietary protein deficiency on the levels of plasma non-protein nitrogen and amino acids; plasma and urinary ammonia and urea in desert rodent and albino rats

    International Nuclear Information System (INIS)

    Roushdy, H.M.; El-Husseini, M.; Saleh, F.

    1984-01-01

    The effect of gamma-irradiation exposure on the levels of non-protein nitrogen (N.P.N.) and amino acids in plasma; ammonia and urea in plasma and urine was studied in the desert rodent, Psammomys obesus obesus and albino rats subjected to dietary protein deficiency, N.P.N. and amino acids in plasma were shown to increase by irradiation exposure. The effect of radiation on blood ammonia was less marked, but it caused a significant increase in ammonia excretion in urine. Radiation exposure in albino rats caused a marked increase in urea concentration in plasma of animals fed the high protein diet and irradiated at 780 r. In urine, the tested radiation levels caused an initial increase in urea concentration followed by a subsequent decrease. In psammomys, radiation exposure exerted a little effect on the plasma urea level, whereas significant increase in the daily urea excretion was recorded. It seems that urea level in plasma is more stabilized in psammomys than in albino rats

  9. Effect of whole-body X-irradiation on lysosomal enzymes

    Energy Technology Data Exchange (ETDEWEB)

    D' souza, D W; Vakil, U K; Srinivasan, A [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1974-06-01

    Effects of whole-body x irradiation with sublethal dose (400 rad) on three intestinal lysosomal enzymes, namely, arylsulphatase, cathepsin and acid phosphatases, have been studied. They are almost equally distributed throughout the entire small intestine region. X irradiation adversely affects the integrity of lysosomal membranes. ''Free'' and ''total'' lysosomal enzyme activities exhibit maxima on 6th day. These activities return to normal level on 14th day when there is rapid generation of villi, indicating that lysosomal activities correlate with the progression of injury and of repair mechanism after sublethal dose of x irradiation. The increase in total lysosomal activity may be due to its decreased breakdown, since the rate of protein synthesis in intestinal mucosa is reduced. This is evidenced by reduced incorporation of orally fed /sup 14/C leucine into acid insoluble proteins. (auth)

  10. Thymic nurse cells and thymic repopulation after whole body sublethal irradiation in mice

    International Nuclear Information System (INIS)

    Houben-Defresne, M.P.; Varlet, A.; Boniver, J.

    1984-01-01

    Thymic Nurse Cells (TNCs) are lymphoepithelial complexes which are thought to play a role in the early stages of the intrathymic differentiation pathway. Their repopulation kinetics were analyzed in mice after sublethal whole-body irradiation. Changes of the number of TNCs per thymus were parallel with the evolution of the whole thymocyte population. Particularly, a first wave of TNCs restoration was followed by a secondary depletion and a final recovery. This suggests that TNCs restoration is related to the proliferating progeny of intrathymic radioresistant thymocytes. When normal bone marrow cells were grafted intravenously after irradiation, no secondary depletion was found. This pattern of restoration was obviously related to thymic repopulation by cells which were derived from the inoculated bone marrow. Homing studies with FITC labelled bone marrow cells showed that inoculated bone marrow cells did not penetrate TNCs early after irradiation. Later on, when immigrant cells started to proliferate, they were found preferentially within TNCs before spreading in the whole thymus. (Auth.)

  11. Effect of ultra-low dose whole-body-irradiation on severe patients with myasthenia gravis

    International Nuclear Information System (INIS)

    Arimori, Shigeru; Koriyama, Kenji

    1982-01-01

    An ultra-low dose whole body irradiation therapy was given to 5 patients with intractable bulbar syndrome, in a dose of 10 rad/fraction, 2 times a week for 5 weeks, with a total of 100 rad; and effects of this therapy on their clinical symptoms and immunological ability were discussed. In 3 of them, bulbar syndrome was improved, and the other one, the first irradiation was effective. The peripheral leukocyte count and lymphocyte count became lowest immediately after completion of the irradiation, and returned to the normal level within 1 to 2 months. The function of T-cells, especially suppressive T-cells, was recovered; and decrease in B-cells, resulted in a decrease in the AChR antibody titer. (Ueda, J.)

  12. Effect of ultra-low dose whole-body-irradiation on patients with severe myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Arimori, Shigeru; Koriyama, Kenji (Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine)

    1982-12-01

    An ultra-low dose whole body irradiation therapy was given to 5 patients with intractable bulbar syndrome, in a dose of 10 rad/fraction, 2 times a week for 5 weeks, with a total of 100 rad; and effects of this therapy on their clinical symptoms and immunological ability were discussed. In 3 of them, bulbar syndrome was improved, and the other one, the first irradiation was effective. The peripheral leukocyte count and lymphocyte count became lowest immediately after completion of the irradiation, and returned to the normal level within 1 to 2 months. The function of T-cells, especially suppressive T-cells, was recovered; and decrease in B-cells, resulted in a decrease in the AChR antibody titer.

  13. Chromosomal aberrations in Cynomolgus peripheral lymphocytes during and after fractionated whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Guedeney, G.; Malarbet, J.L.; Doloy, M.T.

    1989-01-01

    Cynomolgus monkeys (Macaca fascicularis) were exposed to fractionated whole-body γ-irradiation at high and low dose rates for 4 or 5 weeks. The time-dependence of chromosomal aberrations was studied in relation to the number of lymphocytes during irradiation and after exposure for periods of up to about 600 days for chromosomal aberrations and 200 days for lymphocyte counts. Additivity of the daily effects on the number of chromosomal aberrations was observed during the exposures. Immediately after the end of the exposures the number of chromosomal aberrations decreased to reach low values. The disappearance of chromosomal aberrations seemed to be related to recovery of the lymphocyte counts. The data presented here emphasize the different kinetic patterns of chromosomal aberrations after fractionated and acute irradiation. (author)

  14. The effect of gamma-rays on the hemoglobin of whole-body irradiated mice

    International Nuclear Information System (INIS)

    Ashry, H.A.; Selim, N.S.; El-Behay, A.Z.

    1994-01-01

    Changes in the UV-visible absorption spectrum of mouse hemoglobin as a result of whole body irradiation were studied. White albino adult mice were exposed to a Cs-137 γ-source at a dose rate of 47.5 Gy/h to different absorbed dose values ranging from 1 to 8 Gy. Blood specimens were taken 24 h after irradiation. The UV-visible absorption spectra of hemoglobin of irradiated and control mice were measured in the wavelength range from 200 to 700 nm. The obtained results showed significant changes in the bands measured at 340 nm, in the Soret band measured at 410 nm, also, the α- and β-bands measured at 537 and 572 nm showed significant decrease in intensity with the absorbed dose increase. The absorbance measured at 630 nm showed no significant changes. The radiation effect on the animal hemoglobin was discussed on the basis of the obtained results. (Author)

  15. Production of anti-SRBC antibodies after DDC administration in whole-body irradiated mice

    International Nuclear Information System (INIS)

    Kautska, J.; Hosek, B.; Misustova, J.

    1990-01-01

    Production of antibody-forming cells (PFC) was studied in mice subjected to a single whole-body radiation dose of 3.8 Gy following an injection of sodium diethyl dithiocarbamate (DDC, 800 mg/kg) 30 min before irradiation. The animals were immunized (1% SRBC) 4 hours and 5 and 10 days after irradiation, and the number of PFC was determined by a modified Jerne plaque technique on days 4, 7 and 10 after immunization. After irradiation alone, the PFC levels were markedly reduced at all time intervals in comparison with unirradiated controls. Upon immunization of animals on day 10 after irradiation the peak PFC levels were observed on day 7 after immunization in the irradiated only group and in the group irradiated after DDC administration (in controls on day 4 after immunization). The administration of DDC entirely eliminated the unfavourable effect of radiation if immunization was performed 4 h after irradiation, in terms of the number and the peak level of PFC. Upon immunization of animals on day 5 and day 10 after irradiation the PFC levels were not markedly influenced by DDC injection. (author). 3 figs., 25 refs

  16. Sesamol attenuates cytogenetic damages in bone marrow cells of whole body gamma irradiated mice

    International Nuclear Information System (INIS)

    Kumar, Arun; Tamizh Selvan, G.; Adhikari, Jawahar S.; Chaudhury, N.K.

    2014-01-01

    Whole body radiation exposure cause damages to all vital organs and bone marrow is the most sensitive. Pre-treatment with antioxidant as single prophylactic dose is expected to lower induction of damages in bone marrow. In the present study we have focused on sesamol, a dietary antioxidant mediated radioprotection in bone marrow cells of gamma irradiated mice and compared with melatonin. Male C57BL/6 mice were intraperitoneally administered with sesamol (10 and 20 mg/kg body) and after 30 minutes exposed to whole body gamma radiation using 60 Co Teletherapy unit. Mice were injected with 0.2 ml of a metaphase arresting agent (0.05% colchicine) intra-peritoneally 3 hours prior to sacrifice (24 hrs. post-irradiation). Bone marrow cells were flushed out from femurs of each animal and processed for chromosomal aberration assay. Another set of experiment without colchicine injection was performed to access the DNA damage in bone marrow using alkaline comet assay. At least 100 metaphases per animal were scored under light microscope to record various aberrations and total chromosomal aberrations (TCA) was calculated. Similar measurements were performed with melatonin for comparing the efficacy of sesamol. Gamma irradiation has increased the chromatid type aberrations (break formation, fragment) and chromosomal type aberrations (ring formation, acentric) in bone marrow cells. The results have shown significant (p< 0.001) increase in TCA of irradiated mice than control. While pre-treatment of sesamol and melatonin 10 mg/kg significantly (p<0.05) reduced the TCA. The extend of protection has increased at 20 mg/kg significantly (p<0.001) as evident from the reduced TCA compared to irradiated group. Interestingly, sesamol and melatonin have shown similar extent of reduction of TCA. Thus sesamol has demonstrated strong ability to protect bone marrow at low dosage. These investigations on sesamol mediated protection in bone marrow are likely to benefit development of

  17. Late response to whole-lung irradiation alone and with whole-body hyperthermia in dogs

    International Nuclear Information System (INIS)

    Gillette, S.M.; Gillette, E.L.; Dawson, C.A.

    1997-01-01

    The late effects of whole-lung irradiation with and without whole-body hyperthermia were studied in beagle dogs. The reference doses ranged from 18 to 49.5 Gy given in 1.5-Gy fractions over 6 weeks. Whole-body hyperthermia was given in three 2-h treatments to a deep rectal temperature of 42.0 degrees C. Radiation was given simultaneously with hyperthermia on those days. Physiological and histopathological responses were evaluated. Physiological changes included decreases in cardiac output, systemic blood pressure, dynamic compliance and serotonin uptake. Early changes included an increase in extravascular water and total protein in the lavage. These changes were considered mild, were compensated for and occurred only in dogs receiving doses of 40.5 Gy or greater given in 1.5-Gy fractions over 6 weeks. Histopathological change were typical of irradiated lung and included pleural fibrosis, interstitial fibrosis, fibrotic foci, and peribronchial and perivascular fibrosis. There was no enhancement of late injury to lung by hyperthermia seen in this study. 17 refs., 3 figs., 2 tabs

  18. Elevation of blood levels of zinc protoporphyrin in mice following whole-body irradiation

    International Nuclear Information System (INIS)

    Walden, T.L. Jr.

    1983-01-01

    Elevation of zinc protoporphyrin (ZPP) levels in the blood has served as an indicator of lead poisoning and iron deficiency anemia for many years. The author has discovered that sublethal doses of whole body irradiation with X-rays also elevates ZPP two- to three-fold over normal levels. The ZPP level does not begin to increase until days 12 to 14 post-irradiation and peaks between days 18 to 20 before returning to normal levels between days 28 to 35. Increasing the radiation dose delays the onset of the rise in ZPP but does not affect the magnitude of the elevation. At lethal doses, ZPP elevation is not observed. Neither of the two previously described mechanisms which cause elevations of ZPP, namely iron deficiency and inhibition of ferrochelatase, are responsible for the radiation induced elevation of ZPP. The elevation of ZPP appears to be correlated with the recovery of the hematopoietic system from radiation injury

  19. Studies on the effects of whole-body gamma irradiation on chickens infected with Eimeria tenella

    International Nuclear Information System (INIS)

    Merritt, S.V.

    1974-01-01

    Whole-body exposure of one- and three-week-old White Leghorn cockerels to 600 R gamma radiation (Cesium-137) 24 hours before oral inoculation with 500, 2500, 5000, or 50,000 Eimeria tenella oocysts produced a pattern of mortality differing markedly from nonirradiated, infected (NRI) control birds. When oocyst dosage was held constant (2500) and radiation exposure increased (250, 450, 600, 800, or 1000 R) a gradual increase in mortality rate with higher radiation dosages was observed among both one- and three-week-old birds. Birds irradiated 24 hours or more before inoculation were less able to survive infection than were those irradiated one hour before and one, two, three, or four days after inoculation. (U.S.)

  20. Alterations of blood platelet functional tests in whole-body irradiated rabbits

    International Nuclear Information System (INIS)

    Zitko, M.; Pospisil, J.; Klir, P.; Dienstbier, Z.

    1983-01-01

    With a selected spectrum of coagulation tests the functional capacity of thrombocytes was investigated in rabbits exposed to a whole-body irradiation by means of 60 Co radiation with a LD 5/30. A reduced retraction could be proved for postirradiation days 5, 8, 11, 21, 35, and 56. A reduced formation of malondialdehyde could be identified in thrombocytes on the 8th and 21st day after irradiation. No changes could be found in determining adhesiveness, platelet aggregation caused by ADP, and PF 3 A and PF 3 F tests. In the course of additional investigations (coagulation time in unprepared and siliconized glass tubes, thromboelastogram, activated partial thromboplastine time), significant changes of coagulation time could be observed in siliconized glass tubes on the 8th, 11th, 21st, and 56th postirradiation days. (author)

  1. Loss of Ia-bearing splenic adherent cells after whole body ultraviolet irradiation

    International Nuclear Information System (INIS)

    Letvin, N.L.; Nepom, J.T.; Greene, M.I.; Benacerraf, B.; Germain, R.N.

    1980-01-01

    Daily uv irradiation of mice results in a marked decrease in the antigen-presenting capability of SAC from these mice after 1 wk of uv exposure. To directly examine this cell population, we developed a technique for purifying SAC that involves passing mouse splenocytes through two cycles of glass adherence with an intervening incubation on rabbit anti-mouse Ig-coated dishes. SAC from externally uv irradiated mice prepared by this method, when pulsed with antigen, activate primed T cells to proliferate much less efficiently than SAC from normal mice. Both the proportion and absolute number of Ia-bearing cells in this purified SAC population from uv irradiated mice are considerably smaller than that seen in similarly prepared populations from normal mice. Previous adjuvant immunization was shown to override functional defects elicited by external uv irradiation. This demonstration of a uv irradiation induced selective loss of Ia bearing splenic adherent cells and the functional consequences of this loss provide further evidence for the importance of Ia-bearing accessory cells in antigen presentation of T dependent antigens, and provides insight into the origin of the immunologic defects induced by whole body uv irradiation

  2. 2nd Tuebingen radiotherapy symposium: Whole body, large field and whole skin irradiation. Introduction

    International Nuclear Information System (INIS)

    Huebener, K.H.; Frommhold, W.

    1987-01-01

    The symposium which took place on the 11th and 12th April 1986 set itself the task of discussing three different groups of radiotherapy topics. The chief issue was whole-body irradiation prior to bone marrow transplants, in which all the therapy centres in West Germany, Austria, East Germany and German-speaking Switzerland made clinical and radiophysical contributions. The second part of the Symposium consisted mainly of talks and discussions on large-field irradiation, more precisely half-body and sequential partial body irradiation. This topic was chosen because this type of therapy is scarcely practised at all, particularly in West Germany, whereas in the United States, East Germany, Switzerland and a number of other countries it has long since become one of the established methods. The last talk at the Symposium explained clinical and radiophysical aspects of whole-skin irradiation. Here too, one was impressed by the wide diversity of the equipment and methods of irradiation used which, nevertheless, all demonstrated satisfactory practical solutions in their common aim of distributing the dose as homogeneously as possible. (orig./MG) [de

  3. Effects of whole-body cobalt 60 gamma irradiation on the young korean native goats

    International Nuclear Information System (INIS)

    Kim, Jong Gyu; Sung, Jai Ki

    1989-01-01

    This study was carried out to investigate the effects of whole-body cobolt-60 gamma irradiation on clinical signs, mortality, hematological, blood chemical, chromosomal and pathologic changes in the young Korean native goats. Groups of goats were exposed to 200, 400, 600 and 800 rads of gamma irradiation from a cobalt-60 source. Clinical signs such as diarrhea, anorexia, weakness and depression of the irradiated goats were observed. Mortalities were 66.7 percent in the group irradiated with 200 rads and 100 percent in the groups irradiated with higher doses. Death times were shortened with the increment of irradiation doses. With time after irradiation, the values of erythrocytes, hemoglobin and packed cell volume decreased in the 200 and 400 rads groups and increased in the 600 and 800 rads groups. The number of total leukocytes of the irradiated goats decreased significantly in all irradiated groups. The degrees of decrease were severe as the irradiated doses were increased. Significant decrease of lymphocyte counts were observed from 6 hours in the 800 rads group and 1 day post irradiation(PI) in all other groups. Post irradiation times for significant reduction of neutrophils were 1, 3, 3 and 5 days for 800, 600, 400 and 200 rads groups, respectively. Serum sorbitol dehydrogenase and serum aspartate aminotransferase activities increased remarkably at 6 hours PI in the 800 rads group and 1 day PI in all other groups. Thereafter the activities returned to normal values. Since mitoses of lymphocytes were completely inhibited in blood cultures of all irradiated goats, chromosomal pictures could not be observed. However, mitoses were observed on 28 days PI in 200 rads group and no abberration in the number and structures of lymphocyte chromosomes were detected. Histopathologic findings in various organs of the irradiated goats were severe necrosis and depletion of lymphoid cells in the lymph nodes and spleen, hypoplasia of hemopoietic cells in the bone marrow

  4. Effects of chronic whole-body gamma irradiation on cell mediated immunity

    International Nuclear Information System (INIS)

    Shifrine, M.; Taylor, N.J.; Wilson, F.D.; DeRock, E.W.; Wiger, N.

    1979-01-01

    The whole blood lymphocyte stimulation test has been used to estimate the effects of chronic, whole-body, gamma irradiation in the dog. At lower dose levels, 0.07 and 0.33 R/day to cumulative dose of about 50 and 250 R, there was no change in cell mediated immunity. Dogs at high dose levels were affected. Dogs which succumbed to aplastic anemia at high doses had reduced immunological responses. Dogs which survived these high doses showed a temporary depression. When aplastic anemia was initially noted, there was a differential response to PHA and Con-A stimulation. The response to the former mitogen was profoundly reduced, but Con-A stimulated cells were unaffected, indicative of the development of radioresistant cell lines. As the dogs progressed toward aplastic anemia, all T lympocytes were negatively affected

  5. The elevation of blood levels of zinc protoporphyrin in mice following whole body irradiation

    International Nuclear Information System (INIS)

    Walden, T.L.; Draganac, P.S.; Farkas, W.R.

    1984-01-01

    Elevation of zinc protoporphyrin (ZPP) levels in the blood has served as an indicator of lead poisoning and iron deficiency anemia for many years. We have discovered that sublethal doses of whole body irradiation with x-rays also elevates ZPP 2-3-fold over normal levels. The ZPP level does not begin to increase until days 12-14 postirradiation and peaks between days 18 and 20 before returning to normal levels between days 28 and 35. Increasing the radiation dose delays the onset of the rise in ZPP, but does not affect the magnitude of the elevation. At lethal doses, ZPP elevation is not observed. Neither of the two previously described mechanisms that cause elevations of ZPP, namely iron deficiency and inhibition of ferrochelatase, are responsible for the radiation-induced elevation of ZPP. The elevation of ZPP appears to be correlated with the recovery of the hematopoietic system from radiation injury

  6. Gene Expression Changes in Mouse Intestinal Tissue Following Whole-Body Proton or Gamma-Irradiation

    Science.gov (United States)

    Purgason, Ashley; Zhang, Ye; Mangala, Lingegowda; Nie, Ying; Gridley, Daila; Hamilton, Stanley R.; Seidel, Derek V.; Wu, Honglu

    2014-01-01

    Crew members face potential consequences following exposure to the space radiation environment including acute radiation syndrome and cancer. The space radiation environment is ample with protons, and numerous studies have been devoted to the understanding of the health consequences of proton exposures. In this project, C57BL/6 mice underwent whole-body exposure to 250 MeV of protons at doses of 0, 0.1, 0.5, 2 and 6 Gy and the gastrointestinal (GI) tract of each animal was dissected four hours post-irradiation. Standard H&E staining methods to screen for morphologic changes in the tissue showed an increase in apoptotic lesions for even the lowest dose of 0.1 Gy, and the percentage of apoptotic cells increased with increasing dose. Results of gene expression changes showed consistent up- or down- regulation, up to 10 fold, of a number of genes across exposure doses that may play a role in proton-induced oxidative stress including Gpx2. A separate study in C57BL/6 mice using the same four hour time point but whole-body gamma-irradiation showed damage to the small intestine with lesions appearing at the smallest dose of 0.05 Gy and increasing with increasing absorbed dose. Expressions of genes associated with oxidative stress processes were analyzed at four hours and twenty-four hours after exposure to gamma rays. We saw a much greater number of genes with significant up- or down-regulation twenty-four hours post-exposure as compared to the four hour time point. At both four hours and twenty-four hours post-exposure, Duox1 and Mpo underwent up-regulation for the highest dose of 6 Gy. Both protons and gamma rays lead to significant variation in gene expressions and these changes may provide insight into the mechanism of injury seen in the GI tract following radiation exposure. We have also completed experiments using a BALB/c mouse model undergoing whole-body exposure to protons. Doses of 0, 0.1, 1 and 2 Gy were used and results will be compared to the work mentioned

  7. Preleukemic change in the bone marrow of whole-body irradiated RFM/Up mice

    International Nuclear Information System (INIS)

    Ludwig, F.C.; Schug, W.G.; Bostick, W.L.; Smoke, M.E.

    1977-01-01

    In the whole-body irradiated mouse, various late effects of radiation are observed after the recovery from acute radiation injury. Some of these account for the familiar proneness of certain mouse strains to develop leukemias. The two experiments described below were designed to identify such preleukemic changes in blood-forming tissues and to find ways to manipulate them experimentally with the purpose of preventing leukemia. Preleukemic change of the bone marrow appears to be a mere quantitative departure from normal in a qualitatively non-malignant tissue. It entails increased proneness of immature cells to react with latent virus. The data, received are consistent with the assumption that this prononess is enhanced (or brought about) by removal of a controlling influence exerted by the mature cells over their precursors. Re-irradiation combined with intravenous bone marrow substitution offsets the leukemogenic influence of an earlier radiation exposure. The effect of re-irradiation on bone marrow displaying preleukemic lesions corroborates conclusions from earlier experiments on the nature of these lesions. (orig./MG) [de

  8. Optimization of monoclonal antibody production in mouse ascites by single whole-body irradiation

    International Nuclear Information System (INIS)

    Witt, S.; Ziegler, B.; Kloeting, I.; Ziegler, M.; Nadrowitz, R.; Schmidt, W.

    1987-01-01

    Hybridoma cells injected intraperitoneally into mice induce formation of ascites tumors producing ascites fluid with high levels of monoclonal antibodies. Several parameters affect the growth of the immunoglobulin-producing tumors in vivo. In 10 different hybridomas the average ascites tumor formation rate could be increased from 32% (n = 338 mice) to 77% (n = 112 mice) by only one whole-body irradiation of paraffin-pretreated Balb/c mice. Production of monoclonal antibodies was better in males because of the significantly (p < 0.01) increased volume of ascites fluid. From the increased tumor formation rate in irradiated mice it is suggested that in non-irradiated recipients the tumor growth rate was lowered by immunological reactions against hybridoma cells provoked by cell surface neoantigens revealed by cell fusion and/or tumor-associated antigens of the myeloma parent cells as well as by altered antigen pattern caused by possible mutations in the myeloma cell line and/or Balb/c/K strain. (author)

  9. Fragmentation of chromatin DNA in mouse thymus cells after whole body γ-irradiation

    International Nuclear Information System (INIS)

    Wei Kang; Liu Xueying; Zhu Xuefen

    1984-01-01

    The characteristics of soluble chromatin in mouse thymus nuclei after whole body γ-irradiation were investigated by means of polyacrylamide gel electrophoresis. After deproteinization and electrophoresis eight regular DNA bands were revealed. The molecular weights of these bands were estimated by comparing their migration rates with those of the standard fragments obtained from PBR 322 digested completely by restrictive endonuclease Hae III. The molecular weight of the first band was calculated to be 186 base pairs corresponding approximately to the size of DNA fragment from a single nucleosome, and those of other bands appeared to be its multiples. The results suggested that the disintegration of chromatin DNA after γ-irradiation might have occurred at the linkage regions of chromatin. The autolysis product of normal thymus chromatin under sterile condition were also analyzed and its electrophoretic pattern was found to be just the same as that of the postirradiation product. It seems, therefore, that the endonuclease existing in normal tissues might be responsible for the postirradiation chromatin degradation. The mechanism of this kind of enzymatic digestion remains to be elucidated in further investigation. (author)

  10. Stability of the translocation frequency following whole-body irradiation measured in rhesus monkeys

    Science.gov (United States)

    Lucas, J. N.; Hill, F. S.; Burk, C. E.; Cox, A. B.; Straume, T.

    1996-01-01

    Chromosome translocations are persistent indicators of prior exposure to ionizing radiation and the development of 'chromosome painting' to efficiently detect translocations has resulted in a powerful biological dosimetry tool for radiation dose reconstruction. However, the actual stability of the translocation frequency with time after exposure must be measured before it can be used reliably to obtain doses for individuals exposed years or decades previously. Human chromosome painting probes were used here to measure reciprocal translocation frequencies in cells from two tissues of 8 rhesus monkeys (Macaca mulatta) irradiated almost three decades previously. Six of the monkeys were exposed in 1965 to whole-body (fully penetrating) radiation and two were unexposed controls. The primates were irradiated as juveniles to single doses of 0.56, 1.13, 2.00, or 2.25 Gy. Blood lymphocytes (and skin fibroblasts from one individual) were obtained for cytogenetic analysis in 1993, near the end of the animals' lifespans. Results show identical dose-response relationships 28 y after exposure in vivo and immediately after exposure in vitro. Because chromosome aberrations are induced with identical frequencies in vivo and in vitro, these results demonstrate that the translocation frequencies induced in 1965 have not changed significantly during the almost three decades since exposure. Finally, our emerging biodosimetry data for individual radiation workers are now confirming the utility of reciprocal translocations measured by FISH in radiation dose reconstruction.

  11. Effect of whole body neutron irradiation on certain enzyme activities in different brain areas in mice

    International Nuclear Information System (INIS)

    Kotb, M.A.; Ashour, A.M.; El-Bassiouni, E.A.

    1994-01-01

    Male swiss albino mice were exposed to whole-body irradiation by fast neutrons of 14 MeV average energy. Two single doses of 0.08 sievert and 0.16 sievert were used, corresponding to fluences of 1.27 X 10 8 and 2.54 X 10 8 n/cm 2 respectively. Two enzymes were assessed in different layers of the cerebrum and cerebellum of mouse brain. Changes in the activities of acid phosphatase (ACP) and succinic dehydrogenase (SDH) were taken to measure alterations in lysosomal and mitochondrial functions respectively. The degrees of lysosomal affection in different layers of the cerebrum were not uniform, while changes in A activity were very prominent in certain layers (e.g. external pyramidal layer, polymorphous cells layer and white matter), they were practically absent in others (e.g. internal pyramidal layer). Stronger effect was noted in the tissue layers of the cerebellum. The activity of SDH decreased as result of fast neutron irradiation. The response was more apparent for this enzyme than for ACP. This indicates more liability for a decrease in energy metabolism with consequent effect on behavioural and physiological functions under central nervous system control. 4 figs., 4 tabs

  12. Chromosome aberrations of the peripheral lymphocytes in rabbits exposed to single and fractionated whole-body x-irradiations

    International Nuclear Information System (INIS)

    Tamura, Hiroaki; Sakurai, Masaharu; Sugahara, Tsutomu.

    1978-01-01

    The changes in the frequency of peripheral lymphocytes with chromosome aberrations were observed during or after irradiation of rabbits exposed to fractionated or single whole-body irradiations. In rabbits given daily fractionated whole-body irradiations the incidence of the aberrations showed a linear increase in the first week; however, the incidence decreased thereafter though exposures were repeated. The lymphocyte count tended to decrease as the number of irradiations increased. In rabbits exposed to a single dose of 250 R or 500 R the incidence of aberrations rapidly decreased over a period of 10 days following irradiation, and then showed a little change thereafter. The lymphocyte count in the peripheral blood reached a nadir 2 - 5 days after irradiation, and then started to increase gradually. It was speculated that there are two types of lymphocytes, long-lived and short-lived, in the peripheral blood of rabbits, both of which are PHA-committed. (auth.)

  13. Dosimetric analysis for photon and electron beams in Whole body irradiation

    International Nuclear Information System (INIS)

    Hurtado G, M.

    1998-01-01

    To initiate the Whole body irradiation as an alternative for the treatment of the hematological diseases, leukemia and assistant for the osseous marrow transplantation, it may be taken account the application of International Protocols about control and quality assurance. It is established the intercomparison by the different dosimetric methods: cylindrical ionization chambers and parallel plane, radiographic emulsion film, semiconductor diodes (Mosfet transistors) and TLD-100 thermoluminescent crystals, obtained measurements for 140 x 140 cm 2 fields and large distances 340 cm respect conventional fields in Radiotherapy. The in vitro dosimetry was realized at the Universal Anthropomorphic puppet Alderson Rando basically with the cylindrical crystals (1 mm diameter) of TLD-100 lithium fluoride. It was obtained the dose value with a 0.6 cm 3 cylindrical ionization chamber and the Farmer electrometer for Whole body irradiation (ICT) with photons for electrons and were obtained values with the Markus plane parallel camera. Knowing the dose rate value to the source-surface distance DFS= 80 cm, it was calibrated the crystals with the reference radiation beam of 60 Co for obtaining the response curve: Dose vs. Tl lecture. It was characterized the 10 % of the total population for 300 crystals for applying the statistics corresponding. The luminescence curve obtained of Gaussian form was considered satisfactory by its stability during the pre-anneal lecture and anneal process, getting the main peak lecture at 300 Centigrade according to assigned parameters at lecture equipment TLD Harshaw model 4500. The results indicate the functional dependence with the distance DFS= 340 cm for the following depth PPD, the relations TMR and TPR, the TAR is not calculated by the increment of the dispersion in air. The penumbra increment indicates an increase of the radiation field respect of luminous field. The dispersion angle q 1 respect at the field central axis was determined and was

  14. The influence of whole body 60Co-irradiation on distribution of 67Ga in tumor-bearing mice

    International Nuclear Information System (INIS)

    Wakao, Hiromi; Shimura, Akira; Higashi, Tomomitsu

    1981-01-01

    Since the initial findings that 67 Ga has a preferential affinity for soft tissue tumors, in humans numerous suggestions have been advanced for the basic mechanism involved. The effects produced by whole-body X-irradiation on the excretion and tissue distribution of 67 Ga have been reported by Swartzendruber and others. Bradley and coworkers have shown that these irradiation effects were associated with an increase in serum iron. The present investigation was undertaken in order to study the relationships between the change in the serum iron concentration and 67 Ga accumulation in the tumor and soft tissues in mice bearing Ehrlich's ascites tumor. The following results were obtained. (1) The serum iron concentration was significantly decreased between 3 and 6 hours after 10 Gy (1,000 rad) dose of whole-body 60 Co-irradiation. Subsequently, the serum iron levels were slowly elevated. (2) The uptake of 67 Ga in the tumor and soft tissues was increased if the serum iron concentration was decreased by whole-body 60 Co-irradiation during the early phase. On the contrary, if the serum iron concentration was high, the uptake of 67 Ga in the tumor was decreased. (3) The excretion of 67 Ga from the body was delayed if the serum iron concentration was decreased by whole-body 60 Co-irradiation. However, if the serum iron concentration was high, the excretion of 67 Ga from the body significantly increased. (author)

  15. Long-term effect of whole-body X-irradiation on cell-mediated immune reaction in mice

    International Nuclear Information System (INIS)

    Norimura, Toshiyuki; Tsuchiya, Takehiko

    1989-01-01

    Age-related change in immunological activity was examined at 10 to 91 weeks following whole-body irradiation by determining the specific anti-tumor cell-mediated immunity in host mice induced and/or enhanced by local irradiation to transplanted tumor. Median survival time of the non-irradiated C3H/He female mice was 98.6 weeks while the median life-span of the mice exposed to two and four Gy of 250 kVp X-rays at the age of 10-12 weeks was shortened by 14.9 and 23.4 weeks, respectively. The rate of tumor reduction within two weeks after local irradiation to tumor and the growth inhibitory activitiy of spleen cells from tumor irradiated mice were reduced in a dose-dependent manner when assessed 10 weeks after whole-body irradiation, but recovered to the near-complete level of the non-irradiated controls within a few months, then gradually decreased with normal aging. These results suggest that the age-dependent decline of this immunological activity apears earlier in the irradiated mice as a result of whole-body X-irradiation at a young age, suggesting accelerated aging of the immune system. (author)

  16. Neuroimmune response and sleep studies after whole body irradiation with high-LET particles

    Science.gov (United States)

    Marquette, C.; Mathieu, J.; Bertho, J.-M.; Galonnier, M.; Wysoki, J.; Maubert, C.; Balanzat, E.; Gerbin, R.; Aigueperse, J.; Clarençon, D.

    2009-10-01

    In order to investigate the biological effects of galactic rays on astronaut cerebral functions after space flight, mice were exposed to different heavy ions (HZE) in whole-body conditions at doses comparable to the galactic flux: 12C, 16O and 20Ne (95 MeV/u, at 42-76 mGy). Animals were also exposed to 42 mGy of 60Co radiation for comparison with HZE. The neuroimmune response, evaluated by interleukin-1 (IL-1) measurement, showed that this cytokine was produced 3 h after irradiation by 16O or 60Co. In contrast, neither 12C (56.7 mGy) nor 20Ne (76 mGy) induced IL-1 production. However, immunohistochemical staining of 12C-irradiated mouse brain tissue showed 2 months later a marked inflammatory reaction in the hippocampus and a diffuse response in parenchyma. Sleep studies were realized before and after exposure to 42 mGy of 16O and 76 mGy of 20Ne: only the 20Ne radiation displayed a small effect. A slight decrease in paradoxical sleep, corresponding to a reduction in the number of episodes of paradoxical sleep, was manifested between 8 and 22 days after exposure. Exposure to 12C and 16O induced no changes either in cellularity of spleen or thymus, or in caspase 3 activity (as much as four months after irradiation). Taken together, these data indicate that the CNS could be sensitive to heavy ions and that responses to HZE impact depend on the nature of the particle, the dose threshold and the time delay to develop biological processes. Differences in responses to different HZE highlight the complex biological phenomena to which astronauts are submitted during space flight.

  17. Neuro-immune response and sleep studies after whole body irradiation with high-LET particles

    International Nuclear Information System (INIS)

    Marquette, C.; Bertho, J.M.; Wysoki, J.; Maubert, C.; Gerbin, R.; Aigueperse, J.; Mathieu, J.; Galonnier, M.; Clarencon, D.; Balanzat, E.

    2009-01-01

    In order to investigate the biological effects of galactic rays on astronaut cerebral functions after space flight, mice were exposed to different heavy ions (HZE) in whole-body conditions at doses comparable to the galactic flux: 12 C, 16 O and 20 Ne (95 MeV/u, at 42-76 mGy). Animals were also exposed to 42 mGy of 60 Co radiation for comparison with HZE. The neuro-immune response, evaluated by interleukin-I (IL-1) measurement, showed that this cytokine was produced 3 h after irradiation by 16 O or 60 Co. In contrast, neither 12 C (56.7 mGy) nor 20 Ne (76 mGy) induced IL-1 production. However, immunohistochemical staining of 12 C-irradiated mouse brain tissue showed 2 months later a marked inflammatory reaction in the hippocampus and a diffuse response in parenchyma. Sleep studies were realized before and after exposure to 42 mGy of 16 O and 76 mGy of 20 Ne: only the 20 Ne radiation displayed a small effect. A slight decrease in paradoxical sleep, corresponding to a reduction in the number of episodes of paradoxical sleep, was manifested between 8 and 22 days after exposure. Exposure to 12 C and 16 O induced no changes either in cellularity of spleen or thymus, or in caspase 3 activity (as much as four months after irradiation). Taken together, these data indicate that the CNS could be sensitive to heavy ions and that responses to HZE impact depend on the nature of the particle, the dose threshold and the time delay to develop biological processes. Differences in responses to different HZE highlight the complex biological phenomena to which astronauts are submitted during space flight. (authors)

  18. Lung autophagic response following exposure of mice to whole body irradiation, with and without amifostine

    International Nuclear Information System (INIS)

    Zois, Christos E.; Giatromanolaki, Alexandra; Kainulainen, Heikki; Botaitis, Sotirios; Torvinen, Sira; Simopoulos, Constantinos; Kortsaris, Alexandros; Sivridis, Efthimios; Koukourakis, Michael I.

    2011-01-01

    Research highlights: → We investigated the effect 6 Gy of WBI on the autophagic machinery of normal mouse lung. → Irradiation induces dysfunction of the autophagic machinery in normal lung, characterized by decreased transcription of the LC3A/Beclin-1 mRNA and accumulation of the LC3A, and p62 proteins. → The membrane bound LC3A-II protein levels increased in the cytosolic fraction (not in the pellet), contrasting the patterns noted after starvation-induced autophagy. → Administration of amifostine, reversed all the LC3A and p62 findings, suggesting protection of the normal autophagic function. -- Abstract: Purpose: The effect of ionizing irradiation on the autophagic response of normal tissues is largely unexplored. Abnormal autophagic function may interfere the protein quality control leading to cell degeneration and dysfunction. This study investigates its effect on the autophagic machinery of normal mouse lung. Methods and materials: Mice were exposed to 6 Gy of whole body γ-radiation and sacrificed at various time points. The expression of MAP1LC3A/LC3A/Atg8, beclin-1, p62/sequestosome-1 and of the Bnip3 proteins was analyzed. Results: Following irradiation, the LC3A-I and LC3A-II protein levels increased significantly at 72 h and 7 days. Strikingly, LC3A-II protein was increased (5.6-fold at 7 days; p < 0.001) only in the cytosolic fraction, but remained unchanged in the membrane fraction. The p62 protein, was significantly increased in both supernatant and pellet fraction (p < 0.001), suggesting an autophagosome turnover deregulation. These findings contrast the patterns of starvation-induced autophagy up-regulation. Beclin-1 levels remained unchanged. The Bnip3 protein was significantly increased at 8 h, but it sharply decreased at 72 h (p < 0.05). Administration of amifostine (200 mg/kg), 30 min before irradiation, reversed all the LC3A and p62 findings on blots, suggesting restoration of the normal autophagic function. The LC3A and Beclin1 m

  19. C-fos protein expression in central nervous system. Effects of acute whole-body irradiation

    International Nuclear Information System (INIS)

    Martin, C.; Chollat, S.; Mahfoudi, H.; Lambert, F.; Baille Le Crom, V.; Fatome, M.

    1995-01-01

    Study of c-Fos protein expression in the rat striatum after gamma or (neutron-gamma) irradiation was carried on. c-Fos protein is expressed one hour after gamma exposure at the dose of 15 Gy but specificity of the response must be verified. (author)

  20. Effects of whole-body γ-irradiation on the biosynthesis of certain serum proteins. Final report, November 29, 1967--June 30, 1976

    International Nuclear Information System (INIS)

    Neuhaus, O.W.

    1976-01-01

    Whole-body exposure of rats to ionizing radiations yielded an increased incorporation of labeled amino acids into serum albumin in in vivo studies suggesting a stimulation of biosynthesis. Actually this may have been caused by an elevated hepatic transport of labeled amino acids (see below). A suppressed biosynthesis of albumin was observed when the experiments were performed in vitro using liver microsomes. Impaired biosynthesis appeared to be caused by a reduced mRNA production. Irradiation stimulated the biosynthesis of acute-phase plasma proteins (stress response) and inhibited the excretion of α/sub 2u/-globulin, the sex-dependent protein of the adult male rat. Exposure of rats to γ-rays stimulated amino acid transport into the liver. This process which is Na + and energy-dependent was studied with α-aminoisobutyric acid, cycloleucine, and L-methionine among others. After irradiation the serum glucagon and insulin, as well as hepatic cAMP levels, were elevated. Amino acid transport may be an important factor in controlling the increased gluconeogenesis and glycogenesis observed in rats following whole-body irradiation

  1. Measurement of absorbed radiation doses during whole body irradiation for bone marrow transplants using thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Giordani, Adelmo Jose; Segreto, Helena Cristina Comodo; Segreto, Roberto Araujo; Medeiros, Regina Bitelli; Oliveira, Jose Salvador R. de

    2004-01-01

    The objective was to evaluate the precision of the absorbed radiation doses in bone marrow transplant therapy during whole body irradiation. Two-hundred CaSO 4 :Dy + teflon tablets were calibrated in air and in 'phantom'. These tablets were randomly selected and divided in groups of five in the patients' body. The dosimetric readings were obtained using a Harshaw 4000A reader. Nine patients had their entire bodies irradiated in parallel and opposite laterals in a cobalt-60 Alcion II model, with a dose rate of 0.80 Gy/min at 80.5 cm, {(10 ? 10) cm 2 field. The dosimetry of this unit was performed using a Victoreen 500 dosimeter. For the determination of the mean dose at each point evaluated, the individual values of the tablets calibrated in air or 'phantom' were used, resulting in a build up of 2 mm to superficialize the dose at a distance of 300 cm. In 70% of the patients a variation of less than 5% in the dose was obtained. In 30% of the patients this variation was less than 10%, when values obtained were compared to the values calculated at each point. A mean absorption of 14% was seen in the head, and an increase of 2% of the administered dose was seen in the lungs. In patients with latero-lateral distance greater than 35 cm the variation between the calculated doses and the measured doses reached 30% of the desired dose, without the use of compensation filters. The measured values of the absorbed doses at the various anatomic points compared to the desired doses (theoretic) presented a tolerance of ± 10%, considering the existent anatomical differences and when using the individual calibration factors of the tablets. (author)

  2. The effect of whole body or total-head x irradiation of the metallophilic cells in the mice spleen

    International Nuclear Information System (INIS)

    Sasaki, Osamu; Matsueda, Yasutoshi; Mizuguchi, Hiroshi; Moriguchi, Kenzo; Ogata, Kunitoshi; Sugie, Tsuneto

    1984-01-01

    The purpose of this paper is to clarify morphological changes of the reticuloendothelial cells in the spleen following X-irradiation by Katsura's silver impregnation method. The animals used in this experiment were ddN female mice weighing 20 to 25g. The mice were given X-irradiation to the total-head (1,500R) or whole body (300R). The metallophilic cells in the spleen of control mice were of the small foamy type in the follicle, the large stellate type in the marginal metallophils, the small branching type in the marginal zone and the small foamy or round type in the red pulp, respectively. The metallophilic cells decreased immediately after whole body irradiation and the number of cells returned to normal in from 10 to 14 days. On the other hand, the number of the metallophilic cells in the follicle and the perifollicular region increased immediately after total-head X-irradiation. This state continued for several days. In the marginal zone and red pulp, the number of amoebian type cells appeared from 24 hours after irradiation and the number of cells in total-head irradiation group were more clearly distinguishable than in the whole body irradiated group. (author)

  3. Effect of whole body irradiation on O/sub 2//sup -/ production in polymorphonuclear leukocyte of guinea pig

    Energy Technology Data Exchange (ETDEWEB)

    Niiya, Harutaka

    1987-01-01

    The capacity of superoxide anion production of polymorphonuclear leukocytes (PMNL) has been determined after whole body irradiation. A diminished capacity of superoxide anion production in the presence of opsonized zymosan was found in PMNL taken from guinea pigs irradiated in vivo with 5, 10, and 20 Gy. However, no such diminution was found after a dose of 2 Gy. On the other hand, levels of superoxide anion production stimulated by myristate, N-Formyl-Methionyl-Leucyl-Phenylalanine (FMLP), and Concanavalin A remained unchanged compared to the control. PMNL irradiated in vitro with 20 Gy had a capacity of superoxide anion production similar to that of the control samples in the presence of either opsonized zymosan or FMLP and myristate. These results suggest that the capacity of superoxide anion production stimulated by zymosan is damaged by whole body irradiation.

  4. Whole-body metabolism varies across the estrous cycle in Sprague-Dawley rats.

    Science.gov (United States)

    Parker, G C; McKee, M E; Bishop, C; Coscina, D V

    2001-10-01

    Food intake in rats and other mammals is lowest at estrus and highest at diestrus. While much is known about the effects of different estrous phases on energy intake, as well as some of the metabolic effects the associated hormones exert, little has been reported about changes in whole-body metabolism that accompany those phases. This study investigates how energy expenditure (EE) and respiratory quotient (RQ) vary in intact female Sprague-Dawley rats (n=12) tested mid-light cycle over 2 h on days associated with estrus vs. diestrus. Rats showed small but reliable decreases in body weight on days associated with estrus, but not diestrus. EE was significantly increased by approximately 21% on the day associated with estrus compared to diestrus. At the same time, RQ was significantly decreased by approximately 7% on the day associated with estrus, indicating a relative shift to fat over carbohydrate as the energy substrate to support energetic needs. Future investigations of ingestive processes can integrate the present findings to investigate how gender differences in feeding and metabolism contribute to regulatory behaviors.

  5. Effects of 8-Prenylnaringenin and Whole-Body Vibration Therapy on a Rat Model of Osteopenia.

    Science.gov (United States)

    Hoffmann, Daniel B; Griesel, Markus H; Brockhusen, Bastian; Tezval, Mohammad; Komrakova, Marina; Menger, Bjoern; Wassmann, Marco; Stuermer, Klaus Michael; Sehmisch, Stephan

    2016-01-01

    Background. 8-Prenylnaringenin (8-PN) is the phytoestrogen with the highest affinity for estrogen receptor-α (ER-α), which is required to maintain BMD. The osteoprotective properties of 8-PN have been demonstrated previously in tibiae. We used a rat osteopenia model to perform the first investigation of 8-PN with whole-body vertical vibration (WBVV). Study Design. Ovariectomy was performed on 52 of 64 Sprague-Dawley rats. Five weeks after ovariectomy, one group received daily injections (sc) of 8-PN (1.77 mg/kg) for 10 weeks; a second group was treated with both 8-PN and WBVV (twice a day, 15 min, 35 Hz, amplitude 0.47 mm). Other groups received either only WBVV or no treatment. Methods. The rats were sacrificed 15 weeks after ovariectomy. Lumbar vertebrae and femora were removed for biomechanical and morphological assessment. Results. 8-PN at a cancer-safe dose did not cause fundamental improvements in osteoporotic bones. Treatment with 8-PN caused a slight increase in uterine wet weight. Combined therapy using WBVV and 8-PN showed no significant improvements in bone structure and biomechanical properties. Conclusion. We cannot confirm the osteoprotective effects of 8-PN at a cancer-safe dose in primary affected osteoporotic bones. Higher concentrations of 8-PN are not advisable for safety reasons. Adjunctive therapy with WBVV demonstrates no convincing effects on bones.

  6. Effects of 8-Prenylnaringenin and Whole-Body Vibration Therapy on a Rat Model of Osteopenia

    Directory of Open Access Journals (Sweden)

    Daniel B. Hoffmann

    2016-01-01

    Full Text Available Background. 8-Prenylnaringenin (8-PN is the phytoestrogen with the highest affinity for estrogen receptor-α (ER-α, which is required to maintain BMD. The osteoprotective properties of 8-PN have been demonstrated previously in tibiae. We used a rat osteopenia model to perform the first investigation of 8-PN with whole-body vertical vibration (WBVV. Study Design. Ovariectomy was performed on 52 of 64 Sprague-Dawley rats. Five weeks after ovariectomy, one group received daily injections (sc of 8-PN (1.77 mg/kg for 10 weeks; a second group was treated with both 8-PN and WBVV (twice a day, 15 min, 35 Hz, amplitude 0.47 mm. Other groups received either only WBVV or no treatment. Methods. The rats were sacrificed 15 weeks after ovariectomy. Lumbar vertebrae and femora were removed for biomechanical and morphological assessment. Results. 8-PN at a cancer-safe dose did not cause fundamental improvements in osteoporotic bones. Treatment with 8-PN caused a slight increase in uterine wet weight. Combined therapy using WBVV and 8-PN showed no significant improvements in bone structure and biomechanical properties. Conclusion. We cannot confirm the osteoprotective effects of 8-PN at a cancer-safe dose in primary affected osteoporotic bones. Higher concentrations of 8-PN are not advisable for safety reasons. Adjunctive therapy with WBVV demonstrates no convincing effects on bones.

  7. Neonatal irradiation nephropathy in the growing dog. I. Renal morphological and functional adaptations following neonatal, sublethal, whole-body irradiation

    International Nuclear Information System (INIS)

    Wilke, W.L.; Phemister, R.D.; Jaenke, R.S.

    1979-01-01

    Sixty beagles were used to study the effects of exposure to 330 R 60 Co γ radiation (bilateral, whole-body) at 2 days of age on renal functional and morphological development in the growing dog. A significant deficit in grams kidney per kilogram body weight was found in irradiated dogs at 50 days of age (P < 0.05), but not at 125 or 200 days of age. Glomerular filtration rate (GFR) per kilogram body weight and GFR per gram kidney were not significantly different between irradiated and nonirradiated dogs at 50, 125, or 200 days of age, but blood urea nitrogen (BUN) was significantly elevated in irradiated dogs throughout this period (P < 0.05). The fractional distribution of intracortical renal blood flow, as determined by radiolabeled microspheres, to the outermost cortex was found to be reduced in irradiated animals at all ages evaluated (P < 0.05). The fractional blood flow to the outermost renal cortex was negatively correlated with BUN in both irradiated (P < 0.05) and nonirradiated (P < 0.05) animals. Based on prior demonstrations of reductions in nephron numbers following similar irradiation, these data indicate increases in mean single nephron GFR and nephronal hypertrophy in the kidneys of the neonatally irradiated dog. The renal functional and morphological adaptations are sufficient to maintain adequate renal function in growing, neonatally irradiated dogs. The BUN elevations in irradiated dogs are believed to be related to changes in intracortical renal blood flow, rather than indicating renal insufficiency. The possible importance of the functional and morphological adaptations to the subsequent development of chronic renal failure in neonatally irradiated animals is discussed

  8. Neoplasia in beagles that received whole-body irradiation during prenatal or postnatal development

    International Nuclear Information System (INIS)

    Benjamin, S.A.; Angleton, G.M.; Lee, A.C.; Saunders, W.J.; Miller, G.K.; Jaenke, R.S.; Brewster, R.D.; Long, R.I.

    1986-01-01

    Sensitivity to radiation carcinogenesis is being studied in 1680 beagle dogs that received whole-body 60 Co gamma radiation exposures during development. Eight treatment groups of 120 dogs each received 0.16 or 0.83 Gy at one of three prenatal (8, 28, or 55 days postcoitus) ages or at one postnatal (2 days postpartum) age. One treatment group of 120 dogs received 0.83 Gy as juveniles at 70 days postpartum, and one treatment group of 240 young adult dogs received 0.83 Gy at 365 days postpartum. Three-hundred-sixty control dogs were sham irradiated. Of the 1680 dogs, 1058 are dead. Approximately 25% of these deaths were related to malignant neoplasia. The age-related incidence of neoplasia is being evaluated. While the incidence of all neoplasms is being studied, particular emphasis is being placed on types of cancer with known susceptibility to induction by radiation such as those of breast, thyroid, and hematopoietic tissues. Neoplasms are classed as (1) incidental, i.e., those found at necropsy in dogs that died of an unrelated cause; (2) mortality independent, i.e., those seen in live dogs and removed surgically, or (3) fatal, i.e., those directly or indirectly responsible for death. Analyses of incidental tumors are done by a prevalence method, whereas analyses of mortality-independent and fatal tumors use an onset-rate or death-rate method. The results of these methods are then combined to give a composite age-related incidence of specific neoplasms. Analyses also are done on disease subgroups to attempt to delineate the effect of intercurrent disease on tumor incidence. The results of such analyses support the concept that age at exposure is an important factor in radiation carcinogenesis. 28 refs., 7 tabs

  9. Accumulation of lipid peroxidation products in eye structures of mice subjected to whole-body X-irradiation

    International Nuclear Information System (INIS)

    Sakina, N.L.; Dontsov, A.E.; Afanas'ev, G.G.; Ostrovskij, M.A.; Pelevina, I.I.

    1990-01-01

    In studying the effect of whole-body X-irradiation on the accumulation of lipid peroxidation products (conjugated dienes, TBA-active products, and Sciff bases) in retina and retinal pigmented epithelium of pigmented and nonpigmented mice it was shown that irradiation of dark-pigmented mice does not cause even a slight accumulation of lipid peroxidation products as compared to that in the controls. Albino mice exhibited a marked increase in the level of lipid peroxidation products which was manifested soon after irradiation and persisted for at least 3 months after irradiation. Melanine is suggested to participate in protecting eye structures against pro-oxidizing action of ionizing radiation

  10. Inhibitory mechanism of low-dose, whole-body irradiation with gamma-rays against tumor metastasis

    International Nuclear Information System (INIS)

    Yasuhiro Ohsima; Mitsutoshi Tukimoto; Shuji Kojima

    2007-01-01

    Complete text of publication follows. A lot of beneficial effects of low-dose irradiation are well known. Of them, an inhibitory effect of the radiation on lung metastasis is reported so far. It has been reported that low-dose whole-body irradiation with gamma rays enhanced cytotoxic immune response as one of the mechanisms. In our laboratory, it has been confirmed an enhancement of natural killer activity in mice irradiated with whole-body 0.5Gy gamma-rays. Metastasis is accomplished by multistep process, involving basement membrane destruction, local invasion, intravasation, survival in the bloodstream, extravasation into distant organs, and proliferation at the target site. Besides, a lot of growth factors and proteases are involved in these steps. As to mechanism of inhibition of tumor metastasis induced by low-dose whole-body irradiation, studies from the standpoint of tumor invasion have not been reported. Here, inhibitory effect of 0.5Gy whole-body gamma-ray irradiation on tumor metastasis and its mechanism were examined in pulmonary metastasis model mice injected with B16 melanoma cells. Consequently, 0.5Gy whole-body gamma ray irradiation significantly suppressed colony formation in the lungs. Expression of matrix metalloproteinase- 2 (MMP- 2), a proteinase related to metastasis, in lung tissues was suppressed by the radiation. Alteration of tissue inhibitor of matrix metalloproteinase (TIMP) after the gamma-ray irradiation was examined. Expression of TIMP-1 and TIMP-2 mRNA in the lungs were significantly increased. In order to clarify the inhibitory effect obtained in the in vivo metastatic lung cancer model mice, we studied effects of gamma-rays on cell proliferation, alterations of mRNA and proteins related to tumor metastasis in cultured B16 melanoma cells. Proliferation of B16 melanoma cells was decreased in a dose-dependent manner. MMP-2 mRNA expression was not altered in any doses of gamma-rays. Thought expression of the protein was slightly

  11. Effect of Whole-Body Cryotherapy on Antioxidant Systems in Experimental Rat Model

    Directory of Open Access Journals (Sweden)

    Bronisława Skrzep-Poloczek

    2017-01-01

    Full Text Available Background. The purpose of this study was to verify the effect of whole-body cryotherapy (WBC in rats on their antioxidant systems, lipid peroxidation products, and their total oxidative status at different exposure times and temperatures. Methods. Antioxidants in serum, plasma, liver, and erythrocytes were evaluated in two study groups following 1 min of exposure to −60°C and −90°C, for 5 and 10 consecutive days. Results. WBC increased the activity of superoxide dismutase, catalase in the group subjected to 5 and 10 days exposure, −60°C. The glutathione S-transferase activity increased in the groups subjected to 10 days WBC sessions. Total antioxidant capacity increased after 5 and 10 days of 1 min WBC, −60°C; a decrease was observed at −90°C. A decreased level of erythrocyte malondialdehyde concentration was observed at −60°C after 5 and 10 days of cryostimulation. An increased concentration was measured at −90°C after 10 days, and increase of erythrocyte malondialdehyde concentration after 5 days, −90°C. Conclusions. To the best of our knowledge, this is the first research showing the effect of WBC in rats at different exposure times and temperatures. The effect of cryotherapy on enzymatic and nonenzymatic antioxidant systems was observed in the serum of animals exposed to a temperature of −60°C in comparison to control.

  12. Effects of immobilization and whole-body vibration on rat serum Type I collagen turnover.

    Science.gov (United States)

    Dönmez, Gürhan; Doral, Mahmut Nedim; Suljevic, Şenay; Sargon, Mustafa Fevzi; Bilgili, Hasan; Demirel, Haydar Ali

    2016-08-01

    The aim of this study was to investigate the effects of short-term, high-magnitude whole-body vibration (WBV) on serum type I collagen turnover in immobilized rats. Thirty Wistar albino rats were randomly divided into the following 5 groups: immobilization (IS), immobilization + remobilization (IR), immobilization + WBV (IV), control (C), and WBV control (CV). Immobilization was achieved by casting from the crista iliaca anterior superior to the lower part of the foot for 2 weeks. The applied WBV protocol involved a frequency of 45 Hz and amplitude of 3 mm for 7 days starting a day after the end of the immobilization period. Serum type I collagen turnover markers were measured by using ELISA kits. Serum NH2-terminal propeptide of type I collagen (PINP) levels were significantly lower in the immobilization groups (p immobilization groups. Similarly, serum COOH-terminal telopeptide of type I collagen (CTX) levels were higher in the WBV controls than their own controls (p Immobilization led to deterioration of tendon tissue, as observed by histopathological analysis with a transmission electron microscope. Although 1 week of WBV had a positive effect on type I collagen turnover in controls, it is not an efficient method for repairing tissue damage in the early stage following immobilization. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  13. γ-ray induced chromosome aberration in rabbit peripheral blood lymphocytes irradiated in partial and whole body and decline of aberration rate with time post-exposure

    International Nuclear Information System (INIS)

    Zhang Lianzhen; Deng Zhicheng; Wang Haiyan

    1997-01-01

    Te author presents the results of study on 60 Co γ-ray induced chromosome aberration in rabbits peripheral blood lymphocytes irradiated in partial and whole body and the aberration rate decrease with the time of post-exposure. The experiments included 5 groups, it was whole-body exposure group, partial-body exposure (abdomen and pelvic cavity) group, blood irradiation group in vitro and control group respectively. Radiation dose was 3.0 Gy delivered at rate of 0.5 Gy/min. The results show that it was no significant differences between whole body and in blood irradiation group. The chromosome aberration yield in whole body exposure group was higher than that in partial-body group and in the abdomen exposure group was higher than in that in the pelvic cavity irradiation; The chromosome aberration rate decreased with the time of post-exposure in partial and whole body by γ-ray irradiation

  14. Ciprofloxacin Enhances Stress Erythropoiesis in Spleen and Increases Survival after Whole-Body Irradiation Combined with Skin-Wound Trauma

    Science.gov (United States)

    2014-02-28

    Figure 3D ). Analysis performed on kidney lysates from the same animals, however, revealed neither CI nor CIP significantly changed the total amount of HIF...cotton for nesting and a plastic dome. Irradiation Mice were placed in well-ventilated acrylic restrainers and given specified doses of whole-body...sterile water (vehicle) and after brief centrifugation sterile-filtered using a.22 mm cellulose nitrate (CN) filter system (Corning, Corning, NY). Each

  15. Morphoquantitative changes in central and intermediate sections of visual analyzer after whole-body x-irradiation

    International Nuclear Information System (INIS)

    Logvinov, S.V.; Ryzhov, A.I.

    1989-01-01

    Morphoquantitative estimation of changes in 4 and 5 layers of visual cortex and outer geniculated bodies of the brain of guinea pigs subjected to whole-body X-irradiation with a median lethal doses shows that neurons from the visual analyzer sections under study are differently damaged. The morphogenesis of changes is connected with the original variations in the quantitative structure of a neuron-glial complex displaying and selective alterative and productive reaction of the perivascular glia

  16. Absorption and retention studies of trace elements and minerals in rats using radiotracers and whole-body counting

    NARCIS (Netherlands)

    Berg, van den G.J.; Wolterbeek, H.Th.; de Goeij, J.J.M.; Beynen, A.C.

    1995-01-01

    A description is given of a whole-body counting technique using radiotracers, permitting the determination of true absorption and endogenous excretion of trace elements and minerals in the rat in vivo. This non-invasive counting method involves oral and intraperitoneal administration of tracer doses

  17. Peculiarities of hemodynamic pulmonary oedema formation in the irradiated body. [Lung oedema, whole-body irradiation, time dependence, survival curves

    Energy Technology Data Exchange (ETDEWEB)

    Kurygin, G V; Kopylov, V N; Girs, E F; Chizhov, P A [Yaroslavskij Meditsinskij Inst. (USSR)

    1978-09-01

    233 white rats have been tested to establish that large doses of ionizing radiation, which cause pronounced leukopenia, increase resistance of animals to lung oedema under the effect of adrenaline. It is most pronounced on the fourth day after irradiation. Relatively small doses (lower than 100r), as well as separate irradiation of the head, chest and abdomen, in reverse, contribute to lung oedema.

  18. The behaviour of the endocrinological parameters cortisol, testosterone, growth hormone and prolactin after UVA and UVB whole-body irradiation

    International Nuclear Information System (INIS)

    Hicke, M.

    1986-01-01

    With two groups, each with 8 healthy subjects UV whole-body irradiation was carried out with uniformly 30 J/cm 2 UVA or respectively UVB at the level of the individual minimal erythema dose. Every subject received serial irradiations once a day for four days. The determination of the serum hormone level was accomplished by means of radioimmunoassays. The results show a weakly significant decline of cortisol 4 and 24 hours after 2 serial UVB irradiations. 3,5 and 7 days after the end of the irradiation series the cortisol values have increased, but by the seventh day statistically only weakly significant. With UVA irradiation there was also a weakly significant increase in cortisol levels three days after the end of the irradiation series. The serum levels of the other hormones showed no statistically significant changes. (orig./MG) [de

  19. Protective Effects of Ibuprofen and L-Carnitine Against Whole Body Gamma Irradiation-Induced Duodenal Mucosal Injury

    Directory of Open Access Journals (Sweden)

    Meryem Akpolat

    2011-03-01

    Full Text Available Objective: Ibuprofen and L-carnitine have been demonstrated to provide radioprotective activity to the hamster against whole body sublethal irradiation. The purpose of this study is to test those antioxidant drugs, each of which has the capacity of inhibiting mucosal injury, as topical radioprotectants for the intestine. Material and Methods: The male hamsters were divided into the following four groups (n=6: group 1: control group, received saline, 1 ml/100 g by gavage, as placebo. Group 2: irradiated-control group, received whole body irradiation of 8 Gy as a single dose plus physiological saline. The animals in groups 3 and 4 were given a daily dose of 10 mg/kg of ibuprofen and 50 mg/kg of L-carnitine for 15 days respectively, before irradiation with a single dose of 8 Gy. Twenty-four hours after radiation exposure, the hamsters were sacrificed and samples were taken from the duodenum, and the histopatological determinations were carried out. Results: Morphologically, examination of the gamma irradiated duodenum revealed the presence of shortening and thickening of villi and flattening of enterocytes, massive subepithelial lifting. Pretreatment of ibuprofen and L-carnitine with irradiation reduced these histopathological changes. Conclusion: Ibuprofen and L-carnitine administrated by the oral route may be a good radioprotector against small intestinal damage in patients undergoing radiotherapy.

  20. Effect of Whole Body Low Dose Radiation (WB-LDR) on diabetic rats

    International Nuclear Information System (INIS)

    Roy, B.G.

    2014-01-01

    Exposure of type II diabetic mice to LDR has been shown to significantly up regulate pancreatic antioxidants along with reduction of glucose levels. Present study was aimed to evaluate the effects of WB-LDR on type II diabetic rats. Sprague-Dawley male rats (n=18) were pre-treated with Alloxan Monohydrate (150 mg/kg body weight, IP) to induce hyperglycemia. Elevated level of blood glucose was monitored for consecutive 10 days by Glucometer (Accu-Chek, Active) before irradiation. Two group of rats (n=12) were exposed to single dose of 0.25 Gy and 0.5 Gy of gamma radiation at the rate of 1.02 Gy/minute. Blood glucose level, feed, water intake and body weight was monitored for 10 days post irradiation. Results revealed weight loss, polydipsia, polyphagia and elevated blood glucose level up to 10th day in diabetic control, whereas; reverse trend was observed from 7th day post irradiation in two treated groups. However, no significant difference was found between two treated groups. The results indicate that treatment with WB-LDR reduces the blood-glucose level and so its complications in diabetic rats. (author)

  1. A Whole-Body Physiologically Based Pharmacokinetic Model for Colistin and Colistin methanesulfonate (CMS) in Rat.

    Science.gov (United States)

    Bouchene, Salim; Marchand, Sandrine; Couet, William; Friberg, Lena E; Gobin, Patrice; Lamarche, Isabelle; Grégoire, Nicolas; Björkman, Sven; Karlsson, Mats O

    2018-04-17

    Colistin is a polymyxin antibiotic used to treat patients infected with multidrug-resistant Gram negative bacteria (MDR-GNB). The objective of this work was to develop a whole-body physiologically based pharmacokinetic (WB-PBPK) model to predict tissue distribution of colistin in rat. The distribution of a drug in a tissue is commonly characterized by its tissue-to-plasma partition coefficient, K p . Colistin and its prodrug, colistin methanesulfonate (CMS) K p priors were measured experimentally from rat tissue homogenates or predicted in silico. The PK parameters of both compounds were estimated fitting in vivo their plasma concentration-time profiles from six rats receiving an i.v. bolus of CMS. The variability in the data was quantified by applying a non-linear mixed effect (NLME) modelling approach. A WB-PBPK model was developed assuming a well-stirred and perfusion-limited distribution in tissue compartments. Prior information on tissue distribution of colistin and CMS was investigated following three scenarios: K p were estimated using in silico K p priors (I) or K p were estimated using experimental K p priors (II) or K p were fixed to the experimental values (III). The WB-PBPK model best described colistun and CMS plasma concentration-time profiles in scenario II. Colistin predicted concentrations in kidneys in scenario II were higher than in other tissues, which was consistent with its large experimental K p prior. This might be explained by a high affinity of colistin for renal parenchyma and active reabsorption into the proximal tubular cells. In contrast, renal accumulation of colistin was not predicted in scenario I. Colistin and CMS clearance estimates were in agreement with published values. The developed model suggests using experimental priors over in silico K p priors for kidneys to provide a better prediction of colistin renal distribution. Such models might serve in drug development for interspecies scaling and investigating the impact of

  2. Myeloid regeneration after whole body irradiation, autologous bone marrow transplantation, and treatment with an anabolic steroid

    International Nuclear Information System (INIS)

    Ambrus, C.M.; Ambrus, J.L.

    1975-01-01

    Stumptail monkeys (Macaca speciosa) received lethal whole-body radiation. Autologous bone marrow injection resulted in survival of the majority of the animals. Treatment with Deca-Durabolin, an anabolic steroid, caused more rapid recovery of colony-forming cell numbers in the bone marrow than in control animals. Both the Deca-Durabolin-treated and control groups were given autologous bone marrow transplantation. Anabolic steroid effect on transplanted bone marrow colony-forming cells may explain the increased rate of leukopoietic regeneration in anabolic steroid-treated animals as compared to controls

  3. Spontaneous and evoked cerebral activity modifications on whole-body γ irradiated adult rabbit

    International Nuclear Information System (INIS)

    Court, L.; Dufour, R.; Bassant, M.H.; Fatome, M.

    1976-01-01

    Whole-body γ-exposure from 150 to 850 rads (dose-rate: 14 rads.min -1 ) delivered to adult rabbits chronically implanted with electrodes resulted in prompt and delayed changes of behavior, arousal and spontaneous and evoked electrical activities. Electrophysiological techniques of polygraphic recording and signal processing showed that the alterations were related to the absorbed dose. The threshold dose accompanied with transient changes of arousal should be in the range of 50-100 rads; below this range, to the exclusion of some possible behavior changes, exposure should act as a stimulation that would become nociceptive at higher doses only [fr

  4. Comparative studies in the cellular immunostimulation by whole body irradiation. Vergleichende Untersuchungen ueber die zellulaere Immunstimulation durch Ganzkoerperbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, R.; Schwarze, G. (Service de Radiologie, Centre Hospitalier de Luxembourg (Luxembourg) Medizinische Universitaetsklinik I, Homburg/Saar (Germany))

    1992-04-01

    The effect of the cellular immune response by total body irradiation was investigated. The transplant survival (skin grafts) was determined as immune parameter. Donors were colony bred Wistar rats and recipients were colony bred Sprague Dawley rats. The investigations were carried out with irradiated rats and with rats irradiated after thymectomy and/or adrenalectomy as well as with animals without irradiation. A single total-body irradiation (1 and 2 Gy) was administered. The skin graft survival in irradiated rats was significant shorter (radiogenic immunostimulation) than in unirradiated rats; there were no significant differences between the operated (thymectomy and/or adrenalectomy) and not operated animals. Including precedent examinations this radiogenic immunostimulation is caused by relativly selective inactivation of T-suppressor cells. (orig.).

  5. Repopulated antigen presenting cells induced an imbalanced differentiation of the helper T cells in whole body gamma irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Ran; Jo, Sung Kee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Paik, Sang Kee [Chungnam National University, Taejon (Korea, Republic of)

    2004-07-01

    Therapeutic irradiation of cancer patients, although it may be protected by several antioxidant agents against free radicals, often induces chronic sequelae such as inflammation (allergic inflammation). This is a limiting factor for radiotherapy. Following radiotherapy, the inflammation or injury can occur in any organ with a high radiosensitivity such as the lung, bladder, kidney, liver, stomach and intestine. The mechanism by which ionizing radiation initiates inflammation is, however, poorly understood. In recent studies, it was suggested that a factor for irradiation-induced inflammation might be the over production of IL-4 that enhances fibroblast proliferation and collagen synthesis. During the early stages after irradiation, type 2 of the helper T cells might be the major source of IL-4, and later on there seems to be an activation of the other IL-4 producing cell types, e.q. macrophages or mast cells. This is interesting because inflammation is classically seen to be dominated by Th1 cells secreting IFN-{gamma}. In the previous study, we were interested in the enhancement of the IL-4 and the IgE production during the development of immune cells after {gamma}-irradiation. We were able to deduce that IL-4 production was increased because of the shifted differentiation of the naive Th cells by the repopulated antigen presenting cells after irradiation. The aim of the present study was to precisely define whether antigen-presenting cells (APCs) of whole body irradiation-treated mice could influence the shifted differentiation of the Th cells. This view can be demonstrated by confirming that the shifted functional status of the Th cells is induced by the altered function of the repopulated macrophages after whole body irradiation (WBI)

  6. Intermittent whole-body vibration attenuates a reduction in the number of the capillaries in unloaded rat skeletal muscle.

    Science.gov (United States)

    Kaneguchi, Akinori; Ozawa, Junya; Kawamata, Seiichi; Kurose, Tomoyuki; Yamaoka, Kaoru

    2014-09-26

    Whole-body vibration has been suggested for the prevention of muscle mass loss and muscle wasting as an attractive measure for disuse atrophy. This study examined the effects of daily intermittent whole-body vibration and weight bearing during hindlimb suspension on capillary number and muscle atrophy in rat skeletal muscles. Sixty male Wistar rats were randomly divided into four groups: control (CONT), hindlimb suspension (HS), HS + weight bearing (WB), and HS + whole-body vibration (VIB) (n = 15 each). Hindlimb suspension was applied for 2 weeks in HS, HS + WB, and HS + VIB groups. During suspension, rats in HS + VIB group were placed daily on a vibrating whole-body vibration platform for 20 min. In HS + WB group, suspension was interrupted for 20 min/day, allowing weight bearing. Untreated rats were used as controls. Soleus muscle wet weights and muscle fiber cross-sectional areas (CSA) significantly decreased in HS, HS + WB, and HS + VIB groups compared with CONT group. Both muscle weights and CSA were significantly greater in HS + WB and HS + VIB groups compared with HS group. Capillary numbers (represented by capillary-to-muscle fiber ratio) were significantly smaller in all hindlimb suspension-treated groups compared with CONT group. However, a reduction in capillary number by unloading hindlimbs was partially prevented by whole-body vibration. These findings were supported by examining mRNA for angiogenic-related factors. Expression levels of a pro-angiogenic factor, vascular endothelial growth factor-A mRNA, were significantly lower in all hindlimb suspension-treated groups compared with CONT group. There were no differences among hindlimb suspension-treated groups. Expression levels of an anti-angiogenic factor, CD36 (receptor for thrombospondin-1) mRNA, were significantly higher in all hindlimb suspension-treated groups compared with CONT group. Among the hindlimb suspension-treated groups, expression of CD

  7. Influence of immunization on serum γ-globulin levels of calves following whole-body X irradiation

    International Nuclear Information System (INIS)

    Koch, F.; Mehlhorn, G.; Neumeister, K.; Johannsen, U.; Panndorf, H.

    1980-01-01

    Calves aged 2.5 to 4 months were whole-body X irradiated with mean lethal doses between 1.2 and 1.7 Gy. The effect of different immunization procedures on the irradiation-induced reaction of the serum gamma globulin levels was studied. Immunization 14 and 21 days before irradiation resulted in obvious stimulation gamma globulin production. After parenteral antigen administration the nearly 2 weeks lasting increase of the gamma globulin level rose in the irradiated animals but declined in the sham-irradiated calves. After a lethal dosis of 1.7 Gy there was a decrease of the gamma globulins 3 weeks post irradiation, at the climax of the radiation syndrome. When 1.5 Gy were used the increase of the gamma globulin concentration was observed also after oral administration of the antigen. The response of the irradiated animals in the secondary reaction of the antibody production was most lear after boosting with homologous bacteria. The stimulating effect of the irradiation on the serum globulin levels after immunization prior to irradiation has been attributed to the reaction of the immunoglobulin-producing system to the release of tissue proteins and antigens, respectively

  8. Increased intestinal mucosal turnover and radiosensitivity to supralethal whole-body irradiation resulting from cholic acid-induced alterations of the intestinal microecology of germfree CFW mice

    International Nuclear Information System (INIS)

    Mastromarino, A.J.; Wilson, R.

    1976-01-01

    The prolonged mean survival time of germfree mice, compared to conventional mice, after exposure to 1000-10,000 rad whole-body irradiation has been postulated to be a function of an increased turnover time of the intestinal mucosal cells caused by the absence of free bile acids. To test this hypothesis, the diet of germ-free CFW mice was supplemented with 0.15 percent cholic acid for 2 weeks. The turnover of thymidine-labeled intestinal mucosal cells and the radiosensitivity to supralethal whole-body irradiation were significantly increased compared to germfree controls. There was a positive correlation between increased survivial time after supralethal whole-body irradiation and slower intestinal mucosal turnover time. Germfree mice supplemented with cholic acid had intestinal mucosal turnover times comparable to those of conventionalized controls. Although cholic acid reduces the mean survival time of germfree mice after suppralethal whole-body irradiation, the mean survival value is significantly greater than the conventionalized controls. Supplementing the diet of conventionalized CFW mice with cholic acid did not significantly decrease the intestinal mucosal turnover time nor did it significantly alter their radiosensitivity to supralethal whole-body irradiation. The data suggest that cholic acid is one of the microecological factors responsible for controlling the mucosal renewal rate and the mean survival time after whole-body irradiation

  9. Effect of whole-body irradiation of mice on the number of background plaque-forming cells

    International Nuclear Information System (INIS)

    Anderson, R.E.; Lefkovits, I.; Soeederberg, A.

    1983-01-01

    Mice were exposed in whole-body fashion to several doses of radiation and killed at various times thereafter for a determination of the number of background plaque-forming cells (PFCs) as assayed on either sheep erythrocytes or bromelain-treated autologous mouse erythrocytes. Increased numbers of both types of PFC were found in the irradiated groups. These increases were dependent on radiation dose and time after exposure. They did not appear to be caused by a disruption of normal lymphocyte traffic or a switch in immunoglobulin isotype. An increased number of PFCs on bromelain-treated mouse RBCs but not on sheep RBCs were found in irradiated congenitally athymic nude mice. On the basis of this and related observations, background PFCs on bromelain-treated mouse RBCs and on sheep RBCs appear to fall under different forms of homeostatic control

  10. Effect of whole body X-irradiation on the NP-SH level of blood in rabbits

    International Nuclear Information System (INIS)

    Suh, Soo Jhi; Woo, Won Hyung

    1972-01-01

    In hope to elucidate possible changes in blood NP-SH levels when X-irradiation is made in single or fractionate dose, a whole body X-irradiation was done to rabbits either in single dose of 900 r or in fractionated dose of 300 r per day for three days. The NP-SH was measured at 1, 3, 5, 24 and 48 post-irradiation hours, and the results were compared with the normal value of the blood NP-SH. The results obtained are as follows: 1. The normal value of blood NP-SH in the rabbit was 2.11 ± 0.40 μmol/ml. 2. In the single X-irradiation group, the blood NP-SH decreased most prominently at five hours after-irradiation, and a tendency of recovery to the normal level was observed thereafter. 3. In the fractionated group, the blood NP-SH levels were higher, than in the single irradiation group throughout the experiment, and the levels were also higher than the normal in general

  11. Entire litters developed from transferred eggs in whole body x-irradiated female mice

    International Nuclear Information System (INIS)

    Lin, T.P.

    1980-01-01

    The sensitivity of mouse eggs to sublethal x-irradiation was determined in vitro and in vivo with regard to the development of donor litters in foster mothers. One thousand seven hundred fifty-eight unfertilized eggs of agouti dark-eyed donor mice were transferred into 293 unirradiated or x-irradiated, mated female pink-eyed mice. Two hundred thirty-nine recipients became pregnant; of these 35 produced litters containing solely dark-eyed fetuses. Sublethal doses of x-radiation administered to donor eggs in vitro before transferring into unirradiated recipients did not influence significantly the number of litters of exclusively dark-eyed fetuses produced. However, recipients irradiated by 250 roentgens (r) produced more solely dark-eyed litters than did those irradiated with 100 r. In 21 pregnant females irradiated by 100 r, only 3 (14%) developed solely dark-eyed fetuses as compared to 22 pregnant females irradiated by 250 r, of which 13 (59%) developed solely dark-eyed fetuses, all from unirradiated, transferred eggs. Of another group of 22 pregnant females which received 250 r body irradiation and subsequently received eggs also irradiated by 250 r, only 7 (32%) produced litters of dark-eyed fetuses. No one female of these three groups carried native fetuses. Such radiation-induced infertility resulting from damage of native eggs rather than loss of mother's ability to carry a pregnancy, is frequently remedied by egg transfer

  12. Effect of whole-body irradiation by fast neutrons on mouse tissues. Pt. 1

    International Nuclear Information System (INIS)

    Kotb, M.A.; Abdel-Mawla, A.; El-Khatib, A.; Ramadan, M.I.A.; El-Bassiouni, E.A.

    1991-01-01

    Groups of male Swiss albino mice were irradiated by single doses of either 7 rem or 14 rem of fast neutrons with 14 MeV average energy, corresponding to fluences of 1.27x10 8 n/cm 2 and 2.54x10 8 n/cm 2 , respectively. The activities of acid phosphatase (ACP) and succinic dehydrogenase (SDH) in kidney, lung and liver were determined at different time point up to seven days after irradiation. Lysosomal affection was represented by statistically significant increase of ACP activity in all cell types of the three tested organs immediately after irradiation with either of the doses used. The effect of SDH was represented by reduction in activity in all three organs. The activities of both enzymes showed tendencies to return to pre-irradiation levels with time in most cell types especially after the 7 rem dose. (orig.) [de

  13. Hepatic catalase activity after whole-body irradiation of the mouse

    International Nuclear Information System (INIS)

    Neveux, Y.; Drouet, J.; Guillouzo, A.; Rault, H.; Picard, G.

    Using biochemical techniques, the effect of irradiation on catalase rate of different tissues is studied. With cytochemistry, the decrease of catalase activity is studied in situ, after exposure to great ionizing radiation doses [fr

  14. Affecting mortality of whole-body gamma-irradiated Beagle dogs

    International Nuclear Information System (INIS)

    Dostal, M.; Kuna, P.; Neruda, O.; Petyrek, P.; Simsa, J.; Vavrova, J.; Skopec, F.

    1982-01-01

    The efficacy is compared of radioprotection and the complex treatment of acute radiation syndrome in laboratory dogs. One group of dogs was administered an injection of radioprotectives, the other was a control group. The treated group was administered vitamins and antibiotics in injections after the irradiation. It was found that complex treatment between days 1 and 28 after irradiation is relatively effective. In the treated dogs radioprotection does not significantly influence survival or even reduces survival. (M.D.)

  15. Evaluation of the analgesic activity and safety of ketorolac in whole body fractionated gamma irradiated animals

    Directory of Open Access Journals (Sweden)

    Sara Aly

    2015-06-01

    Full Text Available This study was performed to evaluate the analgesic activity and the toxicity of ketorolac in normal and fractionated (1.5 Gy/day/4 days γ-irradiated animals. Determination of brain serotonin content and serum prostaglandin level were also undertaken. The analgesic activity was tested using formalin test, at three dose levels (15, 30 and 60 mg/kg after 1 and 7 days post radiation exposure. LD50 determinations and assessment of liver and kidney function tests were performed. Our results indicated marked analgesic effects on the early and late phases of nociception. Double treatment with ketorolac and irradiation increased brain serotonin content. The acute LD50 of ketorolac was decreased in irradiated animals as compared to the LD50 of normal animals. Double treatment with ketorolac and irradiation induced an elevation of gastric mucin content, urea and BUN levels on the 1st day post irradiation, whereas, albumin level was lowered and globulin level was elevated after 7 days post irradiation. Depending on this study the dose of ketorolac used for treating cancer patients addressed to radiotherapy should be reduced, however, this requires further clinical confirmation.

  16. Response of stem cell system to whole body and partial body irradiation

    International Nuclear Information System (INIS)

    Gidali, J.

    1975-01-01

    The pluripotent stem cell system, though being distributed in the body, reacts homogeneously to irradiation. This homogeneity is controlled by short-range (local) and long-range (humoral) regulations acting primarily on pluripotent and committed stem cells. Migration of stem cells from unirradiated to irradiated areas may play a role in the regeneration processes even if local regeneration may also occur. Migration induction as well as proliferation induction in the shielded area do not seem to be specific radiation-induced reactions. Both may be influenced either by some physiological regulators released after irradiation in a higher quantity or by some non-specific triggering agents. Both repeated and continuous irradiation induce the establishment of a new steady state. In the steady state after repeated sublethal irradiations, the CFU count stays at a suboptimal level either as a consequence of an increased differentiation or of some undefined damage in milieu control. In the new steady state during continuous irradiation, the number of mature elements in blood is close to the normal while CFU population is reduced to less than 2 percent of its original level

  17. Spontaneous cell-mediated cytolysis by peripheral blood cells obtained from whole-body chronically irradiated beagle dogs

    International Nuclear Information System (INIS)

    Dyck, J.A.; Shifrine, M.; Klein, A.K.; Rosenblatt, L.S.; Kawakami, T.

    1986-01-01

    The level of natural killer (NK) activity of continuously gamma-irradiated (whole body) beagle dogs and their nonirradiated controls was studied. For analytical purposes, irradiated dogs were segregated into groups according to their clinical status: clinically normal, hypocellular, or with acute non-lymphocytic leukemia. Since unirradiated control animals exhibited a wide range of NK responses, the data from each irradiated animal were compared to its own age-matched or litter-matched unirradiated control. Of the eight clinically normal irradiated dogs (median = 146% activity of control) only one animal had a NK activity lower than that of its control. The hypocellular group (n = 5, median = 21.8% of control) and the leukemic group (n = 4, median = 52.5% of control) each contained one responder with higher activity than its control. The difference between the percentage of control of the clinically normal and clinically abnormal dogs was found to be significant (P less than 0.05). There is a negative correlation between the NK results obtained and the total accumulated dose of radiation at the time of sampling (correlation coefficient = -0.739, P less than 0.01), suggesting a radiation effect upon natural killer activity, which is evidence by enhancement at lower doses and depression at higher doses of irradiation

  18. Expression and localization of Smad4 protein in mouse testis after whole-body X-ray irradiation

    International Nuclear Information System (INIS)

    Zhu Huaping; Zhang Yuanqiang; Zhao Jie; Zhao Yong; Ma Jing; Hou Wugang; Qi Yuhong

    2005-01-01

    The work is to determine whether and where Transforming growth factor-betas downstream Signaling molecule Smad4 is expressed in the testes after whole-body X-ray irradiation and shed light on the mechanisms of Transforming growth factor-betas/Smad signal pathway mediates cell fate decisions following X-ray exposure. Five groups of adult BALB/c mice, with ten mice in each group, received whole-body of X-ray at dose levels of 0.1 Gy, 0.5 Gy, 1.0 Gy, 1.5 Gy and 2.0 Gy. They were sacrificed at 16 hour, 1 week, 2 weeks, 3 weeks and 4 weeks after the irradiation. Cellular localization and expression changes were examined by immunohistochemical ABC method. Quantitative analysis of the immunostaining was made by an image analysis system. In the seminiferous tubules, the expression of Smad4 was modulated by irradiation. The immunostaining showed that 16 hour post-irradiation, there was a significant decline in the Leydig cell, and it was dose and time depended. In addition, the immunolocalization showed that Smad4 was not exclusively localized in the cytoplasm of Leydig cells, but also localized in various Stages of spermatogenesis after the exposure, especially in premeiotic spermatogonia and primary spermatocytes. There was just a little expression in the 2.0 Gy group 16 h after the irradiation and the 1.0 Gy and 1.5 Gy groups at 2 weeks after the irradiation. Therefore in the 0.1 Gy to 2.0 Gy groups at 3 weeks after the irradiation, the immunostaining positive cells were significantly increased in spermatogonia and primary spermatocytes. There was no significant change in sertoli cells with different doses and different times after the exposure. The different expression patterns and change by dose and time of Smad4, suggest that TGF-β/Smad signal pathway may affect aspect after X-ray impairment and Smad4 may play an important role during these periods. (authors)

  19. Lethal effect after whole-body irradiation on mouse with various photon radiations

    International Nuclear Information System (INIS)

    Kohda, Shizuo

    1976-01-01

    The dependence of mortality on the quality of radiation was investigated in ICR mice after wholebody irradiation with 200 kV x-ray, 60 Co γ-ray, or 10 MV x-ray. With respect to the 30 day mortality, LD 50 values were estimated as 606 rad for 200 kV x-ray and as 713 rad both for 60 Co γ-ray and for 10 MV x-ray. Hence, the value of relative biological effectiveness (RBE) to that for 200 kV x-ray was 0.850, while the value decreased with increasing the mortality rate. The value extrapolated to 100% mortality was estimated as 0.6. These results were valid for either 7 or 8 week mice, but the life span of 7 week mice after the irradiation was 3 days shorter than that of 8 week mice. These findings resulted in following conclusions: 1) There are no qualitative differences between 10 MV x-ray and 60 Co γ-ray irradiations. 2) The biological effects after 10 MV x-ray and 60 Co γ-ray irradiations are reduced with increased killing rate, compared with that after 200 kV x-ray irradiations. (Evans, J.)

  20. Inhibition of DNA repair by whole body irradiation induced nitric oxide leads to higher radiation sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Sharma, Deepak; Santosh Kumar, S.; Raghu, Rashmi; Maurya, D.K.; Sainis, K.B.

    2007-01-01

    Full text: It is well accepted that the sensitivity of mammalian cells is better following whole body irradiation (WBI) as compared to that following in vitro irradiation. However, the underlying mechanisms are not well understood. Following WBI, the lipid peroxidation and cell death were significantly higher in lymphocytes as compared to that in vitro irradiated lymphocytes. Further, WBI treatment of tumor bearing mice resulted in a significantly higher inhibition of EL-4 cell proliferation as compared to in vitro irradiation of EL-4 cells. The DNA repair was significantly slower in lymphocytes obtained from WBI treated mice as compared to that in the cells exposed to same dose of radiation in vitro. Generation of nitric oxide following irradiation and also its role in inhibition of DNA repair have been reported, hence, its levels were estimated under both WBI and in vitro irradiation conditions. Nitric oxide levels were significantly elevated in the plasma of WBI treated mice but not in the supernatant of in vitro irradiated cells. Addition of sodium nitroprusside (SNP), a nitric oxide donor to in vitro irradiated cells inhibited the repair of DNA damage and sensitized cells to undergo cell death. It also enhanced the radiation-induced functional impairment of lymphocytes as evinced from suppression of mitogen-induced IL-2, IFN-γ and bcl-2 mRNA expression. Administration of N G -nitro-L-arginine-methyl-ester(L-NAME), a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. Our results indicated that nitric oxide plays a role in the higher radiosensitivity of lymphocytes in vivo by inhibiting repair of DNA damage

  1. Thyroid neoplasia in beagles receiving whole-body irradiation during development

    International Nuclear Information System (INIS)

    Stephens, L.C.; Norrdin, R.W.; Hargis, A.M.; Benjamin, S.A.

    1979-01-01

    Twenty malignant and 17 benign thyroid neoplasms have been diagnosed in 37 Segment III beagles. Nine males and 8 females had follicular adenomas, and 7 males and 13 females had thyroid carcinomas. The dogs ranged in age from 5.16 to 10.66 years. Twenty-nine of the 37 dogs (78.4 percent) were hypothyroid. Twenty-six (70.3 percent) dogs were irradiated. Of the 26 irradiated dogs 15 had malignant tumors. Fourteen (37.8 percent) of the 37 dogs had the same sire

  2. The influence of whole-body irradiation with combined ultraviolet/infrared light on the spermiogram

    International Nuclear Information System (INIS)

    Witt, W.

    1984-01-01

    We irradiated for six weeks two times a week 10 volunteer subjects with a UV/IR-radiation source and evaluated the spermiogram every week. The subjects were divided in 3 groups with various light sensitivities (high, medium, low), in order to achieve a similar erythematous intensity. No relation to the irradiation could be found in any of the spermiogram parameters (sperm density, total sperm number, motility, vitality, ejaculation quantity, fructose, pH value). A direct effect as a result of photochemical changes of the cells of spermatogenesis is not possible because of the limited penetration ability of the used radiation. The temperature increase as a result of the UV/IR irradiation was too small to result in a decrease of spermatozoan concentration, as can be expected by stronger warming of the testicles. An indirect effect of the UV/IR irradiation in the sense of an influence on spermatogenesis via the involuntary nervous system → hypophysis → sexual hormone could not be determined by us. (orig.) [de

  3. Whole-body irradiation technique: physical aspects; Tecnica de irradiacion corporal total: aspectos fisicos

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, D.; Bustos, S.; Zunino, S. [Instituto Privado de Radioterapia. Obispo Oro 425. Cordoba 5000 (Argentina)

    1998-12-31

    The objective of this work has been to implement a Total body irradiation technique that fulfill the following conditions: simplicity, repeatability, fast and comfortable positioning for the patient, homogeneity of the dose between 10-15 %, short times of treatments and In vivo dosimetric verifications. (Author)

  4. Human tumour xenografts established and serially transplanted in mice immunologically deprived by thymectomy, cytosine arabinoside and whole-body irradiation

    International Nuclear Information System (INIS)

    Selby, P.J.; Thomas, J.M.; Peckham, M.J.

    1980-01-01

    Mice immunologically deprived by thymectomy, cytosine arabinoside treatment and whole-body irradiation were used to study the growth of human tumours as xenografts. 10/16 melanoma biopsies, 4/13 ovarian carcinoma biopsies and 3/6 uterine cancer biopsies grew as serially transplantable xenograft lines. The tumour lines were studied through serial passages by histology, histo-chemistry, electron microscopy, chromosome analysis, immune fluorescence, growth rate measurement and mitotic counts. They retained the characteristics of the tumours of origin, with the exception of loss of pigmentation in two melanomas, histological dedifferentiation in the uterine carcinomas, and increased mitotic frequency and growth rate in some melanomas. It was concluded that this type of animal preparation is as useful as alternative methods of immunological deprivation, or as athymic nude mice, for the growth of human tumour xenografts, at least for some experimental purposes. (author)

  5. Low-dose fractionated whole-body irradiation in the treatment of advanced non-Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    Choi, N.C.; Timothy, A.R.; Kaufman, S.D.; Carey, R.W.; Aisenberg, A.C.

    1979-01-01

    Thirty-nine patients with advanced non-Hodgkin's lymphoma (38 patients with lymphocytic lymphoma and 1 patient with mixed lymphocytic and histiocytic lymphoma) were treated by fractionated low dose whole body irradiation (WBI) with a minimum follow-up of 8 months. Twenty-eight patients had no previous treatment and the other 11 patients were in relapse after previous chemotherapy or regional radiotherapy. There were 20 and 19 patients in stages III and IV groups, respectively. The majority of patients (31) had nodular histology; diffuse lymphocytic lymphoma was present in 8 patients (Rappaport criteria) (9). Constitutional symptoms were present in 10 patients. Thirty-three (85%) attained complete remission (CR) with median duration of remission 24 months. Actuarial survival was 78% and 74% at 3 and 4 years. However, relapse free survival was 26% at 3 and 4 years. A prospective randomized trial to compare 10 vs. 15 rad per fraction of fractionated WBI schedules (the same total dose 150 rad) demonstrated no difference in response rate, response duration, and median nadir platelet or WBC counts between the two schedules. Supplement radiotherapy to bulky tumor site prevented local recurrence, but did not influence survival or duration or remission. Major toxicity was thrombocytopenia with median nadir platelet counts 77,000/mm 3 (11,000 to 170,000/mm 3 ). Five of 6 patients with diffuse lymphocytic poorly differentiated lymphoma attained CR. However, their median survival was 30 months which is much shorter than that of nodular lymphoma. Constitutional symptoms and advanced stage (stage IV) were associated with shorter duration of remission. Response of patients in relapse after WBI to subsequent chemotherapy +- local radiotherapy was CR in 50% and PR in 40%. Fractionated whole body irradiation is an excellent systemic induction agent for advanced lymphocytic and mixed lymphoma

  6. Anti-lipopolysaccharide toxin therapy for whole body X-irradiation overdose

    Energy Technology Data Exchange (ETDEWEB)

    Gaffin, S.L.; Wells, M.; Jordan, J.P.

    1985-09-01

    Death in humans from ionising radiation overexposure in the 3-8 Gy (300-800 rad) range is in part due to the toxaemia caused by the entry of gram-negative bacteria and/or their lipopolysaccharide toxin (LPS) into the blood circulation through the walls of partially denuded gut. Anti-LPS hyperimmune equine plasma was evaluated for its ability to lower irradiation-induced lethality. Mice were irradiated with 6.3 Gy (630 rad) and six days later received equine Anti-LPS hyperimmune plasma, control plasma or saline. Mortalities in the three groups were 58%, 92% and 79% (p < 0.01) respectively. Thus Anti-LPS may prove useful as an adjunct to conventional therapy in treating radiation sickness.

  7. Anti-lipopolysaccharide toxin therapy for whole body X-irradiation overdose

    International Nuclear Information System (INIS)

    Gaffin, S.L.; Wells, M.; Jordan, J.P.

    1985-01-01

    Death in humans from ionising radiation overexposure in the 3-8 Gy (300-800 rad) range is in part due to the toxaemia caused by the entry of gram-negative bacteria and/or their lipopolysaccharide toxin (LPS) into the blood circulation through the walls of partially denuded gut. Anti-LPS hyperimmune equine plasma was evaluated for its ability to lower irradiation-induced lethality. Mice were irradiated with 6.3 Gy (630 rad) and six days later received equine Anti-LPS hyperimmune plasma, control plasma or saline. Mortalities in the three groups were 58%, 92% and 79% (p<0.01) respectively. Thus Anti-LPS may prove useful as an adjunct to conventional therapy in treating radiation sickness. (author)

  8. 1978 Algerian accident: four cases of protracted whole-body irradiation

    International Nuclear Information System (INIS)

    Jammet, H.; Gongora, R.; Pouillard, P.; Le Go, R.; Parmentier, N.

    1980-01-01

    On May 5, 1978 an iridium 192 source of 25 curies for gammagraphy fell from a truck on the road from Algiers to Setif. It was found by two young boys, and later taken away from them by their grandmother who hid it in their kitchen. The source remained about five or six weeks in this room, where four young females received a daily and protracted irradiation. These cases are of particular interest since it is the first observation of accidental irradiation spanning so long a period and for which daily data could be collected during several months. The clinical findings of responses of the hematopoietic system, digestive system, brain, biochemical functionings, and chromosomes are reported. Also included are technical procedures in dosimetry problems related to exposures in these four patients

  9. Kinetics of lymphohematopoiesis and leukemia induction in chronically whole-body irradiated RF/J mice

    International Nuclear Information System (INIS)

    Cain, G.R.; Stitzel, K.A.; Fox, L.A.; Klein, A.K.; Dyck, J.A.; Shimizu, J.A.; Rosenblatt, L.S.

    1982-01-01

    Lymphohematopoietic progenitor cell populations (bone marrow CFU-GM, splenic CFU-BL) were quantitated in unirradiated and in chronically irradiated (17.5 R/day for 4 weeks) RF/J mice and control CAF 1 mice. RF/J mice were found capable of making substantial numbers of bone marrow CFU-GM but less so than the control strain CAF 1 . Significant strain differences were also seen in ability to form splinic B lymphocyte progenitor cells (CFU-BL). Unirradiated and irradiated RF mice produced over three times as many CFU-BL as CAF 1 mice. Throughout the period of protracted irradiation, followed by a twelve week recovery period, CFU-BL and CFU-GM were depressed less in the RF strain than the CAF 1 strain. This was due to an overcompensatory regenerative response which surpassed homostatic baseline levels. Despite strain and strain x dose differences in CFU-BL and CFU-GM, no significant strain x dose relationships were seen in circulati leukocyte counts. The increased susceptibility of RF mice to radiation-induced leukemia may be related to either inherent depressed regulatory control or the persistence of progenitor cell compartments. An apparent increased cell turnover rate in both CFU-BL and CFU-GM in RF mice following radiation damage may likewise play a contributory role

  10. Effects of whole-body and partial-body x irradiation upon epidermal mitotic activity during wound healing in mouse skin

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1977-01-01

    Mitotic activity of normal (unwounded) and wounded skin was measured in the control (nonirradiated) and whole-body or partial-body x-irradiated mouse. Higher mitotic activity in the anterior than in the posterior region of the body was found in both the normal and the wounded skin of the control mouse. Whole-body irradiation (500 R) depressed completely the mitotic activity of normal skin 2 to 4 days after irradiation. In spite of this depression in mitotic activity, a surgical incision made 1 to 3 days after irradiation could induce a burst of proliferation after an inhibition of an initial mitosis increase. When the animals were partially irradiated with 500 R 3 days before wounding, it was shown that mitosis at 24 hr after wounding was inhibited markedly by the local effect of irradiation and that mitosis also could be inhibited diversely by the abscopal effect of irradiation. Because of a close similarity of sequential mitotic patterns between whole-body-irradiated and flapped-skin-only-irradiated groups (direct irradiation), the effect of irradiation upon mitosis was considered to be primarily local. Some discussions were made concerning the possible reasons which made a difference in mitotic patterns between the head-only-irradiated group, the irradiated group including the head and other parts of the body except for the skin flap

  11. Recovery response of dividing cells in the thymus of whole-body γ-irradiated mice

    International Nuclear Information System (INIS)

    Suciu, D.; Uray, Z.; Maniu, M.

    1976-01-01

    Mice were irradiated with different doses of γ-rays 30 min after the administration of 32 P-orthophosphate. The dose-response curves determined at 72 hours after exposure showed an inflection point in the total activity present in the DNA in thymus and spleen. In the low dose-range, the dose-response curves have D 0 = 55 rad(n = 2.5) for thymus and D 0 = 95 rad (n = 2.5) for the spleen. Thirty minutes after the administration of 32 P-orthophosphate, the dividing cells from thymus were partially synchronized by the administration of 80 mg per kg body-weight hydroxyurea. At different time-intervals, the mice were irradiated with 80 rad, and the total activity of DNA was determined at 72 hours after synchronization. A significant maximum of recovery was found at 5 hours (S phase) after the administration of hydroxyurea. In similar conditions, the dose-response curves corresponding to the G 1 , S and M phase of the division cycle were also determined. The synchronization of dividing cells induced by hydroxyurea failed in the spleen. (author)

  12. Immuno-enhancement in tumor-bearing mice induced by whole body X-irradiation with 75 mGy

    International Nuclear Information System (INIS)

    Zhang Ying; Li Xiuyi; Gong Shouliang; Liu Shuzheng

    2000-01-01

    Objective: In present study the authors observed the effect of whole body irradiation (WBI) with 75 mGy X-rays on the immune function of tumor-bearing mice. Methods: Lewis lung carcinoma cells were implanted into the right thigh muscle of C57BL/6J mice. Ten days after tumor implantation, the tumor-bearing mice were administrated with 75 mGy X-rays WBI, then the mice were sacrificed 18 h after irradiation to detect the immune parameters including the spontaneous proliferation of thymocytes, the proliferative response of splenocytes to ConA and LPS, the cytotoxic activities of specific cytotoxic lymphocytes (CTL) and natural killer cells (NK), as well as lymphokine activated killer cells (LAK) in spleen. The methods the authors used were 3 H-TdR incorporation or release assay. Results: the immune parameters of exposed tumor-bearing mice were much higher than those of sham-irradiated tumor-bearing mice (P<0.01). Conclusion: These results suggested that low dose radiation (LDR) could enhance the immune function of tumor-bearing mice, which might be of practical significance in the prevention and therapy of cancer

  13. Effect of intestinal microflora on the survival time of mice exposed to lethal whole-body. gamma. irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Onoue, M.; Uchida, K.; Yokokura, T.; Takahashi, T.; Mutai, M.

    1981-11-01

    The effect of intestinal microflora on the survival time of mice exposed to 2-kR whole-body ..gamma.. irradiation was studied using germfree, monoassociated, and conventionalized ICR mice. The germfree mice were monoassociated with 1 of 11 bacterial strains, which were isolated from the fresh feces of conventional mice, 2 weeks prior to irradiation. All mice died within 3 weeks after irradiation. Monoassociation with Fusobacterium sp., Streptococcus faecalis, Escherichia coli, or Pseudomonas sp. significantly reduced the mean survival time compared to that of germfree mice. In contrast, monoassociation with Clostridium sp., Bifidobacterium pseudolongum, or Lactobacillus acidophilus significantly prolonged the mean survival time compared to that of germfree mice. This suggests that the latter organisms may perform some activity to protect the mice from radiation injury. In this histopathological autopsy examination, the main lesions were hypocellularity in hematopoietic organs and hemorrhage in various organs. Neither karyorrhexis nor desquamation of intestinal mucosal cells was observed in any mice. From these observations, it is suggested that the death of these mice was related to hematopoietic damage. Bacterial invasion into various organs was observed in conventionalized and Pseudomonas-, E. coli-, or S. faecalis-monoassociated mice but not in Clostridium-, B. pseudolongum-, L. acidophilus-, or Fusobacterium-monoassociated mice.

  14. Effect of intestinal microflora on the survival time of mice exposed to lethal whole-body γ irradiation

    International Nuclear Information System (INIS)

    Onoue, M.; Uchida, K.; Yokokura, T.; Takahashi, T.; Mutai, M.

    1981-01-01

    The effect of intestinal microflora on the survival time of mice exposed to 2-kR whole-body γ irradiation was studied using germfree, monoassociated, and conventionalized ICR mice. The germfree mice were monoassociated with 1 of 11 bacterial strains, which were isolated from the fresh feces of conventional mice, 2 weeks prior to irradiation. All mice died within 3 weeks after irradiation. Monoassociation with Fusobacterium sp., Streptococcus faecalis, Escherichia coli, or Pseudomonas sp. significantly reduced the mean survival time compared to that of germfree mice. In contrast, monoassociation with Clostridium sp., Bifidobacterium pseudolongum, or Lactobacillus acidophilus significantly prolonged the mean survival time compared to that of germfree mice. This suggests that the latter organisms may perform some activity to protect the mice from radiation injury. In this histopathological autopsy examination, the main lesions were hypocellularity in hematopoietic organs and hemorrhage in various organs. Neither karyorrhexis nor desquamation of intestinal mucosal cells was observed in any mice. From these observations, it is suggested that the death of these mice was related to hematopoietic damage. Bacterial invasion into various organs was observed in conventionalized and Pseudomonas-, E. coli-, or S. faecalis-monoassociated mice but not in Clostridium-, B. pseudolongum-, L. acidophilus-, or Fusobacterium-monoassociated mice

  15. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  16. [Induction of glutathione and activation of immune functions by low-dose, whole-body irradiation with gamma-rays].

    Science.gov (United States)

    Kojima, Shuji

    2006-10-01

    We first examined the relation between the induction of glutathione and immune functions in mice after low-dose gamma-ray irradiation. Thereafter, inhibition of tumor growth by radiation was confirmed in Ehrlich solid tumor (EST)-bearing mice. The total glutathione level of the splenocytes transiently increased soon after irradiation and reached a maximum at around 4 h postirradiation. Thereafter, the level reverted to the 0 h value by 24 h postirradiation. A significantly high splenocyte proliferative response was also recognized 4 h postirradiation. Natural killer (NK) activity was also increased significantly in a similar manner. The time at which the response reached the maximum coincided well with that of maximum total glutathione levels of the splenocytes in the gamma-ray-irradiated mice. Reduced glutathione exogenously added to splenocytes obtained from normal mice enhanced the proliferative response and NK activity in a dose-dependent manner. The inhibitory effects of radiation on tumor growth was then examined in EST-bearing mice. Repeated low-dose irradiation (0.5 Gy, four times, before and within an early time after inoculation) significantly delayed the tumor growth. Finally, the effect of single low-dose (0.5 Gy), whole-body gamma-ray irradiation on immune balance was examined to elucidate the mechanism underlying the antitumor immunity. The percentage of B cells in blood lymphocytes was selectively decreased after radiation, concomitant with an increase in that of the helper T cell population. The IFN-gamma level in splenocyte culture prepared from EST-bearing mice was significantly increased 48 h after radiation, although the level of IL-4 was unchanged. IL-12 secretion from macrophages was also enhanced by radiation. These results suggest that low-dose gamma-rays induce Th1 polarization and enhance the activities of tumoricidal effector cells, leading to an inhibition of tumor growth.

  17. Late effects of protracted whole-body irradiation of beagles by cobalt-60 gamma rays

    International Nuclear Information System (INIS)

    Fritz, T.E.; Seed, T.M.; Tolle, D.V.; Lombard, L.S.

    1986-01-01

    So that a stronger basis for extrapolation of low-level radiation effects to man can be provided, existing data from small laboratory animals are being supplemented by studies in a longer lived animal, the dog. Beagle dogs are exposed to continuous cobalt-60 irradiation either throughout life or until predetermined total doses are accumulated. The radiation-specific excess-mortality rate and associated causes of death will be related to both dose rate and total dose. The ongoing studies also emphasize the pathogenesis of myelogenous leukemia. At dose rates of 3.75 to 26.25 rads/day, given continuously, responses were consistent, highly dose-rate dependent, and limited primarily to the hematopoietic system. At rates as low as 0.3 rad/day, the hematopoietic system is still the limiting factor for survival, but below 3.75 rads/day present evidence suggests that the responses are independent of dose rate. Longitudinal studies of peripheral blood and bone marrow detected four preclinical phases of myelogenous leukemia. These phases were characterized by standard hematologic end points, ultrastructural features, in vitro cloning assays, and the acute radiation sensitivity of stem cells. Results suggest that an induced error-prone repair mechanism is the basis for the onset of radiation-induced myelogenous leukemia. Interim data from dogs given terminated exposures suggest that the types of tumors and times to death are different from controls but the numbers of tumors are not yet greater than in controls. 26 refs., 12 figs., 5 tabs

  18. Multisite Thrombus Imaging and Fibrin Content Estimation With a Single Whole-Body PET Scan in Rats.

    Science.gov (United States)

    Blasi, Francesco; Oliveira, Bruno L; Rietz, Tyson A; Rotile, Nicholas J; Naha, Pratap C; Cormode, David P; Izquierdo-Garcia, David; Catana, Ciprian; Caravan, Peter

    2015-10-01

    Thrombosis is a leading cause of morbidity and mortality worldwide. Current diagnostic strategies rely on imaging modalities that are specific for distinct vascular territories, but a thrombus-specific whole-body imaging approach is still missing. Moreover, imaging techniques to assess thrombus composition are underdeveloped, although therapeutic strategies may benefit from such technology. Therefore, our goal was to test whether positron emission tomography (PET) with the fibrin-binding probe (64)Cu-FBP8 allows multisite thrombus detection and fibrin content estimation. Thrombosis was induced in Sprague-Dawley rats (n=32) by ferric chloride application on both carotid artery and femoral vein. (64)Cu-FBP8-PET/CT imaging was performed 1, 3, or 7 days after thrombosis to detect thrombus location and to evaluate age-dependent changes in target uptake. Ex vivo biodistribution, autoradiography, and histopathology were performed to validate imaging results. Arterial and venous thrombi were localized on fused PET/CT images with high accuracy (97.6%; 95% confidence interval, 92-100). A single whole-body PET/MR imaging session was sufficient to reveal the location of both arterial and venous thrombi after (64)Cu-FBP8 administration. PET imaging showed that probe uptake was greater in younger clots than in older ones for both arterial and venous thrombosis (P<0.0001). Quantitative histopathology revealed an age-dependent reduction of thrombus fibrin content (P<0.001), consistent with PET results. Biodistribution and autoradiography further confirmed the imaging findings. We demonstrated that (64)Cu-FBP8-PET is a feasible approach for whole-body thrombus detection and that molecular imaging of fibrin can provide, noninvasively, insight into clot composition. © 2015 American Heart Association, Inc.

  19. Facilitation of nodal metastasis from a non-immunogenic murine carcinoma by previous whole-body irradiation of tumour recipients

    International Nuclear Information System (INIS)

    Hewitt, H.B.; Blake, E.R.

    1977-01-01

    Of 193 CBA mice kept under prolonged observation after excision of small intradermal transplants of a non-immunogenic tumour (CBA Carcinoma NT), 27 (14%) presented with local recurrence, 19 (10%) with regional lymphnodal metastasis (RNM) and 72 (37%), with pulmonary metastasis +- other systemic metastases. When mice were exposed to sublethal whole-body irradiation (WBI) before tumour transplantation, the incidence of RNM rose to approximately 80% and the latent period was reduced from approximately 60 days to approximately 40 days after tumour transplantation. This enhancement of RNM by WBI was undiminished when the interval between WBI and tumour transplantation was increased from 1 to 90 days. An explanation for this effect in terms of immunosuppression by the WBI is unlikely for the following reasons: the tumour was non-immunogenic by standard quantitative tests; the effect persisted long after the expected time for recovery of immune reactivity; and i.v. injection of normal marrow and lymphoid cells after WBI failed to reduce the effect. That the effect was systemic was proved by failure of local pre-irradiation of the tumour bed or regional node to enhance RNM. The effect was not observed when WBI was given 4 days after excision of tumours. These and other experiments failed to indicate the mechanism of the effect of WBI, but its long persistence suggests that it may relate to stored lethal radiation damage in migrating cells of slow turnover tissues. (author)

  20. Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice.

    Science.gov (United States)

    Feliciano, Chitho P; Tsuboi, Koji; Suzuki, Kenshi; Kimura, Hiroyuki; Nagasaki, Yukio

    2017-06-01

    Radioprotective agents have been developed to protect patients against the damaging and lethal effects of ionizing radiation. However, in addition to the intrinsic ability to target reactive oxygen species (ROS), the ability to retain a significant level of bioavailability is desirable in radioprotective agents because that would increase and prolong their radioprotective efficacy and improve its safety. Here, we report the development of a novel nanoparticle-based radioprotective agent with improved bioavailability, which suppressed the adverse effects typically associated with low-molecular-weight (LMW) antioxidants. We developed biocompatible and colloidally stable nanoparticles in which nitroxide radicals that were covalently conjugated (redox nanoparticles, RNP N ) effectively scavenged radiation-induced ROS with a characteristically prolonged bioavailability and tissue-residence time compared with that of conventional LMW antioxidants. The confinement of the nitroxide radicals in the RNP N core prevented its rapid metabolism and excretion out of the body. The nano-sized formulation prevented internalization of RNP N in healthy cells, thereby preserving the normal function of the redox reactions in the cell. This improved pharmacological performance dramatically reduced the radiation-induced organ dysfunctions and increased the survival time of the lethally irradiated mice when the nanoparticles were administered 3-24 h before whole-body irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Impact of Whole Body Irradiation on the Intestinal Microbiome- Considerations for Space Flight

    Science.gov (United States)

    Karouia, Fathi; Santos, Orlando; Valdivia-Silva, Julio E.; Jones, Jeffrey; Greenberger, Joel S.; Epperly, Michael W.

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. Spaceflight-related changes have been reported in the musculo-skeletal, cardiovascular, neurovestibular, endocrine, and immune systems to just name a few. However, to date, radiation exposure is one of the main limiting factors for long duration space exploration missions and especially a mission to Mars. Over the past few years through advances in technology, the characterization of the microbiome has revealed a large and complex community of microorganisms living in symbiosis with the human host. However, heterogeneity of the intestinal microbial spectrum in humans has been associated with a variety of diseases and susceptibility to infectious and toxic agents. Limited information is known about the influence of space environment in general and radiation in particular on the microbiome. Furthermore, multiple spaceflight and simulated microgravity experiments have shown changes in phenotypic microbial characteristics such as microbial growth, morphology, metabolism, genetic transfer, antibiotic and stress susceptibility, and an increase in virulence factors. We now report a study of the bacterial composition of the intestine in C57BL/6NTAC mice and the types of microbes entering the body at two time points after the LD 50/30 dose of total body irradiation using microarray-based assay, G3 PhyloChip 16S rRNA, and bioinformatics methods. Bacteria and archaea taxon richness was determined at the genus level and ranged from 2 to 107 and 0 to 3 respectively. As expected, pre-exposure blood samples exhibited less bacterial and archaeal genus richness compared to all other samples. However, the study shows a significant shift in the mouse gut microbial speciation in several bacterial families, with increases in the Turicibacteraceae and Enterobacteriaceae and decreases in the Lachnospiraceae and Ruminococcaceae families. The findings most relevant to occupational

  2. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  3. A Comparison of Molecular and Histopathological Changes in Mouse Intestinal Tissue Following Whole-Body Proton- or Gamma-Irradiation

    Science.gov (United States)

    Purgason, Ashley; Mangala, Lingegowda; Zhang, Ye; Hamilton, Stanley; Wu, Honglu

    2010-01-01

    There are many consequences following exposure to the space radiation environment which can adversely affect the health of a crew member. Acute radiation syndrome (ARS) involving nausea and vomiting, damage to radio-sensitive tissue such as the blood forming organs and gastrointestinal tract, and cancer are some of these negative effects. The space radiation environment is ample with protons and contains gamma rays as well. Little knowledge exists to this point, however, regarding the effects of protons on mammalian systems; conversely several studies have been performed observing the effects of gamma rays on different animal models. For the research presented here, we wish to compare our previous work looking at whole-body exposure to protons using a mouse model to our studies of mice experiencing whole-body exposure to gamma rays as part of the radio-adaptive response. Radio-adaptation is a well-documented phenomenon in which cells exposed to a priming low dose of radiation prior to a higher dose display a reduction in endpoints like chromosomal aberrations, cell death, micronucleus formation, and more when compared to their counterparts receiving high dose-irradiation only. Our group has recently completed a radio-adaptive experiment with C57BL/6 mice. For both this study and the preceding proton research, the gastrointestinal tract of each animal was dissected four hours post-irradiation and the isolated small intestinal tissue was fixed in formalin for histopathological examination or snap-frozen in liquid nitrogen for RNA isolation. Histopathologic observation of the tissue using standard H&E staining methods to screen for morphologic changes showed an increase in apoptotic lesions for even the lowest doses of 0.1 Gy of protons and 0.05 Gy of gamma rays, and the percentage of apoptotic cells increased with increasing dose. A smaller percentage of crypts showed 3 or more apoptotic lesions in animals that received 6 Gy of gamma-irradiation compared to mice

  4. Immunological network activation by low-dose rate irradiation. Analysis of cell populations and cell surface molecules in whole body irradiated mice

    International Nuclear Information System (INIS)

    Ina, Yasuhiro; Sakai, Kazuo

    2003-01-01

    The effects of low-dose rate whole body irradiation on biodefense and immunological systems were investigated using female C57BL/6 (B6) mice. These B6 mice were exposed continuously to γ-rays from a 137 Cs source in the long-term low-dose rate irradiation facility at CRIEPI for 0 - 12 weeks at a dose rate of 0.95 mGy/hr. In the bone marrow, thymus, spleen, lymph nodes, and peripheral blood of the irradiated mice, changes in cell populations and cell surface molecules were examined. The cell surface functional molecules (CD3, CD4, CD8, CD19, CD45R/B220, ICAM-1, Fas, NK-1.1, CXCR4, and CCR5), and activation molecules (THAM, CD28, CD40, CD44H, CD70, B7-1, B7-2, OX-40 antigen, CTLA-4, CD30 ligand, and CD40 ligand) were analyzed by flow cytometry. The percentage of CD4 + T cells and cell surface CD8 molecule expressions on the CD8 + T cells increased significantly to 120-130% after 3 weeks of the irradiation, compared to non-irradiated control mice. On the other hand, the percentage of CD45R/B220 + CD40 + B cells, which is one of the immunological markers of inflammation, infection, tumor, and autoimmune disease, decreased significantly to 80-90% between the 3rd to 5th week of irradiation. There was no significant difference in other cell population rates and cell surface molecule expression. Furthermore, abnormal T cells bearing mutated T cell receptors induced by high-dose rate irradiation were not observed throughout this study. These results suggest that low-dose rate irradiation activates the immunological status of the whole body. (author)

  5. Studies on induction of apoptosis in mouse Peyer's patches by whole body X-irradiation and its mechanisms

    International Nuclear Information System (INIS)

    Liu Jiamei; Chen Dong; Chen Aijun; Liu Shuzheng

    2001-01-01

    Objective: To study the effect of apoptosis-related genes in mouse Peyer's patches and its molecular mechanism after whole body irradiation (WBI) with different doses of X-rays. Methods: Light microscopy and transmission electron microscopy were used to observe the morphology and structure of Peyer's patches and flow cytometry (FCM) was used to detect the changes of Bcl-x L and Fas-L proteins. Results: The apoptosis in Peyer's patches was increased after 2 Gy X-rays and decreased after 75 mGy X-rays. The expression of Bcl-x L protein was decreased and the expression of Fas-L protein was increased in Peyer's patches after WBI with 2 Gy X-rays, whereas the former increased and the latter decreased after WBI with 75 mGy. Conclusion: Apoptosis-related genes such as Bcl-x L , Fas-L might play an important role in regulation of radiation-induced apoptosis in Peyer's patches

  6. Microwave radiation (2.45 GHz)-induced oxidative stress: Whole-body exposure effect on histopathology of Wistar rats.

    Science.gov (United States)

    Chauhan, Parul; Verma, H N; Sisodia, Rashmi; Kesari, Kavindra Kumar

    2017-01-01

    Man-made microwave and radiofrequency (RF) radiation technologies have been steadily increasing with the growing demand of electronic appliances such as microwave oven and cell phones. These appliances affect biological systems by increasing free radicals, thus leading to oxidative damage. The aim of this study was to explore the effect of 2.45 GHz microwave radiation on histology and the level of lipid peroxide (LPO) in Wistar rats. Sixty-day-old male Wistar rats with 180 ± 10 g body weight were used for this study. Animals were divided into two groups: sham exposed (control) and microwave exposed. These animals were exposed for 2 h a day for 35 d to 2.45 GHz microwave radiation (power density, 0.2 mW/cm 2 ). The whole-body specific absorption rate (SAR) was estimated to be 0.14 W/kg. After completion of the exposure period, rats were sacrificed, and brain, liver, kidney, testis and spleen were stored/preserved for determination of LPO and histological parameters. Significantly high level of LPO was observed in the liver (p body microwave exposure, compared to the control group. Based on the results obtained in this study, we conclude that exposure to microwave radiation 2 h a day for 35 d can potentially cause histopathology and oxidative changes in Wistar rats. These results indicate possible implications of such exposure on human health.

  7. The growth of hemopoietic precursor cells (CFU-C) of adriamycin-treated or whole-body-irradiated dogs with or without bleomycin in vitro

    International Nuclear Information System (INIS)

    Volkamer, A.

    1984-01-01

    The effect of the cytostatic drug bleomycin (BLM) on the growth of canine hemopoietic stem-cells in vitro was tested in order to detect a stem-cell deficiency after in vivo-treatment with adriamycin (ADM) or whole-body-irradiation. Stem-cells damaged by irradiation or cytostatics are suppressed by bleomycin-induced strand-breaks in vitro. After stem-cell recovery the increased sensitivity towards bleomycin can no longer be detected. After whole-body-irradiation and cytostatical treatment the stem-cells who remained intact have to compensate the quantitative change of the stem-cells by increased proliferation. The proliferating cells show a particular bleomycin-sensitivity. Especially after irradiation a long persistence of the bleomycin-sensitivity can be reckoned on. (orig./MG) [de

  8. Effect of whole body vibration therapy on circulating serotonin levels in an ovariectomized rat model of osteoporosis.

    Science.gov (United States)

    Wei, Qiu-Shi; Huang, Li; Chen, Xian-Hong; Wang, Hai-Bin; Sun, Wei-Shan; Huo, Shao-Chuan; Li, Zi-Qi; Deng, Wei-Min

    2014-01-01

    Studies have reported that whole body vibration (WBV) played a vital role in bone remodeling. Circulating serotonin is also involved in negative regulating bone mass in rodents and humans. However, both WBV and inhibition of serotonin biosynthesis may suppress receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis in vitro. The purpose of the current study was to investigate the effect of WBV therapy on the levels of serum serotonin in ovariectomized rats. Thirty-six-month-old female Sprague Dawley rats weighing 276.15±37.75 g were ovariectomized to induce osteoporosis, and another ten rats underwent sham operation to establish sham control (SHAM) group. After 3 months, ovariectomized rats were divided into three subgroups and then separately treated with WBV, Alendronate (ALN) and normal saline (OVX), SHAM group was given normal saline. After 6 weeks of treatment, rats were sacrificed. Serum serotonin, RANKL, bone turnover markers, and bone mineral density (BMD), bone strength were evaluated. The serum serotonin level was significantly lower in WBV group than OVX and ALN groups (P<0.05 and P<0.001). RANKL levels significantly decreased in WBV and ALN groups compared to OVX group (P<0.001 for both). BMD and biomechanical parameters of femur significantly increased (P<0.05 for both) and bone turnover levels decreased (P<0.001 for both) in WBV group compared to OVX group. These data indicated that WBV enhanced the bone strength and BMD in ovariectomized rats most likely by reducing the levels of circulating serotonin.

  9. The LDsub(50/30) and the survival time in whole-body gamma-irradiated conventional and germfree Minnesota miniature piglets

    International Nuclear Information System (INIS)

    Mandel, L.; Travnicek, J.; Talafantova, M.; Zahradnickova, M.

    1980-01-01

    The median lethal exposure causing the death in 30 days after single whole-body gamma-irradiation (the LD 50/30) was found to be 2731 MBq (73.8 mC/kg) for conventional piglets, but 3226 MBq (87.2 mC/kg) for germ-free piglets both irradiated 14 days after birth. After lethal exposures, the survival time in germ-free piglets was prolonged for 7 days in comparison with conventional piglets. (author)

  10. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    Science.gov (United States)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  11. Comparison of /sup 32/P therapy and sequential hemibody irradiation (HBI) for bony metastases as methods of whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, H.; Choi, K.; Sohn, C.; Yaes, R.; Rotman, M.

    1986-06-01

    We report a retrospective study of 15 patients with prostate carcinoma and diffuse bone metastases treated with sodium /sup 32/P for palliation of pain at Downstate Medical Center and Kings County Hospital from 1973 to 1978. The response rates, duration of response, and toxicities are compared with those of other series of patients treated with /sup 32/P and with sequential hemibody irradiation. The response rates and duration of response are similar with both modalities ranging from 58 to 95% with a duration of 3.3 to 6 months with /sup 32/P and from 75 to 86% with a median duration of 5.5 months with hemibody irradiation. There are significant differences in the patterns of response and in the toxicities of the two treatment methods. Both methods cause significant bone marrow depression. Acute radiation syndrome, radiation pneumonitis, and alopecia are seen with sequential hemibody irradiation and not with /sup 32/P, but their incidence can be reduced by careful treatment planning. Hemibody irradiation can provide pain relief within 24 to 48 h, while /sup 32/P may produce an initial exacerbation of pain. Lower hemibody irradiation alone is less toxic than either upper hemibody irradiation or /sup 32/P treatment.

  12. Studies on the Chromatin Isolated from the Organs of Animals Received Whole-body X-ray Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Su Nam [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1967-09-15

    Within experimental chromatin, the total protein: DNA ratio did not vary in the same organs of control and irradiated rats. However, the amount of RNA and total protein associated with the DNA varied considerably among the different types of chromatin. In particular, the content of chromatin was the highest in the irradiated tissue, and the lowest in the chromatin control tissue. RNA and total protein ratio of chromatins from brain, liver, testis and spleen declined with experimental organs. 2) There was the same quantitative relationship between the amount of RNA and the amount histone-protein associated with DNA in each chromatin. 3) RNA:DNA ratio of chromatin showed a 1.5-2 times increase in the irradiated organs except brain. However, RNA:DNA ratio was decreased in chromatin by irradiation. 4) Histone-protein: Residual protein ratio was greatly varied among the organs. However, the effect was not found by irradiation. 5) Priming activity of chromatins showed a higher value in testis and the activity was greater in organs with higher metabolic activity. 6) Inhibition of Actinomycin D observable in chromatin for testis, liver, spleen and brain declined without relationship between irradiated and non-irradiated conditions. Ammonium sulfate in DNA of chromatin from histone showed increased priming activity with dissociation by Electrostatics. It may give different effect of ammonium sulfate on stimulation by property of chromatins. 7) It is suggested that the results support a proposal that the higher sensitivity of radioactive in testis, spleen by irradiated showed a increase and decrease lower-sensitivity of radioactive from brain, liver than did priming activity under the radioactive conditions.

  13. Studies on the Chromatin Isolated from the Organs of Animals Received Whole-body X-ray Irradiation

    International Nuclear Information System (INIS)

    Han, Su Nam

    1967-01-01

    Within experimental chromatin, the total protein: DNA ratio did not vary in the same organs of control and irradiated rats. However, the amount of RNA and total protein associated with the DNA varied considerably among the different types of chromatin. In particular, the content of chromatin was the highest in the irradiated tissue, and the lowest in the chromatin control tissue. RNA and total protein ratio of chromatins from brain, liver, testis and spleen declined with experimental organs. 2) There was the same quantitative relationship between the amount of RNA and the amount histone-protein associated with DNA in each chromatin. 3) RNA:DNA ratio of chromatin showed a 1.5-2 times increase in the irradiated organs except brain. However, RNA:DNA ratio was decreased in chromatin by irradiation. 4) Histone-protein: Residual protein ratio was greatly varied among the organs. However, the effect was not found by irradiation. 5) Priming activity of chromatins showed a higher value in testis and the activity was greater in organs with higher metabolic activity. 6) Inhibition of Actinomycin D observable in chromatin for testis, liver, spleen and brain declined without relationship between irradiated and non-irradiated conditions. Ammonium sulfate in DNA of chromatin from histone showed increased priming activity with dissociation by Electrostatics. It may give different effect of ammonium sulfate on stimulation by property of chromatins. 7) It is suggested that the results support a proposal that the higher sensitivity of radioactive in testis, spleen by irradiated showed a increase and decrease lower-sensitivity of radioactive from brain, liver than did priming activity under the radioactive conditions.

  14. Whole Body Counters (rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Woodburn, John H. [Walter Johnson High School, Rockville, MD; Lengemann, Frederick W. [Cornell University

    1967-01-01

    Whole body counters are radiation detecting and measuring instruments that provide information about the human body. This booklet describes different whole body counters, scientific principles that are applied to their design, and ways they are used.

  15. Combination treatment with whole body vibration and a kidney-tonifying herbal Fufang prevent osteoporosis in ovariectomized rats.

    Science.gov (United States)

    Wei, Qiu-shi; Wang, Hai-bin; Wang, Jun-ling; Fang, Bin; Zhou, Guang-quan; Tan, Xin; He, Wei; Deng, Wei-min

    2015-02-01

    To assess the ability of whole body vibration (WBV) with the kidney-tonifying herbal Fufang (Bushen Zhuanggu Granules, BZG) to prevent osteoporosis in ovariectomized rats. Fifty 6-month-old female Sprague Dawley rats were divided into five groups: sham-operated (SHAM), ovariectomized (OVX), OVX with WBV (OVX + WBV), OVX with BZG (OVX + BZG), OVX with both WBV and BZG (OVX + WBV + BZG). The SHAM group received normal saline. After 12 weeks of treatment, the rats were killed, their serum concentrations of osteopontin (OPN), receptor activator of nuclear factor kappa-B ligand RANKL and bone turnover markers assayed and bone mineral density (BMD), histomorphometry and bone strength evaluated. Concentrations of OPN were significantly lower in the SHAM, OVX + WBV and OVX + WBV + BZG groups at 12 weeks, whereas concentrations of RANKL had decreased significantly in the SHAM, OVX + WBV, OVX + BZG and OVX + WBV + BZG groups. In the OVX + WBV, OVX + BZG and OVX + WBV + BZG groups the amount of bone turnover had been significantly antagonized. Compared with OVX group, BMD, % trabecular area (Tb.Ar), number of trabeculae (Tb.N) and assessed biomechanical variables were higher in OVX+WBV group, whereas and BMD, %Tb.Ar, Tb.N, maximal load and yield load were higher in the OVX + BZG group. All tested indices were significantly lower in the OVX + WBV and OVX + BZG groups than in the OVX + WBV + BZG group. Either WBV or BZG alone prevents OVX-induced bone loss. However, BZG enhances the effect of WBV by further enhancing BMD, bone architecture and strength. © 2015 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  16. Study of erythrocyte recovery by means of cellular spectra and reticulocytes remodeling after whole-body irradiation

    International Nuclear Information System (INIS)

    Le Go, A.; Le Go, R.; Malarbet, J.-L.; Prudhomme, J.; Genest, L.

    1977-01-01

    The size (volume) distribution spectra of red blood cells (RBC) are closely related to the renewal kinetics of the RBC population and to its instantaneous composition in normocytes and in younger cells of greater size. After experimental gamma irradiation in the rat, the following events can be observed: progressive reduction of the normocytic component of the spectra; after a latent period, dose-related neo-production of RBC, made up of macrocytes, could be observed on the spectra by a macrocytic peak progressively increasing from the 21th to the 42th day after irradiation; after this early recovery a period of size normalization of RBC production occured with progressive reappearance of normocytes. The normocyte population reappeared and increased simultaneously with the disappearance of macrocytic population, due to their shorter life span and a probable remodelling process only active in the presence of the spleen and unobserved after splenectomy. By substracting the macrocytic peak contents from two successive spectra (at a week's interval), the weekly productions of macrocytes and normocytes could be calculated. These values closely reflect the recovery kinetics of irradiated bone-marrow [fr

  17. Glial reaction in visual centers upon whole-body combined irradiation with microwaves and x-radiation

    International Nuclear Information System (INIS)

    Logvinov, S.V.

    1989-01-01

    A single whole-body preirradiation with thermogenous microwaves modifies the dynamics of the glial reactions of visual centers of ginea pigs induced by median lethal X-radiation doses. A combination of the two factors products the synergistic effect, estimated by the degree of alteration of astrocytes and oligodendroglyocytes at early times after exposure, leads to early activation of microglia, and reduces radiation-induced alterations in glia at later times (25-60 days)

  18. Protective effect of lycopene on whole body irradiation induced liver damage of Swiss albino mice: pathological evaluation

    International Nuclear Information System (INIS)

    Marimuthu, Srinivasan; Menon, Venugopal Padmanabhan

    2013-01-01

    The present study was aimed to evaluate the radioprotective efficacy of lycopene, a naturally occurring dietary carotenoid on whole body radiation-induced liver damage of Swiss albino mice. The first phase of the study was carried out to fix the effective concentration of Iycopene by performing a 30 days survival studies using different graded doses (10, 20, 40 and 80 mg/kg body weight) of lycopene administered orally to mice via intragastric intubations for seven consecutive days prior to exposure of whole body radiation (10 Gy). Based on the results of survival studies, the effective dose of Iycopene was fixed which was then administered to mice orally via intragastric intubations for seven consecutive days prior to exposure of whole body radiation (4 Gy) to evaluate its radioprotective efficacy by performing various biochemical assays in the liver of Swiss albino mice. The results indicated that radiation-induced decrease in the activities of endogenous antioxidant enzymes and increase in lipid peroxidative index, DNA damage and comet assays were altered by pre-administration with the effective dose of Iycopene (20 mg/kg body weight) which restored the antioxidant status to near normal and decreased the levels of lipid peroxidative index, DNA damage and comet assays.These results were further confirmed by histopathological examinations which indicated that pre-administration with the effective dose of Iycopene reduced the hepatic damage induced by radiation. (author)

  19. Effect of Fluosol-DA 20% and oxygen on response of C57BL/6 mice to whole-body irradiation

    International Nuclear Information System (INIS)

    Waldow, S.M.; Lustig, R.A.; Brass-Marlow, E.L.; Nunno, M.P.; Holst, R.J.; Wallner, P.E.

    1990-01-01

    Normal tissue effects in mice due to combinations of a perfluorochemical emulsion, Fluosol-DA 20%, 100% oxygen, and whole-body irradiation were investigated. Eight-to-10-week-old C57BL/6 male mice were injected via the tail vein with 10 ml/kg of Fluosol-DA with and without subsequent exposure to oxygen for 60 minutes. Animals then received graded doses of whole-body radiation (4 MV photons) at a dose rate of 2.85 +/- .015 Gy/minute. Using linear regression analysis, the lethal doses of radiation to 50% and 10% of the animals within 30 days in the absence of Fluosol-DA and oxygen were 8.35 Gy (95% c.l.:7.77-8.93 Gy) and 6.73 Gy (95% cl.:6.21-7.25 Gy), respectively, and were unaffected by Fluosol-DA and/or oxygen pre-treatment. However, Fluosol-DA given alone or in combination with oxygen produced increased balding and decreased graying incidence in mice within 60 days, and resulted in depressed weight gain 15 to 60 days post-treatment. Normal tissue effects due to administration of Fluosol-DA and oxygen in combination with whole-body irradiation have been demonstrated but appear minimal compared to other anti-tumor modalities currently under investigation

  20. Effect of ionizing whole-body irradiation on the primary and secondary antibody reaction of cows to injection of human gamma globulin

    International Nuclear Information System (INIS)

    Koch, F.; Buchholz, I.; Mehlhorn, G.

    1989-01-01

    In 3 experiments 29 cows were exposed to whole-body irradiation, using 9 MeV X-rays of a linear accelerator, with doses of 1.50 and 2.00 Gy or 60 Co gamma rays with a dose of 2.75 Gy, as a midline dose. 2 weeks prior to irradiation the first immunization was applied using human gamma globulin. 4 or 5 weeks after irradiation a second immunization was carried out. The antibody titres were investigated. The irradiation failed to affect the antibody titres after the first immunization. After the second immunization the antibody titres of the irradiated animals remained diminished significantly (α = 0.05). This has been attributed to a damage of the memory cell pool. (author)

  1. Chromosome Aberrations Induced in Human Peripheral Blood by 2-MeV X-Irradiation to the Whole Body and In Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Buckton, Karin E.; Langlands, A. O.; Smith, P. G.; Looby, P. C.; Woodcock, G. E. [Medical Research Council, Clinical and Population Cytogenetics Research Unit, Western General Hospital Edinburgh (United Kingdom); McLelland, J. [Edinburgh Royal Infirmary and Western General Hospital, Edinburgh (United Kingdom)

    1969-11-15

    In recent years it has proved possible to correlate the incidence of ring and dicentric chromosomes in cultured human peripheral blood lymphocytes with given radiation doses both in vitro and following partial or whole body irradiation exposure in vivo In the present study a comparison is made between the yield of aberrations in six men with advanced cancer who received whole body irradiation in doses varying between 36 and 50 rads and the yield of aberrations in samples of their blood drawn before exposure and irradiated in vitro simultaneously to the same dose A comparison is also made between the yield of aberrations following in vitro irradiation to much higher doses of blood derived from these same cancer patients and blood from non cancer controls The significance of these findings is discussed with reference to biological dosimetry using chromosome aberrations as the parameter for both external and internal irradiation Apart from such a practical application it also appears possible to develop this technique to study the sensitivity of cells to chromosome breakage by radiation in selected populations such as mongols or persons with Fancom s anaemia where there is a higher than normal incidence of malignant disease. (author)

  2. Skeletal site-specific effects of whole body vibration in mature rats: from deleterious to beneficial frequency-dependent effects.

    Science.gov (United States)

    Pasqualini, Marion; Lavet, Cédric; Elbadaoui, Mohamed; Vanden-Bossche, Arnaud; Laroche, Norbert; Gnyubkin, Vasily; Vico, Laurence

    2013-07-01

    Whole body vibration (WBV) is receiving increasing interest as an anti-osteoporotic prevention strategy. In this context, selective effects of different frequency and acceleration magnitude modalities on musculoskeletal responses need to be better defined. Our aim was to investigate the bone effects of different vibration frequencies at constant g level. Vertical WBV was delivered at 0.7 g (peak acceleration) and 8, 52 or 90 Hz sinusoidal vibration to mature male rats 10 min daily for 5 days/week for 4 weeks. Peak accelerations measured by skin or bone-mounted accelerometers at L2 vertebral and tibia crest levels revealed similar values between adjacent skin and bone sites. Local accelerations were greater at 8 Hz compared with 52 and 90 Hz and were greater in vertebra than tibia for all the frequencies tested. At 52 Hz, bone responses were mainly seen in L2 vertebral body and were characterized by trabecular reorganization and stimulated mineral apposition rate (MAR) without any bone volume alteration. At 90 Hz, axial and appendicular skeletons were affected as were the cortical and trabecular compartments. Cortical thickness increased in femur diaphysis (17%) along with decreased porosity; trabecular bone volume increased at distal femur metaphysis (23%) and even more at L2 vertebral body (32%), along with decreased SMI and increased trabecular connectivity. Trabecular thickness increased at the tibia proximal metaphysis. Bone cellular activities indicated a greater bone formation rate, which was more pronounced at vertebra (300%) than at long bone (33%). Active bone resorption surfaces were unaffected. At 8 Hz, however, hyperosteoidosis with reduced MAR along with increased resorption surfaces occurred in the tibia; hyperosteoidosis and trend towards decreased MAR was also seen in L2 vertebra. Trabecular bone mineral density was decreased at femur and tibia. Thus the most favorable regimen is 90 Hz, while deleterious effects were seen at 8 Hz. We concluded that

  3. Radioprotection by dipyridamole in the aging mouse. Effects on lipid peroxidation in mouse liver, spleen and brain after whole-body X-ray irradiation

    International Nuclear Information System (INIS)

    Seino, Noritaka

    1995-01-01

    To investigate the radioprotective effect of dipyridamole in the aging mouse, the lipid peroxide content in aging mouse liver, spleen and brain irradiated by X-ray were measured both before and after injection of dipyridamole. The lipid peroxide content increased with aging from 2 months old to 16 months old in the mouse liver, spleen and brain. The content of lipid peroxide in the liver and spleen of the aging mouse was significantly increased in 7 days after whole-body irradiation with 8 Gy, but was unchanged in the brain. Dipyridamole, given before irradiation, significantly inhibited the increase of lipid peroxide after irradiation. These results suggest that dipyridamole may have radioprotective effects on aging mouse liver and spleen as well as on young mouse, and that inhibition of lipid peroxidation is a possible factor in the radioprotective effect of dipyridamole. (author)

  4. Deposition and retention of 0.1 micron 67Ga2O3 aggregate aerosols in rats following whole body exposures

    International Nuclear Information System (INIS)

    Wolff, R.K.; Griffis, L.C.; Hobbs, C.H.; McClellan, R.O.

    1982-01-01

    Determinations were made of respiratory tract deposition and gastrointestinal tract burdens following whole body inhalation exposures, typical of those used in many chronic exposures; these were compared to values obtained in nose-only exposures. Fischer-344 rats were exposed in large volume chambers, in a whole body mode, to 0.1 micron volume median diameter (VMD) 67 Ga 2 O 3 particles 5 hrs/day. Deposition per unit of exposure time and retention were essentially identical following either 1 or 3 day exposures. The lung deposition of particles was 2.8 units/hr for males and 2.2 units/hr for females if the exposure concentration was expressed as 1 unit/L. These values represent a deposition of approximately 15% of the inhaled particles, similar to values obtained for nose-only exposures. Aerosol deposition per kgm body weight was 24% higher in females than males. Passage of material into the gastrointestinal tract was 1.6-fold greater for these whole body exposures as compared to nose-only exposures to the same aerosol mainly resulting from extra material ingested by grooming of the pelt. Approximately 60% of the pelt burden was calculated to be ingested following whole body exposures

  5. Radiobiologic considerations about further development of whole-body irradiation with subsequent bone marrow transplantation applied during the treatment of acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K R; Holler, E; Kolb, H J

    1981-08-01

    The results achieved hitherto with whole-body irradiation in case of acute leukemia are examined with respect to the optimization criteria of a radiotherapy. The most important failure risk is the recurrence which occurs in more than 50% of all cases, then follows the interstitial pneumonia. The authors think that an increase of the total dose, the adaption of the dose distribution to the distribution of leukemia cells in the body, and a higher fractionation of the total dose are approaches for improving the therapy results.

  6. Radioprotection by caffeine pre-treatment and post-treatment in the bone marrow chromosomes of mice given whole-body [gamma]-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farooqi, Z.; Kesavan, P.C. (Jawaharlal Nehru Univ., New Delhi (India). School of Life Sciences)

    1992-10-01

    The effect of caffeine given as pre- and post-treatment in mice exposed to whole-body [gamma]-irradiation (1.5 Gy [sup 60]Co [gamma]-rays) was studied. The pre-treatment was either acute or chronic. The acute dose (5 mg/kg and 15 mg/kg body weight) was in the form of an injection given intraperitoneally, 30 min before irradiation. The chronic administration was in the form of caffeine solution (4.208x10[sup -3] M and 7.72x10[sup -4] M) contained in drinking water for 5 weeks prior to radiation exposure. The acute pre-treatment with caffeine reduced the radiation-induced frequency of chromosomal aberrations discernibly, whereas chronic pre-treatment afforded a much more significant degree of radioprotection. The caffeine post-treatment (5 mg/kg and 15 mg/kg body weight) was given in the form of an intraperitoneal injection to the mice immediately following whole-body [gamma]-irradiation. It is noted that both post-treatment concentrations of caffeine also significantly reduced the frequency of chromosomal aberrations induced by [gamma]-rays. These data are briefly discussed in terms of possible mechanistic considerations. (author). 33 refs.; 3 tabs.

  7. Radioprotection by caffeine pre-treatment and post-treatment in the bone marrow chromosomes of mice given whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Farooqi, Z.; Kesavan, P.C.

    1992-01-01

    The effect of caffeine given as pre- and post-treatment in mice exposed to whole-body γ-irradiation (1.5 Gy 60 Co γ-rays) was studied. The pre-treatment was either acute or chronic. The acute dose (5 mg/kg and 15 mg/kg body weight) was in the form of an injection given intraperitoneally, 30 min before irradiation. The chronic administration was in the form of caffeine solution (4.208x10 -3 M and 7.72x10 -4 M) contained in drinking water for 5 weeks prior to radiation exposure. The acute pre-treatment with caffeine reduced the radiation-induced frequency of chromosomal aberrations discernibly, whereas chronic pre-treatment afforded a much more significant degree of radioprotection. The caffeine post-treatment (5 mg/kg and 15 mg/kg body weight) was given in the form of an intraperitoneal injection to the mice immediately following whole-body γ-irradiation. It is noted that both post-treatment concentrations of caffeine also significantly reduced the frequency of chromosomal aberrations induced by γ-rays. These data are briefly discussed in terms of possible mechanistic considerations. (author). 33 refs.; 3 tabs

  8. The enhancing effect of fractionated whole-body x-irradiation on replication of endogenous leukemia viruses in BALB/c mice

    International Nuclear Information System (INIS)

    Takamori, Yasuhiko; Okumoto, Masaaki; Iwai, Mineko; Iwai, Yoshiaki

    1976-01-01

    The incidence of leukemia, changes in the tissue weight of spleen and thymus, and the expression of endogenous viruses were examined with BALB/c mice following 4 weekly fractionated whole-body x-irradiation of 170 R each, starting at 4 weeks of age. The leukemia incidence was quite low for the unirradiated controls, while 60% of the irradiated male mice developed thymic lymphoma. The virus-positive cells appeared earlier in the spleen than in the thymus and bone marrow, and increased with aging. The time of appearance of virus-positive cells in these tissues was remarkably promoted by the fractionated x-irradiation, and its frequency was also enhanced. (auth.)

  9. Evaluation of brain and whole-body pharmacokinetics of 11C-labeled diphenylhydantoin in rats by means of planar positron imaging system

    International Nuclear Information System (INIS)

    Hasegawa, Yukinori; Kanai, Yasukazu; Hasegawa, Shinji; Shimosegawa, Eku; Kurachi, Yoshihisa; Hatazawa, Jun; Okamoto, Takashi; Matsui, Tamiko

    2008-01-01

    A planar positron imaging system (PPIS) enables whole-body dynamic imaging of radiopharmaceuticals labeled with positron-emitting nuclides. We evaluated the difference in the brain and whole-body pharmacokinetics of 11 C-diphenylhydantoin ( 11 C-DPH) between intravenous and duodenal administration in rats. Male Wistar rats (8 weeks old, mean body weight 250 g) were examined under anesthesia. A tracer amount of 11 C-DPH (2 μg or less; about 5 MBq) was injected into the tail vein (n=3) or duodenum (n=3). Immediately following the administration, PPIS scans were obtained for 20 min. Regions of interest (ROIs) were set on the brain, heart, liver, intestinal field, and urinary bladder, identified on the integrated images. The relative uptake value (RUV, %) was calculated as the regional count divided by the whole-body count multiplied by 100. Sequential changes in the RUV for each ROI were analyzed for the brain and other organs. Following intravenous injection of 11 C-DPH, the RUV in the brain was 1.59±0.07%, 1.53±0.09%, 1.40±0.09%, and 1.38±0.08% at 5 min, 10 min, 15 min, and 20 min after the injection, respectively. After duodenal administration, the corresponding values were 0.54±0.16%, 1.01±0.12%, 1.43±0.24%, and 1.52±0.06%, respectively. The 11 C-DPH distribution was significantly lower at 5 min and 10 min following duodenal administration than after intravenous injection (P 11 C-DPH between intravenous and duodenal administration in rats. Use of the PPIS is feasible for the evaluation of the pharmacokinetics in both the target organ and the whole body in small animals. (author)

  10. Characteristic of immunological adaptive response induced by low level whole body irradiation with X-rays in mice

    International Nuclear Information System (INIS)

    Ju Guizhi; Song Chunhua; Qi Jin; Liu Shuzheng

    1995-01-01

    The range of preirradiated doses (D 1 ) and challenge doses (D 2 ) for the induction of immunological adaptive response and the optimum time intervals between D 1 and D 2 were investigated in Kunming mice. The results were as follows: 1. Single whole body preirradiation by X-rays with D 1 doses of 25∼100 mGy (12.5 mGy/min) could induce adaptive response of spontaneous incorporation of 3 H-TdR into thymocytes and the reaction of splenocytes to LPS. 2. With D 2 doses of 1.0 to 1.5 Gy, the adaptive response of spontaneous incorporation of 3 H-TdR into thymocytes and the reaction of splenocytes to ConA and LPS could be induced. 3. The optimum interval for the induction of immunological adaptive response between D 1 and D 2 could be 6∼12 h

  11. Effect of insulin on aldolase turnover in irradiated rat liver

    International Nuclear Information System (INIS)

    Komov, V.P.; Kirillova, N.V.; Bekdzhanyan, A.G.

    1984-01-01

    A study was made of the effect of insulin on the rate of biosynthesis, ''half life'', spontaneous decomposition and transport of aldolase in mitochondria of liver and blood plasma of rats, subjected to whole-body X-irradiation. The hormone injected after irradiation was shown to normalize the rate of spontaneous decay and the time of aldolase functioning

  12. Partial reconstitution of virus-specific memory CD8+ T cells following whole body γ-irradiation

    International Nuclear Information System (INIS)

    Grayson, Jason M.; Laniewski, Nathan G.; Holbrook, Beth C.

    2006-01-01

    CD8 + memory T cells are critical in providing immunity to viral infection. Previous studies documented that antigen-specific CD8 + memory T cells are more resistant to radiation-induced apoptosis than naive T cells. Here, we determined the number and in vivo function of memory CD8 + T cells as immune reconstitution progressed following irradiation. Immediately following irradiation, the number of memory CD8 + T cells declined 80%. As reconstitution progressed, the number of memory cells reached a zenith at 33% of pre-irradiation levels, and was maintained for 120 days post-irradiation. In vitro, memory CD8 + T cells were able to produce cytokines at all times post-irradiation, but when adoptively transferred, they were not able to expand upon rechallenge immediately following irradiation, but regained this ability as reconstitution progressed. When proliferation was examined in vitro, irradiated memory CD8 + T cells were able to respond to mitogenic growth but were unable to divide

  13. Histopathological studies show protective efficacy of Hippophae leaf extract against damage to jejunum in whole body 60Co-a-irradiated mice

    International Nuclear Information System (INIS)

    Gupta, Manish; Prasad, Jagdish; Madhu Bala

    2012-01-01

    Background: Ionizing radiation affect living tissue by causing majority of in vivo damage by free radical production. Earlier we reported that our preparation from Hippophae leaf offered survival benefit to >90% mice population which was whole body irradiated ( 60 Co-a-rays, 10 Gy). Objective: This study was planned to examine the protective effects of our drug (from Hippophae leaf) on ( 60 Co-a-ray induced oxidative damage and histopathological changes in jejunum. Methods: Around 2 months old adult male Strain 'A' mice were irradiated (10 Gy). Drug was administered intraperitoneally (-30 mm.). Histological parameters were studied after staining the sections with hematoxylin and eosin. Malondialdehyde formation (index of lipid peroxidation), alkaline phosphatase activity, and total thiol content were determined by biochemical techniques. The data was obtained at different time interval upto 30 days. Results: Biochemical studies showed that in comparison to the untreated controls, in the irradiated (10 Gy) mice, there was significant increase in the alkaline phosphatase activity and level of malondialdehyde whereas decrease in total thiol content within 2 days. Histological studies showed that whole body irradiation (10 Gy), damaged the jejunam crypt cells and decreased the villi height within 2 days. Intra-peritoneal administration of drug, 30 mm prior to irradiation, protected the crypt cells and villi height, countered the radiation induced increase in alkaline phosphatase activity and lipid peroxidation and values were comparable to the level of control in 30 days. Conclusions: These biochemical and histopathological studies suggested that our drug can offer effective radioprotection against the oxidative damage to jejunum in vivo. (author)

  14. Radiosensitivity of T and B lymphocytes. IV. Effect of whole body irradiation upon various lymphoid tissues and numbers of recirculating lymphocytes

    International Nuclear Information System (INIS)

    Anderson, R.E.; Olson, G.B.; Autry, J.R.; Howarth, J.L.; Troup, G.M.; Bartels, P.H.

    1977-01-01

    Groups of 10-week-old-female CBA/J mice were exposed in whole body fashion to 0, 5, 50, and 500 rads and sacrificed in serial fashion 1, 3, 5, 7, 9, 15, and 30 days after irradiation for morphologic evaluation of thymus, spleen, lymph node, and Peyer's patch, and assessment of the relative numbers of thymus-derived (T) and bone marrow-derived (B) cells in these tissues. The absolute and relative numbers of recirculating T and B cells mobilizable by thoracic duct cannulation were also determined and compared with similar determinations with respect to peripheral blood lymphocytes. B cell depletion occurred more quickly and was more pronounced in spleen and lymph node than T cell depletion at all three exposure doses. Depletion of T and B cells was roughly equal in peripheral blood and thoracic duct lymph. When present, regeneration of the T cell component occurred more rapidly than did B cell restoration. The latter often was incomplete at the time of the final sacrifice (day 30). PHA-responsive and Con A-responsive cells also appeared to differ with respect to the kinetics of cell death after whole body irradiation

  15. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Chen, Chuck T; Trepanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.

  16. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    Science.gov (United States)

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  17. Pathomorphological studies of the radiation syndrome in sheep after whole-body irradiation with X-rays

    International Nuclear Information System (INIS)

    Johannsen, U.; Mehlhorn, G.; Koch, F.; Panndorf, H.

    1978-01-01

    Eight one-year-old Merino mutton sheep were irradiated with X-ray doses of 380 R. Five of the animals died between the 16th and 25th day after irradiation and were examined. In organs and tissues a great diversity of pathological changes was observed as for instance hematopoietic disorders, septic processes, hemorrhagic diatheses, and partial epilation

  18. Lifespan studies on different strains of mice exposed chronically to low levels of whole body gamma irradiation

    International Nuclear Information System (INIS)

    Fox, L.A.; Klein, A.K.; Cain, G.R.; Rosenblatt, L.S.

    1982-01-01

    Several strains of mice, chosen for their predisposition to immunohematological disorders, were exposed to low levels of 60 irradiation continuously for four weeks. All individuals were subsequently followed throughout their lifetimes. W/W/sup v/ mice, which are tyically subject to a stem cell deficiency, had a lower cumulative survival rate for the irradiated group than for the unirradiated controls. Irradiated RF/sub j/ mice had a dramatically lower cumulative survival rate than their unirradiated controls. Conversely, BXSB mice, which have a lumphoproliferative autoimmune disorder, had a higher cumulative survival rate after chronic irradiation than did unirradiated BXSBs. Irradiation had no effect upon the survival rate curves of the NZB strain, the murine model for Lupus Erythematosus

  19. Whole body proton irradiation causes acute damage to bone marrow hematopoietic progenitor and stem cells in mice.

    Science.gov (United States)

    Chang, Jianhui; Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-12-01

    Exposure to proton irradiation during missions in deep space can lead to bone marrow injury. The acute effects of proton irradiation on hematopoietic stem and progenitor cells remain undefined and thus were investigated. We exposed male C57BL/6 mice to 0.5 and 1.0 Gy proton total body irradiation (proton-TBI, 150 MeV) and examined changes in peripheral blood cells and bone marrow (BM) progenitors and LSK cells 2 weeks after exposure. 1.0 Gy proton-TBI significantly reduced the numbers of peripheral blood cells compared to 0.5 Gy proton-TBI and unirradiated animals, while the numbers of peripheral blood cell counts were comparable between 0.5 Gy proton-TBI and unirradiated mice. The frequencies and numbers of LSK cells and CMPs in BM of 0.5 and 1.0 Gy irradiated mice were decreased in comparison to those of normal controls. LSK cells and CMPs and their progeny exhibited a radiation-induced impairment in clonogenic function. Exposure to 1.0 Gy increased cellular apoptosis but not the production of reactive oxygen species (ROS) in CMPs two weeks after irradiation. LSK cells from irradiated mice exhibited an increase in ROS production and apoptosis. Exposure to proton-TBI can induce acute damage to BM progenitors and LSK cells.

  20. Influence of metronidazole on the survival rate of whole-body irradiated mice and on the DNA repair synthesis of lymphocytes

    International Nuclear Information System (INIS)

    Magdon, E.; Schroeder, E.

    1978-01-01

    With reference to literature reports the effect of Metronidazole [1-(hydroxyethyl)-5-nitro-2-methyl-imidazole] on the survival rate of C 3 H inbred mice following whole-body doses ranging from 5 to 15 Gy was determined under oxic and hypoxic conditions. Ehrlich ascites tumor cells were used to study the influence of Metronidazole on radiation-induced alterations of the DNA sedimentation behavior in the alkaline sucrose gradient under oxic conditions in vitro. The effect of Metronidazole on the semiconservative DNA synthesis was investigated under oxic and hypoxic conditions in Ehrlich ascites carcinoma cells and L5178Y lymphoma cells. Furthermore, it was examined whether the radiation-induced inhibition of semiconservative DNA synthesis in L5178Y lymphoma cells and the radiation-induced repair synthesis in lymphocytes is influenced by Metronidazole. From the values of the LDsub(50/30) after whole-body irradiation a sensitilization factor of 1.3 was derived for Metronidazole under hypoxic conditions. Under atmospheric conditions an increase of the radiation effect by a factor of 1.1 was obtained. The protective factor of hypoxia was 1.6 and thus greater than the radiosensibilization caused by Metronidazole. The DNA synthesis was slightly inhibited by Metronidazole under both hypoxic and euoxic conditions. The studies revealed no significant influence of Metronidazole on radiation-induced changes of the DNA sedimentation behavior and of the DNA repair synthesis as well as on the radiation induced inhibition of semiconservative DNA synthesis. (author)

  1. Differential effects of whole-body {gamma}-irradiation on antinociception induced by morphine and {beta}-endorphin administered intracerebroventricularly in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.K. [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Chung, K.M.; Park, T.W.

    2000-05-01

    Two separate lines of evidence suggested the present study. First, intracerebroventricularly (i.c.v.) administered morphine (a {mu}-opioid receptor agonist) and {beta}-endorphin (an {epsilon}-opioid receptor agonist) produce antinociception by activating different descending pain inhibitory systems. Second, {gamma}-irradiation attenuates the acute antinociceptive action of i.c.v. injected morphine, but not DPLPE (a {delta}-opioid receptor agonist), in mice. These findings prompted us to investigate the effect of {gamma}-irradiation on the antinociception produced by i.c.v. injected morphine and {beta}-endorphin in male ICR mice. In one group, mice were exposed to whole-body irradiation at a dose of 5 Gy from a {sup 60}Co {gamma}-source and the antinociceptive effects were tested 5, 30, 60,90 and 180 min after irradiation using the 1% acetic acid-induced writhing test (10 ml/kg). The antinociceptive effect was produced time-dependently and reached its maximum at 90 min after irradiation. Thus, time was fixed in the following studies. In another group, mice were irradiated with 5 Gy and tested 90 minutes later for antinociception produced by i.c.v. administration of morphine (50 and 100 ng/mouse) or {beta}-endorphin (31 ng/mouse). Irradiation significantly potentiated the antinociception produced by {beta}-endorphin. However, the antinociception produced by morphine was not affected by irradiation. These results demonstrate a differential sensitivity of {mu}- and {epsilon}-opioid receptors to {gamma}-irradiation, in addition, support the hypothesis that morphine and {beta}-endorphin administered supraspinally produce antinociception by different neuronal mechanisms. (author)

  2. Differential effects of whole-body γ-irradiation on antinociception induced by morphine and β-endorphin administered intracerebroventricularly in the mouse

    International Nuclear Information System (INIS)

    Kim, J.K.; Chung, K.M.; Park, T.W.

    2000-01-01

    Two separate lines of evidence suggested the present study. First, intracerebroventricularly (i.c.v.) administered morphine (a μ-opioid receptor agonist) and β-endorphin (an ε-opioid receptor agonist) produce antinociception by activating different descending pain inhibitory systems. Second, γ-irradiation attenuates the acute antinociceptive action of i.c.v. injected morphine, but not DPLPE (a δ-opioid receptor agonist), in mice. These findings prompted us to investigate the effect of γ-irradiation on the antinociception produced by i.c.v. injected morphine and β-endorphin in male ICR mice. In one group, mice were exposed to whole-body irradiation at a dose of 5 Gy from a 60 Co γ-source and the antinociceptive effects were tested 5, 30, 60,90 and 180 min after irradiation using the 1% acetic acid-induced writhing test (10 ml/kg). The antinociceptive effect was produced time-dependently and reached its maximum at 90 min after irradiation. Thus, time was fixed in the following studies. In another group, mice were irradiated with 5 Gy and tested 90 minutes later for antinociception produced by i.c.v. administration of morphine (50 and 100 ng/mouse) or β-endorphin (31 ng/mouse). Irradiation significantly potentiated the antinociception produced by β-endorphin. However, the antinociception produced by morphine was not affected by irradiation. These results demonstrate a differential sensitivity of μ- and ε-opioid receptors to γ-irradiation, in addition, support the hypothesis that morphine and β-endorphin administered supraspinally produce antinociception by different neuronal mechanisms. (author)

  3. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Choi, Hyeong-Jwa [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Na, Tae-Young [College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-741 (Korea, Republic of); Nemeno, Judee Grace E.; Lee, Jeong Ik [Regenerative Medicine Laboratory, Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 143-701 (Korea, Republic of); Yoon, Taek Joon [Department of Food and Nutrition, Yuhan College, Bucheon, Gyeonggi-do, 422-749 (Korea, Republic of); Choi, In-Soo [Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Lee, Minyoung [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Lee, Jae-Seon [Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 400-712 (Korea, Republic of); Kang, Young-Sun, E-mail: kangys1967@naver.com [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of)

    2015-08-07

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.

  4. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    International Nuclear Information System (INIS)

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee; Choi, Hyeong-Jwa; Na, Tae-Young; Nemeno, Judee Grace E.; Lee, Jeong Ik; Yoon, Taek Joon; Choi, In-Soo; Lee, Minyoung; Lee, Jae-Seon; Kang, Young-Sun

    2015-01-01

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3 + apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b + cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1 + macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver

  5. Alkaline phosphatase role in bone marrow and spleen hemopoietic cells recovery after mouse whole-body irradiation

    International Nuclear Information System (INIS)

    Al Mouhamad, K.; Al Sheikh, F.

    2013-04-01

    Hematopoietic tissue is consisted of two distinctly different tissues, the first part is the hematopoietic stem cells and the second tissue is a mixture of many supportive cells which the most important one of them is alkaline phosphatase (ALP)-secreted-fibroblastic cells (FBCs). It was thought that FBCs play an important role in the hematopoiesis through ALP secretion. Our previous studies indicated that the ALP secretion in bone marrow (BM) increased after a whole mouse body irradiation when the BM cellular component is completely destroyed and, then it was decreased when the BM regain its cellular component. We performed some experiences to verify if there is any role to the ALP in the hematopoiesis. We irradiated three groups of mice to non-lethal dose, the first one was injected by Tetramizole (anti-ALP) 24 hours before irradiation, and the second was injected by Lisinopril (anti-hematopoiesis) 24 hours before irradiation and the third left without any injection. The fourth left as control. Many histological sections were taken from BM and spleen on 1, 3, 7 and 30 days after irradiation to perform ALP-histological detection. These experiences were repeated to count BM cells. ALP secretion level in the BM was reached the maximum 3 days after irradiation without any injection when the cell number was in minimum then, the level of ALP start to decrease and the cell number start to increase. ALP secretion delayed when the mice were injected by Tetramizole and BM cell population also delayed to return to its normal position. But, the ALP secretion increased directly after irradiation when the mice were injected by Lisinopril which, the ALP secretion, normally reached the maximum by the third day. These results may indicate a role to the ALP in BM and spleen hematopoietic cell recovery (author).

  6. Activation of immune functions via induction of glutathione of lymphocytes by low-dose, whole-body irradiation with gamma-rays

    International Nuclear Information System (INIS)

    Shuji Kojima; Hisatake Hayase; Mareyuki Takahashi

    2007-01-01

    Complete text of publication follows. We have recently found that low doses of radiation, unlike higher doses, do not always cause a decrease of cellular glutathione, but they can increase it, leading to an elevation of Con A-induced proliferation of splenocytes. In this study, we first examined whether the increase of glutathione level induced by low-dose gamma-ray irradiation is involved in the appearance of enhanced natural killer (NK) activity and antibody-dependent cellular cytotoxicity (ADCC), leading to delayed tumor growth in Ehrlich solid tumor (EST)-bearing mice. NK activity in ICR mouse splenocytes was significantly increased from 4 h to 6 h after a single whole-body gamma-ray irradiation at 0.5 Gy, and thereafter decreased almost to the zero-time level by 24 h post-irradiation. ADCC was also increased significantly in a similar way. Reduced glutathione exogenously added to splenocytes obtained from normal mice enhanced both NK activity and ADCC in a dose-dependent manner. The inhibitory effect of the radiation on tumor growth was then examined in EST-bearing mice. Repeated low-dose irradiation (0.5 Gy, four times, before and within an early time after the inoculation) significantly delayed the tumor growth. Finally, the effect of single low-dose (0.5 Gy), whole-body gamma-ray irradiation on immune balance (Th1/Th2) was examined in order to elucidate the mechanism underlying the anti-tumor immunity. Recent studies indicate that Th1/Th2 balance plays an important role in the immune responses involved in anti-tumor immunity. The activity of NK is hallmarks of cell-mediated immunity, and play key roles in anti-tumor immunity. The percentage of B cells in blood lymphocytes was selectively decreased after the radiation, concomitantly with an increase in that of helper T cell population, favoring Th1 polarization. The IFN-gamma level in splenocyte culture prepared from EST-bearing mice was significantly increased 48 h after the radiation, though the level of

  7. Pre-treatment with mild whole-body heating prevents gastric ulcer induced by restraint and water-immersion stress in rats.

    Science.gov (United States)

    Itoh, Y H; Noguchi, R

    2000-01-01

    The purpose of this study was to assess the preventive effect of pre-mild whole-body heating (WBH) on gastric ulcer induced by restraint and water-immersion stress. The ulcer index and ulcer area ratio in rats exposed to restraint and water-immersion stress were significantly decreased (p immersion stress alone (p immersion, thereby preventing gastric ulcer formation. Pre-treatment with mild WBH is the safest cytoprotective method through the accumulation of HSP 70f. The concentration of HSP 70f in peripheral lymphocytes may be a useful clinical laboratory indicator for assessing the level of HSP 70f as having cytoprotective activity.

  8. Investigation of Figopitant and Its Metabolites in Rat Tissue by Combining Whole-Body Autoradiography with Liquid Extraction Surface Analysis Mass Spectrometry

    DEFF Research Database (Denmark)

    Schadt, S.; Kallbach, S.; Almeida, R.

    2012-01-01

    tissue extraction, sample cleanup, and high-performance liquid chromatography analysis. The parent drug and the N-dealkylated metabolite M474(1) (BIIF 1148) in varying ratios were the predominant compounds in all tissues investigated. In addition, several metabolites formed by oxygenation, dealkylation......This article describes the combination of whole-body autoradiography with liquid extraction surface analysis (LESA) and mass spectrometry (MS) to study the distribution of the tachykinin neurokinin-1 antagonist figopitant and its metabolites in tissue sections of rats after intravenous...

  9. Physico-technical irradiation planning for the therapy of oesophagus carcinomas by means of computed whole-body tomography

    International Nuclear Information System (INIS)

    Ammon, J.; Greiner, K.; Kaesberg, P.

    1980-01-01

    It is particularly difficult to establish a physico-technical irradiation plan for the thoracic part of an oesophagus carcinoma. This is due to the considerable modifications of the thoracic cross-section within the longitudinal axis of the radiation field. Therefore, tomographic cross-sections were made of the upper, the middle and the lower plane of the radiation field. The percentage dose distributions could be determined with a process computer (system TPS, Philips) for different irradiation techniques and irradiation equipments. Examinations of 21 patients showed that the best dose distribution, i.e. a distribution which spares the lung and spinal marrow regions adjacent to the target volume, is obtained by an excentric moving field therapy. Furthermore, localisation and dimensions of inhomogeneities are indicated by computer tomography which makes possible to take into consideration these inhomogeneities when calculating the dose. It was found that the irradiation times can so be reduced by more than 20%. We are therefore of the opinion that it is necessary to establish individual cross-sections of the body by computed tomography when elaborating a physico-technical irradiation plan for the treatment of an oesophagus carcinoma. (orig.) [de

  10. Protection of mouse hematopoietic stem cells by a preparation of herb mixture (hemoHIM) against whole body irradiation

    International Nuclear Information System (INIS)

    Jung, W. H.; Park, H. R.; Oh, H.; Jung, I. Y.; Cho, S. K.

    2002-01-01

    A preparation of herb mixture (HemoHIM) was designed from three medicinal herbs including Angelica gigantis Radix to protect gastrointestine, hematopoietic organs and immune system against radiation damage. In the present study, we investigated the radioprotective effects of HemoHIM on hematopoietic stem cells in γ-irradiated mice and the underlying mechanisms. The administration of HemoHIM significantly increased the formation of endogenous spleen colony and reduced apoptosis of bone marrow cells in γ-irradiated mice. These results showed that HemoHIM protected hematopoietic stem cells from irradiation. To investigate the mechanism of the protection, the effects of HemoHIM on expression of radioprotective cytokines was examined. HemoHIM increased the mRNA levels of IL-1β, TNF-α, SCF and IL-6 in bone marrow cells and peritoneal macrophages in vitro. In vivo administration of HemoHIM increased the mRNA levels of IL-1β, TNF-α in spleen. The examination of radical scavenging activity of HemoHIM as another mechanism revealed that HemoHIM was effective at scavenging DPPH radicals and hydroxyl radicals. From these results, it is suggested that HemoHIM exerts these radioprotective effects through the induction of radioprotective cytokines and/or through directly scavenging radicals produced by γ-irradiation

  11. Protection of mouse hematopoietic stem cells by a preparation of herb mixture (hemoHIM) against whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, W. H.; Park, H. R.; Oh, H.; Jung, I. Y.; Cho, S. K. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    A preparation of herb mixture (HemoHIM) was designed from three medicinal herbs including Angelica gigantis Radix to protect gastrointestine, hematopoietic organs and immune system against radiation damage. In the present study, we investigated the radioprotective effects of HemoHIM on hematopoietic stem cells in {gamma}-irradiated mice and the underlying mechanisms. The administration of HemoHIM significantly increased the formation of endogenous spleen colony and reduced apoptosis of bone marrow cells in {gamma}-irradiated mice. These results showed that HemoHIM protected hematopoietic stem cells from irradiation. To investigate the mechanism of the protection, the effects of HemoHIM on expression of radioprotective cytokines was examined. HemoHIM increased the mRNA levels of IL-1{beta}, TNF-{alpha}, SCF and IL-6 in bone marrow cells and peritoneal macrophages in vitro. In vivo administration of HemoHIM increased the mRNA levels of IL-1{beta}, TNF-{alpha} in spleen. The examination of radical scavenging activity of HemoHIM as another mechanism revealed that HemoHIM was effective at scavenging DPPH radicals and hydroxyl radicals. From these results, it is suggested that HemoHIM exerts these radioprotective effects through the induction of radioprotective cytokines and/or through directly scavenging radicals produced by {gamma}-irradiation.

  12. Analysis of time-dependent adaptations in whole-body energy balance in obesity induced by high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Maghdoori Babak

    2011-06-01

    Full Text Available Abstract Background High-fat (HF diet has been extensively used as a model to study metabolic disorders of human obesity in rodents. However, the adaptive whole-body metabolic responses that drive the development of obesity with chronically feeding a HF diet are not fully understood. Therefore, this study investigated the physiological mechanisms by which whole-body energy balance and substrate partitioning are adjusted in the course of HF diet-induced obesity. Methods Male Wistar rats were fed ad libitum either a standard or a HF diet for 8 weeks. Food intake (FI and body weight were monitored daily, while oxygen consumption, respiratory exchange ratio, physical activity, and energy expenditure (EE were assessed weekly. At week 8, fat mass and lean body mass (LBM, fatty acid oxidation and uncoupling protein-1 (UCP-1 content in brown adipose tissue (BAT, as well as acetyl-CoA carboxylase (ACC content in liver and epidydimal fat were measured. Results Within 1 week of ad libitum HF diet, rats were able to spontaneously reduce FI to precisely match energy intake of control rats, indicating that alterations in dietary energy density were rapidly detected and FI was self-regulated accordingly. Oxygen consumption was higher in HF than controls throughout the study as whole-body fat oxidation also progressively increased. In HF rats, EE initially increased, but then reduced as dark cycle ambulatory activity reached values ~38% lower than controls. No differences in LBM were detected; however, epidydimal, inguinal, and retroperitoneal fat pads were 1.85-, 1.89-, and 2.54-fold larger in HF-fed than control rats, respectively. Plasma leptin was higher in HF rats than controls throughout the study, indicating the induction of leptin resistance by HF diet. At week 8, UCP-1 content and palmitate oxidation in BAT were 3.1- and 1.5-fold higher in HF rats than controls, respectively, while ACC content in liver and epididymal fat was markedly reduced

  13. Early changes of cortical blood flow, brain temperature and electrical activity after whole-body irradiation of the monkey (Macaca fascicularis) (dose range: 3-20 Gy)

    International Nuclear Information System (INIS)

    Court, L.; Gourmelon, P.; Mestries, J.C.

    1987-02-01

    A polyparametric investigation was carried out on 31 monkeys chronically wearing bioinstrumentation allowing to get and process simultaneously local brain blood flow, cerebral temperature, and energies in various frequency bands of the brain electrical activity. This method, which supplied data during several consecutive days, made it possible to study both the biological rhythms at the level of the various parameters, and their fast variations. The effects of whole-body gamma or neutron-gamma irradiation were studied in the 3-20 Gy dose range. Immediate changes after exposure demonstrated different radiosensitivities at the level of the rhythms of the various parameters, and/or their recovery, as well as dose-effect relationships [fr

  14. Radioprotective Effect of Propolis on the Blood Corpuscle of a Mouse by SEM after X-irradiation on the Whole Body

    International Nuclear Information System (INIS)

    Ji, Tae Jeong

    2008-01-01

    After x-ray 5 Gy radiation on the whole body of a mouse using a linear accelerator, its leucocyte, erythrocyte, and platelet were observed by SEM. Also, after injecting propolis into the abdominal cavity, the radio-protective effect of blood corpuscles was studied. The observation of micromorphology in blood corpuscles revealed that the number of leukocyte, erythrocyte, and thrombocyte decreased in the experimental group and the lump got together in blood corpuscles after 10 and 20 days. In RBC, crack or break on the surface and poikilosperocytes were observed. In the irradiation group, the size of leucocytes was smaller than that in control group and the number of villus at the verge substantially decreased. The blood corpuscles in the propolis group, however, had the similar results to control group.

  15. Radioprotective Effect of Propolis on the Blood Corpuscle of a Mouse by SEM after X-irradiation on the Whole Body

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Tae Jeong [Dept. of Radiological Science, Kaya University, Kimhae (Korea, Republic of)

    2008-03-15

    After x-ray 5 Gy radiation on the whole body of a mouse using a linear accelerator, its leucocyte, erythrocyte, and platelet were observed by SEM. Also, after injecting propolis into the abdominal cavity, the radio-protective effect of blood corpuscles was studied. The observation of micromorphology in blood corpuscles revealed that the number of leukocyte, erythrocyte, and thrombocyte decreased in the experimental group and the lump got together in blood corpuscles after 10 and 20 days. In RBC, crack or break on the surface and poikilosperocytes were observed. In the irradiation group, the size of leucocytes was smaller than that in control group and the number of villus at the verge substantially decreased. The blood corpuscles in the propolis group, however, had the similar results to control group.

  16. Radioprotective Effect and Follow-up of Melatonin as Antifertility Drug in Male Adult Mice submitted to Whole-Body γ Irradiation

    International Nuclear Information System (INIS)

    Tawfik, S.S.; Mansour, H.H.; El-Shamy, E.; Sallam, M.H.

    2006-01-01

    Melatonin is universal antioxidant for both man and animals and a substance normally produced in the human body. Radioprotective and follow up of melatonin as anti-fertility drug in whole body γ-irradiated male adult mice were studied. The alterations occurred in reproductive system and biochemical aspects in mice were evaluated. Control group, melatonin treated (received 10 mg/kg body wt for 20 successive days), following up for melatonin treated (2 recovery periods; 60 and 120 days), irradiated (2 Gy-γ-rays), pre-treated (received melatonin before irradiation) and following up for pre-treated (2 recovery periods) groups were designed. Body and testes wt, micronucleus test (MN), chromosomal aberration (CA), seminal plasma melatonin, sperm quality (count, motility and abnormal forms) and hormonal assay in serum (melatonin, testosterone, FSH and prolactin) were recorded for fertility assessment. Oxidative parameters in testis tissue (malonaldehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH) and nitric oxide (NO)) and biochemical assay (protein and lipid fractions in serum) were investigated for judgment melatonin radioprotective efficacy. Irradiation intensifies the processes of lipo peroxidation and oxidative modification of lipids and proteins with synchronized inhibition of the anti oxidative protection system. Melatonin administration against a background of radiation caused a distinctly expressed antioxidant effect

  17. Studies on immunity to Schistosoma mansoni in vivo: whole-body irradiation has no effect on vaccine-induced resistance in mice

    International Nuclear Information System (INIS)

    Vignali, D.A.A.; Bickle, Q.D.; Taylor, M.G.

    1988-01-01

    Actively immunized mice, whole-body irradiated with 650 or 525 rad., manifested comparable levels of resistance to Schistosoma mansoni compared with unirradiated, immunized mice in spite of a marked reduction in circulating leucocytes and platelets, and despite an abrogation of delayed-type hypersensitivity (DTH) (Type IV) reponse to schistosomular antigens. However, limited histopathological comparison of lung sections from irradiated and unirradiated mice 7 days post-challenge showed that cellular reactions ('foci') around parasites were similar in size and cellular composition except that in irradiated mice, eosinophils were poorly represented both in the foci and in lung tissue in general. Neither presumed immune complex-mediated (Type III, Arthus reaction) hypersensitivity nor serum anti-schistosomulum extract antibody levels were affected. The pattern of 125 I-labelled schistosomular surface antigens immunoprecipitated with serum from irradiated and unirradiated mice was essentially similar. These results are consistent with antibody playing an important role in vaccine-induced immunity in mice but suggest that radiosensitive T cell function and radiosensitive cells, such as platelets and polymorphonuclear cells, including eosinophils, may not be essential. (author)

  18. The Application of Flow Cytometry to Examine Damage Clearance in Stem Cells From Whole-Body Irradiated Mice

    Energy Technology Data Exchange (ETDEWEB)

    Marples, Brian; Kovalchuk, Olga; McGonagle, Michele; Martinez, Alvaro; Wilson, George, D.

    2010-02-26

    The bone marrow contains many types of cells. Approximately 1-2% of these cells are critical for life, these are the so-called ‘bone marrow stem cells’ which divide indefinitely to produce platelets, red blood cells and white blood cells. Death of the bone marrow stem cells results in a diminished ability of the organism to make new blood cell components and can be fatal without medical intervention, such as a bone marrow transplant. Bone marrow stem cells are considered to be particularly sensitive to radiation injury. Therefore, it is important to understand how these cells response to total body radiation exposure and how these cells can be protected from radiation damage. The aim of this project was to determine if these critical cells in the bone marrow are susceptible to short-term and long-term injury after a whole-body exposure to a sub-lethal low dose of ionizing radiation. The overall aims were to determine if the extent of injury produced by the sub-lethal radiation exposure would be cleared from the stem cells and therefore present no long- term genetic risk to the organism, or if the radiation injury persisted and had an adverse long-term consequences for the cell genome. This research question is of interest in order to define the risks to exposed persons after occupational, accidental or terrorism-related sub-lethal low-dose radiation exposures. The novel aspect of this project was the methodology used to obtain the bone marrow stem cell-like cells and examining the outcomes of sub-lethal low-dose radiation in a mammalian animal model. Four radiation treatments were used: single treatments of 0.01Gy, 0.1 Gy, 1 Gy and ten treatments of 0.1 Gy given over 10 days. Bone marrow stem cell-like cells were then harvested 6 hours, 24 hours and 24 days later. The levels of radiation-induced cell death, damage to DNA and permanent changes to cellular DNA were measured in the isolated stem cell-like cells after each radiation treatment and time point and

  19. Recovery of the proliferative and functional integrity of mouse bone marrow in long-term cultures established after whole-body irradiation at different doses and dose rates

    International Nuclear Information System (INIS)

    Bierkens, J.G.; Hendry, J.H.; Testa, N.G.

    1991-01-01

    Injury inflicted upon the bone marrow stroma following whole-body irradiation and its repair over a 1-year period has been assessed in murine long-term bone marrow cultures established at increasing time intervals after irradiation. Different doses at different dose rates (10 Gy at 0.05 cGy/min, 4.5 Gy and 10 Gy at 1.6 cGy/min, and 4 x 4.5 Gy [3 weeks between doses] at 60 cGy/min) were chosen so as to maximize differences in effect in the stroma. The cellularity of the adherent layer in long-term cultures established 1 month after irradiation was reduced by 40%-90% depending on the dose and dose rate. Simultaneous with the poor ability of the marrow to form adherent layers, the cumulative spleen colony-forming unit (CFU-S) and granulocyte-macrophage colony-forming cell (GM-CFC) production over a 7-week period was reduced to 0% and 30% of control cultures, respectively. The slow recovery of the adherent layer was paralleled by an increase in the numbers of CFU-S and GM-CFC in the supernatant. Cultures established from repeatedly irradiated mice performed poorly over the entire 1-year period. Whereas the regeneration of the stroma was near complete 1 year after irradiation, the CFU-S and GM-CFC levels reached only between 50% and 80% of control cultures, respectively. Also, the concentration of CFU-S and GM-CFC in the supernatant remained persistently lower in cultures established from irradiated mice as compared to control cultures. The levels of sulfated glycosaminoglycans, which have been implicated in the establishment of the functional integrity of the microenvironment, were not reduced in the adherent layers at any time after irradiation. These results indicate that the regeneration of the stroma is accompanied by an incomplete recovery of active hemopoiesis in vitro

  20. A prospective study of the early clinical symptoms following a 2 Gy therapeutic whole-body irradiation

    International Nuclear Information System (INIS)

    Fizazi, K.; Chaillet, M.P.; Fourquet, A.; Jammet, P.; Cosset, J.M.

    1995-01-01

    Early human tolerance following total body irradiation (TBI) according to the dose received is still poorly known. Thirteen selected patients were prospectively evaluated for clinical side effects during the first 10 hours following a 2 Gy TBI prior to bone marrow transplantation. All of them but one were treated for haematological malignancies and were in clinical remission at the date of TBI. There were 10 males and 3 females, with a median age of 43 y (range 16*61) and a good performance status (WHO 0-1). They received granisetron (3 mg) injected intravenously 1 h before the time of TBI in order to prevent nausea and vomiting. The main symptoms consisted in drowsiness (69%), headache (62%), xerostomia (62%), nausea and vomiting (46%), anorexia (38%), parotid gland pain (23%) and abdominal pain (8%). Their intensity was always moderate, except for 2 patients who experimented severe vomiting. The incidence rate and the time-course of the symptoms of the prodromal phase may proved to be helpful for early clinical evaluation and triage of victims of an accidental irradiation. In particular, absence of fever at the 6 th h after TBI supports the assumption of an estimated exposure dose below 2 Gy. (authors). 23 refs., 2 tabs

  1. Contribution to the study of non-lethal whole-body gamma irradiation effects on the unitary activities of the dorsal hippocampus in rabbits

    International Nuclear Information System (INIS)

    Bassant, M.-H.

    1976-01-01

    The effects of non-lethal whole-body gamma irradiation on the spontaneous activity of the dorsal hippocampus pyramidal cells were studied in rabbits. First of all the unitary activity of the CA 1 and CA 4 pyramidal cells was recorded extracellularly in the reference animal. The results were analyzed by a statistical method. By classifying the various cell functioning modes observed, and measuring the frequency with which they appear as a function of the state of vigilance, an attempt was made to characterize precisely the spontaneous activity of the hippocampal neurons. Recording were then made under identical experimental conditions on animals totally irradiated to mean absorbed doses of 250 and 450 rads (delivered at a constant rate of 14 rads/mn). The electroencephalographic activity of the hippocampus shows many anomalies (slow waves, wave-points, theta rythm deformation) as a function of which several pathological states were distinguished and used to classify the data, then processed by the methods already used for the reference data. The results obtained prove that the statistical characteristics of the unitary activity are changed by irradiation [fr

  2. Hepatocytes, rather than leukocytes reverse DNA damage in vivo induced by whole body y-irradiation of mice, as shown by the alkaline comet assay

    Directory of Open Access Journals (Sweden)

    JUANA PINCHEIRA

    2008-01-01

    Full Text Available DNA damage repair was assessed in quiescent (G0 leukocytes and in hepatocytes of mice, after 1 and 2 hours recovery from a single whole body y-irradiation with 0.5, 1 or 2 Gy. Evaluation of single-strand breaks (SSB and alkali-labile sites together were carried out by a single-cell electrophoresis at pH>13.0 (alkaline comet assay. In non-irradiated (control mice, the constitutive, endogenous DNA damage (basal was around 1.5 times higher in leukocytes than in hepatocytes. Irradiation immediately increased SSB frequency in both cell types, in a dose-dependent manner. Two sequential phases took place during the in vivo repair of the radio-induced DNA lesions. The earliest one, present in both hepatocytes and leukocytes, further increased the SSB frequency, making evident the processing of some primary lesions in DNA bases into the SSB repair intermediates. In a second phase, SSB frequency decreased because of their removal. In hepatocytes, such a frequency regressed to the constitutive basal level after 2 hours recovery from either 0.5 orí Gy. On the other hand, the SSB repair phase was specifically abrogated in leukocytes, at the doses and recovery times analyzed. Thus, the efficiency of in vivo repair of radio-induced DNA damage in dormant cells (lymphocytes is quite different from that in hepatocytes whose low proliferation activity accounts only for cell renewal.

  3. Chronic radiation injury with mice and dogs exposed to external whole-body irradiation at the Argonne National Laboratory

    International Nuclear Information System (INIS)

    Grahn, D.; Fritz, T.E.

    1986-01-01

    This document describes studies on chronic radiation injury in experimental animals and the extrapolation of derived injury parameters to man. Most of the large studies have used mice given single, weekly, or continuous exposure to cobalt-60 gamma rays, or, more recently, single or weekly exposure to fission neutrons from the JANUS reactor. Primary measures of injury have been life shortening and the associated major pathological changes, particularly neoplastic diseases. Recent and ongoing studies compare the effects of extremely low neutron exposures with gamma irradiations delivered as a single dose or in 60 equal weekly increments. Total neutron doses range from 1 to 40 rads; gamma-ray doses range from 22.5 to 600 rads. Selected genetic studies are performed concurrently to provide a nearly complete matrix of somatic and genetic effects of these low exposures. Studies with the beagle have complemented those with mice and have shown a strong parallelism in the responses of the two species. Present exposures are at 0.3, 0.75, and 1.88 rads per day of continuous gamma irradiation to test a model for the prediction of life shortening in man which has evolved from Argonne's long-term studies. The dog offers the opportunity for longitudinal clinical evaluations that are not possible in the mouse, to develop a broader view of the neoplastic disease spectrum, and to study the mechanisms of radiation induction of leukemia. Diverse statistical approaches have been used to measure excess risk, dose-response functions, and rates of injury and repair. Actuarial statistical methods have been favored since they permit a more direct means of extrapolation to man. 50 refs., 4 figs

  4. Distribution in pregnant mice of radioactivity after injection of 131I, and immunosuppressive effect by the whole body irradiation

    International Nuclear Information System (INIS)

    Sushida, Kiyo; Nakano, Hisao

    1978-01-01

    For the purpose of decreasing resistance to leprous bacilli, 100 μCi of 131 I was injected subcutaneously to 2-3 week pregnant, dd-strain mice. Internal distribution of 131 I was followed up by measuring radioactivity in each organ of parent mice (I-P) and fetal mice (I-F). 300 rad in all of 60 Co was irradiated to 2-3 week pregnant mice (R-P) in two directions from the dorsal side of the abdomen. Immunosuppressive effect of the irradiation was evaluated in the parent mice and their offsprings (R-F) and compared with that in the 131 I-treated mice using a skin graft method. It was shown that 131 I of parent mice stayed in the uterus and was transmitted to their fetus through the placenta, and clarified that 131 I which remained in parent mice was continually supplied to their infant mice through milk still after birth. These findings seem to explaine the result that I-F which had been affected continually by 131 I had higher sensitivity to leprous bacilli than I-P. Immunosuppressive effect on a skin graft disclosed that the chief mechanisms of 131 I are to decrease the function of the reticulo-endothelial system by iodine and to suppress cellular immunity by its radioactivity. The rejecting time for the mouse skin homograft in the untreated mouse was 8.8 days on the average, and the lymph node weight was 33 mg. The order of the duration in the graft survival was R-P>I-F>I-P>R-F> normal mice, while that of lymph node weights was completely inverse. Therefore, the immunosuppressive effect on I-P and I-F mice, when it is compared with normal mice, could be confirmed, and the I-F was said to be favorable further than to I-P when based on this immunity test by transplantation. (Ueda, J.)

  5. Whole body monitoring - Goiania

    International Nuclear Information System (INIS)

    Oliveira, C.A.N. de; Lourenco, M.C.; Bertelli Neto, L.; Lucena, E.A. de; Becker, P.H.B.

    1988-01-01

    Due to the radiological Cs accident in Goiania, Goias in September 1987, it became necessary to evaluate internal contamination levels of: - Individual from the general public that for any reason had direct or indirect involvement with the radioactive source (group 1). - Occupationally involved persons (group 2). For each of these groups, procedures of whole body monitoring were developped. In order to attend group 1 individuals, the IRD/CNEN installed a whole body unit in the INAMPS General Hospital of Goiania in 11.08.87, which was later transferred to 121,57 street, Central Sector in Goiania in 2.06.88. In this unit 547 people were monitored, 356 from group 1 and 241 from group 2, until 04.13.88. In the IRD whole body counter installation, 194 individuals were counted, 185 from group 2 and 9 from group 1. The frequency of monitoring of each individual was established according to the Cs activity present in the body or to the job to be assigned. In this paper we will present some burden activity curves for Cs 137 as a function of the time elapsed from the first measurement. There people from group 1 were measured in both counters, the IRD and the Goiania ones. The values obtained in both installations are compatible with the body activity x time curve. (author) [pt

  6. Quantitative response of bone marrow colony-forming units (CFU-C and PFU-C) in weaning beagles exposed to acute whole-body γ irradiation

    International Nuclear Information System (INIS)

    Wilson, F.D.; Stitzel, K.A.; Klein, A.K.; Shifrine, M.; Graham, R.; Jones, M.; Bradley, E.; Rosenblatt, L.S.

    1978-01-01

    Using a methylcellulose-supported bone marrow culture system, the dose-response relationships of suspended granulocyte-monocyte colonies (CFU-C) and adherent fibroblastic colonies (PFU-C) were investigated in 2- to 3-month-old beagles exposed to acute whole-body γ irradiation. Groups of weanling beagles were exposed at a rate of 140 R/hr delivered from a 60 Co γ source achieving total exposures ranging from 0 to 586 R. Twenty-four hours following irradiation, bone marrow was collected, plated into methylcellulose, and after 1 week of incubation both colony types were quantitated. In addition, bone marrow cellularity determinations were made for a variety of bones using an 59 Fe-labeling technique. The results show a D 37 for the linear part of the slope of 70 R for CFU-C. Although within the limits of the experiment a D 37 could not be established for the fibroblastic populations, the results indicate a substantial degree of radioresistance for these elements supporting our previous studies on PFU-C, performed on mice, which suggested a D 37 of approximately 400 R for the progenitors of these fibroblastic elements

  7. Effects of whole body γ irradiation on skin wound cells and the repaired-promoting action of W11-a12

    International Nuclear Information System (INIS)

    Shu Chongxiang; Cheng Tianmin; Yan Guohe; Ran Xinze

    2002-01-01

    Objective: To study the effects of 6 Gy whole body γ irradiation on components of wound cells and the repair-promoting action of W 11 -a 12 , an extract from Periplaneta americana. Methods: After mice were received 6 Gy gamma ray irradiation, the area of healing range in wound cross section, the cellular infiltration of wound and the content of basic fibroblast growth factor (bFGF) in wound epithelial cells were observed and the healing-promoting effect of W 11 -a 12 on the radiation-impaired wound was investigated. Results: The area of healing range in cross section was decreased, various infiltrated cells were all inhibited by radiation, but the range of inhibition was more or less different, and the descending order of severity was as follows: macrophages, vascular endothelial cells, fibroblasts and epithelial cells. The content of bFGF in epithelial cells was decreased. W 11 -a 12 had beneficial heal-promoting effect on radiation-impaired wound: it increased cellular infiltration and promoted synthesis and secretion of bFGF in epithelial cells. Conclusion: The depletion of wound cells is mainly responsible for the healing deficits of radiation-impaired skin wound and W 11 -a 12 enhances cell migration and proliferation and promotes synthesis and secretion of bFGF in epithelial cells

  8. Assessment of the radiomodifying effect of the herbal preparation 'Elixir-3' in laboratory animals exposed to external whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Tenchova, V.; Topalova, S.; Stefanova, D.; Kuzova, K.

    2002-01-01

    The study of preparations obtained from natural products, free of any toxic effects on the organism, has important practical implications on the prophylaxis against and correction of eventual sequelae of ionizing radiation. It is the purpose of the study to assay the radiomodifying action of the herbal preparation 'Elixir-3' (E-3) on mice exposed to acute whole-body irradiation with 3 and 7 Gy gamma-rays, using a prophylactic-therapeutic scheme of application over 30 days. E-3 represents alcohol-water extract of basil, hops, briar, nettle, walnut and peppermint. Bone marrow femoral and spleen cellularity, endogenous spleen colony-forming units (E-CFUs), overall plasma oxidation activity and phagocytic activity of neutrophils are evaluated. E-3, administered in a prophylactic-therapeutic scheme, promotes post-radiation recovery of hematopoiesis in mice irradiated with non-lethal and median-lethal gamma ray doses, and exerts a favourable effect on the anti-oxidation status and phagocytic activity of neutrophils in laboratory animals.(authors)

  9. Development of novel whole-body exposure setups for rats providing high efficiency, National Toxicology Program (NTP) compatibility and well-characterized exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kainz, Wolfgang [Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), 12725 Twinbrook Parkway, Rockville, MD 20852 (United States); Nikoloski, Neviana [IT' IS Foundation-The Foundation for Research on Information Technologies in Society, ETH Zurich, 8092 Zurich (Switzerland); Oesch, Walter [IT' IS Foundation-The Foundation for Research on Information Technologies in Society, ETH Zurich, 8092 Zurich (Switzerland); Berdinas-Torres, Veronica [IT' IS Foundation-The Foundation for Research on Information Technologies in Society, ETH Zurich, 8092 Zurich (Switzerland); Froehlich, Juerg [IT' IS Foundation-The Foundation for Research on Information Technologies in Society, ETH Zurich, 8092 Zurich (Switzerland); Neubauer, Georg [ARC Seibersdorf research GmbH, Kramergasse 1, A-1010 Vienna (Austria); Kuster, Niels [IT' IS Foundation-The Foundation for Research on Information Technologies in Society, ETH Zurich, 8092 Zurich (Switzerland)

    2006-10-21

    This paper presents the design, optimization, realization and verification of novel whole-body exposure setups for rats. The setups operating at 902 MHz and 1747 MHz provide highly efficient, National Toxicology Program (NTP) compatible and well-characterized exposures. They are compared to existing concepts of exposure setups with respect to efficiency, induced field uniformity, good laboratory practice (GLP) compatibility and cost. The novel exposure setup consists of a circular cascade of 17 sectorial waveguides excited by a novel loop antenna placed in the centre. The 70% overall efficiency of the exposure setup surpasses comparable values of existing setups. A field uniformity inside the phantom of more than 86% for the 1g cubical averaged specific absorption rate (SAR) within {+-}5 dB of the whole-body SAR (WB-SAR) was attained. The uniformity of the exposure inside the setup, defined as the variation of the WB-SAR between animals, was better than {+-}24%. Using only stainless steel, gold and polycarbonate in the vicinity of the animals ensured full GLP compatibility. The entire exposure system features fully automated computer controlled exposure and data monitoring, data storing and failure handling. Therefore, the proposed exposure system can be used to run blinded large scale, long-term exposure studies.

  10. Whole-body new-born and young rats' exposure assessment in a reverberating chamber operating at 2.4 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Wu Tongning; Hadjem, Abdelhamid; Wong, M-F; Gati, Azzedine; Wiart, Joe [Orange Labs R and D, Whist Lab 38-40 rue du General Leclerc, 92794 Issy-les-Moulineaux (France); Picon, Odile [Universite Paris-Est, ESYCOM, Cite Descartes 5, bd Descartes, 77454 Marne la Vallee Cedex 2 (France)], E-mail: joe.wiart@orange-ftgroup.com

    2010-03-21

    This paper presents the whole-body specific absorption rate (WBSAR) assessment of embryos and new-born rats' exposure in a reverberating chamber (RC) operating at 2.4 GHz (WiFi). The finite difference in time domain (FDTD) method often used in bio-electromagnetism is facing very slow convergence. A new simulation-measurement hybrid approach has been proposed to characterize the incident power related to the RC and the WBSAR in rats, which are linked by the mean squared electric field strength in the working volume. Peak localized SAR in the rat under exposure is not included in the content of the study. Detailed parameters of this approach are determined by simulations. Evolutions for the physical and physiological parameters of the small rats at different ages are discussed. Simulations have been made to analyse all the variability factors contributing to the global results. WBSAR information and the variability for rats at different ages are also discussed in the paper.

  11. Single whole-body exposure to sarin vapor in rats: Long-term neuronal and behavioral deficits

    International Nuclear Information System (INIS)

    Grauer, Ettie; Chapman, Shira; Rabinovitz, Ishai; Raveh, Lily; Weissman, Ben-Avi; Kadar, Tamar; Allon, Nahum

    2008-01-01

    Freely moving rats were exposed to sarin vapor (34.2 ± 0.8 μg/l) for 10 min. Mortality at 24 h was 35% and toxic sings in the surviving rats ranged from sever (prolonged convulsions) through moderate to almost no overt signs. Some of the surviving rats developed delayed, intermittent convulsions. All rats were evaluated for long-term functional deficits in comparison to air-exposed control rats. Histological analysis revealed typical cell loss at 1 week post inhalation exposure. Neuronal inflammation was demonstrated by a 20-fold increase in prostaglandin (PGE 2 ) levels 24 h following exposure that markedly decreased 6 days later. An additional, delayed increase in PGE 2 was detected at 1 month and continued to increase for up to 6 months post exposure. Glial activation following neural damage was demonstrated by an elevated level of peripheral benzodiazepine receptors (PBR) seen in the brain 4 and 6 months after exposure. At the same time muscarinic receptors were unaffected. Six weeks, four and six months post exposure behavioral evaluations were performed. In the open field, sarin-exposed rats showed a significant increase in overall activity with no habituation over days. In a working memory paradigm in the water maze, these same rats showed impaired working and reference memory processes with no recovery. Our data suggest long lasting impairment of brain functions in surviving rats following a single sarin exposure. Animals that seem to fully recover from the exposure, and even animals that initially show no toxicity signs, developed some adverse neural changes with time

  12. Dosimetric analysis for photon and electron beams in Whole body irradiation; Analisis dosimetrico para haces de fotones y electrones en irradiacion corporal total

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado G, M [Posgrado. Fisica Medica Radiologica. Universidad Nacional de Colombia, Bogota. Instituto Nacional de Cancerologia. Instituto Regional de Cancer de la Orinoquia. Hospital Regional de Villavicencio, Meta (Colombia)

    1999-12-31

    To initiate the Whole body irradiation as an alternative for the treatment of the hematological diseases, leukemia and assistant for the osseous marrow transplantation, it may be taken account the application of International Protocols about control and quality assurance. It is established the intercomparison by the different dosimetric methods: cylindrical ionization chambers and parallel plane, radiographic emulsion film, semiconductor diodes (Mosfet transistors) and TLD-100 thermoluminescent crystals, obtained measurements for 140 x 140 cm{sup 2} fields and large distances 340 cm respect conventional fields in Radiotherapy. The in vitro dosimetry was realized at the Universal Anthropomorphic puppet Alderson Rando basically with the cylindrical crystals (1 mm diameter) of TLD-100 lithium fluoride. It was obtained the dose value with a 0.6 cm{sup 3} cylindrical ionization chamber and the Farmer electrometer for Whole body irradiation (ICT) with photons for electrons and were obtained values with the Markus plane parallel camera. Knowing the dose rate value to the source-surface distance DFS= 80 cm, it was calibrated the crystals with the reference radiation beam of {sup 60} Co for obtaining the response curve: Dose vs. Tl lecture. It was characterized the 10 % of the total population for 300 crystals for applying the statistics corresponding. The luminescence curve obtained of Gaussian form was considered satisfactory by its stability during the pre-anneal lecture and anneal process, getting the main peak lecture at 300 Centigrade according to assigned parameters at lecture equipment TLD Harshaw model 4500. The results indicate the functional dependence with the distance DFS= 340 cm for the following depth PPD, the relations TMR and TPR, the TAR is not calculated by the increment of the dispersion in air. The penumbra increment indicates an increase of the radiation field respect of luminous field. The dispersion angle q{sub 1} respect at the field central axis

  13. Dosimetric analysis for photon and electron beams in Whole body irradiation; Analisis dosimetrico para haces de fotones y electrones en irradiacion corporal total

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado G, M. [Posgrado. Fisica Medica Radiologica. Universidad Nacional de Colombia, Bogota. Instituto Nacional de Cancerologia. Instituto Regional de Cancer de la Orinoquia. Hospital Regional de Villavicencio, Meta (Colombia)

    1998-12-31

    To initiate the Whole body irradiation as an alternative for the treatment of the hematological diseases, leukemia and assistant for the osseous marrow transplantation, it may be taken account the application of International Protocols about control and quality assurance. It is established the intercomparison by the different dosimetric methods: cylindrical ionization chambers and parallel plane, radiographic emulsion film, semiconductor diodes (Mosfet transistors) and TLD-100 thermoluminescent crystals, obtained measurements for 140 x 140 cm{sup 2} fields and large distances 340 cm respect conventional fields in Radiotherapy. The in vitro dosimetry was realized at the Universal Anthropomorphic puppet Alderson Rando basically with the cylindrical crystals (1 mm diameter) of TLD-100 lithium fluoride. It was obtained the dose value with a 0.6 cm{sup 3} cylindrical ionization chamber and the Farmer electrometer for Whole body irradiation (ICT) with photons for electrons and were obtained values with the Markus plane parallel camera. Knowing the dose rate value to the source-surface distance DFS= 80 cm, it was calibrated the crystals with the reference radiation beam of {sup 60} Co for obtaining the response curve: Dose vs. Tl lecture. It was characterized the 10 % of the total population for 300 crystals for applying the statistics corresponding. The luminescence curve obtained of Gaussian form was considered satisfactory by its stability during the pre-anneal lecture and anneal process, getting the main peak lecture at 300 Centigrade according to assigned parameters at lecture equipment TLD Harshaw model 4500. The results indicate the functional dependence with the distance DFS= 340 cm for the following depth PPD, the relations TMR and TPR, the TAR is not calculated by the increment of the dispersion in air. The penumbra increment indicates an increase of the radiation field respect of luminous field. The dispersion angle q{sub 1} respect at the field central axis

  14. Effects of whole-body γ-irradiation on lipid peroxidation and anti-oxidant enzymes in the liver of N-nitrosodiethylamine-treated mice

    International Nuclear Information System (INIS)

    Grudzinski, I.P.; Frankiewicz-Jozko, A; Gajewska, J.; Szczypka, M.; Szymanski, A.

    2000-01-01

    B6c3F1 mice were treated per os with either normal saline or N-nitrosodiethylamine (NDEA) (0.01, 0.1, 1.0 or 5.0 mg/kg body weight) daily for 21 days. On day 22 nd of the experiment , the animals were whole-body γ-irradiated (10 Gy) and examined at 3.5 days post-radiation exposure. Pretreatment of mice with NDEA at the lowest dosage (0.01 and 0.1 mg/kg) increased thiobarbituric acid-reactive substances (TBARS) and catalase (CAT) activity in the liver. Since the agent at the highest doses (1.0 and 5.0 mg/kg) did not have any effects on TBARS, it was associated with the selective increase of thiol (SH) groups and GSH-linked anti-oxidant enzyme activities such as glutathione peroxidase (GPX), transferase (GST) and reductase (GR). γ-irradiation decreased TBARS and increased superoxide dismutase (SOD) and GPX activity in NDEA-treated mice. Simultaneously, γ-rays did not have any effects on GST and GR enzymes, and it slightly decreased SH groups and CAT activity. Results of the present study indicate that NDEA can promote lipid peroxidation in mice liver. γ-irradiation of mice at a dose of 10 Gy modifies the activity of hepatic anti-oxidant enzymes, which in turn can lead to the reduction of NDEA-induced lipid peroxidation and/or pro-oxidant shift(s). The anti-oxidant enzymes such as SOD and GPX are suggested to be mainly involved in this process. (author)

  15. Whole body imaging

    International Nuclear Information System (INIS)

    de Luca, P.C.; Stoddart, H.F.; Jeffries, D.

    1976-01-01

    A whole body imaging system rapidly forms a quality image of the bony structure, soft tissue or specific organs of a patient who has been injected with a suitable radioactive tracer chemical. A radiation detector head assembly includes a number of detector subassemblies, each having a lead collimator with tapered holes for admitting gamma radiation from a small area of the patient to a scintillation crystal that converts the gamma rays admitted by the collimator into visible or ultraviolet energy pulses. A photomultiplier converts these pulses into electrical pulses. A row of equally spaced detector subassemblies reciprocate within a nonreciprocating lead shield along the long axis of the array over a distance substantially equal to the separation between adjacent ones of the small areas. Associated electronic and electromechanical apparatus control the reciprocating motion and the longitudinal motion of the radiation detector head assembly, and process the photodetected signals to produce in a relatively short time a visible image of the radiant energy emanating from the whole body of the patient scanned

  16. Fluoride Ion Regeneration of Cyclosarin (GF) From Rat Blood Following Whole-Body Exposure to Lethal Levels of GF Vapor

    National Research Council Canada - National Science Library

    Jakubowski, E. M; Anthony, J. S; Mioduszewski, R. J; Manthei, J. H; Burnett, D. C; Way, R. A; Gaviola, B. I; Scotto, J. A; Muse, W. T; Whalley, C. E

    2003-01-01

    .... Levels of exposure ranged from 2 mg/m3 for 240 min to 41.9 mg/m3 for 10 min. The GF biomarker found in rat plasma and red blood cell samples was regenerated GF, which is the product of adding fluoride ion at pH 4 to the post exposure samples...

  17. Radiosensitivity of T and B lymphocytes. V. Effects of whole-body irradiation on numbers of recirculating T cells and sensitization to primary skin grafts in mice

    International Nuclear Information System (INIS)

    Anderson, R.E.; Williams, W.L.

    1977-01-01

    Whole-body exposure of mice to 50, 100, 300, or 500 rads results in an acute dose-related decrease in the number of viable recirculating T cells. The magnitude of this decrement becomes more pronounced with the passage of time. The dose-response relationship over this range of dosages appears to consist of three components: a steep drop between 0 and 50 rads, a plateau between 50 and 500 rads, and a second drop between 300 and 500 rads. The residual radioresistant cells are able to recognize a histoincompatible skin graft during the initial 5 days after irradiation. Low to moderate doses (50 to 300 rads) abrogate the partial tolerance noted in nonirradiated recipients exposed to the skin graft for 5 days and then regrafted from the same donor source 25 days after complete removal of the primary graft. A large (500 rads) dose results in prolonged graft survival in comparison with the nonirradiated group. It is suggested that the subpopulation of recirculating T cells which develops partial tolerance during a 5-day exposure to a homograft is more radiosensitive than the effector subpopulation which is involved in graft rejection

  18. Effect of a non lethal whole-body gamma irradiation on the spontaneous and evoked electroencephalographic activities of the adult rabbit

    International Nuclear Information System (INIS)

    Court, L.

    1969-01-01

    The whole of the experimental methods described (animal preparation, achievement of a precise physiological technique, dosimetry, biological information processing) allowed us to follow the changes for 15 days in the spontaneous and evoked electroencephalogram activities of rabbits submitted to a non-lethal 400 rads whole-body gamma-irradiation. Behavioural troubles, changes in the arousal state and the spontaneous electrical activity of the neo-cortex and hippocampus were noticed constantly together with an enhanced cortical excitability, and the appearance of elements of the paroxystic series sometimes in contrast with a general decrease in amplitude. After a visual stimulus the general morphology of evoked activities at the level of the primary visual areas and hippocampus was unchanged, but enhanced latencies and delays, less systematic modifications in amplitudes seemed to show out a direct effect of radiations on the nervous system and sensorial activities; these troubles seemed to occur independently from the basic electrical activity. As a whole, the changes observed were usually transitory and varied with each individual. Finally an assumption is made to explain the mechanism of arousal troubles and the general evolution of spontaneous electrical activity in the brain. (author) [fr

  19. Rifaximin diminishes neutropenia following potentially lethal whole-body radiation.

    Science.gov (United States)

    Jahraus, Christopher D; Schemera, Bettina; Rynders, Patricia; Ramos, Melissa; Powell, Charles; Faircloth, John; Brawner, William R

    2010-07-01

    Terrorist attacks involving radiological or nuclear weapons are a substantial geopolitical concern, given that large populations could be exposed to potentially lethal doses of radiation. Because of this, evaluating potential countermeasures against radiation-induced mortality is critical. Gut microflora are the most common source of systemic infection following exposure to lethal doses of whole-body radiation, suggesting that prophylactic antibiotic therapy may reduce mortality after radiation exposure. The chemical stability, easy administration and favorable tolerability profile of the non-systemic antibiotic, rifaximin, make it an ideal potential candidate for use as a countermeasure. This study evaluated the use of rifaximin as a countermeasure against low-to-intermediate-dose whole-body radiation in rodents. Female Wistar rats (8 weeks old) were irradiated with 550 cGy to the whole body and were evaluated for 30 d. Animals received methylcellulose, neomycin (179 mg/kg/d) or variably dosed rifaximin (150-2000 mg/kg/d) one hour after irradiation and daily throughout the study period. Clinical assessments (e.g. body weight) were made daily. On postirradiation day 30, blood samples were collected and a complete blood cell count was performed. Animals receiving high doses of rifaximin (i.e. 1000 or 2000 mg/kg/d) had a greater increase in weight from the day of irradiation to postirradiation day 30 compared with animals that received placebo or neomycin. For animals with an increase in average body weight from irradiation day within 80-110% of the group average, methylcellulose rendered an absolute neutrophil count (ANC) of 211, neomycin rendered an ANC of 334, rifaximin 300 mg/kg/d rendered an ANC of 582 and rifaximin 1000 mg/kg/d rendered an ANC of 854 (P = 0.05 for group comparison). Exposure to rifaximin after near-lethal whole-body radiation resulted in diminished levels of neutropenia.

  20. Studies on the percutaneous absorption of /sup 14/C-labelled Flurbiprofen, 3. Whole body autoradiography of rats and guinea-pigs

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Soshichi; Sakai, Takeo; Hayakawa, Toru (Nihon Univ., Tokyo. Coll. of Agriculture and Veterinary Medicine)

    1983-03-01

    Whole body autoradiography was carried out to clarify and compare the distribution of /sup 14/C-labelled Flurbiprofen which was applied to the skin as an ointment in rats and guinea-pigs. Both in rats and guinea-pigs almost the same autoradiogram was gained. The radioactivity was strongest at the skin area inspite of the time elapse, showing that the drug was fixed in the site of skin applied. In other parts of the body, however, it was small except the kidney and intestine. It seemed that the absorption of the drug was a little although the migration of the drug into the blood circulation is fast at the beginning as was shown in pigs previously. A stronger radioactivity in the kidney and intestine might indicate that a main pathway of excretion of this drug was through those two organs. Absorption, distribution and excretion of the drug were not different between rats and guinea-pigs, similar to those observed in pigs.

  1. Gluconeogenesis in lethally X-irradiated rats

    International Nuclear Information System (INIS)

    Paulikova, E.; Ahlers, I.; Praslicka, M.

    1983-01-01

    The in vivo incorporation of U- 14 C-alanine into blood glucose and liver glycogen was measured in rats irradiated with a single whole body lethal dose of X-rays. Changes in gluconeogenic enzyme activities were studied in the liver. Increased incorporation of 14 C-alanine into blood glucose and liver glycogen were found after irradiation. Liver phosphoenolpyruvate carboxykinase and glycogenic activity underwent almost parallel changes and were significantly elevated from the 6th to the 48th hour, with resultant accumulation of glycogen. Glucose-6-phosphatase activity was depressed and there was a negative correlation between it and liver glycogen concentration. Maximum fructose-1,6-diphosphatase activity was found at 48 hours. The results show that glycogen accumulation in the liver and the raised blood glucose level in X-irradiated rats are based on raised gluconeogenesis. (author)

  2. Gluconeogenesis in lethally X-irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Paulikova, E.; Ahlers, I.; Praslicka, M. (Univerzita P.J. Safarika, Kosice (Czechoslovakia). Katedra Vseobecnej Biologie)

    1983-02-01

    The in vivo incorporation of U-/sup 14/C-alanine into blood glucose and liver glycogen was measured in rats irradiated with a single whole body lethal dose of X-rays. Changes in gluconeogenic enzyme activities were studied in the liver. Increased incorporation of /sup 14/C-alanine into blood glucose and liver glycogen were found after irradiation. Liver phosphoenolpyruvate carboxykinase and glycogenic activity underwent almost parallel changes and were significantly elevated from the 6th to the 48th hour, with resultant accumulation of glycogen. Glucose-6-phosphatase activity was depressed and there was a negative correlation between it and liver glycogen concentration. Maximum fructose-1,6-diphosphatase activity was found at 48 hours. The results show that glycogen accumulation in the liver and the raised blood glucose level in X-irradiated rats are based on raised gluconeogenesis.

  3. Whole-body DHA synthesis-secretion kinetics from plasma eicosapentaenoic acid and alpha-linolenic acid in the free-living rat.

    Science.gov (United States)

    Metherel, Adam H; Domenichiello, Anthony F; Kitson, Alex P; Hopperton, Kathryn E; Bazinet, Richard P

    2016-09-01

    Whole body docosahexaenoic acid (DHA, 22:6n-3) synthesis from α-linolenic acid (ALA, 18:3n-3) is considered to be very low, however, the daily synthesis-secretion of DHA may be sufficient to supply the adult brain. The current study aims to assess whether whole body DHA synthesis-secretion kinetics are different when comparing plasma ALA versus eicosapentaenoic acid (EPA, 20:5n-3) as the precursor. Male Long Evans rats (n=6) were fed a 2% ALA in total fat diet for eight weeks, followed by surgery to implant a catheter into each of the jugular vein and carotid artery and 3h of steady-state infusion with a known amount of (2)H-ALA and (13)C-eicosapentaenoic acid (EPA, 20:5n3). Blood samples were collected at thirty-minute intervals and plasma enrichment of (2)H- and (13)C EPA, n-3 docosapentaenoic acid (DPAn-3, 22:5n-3) and DHA were determined for assessment of synthesis-secretion kinetic parameters. Results indicate a 13-fold higher synthesis-secretion coefficient for DHA from EPA as compared to ALA. However, after correcting for the 6.6 fold higher endogenous plasma ALA concentration, no significant differences in daily synthesis-secretion (nmol/day) of DHA (97.6±28.2 and 172±62), DPAn-3 (853±279 and 1139±484) or EPA (1587±592 and 1628±366) were observed from plasma unesterified ALA and EPA sources, respectively. These results suggest that typical diets which are significantly higher in ALA compared to EPA yield similar daily DHA synthesis-secretion despite a significantly higher synthesis-secretion coefficient from EPA. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Structural and functional changes in the intenstine of irradiated and hypothermic irradiated rats : a scanning and transmission electron microscopic study

    International Nuclear Information System (INIS)

    Chaudhuri, S.; Chaudhuri, Swapna; Roy, Bijon

    1982-01-01

    Severe destructive changes in the intestine of rats following whole body exposure to gamma rays (832 rads) were observed by light microscope, scanning and transmission electron microscope studies. Hypothermia (15deg C rectal temperature) induced prior to irradiation protected the intestinal mucosa from destruction. A simultaneous study showed that glucose absorption decreased significantly in irradiated rats, whereas it was increased in hypothermic irradiated animals. (author)

  5. The effect of chlorpromazine on pharmacokinetics and pharmacodynamics of phenobarbital in X-irradiated rats

    International Nuclear Information System (INIS)

    Okulicz-Kozaryn, I.; Wojciakowa, Z.; Godlewski, J.; Nowakowska, E.

    1984-01-01

    Male Wistar rats were irradiated with a single 600R dose of X-rays on the whole body. Chlorpromazine was given 30 min before phenobarbital. Phenobarbital sleeping time was prolonged by chlorpromazine both in irradiated and non-irradiated rats. On the 3rd day after irradiation the prolongation of the phenobarbital sleep by chlorpromazine was more marked than on the 6th day. No correlation between the pharmacodynamic action of phenobarbital and its cerebral level was noted. (author)

  6. Age and sex dependence in tumorigenesis in mice by continuous low-dose-rate gamma-ray whole-body irradiation

    International Nuclear Information System (INIS)

    Otsu, Hiroshi; Kobayashi, Shigeru; Furuse, Takeshi; Noda, Yuko; Shiragai, Akihiro; Sato, Fumiaki.

    1992-01-01

    We investigated the dependency of sex and age in mice in the induction of neoplasms by gamma-rays from cesium-137 at a low dose rate of 0.375Gy/22h/day. Thymic lymphomas occurred significantly at the same incidence in both sexes, and more frequently when younger mice were exposed to radiation. Strain C57BL/6J mice were divided into 8 groups, which were whole-body irradiated with a total dose of 39Gy for 105 days each. The exposure was begun at 28 days of age (male:AM1, female:AF1), and then stepwise increasing the starting age by 105 days, i.e., from 133 days (AM2 and AF2), from 238 days (AM3 and AF3), and from 343 days (AM4 and AF4), respectively. Unirradiated mice served as control (UM and UF). The incidence of thymic lymphomas was about 60 % in AM1, AM2, AF1 and AF2, 40 % in AM3 and AF3 and 20 % in AF4 and AF4, demonstrating no sex dependency, but a distinct age dependency, for lymphomogenesis. It was proven that mice showed a tendency to become less susceptible to radiation induced thymic lymphoma with increasing age. Concomitantly, life-shortening also was caused, and the greater the degree of life-shortening was, the younger the mice were the start of exposure. Life-shortening was attributed to thymic lymphoma, and hemorrhage and infectious diseases due to the depletion of bone marrow cells. (author)

  7. Whole-Body Docosahexaenoic Acid Synthesis-Secretion Rates in Rats Are Constant across a Large Range of Dietary α-Linolenic Acid Intakes.

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Metherel, Adam H; Chen, Chuck T; Hopperton, Kathryn E; Stavro, P Mark; Bazinet, Richard P

    2017-01-01

    Docosahexaenoic acid (DHA) is an ω-3 (n-3) polyunsaturated fatty acid (PUFA) thought to be important for brain function. Although the main dietary source of DHA is fish, DHA can also be synthesized from α-linolenic acid (ALA), which is derived from plants. Enzymes involved in DHA synthesis are also active toward ω-6 (n-6) PUFAs to synthesize docosapentaenoic acid n-6 (DPAn-6). It is unclear whether DHA synthesis from ALA is sufficient to maintain brain DHA. The objective of this study was to determine how different amounts of dietary ALA would affect whole-body DHA and DPAn-6 synthesis rates. Male Long-Evans rats were fed an ALA-deficient diet (ALA-D), an ALA-adequate (ALA-A) diet, or a high-ALA (ALA-H) diet for 8 wk from weaning. Dietary ALA concentrations were 0.07%, 3%, and 10% of the fatty acids, and ALA was the only dietary PUFA that differed between the diets. After 8 wk, steady-state stable isotope infusion of labeled ALA and linoleic acid (LA) was performed to determine the in vivo synthesis-secretion rates of DHA and DPAn-6. Rats fed the ALA-A diet had an ∼2-fold greater capacity to synthesize DHA than did rats fed the ALA-H and ALA-D diets, and a DHA synthesis rate that was similar to that of rats fed the ALA-H diet. However, rats fed the ALA-D diet had a 750% lower DHA synthesis rate than rats fed the ALA-A and ALA-H diets. Despite enrichment into arachidonic acid, we did not detect any labeled LA appearing as DPAn-6. Increasing dietary ALA from 3% to 10% of fatty acids did not increase DHA synthesis rates, because of a decreased capacity to synthesize DHA in rats fed the ALA-H diet. Tissue concentrations of DPAn-6 may be explained at least in part by longer plasma half-lives. © 2017 American Society for Nutrition.

  8. A single whole-body low dose X-irradiation does not affect L1, B1 and IAP repeat element DNA methylation longitudinally.

    Directory of Open Access Journals (Sweden)

    Michelle R Newman

    Full Text Available The low dose radioadaptive response has been shown to be protective against high doses of radiation as well as aging-induced genomic instability. We hypothesised that a single whole-body exposure of low dose radiation would induce a radioadaptive response thereby reducing or abrogating aging-related changes in repeat element DNA methylation in mice. Following sham or 10 mGy X-irradiation, serial peripheral blood sampling was performed and differences in Long Interspersed Nucleic Element 1 (L1, B1 and Intracisternal-A-Particle (IAP repeat element methylation between samples were assessed using high resolution melt analysis of PCR amplicons. By 420 days post-irradiation, neither radiation- or aging-related changes in the methylation of peripheral blood, spleen or liver L1, B1 and IAP elements were observed. Analysis of the spleen and liver tissues of cohorts of untreated aging mice showed that the 17-19 month age group exhibited higher repeat element methylation than younger or older mice, with no overall decline in methylation detected with age. This is the first temporal analysis of the effect of low dose radiation on repeat element methylation in mouse peripheral blood and the first to examine the long term effect of this dose on repeat element methylation in a radiosensitive tissue (spleen and a tissue fundamental to the aging process (liver. Our data indicate that the methylation of murine DNA repeat elements can fluctuate with age, but unlike human studies, do not demonstrate an overall aging-related decline. Furthermore, our results indicate that a low dose of ionising radiation does not induce detectable changes to murine repeat element DNA methylation in the tissues and at the time-points examined in this study. This radiation dose is relevant to human diagnostic radiation exposures and suggests that a dose of 10 mGy X-rays, unlike high dose radiation, does not cause significant short or long term changes to repeat element or global DNA

  9. The protective role of nitric oxide and nitric oxide synthases in whole-body hyperthermia-induced hepatic injury in rats.

    Science.gov (United States)

    Chen, Chao-Fuh; Wang, David; Leu, Fur-Jiang; Chen, Hsing I

    2012-01-01

    The present study was designed to elucidate the role of endothelial nitric oxide (NO) synthase (eNOS), inducible NOS (iNOS)-derived NO and heat-shock protein (Hsp70) in a rat model of whole-body hyperthermia (WBH)-induced liver injury. Real-time polymerase chain reaction, immunohistochemistry and western blot were used to observe the mRNA and protein expression of eNOS, iNOS and Hsp70. Rats were exposed to hyperthermia by immersion for 60 min at a conscious state in a water bath maintained at 41°C. Plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were used to assess liver injury 15 h after the hyperthermia challenge. Nitrosative and oxidative mediators, particularly NO and hydroxyl radical were measured. Plasma AST, ALT, hydroxyl radical, and NO were significantly increased after WBH. There were 4.14 ± 0.42, 2.82 ± 0.34 and 2.91 ± 0.16-fold increases in the mRNA expression of eNOS, iNOS and Hsp70. Immunohistochemistry and western blot showed up-regulation of eNOS, iNOS and Hsp70 protein. An eNOS inhibitor (N(ω)-nitro-L-arginine methyl ester (L-NAME)), or an iNOS inhibitor (aminoguanidine (AG)), significantly aggravated the liver injury. On the contrary, administration of NO precursor, L-arginine (L-ARG), attenuated the liver injury. Hsp70 inhibitor quercetin reduced Hsp70, while aggravating the WBH-induced hepatic changes. WBH induces increases in eNOS, iNOS and Hsp70 expression with increase in NO release. The deleterious effects of L-NAME and AG and the protective effects of L-ARG and Hsp70 inhibitor on the liver function and pathology suggest that NO and heat shock protein play a beneficial role in the WBH-induced hepatic injury.

  10. Different mechanisms for the resistance of C3H and STS strain mice to the development of thymic lymphomas following fractionated whole-body irradiation

    International Nuclear Information System (INIS)

    Aizawa, Shiro; Kamisaku, Hitoko

    1999-01-01

    B10 strain mice are extremely susceptible for induction of thymic lymphomas by fractionated whole-body irradiation (FI), whereas C3H and STS mice are fairly resistant. In the present study, we constructed radiation bone marrow chimeras in the reciprocal donor-host combinations of susceptible and resistant mice with use of Thy1 markers that allow to determine genetic origins of donor- and host-type thymocytes, and then to analyze the influence of host/thymic environment on the strain-dependent susceptibility to thymic lymphomagenesis. B10.Thy1.1→C3H, B10.Thy1.1→STS as well as B10.Thy1.1→B10 bone marrow chimeras manifested a high incidence of thymic lymphomas after FI-treatment, whereas C3H. Thy1.1→B10 and STS→B10 as well as C3H→C3H and STS→STS chimeras manifested a low incidence of thymic lymphoma. Furthermore, FI-treatment of [B10.Thy1.1+C3H]→B10 mixed chimeras resulted in the generation of similar numbers of thymic lymphomas of B10 and C3H origins, whereas FI-treatment of [B10.Thy1.1+STS]→B10 mixed chimeras preferentially induced thymic lymphomas of B10 origin. These results indicated that host environments of C3H and STS resistant mice are not inhibitory for the development of thymic lymphomas, genetic factors responsible for the strain-dependent susceptibility and/or resistance to FI-induced lymphomagenesis exert their effects entirely on bone-marrow derived cells, and the resistance of STS mice to FI-induced thymic lymphomagenesis is an intrinsic property of thymocytes as the targets of thymic lymphoma induction, whereas bone marrow-derived thymic stroma cells seem to play a significant role in the resistance of C3H mice for the induction of thymic lymphomas. (author)

  11. Early prophylactic and treatment role of melatonin against certain biochemical disorders in irradiated rats

    International Nuclear Information System (INIS)

    El-Massry, F.S.

    2005-01-01

    The aim of the present study is to evaluate the possible early prophylactic and therapeutic role of melatonin on irradiated rats. The experimental animals were divided into five groups: control, injected intraperitoneally with melatonin (10 mg/ kg b.wt.), irradiated at 6 Gy, injected with melatonin before irradiation and injected with melatonin after gamma irradiation. Blood, liver and brain samples from rats were collected at three time intervals of 7, 10, 14 days after terminating all treatments. Protein content and glutathione were estimated in blood and tissues, whereas testosterone and cortisol were assayed in blood of rats after whole body gamma irradiation at 6 Gy. Administration of melatonin (10 mg/kg) before whole body gamma irradiation markedly reduced the radiation injury and controlled the changes in most of the studied parameters, but following the administration of melatonin after irradiation, there were no changes in these parameters

  12. Effect of Low-Magnitude Whole-Body Vibration Combined with Alendronate in Ovariectomized Rats: A Random Controlled Osteoporosis Prevention Study

    Science.gov (United States)

    Zhong, Zhao-Ming; Wu, Xiu-Hua; Huang, Zhi-Ping; Li, Wei; Ding, Ruo-Ting; Yu, Hui; Chen, Jian-Ting

    2014-01-01

    Background Alendronate (ALE) is a conventional drug used to treat osteoporosis. Low-magnitude whole-body vibration (WBV) exercise has been developed as a potential treatment for osteoporosis. The aim of this study was to investigate whether low-magnitude WBV could enhance the protective effect of ALE on bone properties in ovariectomized rats. Methods A total of 128 Sprague-Dawley rats were randomly divided into five groups (SHAM, OVX+VEH, OVX+WBV, OVX + ALE, OVX+WBV+ALE). The level of WBV applied was 0.3 g at 45–55 Hz for 20 min/day, 5 day/week and for 3 months. ALE was administered in dose of 1 mg/Kg once a week. Every four weeks eight rats from each group were sacrificed and their blood and both tibiae were harvested. The expression of osteocalcin and CTX in serum was measured by enzyme-linked immunosorbent assay (ELISA) and the tibiae were subjected to metaphyseal three-point bending and μCT analysis. Results Osteocalcin rose after ovariectomy and was not appreciably changed by either alendronate or WBV alone or in combination. Alendronate treatment significantly prevented an increase in CTX. WBV alone treatment did not alter this effect. Compared with the OVX+WBV group, nearly all tested indices such as the BV/TV, TV apparent, Tb.N, Tb.Th, and Conn.D were higher in the OVX+ALE group at week 12.Compared with the OVX+WBV group, certain tested indices such as BV/TV, TV apparent, Tb.N, and Con.D, were higher in the OVX+WBV+ALE group at week 12. At week 12, tibiae treated with WBV+ALE exhibited a significantly higher Fmax compared to the OVX+VEH group, and a significant difference was also found in energy absorption between the OVX+WBV+ALE and OVX+VEH groups. Conclusions Compared with the WBV, ALE was more effective at preventing bone loss and improved the trabecular architecture. However, WBV enhanced the effect of alendronate in ovariectomized rats by inducing further improvements in trabecular architecture. PMID:24796785

  13. Pegylated G-CSF Inhibits Blood Cell Depletion, Increases Platelets, Blocks Splenomegaly, and Improves Survival after Whole-Body Ionizing Irradiation but Not after Irradiation Combined with Burn

    Science.gov (United States)

    2014-03-05

    control mice at day 30 after burn, RI, or CI. = 6 per group. ∗ < 0.05 versus all other groups. RI: 9.5 Gy; CI: 9.5 Gy and skin burn. disease ...after irradiation. Several questions are raised. For example, howdid the red and the white pulp of the spleen look like and the different cell types get...Health Sciences, the National Institute of Allergy and Infectious Diseases , the Department of Defense, or the United States government. The commercial

  14. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Brim, C.P.; Rieksts, G.A.; Rhoads, M.C.

    1987-05-01

    This document, a reprint of the Whole Body Counting Manual, was compiled to train personnel, document operation procedures, and outline quality assurance procedures. The current manual contains information on: the location, availability, and scope of services of Hanford's whole body counting facilities; the administrative aspect of the whole body counting operation; Hanford's whole body counting facilities; the step-by-step procedure involved in the different types of in vivo measurements; the detectors, preamplifiers and amplifiers, and spectroscopy equipment; the quality assurance aspect of equipment calibration and recordkeeping; data processing, record storage, results verification, report preparation, count summaries, and unit cost accounting; and the topics of minimum detectable amount and measurement accuracy and precision. 12 refs., 13 tabs

  15. The ORNL whole body counter

    International Nuclear Information System (INIS)

    1988-01-01

    This report is a non-technical document intended to provide an individual about to undergo a whole-body radiation count with a general understanding of the counting procedure and with the results obtained. 9 figs

  16. Human whole body cold adaptation.

    NARCIS (Netherlands)

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced

  17. Pegylated G-CSF Inhibits Blood Cell Depletion, Increases Platelets, Blocks Splenomegaly, and Improves Survival after Whole-Body Ionizing Irradiation but Not after Irradiation Combined with Burn

    Directory of Open Access Journals (Sweden)

    Juliann G. Kiang

    2014-01-01

    Full Text Available Exposure to ionizing radiation alone (radiation injury, RI or combined with traumatic tissue injury (radiation combined injury, CI is a crucial life-threatening factor in nuclear and radiological accidents. As demonstrated in animal models, CI results in greater mortality than RI. In our laboratory, we found that B6D2F1/J female mice exposed to 60Co-γ-photon radiation followed by 15% total-body-surface-area skin burns experienced an increment of 18% higher mortality over a 30-day observation period compared to irradiation alone; that was accompanied by severe cytopenia, thrombopenia, erythropenia, and anemia. At the 30th day after injury, neutrophils, lymphocytes, and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were similar to basal levels. Comparing CI and RI mice, only RI induced splenomegaly. Both RI and CI resulted in bone marrow cell depletion. It was observed that only the RI mice treated with pegylated G-CSF after RI resulted in 100% survival over the 30-day period, and pegylated G-CSF mitigated RI-induced body-weight loss and depletion of WBC and platelets. Peg-G-CSF treatment sustained RBC balance, hemoglobin levels, and hematocrits and inhibited splenomegaly after RI. The results suggest that pegylated G-CSF effectively sustained animal survival by mitigating radiation-induced cytopenia, thrombopenia, erythropenia, and anemia.

  18. Garlic protects the glutathione redox cycle in irradiated rats

    International Nuclear Information System (INIS)

    Abu-Ghadeer, A.R.M.; Osman, S.A.A.; Abbady, M.M.

    1999-01-01

    The aim of the present study is to evaluate the possible radioprotective role of garlic oil on the glutathione redox cycle (GSH, GSH-Px, GR and G6-PD) in blood and tissues (liver, spleen and intestine) of irradiated rats. Garlic oil was orally administered to rats (100 mg/Kg- b.w.) for 7 days before exposure to a fractionated of whole body gamma irradiation up to 9 Gy (3 Gy X 3 at 2 days intervals) and during the whole period of irradiation. The data showed that radiation exposure caused significant inhibition of the biochemical parameters in blood and tissue of irradiated rats all over the investigation periods (3,7 and 15 days). Garlic oil ameliorated the decrease in the tested parameters with noticeable effect on the 15 Th. day after radiation exposure. It is concluded that garlic oil could control the radiation induced changes in the glutathione redox cycle and provided some radioprotective effect

  19. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs

  20. The protective role of damsissa (Ambroosia Maritima) against gamma irradiation in albino rats

    International Nuclear Information System (INIS)

    Osman, O.A.; Mohamed, Y.S.

    2003-01-01

    The present work was directed to evaluate the effectiveness of treatment with damsissa (Ambrosia maritima) for thirty consecutive days pre- irradiation exposure in controlling the post-irradiation hazards in irradiated rats. Male albino rats (Spraue Dowley strain) weighing about 120+- 10 g were used and blood samples were collected from tails of animals thirty days after treatment with damsissa and seven days post irradiation. Blood samples were subjected to biochemical analysis such as liver functions, kidney function and lipid profile. Whole body gamma irradiation of rats at 6 Gy (single dose) caused significant decrease in the contents of total proteins accompanied by significant increase of urea level as recorded on the 7th days post irradiation. Data obtained in this study revealed that whole body gamma irradiation induced significant elevation in all tested blood lipid functions. There was significant increase of aspartate amino transferase (AST) and alanine amino transferase (ALT) whole alkaline phosphatase (ALP) showed statistical significant decrease as compared with the control group. Damisissa (Ambrosia maritima) treatment exerted noticeable amelioration in the the studied biochemical parameters of the irradiated albino rats. The mechanism of action of damsissa may be due to its anti-inflammatory properties against whole body gamma irradiation

  1. Neutron irradiation of rat embryos in utero

    International Nuclear Information System (INIS)

    Vogel, H.H. Jr.

    1978-01-01

    In the rat radiation is most effective in producing congenital anomalies during the organ-forming period (days 9 to 13), which is approximately equivalent to the 14th to 50th days of human pregnancy. We have exposed female Sprague--Dawley rats on the 18th day of pregnancy to single whole-body doses of fission neutrons (20 to 150 rads). After 20 rads there was a small decrease in body weight which lasted from birth to weaning. During this period 9% of the irradiated rats died compared with 4% of the controls. After 50 rads, 65/275 (23.6%) of the rats died between birth and weaning, and the body-weight loss of the survivors was increased. After 100 rads, 62/133 (47%) died at birth or day 1 and 103/133 (77.4%) died before weaning. A large and significant decrease in body weight persisted in the survivors. After 150 rads of fission neutrons, all 95 rats died within 48 hr of birth. From cross-fostering experiments, we believe this is a direct effect of radiation on the embryos and not an indirect action through the mother or her milk. The LD 50 for the period from birth to weaning is approximately 75 rads of fission neutrons. Studies of organ weight were conducted daily for the first week after birth in an attempt to find the cause of radiation mortality. Body weight of the irradiated animals averaged only about one-half that of the controls. The liver, kidney, brain, and testes of the neutron-irradiated rats weighed significantly less than those of the controls. The weights of the spleen, lungs, duodenum, and stomach were decreased but not significantly. The bone marrow appeared depleted in the irradiated long bones, but the spleen maintained active hematopoiesis 1 to 2 months after neutron exposure

  2. Urinary excretion of creatine and creatinine in gamma irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S K; Srinivasan, M N; Chuttani, K; Bhatnagar, A; Ghose, A

    1985-06-01

    Dose response relationships of creatine, creatinine excretions and their ratio in 24 hr urine samples have been studied on each individual day upto 4 days after 1-7 Gy whole body gamma irradiation to rats. Creatine excretion reaches the peak on the 2nd day while creatinine excretion reaches the peak on the first day and a plateau is maintained up to the 4th day in each case. Good dose response correlationship is maintained for creatine or creatinine levels up to the 4th day and for creatine creatinine ratio up to the 3rd day. Seperate dose response curves are needed on each individual day for using these parameters for biological dosimetry purpose. Administration of the radioprotectors viz., combination of 5-hydroxytryptophan (HT) and 2-amino-ethylisothiuronium bromide hydrobromide (AET), HT alone and optimum radioprotecting dose of AET before 5 Gy whole body ..gamma..-irradiation have not been of help for reducing creatinineurea. (author).

  3. Urinary excretion of creatine and creatinine in gamma irradiated rats

    International Nuclear Information System (INIS)

    Basu, S.K.; Srinivasan, M.N.; Chuttani, K.; Bhatnagar, A.; Ghose, A.

    1985-01-01

    Dose response relationships of creatine, creatinie excretions and their ratio in 24 hr urine samples have been studied on each individual day upto 4 days after 1-7 Gy whole body gamma irradiation to rats. Creatine excretion reaches the peak on the 2nd day while creatinine excretion reaches the peak on the first day and a plateau is maintained upto the 4th day in each case. Good dose response correlationship is maintained for creatine or creatinine levels upto the 4th day and for creatine creatinine ratio upto the 3rd day. Seperate dose response curves are needed on each individual day for using these parameters for biological dosimetry purpose. Administration of the radioprotectors viz., combination of 5-hydroxytryptophan (HT) and 2-amino-ethylisothiuronium bromide hydrobromide (AET), HT alone and optimum radioprotecting dose of AET before 5 Gy whole body γ-irradiation have not been of help for reducing creatinineurea. (author)

  4. Whole-body counting 1990

    International Nuclear Information System (INIS)

    Strand, P.; Selnaes, T.D.

    1990-01-01

    In order to determine the doses from radiocesium in foods after the Chernobyl accident, four groups were chosen in 1987. Two groups, presumed to have a large consumption of food items with a high radiocesium content, were selected. These were Lapp reindeer breeders from central parts of Norway, and hunters a.o. from the municipality of Oeystre Slidre. Two other groups were randomly selected, one from the municipality of Sel, and one from Oslo. The persons in these two groups were presumed to have an average diet. The fall-out in Sel was fairly large (100 kBq/m 2 ), whereas in Oslo the fall-out level was low (2 kBq/m 2 ). The persons in each group were monitored once a year with whole-body counters, and in connection with these countings dietary surveys were preformed. In 1990 the Sel-group and the Lapps in central parts of Norway were followed. Average whole-body activity in each group is compared to earlier years's results, and an average yearly effective dose equivalent is computed. The Sel-group has an average whole-body activity of 2800 Bq for men, and 690 Bq for women. Compared to earlier years, there is a steady but slow decrease in whole-body activities. Yearly dose is calculated to 0.06 mSv for 1990. The Lapps in central parts of Norway have an average whole-body content of 23800 Bq for men and 13600 Bq for women. This results in an average yearly dose of 0.9 mSv for the individuals in the group. Compared to earlier years, the Lapp group show a decrease in whole-body contents since 1988. This decrease is larger among men than women. 5 refs., 8 figs., 6 tabs

  5. Comparative studies on the proliferation and differentiation of granulocytic progenitor cells CFU-C from the blood and bone marrow of dogs under normal conditions and after 80 R whole-body irradiation

    International Nuclear Information System (INIS)

    Faul, H.

    1984-01-01

    The study on hand was performed on dogs of both sexes and dealt with two complex issues: 1) the identity of the granulocytic progenitor cell CFU-C in the blood and bone marrow, and 2) possible verification of damage to stem cell store using the granulocytic progenitor cell CFU-C as an indicator for damage caused, in this case, by 80 rd whole body irradiation of dogs. A special culture technique was developed to study these issues, and was tested for its functionability. Examinations of the dogs with whole-body irradiation revealed the following results: a) Radiation damage to the stem cell store could be verified by the study object of CFU-C granulocytic progenitor cell of the bone marrow. A reduction of proliferative capacity linked with a change in the differentiation profiles for the different cell types in the suspension cultures was clearly verified. b) The suspension culture technique allows to verify damage by ionizing radiation both in the acute phase, i.c. two hours after irradiation, and in the late recovery phase. (orig./MG) [de

  6. Skin Inqjuries Reduce Survival and Modulate Corticosterone, C-Reactive Protein, Complement Component 3, IgM, and Prostaglandin E2 after Whole-Body Reactor-Produced Mixed Field (n + γ-Photons Irradiation

    Directory of Open Access Journals (Sweden)

    Juliann G. Kiang

    2013-01-01

    Full Text Available Skin injuries such as wounds or burns following whole-body γ-irradiation (radiation combined injury (RCI increase mortality more than whole-body γ-irradiation alone. Wound-induced decreases in survival after irradiation are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to systemic bacterial infection. Among these factors, radiation-induced increases in interleukin-6 (IL-6 concentrations in serum were amplified by skin wound trauma. Herein, the IL-6-induced stress proteins including C-reactive protein (CRP, complement 3 (C3, immunoglobulin M (IgM, and prostaglandin E2 (PGE2 were evaluated after skin injuries given following a mixed radiation environment that might be found after a nuclear incident. In this report, mice received 3 Gy of reactor-produced mixed field (n+γ-photons radiations at 0.38 Gy/min followed by nonlethal skin wounding or burning. Both wounds and burns reduced survival and increased CRP, C3, and PGE2 in serum after radiation. Decreased IgM production along with an early rise in corticosterone followed by a subsequent decrease was noted for each RCI situation. These results suggest that RCI-induced alterations of corticosterone, CRP, C3, IgM, and PGE2 cause homeostatic imbalance and may contribute to reduced survival. Agents inhibiting these responses may prove to be therapeutic for RCI and improve related survival.

  7. Whole-body computed tomography

    International Nuclear Information System (INIS)

    Wegener, O.H.

    1992-01-01

    The vast literature on whole-body CT is presented in this bibliography which is published as a self-contained supplement to the monography entitled whole-body CT. For this documentation, the following journals have been scanned back to the year 1980: Journal of Computer Assisted Tomography (JCAT), Fortschritte auf dem Gebiet der Roentgenstrahlen (RoeFo), Radiology, American Journal of Roentgenology (AJR), Der Radiologe, Neuroradiology, and American Journal of Neuroradiology (AJNR). The supplement includes keyword indexes that can be searched for terms indicating body organs, body regions, or certain lesions. The author index offers an additional access to the publication wanted. (orig./MG) [de

  8. Effects of gamma-irradiation on the glycogen and lipid contents of the rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Nahed, R H.A.; Al-Zahaby, Al-Ahmmady, S.; Sanad, S M.K.; Roushdy, H M

    1986-01-01

    Histochemical changes in the glycogen and lipid contents of the rat liver cells were studied at different intervals following whole body gamma-irradiation at the exposure dose level of 600 rads. The glycogen and lipid contents were significantly altered, the changes were time-dependent.

  9. Whole-body MRI screening

    Energy Technology Data Exchange (ETDEWEB)

    Puls, Ralf [HELIOS Klinikum Erfurt (Germany). Inst. of Diagnostic and Interventional Radiology and Neuroradiology; Hosten, Norbert (ed.) [Universitaetsklinikum Greifswald (Germany). Diagnostic Radiology and Neuroradiology

    2014-07-01

    The advent of dedicated whole-body MRI scanners has made it possible to image the human body from head to toe with excellent spatial resolution and with the sensitivity and specificity of conventional MR systems. A comprehensive screening examination by MRI relies on fast image acquisition, and this is now feasible owing to several very recent developments, including multichannel techniques, new surface coil systems, and automatic table movement. The daily analysis of whole-body MRI datasets uncovers many incidental findings, which are discussed by an interdisciplinary advisory board of physicians from all specialties. This book provides a systematic overview of these incidental findings with the aid of approximately 240 high-quality images. The radiologists involved in the project have written chapters on each organ system, presenting a structured compilation of the most common findings, their morphologic appearances on whole-body MRI, and guidance on their clinical management. Chapters on technical and ethical issues are also included. It is hoped that this book will assist other diagnosticians in deciding how to handle the most common incidental findings encountered when performing whole-body MRI.

  10. Whole-body MRI screening

    International Nuclear Information System (INIS)

    Puls, Ralf; Hosten, Norbert

    2014-01-01

    The advent of dedicated whole-body MRI scanners has made it possible to image the human body from head to toe with excellent spatial resolution and with the sensitivity and specificity of conventional MR systems. A comprehensive screening examination by MRI relies on fast image acquisition, and this is now feasible owing to several very recent developments, including multichannel techniques, new surface coil systems, and automatic table movement. The daily analysis of whole-body MRI datasets uncovers many incidental findings, which are discussed by an interdisciplinary advisory board of physicians from all specialties. This book provides a systematic overview of these incidental findings with the aid of approximately 240 high-quality images. The radiologists involved in the project have written chapters on each organ system, presenting a structured compilation of the most common findings, their morphologic appearances on whole-body MRI, and guidance on their clinical management. Chapters on technical and ethical issues are also included. It is hoped that this book will assist other diagnosticians in deciding how to handle the most common incidental findings encountered when performing whole-body MRI.

  11. Parsley oil boosting anti oxidation capacity in irradiated rats

    International Nuclear Information System (INIS)

    Abbady, M.M.; Osman, S.A.A.; Abu-Ghadeer, A.R.M.

    1999-01-01

    Many synthetic antioxidant components have shown toxic and/or mutagenic effects, which have directed most of the attention on the naturally occurring antioxidants. The present study aims to evaluate the possible antioxidant effects of parsley on levels of lipid peroxides, glutathione (GSH) and superoxide dismutase (SOD) in blood and certain tissues (liver, spleen and intestine) of whole body gamma irradiated rats (4.5 Gy). Parsley oil was orally administrated to rats (100 mg/kg bod. wt) for 7 days before radiation exposure. The data showed that parsley significantly ameliorates the decrease in the antioxidant system (GSH and SOD) and the increase in the lipid peroxides level caused by radiation exposure

  12. Serum glucose and liver glycogen in gamma irradiated rats

    International Nuclear Information System (INIS)

    Ahlersova, E.; Ahlers, I.; Molcanova, A.

    1988-01-01

    Overnight fasted male rats of Wistar strain were irradiated with single whole-body doses of 4.78-7.17-9.57 and 14.35 Gy of gamma rays. After decapitation at intervals 1-28 d (4.78 and 7.17 Gy), 1-7 d (9.57 Gy) and 1-3 d (14.35 Gy) glucose concentration in serum and glycogen concentration in liver of irradiated and non-irradiated animals were determined. The higher was radiation dose the more expressive extent and depth of changes (hyperglycemia, accumulation of glycogen) occured. Blood glucose and liver glycogen may serve as a reliable and dose-dependent biological indicators of metabolic changes in irradiated rats. (author)

  13. Effect of liposome entrapped Cu/Zn bovine superoxide dismutase in rat after total body (neutron-gamma) irradiation

    International Nuclear Information System (INIS)

    Lamproglou, I.; Martin, S.; Lambert, F.; Fontanille, P.; Fessi, H.; Puisieux, F.; Colas-Linhart, N.; Bok, B.; Fatome, M.; Martin, C.

    1998-01-01

    Our purpose was, to study in rat the effects of (neutron-gamma) exposure and of LIPSOD treatment (liposomal Cu/Zn super-oxide dismutase) on cognitive functions. Our data demonstrate that whole-body irradiation induces in Sprague-Dawley rats some cognitive dysfunction. Treatment using LIPSOD corrects in a significantly way this trend. Moreover, in sham-irradiated rats, this treatment shows an inhibitory effect. (authors)

  14. Study of the radioprotective efficiency of combined administration of natural antioxidants and a sulfhydryl compound in feverish irradiated rats

    International Nuclear Information System (INIS)

    Radwan, R.R.

    2008-01-01

    In the present experiments, a study of the radioprotective effects of natural antioxidants, rutin alone, vitamine E alone or each of them combined with synthetic radioprotector, cysteine have been investigated in irradiated and feverish irradiated rats. Furthermore, the oxidative stress bio markers and certain liver function tests of the irradiated and the feverish whole body irradiated rats were examined. Two main sets of animals were used: The 1st set was constructed in order to study the effect of irradiation, while the second set was used to study the effect of irradiation on feverish rats. The effect of irradiation was evaluated by exposing the whole body of rats to gamma radiation at acute single dose level of 6.5 Gy. Rutin was orally daily administered for two weeks before irradiation in a dose of 1.064 mmol/kg , vitamine E was injected intraperitoneally daily for seven days before irradiation in a dose of 50 mg/100 g. While, cysteine was intraperitoneally administered only 30 min. before irradiation in a dose of 30 mg/kg. In order to determine the antipyretic effect of the drugs, body temperature of each animal was measured before induction of hyperthermia as well as 18 hours following yeast injection. Rats were treated with the tested drugs before induction of fever then exposed to whole body gamma radiation at acute single dose level of 6.5 Gy and body temperature of each animal was measured 3 days after irradiation

  15. Study of the radioprotective efficiency of combined administration of natural antioxidants and a sulfhydryl compound in feverish irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, R R [Pharmacist in National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    In the present experiments, a study of the radioprotective effects of natural antioxidants, rutin alone, vitamine E alone or each of them combined with synthetic radioprotector, cysteine have been investigated in irradiated and feverish irradiated rats. Furthermore, the oxidative stress bio markers and certain liver function tests of the irradiated and the feverish whole body irradiated rats were examined. Two main sets of animals were used: The 1st set was constructed in order to study the effect of irradiation, while the second set was used to study the effect of irradiation on feverish rats. The effect of irradiation was evaluated by exposing the whole body of rats to gamma radiation at acute single dose level of 6.5 Gy. Rutin was orally daily administered for two weeks before irradiation in a dose of 1.064 mmol/kg , vitamine E was injected intraperitoneally daily for seven days before irradiation in a dose of 50 mg/100 g. While, cysteine was intraperitoneally administered only 30 min. before irradiation in a dose of 30 mg/kg. In order to determine the antipyretic effect of the drugs, body temperature of each animal was measured before induction of hyperthermia as well as 18 hours following yeast injection. Rats were treated with the tested drugs before induction of fever then exposed to whole body gamma radiation at acute single dose level of 6.5 Gy and body temperature of each animal was measured 3 days after irradiation.

  16. Dynamics of the changes in the number and phagocytic activity of leucocytes from whole-body gamma-irradiated guinea pigs with respect to R and S forms of Pseudomonas pseudomallei

    International Nuclear Information System (INIS)

    Najdenski, Kh.M.; Velyanov, D.K.

    1987-01-01

    Guinea pigs of both sexes received whole-body gamma irradiation (0.5 Gy, 4 x 0.5 Gy and 2 Gy; 92.5 rad/min). Two bacterial strains were used: Ps. pseudomallei R 1 5 and S 7 . The measurments were carried out on days 1, 3, 7, 15 and 30 after treatment. The changes observed were directly dependent on the dose applied: for sublethally (2 Gy) irradiated animals - an abrupt decrease of leukocytes and strongly expressed leukopenia lasting throughout the whole investigation; for fractiionally irradiated (4 x 0.5 Gy) -the number of leukocytes P<0.001 and leukopenia being observed to day 7 after irradiation; for 0.5 Gy irradiated -the leucocytes number equal to that of the controls on day 15 and significantly higher on day 30; less strongly expressed leukopenia. The alterations in phagocytic activity in relation to R and S forms of Ps. pseudomallei were similar: leukocytes from 2 Gy irradiated guinea pigs showed on day 1 a markedly raised phagocytic activity and phagocytized the R and S forms to a similar degree, while at later intervals of the study the phagocytic activity decreased and they began to phagocytize the R forms more actively. Leukocytes from 0.5 Gy treated animals phagocytized the R forms more actively than the S forms throughout the whole investigation

  17. Human whole body cold adaptation.

    OpenAIRE

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000?y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations...

  18. SU-E-T-366: Estimation of Whole Body Dose From Cranial Irradiation From C and Perfexion Series Gamma Knife Units

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S [Indiana University Health Methodist Hospital, Indianapolis, IN (United States); Indiana University School of Medicine, Indianapolis, IN, University Hospitals Case Medical Center, Cleaveland, OH (United States); Andersen, A; Lulu, B; Das, I [Indiana University School of Medicine, Indianapolis, IN, University Hospitals Case Medical Center, Cleaveland, OH (United States); Cheng, C

    2015-06-15

    Purpose: The Leksell Gamma Knife (GK) B & C series contains 201 Cobalt-60 sources with a helmet. The new model, Perfexion uses 192 Cobalt-60 sources without a helmet; using IRIS system for collimation and stereotactic guidance to deliver SRS to brain tumors. Relative dose to extracranial organs at risk (OARs) is measured in phantom in this study for Perfexion and C-series GK. Materials & Methods: Measurements were performed in a Rando anthropomorphic phantom on both systems using a large ion chamber (Keithley-175) for each collimator. The Keithley-175 cc ion chamber was sandwiched between phantom slices at various locations in the phantom to correspond to different extracranial OARs (thyroid, heart, kidney, ovary and testis, etc.) The dose measurement was repeated with OSL detectors for each position and collimator. Results: A large variation is observed in the normalized dose between these two systems. The dose beyond the housing falls off exponentially for Perfexion. Dose beyond the C-series GK housing falls off exponentially from 0–20cm then remains relatively constant from 20–40cm and again falls off with distance but less rapidly. The variation of extracranial dose with distance for each collimator is found to be parallel to each other for both systems. Conclusion: Whole body dose is found to vary significantly between these systems. It is important to measure the extracranial dose, especially for young patients. It is estimated that dose falls off exponentially from the GK housing and is about 1% for large collimators at 75 cm. The dose is two-orders of magnitude smaller for the 4mm collimator. However, this small dose for patient may be significant radiologically.

  19. Effect of x-irradiation in rats bearing walker-256-carcinosarcoma and normal rats

    International Nuclear Information System (INIS)

    Ehara, Kazuhiko

    1978-01-01

    Serum protein fractions and total proteins were studied with bloods obtained from the rats exposed each to the partial-, whole-bodies and the transplanted tumors (Walker-256-carcinosarcoma transplanted in the right hind leg). The electrophoretic variation induced in the sera of tumor-bearing rats (Group II), and the content of total proteins decreased. Early irradiation to the tumor part of rats less induced the variations of the electrophoretic pattern and the decrease of the amount of serum total proteins. When the distant metastasis appeared during irradiation treatment, the electrophoretic patterns and content of total proteins changed proportionally to the variation in sera of Group II. On the other hand, the γ-globulin (G) fraction increased in the long-term survival rat. The separation of the rat serum β-G into two peaks of β 1 - and β 2 -G was shown only in Group IV (late irradiation to the right hind leg). This finding supposed that some factors involve in the sera of rats with transplanted primary tumor grown up to a fixed size and guessed the appearance of the distant metastasis during x-irradiation. The percentages of the albumin and γ-G decreased slightly and those of the α 1 -, α 2 - and β-G increased slightly in the rats with 300 rad partial-body (the right hind leg) x-irradiation daily for 20 days. The remarkable decrease of the albumin and γ-G, the increase of the α 1 - and β-G, the marked increase of the α 2 -G and the decrease of serum total proteins were demonstrated for the sera of rats with 1,000 rad whole-body x-irradiation at a time. These phenomena seem to be related to the destructive and reticuloendothelial injury by the exposure. (auth.)

  20. Immunologic effects of whole body ultraviolet (uv) irradiation. II. Defect in splenic adherent cell antigen presentation for stimulation of T cell proliferation

    International Nuclear Information System (INIS)

    Letvin, N.L.; Fox, I.J.; Greene, M.I.; Benacerraf, B.; Germain, R.N.

    1980-01-01

    Ultraviolet (uv) irradiation has been shown to alter many parameters of the immunologic reactivity of mice. The altered responsiveness of uv-irradiated mice, as measured by delayed-type hypersensitivity (DTH) and primary in vitro plaque-forming cell (PFC) responses to T-dependent antigens, has recently been correlated with a functional defect in the splenic adherent cell population of these animals. The present studies describe a model of this altered responsiveness, which allows further clarification of the effects of external uv irradiation on the splenic antigen-presenting cell (APC) in its interactions with T cells

  1. No adverse effects detected for simultaneous whole-body exposure to multiple-frequency radiofrequency electromagnetic fields for rats in the intrauterine and pre- and post-weaning periods

    International Nuclear Information System (INIS)

    Shirai, Tomoyuki; Wang, Jianqing; Kawabe, Mayumi; Wake, Kanako; Watanabe, So-ichi; Takahashi, Satoru; Fujiwara, Osamu

    2017-01-01

    In everyday life, people are exposed to radiofrequency (RF) electromagnetic fields (EMFs) with multiple frequencies. To evaluate the possible adverse effects of multifrequency RF EMFs, we performed an experiment in which pregnant rats and their delivered offspring were simultaneously exposed to eight different communication signal EMFs (two of 800 MHz band, two of 2 GHz band, one of 2.4 GHz band, two of 2.5 GHz band and one of 5.2 GHz band). Thirty six pregnant Sprague-Dawley (SD) 10-week-old rats were divided into three groups of 12 rats: one control (sham exposure) group and two experimental (low- and high-level RF EMF exposure) groups. The whole body of the mother rats was exposed to the RF EMFs for 20 h per day from Gestational Day 7 to weaning, and F 1 offspring rats (46–48 F1 pups per group) were then exposed up to 6 weeks of age also for 20 h per day. The parameters evaluated included the growth, gestational condition and organ weights of the dams; the survival rates, development, growth, physical and functional development, memory function, and reproductive ability of the F 1 offspring; and the embryotoxicity and teratogenicity in the F 2 rats. No abnormal findings were observed in the dams or F 1 offspring exposed to the RF EMFs or to the F 2 offspring for any of the parameters evaluated. Thus, under the conditions of the present experiment, simultaneous whole-body exposure to eight different communication signal EMFs at frequencies between 800 MHz and 5.2 GHz did not show any adverse effects on pregnancy or on the development of rats.

  2. Therapeutic use of recombinant human G-CSF (rhG-CSF) in a canine model of sublethal and lethal whole-body irradiation

    International Nuclear Information System (INIS)

    MacVittie, T.J.; Monroy, R.L.; Patchen, M.L.; Souza, L.M.

    1990-01-01

    Recombinant human G-CSF (rhG-CSF) was studied for its ability to modulate haemopoiesis in normal dogs as well as to decrease therapeutically the severity and duration of neutropenia in sublethally and lethally irradiated dogs. Data indicate that in the lethally irradiated dog, effective cytokine therapy with rhG-CSF will increase survival through the induction of earlier recovery of neutrophils and platelets. (author)

  3. Effect of continuous, whole-body gamma irradiation upon canine lymphohematopoietic (CFU-GM, CFU-L) progenitors and a possible hematopoietic regulatory population

    International Nuclear Information System (INIS)

    Klein, A.K.; Dyck, J.A.; Shimizu, J.A.; Stitzel, K.A.; Wilson, F.D.; Cain, G.R.

    1985-01-01

    Clonogenic assays for granulocytes-macrophages (CFU-GM) in bone marrow and for T lymphocytes (CFU-L) in peripheral blood were performed on dogs continuously exposed to 60 Co irradiation (0.02, 0.04, or 0.11 Gy/day). When decreased numbers of CFU-GM were observed they correlated well with the clinical status of the dogs but were not generally associated with increasing cumulative doses of absorbed irradiation. In clinically normal, irradiated animals, decreased CFU-GM values and myeloid-erythroid ratios were observed, suggesting that chronic irradiation may affect the granulocytic series well before decreased peripheral blood values are seen. In hypocellular dogs the number of CFU-GM were significantly decreased compared to values obtained from control or clinically normal irradiated dogs, while virtually no CFU-GM were observed in the leukemic dogs. Proliferative capacity of T lymphocytes (CFU-L) was not affected by either increasing absorbed irradation or the presence of leukemia, D 0 values were determined on marrow fibroblastic cells to ascertain whether a radioresistant subpopulation of stromal elements would result from continous in vivo irradiation. These radioresistant marrow fibroblastic cells were assayed for their ability to support normal granulopoiesis and found to be not significantly different from control fibroblasts

  4. Prostaglandin levels and lysosomal enzyme activities in irradiated rats

    International Nuclear Information System (INIS)

    Trocha, P.J.; Catravas, G.N.

    1980-01-01

    Whole-body irradiation of rats results in the release of hydrolases from lysosomes, an increase in lysosomal enzyme activities, and changes in the prostaglandin levels in spleen and liver tissues. A transient increase in the concentration of prostaglandins E and F and leakage of lysosomal hydrolases occurred in both spleen and liver tissues 3-6 hours after the animals were irradiated. Maximal values for hydrolase activities, prostaglandin E and F content, and release of lysosomal enzymes were found 4 days postirradiation in rat spleens whereas in the liver only slight increases were observed at this time period for prostaglandin F levels. On day 7 there was a final rise in the spleen's prostaglandin E and F concentrations and leakage of hydrolases from the lysosomes before returning to near normal values on day 11. The prostaglandin F concentration in liver was also slightly elevated on the 7th day after irradiation and then decreased to control levels. (author)

  5. Application of the variational dynamic of nucleic acids with a prognosis of survival in hematological patients subjected to whole-body irradiation for a bone-marrow transplantation

    International Nuclear Information System (INIS)

    Morera, Lourdes; Garcia, Omar; Proenza, Emma; Carnot, Jose

    1996-01-01

    The main purpose of this work is to study the variational dynamics of nuclei acids in patients either subjected or not of abortive peaks and its prospective application as a prognostic indicator which might contribute to the therapeutic decision making in cases of BMT and irradiation related acute syndromes

  6. Whole body autoradiography, ch. 13

    International Nuclear Information System (INIS)

    Jonkman, J.H.G.

    1977-01-01

    The distribution of 35 S-ringlabelled thiazinamium methylsulphate has been studied by means of whole body autoradiography in a squirrel and in mice. Accumulation of activity was found in liver, kidney and intestines (the excretion of pathways). High concentrations were also found in organs with high amount of acetylcholine receptors and in the glandular tissue. No radioactivity was seen in the central nervous system, indicating no passage through the 'blood-brain barrier'. This is the most significant difference with its tertiary analogue Prometharine hydrochloride. In pregnant mice, high concentrations were found in the placenta but only low amounts were found in liver and kidneys of the foetuses

  7. Contribution to the study of the radioprotective effect of serotonin on brain spontaneous and evoked electrical activities in the adult rabbit following whole-body lethal $gamma$-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fatome, M; Court, L

    1973-11-01

    Thesis. Submitted to Paris Univ., (France). A 1 to 12 mg/kg serotonin- creatine-sulfate intravenous injection seems to act only slightly on the chronic implanted rabbit CNS except for an increase in latencies and delays of the fast components of evoked potentials and a generalized decrease in the total energy of the signal occurring 20 to 60 min after the injection. The CNS is given a real protection by a 10 mg/kg serotonin injec, tion 20 min before a 650 R whole-body exposure, the spontaneous or induced electrical activity being slightly disturbed. In the hours following irradiation the total energy increase is less important than in the unprotected animal, and there is no clear variation towards the low frequencies. Serotonin could act on the brain structures and the total energy of the signal through its depressing effect. Its radioprotective effect could act, at least partly, through the CNS. (auth)

  8. Lupine Alleviate Hyperglycemia in Streptozotocin Diabetic gamma- Irradiated Rats

    International Nuclear Information System (INIS)

    El-Sayed, S.M.

    2010-01-01

    This study was to examine the regulatory effect of lupine on the diabetic profile developed in Streptozotocin (STZ) induced diabetic albino rats. The effectiveness of lupine against diabetes in gamma irradiated rats was purposed in the present study. Rats were received lupine seeds powder suspension (1 g/kg body weight for 14 consecutive days) before whole body exposure to 8 Gy of gamma radiation and /or STZ (55 mg/kg body weight, single dose) injection. The results pointed out that radiation exposure sustained the diabetic profile in rats received STZ comparing with STZ diabetic not irradiated rats. The prolonged administration of lupine suspension before STZ induction of diabetic and/or irradiated rats reduced the changes in the level of blood glucose, insulin concentration, liver glycogen, and the activity of glucose-6-phosphatase associated with significant amelioration in blood antioxidant status (superoxide dismutase, SOD; catalase, CAT; glucose-6-phosphate dehydrogenase, G-6-PD activities and reduced glutathione concentration GSH). Also, the level of blood lipid peroxides (TBARS) were reduced greatly when compared with its matched value in diabetic and /or gamma irradiated rats. It could be postulated that lupine powder suspension might be attenuate the diabetic profile development throughout reducing oxidative damages and modulating the antioxidant status. In addition, lupine could be considered as one of a remarkable radio protective agent owing to its antioxidants property

  9. Comparative study on the immunocompetent activity of three different kinds of Peh-Hue-Juwa-Chi-Cao, Hedyotis diffusa, H. corymbosa and Mollugo pentaphylla after sublethal whole body X-irradiation

    International Nuclear Information System (INIS)

    Yang JenqJer; Hsu HsueYin; Ho YauHui; Lin ChunChing

    1997-01-01

    This brief communication describes the immunocompetent activity of the Chinese folk-medicinal herbs, Hedyotis corymbosa, H. diffusa and Mollugo pentaphylla in mice after moderate whole body x-irradiation. These antitumour drugs, given at doses of 500 and 1000 mg/kg/day for 7 consecutive days before x-irradiation protected ICR strain mice from the sublethal effects of radiation at a dose of 4 Gy, especially for the dose at 1000 mg/kg. Prior administration of H. corymbosa and H. diffusa ameliorated the leukopenia and splenic cellular decrease induced by sublethal irradiation, and slightly increased the immunocompetence of splenic cells after being stimulated by mitogens. However, administration of M. pentaphylla before x-irradiation exerted a less protective effect on ameliorating leukopenia and on splenic cellular immunocompetence. These findings suggest that some types of Peh-Hue-Juwa-Chi-Caoi (PHJCC) may also be effective in the prevention of haematopoietic damage when used in combination with radiotherapy. (author)

  10. Comparative study on the immunocompetent activity of three different kinds of Peh-Hue-Juwa-Chi-Cao, Hedyotis diffusa, H. corymbosa and Mollugo pentaphylla after sublethal whole body X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    JenqJer, Yang; HsueYin, Hsu; YauHui, Ho; ChunChing, Lin [School of Pharmacy, Kaohsiung Medical College, Kaohsiung, Taiwan (China)

    1997-07-01

    This brief communication describes the immunocompetent activity of the Chinese folk-medicinal herbs, Hedyotis corymbosa, H. diffusa and Mollugo pentaphylla in mice after moderate whole body x-irradiation. These antitumour drugs, given at doses of 500 and 1000 mg/kg/day for 7 consecutive days before x-irradiation protected ICR strain mice from the sublethal effects of radiation at a dose of 4 Gy, especially for the dose at 1000 mg/kg. Prior administration of H. corymbosa and H. diffusa ameliorated the leukopenia and splenic cellular decrease induced by sublethal irradiation, and slightly increased the immunocompetence of splenic cells after being stimulated by mitogens. However, administration of M. pentaphylla before x-irradiation exerted a less protective effect on ameliorating leukopenia and on splenic cellular immunocompetence. These findings suggest that some types of Peh-Hue-Juwa-Chi-Caoi (PHJCC) may also be effective in the prevention of haematopoietic damage when used in combination with radiotherapy. (author)

  11. Biological study on the effect of an anabolic steroidal agent administration pre-exposure to whole body gamma irradiated male mice

    International Nuclear Information System (INIS)

    Aly, S.M.; Eldawy, H.A.E.; Ragab, E.A.

    2002-01-01

    The present study was prepared to evaluate the potency of methoxy dimethylamino phenyl epiandrosterone (an anabolic agent animal in origin with an additive side chain) in a dose of 35 μ/g/kg b.wt in male albino mice as a radio-protective agent pre-exposure to gamma irradiation. This was accomplished through measuring follicular stimulating hormone (FSH), luteinizing hormone (LH) and prostaglandin-E 2 (PGE 2 ) and endothelin in plasma of mice. Meanwhile, observations of the chromosomal aberrations and sperm head abnormalities were recorded. The administration of the anabolic agent pre-irradiation resulted in slightly non-significant amelioration in the pituitary hormone levels and in levels of PGE 2 and endothelin

  12. The early irradiation syndrome. A study of the functional changes in the rabbit following whole-body γ exposure at sublethale doses

    International Nuclear Information System (INIS)

    Dufour, R.; Collignon, Y.; Vincent, F.

    1975-01-01

    A method of simultaneous observation of several physiological functions was developed in the unanaesthetized rabbit. Arterial blood pressure, local brain circulation, internal body temperature and arterial blodd acido-basic balance were thus followed before, during and after γ-irradiation. There appeared two periods in the development of this early syndrome: they were related to two processes, a central one, mainly of sympathetic origin was hardly sensitive to the dose, the other is dose-dependent [fr

  13. Morphological study of the effect of cyclophosphamide, dimethylmyleran and whole-body irradiation for the conditioning of dogs to bone marrow transplantation

    International Nuclear Information System (INIS)

    Bayer, L.

    1980-01-01

    Dogs were treated with either cyclophosphamide (CY) or dimethylmyleran (DMM), both cytostatics or with total body irradiation (TBI) in order to find out which agents are most suitable for conditioning for bone marrow (BM) transplantation. The histomorphological changes in various organs (lung, bone marrow, lymphatic tissues, digestive tract, liver, kidney, bladder, heart and gonads) after treatment with different doses are described. (orig./MG) [de

  14. Human whole body cold adaptation.

    Science.gov (United States)

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  15. Effect of a non lethal whole-body gamma irradiation on the spontaneous and evoked electroencephalographic activities of the adult rabbit; Effets d'une irradiation gamma globale non letale sur les activites electroencephalograpiques spontanees et evoquees du lapin adulte

    Energy Technology Data Exchange (ETDEWEB)

    Court, L [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    The whole of the experimental methods described (animal preparation, achievement of a precise physiological technique, dosimetry, biological information processing) allowed us to follow the changes for 15 days in the spontaneous and evoked electroencephalogram activities of rabbits submitted to a non-lethal 400 rads whole-body gamma-irradiation. Behavioural troubles, changes in the arousal state and the spontaneous electrical activity of the neo-cortex and hippocampus were noticed constantly together with an enhanced cortical excitability, and the appearance of elements of the paroxystic series sometimes in contrast with a general decrease in amplitude. After a visual stimulus the general morphology of evoked activities at the level of the primary visual areas and hippocampus was unchanged, but enhanced latencies and delays, less systematic modifications in amplitudes seemed to show out a direct effect of radiations on the nervous system and sensorial activities; these troubles seemed to occur independently from the basic electrical activity. As a whole, the changes observed were usually transitory and varied with each individual. Finally an assumption is made to explain the mechanism of arousal troubles and the general evolution of spontaneous electrical activity in the brain. (author) [French] 'L'ensemble des methodes experimentales decrites (preparation des animaux, mise au point d'une technique physiologique precise, dosimetrie, traitement de l'information biologique) a permis de suivre, pendant 15 jours, chez le lapin soumis a une irradiation gamma globale non letale de 400 rads, les modifications des activites electroencephaliques spontanees et evoquees. De facon constante, on note des troubles du comportement, des modifications de la vigilance et de l'activite electrique spontanee du neo-cortex et de l'hippocampe, ainsi qu'une augmentation de l'excitabilite corticale, l'apparition d'elements de la serie paroxystique contrastant parfois avec une diminution

  16. Locomotor damage in rats after x-irradiation in Utero

    International Nuclear Information System (INIS)

    Mullenix, P.; Norton, S.; Culver, B.

    1975-01-01

    Alterations in gait were found in rats after whole-body irradiation with 125 R on day 14, 15, and 16 of gestation. No effects on locomotion were detected after irradiation on day 17 with 125 R or after irradiation on day 14 with 50 R. A technique was set up for quantitative evaluation of locomotion based on a modification of other methods. Walking patterns of irradiated rats were recorded, when they were adults, by requiring them to walk up a 10 0 incline through a corridor after their feet had been dipped in ink. Rats irradiated on gestational day 14 had an in-phase, hopping gait with the sine of the angle between the hind feet and the direction of progression over 0.9. Rats irradiated on gestational days 15 and 16 had an alternating, waddling gait with wider stance and broader angle than control rats. Histologic examination of serial sections of the brains of these rats showed that the 14-day rats lacked all telencephalic commissures except for a few fibers which crossed in some rats. There was a progressive improvement in the condition of the anterior and ventral hippocampal commissures up to day 17, but the corpus callosum and doral hippocampal commissure were lacking or markedly reduced in all day 17 rats. No animals showed damage to the mesencephalic posterior commissure. Since rats which used the in-phase mode of locomotion were never observed to use alternating gait, the possible causal relationship of the commissural damage to the altered locomotor patterns was considered. In view of the restricted period of damage found for the anterior and ventral hippocampal commissures and the restriction of altered locomotion to damage in the same period, primary involvement of the corpus callosum and dorsal hippocampal commissure could be excluded, but a possible role for the other telencephalic commissures remained

  17. Time/effect after acute gamma irradiation of rats

    International Nuclear Information System (INIS)

    Georgieva, I.; Mileva, M.; Ivanov, B.

    1991-01-01

    Sexually mature male Wistar rats has received single acute whole body gamma irradiation with 51.6 mC/kg ( 137 Cs). Samples for cytogenetic investigations of bone-marrow cells have been prepared at 8, 24 and 50 hours, as well as on 3, 7. 15, 30 and 180 days after irradiation. Spontaneous structure aberrations are presented by acentric single and pair chromosomal fragments with occurencies 1.3 and 1.1%. Chromatid exchanges, dicentics and symmetric exchanges have been also found after irradiation. The higher percent of cells with aberrations and bigger number of aberrations per cell have been established in the initial periods (8 and 24 hrs after irradiation), then a statistically reliable reduction of the aberration rates has been observed. After the 15th day both indices are equalized with those of controls. 1 fig., 1 tab., 20 refs

  18. Protective effects of a preparation(hemoHIM) of herb mixture on self-renewal tissues and immune system in whole body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Ran; Oh, Heon; Jo, Sung-Kee [Korea Atomic Energy Research Institute, Daejon (Korea, Republic of); Kim, Sung-Ho [Chonnam National Univ., Kwangju (Korea, Republic of); Yee, Sung-Tae [Sunchon National Univ., Sunchon (Korea, Republic of)

    2002-07-01

    A preparation (HemoHIM) of herb mixture was designed to protect the gastrointestine and hematopoietic organs and to promote recovery of the immune system against radiation damage. The mixture of 3 edible medicinal herbs (Angelica gagantis Radix, etc.) was decocted with hot water and the extract was fractionated with ethanol. The preparation HemoHIM was made up with addition of ethanol- insoluble fraction yielded from one half of the total water extract to the other half of the total water extract. In vitro, lymphocytes were protected by HemoHIM, its polysaccharide and ethanol fractions against radiation. The proliferation of lymphocytes and bone marrow cells by HemoHIM was due to its polysaccharide fraction. In mice administered with the preparation (HemoHIM) before gamma- irradiation, the jejunal crypt survival was increased and the apoptosis of crypt cells was decreased. HemoHIM administration increased the survival of bone marrow stem cells and promoted the repopulation of blood cells following irradiation. In the analysis of the repopulated lymphocyte subsets, B cells were firstly regenerated and then T cells were recovered in mice administrated with HemoHIM. The antibody production against T-dependent antigen DNP-KLH was augmented by HemoHIM in irradiated mice. These results indicated that HemoHIM, a preparation of the herb mixture, protected the stem cells of self-renewal tissues and hematopoietic organs and promoted recovery of the immune system against radiation damage. Since the preparation of herb mixture is a relatively nontoxic natural product, it might be a useful modifier for prevention and control of radiation damages.

  19. Fatal veno-occlusive disease of the liver after chemotherapy, whole-body irradiation and bone marrow transplantation for refractory acute leukaemia

    International Nuclear Information System (INIS)

    Jacobs, P.; Miller, J.L.; Uys, C.J.; Dietrich, B.E.

    1979-01-01

    Rapid onset of liver failure with fatal outcome occured in a young woman after successful bone marrow transplantation undertaken for refractory acute leukaemia. Centrilobular necrosis was demonstrated at autopsy and was attributed to prior cytotoxic chemotherapy, possibly potentiated by the total-body irradiation that was used in preparation for the transplant. This association between liver damage and prolonged drug therapy, coupled with the short median survival currently achieved within these chemotherapy regimens, has initiated an evaluation of bone marrow transplantation in patients with leukaemia during the first complete remission, rather than at a later stage when cumulative drug toxicity to the liver may have taken place

  20. The repopulation of lymph nodes of dogs after 1200 R whole-body x-irradiation and intravenous administration of mononuclear blood leukocytes.

    Science.gov (United States)

    Nelson, B; Calvo, W; Fliedner, T M; Herbst, E; Bruch, C; Schnappauf, H P; Flad, H D

    1976-08-01

    Fresh and cryopreserved autologous or allogeneic mononuclear blood cells (MBCs) intravenously injected in 1200 R total-body x-irradiated dogs repopulated lymph nodes within 10 days after tranfusion. Several parameters of the lymphopoietic regeneration were correlated with the number of cells transfused and with the number of colony-forming units contained in the cell suspension when they were cultured in agar (CFUc). Values within the normal or close to normal range were reached in the mesenteric nodes of most of the animals transfused with 10 X 10(9) MBC or more. These values were obtained when 5 X 10(5) CFUc or more were transfused. Axillary nodes showed lower values than mesenteric nodes. They were mostly under the normal range but well over those of the irradiated controls. Frozen and thawed MBCs seem to be as effective as fresh cells for lymphopoietic restoration. The mesenteric nodes of dogs transfused with allogeneic MBCs showed higher cellularity and larger cortical-paracortical areas than those of dogs tranfused with approximately the same number of autologous cells. The repopulation of lymph nodes parallels that of the marrow.

  1. Repopulation of lymph nodes of dogs after 1200 R whole-body x-irradiation and intravenous administration of mononuclear blood leukocytes

    International Nuclear Information System (INIS)

    Nelson, B.; Calvo, W.; Fliedner, T.M.; Herbst, E.; Bruch, C.; Schnappauf, H.P.; Flad, H.D.

    1976-01-01

    Fresh and cryopreserved autologous or allogeneic mononuclear blood cells (MBCs) intravenously injected in 1200 R total-body x-irradiated dogs repopulated lymph nodes within 10 days after transfusion. Several parameters of the lymphopoietic regeneration were correlated with the number of cells transfused and with the number of colony-forming units contained in the cell suspension when they were cultured in agar (CFU/sub c/). Values within the normal or close to normal range were reached in the mesenteric nodes of most of the animals transfused with 10 x 10 9 MBC or more. These values were obtained when 5 x 10 5 CFU/sub c/ or more were transfused. Axillary nodes showed lower values than mesenteric nodes. They were mostly under the normal range but well over those of the irradiated controls. Frozen and thawed MBCs seem to be as effective as fresh cells for lymphopoietic restoration. The mesenteric nodes of dogs transfused with allogeneic MBCs showed higher cellularity and larger cortical-paracortical areas than those of dogs transfused with approximately the same number of autologous cells. The repopulation of lymph nodes parallels that of the marrow

  2. Autologous stem cell transplantation following high-dose whole-body irradiation of dogs - influence of cell number and fractionation regimes

    International Nuclear Information System (INIS)

    Bodenberger, U.

    1981-01-01

    The acute radiation syndrome after a single dose of 1600 R (approx. 12-14 Gy in body midline) and after fractionated irradiation with 2400 R (approx. 18-20 Gy) was studied with regard to fractionation time and to the number of bone marrow cells infused. The acute radiation syndrome consisted of damage to the alimentary tract and of damage to the hemopoietic system. Damage of hemopoiesis was reversible in dogs which had been given a sufficient amount of hemopoietic cells. Furthermore changes in skin and in the mucous membranes occurred. Hemopoietic recovery following infusion of various amounts of bone marrow was investigated in dogs which were irradiated with 2400 R within 7 days. Repopulation of bone marrow as well as rise of leukocyte and platelet counts in the peripheral blood was taken as evidence of complete hemopoietic reconstitution. The results indicate that the acute radiation syndrom following 2400 R TBI and autologous BMT can be controlled by fractionation of this dose within 5 or 7 days. The acute gastrointestinal syndrome is aggravated by infusion of a lesser amount of hemopoietic cells. However, TBI with 2400 R does not require greater numbers of hemopoietic cells for restoration of hemopoiesis. Thus, the hemopoiesis supporting tissue can not be damage by this radiation dose to an essential degree. Longterm observations have not revealed serious late defects which could represent a contraindication to the treatment of malignent diseases with 2400 R of TBI. (orig./MG) [de

  3. Epinephrine as a metabolic regulatory hormone in irradiated rats

    International Nuclear Information System (INIS)

    Mohamed, M.A.; Saada, H.N.; Roushdy, H.M.; Awad, O.M.; El-Sayed, M.M.; Azab, Kh.Sh.

    1997-01-01

    The role of epinephrine as a regulatory hormone was examined in normal and irradiated rats. Epinephrine was intraperitoneally injected into rats at a concentration of 200 Mg/kg body weight. Epinephrine was injected either 15 minutes before or just after whole body gamma irradiation 6 Gy 9 single dose). The variations in serum epinephrine,norepinephrine, triglycerides,lipase activity, glucose and lactic acid were selected as biochemical markers in this study. Biochemical estimations were undertaken at 1 hr, 4 hrs. 1,3 and 7 days treatment (after irradiation). The data obtained revealed that the treatment of normal rats with epinephrine induced a significant increase in serum epinephrine level 1 hr after injection, while the level of norepinephrine significantly increased at 4 hrs. Lipase activity significantly increased on the 1 ST hr post treatment. A significant decrease in the level of triglycerides was recorded 1 and 4 hrs post treatment. Serum glucose significantly increased at 1 and 4 hrs post treatment, while no significant changes were recorded for lactic acid. In gamma irradiated rats, the level of serum epinephrine significantly decreased at 1 hr followed by significant increases recorded at 1,3, and 7 days after irradiation. Norepinephrine levels significantly decreased after irradiation during all the experimental time periods. The levels of triglycerides show significant increases accompanied by decrease in lipase activity

  4. Electroencephalogram in relation to brain glycogen level in irradiated rats treated with vitamin E as a radioprotective compound

    International Nuclear Information System (INIS)

    Mahdy, A.M.

    1992-01-01

    Whole body gamma irradiation of untreated rats at the dose of 7 Gy induced severe abnormalities in the brain electrical activity, electroencephalogram (EEG), patterns of both frontal and occipital cortical areas. The visual analysis of the frontal EEG records showed a significant shift of frequencies towards faster and higher voltage activity along the experiment period (first , third, seventh and tenth days post irradiation). However, an opposite picture was prominent on the occipital EEG records after irradiation. On the other hand,the level of brain glycogen, which is considered as an important energy source for brain functions, significantly increased at all intervals of post irradiation. The treatment of rats with intraperitoneal injection of vitamin E pre-irradiation succeeded in diminishing the deleterious abnormalities in the EEG records in both frontal and occipital areas as well as the changes induced in the level of brain glycogen after whole body gamma irradiation.4 fig

  5. Effect of irradiation on unscheduled DNA synthesis induced by 4-nitroquinoline in tracheal epithelium of rats

    International Nuclear Information System (INIS)

    Hahn, F.F.; Kennedy, R.; Brooks, A.L.

    1986-01-01

    Unscheduled DNA synthesis (UDS) was determined in rat epithelium by autoradiographic techniques to determine the influence of prior irradiation on the ability of the cells to repair mutagenic damage induced by 4-nitroquionoline (4NQO). UDS was stimulated by in vitro exposure to 4NPO. However, prior whole-body irradiation of rats with either 50 or 300 rad did not alter the UDS induced by 4NQO. The results of this study do not support the hypothesis that irradiation can induce DNA repair enzymes in respiratory tract epithelium. 5 references, 3 figures

  6. Differential susceptibility of C57BL/6NCr and B6.Cg-Ptprca mice to commensal bacteria after whole body irradiation in translational bone marrow transplant studies

    Directory of Open Access Journals (Sweden)

    Toubai Tomomi

    2008-02-01

    Full Text Available Abstract Background The mouse is an important and widely utilized animal model for bone marrow transplant (BMT translational studies. Here, we document the course of an unexpected increase in mortality of congenic mice that underwent BMT. Methods Thirty five BMTs were analyzed for survival differences utilizing the Log Rank test. Affected animals were evaluated by physical examination, necropsy, histopathology, serology for antibodies to infectious disease, and bacterial cultures. Results Severe bacteremia was identified as the main cause of death. Gastrointestinal (GI damage was observed in histopathology. The bacteremia was most likely caused by the translocation of bacteria from the GI tract and immunosuppression caused by the myeloablative irradiation. Variability in groups of animals affected was caused by increased levels of gamma and X-ray radiation and the differing sensitivity of the two nearly genetically identical mouse strains used in the studies. Conclusion Our retrospective analysis of thirty five murine BMTs performed in three different laboratories, identified C57BL/6NCr (Ly5.1 as being more radiation sensitive than B6.Cg-Ptprca/NCr (Ly5.2. This is the first report documenting a measurable difference in radiation sensitivity and its effects between an inbred strain of mice and its congenic counterpart eventually succumbing to sepsis after BMT.

  7. The Protective Role of Ginger (Zingiber Officinales ) in Male Albino Rats Exposed to Gamma Irradiation

    International Nuclear Information System (INIS)

    Osman, H.F.

    2008-01-01

    The present work was performed to evaluate the effectiveness of preirradiation treatment with ginger (Zingiber Officinales) for 21 consecutive days before exposure in controlling post-irradiation hazards in male rats. Male albino rats weighing about 120±10 g were divided into four groups: ( I ) control, ( II ) treated with ginger 200 mg/kg , ( III ) irradiated with 6 Gy and ( IV ) treated with ginger 200 mg/kg before irradiated with 6 Gy gamma - radiation . The blood samples were collected from heart of animals 21 days after treatment with ginger and seven days post irradiation. Blood samples were subjected to biochemical analysts such as liver functions , lipid profile , kidney function and sex hormone. Whole body gamma irradiation of rats at 6 Gy (single dose) caused significant increase in (aspartate and alanine aminotransferases (AST and ALT), cholesterol, triglycerides , glucose, urea and creatinine) while alkaline phosphatase showed no effect. Irradiation caused decrease in the contents of total protein , albumin and testosterone. Ginger treatment exerted noticeable amelioration in the studied biochemical parameters of the irradiated albino rats. The mechanism of action of ginger may be due to its antiinflammatory properties against whole body gamma irradiation

  8. Prophylactic action of Alpha-tocopherol against Gamma irradiation changes in total lipid and phospholipid contents of brain cerebral hemispheres in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Mahdy, A M; Helen, N S; Roushdy, H M [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1987-12-31

    Male albino rats were intraperitoneally injected with Gamma tocopherol (vitamin E) at 10 mg/100 g animal body weight, 2 hr, before irradiation exposure. exposure. Rats were then exposed to a whole body dose of gamma irradiation at 7 Gy. Rats were sacrificed 1, 3, 7 and 10 days post irradiation. The two cerebral hemispheres were taken to determine the phospholipids and total lipid contents. whole body gamma irradiation of rats at 7 Gy caused a significant decrease in the levels of both phospholipids and total lipid contents in the cerebral hemispheres on the 3 rd, 7 Th, and 10 Th days post-irradiation, the decrease was insignificant on the 1 st day post exposure. The variations were less pronounced in rats treated with vitamin E. The results obtained were discussed in view of the relevant literature. 2 tabs.

  9. Effects of 6-methyl-uracil upon the phagocytic activity in mice following whole-body X-irradiation or 2,4,6,-triethyleneimino-s-triazine treatment

    International Nuclear Information System (INIS)

    Raake, W.; Tempel, K.

    1977-01-01

    1. Phagocytic activity measured by means of the intravasal clearence of a soot dispersion in male NMRI-mice was increased six to ten days after whole-body X-irradiation (640 R) and decreased during the same period after i.v. administration of 2,4,6-triethyleneimino-s-triazine (TEM 2.0 mg/kg). 2. By means of 6-methyl-uracil food admixtures (200 to 400 ppm during 2 or 3 weeks) or by repeated intravenous injections of a N-methyl-D-glucosamine-6-methyluracil complex (62.5 to 250 mg/kg daily during five days), a significant augmentation of the phagocytic index being related to time and dosage was obtained in otherwise untreated mice. Comparable results were seen using cytidine and cytidine-5'-phosphate, whereas guanosine-5'-phosphate remained ineffective. 3. Whilst stimulating effects of 6-methyl-uracil or its N-methyl-D-glucosamine complex on X-irradiated mice were suspended, an increase up to supernormal values of the phagocytic index was produced by the pyrimidine base in animals treated with TEM. In accordance to this the survival rate of lethally X-irradiated mice (960 R) could not be increased; with animals given lethal TEM-doses, however, a significantly increased survival rate was obtained. 4. The present investigations as well as former biochemical analyses confirm the assumption that 6-methyluracil produces its regeneration effects, to some extent at least, by specific pathways influencing the reticuloendothelium. Different results from X-irradiated and TEM-treated mice are referring to the different points of attack of the two noxa. (orig.) [de

  10. Effects of nutritional status on gastric secretion and composition in X-irradiated rat

    International Nuclear Information System (INIS)

    D'Souza, D.W.; Vakil, U.K.; Sreenivasan, A.

    1974-01-01

    Whole body x-irradiation of the rat with a sub-lethal (400 r) or lethal (800 r) dose causes a marked depression in secretion and composition of gastric juice with a maximum drop of the 8th day. Similarly, pepsin and gastricsin activities also decline progressively, being lowest on the 8th day post-irradiation. Radiation exposure of the rat also results in a sudden rise in serum and tissue histamine levels which occurs on the 1st day, and returns to normal on the 3rd day post-irradiation. The nutritional status of the animal appears to influence recovery from radiation injury. Rats fed adequate diets with respect to protein and vitamin A prior to irradiation (400 r) recover earlier from radiation injury than deficient animals. The above biochemical changes are associated with gross and severe degeneration of stomach cells in the x-irradiated rat. (author)

  11. Mechanism of liver lipid accumulation in X-irradiated rat

    International Nuclear Information System (INIS)

    Aiyar, A.S.; De, A.K.

    1978-01-01

    The incorporation, both in vivo and in vitro, of 14 C-acetate into hepatic lipids, notably the triglyceride and free fatty acid fractions, is greatly reduced following whole-body irradiation and is indicative of significantly reduced lipogenesis. Irradiation results in a several-fold increase in fatty acid oxidation, by the liver in vitro as well as in the whole animal, during the phase of active hepatic lipid accumulation. Small increases in lipoprotein lipase activity of adipose, immediately following irradiation and up to 24 hours, and the attendant marked fall in adipose lipids are suggestive of increased mobilization of peripheral lipids during the early period. However, in view of the fact that maximum lipid accumulations occurs very much later, inflow of extra-hepatic lipid into liver does not appear to be of major etiological significance. There is three-fold experimental evidence in support of an impairment of trigylceride transport from liver being primarily responsible for the build-up of liver lipids: (I) Triton WR-1339 induced hypertriglyceridemia is totally absent in the irradiated rat during the period when liver lipids increase significantly; (II) the rate of disappearance of radioactivity from pre-labeled hepatic lipids is considerably lower in the irradiated rats; and (III) the irradiated rats show decrease in lipoproteins of liver cell-sap and of serum, the latter being more marked and a lowered synthesis of the lipoproteins, as assessed by labeling of the protein moiety. (orig.) [de

  12. Effect of irradiation and of cysteamine on rat liver mitochondria

    International Nuclear Information System (INIS)

    Braquet, Monique.

    1979-06-01

    The aim of this work was to determine: the effects of a cobalt 60 gamma irradiation received by an animal, the biological repercussions of the preliminary administration of cysteamine to the animal exposed. To this end the amount of damage caused by in vivo irradiation of rats was estimated at three levels: on the whole body; on an important organ, the liver; on a specific organite, the mitochondrion. The methods of investigation used fall mainly within the province of biochemical technology. Studies on the effects of ionizing radiations on rats irradiated for ten days at 900 roentgens showed a generalized attack on the whole system, known as the ''Acute Irradiation Syndrome'' and divisible into three phases: stage one, initial phase involving loss of weight and destruction of the liver. These symptoms appear early and reach a paroxysm on the 4th day after irradiation. Stage two, remission phase (from the 5th to the 8th day) when the weight variations become stabilised. Stage three, last phase, often leading to the death between the 9th and 10th days. During the same 10-day period, on the same irradiated rats, the changes in enzymatic systems were followed in order to estimate the magnitude of peroxidative phenomena within a subcellular particle such as the mitochondrion. The results obtained prove a strong disorganisation of the mitochondrial function [fr

  13. Mechanism of liver lipid accumulation in X-irradiated rat

    Energy Technology Data Exchange (ETDEWEB)

    Aiyar, A S; De, A K [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1978-03-01

    The incorporation, both in vivo and in vitro, of /sup 14/C-acetate into hepatic lipids, notably the triglyceride and free fatty acid fractions, is greatly reduced following whole-body irradiation and is indicative of significantly reduced lipogenesis. Irradiation results in a several-fold increase in fatty acid oxidation, by the liver in vitro as well as in the whole animal, during the phase of active hepatic lipid accumulation. Small increases in lipoprotein lipase activity of adipose, immediately following irradiation and up to 24 hours, and the attendant marked fall in adipose lipids are suggestive of increased mobilization of peripheral lipids during the early period. However, in view of the fact that maximum lipid accumulations occurs very much later, inflow of extra-hepatic lipid into liver does not appear to be of major etiological significance. There is three-fold experimental evidence in support of an impairment of trigylceride transport from liver being primarily responsible for the build-up of liver lipids: (I) Triton WR-1339 induced hypertriglyceridemia is totally absent in the irradiated rat during the period when liver lipids increase significantly; (II) the rate of disappearance of radioactivity from pre-labeled hepatic lipids is considerably lower in the irradiated rats; and (III) the irradiated rats show decrease in lipoproteins of liver cell-sap and of serum, the latter being more marked and a lowered synthesis of the lipoproteins, as assessed by labeling of the protein moiety.

  14. Drug absorption from the irradiated rat small intestine in situ

    International Nuclear Information System (INIS)

    Venho, V.M.K.

    1976-01-01

    The absorption of acidic drugs phenobarbitone and sulphafurazole, basic drugs mecamylamine and quinidine, and a neutral drug isoniazid was studied in situ. Rats were irradiated 750 rad whole-body with 60 Co and the absorption experiment was done three and six days thereafter using the cannulated small intestine of urethane-anaesthetized rats. Drug disappearance from the intestinal lumen and drug levels in the whole blood and intestinal wall were measured. In control rats phenobarbitone showed the most rapid absorption and mecamylamine the slowest. Irradiation retarded the disappearance of all drugs from the intestinal lumen on the third postirradiation day. Fluid absorption was also diminished. On the sixth postirradiation day the absorption of phenobarbitone, sulphafurazole and mecamylamine had returned to the control level, but the absorption of quinidine and isoniazid was still retarded. After i.v. administration of drugs they were not significantly excreted into the intestinal contents and irradiation did not modify excretion. The distribution of drugs between the intestinal fluid and the intestinal wall was complete in the first 10 min of experiment. Mecamylamine and quinidine were lowered in the whole blood by irradiation. Blood levels of drugs did not correlate well to the rate of disappearance of drugs from the intestinal lumen. The reversible changes in absorption induced by irradiation are probably secondary effects of irradiation on intestinal morphology, permeability and transport capacity, composition, and possibly blood flow. (orig.) [de

  15. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Chen, Chuck T; Trépanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2016-04-01

    Docosahexaenoic acid (DHA) is thought to be important for brain function. The main dietary source of DHA is fish, however, DHA can also be synthesized from precursor omega-3 polyunsaturated fatty acids (n-3 PUFA), the most abundantly consumed being α-linolenic acid (ALA). The enzymes required to synthesize DHA from ALA are also used to synthesize longer chain omega-6 (n-6) PUFA from linoleic acid (LNA). The large increase in LNA consumption that has occurred over the last century has led to concern that LNA and other n-6 PUFA outcompete n-3 PUFA for enzymes involved in DHA synthesis, and therefore, decrease overall DHA synthesis. To assess this, rats were fed diets containing LNA at 53 (high LNA diet), 11 (medium LNA diet) or 1.5% (low LNA diet) of the fatty acids with ALA being constant across all diets (approximately 4% of the fatty acids). Rats were maintained on these diets from weaning for 8 weeks, at which point they were subjected to a steady-state infusion of labeled ALA and LNA to measure DHA and arachidonic acid (ARA) synthesis rates. DHA and ARA synthesis rates were generally highest in rats fed the medium and high LNA diets, while the plasma half-life of DHA was longer in rats fed the low LNA diet. Therefore, increasing dietary LNA, in rats, did not impair DHA synthesis; however, low dietary LNA led to a decrease in DHA synthesis with tissue concentrations of DHA possibly being maintained by a longer DHA half-life. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Tissue glycogen and blood glucose in irradiated rats. I

    International Nuclear Information System (INIS)

    Ahlersova, E.; Ahlers, I.; Paulikova, E.; Praslicka, M.

    1980-01-01

    Fed and starved (overnight) male rats of the Wistar strain were exposed to whole-body irradiation with 14.35 Gy (1500 R) of X-rays. After irradiation and sham-irradiation all animals were starved until examination performed 1, 6, 24, 48 and 72 h after treatment. The concentration of glucose in the blood and the concentration of glycogen in the liver, heart, skeletal muscle, brown and white adipose tissue were determined. The concentrations of blood glucose and liver glycogen were found to increase between 1 and 6 h after irradiation of the starved animals. The most pronounced increase in glycogen concentration in the liver and heart muscle was observed 24 and 48 h after irradiation. A similar increase in the concentration of blood glucose was found between 48 and 72 h after irradiation. The fed and starved irradiated rats reacted differently, particularly between 48 and 72 h; the liver glycogen concentration decreased in the fed animals and remained elevated in the starved ones. Very high values of terminal glycemia were observed in both groups. The accumulation of glycogen in the heart muscle indicates that this organ is sensitive to ionizing radiation. (author)

  17. biochemical studies on toxicological aspects of sevin pesticide in gamma irradiated rats

    International Nuclear Information System (INIS)

    Afifi, E.A.A.; Osman, H.F.

    2009-01-01

    this study was carried out to investigate the toxic effect of daily oral administration of 28 mg/kg of the carbamate insecticide(sevin) and/ or whole body gamma irradiation at dose levels of 30.0 Gy and 6.0 Gy for consecutive 4 weeks on male albino rats which produced several alterations in blood biochemical components. results revealed significant increases in the liver, kidney and spleen relative weights, total leucocytic counts , haematocrit values, hemoglobin concentration, cholesterol,triglycerides and glucose levels. on the other hand significant decreases in whole body weights,red blood cells counts and blood hemoglobin content were recorded for rats treated with sevin alone,sevin +3 Gy and 6 Gy gamma irradiation treatment.using radioimmunoassay technique revealed that ,serum levels of triiodothyronine was significantly increased, while thyroxine hormone was significantly decreased at all different experimental periods and doses

  18. The evolution of whole-body imaging.

    LENUS (Irish Health Repository)

    Moran, Deirdre E

    2012-02-01

    This article reviews the evolution of whole-body imaging, discussing the history and development of radiography, nuclear medicine, computed tomography (CT), positron emission tomography (PET), combined PET-CT, and magnetic resonance imaging. The obstacles hindering progress toward whole-body imaging using each of these modalities, and the technical advances that were developed to overcome them, are reviewed. The effectiveness and the limitations of whole-body imaging with each of these techniques are also briefly discussed.

  19. Changes of arterial blood pressure, heart rate, internal body temperature, and blood acido-basic balance in the unanaesthetized rabbit following whole-body gamma irradiation at a mean absorbed dose of 250 rads

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, R.; Court, L.

    1973-09-01

    The general effects of whole-body gamma -irradiation at a mean absorbed dose of 250 rads were studied simultaneously in the unanaesthetized rabbit for 48 hours. They occurred early, with the following characteristics: arterial blood pressure decreased steadily as early as the 2nd hour and reached its minimum value on the 5th hour with a decrease of about 14%; it remained low during the following two days. Heart rate increased during the first hour, was the highest by the end of the second hour, and resumed normal value on the 24th hour. Internal body temperature increased during the 1st hour and was maximum by the end of the 2nd hour, with a mean increase of 1.2 deg C; hyperthermia steadily decreased between the 4th and the 6th hours and had completely disappeared by the 24th hour. Respiratory alkalosis is shown in the acido-basic balance by a raise of pH, a decrease of PCO/sub 2/ and arterial blood bicarbonates. These various changes seem to indicate a double origin, both central and peripheral. (FR)

  20. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    OpenAIRE

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing...

  1. Measurement of absorbed radiation doses during whole body irradiation for bone marrow transplants using thermoluminescent dosimeters; Verificacao das doses de radiacao absorvidas durante a tecnica de irradiacao de corpo inteiro nos transplantes de medula ossea, por meio de dosimetros termoluminescentes

    Energy Technology Data Exchange (ETDEWEB)

    Giordani, Adelmo Jose; Segreto, Helena Cristina Comodo; Segreto, Roberto Araujo; Medeiros, Regina Bitelli; Oliveira, Jose Salvador R. de [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Setor de Radioterapia]. E-mail: adelmogiordani@ig.com.br

    2004-10-01

    The objective was to evaluate the precision of the absorbed radiation doses in bone marrow transplant therapy during whole body irradiation. Two-hundred CaSO{sub 4}:Dy + teflon tablets were calibrated in air and in 'phantom'. These tablets were randomly selected and divided in groups of five in the patients' body. The dosimetric readings were obtained using a Harshaw 4000A reader. Nine patients had their entire bodies irradiated in parallel and opposite laterals in a cobalt-60 Alcion II model, with a dose rate of 0.80 Gy/min at 80.5 cm, {l_brace}(10 ? 10) cm{sup 2} field. The dosimetry of this unit was performed using a Victoreen 500 dosimeter. For the determination of the mean dose at each point evaluated, the individual values of the tablets calibrated in air or 'phantom' were used, resulting in a build up of 2 mm to superficialize the dose at a distance of 300 cm. In 70% of the patients a variation of less than 5% in the dose was obtained. In 30% of the patients this variation was less than 10%, when values obtained were compared to the values calculated at each point. A mean absorption of 14% was seen in the head, and an increase of 2% of the administered dose was seen in the lungs. In patients with latero-lateral distance greater than 35 cm the variation between the calculated doses and the measured doses reached 30% of the desired dose, without the use of compensation filters. The measured values of the absorbed doses at the various anatomic points compared to the desired doses (theoretic) presented a tolerance of {+-} 10%, considering the existent anatomical differences and when using the individual calibration factors of the tablets. (author)

  2. Studies On The Effect of Selenium And Vitamin (E) on Irradiated Male rats

    International Nuclear Information System (INIS)

    Mohamed, A.A.

    2004-01-01

    The aim of the present work is to investigate the protective role of intraperitoneally administered selenium and/or vitamin E on γ- radiation induced injury in adult male albino rats. Male albino rats(120-140 gm), were divided into the following groups:1- Control group: consisted of 10 rats. 2- Irradiated group: consisted of 10 rats exposed to whole body gamma irradiation at a dose level of 6 (Gy). 3- Injected -irradiated group: consisted of 90 rats intraperitoneally administered with selenium (Na 2 SeO 3 ) at a dose level of 0.2 mg/Kg body weight or with vitamin E (di-αtocopheryl acetate) at a dose level of 10 mg/kg body weight or with combined dose of selenium and vitamin E (0.2 mg/Kg body weight + 10 mg/Kg body weight)

  3. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    International Nuclear Information System (INIS)

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-01-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition

  4. 3D whole body scanners revisited

    NARCIS (Netherlands)

    Daanen, H.A.M.; Haar, F.B. ter

    2013-01-01

    An overview of whole body scanners in 1998 (H.A.M. Daanen, G.J. Van De Water. Whole body scanners, Displays 19 (1998) 111-120) shortly after they emerged to the market revealed that the systems were bulky, slow, expensive and low in resolution. This update shows that new developments in sensing and

  5. Effects of whole body exposure to extremely low frequency electromagnetic fields (ELF-EMF on serum and liver lipid levels, in the rat

    Directory of Open Access Journals (Sweden)

    Elias-Viñas David

    2007-11-01

    Full Text Available Abstract Backgound The effects of extremely low-frequency electromagnetic fields (ELF-EMF on the blood serum and liver lipid concentrations of male Wistar rats were assessed. Methods Animals were exposed to a single stimulation (2 h of ELF-EMF (60 Hz, 2.4 mT or sham-stimulated and thereafter sacrificed at different times (24, 48 or 96 h after beginning the exposure. Results Blood lipids showed, at 48 h stimulated animals, a significant increase of cholesterol associated to high density lipoproteins (HDL-C than those observed at any other studied time. Free fatty acid serum presented at 24 h significant increases in comparison with control group. The other serum lipids, triacylglycerols and total cholesterol did not show differences between groups, at any time evaluated. No statistical differences were shown on total lipids of the liver but total cholesterol was elevated at 24 h with a significant decrease at 96 h (p = 0.026. The ELF-EMF stimulation increased the liver content of lipoperoxides at 24 h. Conclusion Single exposures to ELF-EMF increases the serum values of HDL-C, the liver content of lipoperoxides and decreases total cholesterol of the liver. The mechanisms for the effects of ELF-EMF on lipid metabolism are not well understand yet, but could be associated to the nitric oxide synthase EMF-stimulation.

  6. Teratogenic effect of Californium-252 irradiation in rats

    International Nuclear Information System (INIS)

    Satow, Yukio; Lee, Juing-Yi; Hori, Hiroshi; Okuda, Hiroe; Tsuchimoto, Shigeo; Sawada, Shozo; Yokoro, Kenjiro

    1989-01-01

    The teratogenicity of Californium-252 (Cf-252) irradiation which generates approximately 70% 2.3 MeV fast neutron and 30% gamma rays was evaluated. A single whole body exposure of Cf-252 at various doses was given to pregnant rats on day 8 or 9 of pregnancy, followed by microscopic autopsy of the fetuses at the terminal stage of pregnancy to search for external and internal malformations. For comparison, pregnant rats were irradiated with various doses of Cobalt-60 (Co-60) standard gamma rays at the same dose rate (1 rad/min.). The doses were 20-120 rad of Cf-252 and 80-220 rad of Co-60. Using frequency of radiation induced malformations observed on day 8 of pregnancy as an index, relative biological effectiveness (RBE) of 2.3-2.7 was obtained from the straight line obtained by modifying by the least squares method the frequency curves of malformed fetuses in total implants and in surviving fetuses. The types of malformations induced by Cf-252 and Co-60 irradiation were alike. Using fetal LD 50 as an index, 2.4 was obtained as RBE when irradiated on day 8 of pregnancy and 3.1 as that when irradiated on day 9. The results showed that Cf-252 had stronger a teratogenic effect than Co-60 gamma rays. (author)

  7. Late effects of x-irradiation in rats, 1

    International Nuclear Information System (INIS)

    Jankovic-Stejin, V.D.; Kanazir, D.T.

    1978-01-01

    The present cytogenetic study was made on the bone marrow cells of 48 male rats killed after 9 to 17 months following acute whole-body x-irradiation. We found that exposure to a dose of 700 rads of x-rays, delivered to animals at a high dose-rate (100 rads/min) resulted in a widespread karyotype variability. The number of cell types were existing independently in the haemopoietic tissue within the first week after irradiation, decreased with time. The selection process of persisting abnormalities as well a further evolution of the cells with new karyotypes to clones, were evident after a month following irradiation. Consequently, the analysis of haemopoietic tissue revealed, in 92% of the late survivors, a genetically heterogeneous cell population in which the number of normal diploid cells decreased to a considerable extent. Clones increased in size with elapsing time from exposure to radiation. Thus, the mean clone cell frequency for animals killed after 9 to 17 months following irradiation ranged from 20.6 +- 3.42% to 61.6 +- 4.26%. Analysis of the data showed a significant positive correlation between development of clones in vivo and the survival time after irradiation (r = 0.820; P<0.01). For such a finding, the occurrence of large clones especially in the bone marrow of rats with growing tumors was of the great influence. Relationship between the degree of mutagenesis on the chromosome level and the process of tumor advancement is discussed. (auth.)

  8. Biochemical studies on gamma irradiated male rats fed on whey protein concentrate

    International Nuclear Information System (INIS)

    Mohamed, N.E; Anwar, M.M.; El-bostany, N.A.

    2010-01-01

    This study carried out to investigate the possible role of whey protein protein concentrate in ameliorating some biochemical disorders induced in gamma irradiated male rats. Forty eight male albino rats were divided into four equal groups: Group 1 fed on normal diet during experimental period. Group 2 where the diet contain 15 % whey protein concentrate instead of soybean protein . Group 3 rats were exposed to whole body gamma radiation with single dose of 5 Gy and fed on the normal diet. Group 4 rate exposed to 5 Gy then fed on diet contain 15 % whey protein concentrate, the rats were decapitated after two and four weeks post irradiation. Exposure to whole body irradiation caused significant elevation of serum ALT, AST, glucose, urea, creatinine and total triiodothyronine with significant decrease in total protein, albumin and thyroxin. Irradiated rats fed on whey protein concentrate revealed significant improvement of some biochemical parameters. It could be conclude that whey protein concentrate may be considered as a useful protein source for reducing radiation injury via metabolic pathway.

  9. 60Co γ-irradiation enhances expression of GAP-43 mRNA in rat brain

    International Nuclear Information System (INIS)

    Su Bingyin; Cai Wenqin; Zhang Chenggang

    2001-01-01

    Objective: To study the relationship between the expression of GAP-43 mRNA and nerve regeneration in rat brain after 60 Co γ-irradiation. Methods: Wistar rats were subjected to whole-body irradiation with 8 Gy 60 Co γ-rays. The expression of GAP-43 was detected by in situ hybridization histochemistry using Dig-cRNA probe. Results: It was found that the expression of GAP-43 mRNA increased in the cerebral cortex, caudate, putamen, globus pallidum, thalamus and hypothalamus one week after 8 Gy 60 Co γ-irradiation. The peak of GAP-43 mRNA expression was observed in the fourth week and then began to decrease but still remained at a higher than normal level. However, it decreased to a low level after 7 weeks. Conclusion: Enhanced expression of GAP-43 mRNA after 60 Co γ-irradiation in rat brain is associated with nerve regeneration and reconstruction of synapse

  10. Modulatory Role of Aloe vera on Gamma Irradiation Induced Histological Changes in Different Tissues of Rats

    International Nuclear Information System (INIS)

    Rezk, R.G.

    2005-01-01

    Aloe Vera is known for its wide medicinal properties. This study was performed to evaluate the role of Aloe vera (Aloe barbadensis Miller) in the amelioration of the histological disorders that occurr in different tissues of albino rats exposed to 7 Gy whole body gamma irradiation, delivered as a single dose. Aloe vera (leaf juice filtrate) was supplemented daily to rats (0.25 ml/kg b wt/day) by gavage, 5 days before irradiation and 10 days after irradiation. Experimental investigations performed 7 and 10 days after exposure to radiation showed that Aloe vera treatment has significantly improved the radiation-induced inflammation, haemorrhage, widening and dilated blood vessela, necrosis, atrophy sloughing in liver, spleen and small intestine (jejenum) tissues of irradiated rats. It is concluded that the synergistic relationship between the elements found in the leaf of Aloe vera could be a useful adjunct for maintaining the integrity of histological architecture

  11. The effect of x-irradiation on the implantation and development of the white rat fetus

    International Nuclear Information System (INIS)

    Danius, J.; Bahauddin, R.

    1976-01-01

    X-ray whole body irradiation (200R, exposure dose) was performed on young virgin females of about 4 months old. The female rats, divided into three groups, were treated as follows: Female rats as control (unirradiated = 1Kt): female rats irradiated before mating (RSbK), and female rats irradiated after mating (RSsK). The average number of surviving foetuses at 20 days gestational stage of 1Kt was compared with that of RSbK, and no significant difference was found (P<=0.05) while the difference between the average number of RSsK foetuses compared with that of 1Kt and RSbK was highly significant (P<0.01). A decrease in the average number of surviving foetuses was found in RSsK, although the analysis of variance of all groups, revealed no significant difference (P<=0.05) in the average number of implantations and weight of the foetuses. (author)

  12. Quantitative whole body scintigraphy - a simplified approach

    International Nuclear Information System (INIS)

    Marienhagen, J.; Maenner, P.; Bock, E.; Schoenberger, J.; Eilles, C.

    1996-01-01

    In this paper we present investigations on a simplified method of quantitative whole body scintigraphy by using a dual head LFOV-gamma camera and a calibration algorithm without the need of additional attenuation or scatter correction. Validation of this approach to the anthropomorphic phantom as well as in patient studies showed a high accuracy concerning quantification of whole body activity (102.8% and 97.72%, resp.), by contrast organ activities were recovered with an error range up to 12%. The described method can be easily performed using commercially available software packages and is recommendable especially for quantitative whole body scintigraphy in a clinical setting. (orig.) [de

  13. Intestinal metaplasia induced by x-irradiation in rat

    International Nuclear Information System (INIS)

    Watanabe, Hiromitsu; Terada, Yoritaka; Fujii, Isao; Yamamoto, Yukiko; Takizawa, Shoichi

    1978-01-01

    Total 400 rad of x-ray was given in 100 or 150 rad doses to the whole body of rats at intervals of one week, and one year and a half later, rats were killed. Disaccharidase was formed in most of animals, intestinal metaplasia only with goblet cells occurred in 65% of animals, and that with intestinal type of lacuna occurred in 36% of them. When 500 rad of x-ray was irradiated to each part of stomach day after day up to the total dose of 3,000 rad, biochemical intestinal metaplasia already occurred one week after the irradiation, and intestinal type lacuna occurred 2 months after the irradiation. Intestinal type lacuna was recognized in all animals killed 499 days after the irradiation, and intestinal metaplasia with Paneth's cells occurred in 6 out of 11 cases (56%). When a dose of 1,000 rad was irradiated to stomach three times at intervals of 2 days up to the total of 3,000 rad, much intestinal type lacuna was recognized 2 months after the irradiation, gastric adenoid cancerous changes appeared 4 months after, and gastric adenoid cancer occurred 6 months after. The above-mentioned results clarified that even if x-ray of a small dose was irradiated, intestinal metaplasia occurred, and that the period from the irradiation to occurrence of intestinal metaplasia was shortened by increasing a dose of x-ray. It was also clarified that not only intestinal metaplasia but also gastric adenoic cancer occurred due to a great amount of x-ray irradiation. (Ueda, J.)

  14. Intestinal metaplasia induced by x-irradiation in rat

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H; Terada, Y; Fujii, I; Yamamoto, Y; Takizawa, S [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1978-04-01

    Total 400 rad of x-ray was given in 100 or 150 rad doses to the whole body of rats at intervals of one week, and one year and a half later, rats were killed. Disaccharidase was formed in most of animals, intestinal metaplasia only with goblet cells occurred in 65% of animals, and that with intestinal type of lacuna occurred in 36% of them. When 500 rad of x-ray was irradiated to each part of stomach day after day up to the total dose of 3,000 rad, biochemical intestinal metaplasia already occurred one week after the irradiation, and intestinal type lacuna occurred 2 months after the irradiation. Intestinal type lacuna was recognized in all animals killed 499 days after the irradiation, and intestinal metaplasia with Paneth's cells occurred in 6 out of 11 cases (56%). When a dose of 1,000 rad was irradiated to stomach three times at intervals of 2 days up to the total of 3,000 rad, much intestinal type lacuna was recognized 2 months after the irradiation, gastric adenoid cancerous changes appeared 4 months after, and gastric adenoid cancer occurred 6 months after. The above-mentioned results clarified that even if x-ray of a small dose was irradiated, intestinal metaplasia occurred, and that the period from the irradiation to occurrence of intestinal metaplasia was shortened by increasing a dose of x-ray. It was also clarified that not only intestinal metaplasia but also gastric adenoic cancer occurred due to a great amount of x-ray irradiation.

  15. Histochemical alternations in the Nissl bodies and ribonucleic acid (RNA) in the spinal, gangalion neurones of gamma irradiated rats

    International Nuclear Information System (INIS)

    Mousa, Tohamy A.; Roushdy, Hamed M.; Raid, Nahed A.; Al-Zahaby, Al-Ahmady S.; Sanad, Samia M.

    1984-01-01

    Four groups of adult male albino rats were subjected to whole body gamma-irradiation at the exposure levels of 200, 400, 600 and 1000 rads and the spinal ganglia were dissected out after different intervals of 3 hr., 1, 3, 5, 7, 10, 15 and 30 days. Nissl bodies and ribonucleic acid were demonstrated histochemically. Gamma irradiation may cause a decrease in RNA synthesis which was reflected in a reduced amount of Nissl substance visible in toluidine blue stained you thick sections of spinal ganglion of gamma irradiated rats and in the total amount of cytoplasmic RNA in pyronin-methyl green stained sections compared with control animals

  16. whole body vibration and spinal stabilisation

    African Journals Online (AJOL)

    A range of exercise modalities is used in the rehabilitation of indi- viduals with chronic lower ... effects of whole body vibration (WBV) therapy and conventional ... with musculoskeletal, sensory, emotional, cognitive and behavioural components ...

  17. Lipid Peroxidation and Electrolytes in Irradiated Rats Treated with Caffeine

    International Nuclear Information System (INIS)

    Abdel-Gawad, I.I.; Ahmed, A.M.

    2005-01-01

    This Study was conducted to elarify the potential role of caffeine (1,3,7-trimethyl xanthine), a major component of coffee, against damages induced by gamma rays. Thirty adult female albino rats (130+10) were divided into three groups, each of ten animals. The first group acted as control animals. The second was sujected to a single dose of (7) Gy whole body gamma irradiation. The third group was injected intraperitoneally with a single dose (80mg/kg body weight) of caffeine one-hour prior irradiation. Blood samples were collected five time intervals 1,3,7,15 and 30 days post-irradiation. The content of serum lipid peroxides was measured as thiobarbituric acid reactive substance (TBARS). Electrolytes as calcium (Ca2 + ), sodium (Na + ) and potassium (K + ) and levels were estimated and Na + /K + ratio was calculated. Also serum enzymes as alkaline phosphatase (ALP) and aminotransaminases (AST and ALT) activity levels were measured. The data revealed significant increase in TBARS, AST and ALT levels in serum due to irradiation exposure. While, radiation induced significant decrease in serum level of ALP, level of electrolytes Ca 2+ , Ma + , and Na + /K + ratio. On the other hand, group injected intraperitoneally with caffeine pre-irradiation exhibited reduction in the changes produced by gamma-radiation with variable degree. The data showed that this antioxidant confers protection damage inflicted by radiation when given prior to irradiation exposure on the examined parameters

  18. Internal dosimetry by whole body counting techniques

    International Nuclear Information System (INIS)

    Sharma, R.C.

    1995-01-01

    Over decades, whole body counting and bioassay - the two principal methods of internal dosimetry have been most widely used to assess, limit and control the intakes of radioactive materials and the consequent internal doses by the workers in nuclear industry. This paper deals with the whole body counting techniques. The problems inherent in the interpretation of monitoring data and likely future directions of development in the assessments of internal doses by direct methods are outlined. (author). 14 refs., 9 figs., 1 tab

  19. Whole-body counters in Canada

    International Nuclear Information System (INIS)

    Letourneau, C.

    1986-08-01

    A compilation of whole-body counting existing across Canada was prepared by AECB (Atomic Energy Control Board) staff. This work was initiated so that AECB staff and other concerned parties would have this information readily available, especially during urgent situations. This report is to be used for reference purposes only, as it makes no attempt to judge the present state of the art of whole-body counting

  20. Evaluation of amino acids changes in liver and serum during the recovery from gamma-irradiation in rats

    International Nuclear Information System (INIS)

    Elkashef, H.S.; Saada, H.N.; Roushdy, H.M.; Abdelsamie, M.A.

    1989-01-01

    Recovery from radiation induced changes in glutamic and aspartic acids in both liver and serum was evaluated in rats treated with a mixture of testosterone and vitamin E and subjected to whole body gamma irradiation of 5.5 Gy. The intraperitoneal injection of the mixture 10 days before exposing the rat gamma radiation improved the recovery process from radiation induced changes in the level of aspartic and glutamic acid. The recovery occurred in liver two weeks after irradiation in injected irradiated rats, while in irradiated rats self recovery was noticed on the third week after irradiation for aspartic acid but this mixture has no protective effect on the radiation induced changes in the liver glutamic acid. With respect to changes in blood serum, recovery was recorded in the first week after irradiation in the case of aspartic acid while recovery in glutamic acid was attained latter, in the second week. The results suggested that blood serum is more sensitive to the radiation dose 5.5 Gy than the liver of whole body gamma-irradiated rats. Also, it could be suggested that glutamic acid and aspartic acid have different susceptibility to this radiation dose.2 tab

  1. Influence of Gamma Aminobutyric Acid on Some Biochemical Alterations in Irradiated and Streptozotocin Treated Rats

    International Nuclear Information System (INIS)

    Mohamed, A.S.M.

    2015-01-01

    The objective of this study was to evaluate the role of GABA on some metabolic complications in STZ-treated, γ- irradiated and STZ-treated-γ-irradiated rats. Animals sacrificed 3 weeks after the different treatments showed that the intraperitoneal administration of STZ (60 mg/Kg) to male albino Sprague Dawley rats induced hyperglycemia and insulin deficiency (DM type 1). While whole body γ-irradiation with 6 Gy using Cs-137 source provoked hyperglycemia, hyperinsulinaemia and insulin resistance (DM type 2) and whole body γ-irradiation of STZ-treated rats induced hyperglycemia, insulin deficiency and insulin resistance. Dyslipidemia (elevated triglycerides, total cholesterol and LDL-C and decreased HDL-C) was recorded in STZ-treated, γ-irradiated and STZ-treated-γ-irradiated rats. Oxidative stress evidenced by significant decreases of SOD, catalase and GSH-Px activities and significant increases of MDA and AOPP was recorded in pancreas, liver and kidney tissues. Oxidative stress in pancreatic tissues was associated with damage of islets of Langerhans and significant decreases of GABA level and GAD activity. Oxidative stress in liver was accompanied by significant elevation of serum ALT and AST activities. Oxidative stress in kidney tissues was associated with significant increases of urea and creatinine levels. The administration of GABA daily via gavages (200 mg/Kg/day) during 3 weeks to STZ-treated, γ-irradiated and STZ-treated-γ-irradiated rats rectified insulin, glucose and lipid levels, reduced oxidative stress in pancreatic tissues accompanied by regenerating pancreatic islets of Langerhans and elevation of GABA level and GAD activity. GABA reduced also oxidative stress in liver and kidney tissues accompanied by lower serum ALT and AST activities and urea and creatinine levels

  2. Formation of toxic peptides in irradiated rats and binding thereof with blood serum proteins

    International Nuclear Information System (INIS)

    Salomatin, V.V.; Efimenko, G.P.; Lifshits, R.I.

    1985-01-01

    Whole-body γ-irradiation of rats with a dose of 9.0 Gy caused a 1.5-fold and a 5-fold increase in excretion of bas peptides (molecular mass of 500-2000) in urea on the 2nd and 5th postirradiation days, respectively. These peptides possessed toxic activity and ability to form complexes with macroglobulins, immunoglobulins, and blood serum albumins, in particular. Irradiation decreased binding ability of serum proteins, and preliminary washing thereof by ultrafiltration increased it

  3. A high frequency of induction of chromosome aberrations in the bone marrow cells of LEC strain rats by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Okui, Toyo (Hokkaido Inst. of Public Health, Sapporo (Japan)); Hayashi, Masanobu; Watanabe, Tomomasa; Namioka, Shigeo (Dept. of Lab. Animal Science, Hokkaido Univ., Sapporo (Japan)); Endoh, Daiji; Sato, Fumiaki (Dept. of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido Univ., Sapporo (Japan)); Kasai, Noriyuki (Inst. for Animal Experimentation, Hokkaido Univ., Sapporo (Japan))

    1994-08-01

    LEC strain rats, which have been known to develop hereditarily spontaneous fulminant hepatitis 4 to 5 months after birth, are highly sensitive to whole-body X-irradiation when compared to WKAH strain rats. The present results showed that the frequencies of all types of chromosome aberrations induced by X-irradiation in the bone marrow cells of LEC rats were approximately 2- to 3-fold higher than those of WKAH rats, though no significant difference was observed in the frequency of spontaneous chromosome aberrations between LEC and WKAH rats.

  4. Protective effects of y-irradiation to streptozotocin induced diabetic rats: A biochemical and histological study

    International Nuclear Information System (INIS)

    Gharib, O.A.; Noman, E.; Abo-Nour, S.

    2007-01-01

    The present study was conducted to evaluate the possible protective effect of low dose of gamma radiation against pancreatic cells damage in streptozotocin (STZ) diabetic rats. Young male Wister rats were divided into the control group, the irradiated groups, which divided into two subgroups, single irradiated group, which subjected to 0.5 Gy of whole body gamma-irradiation as a single dose and repeated irradiated group, which subjected to 0.5 Gy of whole body gamma-irradiation as a repeated dose (0.5 Gy daily for two days). The 3 r d groups, which in turn subdivided into three subgroups, STZ group administrated to a single dose of 45 mg kg -1 of STZ (i.p), the STZ single irradiated group, subjected to single irradiated dose after the STZ administration and STZ repeated irradiated group, that exposed to repeated dose of radiation after the STZ administration. The diabetic rats presented a significant increase in plasma glucose and lipid peroxidation and a significant decrease in both whole blood SOD and GSH as well as in liver tissue. In addition, marked depression was observed in plasma and liver glutathione- S-transferase compared with normal rats. Low dose of radiation as a single or repeated doses, significantly reduced blood glucose and TEARS and significantly increased SOD activity and GSH content in both blood and liver besides a marked amelioration in GST activity in plasma and liver tissues. The ultra structural studies revealed that STZ affects both cells of pancreas. There was a reduction in secretary granules and rough endoplasmic reticulum with the accumulation of lipid. Low dose of y-rays exposure result a remarkable protective effect on biochemical and histological level

  5. Role of carnitine in ameliorating the lead and / or irradiation induced toxicity in male albino rats

    International Nuclear Information System (INIS)

    El-Sayed, N.M.

    2005-01-01

    This work: aimed to investigate the protective effect of carnitine (3-hydroxy-4-N-trimethyl amino butyric acid) on the contents of total protein, albumin, glucose and lipid peroxides as malonaldehyde (MDA) in serum, in addition to liver glycogen and lipid peroxides content 1, 2, 4 weeks after exposure of rats to a collective dose of 4 Gy whole body gamma irradiation and / or lead treatment. Adult male rats received lead (50 mg/kg body weight) and / or exposed to fractionated dose (4 Gy) of gamma irradiation delivered as 0.5 Gy twice weekly for four weeks. Results of the present study revealed that fractionated whole body gamma irradiation and / or lead administration induced cellular damage manifested by a significant decrease in serum total protein and albumin, and a significant increase in serum glucose and MDA content as well as significant increase in liver glycogen and MDA. Administration of carnitine (200 mg/kg b.wt.) before lead and / or gamma irradiation, has significantly ameliorated the observed changes, indicating the prophylactic action of carnitine on lead and / or irradiation toxicity

  6. The changes in pharmacokinetics and conjugation of chloramphenicol in irradiated rats

    International Nuclear Information System (INIS)

    Stoklasova, A.; Krizala, J.; Ledvina, M.

    1978-01-01

    In the serum and the liver of rats levels of chloramphenicol (CAP) following its i.v. administration (200mg/kg) in the control groups and in the rats irradiated with whole-body air exposure to 500 R were determined with spectrophotometric methods. The CAP-levels in the serum increased in the group of rats 3 days after irradiation, but only during the 1st hour. At later time intervals the values were lower than in the controls. This decrease at the 60th min is striking even in the groups 6 and 9 days after exposure. Free CAP in the liver of rats irradiated 6 and 9 days before was lower at interval 30min after CAP-administration, but the group irradiated 9 days before was unaltered. However, 120min after CAP-administration the values of free CAP decreased at all intervals investigated following the irradiation. The levels of conjugated CAP in the liver of the rats 3 and 6 days after exposure were lower than in controls in both intervals after drug administration; but in rats 9 days after irradiation they increased. Our results indicate that the kinetics of CAP is altered and corresponding changes in its conjugation are effected under the condition of acute radiation syndrome. (orig.) [de

  7. Effect of D-penicillamine on the concentration of reduced glutathione in the liver of irradiated rats

    International Nuclear Information System (INIS)

    Oroszlan, Gyoergy; Buzasi, Edit; Szabo, Terez; Lakatos, Lajos; Karmazsin, Laszlo

    1984-01-01

    Rats received whole-body sup(60)Co-irradiation of 10 Gy total dose with a dose-rate of 0.6 Gy per min. The concentration of reduced glutathione increased upon irradiation; this increase was diminished by D-penicillamine pretreatment in newborn but not in adult rats. The age-dependent effects of D-penicillamine might explain the clinical observation that the frequency of retrolental fibrosis is decreased by D-penicillamine in small-weight pre-term neonates. (L.E.)

  8. The effect of X-irradiation on vitamin E deficient rat liver mitochondrial ATPase and cytochrome c oxidase

    International Nuclear Information System (INIS)

    Korkut, S.

    1978-01-01

    Male albino rats were fed for 3 weeks on standard diets or on diets either deficient in or supplemented by vitamin E, whole-body X-irradiated and then immediately decapitated. Liver mitochondrial ATPase activity was stimulated and cytochrome c oxidase inhibited in the irradiated vitamin E deficient group. These activities were not influenced by irradiation in the rats fed on vitamin E supplemented and standard diets. The live mitochondrial vitamin E level was decreased in rats fed on the deficient diet. No differences in liver mitochondrial vitamin E levels were observed after X-irradiation of rats fed on any of the diets. The results suggest that the liver mitochondrial inner-membrane structure may be altered by a diet deficient in vitamin E. (U.K.)

  9. The changes in amount and activity of matrix metalloproteinases in rat's serum irradiated by γ-rays

    International Nuclear Information System (INIS)

    Le Chen; Li Haijun; Cheng Ying; Min Rui

    2009-01-01

    Rats were whole body irradiated by γ-rays with different doses. A commercial ELISA kit was used to analyze the concentration of MMP-2 and MMP-9 in rat's serum. And Gelatin zymography electrophoresis was used to test the activity of serum MMPs at 24 h after irradiation. The results show that the amount and the activity of MMP-2 in rat's serum increase with increment of irradiation doses. Compared with 1∼4 Gy exposed groups a significant rising of MMP-2 has been found in 5 Gy and 6 Gy exposed groups (p<0.01). On the contrast, the amount and activity of MMP-9 in rat's serum have a little change at 24 hours after irradiation in all of exposed groups. It can be deduced that the changes with amount and activity of MMP-2 may be used as a potential indicator of exposed dose in organisms. (authors)

  10. Comparison of whole-body-imaging methods

    International Nuclear Information System (INIS)

    Rollo, F.D.; Hoffer, P.

    1977-01-01

    Currently there are four different devices that have found clinical utility in whole-body imaging. These are the rectilinear scanner, the multicrystal whole-body scanner, the Anger-type camera with a whole-body-imaging table, and the tomoscanner. In this text, the basic theory of operation and a discussion of the advantages and disadvantages in whole-body imaging is presented for each device. When applicable, a comparative assessment of the various devices is also presented. As with all else in life, there is no simple answer to the question ''which total body imaging device is best.'' Institutions with a very heavy total-body-imaging load may prefer to use an already available dual-headed rectilinear scanner system for these studies, rather than invest in a new instrument. Institutions with moderate total-body-imaging loads may wish to invest in moving table or moving camera devices which make total body imaging more convenient but retain the basic flexibility of the camera. The large-field Anger camera with or without motion offers another flexible option to these institutions. The laboratory with a very heavy total body imaging load may select efficiency over flexibility, thereby freeing up other instruments for additional studies. Finally, reliability as well as availability and quality of local service must be considered. After all, design features of an instrument become irrelevant when it is broken down and awaiting repair

  11. Alterations in water and electrolyte absorption in the rat colon following neutron irradiation: influence of neutron component and irradiation dose.

    Science.gov (United States)

    Dublineau, I; Ksas, B; Joubert, C; Aigueperse, J; Gourmelon, P; Griffiths, N M

    2002-12-01

    To study the absorptive function of rat colon following whole-body exposure to neutron irradiation, either to the same total dose with varying proportion of neutrons or to the same neutron proportion with an increasing irradiation dose. Different proportions of neutron irradiation were produced from the reactor SILENE using a fissile solution of uranium nitrate (8, 47 and 87% neutron). Water and electrolyte fluxes were measured in the rat in vivo under anaesthesia by insertion into the descending colon of an agarose gel cylinder simulating the faeces. Functional studies were completed by histological analyses. In the first set of experiments, rats received 3.8 Gy with various neutron percentages and were studied from 1 to 14 days after exposure. In the second set of experiments, rats were exposed to increasing doses of irradiation (1-4Gy) with a high neutron percentage (87%n) and were studied at 4 days after exposure. The absorptive capacity of rat colon was diminished by irradiation at 3-5 days, with a nadir at 4 days. The results demonstrate that an increase in the neutron proportion is associated with an amplification of the effects. Furthermore, a delay in the re-establishment of normal absorption was observed with the high neutron proportion (87%n). A dose-dependent reduction of water absorption by rat colon was also observed following neutron irradiation (87%n), with a 50% reduction at 3 Gy. Comparison of this dose-effect curve with the curve obtained following gamma (60)Co-irradiation indicates an RBE of 2.2 for absorptive colonic function in rat calculated at 4 days after exposure.

  12. Radioprotective effects of aronia on radiation irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Hwan Sik; Lee, Jun Haeng [Dept. of Radiology, Nambu University, Gwangju (Korea, Republic of)

    2017-09-15

    The present study was intended to orally administer aronia to rats, irradiate radiation once to the whole bodies of the rats, and conduct blood tests to observe, compare, and analyze changes in blood cells, such as leukocytes, erythrocytes, and platelets, in order to examine the radioprotective effects of aronia. As experimental animals, 15 male Sprague-Dawley (SD) rats aged six weeks weighing 200∼250 g were taken and divided into the normal group (A) of five rats, the 5 Gy control group (B) of five rats, and the 5 Gy experimental group (C) of five rats. The normal group (A) was not irradiated at all, the control group (B) was administered with general diets and irradiated, and the experimental group(C) was orally administered with 50 mg/kg/day of aronia two times per day to achieve a distilled water oral dose of 100 mg/kg/day and irradiated thereafter (5 Gy at 500 cGy/min) for 14 days. After the experiment, differences in leukocytes, erythrocytes, and platelets among the normal group (A), the control group (B), and the experimental group (C) were examined by comparing the counts of the blood cells and the results showed no statistically significant differences. However, on a detailed review, the normal group (A) showed statistically higher mean values for all of lymphocytes, hemoglobin, and mean corpuscular hemoglobin as compared to the control group (B) and the experimental group (C). Statistically significant differences in the counts of lymphocytes were shown between the normal group (A) and the control group (B), and between the normal group (A) and the experimental group (C); furthermore, statistically significant differences in mean corpuscular hemoglobin were shown between the normal group (A) and the experimental group (C). Given the results of the present study, in irradiated rats, aronia was generally considered as having no radioprotective effect on leukocyte, erythrocyte, and platelet while having statistically significant radioprotective effects on

  13. Determination of serum DNA concentration by enzyme immunoassay (ELISA) in gamma irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, J; Misurova, E

    1987-01-01

    A sensitive and specific ELISA method was used to determine changes in the serum DNA concentration in rats at hours 6 and 9 and on the days 1, 3, 7, 10, 15 and 30 after acute whole-body gamma irradiation with a dose of 8 Gy. Changes in the DNA serum concentration were determined also on day 10 after irradiation with doses of 4, 6, 8, 10 and 12 Gy. The present results indicate that the pattern of changes in the serum DNA concentration is characterized by an initial decrease, typical also of the leukocyte count, followed by a statistically significant increase in the DNA concentration on day 10 and in later periods of time. These data confirmed, in principle, the authors' previous findings on changes in the DNA concentration in the rat blood plasma after acute X-ray irradiation assessed by the fluorimetric method with ethidium bromide. (author). 4 figs., 14 refs.

  14. A prospective study of the early clinical symptoms following a 2 Gy therapeutic whole-body irradiation; Etude prospective de la symptomatologie clinique precoce apres irradiation corporelle totale therapeutique de 2 Gy

    Energy Technology Data Exchange (ETDEWEB)

    Fizazi, K.; Chaillet, M.P.; Fourquet, A.; Jammet, P.; Cosset, J.M. [Institut Curie, 75 - Paris (France)

    1995-10-01

    Early human tolerance following total body irradiation (TBI) according to the dose received is still poorly known. Thirteen selected patients were prospectively evaluated for clinical side effects during the first 10 hours following a 2 Gy TBI prior to bone marrow transplantation. All of them but one were treated for haematological malignancies and were in clinical remission at the date of TBI. There were 10 males and 3 females, with a median age of 43 y (range 16*61) and a good performance status (WHO 0-1). They received granisetron (3 mg) injected intravenously 1 h before the time of TBI in order to prevent nausea and vomiting. The main symptoms consisted in drowsiness (69%), headache (62%), xerostomia (62%), nausea and vomiting (46%), anorexia (38%), parotid gland pain (23%) and abdominal pain (8%). Their intensity was always moderate, except for 2 patients who experimented severe vomiting. The incidence rate and the time-course of the symptoms of the prodromal phase may proved to be helpful for early clinical evaluation and triage of victims of an accidental irradiation. In particular, absence of fever at the 6{sup th} h after TBI supports the assumption of an estimated exposure dose below 2 Gy. (authors). 23 refs., 2 tabs.

  15. Changes in rat liver and adipose tissue lipogenesis after single lethal X-irradiation: modification by the restricted food intake

    International Nuclear Information System (INIS)

    Sedlakova, A.; Ahlers, I.; Praslicka, M.

    1981-01-01

    Male rats of Wistar strain were adapted during a 4-week period to the nutritional regimes of meal feeding (MF) and ad libitum (AL) and were irradiated with the single whole-body lethal X-ray dose 14.35 Gy after 22 h of fasting. Within the intervals 1, 24, 48 and 72 h after irradiation lipogenesis changes in the liver were studied by measuring 1- 14 C-acetate incorporation (74 KBq) in the total lipids, fatty acids and cholesterol, and in the white adipose tissue pieces by measuring U- 14 C-glucose incorporation (74 KBq) in the total lipids, fatty acids and glyceride glycerol. Lipogenesis increased in the liver of the irradiated rats as compared with sham irradiated rats and reached the maximal values at 72 h after irradiation in AL animals and at 48 h after irradiation in MF animals. Lipogenesis in the adipose tissue decreased in the irradiated rats as compared with the sham irradiated ones and continued to decrease with the post-irradiation period. The adaptation to the nutritional regime of meal feeding markedly modified lipogenesis in the liver and the adipose tissue of the irradiated rats. Long-term fasting (before and after irradiation) was supposed to be another modifying factor in the lipogenesis changes. Lipogenesis changes in the liver depended on the MF nutritional regime. (author)

  16. Changes in rat liver and adipose tissue lipogenesis after single lethal X-irradiation: modification by the restricted food intake

    Energy Technology Data Exchange (ETDEWEB)

    Sedlakova, A; Ahlers, I; Praslicka, M [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Katedra Vseobecnej Biologie

    1981-01-01

    Male rats of Wistar strain were adapted during a 4-week period to the nutritional regimes of meal feeding (MF) and ad libitum (AL) and were irradiated with the single whole-body lethal X-ray dose 14.35 Gy after 22 h of fasting. Within the intervals 1, 24, 48 and 72 h after irradiation lipogenesis changes in the liver were studied by measuring 1-/sup 14/C-acetate incorporation (74 KBq) in the total lipids, fatty acids and cholesterol, and in the white adipose tissue pieces by measuring U-/sup 14/C-glucose incorporation (74 KBq) in the total lipids, fatty acids and glyceride glycerol. Lipogenesis increased in the liver of the irradiated rats as compared with sham irradiated rats and reached the maximal values at 72 h after irradiation in AL animals and at 48 h after irradiation in MF animals. Lipogenesis in the adipose tissue decreased in the irradiated rats as compared with the sham irradiated ones and continued to decrease with the post-irradiation period. The adaptation to the nutritional regime of meal feeding markedly modified lipogenesis in the liver and the adipose tissue of the irradiated rats. Long-term fasting (before and after irradiation) was supposed to be another modifying factor in the lipogenesis changes. Lipogenesis changes in the liver depended on the MF nutritional regime.

  17. Anatomic defects and behavioral abnormalities in rats irradiated in utero

    International Nuclear Information System (INIS)

    Kimler, B.F.; Norton, S.

    1987-01-01

    Pregnant rats were irradiated with 1.0 Gy whole-body doses of Cs-137 γ-rays on gestational days 11, 13, 15 and 17. Postnatal growth and preweaning behavior of the offspring were monitored prior to sacrifice or post-partuition day 28. Brain (sensory motor cortex) and pituitary tissues were processed for histological evaluation and morphometric analysis. The gestational days on which irradiation produced significant (rho<0.05) changes relative to controls are enclosed in parentheses, with the day(s) on which irradiation produced the maximum effect being underlined for the various parameters: body weight on post-partuition day 7, pituitary nuclear area, percent acidophils, and percent vacuolization, thickness of cortical layer I, II, III, IV, V, VI, and total cortical thickness; negative geotaxis, reflex suspension, continuous corridor activity, and gait. These data indicate that the critical period of development for radiation-induced alterations in post-natal growth, development, and behavior changes from the pituitary at gestational day 11 to the brain (primitive cortex) at days 13 to 17 with a peak of sensitivity at day 15

  18. Ultrastructure of rat cerebral vessels 4 months after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Iwanowski, L; Ostenda, M

    1975-01-01

    The purpose of this paper was to check the current opinion that one of the late postirradiation changes is early senility (Maxwell, Kruger, 1964). The postirradiation changes of the brain parenchyma are well known from the literature; therefore our investigation is limited to brain capillaries and their closest vicinity. This paper constitutes a fragment of a larger work on the role of connective tissue in the aging brain. Six Wistar male rats of the same brood, about 3 months old, were irradiated over the whole body with gamma rays. Three rats were exposed to a dose of 400 R and three to 800 R. The chosen doses were the lowest and the highest, provoking brain edema but still not lethal. Four months after the exposure the rats were perfused with 4% glutaraldehyde intracardiacly and decapitated. Brain specimens were taken from frontoparietal cortex, lateral ventricle wall, from corpus callosum and griseum pontis. The samples were routinely handled for ultrastructural studies. Observations were performed under electron microscopes showed that the cerebral vessels of both groups of animals were similar.

  19. Whole body MR imaging in diabetes

    International Nuclear Information System (INIS)

    Weckbach, Sabine; Schoenberg, Stefan O.

    2009-01-01

    Diabetes mellitus is a major cardiovascular risk factor and one of the major causes for morbidity and mortality worldwide. Diabetic complications have not only major impact on the quality of life of diabetic patients, but are also potentially life-threatening. Therefore prevention, diagnosis and therapy of these long-term complications are of high importance. However, diagnosis of the variety of complications from diabetes mellitus remains a diagnostic challenge and usually several diagnostic steps are necessary to diagnose or exclude these complications. In the last years whole body magnetic resonance imaging (WB-MRI) including whole body magnetic resonance angiography (WB-MRA) has been introduced for cardiovascular imaging and is now increasingly applied in clinical routine for the workup of patients with cardiovascular disease and for cardiovascular screening. The article summarizes rationales for WB-MRI in diabetes mellitus, technical concepts of disease specific cardiovascular WB-MRI in diabetes mellitus and discusses potential clinical consequences.

  20. Radiation exposure in whole body CT screening.

    Science.gov (United States)

    Suresh, Pamidighantam; Ratnam, S V; Rao, K V J

    2011-04-01

    Using a technology that "takes a look" at people's insides and promises early warnings of cancer, cardiac disease, and other abnormalities, clinics and medical imaging facilities nationwide are touting a new service for health conscious people: "Whole body CT screening" this typically involves scanning the body from the chin to below the hips with a form of x-ray imaging that produces cross-sectional images. In USA direct-to-consumer marketing of whole body CT is occurring today in many metropolitan areas. Free standing CT screening centres are being sited in shopping malls and other high density public areas, and these centres are being advertised in the electronic and print media. In this context the present article discussed the pros and cons of having such centres in India with the advent of multislice CT leading to fast scan times.

  1. Whole-body monitoring: Goiania case, Brazil

    International Nuclear Information System (INIS)

    Oliveira, C.A.N. de; Lourenco, M.C.; Dantas, B.M.; Lucena, E.A. de; Becker, P.H.B.

    1988-01-01

    Due to the radiological Cs accident in Goiania, Goias in September 1987, it became necessary to evaluate internal contamination levels of: individuals from the general public that for any reason had direct or indirect involvement with the radioactive source (group 1); occupationally involved persons (group 2). For each of these groups, procedures of whole body monitoring were developped. In order to attend group 1 individuals, the IRD/CNEN installed a whole body unit in the INAMPS General Hospital of Goiania in 11.08.87, which was later transferred to 121, 57 street, Central Sector in Goiania in 2.06.88. In this unit 547 people were monitored, 356 from group 1 and 241 from group 2, until 04.13.88. In the IRD whole body counter installation, 194 individuals were counted, 185 from group 2 and 9 from group 1. The frequency of monitoring of each individual was stablished according to the Cs activity present in the body or to the job that will be done. Some body burden activity curves for Cs 137 as a function of the time elapsed from the first measurement, are presented. There people from group 1 were measured in both counters, the IRD and the Goiania ones. The values obtained in both installations are compatible with the body activity X time curve. (author) [pt

  2. Biochemical Studies on Rosemary Extracts as an Antioxidant in Irradiated Rats

    International Nuclear Information System (INIS)

    Abady, M.M.; Zahran, A.M.; Mansour, S.Z.; Ragab, E.A.

    2003-01-01

    The antioxidant properties of rosemary (Rosmarinus officinalis) essential oil and crude ethanolic extract, have been attributed to its phenolic diterpene, carnosol, carnosic acid, caffeic acid and its derivatives such as rosmarinic acid. These aroma compounds were identified to protect biological membranes from oxidative stress in addition to divers pharmacological and therapeutic activities. This study was undertaken to investigate the effect of natural extract derived from rosemary herb, as an antioxidant defensive element in irradiated rats. Mixture of essential oil and hydroalcoholic extract was orally administered to rats by gavage (150 mg/kg B.w.) for 35 days before exposure to the first fraction of irradiation exposure and during the whole period of irradiation treatment (12 days). Whole body irradiation was delivered as fractionated doses at 1 Gy increment every other day up to total cumulative dose of 6 Gy. Changes in the content of reduced glutathion (GSH), glutathion peroxidase (GSHPx), glucose -6- phosphate dehydrogenase (G-6-PD), superoxide dismutase (SOD) and catalase (Cat.) in blood, liver and spleen were evaluated in different rat groups. The results revealed that transient noticeable increase during the 1st hour post irradiation in the aforementioned parameters, followed by significant decrease recorded after 7 days. Rats supplemented rosemary extract before irradiation have significantly ameliorate the radiation induced depletion in the antioxidant component system

  3. Efficiency of borage seeds oil against gamma irradiation-induced ...

    African Journals Online (AJOL)

    Sixty rats were divided into five groups (12 rats each): Control, irradiated; rats were exposed to (6.5 Gy) of whole body γ-radiation, BO (50 mg/kg b.wt), irradiated BO post-treated and irradiated BO prepost-treated. Six rats from each group were sacrificed at two time intervals 7 and 15 days post-irradiation. Serum aspartate ...

  4. Restoration of Respiratory Gases and Acid-base Balance of Blood of Gamma Irradiated Rats Through Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Eissa, S.M.; Roushdy, H.M.; Khamis, F. I.; Abu-Zeid, N.M.

    2000-01-01

    The present investigation aimed at elucidating the role played by bone marrow transplantation as a biological treatment against the deleterious effect of ionizing radiation. The parameters tested were PO2; PCO2; TCO2 and acid base balance encountering pH and (HCO3) in blood. Investigations were conducted 1,3,7,14 and 21 days post whole body gamma exposure at the dose levels 2 and 6 Gy. The data obtained showed highly significant changes in all tested parameters after whole body gamma irradiation. A higher depressant effect was more pronounced after exposure to higher radiation dose. Bone marrow transplantation to irradiated rats resulted in partial restoration or the radiation induced changes in both PO2 and PCO2 as recorded on the first week post treatment and succeeded to ameliorate the radiation induced changes in pH values and (HCO3) in blood

  5. Changes in activities of adaptive liver enzymes in rats after non-lethal x-irradiation

    International Nuclear Information System (INIS)

    Toropila, M.; Ahlersova, E.; Ahlers, I.; Benova, K.

    1998-01-01

    The effect of a single dose of whole-body X-irradiation of 2.39 Gy (250 R) on the activities of selected adaptive rat liver enzymes and blood serum corticosterone concentrations was followed for a period of 28 days. Rats of Wistar strain SPF breeding (VELAZ Prague) were used. Both irradiated and control animals were fed in pairs with the same amount of feed as was consumed by irradiated animals in the pilot experiment. The feed intake of irradiated animals decreased significantly until the fourth day. During the rest of the experimental period no significant differences were recorded in feed intake between the experimental and control groups. The activity of tyrosine aminotransferase (TAT) in the liver of irradiated animals increased, with the exception of the initial period. Similar changes were recorded in the activity of tryptophane-2-3 dioxygenase (TO). A significant increase on the third day and a significant decrease from the seventh day after irradiation was recorded in the activity of aspartate aminotransferase (AST). Similar changes were observed with alanine aminotransferase (ALT). It is necessary to stress that the activity of this enzyme decreased also on the first day after irradiation. Until the third day there was a marked increase of serum corticosterone in the irradiated animals. The results point not only towards significant changes to the parameters observed, caused by a non-lethal irradiation dose, but also towards the importance of the nutritional regime, so-called paired feeding

  6. Metabolic changes after non-lethal X-irradiation of rats. I

    International Nuclear Information System (INIS)

    Ahlersova, E.; Ahlers, I.; Slavkovska, E.; Praslicka, M.

    1981-01-01

    Male rats of the Wistar strain were fasted overnight prior to exposure to single whole-body X-ray dose of 2.39 Gy (250 R). Irradiated and sham-irradiated rats were pair-fed for 5 days, in the following period they were fed ad libitum. The levels of corticosterone and immunoreactive insulin in serum, glucose in blood, glycogen in liver, heart and skeletal muscle were determined 1 and 6 h, 1, 2, 3, 7, 14, 21, 28, and 38 days after irradiation and sham-irradiation. Irradiation of rats resulted, in one hour, in a decrease and, in two days, in an increase in blood glucose level. A marked increase in liver glycogen persisted from 6 h to 21 days after irradiation. The level of glycogen in the skeletal muscle was reduced after 6 h and increased on days 3 and 14. Heart muscle glycogen declined within the first 24 h and rose at 14 days after exposure. The kinetics of changes in the heart and skeletal muscle glycogen following non-lethal irradiation was similar and indicated an overlap of changes produced by fasting with those brought about by irradiation, particularly during the first week. Corticosterone in serum was markedly increased in rats 24 and 72 h after irradiation compared to pair-fed controls. The serum insulin concentration did not change after irradiation, except for a single increase on day 21. Irradiation with non-lethal doses produced changes in the parameters of the carbohydrate metabolism studied, except for serum insulin which reflected the changes in the nutrition regimen upon pair-feeding rather than the effect of ionizing irradiation. (author)

  7. Whole-body intravoxel incoherent motion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas; Wurnig, Moritz C.; Eberhardt, Christian; Guggenberger, Roman; Boss, Andreas [University Hospital Zurich, Department of Radiology, Zurich (Switzerland); Luechinger, Roger [University and ETH Zurich, Institute of Biomedical Technology, Zurich (Switzerland)

    2015-07-15

    To investigate the technical feasibility of whole-body intravoxel incoherent motion (IVIM) imaging. Whole-body MR images of eight healthy volunteers were acquired at 3T using a spin-echo echo-planar imaging sequence with eight b-values. Coronal parametrical whole-body maps of diffusion (D), pseudodiffusion (D*), and the perfusion fraction (F{sub p}) were calculated. Image quality was rated qualitatively by two independent radiologists, and inter-reader reliability was tested with intra-class correlation coefficients (ICCs). Region of interest (ROI) analysis was performed in the brain, liver, kidney, and erector spinae muscle. Depiction of anatomic structures was rated as good on D maps and good to fair on D* and F{sub p} maps. Exemplary mean D (10{sup -3} mm{sup 2}/s), D* (10{sup -3} mm{sup 2}/s) and F{sub p} (%) values (± standard deviation) of the renal cortex were as follows: 1.7 ± 0.2; 15.6 ± 6.5; 20.9 ± 4.4. Inter-observer agreement was ''substantial'' to ''almost perfect'' (ICC = 0.80 - 0.92). The coefficient of variation of D* was significantly lower with the proposed algorithm compared to the conventional algorithm (p < 0.001), indicating higher stability. The proposed IVIM protocol allows computation of parametrical maps with good to fair image quality. Potential future clinical applications may include characterization of widespread disease such as metastatic tumours or inflammatory myopathies. (orig.)

  8. Whole body measurements in Bavarian school children

    International Nuclear Information System (INIS)

    Schmier, H.; Berg, D.

    1992-12-01

    On behalf of the Bavarian State Ministry for State Development and Environmental Affairs measurements were conducted using the whole body counters at the Institute for Radiation Hygiene (of the Federal Office for Radiation Protection), and the Institute for Radiation Biology (of the GSF Research Centre for Environment and Health). Between September 1988 and July 1990 about 1600 school children from all over Bavaria were investigated for incorporated radiocesium. The aim of these measurements was to evaluate the whole body activity due to regionally differing soil contaminations in Bavaria following the accident in the nuclear power plant in Chernobyl and to assess the effective dose from an intake of radionuclides for the pupils by comparing the results of their WBC measurements with those of reference groups of children which underwent WBC examinations at regular intervals at both institutes since the middle of the year 1986. The results of the WBC measurements of those pupils who had not eaten mushrooms in the days before the measurement are in good agreement with the results of comparative measurements in children living in the regions of Munich and Frankfurt-am-Main. Based on these results an effective dose of 0,2 mSv for the Munich region children and of 0,1 mSv for Nothern Bavarian children can be derived. For children living in the highest contaminated region of Bavaria, i.e. the counties adjacent to the Alps, no comparable reference group results are available, but the amount of incorporated radiocesium is only twice that for pupils in the Munich region. The mean value for the specific activity of radiocesium in South Bavarian school children who consumed mushrooms was found to be twice the value of pupils who did not. This is also true for that group of children whose parents had bought allegedly low contaminated foodstuffs. Other effecs of nutrition habits on the specific whole body activity could not be found. (orig.) [de

  9. Whole body counters: types, performance and uses

    International Nuclear Information System (INIS)

    Jales, R.L.C.

    1983-01-01

    The present monograph deals with Whole Counters, since its definition, evolution, performance, clinical indications and results. Scintillation crystals detection systems were described as well as scintillant solutions, plastic scintillations, and gaseous detectors, including its interplay forms and basal characteristics. Geometric arrangements of standard chair, arc and hammock, arrangements with scintillant solutions and plastic scintillations, as well as special geometric arrangements were equally commented. Clinic and experimental studies were also dealt with Whole Body Counters, giving examples with potassium, iron vitamin B 12 and albumin. (author)

  10. Some biochemical aspects of the protective effect of strontium chloride on gamma-irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, F.A. (Ain Shams Univ., Cairo (Egypt). Dept. of Biochemistry); Yousri, R.M.; Roushdy, H.M.; Abady, M.I. (National Centre for Radiation Research and Technology, Cairo (Egypt))

    1991-01-01

    The effect of treatment with SrCl{sub 2} (10 mg/100 g rat) on rats 15 minutes prior to whole body {gamma}-irradiation (7,5 Gy) was studied. The hazardeous effects of irradiation were greatly corrected in the treated group. The hyperglycemic effect and liver glycogen accumulation in the untreated group decreased to normal level. The enzymatic activities of serum alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase und lactate dehydrogenase were greatly affected showing insignificant changes in the treated group of animals. Life span calculated on 50% survival was also significantly elongated by 36.3%. These results show the potentiality of SrCl{sub 2} as a radioprotective agent which was not used before. (orig.).

  11. HPLC analysis of prostaglandin metabolites plasma from irradiated rats

    International Nuclear Information System (INIS)

    Walden, T.L. Jr.; Catravas, G.N.

    1985-01-01

    The authors used RP-HPLC to quantitatively and qualitatively evaluate the PG metabolites in the plasma of rats during the first 24 hrs following a 10 Gy whole body dose of cobalt 60 gamma rays. The PGs and other arachidonic acid metabolites in plasma were extracted and then covalently attached to a fluroescent dye to enhance detection. A number of PGs and their metabolites were observed in the irradiated sample, including: 13,14 dihydro -15 keto PGE/sub 2/ and 13,14, dihydro -15 keto PGF/sub 2/, and their respective precursors, PGE/sub 2/ and PGF/sub 2/. The two major compounds present in the plasma samples were 13,14 dihydro -15 keto PFG/sub 2/ and another compound which is as yet unidentified. The levels of the individual PGs within a sample varied with time after irradiation, and the time at which a PG reached a peak level in the plasma depended on the particular PG in question. 13,14 dihdyro -15 keto PGD/sub 2/ was observed to reach a peak plasma concentration at 6 hours postirradiation, and at that time was at least 20 times higher than control levels

  12. Hematological and histopathological changes in female albino rats after gamma irradiation and /or piper nigrum treatment

    International Nuclear Information System (INIS)

    Ali, S.E.; Hanna, L.S.; Khattab, H.M.

    2003-01-01

    This study was carried out to investigate the effect of whole body gamma irradiation, at dose level of 6.0 Gy (single dose), and or daily treatment with P. nigrum (black pepper) at doses of 160 and 320 mg/kg body weight up to 36, 71 and 99 days on some hematological aspects as well as histopathological changes in lung, kidney and brain tissues of female albino rats. The results revealed that whole body gamma irradiation significantly elevated the values of red blood cells (RBCs), white blood cells (WBCs) and hematocrit percentage (HC %) but hemoglobin level was significantly decreased. These changes were ameliorated after treatment with P. nigrum. Non-significant changes were obtained regarding the effect of both doses of P. nigrum on red and white blood cell counts throughout the three time intervals. However, a dose of 160 mg/kg body weight of P. nigrum significantly reduced the hemoglobin contents throughput the experimental period. Histopathological examination revealed that lung, kidney and brain tissues showed marked to moderate pathological changes after irradiation and/or P.nigrum treatments. However, treatment with P. nigrum showed positive effect against the harmful effects of gamma irradiation, concerning kidney and brain. Although no malignant transformation could be detected, the resultant marked alveolar inflammation, bronchial wall hyperplasia and reactive astrocytic proliferation are important pathological changes that should be considered as pre-neoplastic changes

  13. Modulatory role of allopurinol on xanthine oxidoreductase system and antioxidant status in irradiated rats

    International Nuclear Information System (INIS)

    Zahran, A.M.; Azab, Kh.Sh.; Abbady, M.I.

    2006-01-01

    Allopurinol is a xanthine oxidase (XO) inhibitor, used for management of hyperuricaema. It acts on purine catabolism without disrupting the biosynthesis of purine. The present work was conducted to examine the role of xanthine oxidase inhibitor (allopurinol) in minimizing radiation injuries in male albino rats. Allopurinol was given to rats via intraperitoneal (i.p) injection at a dose of 30 mg/kg body wt/day for 7 successive days before starting irradiation and 14 successive days during and in between exposure to gamma radiation. Rats were exposed to whole body gamma radiation, delivered as 1 Gy every other day up to total dose 8 Gy. Results demonstrate that treatment with allopurinol by the regime assumed in the present study minimized significantly the amount of thiobarbituric acid reactive substances (TBARS), product of lipid peroxidation, in liver, intestine and plasma. This effect was associated with significant amelioration in xanthine oxidoreductase (XOR) system as observed on the 1st and 7th days post last radiation fraction. The severity of changes in antioxidant parameters namely: superoxide dismutase (SOD), Catalase (CAT) and reduced glutathione (GSH) were less manifested in liver, intestine and blood as compared to irradiated rats. The levels of nitric oxide (NO) were significantly improved in plasma and the two investigated tissues as compared to irradiated rats. A significant decrease in plasma uric acid concentration was recorded on the 1st and 7th days post last allopurinol dose. However, significant amelioration was recorded in the plasma uric acid of rats treated with allopurinol before and during radiation exposure as compared to irradiated rats. Accordingly, it could be concluded that XO inhibitor (allopurinol) play a significant role in minimizing the tissue damages upon exposure to ionizing radiation via preventing the over production of reactive oxygen species (ROS) in irradiated cells through the XOR system of irradiation rats

  14. Effect of 60Co-irradiation on normal and low protein diet fed rat brain

    International Nuclear Information System (INIS)

    Hasan, S.S.; Habibullah, M.

    1980-01-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain. (orig.) [de

  15. Effect of /sup 60/Co-irradiation on normal and low protein diet fed rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S S [Garhwal Univ., Srinagar, Uttar Pradesh (India). Dept. of Zoology; Habibullah, M [Jawaharlal Nehru Univ., New Delhi (India). Neurobiology Lab.

    1980-06-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain.

  16. Whole body detectors for clinical applications

    International Nuclear Information System (INIS)

    Silar, J.

    The requirements are presented on the parameters of whole-body detectors suitable for clinical retention assays and the detector-patient configuration described. A whole-body detector was developed with an axial configuration of two pairs of large-volume scintillation detectors with NaI(Tl) crystals. One pair is placed under the bed, the other above the bed on which the patient is being examined. The axes of the crystals are located at a distance of 90 cm apart. The field of vision of the detector is described for the application of a 137 Cs source in the air and in a 24 cm layer of water. The positive characteristics of the detector are listed as being homogeneous sensitivity, energy resolution, long-term stability of signal pulse amplitude and average pulse rate in the integral mode. The results obtained show that the detector may be used to evaluate the level of contamination of persons by gamma emitters within the region of approximately 800 Bq to 74 MBq. The error in converting the number of signal pulses in the integral mode does not exceed 50% for gamma emitters with a photon energy above 30O keV. (J.B.)

  17. Whole body acid-base modeling revisited.

    Science.gov (United States)

    Ring, Troels; Nielsen, Søren

    2017-04-01

    The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis. Copyright © 2017 the American Physiological Society.

  18. Avoidance behaviour and anxiety in rats irradiated with a sublethal dose of gamma-rays.

    Science.gov (United States)

    Tomášová, Lenka; Smajda, B; Bona, M

    2011-12-01

    The aim of this study was to assess, whether a sublethal dose of gamma-rays will influence the avoidance behaviour and anxiety in rats and whether the response to radiation depends on time of day of its application. Adult male Wistar rats were tested in elevated plus-maze, in hot plate test and in the light/dark box in 4 regular intervals during a day. After two weeks the animals were irradiated with a whole-body dose 6 Gy of gamma-rays. One day after irradiation the animals were repeatedly tested in the same way, as before irradiation. In the plus-maze test an increased level of anxiety was established. The irradiation significantly decreased the locomotor activity of rats, but the extent of exploratory and comfortable behaviour were not altered. After irradiation, an elevated aversion to the thermal stimulus was observed in the hot plate test. The effects of radiation were more pronounced in the light period of the day, than in the dark one. No significant differences in aversion to light were detected after irradiation. The obtained results indicate, that sublethal doses of ionizing radiation can markedly influence the reactivity of animals to adverse stimuli, their motoric activity and emotional status, as well.

  19. Effect of irradiation and nutrition modulation on apoptosis and some biochemical activities in rats

    International Nuclear Information System (INIS)

    Ghoneim, M.A.M

    2007-01-01

    This study designed to evaluate the hazardous effects of gamma-radiation and to investigate the role of high protein diet, vitamin C and vitamin E as radioprotectors in rats followed exposure to a single dose of whole body gamma irradiation of 7 Gy. 120 male albino rats were divided into six equal groups of 20 rats each : control, irradiated , high protein (P), vitamin C, vitamin E and combination (C + E + P) supplemented groups. The variation in levels of total protein, albumin, globulin, A/G ratio, cholesterol, triglycerides, urea, creatinine, corticosterone, testosterone, apoptosis and the activities of ALT ,AST ,LDH ,CK and CKMB were estimated for all groups. Serum corticosterone and testosterone detection were carried out according to the radioimmunoassay (RIA) technique. Serum apoptosis detection was carried out using the Enzyme-linked immunosorbent assay (ELISA). Analyses were carried out at the end of one week pre gamma irradiation, one and two weeks post gamma irradiation . In the irradiated group, an increase in serum triglycerides, urea, creatinine and testosterone levels, apoptosis and ALT, AST, CK, LDH activities were observed compared to control. While there was a decrease in both globulin and cholesterol levels and no changes in albumin level and CKMB activity. In almost supplemented groups, the reverse was occurred except in triglycerides, cholesterol, globulin and CK . Based on these biochemical observations, it was concluded that vitamin C and vitamin E treatment exerts a protective effect against irradiation damage while high protein diet has protective or ameliorative effects to some extent

  20. Blood biochemical studies on toxicological aspects of dicophane pesticide in gamma irradiated rats

    International Nuclear Information System (INIS)

    Tawfik, S.M.F.

    2003-01-01

    The present work deals with the effect of feeding 150 mg dicophane/ kg, an organochlorine pesticide, and / or 6 Gy whole body gamma irradiation on albino rats which produced several alternations in blood biochemical components. Alkaline phosphatase (AP), cholinesterase (ChE), creatinine and urea were increased significantly for dicophane and or gamma irradiation treatment, while protein level was increased after dicophane treatment and decreased by radiation. On the other hand, serum levels of bilirubin tended to decrease allover the experimental periods. Dicophane feeding caused decrease in cholesterol and glucose levels till 7 and 15 days, respectively, then increased significantly after 30 days, and also significant increase were observed in their levels after dicophane and/ or gamma irradiation treatments

  1. The radioprotective role of Gamma-Tocopherol on cholinergic and electrical activities in the brain of Gamma irradiated rats

    International Nuclear Information System (INIS)

    M, A.M.; Saada, H.N.

    1997-01-01

    Data of the present study revealed that whole body gamma exposure of adult male albino rats at 8 Gy causes a significant increase in the acetylcholine (ACh)content of the two cerebral hemispheres concomittant with a marked inhibition in the activity of acetylcholinesterase (AChE) enzyme 1,3,7,and 10 days after irradiation. The electroencephalogram (EEG) activity of frontal cortical area showed a significant increase in the faster frequencies (Bita-rhythm) and a decrease in the slower rhythm (delta - frequencies). Pretreatment of rats with α-tocopherol, 2 hr, prior irradiation provides the rats with a partial protection from the radiation induced changes in the acetent and cholinesterase activity of cerebral hemispheres. Injection of α-tocopherol has also provided the rats with some protection against the changes recorded for EEG activity of the cortical frontal area

  2. Effect of protracted whole-body gamma irradiation with 6.7 Gy and 4.8 Gy (700 and 500 R) on trypsin inhibition activity of blood, cervical mucus and on morphological structure of cervix in ewes

    International Nuclear Information System (INIS)

    Molnarova, M.; Arendarcik, J.; Molnar, P.

    1984-01-01

    The pattern of changes in the trypsin inhibition activities (TIA) of blood plasma, cervical mucus and the morphological structure of the cervix was studied in ewes exposed to 60 Co radiation for seven and five days, the radiation doses being 6.7 Gy and 4.8 Gy, respectively. During exposure, the group of ewes irradaited with 4.8 Gy was given the Roboran vitamin addition and following irradiation ampicillin (5250 mg). TIA was determined from retardation of the hydrolysis of the synthetic substrate N-alpha-tosyl-p-nitroanilide by bovine trypsin; the TIA was expressed as the percentage of inhibited trypsin. Almost all the studied TIA values of blood plasma and cervical mucus were increased in the irradiated animals, the range being from 103.1 to 155.0% of the levels for non-irradiated ewes. A reduction was recorded only in the total TIA of blood plasma in the group irradiated with a dose of 6.7 Gy (83.1% of the values for non-irradiated animals). In the group of animals irradiated with 4.8 Gy and non Roboran administered, the TIA of cervical mucus was observed to decrease to 92.4%. It was found during the study of changes in the proportion of glands in the stroma and changes in epithelium thickness in the mucous membrane of the cervix uteri that the irradiated ewes had the epithelium thickness reduced to 95.3% to 65.5% and that their stromal gland number decreased to 75.4% to 79.7% of that recorded in non-irradiated animals. It was only in the group given the Roboran supplement that an increase to 123.7% of the gland number for untreated ewes was recorded on the tenth day after termination of the irradiation

  3. Radioprotective role of vitamin E and urea in irradiated albino rats

    International Nuclear Information System (INIS)

    Mahdy, A.M.; Elkashef, H.S.

    1991-01-01

    The present study evaluates the action of vitamin E and urea as chemical radioprotectors for controlling the radiation induced changes in creatine and creatinine levels in the forebrain of female rats subjected to 7 Gy whole body gamma irradiation. The levels of creating and creatinine in the forebrain of normal control rats were±704±22 to±724±23 and 11.053 0.119 to 11.553 0.127 /g fresh tissue; respectively. The applied radiation dose caused a significant increase in the creating level of about 15%, 18%, 13% and 41% on the first,third,seventh and tenth days post irradiation; respectively. At the same post irradiation days, the level of creatinine generally increased, but not to the same extent as creatine. The treatment of rats either with vitamin E or with urea pre radiation exposure caused a remarkable recovery in both creatine and creatinine levels in the forebrain of irradiated rats.The results are discussed in the high of discussed in the high of available literatures. 2 tab

  4. Sedimentation of nucleoids from thymus and spleen cells of rats after X-irradiation in vitro and in vivo

    International Nuclear Information System (INIS)

    Heinzelmann, R.

    1987-01-01

    The reaction to irradiation of thymocytes was tested immediately and 6 hours after whole body X-irradiation of rats with doses from 190 cGy up to 1520 cGy by nucleoid sedimentation. For comparison, examinations of thymus and spleen cells after X-irradiation in vitro were done. Preliminary analyses should find a possible coergism between X-rays on one side and hyperthermia and inhibitors of DNA-synthesis or DNA-repair (cytosinearabinoside, dideoxythymidine, 3-amino-benzamide, ethidiumbromide, and novobiocine) on the other side. From the results the following conclusions may be drawn: 1) With respect to the detection of in vivo effects of X-irradiation, the nucleoid sedimentation is less sensitive than biochemical methods. 2) Some hours after sublethal X-irradiation in vivo, free DNA and/or polydesoxyribonucleotides appear. At the same time cross-links can be detected in the chromatin fraction. 3) The reduction of the nucleoid sedimentation immediately after high doses of whole-body irradiation is the result of primary DNA lesions. The changes detectable some hours after are due to the secondary enzymatic changes, that are connected with the interphase death of thymocytes, and coincide with the present opinions about the irradiation induced apoptosis of cells. (orig./ECB) [de

  5. Possibilities of whole-body MRI for investigating musculoskeletal diseases

    International Nuclear Information System (INIS)

    Lenk, S.; Claussen, C.D.; Schlemmer, H.P.; Fischer, S.; Koetter, I.

    2004-01-01

    This contribution outlines possibilities and limitations of whole-body MRI for investigating musculoskeletal diseases. Benefits and drawbacks of the novel whole-body MRI technology are discussed and a possible whole-body MRI sequence protocol for musculoskeletal examinations is proposed. Muscle, joint and bone diseases are discussed in which the application of whole-body MRI may be of advantage. Particularly, polymyositis, muscledystrophy, rheumatoid arthritis, spondylitis ancylosans, multiple trauma, skeletal metastases, multiple myeloma and malignant lymphoma are mentioned. Whole-body MRI opens new advantages for the examination of multifocal musculoskeletal diseases. The clinical benefit of this method for particular diseases has to be evaluated in further studies, however. (orig.) [de

  6. Recovery from radiation induced changes in some protein end-products in the liver and blood serum of irradiated rats

    International Nuclear Information System (INIS)

    Elkashef, H.S.; Roushdy, H.M.; Saada, H.N.; Abdelsamie, M.A.

    1989-01-01

    When rats were subjected to whole body gamma-irradiation at the dose of 5.5 Gy it caused significant changes in the content of urea and creatine the serum at 7 and 14 days postirradiation. In the liver significant changes were observed in the content of urea, creatine and creatinine at all post-irradiation days except the third day for urea and seventh day for creatine. Ten days pre-irradiation of the rats a mixture of 5 mg testosterone propionate and 10 mg of vitamin E was intraperitoneally injected. The results indicated that this mixture could help in obtaining complete recovery for radiation induced changes in the content of urea in both liver and serum of irradiated protected rats. Also this mixture provided good protection and caused recovery from radiation induced changes in the liver creatine on the third and seventh days after irradiation. But for serum creatine, the recovery was observed only on the third post irradiation day. The applied radiation dose did not induce any significant changes in the level of serum creatinine, while a partial recovery was noticed for liver creatinine in irradiated protected rats. The recovery process seems to be related to the radiosensitivity of the animal tissue, with the chemical structure of the radioprotector substances and the estimated compounds as well as the post-irradiation time intervals.3 tab

  7. The effect of Ginkgo biloba extract on parkinsonisminduced biochemical changes in brain of irradiated rats

    International Nuclear Information System (INIS)

    Abd El-Aziz, E.R.

    2012-01-01

    Parkinson's disease (PD) is the second most common neuro degenerative disorder after Alzheimer's disease. In the present study, neuro modulatory effects of standardized ginkgo biloba extract (EGb 761) and low dose whole-body γ-irradiation in a reserpine model of rat Parkinsonism were investigated. Male Wistar rats were pretreated orally with EGb 761 (100 mg/kg BW/day for 3 weeks) or low dose whole-body γ-irradiation (0.25 Gy once a week for 6 weeks) and their combination (EGb 761 was received during the last three weeks of the irradiation period) and then subjected to intraperitoneal injection of reserpine (5 mg/kg BW dissolved in 1% acetic acid) 24h after last dose of EGb761or radiation. All rats were sacrificed 24h after reserpine injection. Depletion of striatal dopamine (DA) level, increased oxidative stress indicated via depletion of glutathione (GSH), increased malondialdehyde (MDA) and iron levels; decrease of dopamine metabolites metabolizing enzymes; indicated by decrease of glutathione-S transferase (GST) and NADPH-quinone oxidoreductase (NQO) activities; mitochondrial dysfunction; indicated by decline of complex I activity and adenosine triphosphate (ATP) level and increased apoptosis; indicated by the decrease of mitochondrial B cell lymphoma-2 protein (Bcl-2) level and as shown by transmission electron microscope (TEM) were observed in brain of reserpine-induced PD model group, along with behavioral study indicated by increased catalepsy score. Moreover, the level of GSH was correlated with the levels of both DA (r = 0.78) and MDA (r = -0.93). The level of Bcl-2 was correlated with the complex I activity (r = 0.94) and ATP level (r = 0.98). Results revealed that either EGb 761 or irradiation and their combination ameliorated most of the biochemical and behavioral changes induced by reserpine possibly via replenishment of normal glutathione levels. This study revealed that EGb 761, which is a widely used herbal medicine and low dose of whole-body γ-irradiation

  8. Metabolic changes after non-lethal X-irradiation of rats. II

    International Nuclear Information System (INIS)

    Ahlers, I.; Ahlersova, E.; Sedlakova, A.; Praslicka, M.

    1981-01-01

    Male rats of the Wistar strain were subjected to whole-body X-irradiation with 2.39 Gy (250 R) and after irradiation they were pair-fed with the sham-irradiated control group. One, 6 and 24 h, 2, 3, 7, 14, 21, 28, and 38 days after exposure the animals were sacrificed and examined for serum and some tissue lipids. In the first hours an increase in lipolysis in the white adipose tissue and accumulation of non-esterified fatty acids and triacylglycerols (TG) in the liver predominated; phospholipid level increased in serum and liver and decreased in bone marrow and thymus. The later phase was characterized by hypertriacylglycerolaemia and a transient hypercholesterolaemia; accumulation of TG in bone marrow was the most important change, however. Changes in the lipid composition of the serum and tissues, except for an increase in TG level in thymus, returned to normal levels at the end of the observation period. Pair-feeding provided an equivalent nutritional situation in irradiated and sham-irradiated animals and thus eliminated the non-specific changes caused by different levels of food intake in both groups of animals, especially in the initial period. A sufficiently long observation period is necessary for estimating the kinetics of metabolic changes in rats exposed to non-lethal doses of X-irradiation. (author)

  9. Changes in the level of urea, creatine and creatinine in the liver and serum of irradiated rats

    International Nuclear Information System (INIS)

    El Kashef, H.S.; Saada, H.N.

    1991-01-01

    This study aims to compare between the susceptibility of two tissues (liver and serum) toγ-radiation with respect to some protein end-products; namely urea, creatine and creatinine. The results indicated that in control rat liver, the concentration of urea, creatine and creatinine ranged between 262-266, 106-108 and 18.86-19.48 μg/g fresh tissue, respectively. In blood serum, the concentration of these end-products were 327-383, 94-97 and 12.36-12.51μg/ml blood serum. Whole body -irradiation at dose 5.5 Gy caused significant changes in the levels of both urea and creatine in the blood serum on the 7th and 14th post irradiation days, while the level of creatinine was not altered. As for the liver of whole body γ -irradiated rats, significant changes were observed in the content of urea at the all post-irradiation days except at the 3 rd day. The creatinine content of the liver was significantly decreased on the 3 rd, 14th and 21st days after irradiation. Similar decrease was noticed in the content of creatine, but on the 7th day, significant increase was observed. The variation in the studied parameters started early in the liver and lated longer, but it started later and lasted shorter in the serum of irradiated rats. It could be suggested that the liver of irradiated rats is more sensitive to the radiation dose 5.5 Gy than the blood.1 fig.,2 tab

  10. Whole-body nanoparticle aerosol inhalation exposures.

    Science.gov (United States)

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-05-07

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is sampling flowrate (m(3)/min), and t is the sampling

  11. The potential chondroprotective effect of propolis in irradiated rats

    International Nuclear Information System (INIS)

    Abd El-Naby, D.H.

    2009-01-01

    Rheumatoid arthritis is a chronic syndrome of unknown etiology and is characterized by non-specific inflammation of the peripheral joints with joint swelling morning stiffness , destruction of articular tissues and joint deformities. It affects nearly 1% of the population worldwide. Ionizing radiation has been shown to exaggerate inflammatory responses, enhance the release of inflammatory mediators, increase oxygen consumption and produce oxygen-free radicals. The exaggerated inflammatory response to irradiation was found to be subdued by propolis, a resinous substance manufactured by honeybees that contains a variety of flavonoids, organic acids, phenols, various enzymes, vitamins and minerals. Propolis has previously been shown to possess antioxidant, anti-inflammatory and immunomodulatory properties. Many of the underlying mechanisms in its multi-faceted properties are interrelated with those that could play a role in arthritis. Since the cartilage breakdown is an essential feature of arthritis, it was therefore of interest to investigate whether or not propolis could have a protective role in this respect. Adjuvant-induced arthritis model in rats was chosen as an established one for chronic inflammation . It is intended to study the effect of whole body exposure to ionizing radiation on cartilage degradation with and without induction of arthritis. The parameters to be studied include glycosaminoglycan and hydroxyproline content in the femoral head cartilage, cartilage oligomeric matrix protein in serum as marker for cartilage destruction as well as pro-inflammatory cytokines (TNF-α, IL-6) and the oxidative stress bio markers (nitric oxide, reduced glutathione and malondialdehyde).

  12. Whole body interaction with public displays

    CERN Document Server

    Walter, Robert

    2017-01-01

    This book develops valuable new approaches to digital out-of-home media and digital signage in urban environments. It offers solutions for communicating interactive features of digital signage to passers-by. Digital out-of-home media and digital signage screens are becoming increasingly interactive thanks to touch input technology and gesture recognition. To optimize their conversion rate, interactive public displays must 1) attract attention, 2) communicate to passers-by that they are interactive, 3) explain the interaction, and 4) provide a motivation for passers-by to interact. This book highlights solutions to problems 2 and 3 above. The focus is on whole-body interaction, where the positions and orientations of users and their individual body parts are captured by specialized sensors (e.g., depth cameras). The book presents revealing findings from a field study on communicating interactivity, a laboratory on analysing visual attention, a field study on mid-air gestures, and a field study on using mid-air...

  13. Whole-body 35-GHz security scanner

    Science.gov (United States)

    Appleby, Roger; Anderton, Rupert N.; Price, Sean; Sinclair, Gordon N.; Coward, Peter R.

    2004-08-01

    A 35GHz imager designed for Security Scanning has been previously demonstrated. That imager was based on a folded conical scan technology and was constructed from low cost materials such as expanded polystyrene and printed circuit board. In conjunction with an illumination chamber it was used to collect indoor imagery of people with weapons and contraband hidden under their clothing. That imager had a spot size of 20mm and covered a field of view of 20 x 10 degrees that partially covered the body of an adult from knees to shoulders. A new variant of this imager has been designed and constructed. It has a field of view of 36 x 18 degrees and is capable of covering the whole body of an adult. This was achieved by increasing the number of direct detection receivers from the 32 used in the previous design to 58, and by implementing an improved optical design. The optics consist of a front grid, a polarisation device which converts linear to circular polarisation and a rotating scanner. This new design uses high-density expanded polystyrene as a correcting element on the back of the front grid. This gives an added degree of freedom that allows the optical design to be diffraction limited over a very wide field of view. Obscuration by the receivers and associated components is minimised by integrating the post detection electronics at the receiver array.

  14. Improvement of Radiation-Mediated Immunosuppression of Human NSCLC Tumour Xenografts in a Nude Rat Model

    Directory of Open Access Journals (Sweden)

    Sergey V. Tokalov

    2010-01-01

    Full Text Available Human tumour xenografts in a nude rat model have consistently been used as an essential part of preclinical studies for anticancer drugs activity in human. Commonly, these animals receive whole body irradiation to assure immunosuppression. But whole body dose delivery might be inhomogeneous and the resulting incomplete bone marrow depletion may modify tumour behaviour. To improve irradiation-mediated immunosuppression of human non-small cell lung cancer (NSCLC xenografts in a nude rat model irradiation (2 + 2 Gy from opposite sides of animals has been performed using a conventional X-ray tube. The described modification of whole body irradiation improves growth properties of human NSCLC xenografts in a nude rat model. The design of the whole body irradiation mediated immunosuppression described here for NSCLC xenografts may be useful for research applications involving other types of human tumours.

  15. Possible curative role of the anti psychotic drug fluphenazine against post-irradiation injury in rats

    International Nuclear Information System (INIS)

    Hassan, S.H.M.; Abu-Ghadeer, A.R.M.; Osman, S.A.A.; Roushdy, H.M.

    1986-01-01

    In the present study, investigation of the possible curative role of the anti psychotic agent ''fluphenazine'' against post irradiation injury of certain sensitive biological targets has been studied in rats. Such investigation includes evaluation of the haematological levels, liver function as manifested by levels of relevant serum enzymes and kidney function as reflected by level of serum creatinine and rate of urine creatinine clearance. Data of the present study indicated that fractionated whole body gamma-irradiation resulted in haematological disorders, significant elevation in serum enzyme activities of both serum glutamic pyruvic transaminase (SGPT) and serum alkaline phosphatase (SALKPH.), significant decrease in serum cholinesterase (SCHE) activity and a significant increase in serum creatinine accompanied by a significant decrease in creatinine clearance. 4 figs., 4 tabs

  16. Superoxide radical formation, superoxide dismutase and glutathione reductase activity in the brain of irradiated rats

    International Nuclear Information System (INIS)

    Stanimirovic, D.; Ivanovic, L.; Simovic, M.; Cernak, I.; Savic, J.

    1989-01-01

    In the forebrain cortex, basal ganglia and hippocampus of irradiated rats (whole body, X-ray, 9 Gy), nitroblue-tetrazolium (NBT) reduction was measured as a probe of superoxide radical formation 1 hr, 6 hrs, 24 hrs and 72 hrs after irradiation. Increased superoxide radical formation was found in parallel with increase of superoxide dismutase (SOD) activity and marked decrease of glutathione reductase (GR) activity which is the most pronounced in basal ganglia. The results indicate that in the postradiation period disproportion among free radical production and capacity of brain antioxidative system occurs. This disbalance is more expressed in the brain regions known as selective vulnerable (basal ganglia, hippocampus). (author). 10 refs.; 2 tabs

  17. A contribution to the pathophysiology of blood coagulation in rats after irradiation

    International Nuclear Information System (INIS)

    Klir, P.; Pospisil, J.; Dienstbier, Z.

    1978-01-01

    The athrombocytic blood plasma antiheparin activity in rats increased following whole-body irradiation with doses of 25, 50, 100, 500 and 800 rads, the increase being directly proportional to the exposure time used. The antiheparin activity remained increasing for 360 minutes after exposure with the exception of animals irradiated with 800 R, where it increased for merely 180 minutes after exposure. An increase in the antiheparin activity of the plasma following a 4-hour stress induced by the immobilization of 18 animals was found within 24 hours of the immobilization, although there was no such increase 30 minutes after the immobilization. The possibility is discussed of the diagnostic uses of the antiheparin activity test. (author)

  18. Dose-response studies of depletion and repopulation of rat intestinal mucosal mast cells after irradiation

    International Nuclear Information System (INIS)

    Sedgwick, D.M.; Ferguson, A.

    1994-01-01

    The effects of radiation on gut mucosal mast cells (MMC) and tissue eosinophils were examined. Groups of rats were given single doses of whole-body irradiation from 0.5 to 5 Gy. Serum rat mast cell protease II (RMCPII) concentration showed a significant dose-dependent fall after 1 Gy on day 3 and 1.5 Gy on day 7. MMC counts and tissue RMCPII values on day 7 decreased significantly by 70% after 1 Gy and were undetectable with larger doses. Rats with normal and expanded MMC populations were irradiated or given anaphylaxis. Serum RMCPII concentrations did not change after irradiation, but there was a 10-fold increase in RMCPII after anaphylaxis. Tissue eosinophils in jejunum were 50% of control at 7 days after 2 Gy, and this effect was progressively more marked with higher doses. Similar effects on MMC and eosinophils were demonstrated in ileum, ascending colon and rectum. After 4.5 Gy, repopulation of the gut with MMC did not occur until week 3-4 postirradiation and MMC counts were still 50% below those of controls at 5 weeks postirradiation. Counts of tisse eosinophils 5 weeks after 4.5 Gy irradiation had returned to control levels in jejunum but were still significantly depleted in colon. (Author)

  19. Epinephrine Injection effect on serotonin metabolism in small intestines of gamma irradiated rats

    International Nuclear Information System (INIS)

    Saada, H.N.; Mahdy, A.M.

    1997-01-01

    The response of serotonin metabolism to epinephrine injection was examined in the small intestine of normal and whole body gamma irradiated rats. The data revealed that a single dose of 6 Gy induced decrease in serotonin content associated with increase of monoaminoxidase activity (MAO), and 5-hydroxyindol acetic acid (5-HIAA); at one and four hours, and one, three and seven days after exposure. Intraperitoneal administration of epinephrine to normal unirradiated rats at a dose of 0.2 mug/g increased serotonin content, decreased (MAO) activity, and (5-HIAA) level, one and four hours after treatment. No significant changes were recorded later. Injection of epinephrine to rats, 15 minutes before irradiation, resulted in no significant changes of serotonin content, MAO activity and 5-HIAA level at one, four hours and one day after irradiation. At three and seven days, the changes were less significant. The results obtained suggest that the effect of epinephrine on serotonin and 5-HIAA levels in the small intestine of rats is mediated by the opposing effect of epinephrine on the radiation induced increase of intestinal MAO activity

  20. Segmentation of rodent whole-body dynamic PET images: an unsupervised method based on voxel dynamics

    DEFF Research Database (Denmark)

    Maroy, Renaud; Boisgard, Raphaël; Comtat, Claude

    2008-01-01

    Positron emission tomography (PET) is a useful tool for pharmacokinetics studies in rodents during the preclinical phase of drug and tracer development. However, rodent organs are small as compared to the scanner's intrinsic resolution and are affected by physiological movements. We present a new...... method for the segmentation of rodent whole-body PET images that takes these two difficulties into account by estimating the pharmacokinetics far from organ borders. The segmentation method proved efficient on whole-body numerical rat phantom simulations, including 3-14 organs, together...

  1. Alteration of phospholipase D activity in the rat tissues by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. S. [Korea Univ., Seoul (Korea, Republic of). Coll. of Medicine; Cho, Y. J. [Hanyang Univ., Seoul (Korea, Republic of). Coll. of Medicine; Choi, M. U. [Seoul National Univ. (Korea, Republic of). Coll. of Natural Sciences

    1997-09-01

    Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. Recently, PLD has been drawing much attentions and considered to be associated with cancer process since it is involved in cellular signal transduction. In this experiment, oleate-PLD activities were measured in various tissues of the living rats after whole body irradiation. The reaction mixture for the PLD assay contained 0.1{mu}Ci 1,2-di[1-{sup 14}C]palmitoyl phosphatidylcholine, 0.5mM phosphatidylcholine, 5mM sodium oleate, 0.2% taurodeoxycholate, 50mM HEPES buffer(pH 6.5), 10mM CaCl{sub 2}, and 25mM KF. phosphatidic acid, the reaction product, was separated by TLC and its radioactivity was measured with a scintillation counter. The whole body irradiation was given to the female Wistar rats via Cobalt 60 Teletherapy with field size of 10cm x 10cm and an exposure of 2.7Gy per minute to the total doses of 10Gy and 25Gy. Among the tissues examined, PLD activity in lung was the highest one and was followed by kidney, skeletal muscle, brain, spleen, bone marrow, thymus, and liver. Upon irradiation, alteration of PLD activity was observed in thymus, spleen, lung, and bone marrow. Especially PLD activities of the spleen and thymus revealed the highest sensitivity toward {gamma}-ray with more than two times amplification in their activities. In contrast, the PLD activity of bone marrow appears to be reduced to nearly 30%. Irradiation effect was hardly detected in liver which showed the lowest PLD activity. The PLD activities affected most sensitively by the whole-body irradiation seem to be associated with organs involved in immunity and hematopoiesis. This observation strongly indicates that the PLD is closely related to the physiological function of these organs. Furthermore, radiation stress could offer an important means to explore the phenomena covering from cell proliferation to cell death on these organs. (author).

  2. Changes in cholesterol content and fatty acid composition of serum lipid in irradiated rat

    International Nuclear Information System (INIS)

    Ohashi, Shigeru

    1979-01-01

    The effect of a single dose of whole body irradiation on the serum cholesterol content and fatty acid composition of serum lipids in rats was investigated. A change in the fatty acid composition of liver lipids was also observed. After 600 rad of irradiation, the cholesterol content increased, reached a maximum 3 days after irradiation, and then decreased. After irradiation, an increase in cholesterol content and a marked decrease in triglyceride content were observed, bringing about a change in the amount of total serum lipids. The fatty acid compositions of normal and irradiated rat sera were compared. The relative percentages of palmitic and oleic acids in total lipids decreased while those of stearic and arachidonic acids increased. Serum triglyceride had trace amounts of arachidonic acid and the unsaturated fatty acid component decreased after irradiation. On the other hand, unsaturated fatty acid in cholesterol ester increased after irradiation, while linoleic and arachidonic acids made up 29% and 22% in the controls and 17% and 61% after irradiation, respectively. The fatty acid composition of total liver lipids after irradiation showed a decrease in palmitic and oleic acids and an increase in stearic and arachidonic acids, the same trend as observed in serum lipid fatty acid. Liver cholesterol ester showed trace amounts of linoleic and arachidonic acids and an increase in short-chain fatty acid after irradiation. The major component of serum phospholipids was phosphatidylcholine while palmitostearyl lecithine and unsaturated fatty acid were minor components. Moreover, phosphatidylcholine and phosphatidylethanolamine were the major components of liver phospholipids, having highly unsaturated fatty acids. The changes in fatty acid composition were similar to the changes in total phospholipids. (J.P.N.)

  3. Neutrophil and lymphocyte dose curves in whole-body relatively homogeneous human γ-irradiation (on the basis of the materials of the accident at the Chernobyl Nuclear Power Station)

    International Nuclear Information System (INIS)

    Konchalovskij, M.V.; Baranov, A.E.; Solov'ev, V.Yu.

    1991-01-01

    The experience in a study of regularties of the bone marrow syndrome in persons exposed to rather homogeneous γ-beam irradiation during the accident at the Chernobyl Nuclear Power Station (127 cases) were summed up. Hematological data were processed by computer, and emperic dose curves of neutrophils and lymphocytes were obtained within the range of 0.5-12 Gy by regressive analysis. New data were obtained on the nature of a course of a granulocyte recovery phase at a dose level over 5 Gy. Some features of the time course of lymphocytes in persons exposed to radiation during the accident at the Chernobyl Nuclear Power Station, were considered

  4. EFFICIENCY OF BORAGE SEEDS OIL AGAINST GAMMA IRRADIATION-INDUCED HEPATOTOXICITY IN MALE RATS: POSSIBLE ANTIOXIDANT ACTIVITY.

    Science.gov (United States)

    Khattab, Hala A H; Abdallah, Inas Z A; Yousef, Fatimah M; Huwait, Etimad A

    2017-01-01

    Borage ( Borago officinal L.) is an annual herbaceous plant of great interest because its oil contains a high percentage of γ-linolenic acid (GLA). The present work was carried out to detect fatty acids composition of the oil extracted from borage seeds (BO) and its potential effectiveness against γ-irradiation- induced hepatotoxicity in male rats. GC-MS analysis of fatty acids methyl esters of BO was performed to identify fatty acids composition. Sixty rats were divided into five groups (12 rats each): Control, irradiated; rats were exposed to (6.5 Gy) of whole body γ-radiation, BO (50 mg/kg b.wt), irradiated BO post-treated and irradiated BO prepost-treated. Six rats from each group were sacrificed at two time intervals 7 and 15 days post-irradiation. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyl transferase (GGT) levels, lipids profile, as well as serum and hepatic reduced glutathione (GSH) and lipid peroxide (malondialdehyde) (MDA) levels were assessed. Histopathological examination of liver sections were also carried out. The results showed that the high contents of BO extracted by cold pressing, were linoleic acid (34.23%) and GLA (24.79%). Also, oral administration of BO significantly improved serum levels of liver enzymes, lipids profile, as well as serum and hepatic GSH and MDA levels (p<0.001) as compared with irradiated rats after 15 days post irradiation. Moreover, it exerted marked amelioration against irradiation-induced histopathological changes in liver tissues. The improvement was more pronounced in irradiated BO prepost-treated group than irradiated BO post-treated. BO has a beneficial role in reducing hepatotoxicity and oxidative stress induced by radiation exposure. Therefore, BO may be used as a beneficial supplement for patients during radiotherapy treatment.

  5. Effect of Pre-Gamma Irradiation Induction of Metallothionein on potentially Radiation-Induced Toxic Heavy Metals Ions In Rats

    International Nuclear Information System (INIS)

    El-Shamy, El.

    2004-01-01

    Metallothionein, which is a cystein-rich metal binding protein, can act as free radical scavenger and involved in resistance to heavy metal toxicity. The induction of synthesis has been shown to protect organs from the toxic effect of radiation. This study aimed to stud the effects of pre-irradiation induction of by heavy metal (Zinc sulfate) on potentially gamma radiation-induced toxic heavy metals ions in rate liver and kidney tissues. Forty eight albino rats were included in this study. They were divided into eight groups each of six animals. Two control groups injected with saline. Two Zinc sulfate-treated groups injected with zinc sulfate, two Irradiated groups exposed to a single dose level (7 Gy) of whole body gamma irradiation and two combined zinc sulfate and irradiation groups injected with zinc sulfate and exposed to whole body gamma irradiation (at dose 7 Gy). Animals of all groups were sacrificed 24 and 48 hours after last either zinc sulfate dose or irradiation. Samples of liver and kidney's tissues were subjected to the following investigations: Estimation of tissue heavy Metals (Zinc, Iron and Copper), and tissue (MT). After irradiation, liver and kidney MT were increased approximately 10-fold and 2-fold respectively after irradiation. Accumulation of zinc and iron in both liver and kidney tissues were detected, while accumulation of copper only in the liver tissues. The pre-irradiation treatment with zinc sulfate (Zn SO4) resulted in highly significant decrease in zinc, iron, and copper levels in both liver and kidney tissues in comparison with irradiation groups. Conclusion, it can be supposed that pre-irradiation injection of ZnSO 4 exerted protective effect against the potentially radiation-induced toxic heavy metals ions through MT induction

  6. Quantification of interstitial fluid on whole body CT: comparison with whole body autopsy.

    Science.gov (United States)

    Lo Gullo, Roberto; Mishra, Shelly; Lira, Diego A; Padole, Atul; Otrakji, Alexi; Khawaja, Ranish Deedar Ali; Pourjabbar, Sarvenaz; Singh, Sarabjeet; Shepard, Jo-Anne O; Digumarthy, Subba R; Kalra, Mannudeep K; Stone, James R

    2015-12-01

    Interstitial fluid accumulation can occur in pleural, pericardial, and peritoneal spaces, and subcutaneous tissue planes. The purpose of the study was to assess if whole body CT examination in a postmortem setting could help determine the presence and severity of third space fluid accumulation in the body. Our study included 41 human cadavers (mean age 61 years, 25 males and 16 females) who had whole-body postmortem CT prior to autopsy. All bodies were maintained in the morgue in the time interval between death and autopsy. Two radiologists reviewed the whole-body CT examinations independently to grade third space fluid in the pleura, pericardium, peritoneum, and subcutaneous space using a 5-point grading system. Qualitative CT grading for third space fluid was correlated with the amount of fluid found on autopsy and the quantitative CT fluid volume, estimated using a dedicated software program (Volume, Syngo Explorer, Siemens Healthcare). Moderate and severe peripheral edema was seen in 16/41 and 7/41 cadavers respectively. It is not possible to quantify anasarca at autopsy. Correlation between imaging data for third space fluid and the quantity of fluid found during autopsy was 0.83 for pleural effusion, 0.4 for pericardial effusion and 0.9 for ascites. The degree of anasarca was significantly correlated with the severity of ascites (p < 0.0001) but not with pleural or pericardial effusion. There was strong correlation between volumetric estimation and qualitative grading for anasarca (p < 0.0001) and pleural effusion (p < 0.0001). Postmortem CT can help in accurate detection and quantification of third space fluid accumulation. The quantity of ascitic fluid on postmortem CT can predict the extent of anasarca.

  7. Investigations on the influence of aminopropyl-aminoethyl-phosphorothioic acid on the radio-iron utilization after a whole-body irradiation of mice in the sublethal dose range

    International Nuclear Information System (INIS)

    Moenig, H.; Seiter, I.; Kofler, E.

    1975-01-01

    The effectiveness of the thiophosphate compound WR 2721 was investigated with regard to the radiosensitivity of X-irradiated female mice in the sublethal dose range of 50 to 150 R using the radioiron test ( 59 Fe). An increase of the radioresistance with regard to the radioiron uptake in young erythrocyte populations was obtained only beyond radiation doses of 75 R. In lower dose ranges the animals treated with thiophoshate became even more radiosensitive. At dose values of 100 R and 150 R dose reduction factors (DRF) of 1.3 and 1.5 respectively were obtained. These factors are considerably smaller than the DRF-values found for the survival rate at LDsub(50/30). A possible mechanism for this result may be due to the different dephosphorylation rate of the thiophosphate in various tissues, as described in literature. (orig.) [de

  8. The effects of single and fractionated irradiation of the trunk in rats

    International Nuclear Information System (INIS)

    Giri, P.G.S.; Kimler, B.F.; Giri, U.P.; Cox, G.G.; Reddy, E.K.

    1985-01-01

    The effect of whole trunk irradiation on the development of functional damage was investigated in rats. Rats were restrained without anesthesia such that only the trunk (from clavicle to pelvic girdle) was irradiated with a Cs-137 irradiator at a dose rate of 8.5 Gy/min. Rats received single doses of 9.4, 11.7, 14.1, or 16.4 Gy; or total doses of 11.7, 14.1, 16.4, 18.8, or 21.1 Gy in two equal fractions separated by 4-6 hr. Except for the highest dose in both schedules, there was no lethality; 16.4 Gy reduced survival to 45% and 21.1 Gy in two fractions reduced survival to 77% by day 150. From day 10 to day 150 there was a dose-dependent reduction in weight for both schedules, with the two-dose response displaced from the single dose response by ≅ 6 Gy. A whole-body plethysmograph was used to measure respiration frequency. There was no increase in respiration frequency compared to control animals, except for the highest single dose - 16.4 Gy producing an increase that was manifested from 10 to 150 days. The authors conclude that, in this rat trunk irradiation model, fractionation into two equal doses separated by 4-6 hr produces a sparing effect of ≅ 6 Gy as measured by delay in weight gain (presumably a result of irradiation of the abdomen); and ≥ 6 Gy as measured by survival and increased respiration frequency (a result of irradiation of the thorax)

  9. Prospective Effects of Statin in Repression of Matrix Metalloproteinases Activities in Irradiated Rats

    International Nuclear Information System (INIS)

    Zahran, A.M.; Sallam, M.H.

    2009-01-01

    Several studies had been committed that HMG-CoA (3-Hydroxy-3 methylglutaryl coenzyme A) reductase inhibitors (statins) may exert a pleotropic effects attributed to mechanisms independent of their conventional hypolipidaemic effects. Meantime, inadequate studies have been sustained these independence mechanisms in regard to regulation and signal transduction of matrix metalloproteinases (MMPs). Sprague Dawley male albino rats were given by gavage atorvastatin; a synthetic form of statins, at a dose of I mg/kg body weight/day for 7 successive days before starting irradiation and 15 successive days during and along the exposure to γ-radiation. Rats were exposed to fractionated whole body gamma radiation, delivered as 1 Gy every other day up to total dose of 8 Gy. Quantitative assay of gelatinolytic zymographic analysis of serum and hepatic tissues showed that exposure to γ rays yields a marked significant increase in the activities of both pro-MMP-9 and active MMP-9 (92 and 86 kDa), as well as pro-MMP-2 and active MMP-2 (72 and 66 kDa), respectively. Administration of atorvastatin has significantly lowered the MMP-2 and MMP-9 enzymatic activity in y-irradiated rats, Conclusion: the present study demonstrated that irradiation of rats led to up regulation of enzymatic activities of MMP-2 and MMP-9 in their pro- and active forms. Administration of atorvastatin exerted defensive effects on γ irradiated rats via down regulation of MMP-2 and MMP-9. Moreover, atorvastatin may be applied to minimize radiation-induced oxidative damage and attenuate the side effects of radiotherapy. However, these results observed in rats need to be confirmed in other experimental models

  10. Prospective Effects of Statin in Repression of Matrix Metalloproteinases Activities in Irradiated Rats

    International Nuclear Information System (INIS)

    Zahran, A.M.; Sallam, M.H.

    2008-01-01

    Several studies had been committed that HMG-CoA (3-Hydroxy-3 methylglutaryl coenzyme A) reductase inhibitors (statins) may exert a pleotropic effects attributed to mechanisms independent of their conventional hypolipidaemic effects. Meantime, inadequate studies have been sustained these independence mechanisms in regard to regulation and signal transduction of matrix metalloproteinases (MMPs). Sprague Dawley male albino rats were given by gavage atorvastatin; a synthetic form of statins, at a dose of I mg/kg body weight/day for 7 successive days before starting irradiation and 15 successive days during and along the exposure to γ-radiation. Rats were exposed to fractionated whole body gamma radiation, delivered as 1 Gy every other day up to total dose of 8 Gy. Quantitative assay of gelatinolytic zymographic analysis of serum and hepatic tissues showed that exposure to γ rays yields a marked significant increase in the activities of both pro-MMP-9 and active MMP-9 (92 and 86 kDa), as well as pro-MMP-2 and active MMP-2 (72 and 66 kDa), respectively. Administration of atorvastatin has significantly lowered the MMP-2 and MMP-9 enzymatic activity in y-irradiated rats, Conclusion: the present study demonstrated that irradiation of rats led to up regulation of enzymatic activities of MMP-2 and MMP-9 in their pro- and active forms. Administration of atorvastatin exerted defensive effects on γ irradiated rats via down regulation of MMP-2 and MMP-9. Moreover, atorvastatin may be applied to minimize radiation-induced oxidative damage and attenuate the side effects of radiotherapy. However, these results observed in rats need to be confirmed in other experimental models

  11. Prospective Effects of Statin in Repression of Matrix Metalloproteinases Activities in Irradiated Rats

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, A M [Radiation Biology Department, National Centre/or Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo (Egypt); Sallam, M H [Health Radiation Research Department, Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    Several studies had been committed that HMG-CoA (3-Hydroxy-3 methylglutaryl coenzyme A) reductase inhibitors (statins) may exert a pleotropic effects attributed to mechanisms independent of their conventional hypolipidaemic effects. Meantime, inadequate studies have been sustained these independence mechanisms in regard to regulation and signal transduction of matrix metalloproteinases (MMPs). Sprague Dawley male albino rats were given by gavage atorvastatin; a synthetic form of statins, at a dose of I mg/kg body weight/day for 7 successive days before starting irradiation and 15 successive days during and along the exposure to {gamma}-radiation. Rats were exposed to fractionated whole body gamma radiation, delivered as 1 Gy every other day up to total dose of 8 Gy. Quantitative assay of gelatinolytic zymographic analysis of serum and hepatic tissues showed that exposure to {gamma} rays yields a marked significant increase in the activities of both pro-MMP-9 and active MMP-9 (92 and 86 kDa), as well as pro-MMP-2 and active MMP-2 (72 and 66 kDa), respectively. Administration of atorvastatin has significantly lowered the MMP-2 and MMP-9 enzymatic activity in y-irradiated rats, Conclusion: the present study demonstrated that irradiation of rats led to up regulation of enzymatic activities of MMP-2 and MMP-9 in their pro- and active forms. Administration of atorvastatin exerted defensive effects on {gamma} irradiated rats via down regulation of MMP-2 and MMP-9. Moreover, atorvastatin may be applied to minimize radiation-induced oxidative damage and attenuate the side effects of radiotherapy. However, these results observed in rats need to be confirmed in other experimental models.

  12. Modulation of Immune Disorders Induced-Arthritis in γ- Irradiated Rats

    International Nuclear Information System (INIS)

    Thabet, N.M.S.

    2013-01-01

    This study was to evaluate the antioxidant and anti-inflammatory capability of a laboratory preparation mixture Nano Selenium-lovastatin (Lov-Se) against oxidative stress and inflammatory cascade in irradiated and/or adjuvant arthritic rats. The experimental animals were divided into: adjuvant free groups and adjuvant induced groups. Rats were exposed to whole body γ-radiation (2 Gy every 3 days up to total dose of 8 Gy) and received oral administration of 1 ml Lov-Se mixture (≈ 20 mg kg - 1 Lov and 0.1 mg kg - 1 day - 1 Se) for 14 successive days. Animal model of arthritis was organized by subcutaneous injection of complete freund’s adjuvant. The antioxidant parameters (heart GSH-Px, CAT, SOD, XDH, GSH and blood Se), and oxidant markers (heart XO, NO, protein carbonyls and TBARS) and Also, the inflammatory molecules (serum TNF-α, CRP and RF) were determined. In irradiated Lov-Se rats, the results obtained reveals that, TBARS, protein carbonyl, TNF-α, CRP levels, and XO, CAT and SOD activities were significantly ameliorated as compared to irradiated rats. Also, heart GSH, NO levels, XDH, GSH-Px activities and blood Se level were significantly improved. In addition, the administration of Lov-Se to the arthritic and arthritic irradiated rats ameliorates the disturbance occurs in oxidative stress, inflammatory cascades and antioxidant indicators when compared to control rats. In conclusion, the proper administration of Lov-Se mixture might reduce the radiation-induced heart injury via amending the antioxidant molecules and decreasing lipid and protein oxidation. Also, it could be suggested that Lov-Se mixture might posses a considerable anti-inflammatory properties

  13. Prospective Effects of Statin in Repression of Matrix Metalloproteinases Activities in Irradiated Rats

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, A M [Radiation Biology Department, National Centre/or Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo (Egypt); Sallam, M H [Health Radiation Research Department, Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo (Egypt)

    2009-07-01

    Several studies had been committed that HMG-CoA (3-Hydroxy-3 methylglutaryl coenzyme A) reductase inhibitors (statins) may exert a pleotropic effects attributed to mechanisms independent of their conventional hypolipidaemic effects. Meantime, inadequate studies have been sustained these independence mechanisms in regard to regulation and signal transduction of matrix metalloproteinases (MMPs). Sprague Dawley male albino rats were given by gavage atorvastatin; a synthetic form of statins, at a dose of I mg/kg body weight/day for 7 successive days before starting irradiation and 15 successive days during and along the exposure to {gamma}-radiation. Rats were exposed to fractionated