WorldWideScience

Sample records for whole-body ionizing radiation

  1. Risks of exposure to ionizing and millimeter-wave radiation from airport whole-body scanners.

    Science.gov (United States)

    Moulder, John E

    2012-06-01

    Considerable public concern has been expressed around the world about the radiation risks posed by the backscatter (ionizing radiation) and millimeter-wave (nonionizing radiation) whole-body scanners that have been deployed at many airports. The backscatter and millimeter-wave scanners currently deployed in the U.S. almost certainly pose negligible radiation risks if used as intended, but their safety is difficult-to-impossible to prove using publicly accessible data. The scanners are widely disliked and often feared, which is a problem made worse by what appears to be a veil of secrecy that covers their specifications and dosimetry. Therefore, for these and future similar technologies to gain wide acceptance, more openness is needed, as is independent review and regulation. Publicly accessible, and preferably peer-reviewed evidence is needed that the deployed units (not just the prototypes) meet widely-accepted safety standards. It is also critical that risk-perception issues be handled more competently.

  2. Effects of whole-body, ionizing radiation on the semen in beagle dogs

    International Nuclear Information System (INIS)

    Day, P.A.

    1988-01-01

    Six beagle dogs were exposed to a total dose of 183 R of gamma radiation at a dose rate of 1 R/day, while three other dogs were exposed to a single dose of 100 R. Weekly semen analysis was performed on all irradiated dogs plus four nonirradiated dogs. Semen volume, sperm concentration, total sperm count, sperm motility and sperm head morphometry were examined. Dogs exposed to chronic radiation showed a severe decline in sperm numbers, detected after seven weeks of exposure. Sperm concentration and total sperm count were the first parameters affected and were the only parameters consistently affected. The dogs exposed to 100 R as a single dose, did not show a significant decline in sperm numbers. During a 36 week recovery period, the chronically irradiated dogs did show a slight increase in sperm numbers, but they never approached pre-exposure levels

  3. Development of an ionization chamber based high sensitivity detector for the measurement of radiation dose from X-ray whole body scanners

    International Nuclear Information System (INIS)

    Singh, Sunil K.; Tripathi, S.M.; LijiShaiju; Sathian, V.; Kulkarni, M.S.

    2016-01-01

    Using walk through metal detectors and undergoing frisking for personals at airports, seaports, railway stations and other sensitive places no longer meets proper security requirements. Now a days use of plastic explosives, drug trafficking or illegal carriage of dangerous items concealed under cloths or body cavities has increased many folds which in many cases is not possible to detect by conventional methods. One of the systems which are capable to overcome the above mentioned difficulties is the use of X-ray based whole body scanners, either transmission type or backscatter type, depending upon the nature of requirement. While using these whole body scanners the person being scanned possesses a radiation risk whose safety aspects can be monitored by following international standards (recommending certain dose limits). In order to check the compliance of these dose limits, the dose per scan received by the person (from these whole body scanners) needs to be measured. A very high sensitive ionization chamber has been designed and fabricated for measuring these extremely low X- ray fields ( few μR) produced by a scanning X-ray beam over a large area. A methodology has been developed to measure exposure per scan using large volume ionization chambers. This value of exposure was used to calculate whole body dose as per the recommendations of ANSI standard for its compliance

  4. Whole body personnel monitoring via ionization detection

    International Nuclear Information System (INIS)

    Koster, J.E.; Bounds, K.A.; Kerr, P.L.; Steadman, P.A.; Whitley, C.R.

    1998-02-01

    A project between Fernald EMP and LANL is to field a monitor for the detection of alpha-emitting contamination on a human body. Traditional personnel monitoring for alpha emitters involves either frisking with a probe or pressing against large detectors in order to overcome the short range of alpha particles. These methods have a low alpha collection efficiency, and can miss contamination on less accessible surfaces. The authors have investigated the sensitivity and practicality of measuring the entire subject simultaneously using the technique of ionization monitoring. The goal is to create a booth that personnel step into quickly during egress from radiological facilities. The detection technique relies on a breeze of air passing over the subject. Alpha emission produces copious ions in the ambient air which are transported by the air current to an ion collector, resulting in a small electrical current proportional to the amount of contamination. Results indicate a conservative sensitivity of 3,000 disintegrations per minute localized to one of five areas of the body in a measurement lasting less than 2 minutes

  5. Radiation exposure in whole body CT screening.

    Science.gov (United States)

    Suresh, Pamidighantam; Ratnam, S V; Rao, K V J

    2011-04-01

    Using a technology that "takes a look" at people's insides and promises early warnings of cancer, cardiac disease, and other abnormalities, clinics and medical imaging facilities nationwide are touting a new service for health conscious people: "Whole body CT screening" this typically involves scanning the body from the chin to below the hips with a form of x-ray imaging that produces cross-sectional images. In USA direct-to-consumer marketing of whole body CT is occurring today in many metropolitan areas. Free standing CT screening centres are being sited in shopping malls and other high density public areas, and these centres are being advertised in the electronic and print media. In this context the present article discussed the pros and cons of having such centres in India with the advent of multislice CT leading to fast scan times.

  6. (Radiation carcinogenesis in the whole body system)

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1990-12-14

    The objectives of the trip were: to take part in and to give the summary of a Symposium on Radiation Carcinogenesis at Tokyo, and to give a talk at the National Institute of Radiological Sciences at Chiba. The breadth of the aspects considered at the conference was about as broad as is possible, from effects at the molecular level to human epidemiology, from the effects of tritium to cancer induction by heavy ions. The events induced by cancer that lead to cancer and the events that are secondary are beginning to come into better focus but much is still not known. Interest in suppressor genes is increasing rapidly in the studies of human tumors and many would predict that the three or four suppressor genes associated with cancer are only the first sighting of a much larger number.

  7. Anesthesia and monitoring during whole body radiation in children

    DEFF Research Database (Denmark)

    Henneberg, S; Nilsson, A; Hök, B

    1990-01-01

    During whole body radiation therapy of children, treatment may be done in places not equipped with acceptable scavenging systems for anesthetic gases and where clinical observation of the patient may be impossible. In order to solve this problem, the authors have used a total intravenous (IV) ane....... This anesthetic technique and the stethoscope have been used in seven children. The total IV anesthesia proved to be a useful method for children during whole body radiation. The modified stethoscope functioned very well and was a useful complement to the monitoring equipment....

  8. Anesthesia and monitoring during whole body radiation in children

    DEFF Research Database (Denmark)

    Henneberg, S; Nilsson, A; Hök, B

    1991-01-01

    During whole body radiation therapy of children, treatment may be done in places not equipped with acceptable scavenging systems for anesthetic gases and where clinical observation of the patient may be impossible. In order to solve this problem, the authors have used a total intravenous (IV) ane....... This anesthetic technique and the stethoscope have been used in seven children. The total IV anesthesia proved to be a useful method for children during whole body radiation. The modified stethoscope functioned very well and was a useful complement to the monitoring equipment....

  9. The whole-body counter of the radiation centre Giessen

    International Nuclear Information System (INIS)

    Strobelt, W.

    1976-01-01

    The layout of the whole-body counter at the institute for biophysics of the Giessen radiation centre is decribed. With suitable collimators, the whole-body counter may be used to determine the radioactivity in human and animal organs. The shielding and the measuring and waiting rooms for the patients are described with regard to their technical details. The whole-body counting system enables the radioactivity and the retention of various radioisotopes (e.g. 58 Co-vitamin B 12 , 40 K, 54 Mn, 137 Co, 131 J, 22 Na) to be measured. The estimation of the radiation exposure due to different types of examinations in nuclear medicine, in terms of the critical organs for each type of examination, is very accurate with this counting device. (GSE) [de

  10. Collaborative Radiological Health Laboratory annual report 1986: health effects of prenatal and postnatal whole-body exposure to ionizing radiation in the beagle dog

    International Nuclear Information System (INIS)

    1987-08-01

    The Collaborative Radiological Health Laboratory was established in 1962 by the U.S. Public Health Service and Colorado State University for the purpose of determining in a carefully controlled animal experiment the life-time hazards associated with prenatal and early postnatal exposure to ionizing radiation. The CRHL study is designed to provide information that will facilitate the evaluation of risks to human beings from medical exposure during early development. This is a long-term (lifespan) study of a moderately large and long-lived mammal exposed at one of several times during development to a relatively small and discrete dose of external radiation. Ages-at-irradiation selected for comparison reflect the primary concern with medical exposures during the development period. The basis experiment under this contract contains 1,680 beagles that will be maintained and evaluated for most of their natural lives. Commitment of animals began in December 1967 and was completed in October 1972. The annual report summarizes the current status of the study for the reporting period of November 21, 1985 through November 20, 1986

  11. Collaborative Radiological Health Laboratory annual report 1987: health effects of prenatal and postnatal whole-body exposure to ionizing radiation in the beagle dog. Annual report

    International Nuclear Information System (INIS)

    1988-09-01

    The Collaborative Radiological Health Laboratory (CRHL) was established in 1962 by the U.S. Public Health Service and Colorado State University for the purpose of determining in a carefully controlled animal experiment the lifetime hazards associated with prenatal and early postnatal exposure to ionizing radiation. The CRHL study is designed to provide information that will facilitate the evaluation of risks to human beings from medical exposure during early development. It is a long-term (life span) study of a moderately large and long-lived mammal exposed at one of several times during development to a relatively small and discrete dose of external radiation. Ages-at-irradiation selected for comparison reflect the primary concern with medical exposures during the developmental period. The basic experiment under the contract contains 1,680 beagles that will be maintained and evaluated for most of their natural lives. The annual report summarizes the current status of the study for the reporting period of November 21, 1986 through November 20, 1987

  12. Collaborative Radiological Health Laboratory annual report, 1988: Health effects of prenatal and postnatal whole-body exposure to ionizing radiation in the beagle dog

    International Nuclear Information System (INIS)

    1989-09-01

    The Collaborative Radiological Health Laboratory was established in 1962 by the U.S. Public Health Service and Colorado State University for the purpose of determining, in a carefully controlled animal experiment, the life-time hazards associated with prenatal and early postnatal exposure to ionizing radiation. The CRHL study is designed to provide information that will facilitate the evaluation of risks to human beings from medical exposure during early development. This is a long-term (life span) study of a moderately large and long-lived mammal exposed at one of several times during development to a relatively small and discrete dose of external radiation. Ages-at-irradiation selected for comparison reflect the primary concern with medical exposures during the developmental period. The basic experiment under the contract contains 1,680 beagles that will be maintained and evaluated for most of their natural lives. Commitment of animals began in December 1967 and was completed in February 1973. The annual report summarizes the current status of the study for the reporting period of November 21, 1987 through November 20, 1988

  13. Collaborative Radiological Health Laboratory annual report 1985: health effects of prenatal and postnatal whole-body exposure to ionizing radiation in the beagle dog

    International Nuclear Information System (INIS)

    1986-07-01

    The Collaborative Radiological Health Laboratory was established in 1962 by the U.S. Public Health Service and Colorado State University for the purpose of determining in a carefully controlled animal experiment the life-time hazards associated with prenatal and early postnatal exposure to ionizing radiation. The CRHL study is designed to provide information that will facilitate the evaluation of risks to human beings from medical exposure during early development. This is a long-term (lifespan) study of a moderately large and long-lived mammal exposed at one of several times during development to a relatively small and discrete dose of external radiation. Ages-at-irradiation selected for comparison reflect the primary concern with medical exposures during the development period. The basic experiment under the contract contains 1,680 beagles that will be maintained and evaluated for most of their natural lives. Commitment of animals began in December 1967 and was completed in October 1972. The annual report summarizes the current status of the study for the reporting period of November 21, 1984 through November 20, 1985

  14. Rifaximin diminishes neutropenia following potentially lethal whole-body radiation.

    Science.gov (United States)

    Jahraus, Christopher D; Schemera, Bettina; Rynders, Patricia; Ramos, Melissa; Powell, Charles; Faircloth, John; Brawner, William R

    2010-07-01

    Terrorist attacks involving radiological or nuclear weapons are a substantial geopolitical concern, given that large populations could be exposed to potentially lethal doses of radiation. Because of this, evaluating potential countermeasures against radiation-induced mortality is critical. Gut microflora are the most common source of systemic infection following exposure to lethal doses of whole-body radiation, suggesting that prophylactic antibiotic therapy may reduce mortality after radiation exposure. The chemical stability, easy administration and favorable tolerability profile of the non-systemic antibiotic, rifaximin, make it an ideal potential candidate for use as a countermeasure. This study evaluated the use of rifaximin as a countermeasure against low-to-intermediate-dose whole-body radiation in rodents. Female Wistar rats (8 weeks old) were irradiated with 550 cGy to the whole body and were evaluated for 30 d. Animals received methylcellulose, neomycin (179 mg/kg/d) or variably dosed rifaximin (150-2000 mg/kg/d) one hour after irradiation and daily throughout the study period. Clinical assessments (e.g. body weight) were made daily. On postirradiation day 30, blood samples were collected and a complete blood cell count was performed. Animals receiving high doses of rifaximin (i.e. 1000 or 2000 mg/kg/d) had a greater increase in weight from the day of irradiation to postirradiation day 30 compared with animals that received placebo or neomycin. For animals with an increase in average body weight from irradiation day within 80-110% of the group average, methylcellulose rendered an absolute neutrophil count (ANC) of 211, neomycin rendered an ANC of 334, rifaximin 300 mg/kg/d rendered an ANC of 582 and rifaximin 1000 mg/kg/d rendered an ANC of 854 (P = 0.05 for group comparison). Exposure to rifaximin after near-lethal whole-body radiation resulted in diminished levels of neutropenia.

  15. Treatment of whole-body radiation accident victims

    International Nuclear Information System (INIS)

    Drum, D.E.; Rappeport, J.M.

    1990-01-01

    This paper discusses how whole-body radiation exposure incidents present a number of unique challenges. The acute, nonstochastic effects of high doses of radiation over 25 rads (0.25 Gy) delivered to humans is generally manifest in rather categorical fashion; depending on the dose, either the patient is largely unharmed functionally or he is seriously injured. Radiation initiates microchemical changes within a nanosecond time frame; there exists no specific therapy to stop or reverse the sequence of events that follow. Thus, the range for effective therapeutic intervention is rather small, between 150 to 1500 rad (1.5 to 15 Gy) for humans. Nevertheless, it is likely that a large uncomplicated exposure to as much as 750 rad (7.5 Gy) might be survivable without dramatic measures such as bone marrow transplantation. Review of the available information about past accidents shows that the majority of radiation accidents are mixed injuries

  16. Effect of lithium carbonate on the leukocyte number following ionizing radiation. 1. Li/sub 2/CO/sub 3/ as response modifying factor in whole-body irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Kehrberg, G.; Saul, G.; Rose, H.; Pradel, I.; Moldenhauer, H. (Humboldt-Universitaet, Berlin (German Democratic Republic). Bereich Medizin (Charite))

    1984-01-01

    The occurrence of a leukocytosis following Li/sub 2/CO/sub 3/ treatment was examined in rats. The radiation-induced leukocytosis revealed depended on dose and time as well. Li/sub 2/CO/sub 3/ did not prevent radiogenic leukopenia following 7 Gy whole-body irradiation. There was, however, a decrease of the duration of the leukopenia. The small therapeutic range of Li/sub 2/CO/sub 3/ in irradiated animals must by emphasized.

  17. Whole body exposure to low-dose γ-radiation enhances the antioxidant defense system

    International Nuclear Information System (INIS)

    Pathak, C.M.; Avti, P.K.; Khanduja, K.L.; Sharma, S.C.

    2008-01-01

    It is believed that the extent of cellular damage by low- radiation dose is proportional to the effects observed at high radiation dose as per the Linear-No-Threshold (LNT) hypothesis. However, this notion may not be true at low-dose radiation exposure in the living system. Recent evidence suggest that the living organisms do not respond to ionizing radiations in a linear manner in the low dose range 0.01-0.5Gy and rather restore the homeostasis both in vivo and in vitro by normal physiological mechanisms such as cellular and DNA repair processes, immune reactions, antioxidant defense, adaptive responses, activation of immune functions, stimulation of growth etc. In this study, we have attempted to find the critical radiation dose range and the post irradiation period during which the antioxidant defense systems in the lungs, liver and kidneys remain stimulated in these organs after whole body exposure of the animals to low-dose radiation

  18. Estimating the whole-body exposure annual dose of radiation workers of petroleum nuclear well logging

    International Nuclear Information System (INIS)

    Tian Yizong; Gao Jianzheng; Liu Wenhong

    2006-01-01

    Objective: By imitating experiment of radioactive sources being installed, to estimate the annual whole-body exposure dose of radiation workers of petroleum nuclear determining wells; Methods: To compre the values of the theory, imitating experiment and γ individual dose monitor calculations. Results: The three values measured above tally with one anather. Conclusion: The annual whole-body exposure doses of radiation workers of petroleum nuclear determining wells are no more than 5 mSv. (authors)

  19. Radiation induced late delayed alterations in mice brain after whole body and cranial radiation: a comparative DTI analysis

    International Nuclear Information System (INIS)

    Watve, Apurva; Gupta, Mamta; Trivedi, Richa; Khushu, Subash; Rana, Poonam

    2016-01-01

    Moderate dose of radiation exposure occurs during radiation accidents or radiation therapy induces pathophysiological alterations in CNS that may persist for longer duration. Studies suggest that late delayed injury is irreversible leading to metabolic and cognitive impairment. Our earlier studies have illustrated the varied response of brain at acute and early delayed phase on exposure to cranial and whole body radiation. Hence in continuation with our previous studies, present study focuses on comparative microstructural changes in brain at late delayed phase of radiation injury using Diffusion Tensor Imaging (DTI) technique. Region of interest (ROIs) were drawn on corpus callosum (CC), hippocampus (HIP), sensory-motor cortex (SMC), thalamus (TH), hypothalamus (HTH), cingulum (CG), caudeto-putamen (CUP) and cerebral peduncle (CP). The differences in FA (Fractional Anisotropy) and MD (Mean Diffusivity) values generated from these regions of all the groups were evaluated by ANOVA with multiple comparisons using Bonferroni, Post Hoc test. Maximum changes have been observed in MD values mainly in cranial group showing significantly increased MD in CC and SMC region while both the groups showed changes in TH and CUP region as compared to control. FA showed more prominent changes in whole body radiation group than cranial group by decreasing significantly in CP region while in HTH and CUP region in both the groups. Reduced FA indicates compromised structural integrity due to the loss of glial progenitor cells causing transient demyelination while increased MD has been equated with cellular membrane disruption, cell death and vasogenic edema. Thus, present study reveals late delayed CNS response after cranial and whole body radiation exposure. These findings can help us differentiate and monitor the pathophysiological changes at later stages either due to accidental or intentional exposure to ionizing radiation

  20. Future directions in therapy of whole body radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Cronkite, E.P.

    1989-01-01

    Clinicians have long known that marked granulocytopenia predisposed patients to bacterial infections either from pathogens or commensal organisms with which an individual usually lives in harmony. Evidence that infection was of major importance derives from several observations: (a) clinical observations of bacterial infection in human beings exposed to atomic bomb radiation in Hiroshima and Nagasaki, in reactor accidents, and in large animals dying from radiation exposure, (b) correlative studies on mortality rate, time of death, and incidence of positive culture in animals, (c) challenge of irradiated animals with normally non-virulent organisms, (d) studies of germ free mice and rats, and (e) studies of the effectiveness of antibiotics in reducing mortality rate. General knowledge and sound experimental data on animals and man clearly demonstrated that the sequelae of pancytopenia (bacterial infection, thrombopenic hemorrhage, and anemia) are the lethal factors. A lot of research was required to demonstrate that there were no mysterious radiations toxins, that hyperheparinemia was not a cause of radiation hemorrhage and that radiation hemorrhage could be prevented by fresh platelet transfusions.

  1. Future directions in therapy of whole body radiation injury

    International Nuclear Information System (INIS)

    Cronkite, E.P.

    1989-01-01

    Clinicians have long known that marked granulocytopenia predisposed patients to bacterial infections either from pathogens or commensal organisms with which an individual usually lives in harmony. Evidence that infection was of major importance derives from several observations: (a) clinical observations of bacterial infection in human beings exposed to atomic bomb radiation in Hiroshima and Nagasaki, in reactor accidents, and in large animals dying from radiation exposure, (b) correlative studies on mortality rate, time of death, and incidence of positive culture in animals, (c) challenge of irradiated animals with normally non-virulent organisms, (d) studies of germ free mice and rats, and (e) studies of the effectiveness of antibiotics in reducing mortality rate. General knowledge and sound experimental data on animals and man clearly demonstrated that the sequelae of pancytopenia (bacterial infection, thrombopenic hemorrhage, and anemia) are the lethal factors. A lot of research was required to demonstrate that there were no mysterious radiations toxins, that hyperheparinemia was not a cause of radiation hemorrhage and that radiation hemorrhage could be prevented by fresh platelet transfusions

  2. CSU-FDA (Colorado State Univ.-Food and Drug Administration) Collaborative Radiological Health Laboratory. Annual report - 1982: health effects of prenatal and postnatal whole-body exposure to ionizing radiation in the beagle dog

    International Nuclear Information System (INIS)

    Benjamin, S.A.

    1984-09-01

    The Collaborative Radiological Health Laboratory was established in 1962 by the U.S. Public Health Service and Colorado State University for the purpose of determining in a carefully controlled animal experiment the life-time hazards associated with prenatal and early postnatal exposure to ionizing radiation. The CRHL study is designed to provide information that will facilitate the evaluation of risks to human beings from medical exposure during early development. The study is a long-term (lifespan) study of a moderately large and long-lived mammal exposed at one of several times during development to a relatively small and discrete dose of external radiation. Ages at irradiation selected for comparison reflect the primary concern with medical exposures during the development period. This annual report summarizes the current status of the study for the reporting period of January 1 through December 31, 1982

  3. Effect of whole-body gamma radiation on tissue sulfhydryl contents in experimental rats

    International Nuclear Information System (INIS)

    Sarkar, S.R.; Singh, L.R.; Uniyal, B.P.

    1985-01-01

    It has been postulated that vital constituents of cell membranes concerned with the maintenance of cellular integrity are affected by ionizing radiation. Sulfhydryl contents, which form an integral component of cell membranes play vital roles in maintaining cellular integrity. The purpose was to evaluate non-protein and protein sulfhydryl contents in tissues of irradiated rats. Adult male Sprague Dawley rats were exposed to whole-body gamma irradiation of 4 Gy and 10 Gy and non-protein and protein sulfhydryl contents of blood, heart and spleen were studied on postirradiation day 1, 3 and 6. Both groups of experimental rats exhibited unchanged blood non-protein sulfhydryl contents on first day after irradiation with significant diminution subsequently. In contrast, blood protein sulfhydryl groups of both groups of rats were increased on first day post exposure, which became normal on sixth day. Myocardial non-protein and protein sulfhydryl contents of both groups of rats remained unchanged in the initial stage of radiation exposure indicating radioresistance nature of rat heart. Both groups of rats demonstrated biphasic nature of non-protein sulfhydryl contents in spleen, asrevealed by initial increase with subsequent decrease. Protein sulfhydryl contents of rats of 4 Gy group showed significant diminution post exposure throughout, while the same of 10 Gy behaved in opposite way. (author)

  4. Whole Body Counters (rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Woodburn, John H. [Walter Johnson High School, Rockville, MD; Lengemann, Frederick W. [Cornell University

    1967-01-01

    Whole body counters are radiation detecting and measuring instruments that provide information about the human body. This booklet describes different whole body counters, scientific principles that are applied to their design, and ways they are used.

  5. Ionizing radiation

    International Nuclear Information System (INIS)

    Kruger, J.

    1989-01-01

    Ionizing radiation results in biological damage that differs from other hazardous substances and is highly dangerous to man. Ionizing radiation cannot be perceived by man's sense organs and the biological damage cannot be detected immediately afterwards (except in very high doses). Every human being is exposed to low doses of radiation. The structure of the atom; sources of ionizing radiation; radiation units; biological effects; norms for radiation protection; and the national control in South Africa are discussed. 1 fig., 5 refs

  6. Using a whole body counter to attract a younger generation to radiation and radiation protection topics

    International Nuclear Information System (INIS)

    Breustedt, B.; Mohr, U.; Bohnstedt, A.; Knebel, J.U.

    2010-01-01

    Currently there is a lack of young academics in the nuclear field especially in the field of radiation protection RP. One of the reasons is the very small number of students in the so called STEM subjects (science, technology, engineering and mathematics) which distribute among the different topics in these fields. One important task to overcome the foreseeable shortage of RP professionals is to attract pupils to this field. In routine monitoring the whole body counter of the Institute of Radiation Research (ISF) is used to identify and quantify radioactive materials that are incorporated in the human body using the technique of gamma spectroscopy. The in-vivo monitoring lab participates in activities for pupils at school level, e.g. Kinderuniversitaet, practical studies of secondary level pupils and 'Girls day'. Pupils that come to the lab are ages 14 to 18. The whole body counter is an optimal tool for these children to experience (natural) radioactivity and radiation protection issues. First pupils get a short introduction on radioactivity and gamma spectroscopy at a level adjusted to their current knowledge. After this they are measuring themselves in the whole body counter. A routine measurement of 300 s is able to show the natural occurring K-40 in their bodies. After their own measurements they do calibration measurements using a bottle phantom with a set up adjusted to their own body weights. The bottle phantom is filled with a potassium chloride (KCl) solution and contains no other radioactivity than the natural K-40 content of the KCl. Thus no further radiation protection measures need to be taken for using this phantom. A simple Excel-Sheet is then used to estimate their own K-40 activity by comparing the spectra of their measurement to the ones of the calibration measurements. This 'hands on' experience and the connection of radiation and their own bodies often is a 'eureka' effect and opens discussion on preconceptions of radiation and the need of RP

  7. The modes of death in mammals exposed to whole body radiation (acute radiation syndromes)

    International Nuclear Information System (INIS)

    Santos, O.R. dos.

    1990-07-01

    When an animal is exposed to a sufficient amount of radiation, there will be changes in many organs of the body, and as a result of either the effects in one particular organ or the interaction of effects in several organs, the animal as a whole will show characteristic syndromes. Some syndromes result inevitably in death. Others may or may not be lethal, depending on the extent of the tissue damage. The time of appearance of the syndromes, their duration, and the survival of the organism depend on many factors. Whole body acute doses of radiation produce the same spectrum of Central Nervous System (CNS), Gastrointestinal (GI) and Bone Marrow (BM) injury in man as was described for animals. Damage to the skin, ovary and testis are an integral and important part of the symptoms. (author) [pt

  8. Ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    This is an update about the radiological monitoring in base nuclear installations. A departmental order of the 23. march 1999 (J.O.28. april, p.6309) determines the enabling rules by the Office of Protection against Ionizing Radiations of person having at one's disposal the results with names of individual exposure of workers put through ionizing radiations. (N.C.)

  9. Differential stimulation of antioxidant defense in various organs of mice after whole body exposure to low-dose gamma radiation

    International Nuclear Information System (INIS)

    Pathak, C.M.; Avti, P.K.; Khanduja, K.L.; Sharma, S.C.

    2007-01-01

    It has been generally considered that any dose of ionizing radiation is detrimental to the living organisms, however low the radiation dose may be. The much relied upon 'Linear-No-Threshold' (LNT) hypothesis dose not have any convincing experimental evidence regarding the damaging effects at very low-doses and low-dose rates. Generally, the deleterious biological effects have been inferred theoretically by extrapolating the known effects of high radiation dose to low-dose range. Recently, it has been reported that the living organisms do not respond to ionizing radiations in a linear manner in the low-dose range 0.01-0.50 Gy and rather restore the homeostasis both in-vivo and in-vitro by normal physiological mechanisms such as, cellular and DNA repair processes, immune reactions, antioxidant defense, adaptive responses, activation of immune functions; stimulation of growth etc. In this study, we have attempted to find: (i) the critical radiation dose range and the post irradiation period during which the antioxidant defense systems in the lungs, liver and kidneys remain stimulated; and (ii) to evaluate the degree to which these defense mechanisms remain stimulated in these organs after whole body exposure of the animal to low-dose radiation

  10. EURADOS intercomparisons in external radiation dosimetry: similarities and differences among exercises for whole-body photon, whole-body neutron, extremity, eye-lens and passive area dosemeters

    International Nuclear Information System (INIS)

    Romero, Ana M.; Grimbergen, Tom; McWhan, Andrew; Stadtmann, Hannes; Fantuzzi, Elena; Clairand, Isabelle; Neumaier, Stefan; Dombrowski, Harald; Figel, Markus

    2016-01-01

    The European Radiation Dosimetry Group (EURADOS) has been organising dosimetry intercomparisons for many years in response to an identified requirement from individual monitoring services (IMS) for independent performance tests for dosimetry systems. The participation in intercomparisons gives IMS the opportunity to show compliance with their own quality management system, compare results with other participants and develop plans for improving their dosimetry systems. In response to growing demand, EURADOS has increased the number of intercomparisons for external radiation dosimetry. Most of these fit into the programme of self-financing intercomparisons for dosemeters routinely used by IMS. This programme is being coordinated by EURADOS working group 2 (WG2). Up to now, this programme has included four intercomparisons for whole-body dosemeters in photon fields, one for extremity dosemeters in photon and beta fields, and one for whole-body dosemeters in neutron fields. Other EURADOS working groups have organised additional intercomparisons including events in 2014 for eye-lens dosemeters and passive area dosemeters for environmental monitoring. In this paper, the organisation and achievements of these intercomparisons are compared in detail focusing on the similarities and differences in their execution. (authors)

  11. Ionizing radiations

    International Nuclear Information System (INIS)

    Newton, W.

    1984-01-01

    The purpose of this article is to simplify some of the relevant points of legislation, biological effects and protection for the benefit of the occupational health nurse not familiar with the nuclear industries. The subject is dealt with under the following headings; Understanding atoms. What is meant by ionizing radiation. Types of ionizing radiation. Effects of radiation: long and short term somatic effects, genetic effects. Control of radiation: occupational exposure, women of reproductive age, medical aspects, principles of control. The occupational health nurse's role. Emergency arrangements: national arrangements for incidents involving radiation, action to be taken by the nurse. Decontamination procedures: external and internal contamination. (U.K.)

  12. Ionizing radiation

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1982-01-01

    The subject is discussed under the headings: characteristics of ionizing radiations; biological effects; comparison of radiation and other industrial risks; principles of protection; cost-benefit analysis; dose limits; the control and monitoring of radiation; reference levels; emergency reference levels. (U.K.)

  13. Protection from radiation induced changes in liver and serum transaminase of whole body gamma irradiated rats

    International Nuclear Information System (INIS)

    Elkashef, H.S.; Roushdy, H.M.; Saada, H.N.; Abdelsamie, M.

    1986-01-01

    Whole body gamma irradiation of rats with a dose of 5.5 Gy induced significant changes in the activity of liver and serum transaminase. The results indicated that this radiation dose caused a significant increase in the activity of serum Got and GPT on the third and seventh days after irradiation. This was followed by significant decreases on the fourteenth post-irradiation day. The activity of Got returned to is control activity, while the activity of GPT was significantly above the control on the twenty ones post-irradiation day. The activity of Got, in the liver of irradiated rats was elevated during the post-irradiation days, but on the twenty one day activity was about the normal value. The activity of liver GPT firstly decreased and then increased very much but attained the control level on the fourteenth after irradiation. The intraperitoneal injection of testosterone-vitamin E mixture 10 days before whole body gamma irradiation caused complete recovery for the activity of liver and serum Got. No indication of remarkable recovery in the case of GPT activity was recorded either in liver or in serum of irradiated rats. The applied mixture could protect against radiation induced changes in Got activity of liver and serum but could not protect or ameliorate the changes which occurred in the activity of GPT of the two tissues. 2 tab

  14. Ionizing radiation

    Science.gov (United States)

    Tobias, C. A.; Grigoryev, Y. G.

    1975-01-01

    The biological effects of ionizing radiation encountered in space are considered. Biological experiments conducted in space and some experiences of astronauts during space flight are described. The effects of various levels of radiation exposure and the determination of permissible dosages are discussed.

  15. Estimation of radiation dose to patients from 18 FDG whole body PET/CT investigations using dynamic PET scan protocol

    Directory of Open Access Journals (Sweden)

    Aruna Kaushik

    2015-01-01

    Full Text Available Background & objectives: There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Methods: Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. Results: The estimated residence time in males was 0.196 h (brain, 0.09 h (liver, 0.007 h (spleen, 0.0006 h (adrenals, 0.013 h (kidneys and 0.005 h (stomach whereas it was 0.189 h (brain, 0.11 h (liver, 0.01 h (spleen, 0.0007 h (adrenals, 0.02 h (kidneys and 0.004 h (stomach in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. Interpretation & conclusions: The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and

  16. Estimation of radiation dose to patients from (18) FDG whole body PET/CT investigations using dynamic PET scan protocol.

    Science.gov (United States)

    Kaushik, Aruna; Jaimini, Abhinav; Tripathi, Madhavi; D'Souza, Maria; Sharma, Rajnish; Mondal, Anupam; Mishra, Anil K; Dwarakanath, Bilikere S

    2015-12-01

    There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography) whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI) phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. The estimated residence time in males was 0.196 h (brain), 0.09 h (liver), 0.007 h (spleen), 0.0006 h (adrenals), 0.013 h (kidneys) and 0.005 h (stomach) whereas it was 0.189 h (brain), 0.11 h (liver), 0.01 h (spleen), 0.0007 h (adrenals), 0.02 h (kidneys) and 0.004 h (stomach) in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and carefully weigh the risk-benefit ratios prior to every 18FDG whole body PET

  17. A whole body atlas for segmentation and delineation of organs for radiation therapy planning

    International Nuclear Information System (INIS)

    Qatarneh, S.M.; Crafoord, J.; Kramer, E.L.; Maguire, G.Q.; Brahme, A.; Noz, M.E.; Hyoedynmaa, S.

    2001-01-01

    A semi-automatic procedure for delineation of organs to be used as the basis of a whole body atlas database for radiation therapy planning was developed. The Visible Human Male Computed Tomography (CT)-data set was used as a 'standard man' reference. The organ of interest was outlined manually and then transformed by a polynomial warping algorithm onto a clinical patient CT. This provided an initial contour, which was then adjusted and refined by the semi-automatic active contour model to find the final organ outline. The liver was used as a test organ for evaluating the performance of the procedure. Liver outlines obtained by the segmentation algorithm on six patients were compared to those manually drawn by a radiologist. The combination of warping and semi-automatic active contour model generally provided satisfactory segmentation results, but the procedure has to be extended to three dimensions

  18. Bone marrow transplantation rescues intestinal mucosa after whole body radiation via paracrine mechanisms

    International Nuclear Information System (INIS)

    Chang, Ya Hui; Lin, Li-Mei; Lou, Chi-Wen; Chou, Chuan-Kai; Ch’ang, Hui-Ju

    2012-01-01

    Purpose: Our previous study reveals bone marrow transplantation (BMT) recruits host marrow-derived myelomonocytic cells to radiation-injured intestine, enhancing stromal proliferation, leading secondarily to epithelial regeneration. In this study, we propose BMT ameliorates intestinal damage via paracrine mechanisms. Materials and methods: Angiogenic cytokines within the intestinal mucosa of mice after whole body irradiation (WBI) with or without BMT were measured by cytokine array and ELISA. BM conditioned medium (BMCM) with or without treatment with neutralizing antibodies to angiogenic cytokines were continuously infused into mice for three days after radiation. Carrageenan was used to deplete myelomonocytic cells of mice. Results: BMT increased VEGF, bFGF and other angiogenic and chemotactic cytokines in the intestinal mucosa within 24 h after WBI. Infusion of BMCM ameliorated radiation-induced intestinal damage with improved stromal activity and prolonged survival of mice. Neutralization of bFGF, PDGF and other angiogenic cytokines within BMCM abolished the mitigating effect to the intestine. Pretreatment of carrageenan to recipient mice reversed some of the cytokine levels, including VEGF, bFGF and IGF within the intestinal mucosa after BMT. Conclusions: Our result suggests BMT recruits host myelomonocytic cells and enhances intestinal stroma proliferation after radiation by secreting cytokines enhancing angiogenesis and chemotaxis. Host myelomonocytic cells further uplift the paracrine effect to enhance intestinal mucosal recovery.

  19. Whole body [{sup 11}C]-dihydrotetrabenazine imaging of baboons: biodistribution and human radiation dosimetry estimates

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, Rajan [Columbia University College of Physicians and Surgeons, Department of Psychiatry, New York, NY (United States); New York State Psychiatric Institute, Department of Neuroscience, Division of Brain Imaging, New York, NY (United States); Harris, Paul; Leibel, Rudolph [Columbia University College of Physicians and Surgeons, Department of Medicine, New York, NY (United States); Simpson, Norman; Parsey, Ramin [Columbia University College of Physicians and Surgeons, Department of Psychiatry, New York, NY (United States); Van Heertum, Ronald [Columbia University College of Physicians and Surgeons, Department of Radiology, New York, NY (United States); New York State Psychiatric Institute, Department of Neuroscience, Division of Brain Imaging, New York, NY (United States); Mann, J.J. [Columbia University College of Physicians and Surgeons, Department of Psychiatry, New York, NY (United States); Columbia University College of Physicians and Surgeons, Department of Radiology, New York, NY (United States); New York State Psychiatric Institute, Department of Neuroscience, Division of Brain Imaging, New York, NY (United States)

    2008-04-15

    Vesicular monoamine transporter type 2 abundance quantified using the radiotracer [{sup 11}C]-dihydrotetrabenazine (DTBZ) has been used to study diagnosis and pathogenesis of dementia and psychiatric disorders in humans. In addition, it may be a surrogate marker for insulin-producing pancreatic beta cell mass, useful for longitudinal measurements using positron emission tomography to track progression of autoimmune diabetes. To support the feasibility of long-term repeated administrations, we estimate the biodistribution and dosimetry of [{sup 11}C]-DTBZ in humans. Five baboon studies were acquired using a Siemens ECAT camera. After transmission scanning, 165-210 MBq of [{sup 11}C]-DTBZ were injected, and dynamic whole body emission scans were conducted. Time-activity data were used to obtain residence times and estimate absorbed radiation dose according to the MIRD model. Most of the injected tracer localized to the liver and the lungs, followed by the intestines, brain, and kidneys. The highest estimated absorbed radiation dose was in the stomach wall. The largest radiation dose from [{sup 11}C]-DTBZ is to the stomach wall. This dose estimate, as well as the radiation dose to other radiosensitive organs, must be considered in evaluating the risks of multiple administrations. (orig.)

  20. Development of a Whole Body Atlas for Radiation Therapy Planning and Treatment Optimization

    International Nuclear Information System (INIS)

    Qatarneh, Sharif

    2006-01-01

    The main objective of radiation therapy is to obtain the highest possible probability of tumor cure while minimizing adverse reactions in healthy tissues. A crucial step in the treatment process is to determine the location and extent of the primary tumor and its loco regional lymphatic spread in relation to adjacent radiosensitive anatomical structures and organs at risk. These volumes must also be accurately delineated with respect to external anatomic reference points, preferably on surrounding bony structures. At the same time, it is essential to have the best possible physical and radiobiological knowledge about the radiation responsiveness of the target tissues and organs at risk in order to achieve a more accurate optimization of the treatment outcome. A computerized whole body Atlas has therefore been developed to serve as a dynamic database, with systematically integrated knowledge, comprising all necessary physical and radiobiological information about common target volumes and normal tissues. The Atlas also contains a database of segmented organs and a lymph node topography, which was based on the Visible Human dataset, to form standard reference geometry of organ systems. The reference knowledge base and the standard organ dataset can be utilized for Atlas-based image processing and analysis in radiation therapy planning and for biological optimization of the treatment outcome. Atlas-based segmentation procedures were utilized to transform the reference organ dataset of the Atlas into the geometry of individual patients. The anatomic organs and target volumes of the database can be converted by elastic transformation into those of the individual patient for final treatment planning. Furthermore, a database of reference treatment plans was started by implementing state-of-the-art biologically based radiation therapy planning techniques such as conformal, intensity modulated, and radio biologically optimized treatment planning. The computerized Atlas can

  1. Individual radiation therapy patient whole-body phantoms for peripheral dose evaluations: method and specific software

    International Nuclear Information System (INIS)

    Alziar, I; Vicente, C; Giordana, G; Ben-Harrath, O; De Vathaire, F; Diallo, I; Bonniaud, G; Couanet, D; Chavaudra, J; Lefkopoulos, D; Ruaud, J B; Diaz, J C; Grandjean, P; Kafrouni, H

    2009-01-01

    This study presents a method aimed at creating radiotherapy (RT) patient-adjustable whole-body phantoms to permit retrospective and prospective peripheral dose evaluations for enhanced patient radioprotection. Our strategy involves virtual whole-body patient models (WBPM) in different RT treatment positions for both genders and for different age groups. It includes a software tool designed to match the anatomy of the phantoms with the anatomy of the actual patients, based on the quality of patient data available. The procedure for adjusting a WBPM to patient morphology includes typical dimensions available in basic auxological tables for the French population. Adjustment is semi-automatic. Because of the complexity of the human anatomy, skilled personnel are required to validate changes made in the phantom anatomy. This research is part of a global project aimed at proposing appropriate methods and software tools capable of reconstituting the anatomy and dose evaluations in the entire body of RT patients in an adapted treatment planning system (TPS). The graphic user interface is that of a TPS adapted to obtain a comfortable working process. Such WBPM have been used to supplement patient therapy planning images, usually restricted to regions involved in treatment. Here we report, as an example, the case of a patient treated for prostate cancer whose therapy planning images were complemented by an anatomy model. Although present results are preliminary and our research is ongoing, they appear encouraging, since such patient-adjusted phantoms are crucial in the optimization of radiation protection of patients and for follow-up studies. (note)

  2. Individual radiation therapy patient whole-body phantoms for peripheral dose evaluations: method and specific software.

    Science.gov (United States)

    Alziar, I; Bonniaud, G; Couanet, D; Ruaud, J B; Vicente, C; Giordana, G; Ben-Harrath, O; Diaz, J C; Grandjean, P; Kafrouni, H; Chavaudra, J; Lefkopoulos, D; de Vathaire, F; Diallo, I

    2009-09-07

    This study presents a method aimed at creating radiotherapy (RT) patient-adjustable whole-body phantoms to permit retrospective and prospective peripheral dose evaluations for enhanced patient radioprotection. Our strategy involves virtual whole-body patient models (WBPM) in different RT treatment positions for both genders and for different age groups. It includes a software tool designed to match the anatomy of the phantoms with the anatomy of the actual patients, based on the quality of patient data available. The procedure for adjusting a WBPM to patient morphology includes typical dimensions available in basic auxological tables for the French population. Adjustment is semi-automatic. Because of the complexity of the human anatomy, skilled personnel are required to validate changes made in the phantom anatomy. This research is part of a global project aimed at proposing appropriate methods and software tools capable of reconstituting the anatomy and dose evaluations in the entire body of RT patients in an adapted treatment planning system (TPS). The graphic user interface is that of a TPS adapted to obtain a comfortable working process. Such WBPM have been used to supplement patient therapy planning images, usually restricted to regions involved in treatment. Here we report, as an example, the case of a patient treated for prostate cancer whose therapy planning images were complemented by an anatomy model. Although present results are preliminary and our research is ongoing, they appear encouraging, since such patient-adjusted phantoms are crucial in the optimization of radiation protection of patients and for follow-up studies.

  3. Cumulative total effective whole-body radiation dose in critically ill patients.

    Science.gov (United States)

    Rohner, Deborah J; Bennett, Suzanne; Samaratunga, Chandrasiri; Jewell, Elizabeth S; Smith, Jeffrey P; Gaskill-Shipley, Mary; Lisco, Steven J

    2013-11-01

    Uncertainty exists about a safe dose limit to minimize radiation-induced cancer. Maximum occupational exposure is 20 mSv/y averaged over 5 years with no more than 50 mSv in any single year. Radiation exposure to the general population is less, but the average dose in the United States has doubled in the past 30 years, largely from medical radiation exposure. We hypothesized that patients in a mixed-use surgical ICU (SICU) approach or exceed this limit and that trauma patients were more likely to exceed 50 mSv because of frequent diagnostic imaging. Patients admitted into 15 predesignated SICU beds in a level I trauma center during a 30-day consecutive period were prospectively observed. Effective dose was determined using Huda's method for all radiography, CT imaging, and fluoroscopic examinations. Univariate and multivariable linear regressions were used to analyze the relationships between observed values and outcomes. Five of 74 patients (6.8%) exceeded exposures of 50 mSv. Univariate analysis showed trauma designation, length of stay, number of CT scans, fluoroscopy minutes, and number of general radiographs were all associated with increased doses, leading to exceeding occupational exposure limits. In a multivariable analysis, only the number of CT scans and fluoroscopy minutes remained significantly associated with increased whole-body radiation dose. Radiation levels frequently exceeded occupational exposure standards. CT imaging contributed the most exposure. Health-care providers must practice efficient stewardship of radiologic imaging in all critically ill and injured patients. Diagnostic benefit must always be weighed against the risk of cumulative radiation dose.

  4. Ionizing and non-ionizing radiations

    International Nuclear Information System (INIS)

    1994-01-01

    The monograph is a small manual to get a knowledge of ionizing and non-ionizing radiations. The main chapters are: - Electromagnetic radiations - Ionizing and non-ionizing radiations - Non-ionizing electromagnetic radiations - Ionizing electromagnetic radiation - Other ionizing radiations - Ionizing radiation effects - The Nuclear Safety Conseil

  5. Ionizing radiations

    International Nuclear Information System (INIS)

    2009-01-01

    After having recalled some fundamental notions and measurement units related to ionizing radiations, this document describes various aspects of natural and occupational exposures: exposure modes and sources, exposure levels, biological effects, health impacts. Then, it presents prevention principles aimed at, in an occupational context of use of radiation sources (nuclear industry excluded), reducing and managing these exposures: risk assessment, implementation of safety from the front end. Some practical cases illustrate the radiation protection approach. The legal and regulatory framework is presented: general notions, worker exposure, measures specific to some worker categories (pregnant and breast feeding women, young workers, temporary workers). A last part describes what is to be done in case of incident or accident (dissemination of radioactive substances from unsealed sources, anomaly occurring when using a generator or a sealed source, post-accident situation)

  6. Radiation doses to lungs and whole body from use of tritium in luminous paint industry

    International Nuclear Information System (INIS)

    Rudran, K.

    1988-01-01

    The radiation dose to persons exposed to tritium in the luminous paint industry is reported. The biological half-life of labile tritium is observed to be 7 to 10 days. There is evidence of exposure of lung tissue from tritium labelled polystyrene deposited in the pulmonary region and of soft tissue from organically bound tritium. Delayed excretion of labile tritium in urine following removal of the individuals from tritium handling, presence of tritium in organic constituents of blood and urine, and presence of non-volatile tritium in faecal excretion have been verified. From in vitro studies using fresh bovine serum, solubilisation half-life of tritium from the labelled paint is estimated to be 35 to 70 days after the initial fast clearance. Probable annual doses to the whole body, soft tissue and lungs under the prevailing working conditions have been estimated from the urinary and faecal excretion data. It is revealed that the actual values thus estimated are likely to exceed the values estimated by the conventional technique based on urine analysis for tritiated water. (author)

  7. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Pathak, B.

    1989-12-01

    Ionizing radiation is energy that travels through space as electromagnetic waves or a stream of fast moving particles. In the workplace, the sources of ionizing radiation are radioactive substances, nuclear power plants, x-ray machines and nuclear devices used in medicine, research and industry. Commonly encountered types of radiation are alpha particles, beta particles and gamma rays. Alpha particles have very little penetrating power and pose a risk only when the radioactive substance is deposited inside the body. Beta particles are more penetrating than alpha particles and can penetrate the outer body tissues causing damage to the skin and the eyes. Gamma rays are highly penetrating and can cause radiation damage to the whole body. The probability of radiation-induced disease depends on the accumulated amount of radiation dose. The main health effects of ionizing radiation are cancers in exposed persons and genetic disorders in the children, grandchildren and subsequent generations of the exposed parents. The fetus is highly sensitive to radiation-induced abnormalities. At high doses, radiation can cause cataracts in the eyes. There is no firm evidence that ionizing radiation causes premature aging. Radiation-induced sterility is highly unlikely for occupational doses. The data on the combined effect of ionizing radiation and other cancer-causing physical and chemical agents are inconclusive

  8. Measurement of absorbed radiation doses during whole body irradiation for bone marrow transplants using thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Giordani, Adelmo Jose; Segreto, Helena Cristina Comodo; Segreto, Roberto Araujo; Medeiros, Regina Bitelli; Oliveira, Jose Salvador R. de

    2004-01-01

    The objective was to evaluate the precision of the absorbed radiation doses in bone marrow transplant therapy during whole body irradiation. Two-hundred CaSO 4 :Dy + teflon tablets were calibrated in air and in 'phantom'. These tablets were randomly selected and divided in groups of five in the patients' body. The dosimetric readings were obtained using a Harshaw 4000A reader. Nine patients had their entire bodies irradiated in parallel and opposite laterals in a cobalt-60 Alcion II model, with a dose rate of 0.80 Gy/min at 80.5 cm, {(10 ? 10) cm 2 field. The dosimetry of this unit was performed using a Victoreen 500 dosimeter. For the determination of the mean dose at each point evaluated, the individual values of the tablets calibrated in air or 'phantom' were used, resulting in a build up of 2 mm to superficialize the dose at a distance of 300 cm. In 70% of the patients a variation of less than 5% in the dose was obtained. In 30% of the patients this variation was less than 10%, when values obtained were compared to the values calculated at each point. A mean absorption of 14% was seen in the head, and an increase of 2% of the administered dose was seen in the lungs. In patients with latero-lateral distance greater than 35 cm the variation between the calculated doses and the measured doses reached 30% of the desired dose, without the use of compensation filters. The measured values of the absorbed doses at the various anatomic points compared to the desired doses (theoretic) presented a tolerance of ± 10%, considering the existent anatomical differences and when using the individual calibration factors of the tablets. (author)

  9. Glial reaction in visual centers upon whole-body combined irradiation with microwaves and x-radiation

    International Nuclear Information System (INIS)

    Logvinov, S.V.

    1989-01-01

    A single whole-body preirradiation with thermogenous microwaves modifies the dynamics of the glial reactions of visual centers of ginea pigs induced by median lethal X-radiation doses. A combination of the two factors products the synergistic effect, estimated by the degree of alteration of astrocytes and oligodendroglyocytes at early times after exposure, leads to early activation of microglia, and reduces radiation-induced alterations in glia at later times (25-60 days)

  10. Cryo-sectioning of mice for whole-body imaging of drugs and metabolites with desorption electrospray ionization mass spectrometry imaging - a simplified approach

    DEFF Research Database (Denmark)

    Okutan, Seda; Hansen, Harald S; Janfelt, Christian

    2016-01-01

    A method is presented for whole-body imaging of drugs and metabolites in mice with desorption electrospray ionization mass spectrometry imaging (DESI-MSI). Unlike most previous approaches to whole-body imaging which are based on cryo-sectioning using a cryo-macrotome, the presented approach...... to simple, sensitive and highly selective whole-body imaging in drug distribution and metabolism studies....... is based on use of the cryo-microtome which is found in any histology lab. The tissue sections are collected on tape which is analyzed directly by DESI-MSI. The method is demonstrated on mice which have been dosed intraperitoneally with the antidepressive drug amitriptyline. By combining full...

  11. An assessment of annual whole-body occupational radiation exposure in Ireland (1996-2005)

    International Nuclear Information System (INIS)

    Colgan, P. A.; Currivan, L.; Fenton, D.

    2008-01-01

    Whole-body occupational exposure to artificial radiation sources in Ireland for the years 1996-2005 has been reviewed. Dose data have been extracted from the database of the Radiological Protection Inst. of Ireland, which contains data on >95% of monitored workers. The data have been divided into three sectors: medical, industrial and education/ research. Data on exposure to radon in underground mines and show caves for the years 2001-05 are also presented. There has been a continuous increase in the number of exposed workers from 5980 in 1996 to 9892 in 2005. Over the same time period, the number of exposed workers receiving measurable doses has decreased from 676 in 1996 to 189 in 2005 and the collective dose has also decreased from 227.1 to 110.3 man milli-sievert (man mSv). The collective dose to workers in the medical sector has consistently declined over the 10-y period of the study while that attributable to the industrial sector has remained reasonably static. In the education/research sector, the collective dose typically represents 5% or less of the total collective dose from all practices. Over the 10 y of the study, a total of 77914 annual dose records have been accumulated, but only 4040 ( 1 mSv and 21 of these exceeded 5 mSv. Most of the doses >1 mSv were received by individuals working in diagnostic radiology (which also includes interventional radiology) in hospitals and site industrial radiography. There has been only one instance of a dose above the annual dose limit of 20 mSv. Evaluating the data for the period 2001-05 separately, the average annual collective dose from the medical, industrial and educational/research sectors are ∼60, 70 and 2 man mSv with the average dose per exposed worker who received a measurable dose being 0.32, 0.79 and 0.24 mSv, respectively. Diagnostic radiology and site industrial radiography each represents >60% of the collective dose in their respective sectors. Available data on radon exposure in one underground

  12. Estimation of whole-body radiation exposure from brachytherapy for oral cancer using a Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ozaki, Y.; Watanabe, H.; Kaida, A.; Miura, M.; Nakagawa, K.; Toda, K.; Yoshimura, R.; Sumi, Y.; Kurabayashi, T.

    2017-01-01

    Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192 Ir hairpins and 198 Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192 Ir hairpins and 198 Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained.

  13. An estimate of the radiation-induced cancer risk from the whole-body stray radiation exposure in neutron radiotherapy

    International Nuclear Information System (INIS)

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.

    1982-01-01

    1980 BEIR III risk factors have been used to estimate the secondary cancer risks from the whole-body stray radiation exposures occurring in neutron radiotherapy. Risks were calculated using linear, linear-quadratic and quadratic dose-response models for the gamma component of the stray radiation. The linear dose-response model was used to calculate risk for the neutron component of the stray radiation. These estimates take into consideration for the first time the age and sex distribution of patients undergoing neutron therapy. Changes in risk as a function of the RBE (10-100) assigned to the stray neutron radiation component have also been assessed. Excess risks in neutron-treated patients have been compared with excess risks for photon-treated patients and with the expected incidence of cancer in a normal population having the same age and sex distribution. Results indicate that it will be necessary to tolerate a higher incidence of secondary cancers in patients undergoing fast neutron therapy than is the case with conventional photon therapy. For neutron RBEs of less than 50 the increased risk is only a fraction of the normal expected incidence of cancer in this population. Comparison of the radiation-induced risk with reported normal tissue complication rates in the treatment volume indicates that the excess cancer risk is substantially lower than the risk from other late normal tissue effects. (author)

  14. Exposure to radiation in whole body and skull CT examinations depending upon parameters determined by the technique of examination

    International Nuclear Information System (INIS)

    Fiebach, B.J.O.; Makoski, H.B.; Ewen, K.

    1983-01-01

    The article gives the organ doses for whole body CT examinations of the thoracic region, the upper abdomen, the mesogastric and pelvic regions as well as of the lumbar vertebral column and for CT scanning of the skull. The examinations were performed using in Alderson-Rando phantom with the whole body computer thomograph Somatom DR2 supplied by Siemens and with the skull computer tomograph Siretom 2000, also supplied by Siemens, It was found that the magnitude of radiation exposure of the patient depends not only on instrument-specific properties, but also to a very large measure on the examination parameters and techniques which can vary considerably from one clinic to another. (orig.) [de

  15. Diseases induced by ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The instruction sheet for medical examinations presents information on clinical symptoms and diagnostic procedures relating to the following cases: 1. Acute radiation injury due to whole-body exposure; 2. acute, local radiation injury due to partial body exposure; 3. chronic general affections due to whole-body exposure; 4. chronic, local affections due to partial body exposure; 5. delayed radiation effects. (HP) [de

  16. Effects of whole-body X-radiation on the neutrophils of the peripheral blood of the primate Cebus apella (weeping capuchin)

    International Nuclear Information System (INIS)

    Egami, Mizue Imoto; Silva, Maria Regina Regis; Paiva, Elias Rodrigues de; Segreto, Camilo; Diniz, Lilian Munao

    1994-01-01

    The effects of ionizing radiation on the neutrophils of Primate Cebus apella were studied after whole-body x-radiation to a single exposure of 25.8 m C/kg (100 R 0, Wright's stained preparations showed changes in the nucleus and the cytoplasm of neutrophils at 1,3 and 6 days after irradiation. during this period of time, the cytochemical methods revealed a considerable variation in the pattern of distribution of glycogen, sudanophilic and myeloperoxidase positive granules. Under these same experimental conditions the number of caryoschizes increased on the first and third day. On the ninetieth day post exposure, the morphological and cytochemical appearances of neutrophils as well as the number of caryoschized were similar to the controls. (author)

  17. Radiation plus local hyperthermia versus radiation plus the combination of local and whole-body hyperthermia in canine sarcomas

    International Nuclear Information System (INIS)

    Thrall, Donald E.; Prescott, Deborah M.; Samulski, Thaddeus V.; Rosner, Gary L.; Denman, David L.; Legorreta, Roberto L.; Dodge, Richard K.; Page, Rodney L.; Cline, J. Mark; Lee Jihjong; Case, Beth C.; Evans, Sydney M.; Oleson, James R.; Dewhirst, Mark W.

    1996-01-01

    Purpose: The purpose of this study was to assess the effect of increasing intratumoral temperatures by the combination of local hyperthermia (LH) and whole body hyperthermia (WBH) on the radiation response of canine sarcomas. Methods and Materials: Dogs with spontaneous soft tissue sarcomas and no evidence of metastasis were randomized to be treated with radiation combined with either LH alone or LH + WBH. Dogs were accessioned for treatment at two institutions. The radiation dose was 56.25 Gy, given in 25 2.25 Gy daily fractions. Two hyperthermia treatments were given; one during the first and one during the last week of treatment. Dogs were evaluated after treatment for local recurrence, metastasis, and complications. Results: Sixty-four dogs were treated between 1989 and 1993. The use of LH+WBH resulted in statistically significant increases in the low and middle regions of the temperature distributions. The largest increase was in the low temperatures with median CEM 43 T90 values of 4 vs. 49 min for LH vs. LH + WBH, respectively (p < 0.001). There was no difference in duration of local tumor control between hyperthermia groups (p = 0.59). The time to metastasis was shorter for dogs receiving LH + WBH (p = 0.02); the hazard ratio for metastatic disease for dogs in the LH + WBH group was 2.5 (95% confidence interval, 1.2-5.4) with respect to dogs in the LH group. Complications were greater in larger tumors and in tumors treated with LH + WBH. Conclusion: The combination of LH + WBH with radiation therapy, as described herein, was not associated with an increase in local tumor control in comparison to use of LH with radiation therapy. The combination of LH + WBH also appeared to alter the biology of the metastatic process and was associated with more complications than LH. We identified no rationale for further study of LH + WBH in combination with radiation for treatment of solid tumors

  18. Direct comparison of radiation dosimetry of six PET tracers using human whole-body imaging and murine biodistribution studies

    International Nuclear Information System (INIS)

    Sakata, Muneyuki; Oda, Keiichi; Toyohara, Jun; Ishii, Kenji; Nariai, Tadashi; Ishiwata, Kiichi

    2013-01-01

    We investigated the whole-body biodistributions and radiation dosimetry of five 11 C-labeled and one 18 F-labeled radiotracers in human subjects, and compared the results to those obtained from murine biodistribution studies. The radiotracers investigated were 11 C-SA4503, 11 C-MPDX, 11 C-TMSX, 11 C-CHIBA-1001, 11 C-4DST, and 18 F-FBPA. Dynamic whole-body positron emission tomography (PET) was performed in three human subjects after a single bolus injection of each radiotracer. Emission scans were collected in two-dimensional mode in five bed positions. Regions of interest were placed over organs identified in reconstructed PET images. The OLINDA program was used to estimate radiation doses from the number of disintegrations of these source organs. These results were compared with the predicted human radiation doses on the basis of biodistribution data obtained from mice by dissection. The ratios of estimated effective doses from the human-derived data to those from the mouse-derived data ranged from 0.86 to 1.88. The critical organs that received the highest absorbed doses in the human- and mouse-derived studies differed for two of the six radiotracers. The differences between the human- and mouse-derived dosimetry involved not only the species differences, including faster systemic circulation of mice and differences in the metabolism, but also measurement methodologies. Although the mouse-derived effective doses were roughly comparable to the human-derived doses in most cases, considerable differences were found for critical organ dose estimates and pharmacokinetics in certain cases. Whole-body imaging for investigation of radiation dosimetry is desirable for the initial clinical evaluation of new PET probes prior to their application in subsequent clinical investigations. (author)

  19. Efficiency of radiation protection equipment in interventional radiology: a systematic Monte Carlo study of eye lens and whole body doses

    International Nuclear Information System (INIS)

    Koukorava, C; Farah, J; Clairand, I; Donadille, L; Struelens, L; Vanhavere, F; Dimitriou, P

    2014-01-01

    Monte Carlo calculations were used to investigate the efficiency of radiation protection equipment in reducing eye and whole body doses during fluoroscopically guided interventional procedures. Eye lens doses were determined considering different models of eyewear with various shapes, sizes and lead thickness. The origin of scattered radiation reaching the eyes was also assessed to explain the variation in the protection efficiency of the different eyewear models with exposure conditions. The work also investigates the variation of eye and whole body doses with ceiling-suspended shields of various shapes and positioning. For all simulations, a broad spectrum of configurations typical for most interventional procedures was considered. Calculations showed that ‘wrap around’ glasses are the most efficient eyewear models reducing, on average, the dose by 74% and 21% for the left and right eyes respectively. The air gap between the glasses and the eyes was found to be the primary source of scattered radiation reaching the eyes. The ceiling-suspended screens were more efficient when positioned close to the patient’s skin and to the x-ray field. With the use of such shields, the H p (10) values recorded at the collar, chest and waist level and the H p (3) values for both eyes were reduced on average by 47%, 37%, 20% and 56% respectively. Finally, simulations proved that beam quality and lead thickness have little influence on eye dose while beam projection, the position and head orientation of the operator as well as the distance between the image detector and the patient are key parameters affecting eye and whole body doses. (paper)

  20. Monitoring occupational exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Button, J.B.C. [Radiation Safety Consultancy, Engadine, NSW (Australia)

    1997-12-31

    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives. 8 refs., 9 tabs.

  1. Monitoring occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Button, J.B.C.

    1997-01-01

    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives

  2. Ionizing radiation

    International Nuclear Information System (INIS)

    Passchier, W.F.

    1988-01-01

    This report is part two from the series 'Future explorations' of the Dutch Counsil for Public Health. It contains contributions on biological effects of radiation in which information is presented on research into the occurrence of cancer in patients treated with radiotherapy and irradiated laboratory animals, on the effects of prenatal irradiation, and on the possibile, only in laboratory-animal research demonstrated, effects of irradiation in offspring of irradiated parents. In other contributions, which put the 'link' between the radiology and the practical radiation hygienics, it appears that the increased scientific knowledge does not make it easier to design radiation-hygienic standards and rules. (H.W.). refs.; figs.; tabs

  3. Whole body gamma radiation effects on rheological behaviour (deformability) of rat erythrocytes

    International Nuclear Information System (INIS)

    Soliman, M.S.

    2004-01-01

    This study was designed to determine the effect of whole body gamma irradiation on the rheological behaviour of rat erythrocytes (deformability). Animals were divided into 4 irradiated groups and 4 control groups according to their sacrificing time intervals (1 st, 3 rd, 5 th and 7 th days) post-irradiation with dose (6 Gy). In all animals and at the previous time intervals, red blood cell (RBC) membrane proteins electrophoretic pattern, RBC membrane lipids levels (cholesterol and phospholipids), RBC electrolytes levels (sodium, potassium and calcium), corpuscular osmotic fragility and RBC morphological by scanning electron microscopy were determined. Highly significant increase in membrane cholesterol, RBC sodium, calcium and corpuscular osmotic fragility accompanied by highly significant decrease in membrane phospholipids, RBC potassium and RBC deformability were found. No changes in membrane proteins electrophoretic patterns were detected. Morphologically, there were increase in the incidences of echinocytes and spherocytes development, which were time dependent. According to the previous results, irradiation promotes alterations in RBC shape (echinocytosis), membrane skeletal dysfunction, membrane lipid peroxidation, increase in membrane cholesterol/phospholipid content, changes in membrane electrolyte permeability and decrease then increase in osmotic fragility. These alterations in turn led to decrease in cellular deformability as a result of increased membrane rigidity and also due to cells dehydration caused by excess leakage of potassium ions from the RBCs

  4. The ORNL whole body counter

    International Nuclear Information System (INIS)

    1988-01-01

    This report is a non-technical document intended to provide an individual about to undergo a whole-body radiation count with a general understanding of the counting procedure and with the results obtained. 9 figs

  5. Cryo-sectioning of mice for whole-body imaging of drugs and metabolites with desorption electrospray ionization mass spectrometry imaging - a simplified approach.

    Science.gov (United States)

    Okutan, Seda; Hansen, Harald S; Janfelt, Christian

    2016-06-01

    A method is presented for whole-body imaging of drugs and metabolites in mice with desorption electrospray ionization mass spectrometry imaging (DESI-MSI). Unlike most previous approaches to whole-body imaging which are based on cryo-sectioning using a cryo-macrotome, the presented approach is based on use of the cryo-microtome which is found in any histology lab. The tissue sections are collected on tape which is analyzed directly by DESI-MSI. The method is demonstrated on mice which have been dosed intraperitoneally with the antidepressive drug amitriptyline. By combining full-scan detection with the more selective and sensitive MS/MS detection, a number of endogenous compounds (lipids) were imaged simultaneously with the drug and one of its metabolites. The sensitivity of this approach allowed for imaging of drug and the metabolite in a mouse dosed with 2.7 mg amitriptyline per kg bodyweight which is comparable to the normal prescribed human dose. The simultaneous imaging of endogenous and exogenous compounds facilitates registration of the drug images to certain organs in the body by colored-overlay of the two types of images. The method represents a relatively low-cost approach to simple, sensitive and highly selective whole-body imaging in drug distribution and metabolism studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Diagnostic imaging in polytrauma: comparison of radiation exposure from whole-body MSCT and conventional radiography with organ-specific CT

    International Nuclear Information System (INIS)

    Wedegaertner, U.; Lorenzen, M.; Weber, C.; Adam, G.; Nagel, H.D.

    2004-01-01

    Purpose: To compare the radiation dose of whole-body multislice CT (MSCT) and conventional radiography with organ-specific CT in polytrauma. Materials and Methods: The whole-body MSCT encompassing brain, neck and midface, chest, abdomen and pelvis was performed on a Somatom Volume Zoom (Siemens). Conventional radiography consisted of chest and cervical, thoracic and lumbar spine in two views as well as pelvis. Polymat, Siemens. Three combinations of organ specific CT were chosen: CT examination of (1) head and cervical spine, (2) head, cervical spine and chest, (3) head, cervical spine and abdomen. The effective doses of whole-body MSCT and conventional radiography with organ-specific CT were calculated. Results: Effective doses were 20 mSv for whole-body MSCT, 2 mSv for conventional x-ray, and 5 mSv for combination (1), 8 mSv for combination (2) and (3) 16 mSv for combination (3) of the organ-specific CT. The ratio of radiation dose between whole-body MSCT and radiography was 10: 1. This ratio was reduced to 3: 1, 2: 1 and 1: 1 when a combination of radiography and CT was performed. Conclusions: Whole-body MSCT in polytrauma compared to conventional radiography with organ-specific CT induces a threefold increased dose in unfavorable situations and no increased dose in favorable situations. Nevertheless, routine use of whole-body MSCT should be critically evaluated and should be adapted to the clinical benefit. (orig.) [de

  7. Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography.

    Science.gov (United States)

    Kertesz, Vilmos; Van Berkel, Gary J; Vavrek, Marissa; Koeplinger, Kenneth A; Schneider, Bradley B; Covey, Thomas R

    2008-07-01

    Desorption electrospray ionization tandem mass spectrometry (DESI-MS/MS) and whole-body autoradiography (WBA) were used for chemical imaging of whole-body thin tissue sections of mice intravenously dosed with propranolol (7.5 mg/kg). DESI-MS/MS imaging utilized selected reaction monitoring detection performed on an AB/MDS SCIEX 4000 QTRAP mass spectrometer equipped with a prototype extended length particle discriminator interface. Propranolol images of the tissue sections using DESI-MS/MS were obtained at surface scan rates of 0.1, 0.5, 2, and 7 mm/s. Although signal decreased with increasing scan rate, useful whole-body images for propranolol were obtained from the tissues even at 7 mm/s, which required just 79 min of analysis time. Attempts to detect and image the distribution of the known propranolol metabolites were unsuccessful. Regions of the tissue sections showing the most radioactivity from WBA sections were excised and analyzed by high-performance liquid chromatography (HPLC) with radiochemical detection to determine relative levels of propranolol and metabolites present. Comparison of the DESI-MS/MS signal for propranolol and the radioactivity attributed to propranolol from WBA sections indicated nominal agreement between the two techniques for the amount of propranolol in the brain, lung, and liver. Data from the kidney showed an unexplained disparity between the two techniques. The results of this study show the feasibility of using DESI-MS/MS to obtain useful chemical images of a drug in whole-body thin tissue sections following drug administration at a pharmacologically relevant level. Further optimization to improve sensitivity and enable detection of the drug metabolites will be among the requirements necessary to move DESI-MS/MS chemical imaging forward as a practical tool in drug discovery.

  8. The whole body counting laboratory of the Swedish Radiation Safety Authority; Straalsaekerhetsmyndighetens helkroppslaboratorium

    Energy Technology Data Exchange (ETDEWEB)

    del Risco Norrlid, Lilian; Oestergren, Inger

    2010-03-15

    One of the first whole body counting (WBC) facilities in the world sensitive enough for in vivo measurements was started by Rolf Sievert 1950 at the Radio-Physics Department at Karolinska Institute in Stockholm. During many years this was the WBC facility of the national regulatory authority and went through different modernisations along the years. During 2004-2007 the facility was rebuilt in its new location in Solna strand and the laboratory thus moved. The latter detectors, sodium iodide (NaI) scintillation detectors from the late 80's and most electronic were kept. The measurement geometry and the background conditions have changed. This report describes the new facility's characteristics and presents the results for a first round of measurements on a non-contaminated group of persons for control of Cs-137 and K-40. The background in the new facility was monitored during 2007-2009 and is stable but higher than in the former location. The cause for the higher background is related to the presence of Radon progeny in the laboratory environment due to a different ventilation system. The limits of detection are 22 Bq for Cs-137 and 300 Bq for K-40, this for a half an hour measurement of a person of 75 kg weight. Measurements were run on a control group of persons to determine the activity concentrations of Cs-137 and K-40. The control group was populated with persons who had taken part in previous control groups at the former location. The purpose was to compare the activity concentrations of K-40 at the new laboratory in Solna strand and the former laboratory at Karolinska, since it is well known that the concentration of K-40 doesn't change significantly for the same person. The comparison revealed an underestimation of K-40 for most of the cases. A correction to the activities of Cs-137 and K-40 was applied for each member of the group. The correction factor is based on the theoretical estimation of K-40, which depends on the particular length

  9. Development of quick scan whole body monitor for in-vivo monitoring of radiation workers and general public

    International Nuclear Information System (INIS)

    Sankhla, Rajesh; Singh, I.S.; Rao, D.D.; Pradeepkumar, K.S.

    2015-01-01

    Whole body monitoring of radiation workers at nuclear facilities is a regulatory requirement and is recommended for assessment of internal contamination due to gamma emitting radio nuclides. Additionally, nuclear accidents like Chernobyl, Fukushima and radiological accidents like Goiania have clearly highlighted the need for in-vivo monitoring of the members of the public during and/or after such accidents. To cater to these requirements, a high throughput, fast screening, standing linear geometry Quick Scan Whole Body Monitor (QS-WBM) is designed, fabricated and commissioned to measure internal contamination due to gamma emitting radio nuclides (E γ >200keV) incorporated in the human body. The system is designed to achieve sensitivity comparable with conventional WBM for 1 - 2 minutes counting time and to accommodate different body sizes of Indian occupational workers. It is calibrated using BARC reference Bottle Mannequin Absorption (BOMAB) type phantom and also using a family of BOMAB type phantoms representative of different age groups namely 1-, 5-, 10-, 15- and 20- years. The developed system will also be highly useful during emergency situations when large numbers of persons are to be monitored in short interval of time. (author)

  10. Whole body imaging

    International Nuclear Information System (INIS)

    de Luca, P.C.; Stoddart, H.F.; Jeffries, D.

    1976-01-01

    A whole body imaging system rapidly forms a quality image of the bony structure, soft tissue or specific organs of a patient who has been injected with a suitable radioactive tracer chemical. A radiation detector head assembly includes a number of detector subassemblies, each having a lead collimator with tapered holes for admitting gamma radiation from a small area of the patient to a scintillation crystal that converts the gamma rays admitted by the collimator into visible or ultraviolet energy pulses. A photomultiplier converts these pulses into electrical pulses. A row of equally spaced detector subassemblies reciprocate within a nonreciprocating lead shield along the long axis of the array over a distance substantially equal to the separation between adjacent ones of the small areas. Associated electronic and electromechanical apparatus control the reciprocating motion and the longitudinal motion of the radiation detector head assembly, and process the photodetected signals to produce in a relatively short time a visible image of the radiant energy emanating from the whole body of the patient scanned

  11. The effect of whole-body radiation on the aging process in man

    International Nuclear Information System (INIS)

    Finch, S.C.

    1979-01-01

    Numerous studies of the atomic bomb survivors in Hiroshima and Nagasaki have provided no definite evidence of radiation-induced acceleration of aging in man, but several suggestive effects involving tissue markers of the aging process have been demonstrated. The effects have generally been more marked in those persons who were young at the time of exposure. In several studies which were conducted in both cities the age-related radiation effects were greater in Hiroshima than in Nagasaki. (Auth.)

  12. The impact of prodromal symptoms on dose monitoring for whole body radiation exposure

    International Nuclear Information System (INIS)

    Hartmann, A.; Bojar, H.; Zamboglou, N.; Pape, H.; Schnabel, T.; Schmitt, G.

    1994-01-01

    The triage of victims after radiation injury is complicated by missing dose values and the fact that most tissues react after a latency period. We evaluated 63 patients undergoing total body irradiation as conditioning regime before bone marrow transplantation in order to find a relation between prodromal symptoms and dose. Emesis after radiation exposure hints to doses greater than 1.5 Gy. A rise of body temperature above 37 C up to five hours after exposure is related to doses exceeding 2.5 Gy, while an acute onset of diarrhoea is an indicator of a severe accident with more than 9 Gy. Besides blood counts and chromosome analyses a careful evaluation of prodromal symptoms can help to classify the severity of radiation accidents. (orig./MG) [de

  13. Ionizing radiation in environment

    International Nuclear Information System (INIS)

    Jandl, J.; Petr, I.

    1988-01-01

    The basic terms are explained such as the atom, radioactivity, nuclear reaction, interaction of ionizing radiation with matter, etc. The basic dosimetric variables and units and properties of radionuclides and ionizing radiation are given. Natural and artificial sources of ionizing radiation are discussed with regard to the environment and the propagation and migration of radionuclides is described in the environment to man. The impact is explained of ionizing radiation on the cell and the somatic and genetic effects of radiation on man are outlined. Attention is devoted to protection against ionizing radiation and to radiation limits, also to the detection, dosimetry and monitoring of ionizing radiation in the environment. (M.D.). 92 figs., 40 tabs. 74 refs

  14. Radiation assessment to paediatric with F-18-FDG undergo whole-body PET/CT examination

    Energy Technology Data Exchange (ETDEWEB)

    Dhalisa, H., E-mail: dhalisa82@gmail.com; Rafidah, Z. [Kluster Oncology Science and Radiology, Advanced Medical Dental Institute, Universiti Sains Malaysia (USM), Bertam, Penang (Malaysia); Mohamad, A. S. [Department of Nuclear Medicine, National Cancer Institute, No 4 Jalan P7, Presint 7, Putrajaya (Malaysia)

    2016-01-22

    This study was carried out on wholebody radiation dose assessment to paediatrics patient who undergo PET/CT scanner at Institut Kanser Negara. Consist of 68 patients with varies of malignancies and epilepsy disease case covering age between 2 years to 12 years old. This is a retrospective study from 2010-2014. The use of PET/CT scanner as an advanced tool has been proven to give an extra radiation dose to the patient. It is because of the radiation exposure from the combination of both CT and PET scans rather than a single CT or PET scan. Furthermore, a study on radiation dose to paediatric patient undergoing PET/CT is rare in Malaysia. So, the aim of this study is to estimate the wholebody effective dose to paediatric patient in Malaysia. Effective dose from PET scan was calculated based on the activity of F18 FDG and dose coefficient reported in International Commission on Radiological Protection (ICRP) Publication 106. Effective dose from CT was determined using k coefficient as reported in ICRP publication 102 and Dose Length Product (DLP) value. The average effective dose from PET and CT were found to be 7.05mSv and 5.77mSv respectively. The mean wholebody effective dose received by a patient with combined PETCT examination was 12.78mSv. These results could be used as reference for dosimetry of a patient undergoing PETCT examination in Malaysia.

  15. An unshielded whole body radioactivity counter for monitoring persons after a radiation accident

    International Nuclear Information System (INIS)

    Katoch, D.S.; Somasundaram, S.

    1979-01-01

    An unshielded chair in which the subject sits, holding a 7.6 cm x 7.6 cm NaI (Tl) detector in his lap, was evaluated for monitoring of persons suspected of internal radioactive contamination following a radiation accident. The reduction in different energy bands of the background gamma-ray spectrum due to self-shielding of the subject was studied for two postures, designated ''upright'' and ''folding'' and the data were analysed in a CDC 3600 computer to obtain the best-fit regression equation relating the reduction factor with body weight and height. The response of the counter was evaluated using an in vitro method and the ranges of under/over-estimation of body burden resulting from assumption of partial/uniform distribution of activity were determined. Counting sensitivities were derived for 13 radioisotopes having gamma-ray energies in the range 145 keV-1.46 MeV. The results are presented and discussed. The study shows that this simple system may be used not only in radiation emergencies but also for operational monitoring of radiation workers for a number of radioisotopes of low and medium radiotoxicity. (auth.)

  16. Microwave radiation (2.45 GHz)-induced oxidative stress: Whole-body exposure effect on histopathology of Wistar rats.

    Science.gov (United States)

    Chauhan, Parul; Verma, H N; Sisodia, Rashmi; Kesari, Kavindra Kumar

    2017-01-01

    Man-made microwave and radiofrequency (RF) radiation technologies have been steadily increasing with the growing demand of electronic appliances such as microwave oven and cell phones. These appliances affect biological systems by increasing free radicals, thus leading to oxidative damage. The aim of this study was to explore the effect of 2.45 GHz microwave radiation on histology and the level of lipid peroxide (LPO) in Wistar rats. Sixty-day-old male Wistar rats with 180 ± 10 g body weight were used for this study. Animals were divided into two groups: sham exposed (control) and microwave exposed. These animals were exposed for 2 h a day for 35 d to 2.45 GHz microwave radiation (power density, 0.2 mW/cm 2 ). The whole-body specific absorption rate (SAR) was estimated to be 0.14 W/kg. After completion of the exposure period, rats were sacrificed, and brain, liver, kidney, testis and spleen were stored/preserved for determination of LPO and histological parameters. Significantly high level of LPO was observed in the liver (p body microwave exposure, compared to the control group. Based on the results obtained in this study, we conclude that exposure to microwave radiation 2 h a day for 35 d can potentially cause histopathology and oxidative changes in Wistar rats. These results indicate possible implications of such exposure on human health.

  17. Radioprotective effect of Tamarindus indica pod extract in Swiss albino mice exposed to whole body electron beam radiation

    International Nuclear Information System (INIS)

    Nandini, S.; Suchetha Kumari, N.; Ganesh Sanjeev; D'sa, Prima

    2013-01-01

    The objective of the study was to investigate the radioprotective effect of Tamarindus indica pod extract against radiation induced damage.The effect of 100 mg of hydroalcoholic extract of Tamarindus indica pod was studied in Swiss albino mice exposed to 6 Gy whole body electron beam radiation. Treatment of mice with extract for 15 days before irradiation reduced the symptoms of radiation sickness when compared with the untreated irradiated group. The irradiated animals showed an elevation in lipid peroxidation and reduction in glutathione, total antioxidants and antioxidant enzymes such as glutathione peroxidase and catalase activities. Radiation induced mice has shown micronucleus in the bone marrow cells. Treatment of mice with Tamarindus indica pod extract before irradiation caused a significant reduction in lipid peroxidation followed by significant elevation in reduced glutathione, total antioxidants, glutathione peroxidase and catalase activity. It also showed a reduction in the micronucleus formation in bone marrow cells. Results indicate that the radioprotective activity of Tamarindus indica pod extract may be due to free radical scavenging attributed as a result of increased antioxidant level in mice. (author)

  18. Systematic measurements of whole-body imaging dose distributions in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Hälg, Roger A.; Besserer, Jürgen; Schneider, Uwe

    2012-01-01

    Purpose: The full benefit of the increased precision of contemporary treatment techniques can only be exploited if the accuracy of the patient positioning is guaranteed. Therefore, more and more imaging modalities are used in the process of the patient setup in clinical routine of radiation therapy. The improved accuracy in patient positioning, however, results in additional dose contributions to the integral patient dose. To quantify this, absorbed dose measurements from typical imaging procedures involved in an image-guided radiation therapy treatment were measured in an anthropomorphic phantom for a complete course of treatment. The experimental setup, including the measurement positions in the phantom, was exactly the same as in a preceding study of radiotherapy stray dose measurements. This allows a direct combination of imaging dose distributions with the therapy dose distribution. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from imaging devices used with treatment machines from the manufacturers Accuray, Elekta, Siemens, and Varian and from computed tomography scanners from GE Healthcare were determined and the resulting effective dose was calculated. The list of investigated imaging techniques consisted of cone beam computed tomography (kilo- and megavoltage), megavoltage fan beam computed tomography, kilo- and megavoltage planar imaging, planning computed tomography with and without gating methods and planar scout views. Results: A conventional 3D planning CT resulted in an effective dose additional to the treatment stray dose of less than 1 mSv outside of the treated volume, whereas a 4D planning CT resulted in a 10 times larger dose. For a daily setup of the patient with two planar kilovoltage images or with a fan beam CT at the TomoTherapy unit, an additional effective dose outside of the treated volume of less than 0.4 mSv and 1

  19. Lethal effect after whole-body irradiation on mouse with various photon radiations

    International Nuclear Information System (INIS)

    Kohda, Shizuo

    1976-01-01

    The dependence of mortality on the quality of radiation was investigated in ICR mice after wholebody irradiation with 200 kV x-ray, 60 Co γ-ray, or 10 MV x-ray. With respect to the 30 day mortality, LD 50 values were estimated as 606 rad for 200 kV x-ray and as 713 rad both for 60 Co γ-ray and for 10 MV x-ray. Hence, the value of relative biological effectiveness (RBE) to that for 200 kV x-ray was 0.850, while the value decreased with increasing the mortality rate. The value extrapolated to 100% mortality was estimated as 0.6. These results were valid for either 7 or 8 week mice, but the life span of 7 week mice after the irradiation was 3 days shorter than that of 8 week mice. These findings resulted in following conclusions: 1) There are no qualitative differences between 10 MV x-ray and 60 Co γ-ray irradiations. 2) The biological effects after 10 MV x-ray and 60 Co γ-ray irradiations are reduced with increased killing rate, compared with that after 200 kV x-ray irradiations. (Evans, J.)

  20. Effect of Whole Body Low Dose Radiation (WB-LDR) on diabetic rats

    International Nuclear Information System (INIS)

    Roy, B.G.

    2014-01-01

    Exposure of type II diabetic mice to LDR has been shown to significantly up regulate pancreatic antioxidants along with reduction of glucose levels. Present study was aimed to evaluate the effects of WB-LDR on type II diabetic rats. Sprague-Dawley male rats (n=18) were pre-treated with Alloxan Monohydrate (150 mg/kg body weight, IP) to induce hyperglycemia. Elevated level of blood glucose was monitored for consecutive 10 days by Glucometer (Accu-Chek, Active) before irradiation. Two group of rats (n=12) were exposed to single dose of 0.25 Gy and 0.5 Gy of gamma radiation at the rate of 1.02 Gy/minute. Blood glucose level, feed, water intake and body weight was monitored for 10 days post irradiation. Results revealed weight loss, polydipsia, polyphagia and elevated blood glucose level up to 10th day in diabetic control, whereas; reverse trend was observed from 7th day post irradiation in two treated groups. However, no significant difference was found between two treated groups. The results indicate that treatment with WB-LDR reduces the blood-glucose level and so its complications in diabetic rats. (author)

  1. Ionizing radiation in hospitals

    International Nuclear Information System (INIS)

    Blok, K.; Ginkel, G. van; Leun, K. van der; Muller, H.; Oude Elferink, J.; Vesseur, A.

    1985-10-01

    This booklet dels with the risks of the use of ionizing radiation for people working in a hospital. It is subdivided in three parts. Part 1 treats the properties of ionizing radiation in general. In part 2 the various applications are discussed of ionizing radiation in hospitals. Part 3 indicates how a not completely safe situation may be improved. (H.W.). 14 figs.; 4 tabs

  2. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  3. Whole-body CT for lymphoma staging: Feasibility of halving radiation dose and risk by iterative image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M., E-mail: mathias.meyer@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Klein, S.A., E-mail: stefan.klein@umm.de [Department of Hematology and Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Brix, G., E-mail: gbrix@bfs.de [Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, D-85764 Neuherberg (Germany); Fink, C., E-mail: Christian.Fink@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Pilz, L., E-mail: lothar.pilz@medma.uni-heidelberg.de [Department of Biostatistics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Jafarov, H., E-mail: Hashim.Jafarov@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Hofmann, W.K., E-mail: w.k.hofmann@umm.de [Department of Hematology and Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Schoenberg, S.O., E-mail: Stefan.Schoenberg@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); and others

    2014-02-15

    Objectives: Patients with lymphoma are at higher-risk of secondary malignancies mainly due to effects of cancer therapy as well as frequent radiological surveillance. We thus aimed to investigate the objective and subjective image quality as well as radiation exposure and risk of full-dose standard (FDS), full-dose iterative (FDI), and half-dose iterative (HDI) image reconstruction in patients with lymphoma. Material and methods: In 100 lymphoma patients, contrast-enhanced whole-body staging was performed on a dual-source CT. To acquire full-dose and half-dose CT data simultaneously, the total current-time product was equally distributed on both tubes operating at 120 kV. HDI reconstructions were calculated by using only data from one tube. Quantitative image quality was assessed by measuring image noise in different tissues of the neck, thorax, and abdomen. Overall diagnostic image quality was assessed using a 5-point Likert scale. Radiation doses and risks were estimated for a male and female reference person. Results: For all anatomical regions apart from the lungs image noise was significantly lower and the overall subjective image quality significantly better when using FDI and HDI instead of FDS reconstruction (p < 0.05). For the half-dose protocol, the risk to develop a radiation-induced cancer was estimated to be less than 0.11/0.19% for an adult male/female. Conclusions: Image quality of FDI and more importantly of HDI is superior to FDS reconstruction, thus enabling to halve radiation dose and risk to lymphoma patients.

  4. Investigation of scattered radiation in 3D whole-body positron emission tomography using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Adam, L.-E.; Brix, G.

    1999-01-01

    The correction of scattered radiation is one of the most challenging tasks in 3D positron emission tomography (PET) and knowledge about the amount of scatter and its distribution is a prerequisite for performing an accurate correction. One concern in 3D PET in contrast to 2D PET is the scatter contribution from activity outside the field-of-view (FOV) and multiple scatter. Using Monte Carlo simulations, we examined the scatter distribution for various phantoms. The simulations were performed for a whole-body PET system (ECAT EXACT HR + , Siemens/CTI) with an axial FOV of 15.5 cm and a ring diameter of 82.7 cm. With (without) interplane septa, up to one (two) out of three detected events are scattered (for a centred point source in a water-filled cylinder that nearly fills out the patient port), whereby the relative scatter fraction varies significantly with the axial position. Our results show that for an accurate scatter correction, activity as well as scattering media outside the FOV have to be taken into account. Furthermore it could be shown that there is a considerable amount of multiple scatter which has a different spatial distribution from single scatter. This means that multiple scatter cannot be corrected by simply rescaling the single scatter component. (author)

  5. Inhibition of DNA repair by whole body irradiation induced nitric oxide leads to higher radiation sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Sharma, Deepak; Santosh Kumar, S.; Raghu, Rashmi; Maurya, D.K.; Sainis, K.B.

    2007-01-01

    Full text: It is well accepted that the sensitivity of mammalian cells is better following whole body irradiation (WBI) as compared to that following in vitro irradiation. However, the underlying mechanisms are not well understood. Following WBI, the lipid peroxidation and cell death were significantly higher in lymphocytes as compared to that in vitro irradiated lymphocytes. Further, WBI treatment of tumor bearing mice resulted in a significantly higher inhibition of EL-4 cell proliferation as compared to in vitro irradiation of EL-4 cells. The DNA repair was significantly slower in lymphocytes obtained from WBI treated mice as compared to that in the cells exposed to same dose of radiation in vitro. Generation of nitric oxide following irradiation and also its role in inhibition of DNA repair have been reported, hence, its levels were estimated under both WBI and in vitro irradiation conditions. Nitric oxide levels were significantly elevated in the plasma of WBI treated mice but not in the supernatant of in vitro irradiated cells. Addition of sodium nitroprusside (SNP), a nitric oxide donor to in vitro irradiated cells inhibited the repair of DNA damage and sensitized cells to undergo cell death. It also enhanced the radiation-induced functional impairment of lymphocytes as evinced from suppression of mitogen-induced IL-2, IFN-γ and bcl-2 mRNA expression. Administration of N G -nitro-L-arginine-methyl-ester(L-NAME), a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. Our results indicated that nitric oxide plays a role in the higher radiosensitivity of lymphocytes in vivo by inhibiting repair of DNA damage

  6. What is ''ionizing radiation''?

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1997-01-01

    The scientific background of radiation protection and hence ''ionizing radiation'' is undergoing substantial regress since a century. Radiations as we are concerned with are from the beginning defined based upon their effects rather than upon the physical origin and their properties. This might be one of the reasons why the definition of the term ''ionizing radiation'' in radiation protection is still weak from an up to date point of view in texts as well as in international and national standards. The general meaning is unambiguous, but a numerical value depends on a number of conditions and the purpose. Hence, a clear statement on a numerical value of the energy threshold beyond a radiation has to be considered as ''ionizing'' is still missing. The existing definitions are, therefore, either correct but very general or theoretical and hence not applicable. This paper reviews existing definitions and suggests some issues to be taken into account for possible improvement of the definition of ''ionizing radiation''. (author)

  7. Introduction to ionizing radiation physics

    International Nuclear Information System (INIS)

    Musilek, L.

    1979-01-01

    Basic properties are described of the atom, atomic nucleus and of ionizing radiation particles; nuclear reactions, ionizing radiation sources and ionizing radiation interaction with matter are explained. (J.P.)

  8. A study of exposure to RF radiation during MRI examinations. 2. A comparison of two procedures measuring the whole body SAR

    International Nuclear Information System (INIS)

    Yamada, Masayuki; Imaeda, Isao; Koga, Sukehiko; Sugie, Masami; Anno, Hirofumi; Kinoshita, Kazuo; Okada, Tatsuhiko; Endou, Yukio; Katada, Kazuhiro.

    1997-01-01

    The purpose of this study is to evaluate exposure to radiofrequency (RF) radiation during magnetic resonance imaging (MRI) examinations. Particularly, in this paper, the authors compared the measuring procedures of a whole body specific absorption rate (SAR) set forth in two safety guidelines respectively: the safety guideline of MRI equipments in Japan which based on the 1988 guideline of the Food and Drug Administration (FDA), and the 1995 standard of the International Electrotechnical Commission (IEC). As a result of the measurement, the measuring procedure set forth in the Japanese guideline underestimated the whole body SAR of a torso phantom in a tuneless type QD coil. The result of our experiment clearly showed that the measuring procedure set forth in the Japanese guideline did not adjust to the tuneless type QD coil. Therefore, the authors recommended ''the pulse energy method'' which is provided by the IEC standard as a measuring procedure of the whole body SAR. (author)

  9. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  10. Evaluation of radiation dose in 64-row whole-body CT of multiple injured patients compared to 4-row CT

    International Nuclear Information System (INIS)

    Harrieder, A.; Geyer, L.L.; Koerner, M.; Deak, Z.; Wirth, S.; Reiser, M.; Linsenmaier, U.

    2012-01-01

    Purpose: To evaluate radiation exposure in whole-body CT (WBCT) of multiple injured patients comparing 4-row multidetector computed tomography (MDCT) to 64-row MDCT. Materials and Methods: 200 WBCT studies were retrospectively evaluated: 92 4-row MDCT scans and 108 64-row MDCT scans. Each CT protocol was optimized for the particular CT system. The scan length, CT dose index (CTDI), and dose length product (DLP) were recorded and analyzed for radiation exposure. The mean effective dose was estimated based on conversion factors. Student's t-test was used for statistical analysis. Results: The mean CTDI vol values (mGy) of the thorax and abdomen were significantly reduced with 64-row MDCT (10.2 ± 2.5 vs. 11.4 ± 1.4, p < 0.001; 14.2 ± 3.7 vs. 16.1 ± 1.7, p < 0.001). The DLP values (mGy x cm) of the head and thorax were significantly increased with 64-row MDCT (1305.9 ± 201.1 vs. 849.8 ± 90.9, p < 0,001; 504.4 ± 134.4 vs. 471.5 ± 74.1, p = 0.030). The scan lengths (mm) were significantly increased with 64-row MDCT: head 223.6 ± 35.8 vs. 155.5 ± 12.3 (p < 0.001), thorax 427.4 ± 44.5 vs. 388.3 ± 57.5 (p < 0.001), abdomen 520.3 ± 50.2 vs. 490.8 ± 51.6 (p < 0.001). The estimated mean effective doses (mSv) were 22.4 ± 2.6 (4-row MDCT) and 24.1 ± 4.6 (64-row MDCT; p = 0.001), resulting in a percentage increase of 8 %. Conclusion: The radiation dose per slice of the thorax and abdomen can be significantly decreased by using 64-row MDCT. Due to the technical advances of modern 64-row MDCT systems, the scan field can be adapted to the clinical demands and, if necessary, enlarged without time loss. As a result, the estimated mean effective dose might be increased in WBCT. (orig.)

  11. Whole-body retention studies of /sup 169/Yb-citrate. Estimation of radiation dose to humans from /sup 169/Yb-citrate

    Energy Technology Data Exchange (ETDEWEB)

    Ando, A; Hiraki, T [Kanazawa Univ. (Japan). School of Paramedicine; Mori, H; Ando, I; Hisada, K

    1977-09-01

    For purpose of the estimation of the radiation dose to humans from /sup 169/Yb-citrate, the whole-body retention studies using five rats were carried out. Following intravenous administration of /sup 169/Yb-citrate, the whole-body activity was monitored for 40 days by the animal counter. The whole-body retention curve consisted of three components: the first with a 3.6 hours effective half-time, the second with an 154 hours effective half-time and the third with a 29.9 days effective half-time. Therefore it was assumed that 32% of the administered /sup 169/Yb-citrate clears from the kidney with a short biologic half-time (3.6 hours), 18% remains in the liver and other soft tissues with a relatively long biologic half-time (194 hours) and 50% remains in the bone with a long biologic half-time (850 days). Based on these biological data and the MIRD Committee method, the average dose to the bone and whole-body were 20.8 rads/mCi and 4.5 rads/mCi respectively.

  12. Excess of Radiation Burden for Young Testicular Cancer Patients using Automatic Exposure Control and Contrast Agent on Whole-body Computed Tomography Imaging.

    Science.gov (United States)

    Niiniviita, Hannele; Kulmala, Jarmo; Pölönen, Tuukka; Määttänen, Heli; Järvinen, Hannu; Salminen, Eeva

    2017-06-01

    The aim of the study was to assess patient dose from whole-body computed tomography (CT) in association with patient size, automatic exposure control (AEC) and intravenous (IV) contrast agent. Sixty-five testicular cancer patients (mean age 28 years) underwent altogether 279 whole-body CT scans from April 2000 to April 2011. The mean number of repeated examinations was 4.3. The GE LightSpeed 16 equipped with AEC and the Siemens Plus 4 CT scanners were used for imaging. Whole-body scans were performed with (216) and without (63) IV contrast. The ImPACT software was used to determine the effective and organ doses. Patient doses were independent (p < 0.41) of patient size when the Plus 4 device (mean 7.4 mSv, SD 1.7 mSv) was used, but with the LightSpeed 16 AEC device, the dose (mean 14 mSv, SD 4.6 mSv) increased significantly (p < 0.001) with waist cirfumference. Imaging with the IV contrast agent caused significantly higher (13% Plus 4, 35% LightSpeed 16) exposure than non-contrast imaging (p < 0.001). Great caution on the use of IV contrast agent and careful set-up of the AEC modulation parameters is recommended to avoid excessive radiation exposure on the whole-body CT imaging of young patients.

  13. Phosphorylation of histone H2AX as an indicator of received dose of gamma radiation after whole-body irradiation of rats

    Directory of Open Access Journals (Sweden)

    Radim Havelek

    2011-01-01

    Full Text Available The aim of our study was to determine whether phosphorylation of histone H2AX can be used as an indicator of received dose of gamma radiation after whole-body irradiation of rats. Wistar rats were irradiated by 1-10 Gy of gamma radiation by 60Co source. Value LD50/60 was 7.37 (4.68-8.05 Gy. Histone H2AX is phosphorylated by ATM kinase on serine 139 (γH2AX quickly after the irradiation. It forms microscopically visible foci in the site of double strand breaks of DNA. Flow-cytometric method was used for quantitative detection. This study is the first one that evaluated dose-dependency of H2AX phosphorylation in peripheral lymphocytes of rats irradiated by whole-body dose 1-10 Gy. Our data show a dose-dependent increase in γH2AX in rat peripheral blood lymphocytes 1 h after whole-body irradiation by the dose of 1-10 Gy. We proved that phosphorylation of histone H2AX is a prompt and reliable indicator of the received radiation dose suitable for rapid measurement before the number of lymphocytes in peripheral blood starts to decrease. It can be used already 1 h after the irradiation for an estimation of the received dose of radiation. Blood samples can be stored in 4 °C for 23 h without significantly affecting the result.

  14. Non-targeted effects of low dose ionizing radiation act via TGF-beta to promote mammary carcinogenesis

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a genome-wide approach to identifying genes persistently induced in the mouse mammary gland by acute whole body low dose ionizing radiation (10cGy) 1 and 4...

  15. Ionizing Radiation Processing Technology

    International Nuclear Information System (INIS)

    Rida Tajau; Kamarudin Hashim; Jamaliah Sharif; Ratnam, C.T.; Keong, C.C.

    2017-01-01

    This book completely brief on the basic concept and theory of ionizing radiation in polymers material processing. Besides of that the basic concept of polymerization addition, cross-linking and radiation degradation also highlighted in this informative book. All of the information is from scientific writing based on comprehensive scientific research in polymerization industry which using the radiation ionizing. It is very useful to other researcher whose study in Nuclear Sciencea and Science of Chemical and Material to use this book as a guideline for them in future scientific esearch.

  16. Personnel ionizing radiation dosimeter

    International Nuclear Information System (INIS)

    Williams, R.A.

    1975-01-01

    A dosimeter and method for use by personnel working in an area of mixed ionizing radiation fields for measuring and/or determining the effective energy of x- and gamma radiation; beta, x-, and gamma radiation dose equivalent to the surface of the body; beta, x-, and gamma radiation dose equivalent at a depth in the body; the presence of slow neutron, fast neutron dose equivalent; and orientation of the person wearing the dosimeter to the source of radiation is disclosed. Optionally integrated into this device and method are improved means for determining neutron energy spectrum and absorbed dose from fission gamma and neutron radiation resulting from accidental criticality

  17. Radiation dependent ionization model

    International Nuclear Information System (INIS)

    Busquet, M.

    1991-01-01

    For laser created plasma simulation, hydrodynamics codes need a non-LTE atomic physics package for both EOS and optical properties (emissivity and opacity). However in XRL targets as in some ICF targets, high Z material can be found. In these cases radiation trapping can induce a significant departure from the optically thin ionization description. The authors present a method to change an existing LTE code into a non-LTE code with coupling of ionization to radiation. This method has very low CPU cost and can be used in 2D simulations

  18. Cytological and histological changes in lymphocytes influence of ionizing radiation on health workers

    OpenAIRE

    Gorgieva, Pale; Nedeljkovik, Bojana; Velickova, Nevenka

    2014-01-01

    Introduction: Ionizing radiation can originate from natural and artificial sources and ionization may be direct or indirect. Depending on the dose and intensity of radiation radiobiological effect may be different. Acute radiation sickness occurs as a result of irradiation of the whole body with large doses of radiation in a short time. While chronic radiation damages arise in professional workers due to exposure to small doses over a long time. Depending on the type of tissue and cell proper...

  19. Ionizing radiation and life.

    Science.gov (United States)

    Dartnell, Lewis R

    2011-01-01

    Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology. © Mary Ann Liebert, Inc.

  20. Effects of whole-body X-radiation on the neutrophils of the peripheral blood of the primate Cebus apella (weeping capuchin); Acao dos raios X corpo total sobre os neutrofilos do sangue periferico em primata Cebus apella (macaco prego)

    Energy Technology Data Exchange (ETDEWEB)

    Egami, Mizue Imoto; Silva, Maria Regina Regis; Paiva, Elias Rodrigues de; Segreto, Camilo [Escola Paulista de Medicina, Sao Paulo, SP (Brazil); Diniz, Lilian Munao [Fundacao Parque Zoologico de Sao Paulo, SP (Brazil)

    1994-12-31

    The effects of ionizing radiation on the neutrophils of Primate Cebus apella were studied after whole-body x-radiation to a single exposure of 25.8 m C/kg (100 R 0), Wright`s stained preparations showed changes in the nucleus and the cytoplasm of neutrophils at 1,3 and 6 days after irradiation. during this period of time, the cytochemical methods revealed a considerable variation in the pattern of distribution of glycogen, sudanophilic and myeloperoxidase positive granules. Under these same experimental conditions the number of caryoschizes increased on the first and third day. On the ninetieth day post exposure, the morphological and cytochemical appearances of neutrophils as well as the number of caryoschized were similar to the controls. (author) 14 refs., 5 figs., 1 tab.

  1. Assessment of whole-body occupational radiation exposure in industrial radiography practices in Bangladesh during 2010-2014

    International Nuclear Information System (INIS)

    Rahman, M.S.; Hoque, A.; Khan, R.K.; Siraz, M.M.M.; Begum, A.

    2016-01-01

    Presently, ten industrial radiography facilities are operating in Bangladesh using X-ray or gamma-ray sources. During the last 5-year, 14 industrial radiography facilities were received individual monitoring service using thermoluminescent dosimeters (TLDs) from the Health Physics Division (HPD), Atomic Energy Centre, Dhaka under Bangladesh Atomic Energy Commission. HPD is the only individual monitoring service provider in Bangladesh due to external sources of ionizing radiation. The number of monitored industrial radiography facilities ranged from 7 to 14 while the number of worker ranged from 72 to 133 during the study period. The annual average effective doses received from external radiation in industrial radiography workers and the distributions of the annual effective doses by dose intervals are presented. The distribution of the occupational doses shows that the majority (about 75 %) of workers received doses below 1 mSv for the last 5-years. Even though, very few workers (about 1%) received doses higher than average annual dose limit (20 mSv), but no workers received doses higher than 100 mSv in 5 consecutive years. The average annual effective dose of industrial radiography workers in Bangladesh is higher than the corresponding values in Tanzania, Greece, Poland, Australia, UK and lower than in Bosnia and Herzegovina, USA and Canada. However, the average annual effective dose is comparable to the corresponding values in China, Brazil, Germany and India. The status and trends in occupational doses show that radiation protection situation at the majority of the workplace were satisfactory. In spite of that, additional measures are required due to big differences observed in the maximum individual doses over the last 5-year. (author)

  2. Assessment of whole-body occupational radiation exposure in industrial radiography practices in Bangladesh during 2010-2014

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.S.; Hoque, A.; Khan, R.K.; Siraz, M.M.M., E-mail: msrahman74@hotmail.com [Health Physics Division, Atomic Energy Centre, Shahbag, Dhaka (Bangladesh); Begum, A. [Physical Science Division, Bangladesh Atomic Energy Commission, Dhaka (Bangladesh)

    2016-07-01

    Presently, ten industrial radiography facilities are operating in Bangladesh using X-ray or gamma-ray sources. During the last 5-year, 14 industrial radiography facilities were received individual monitoring service using thermoluminescent dosimeters (TLDs) from the Health Physics Division (HPD), Atomic Energy Centre, Dhaka under Bangladesh Atomic Energy Commission. HPD is the only individual monitoring service provider in Bangladesh due to external sources of ionizing radiation. The number of monitored industrial radiography facilities ranged from 7 to 14 while the number of worker ranged from 72 to 133 during the study period. The annual average effective doses received from external radiation in industrial radiography workers and the distributions of the annual effective doses by dose intervals are presented. The distribution of the occupational doses shows that the majority (about 75 %) of workers received doses below 1 mSv for the last 5-years. Even though, very few workers (about 1%) received doses higher than average annual dose limit (20 mSv), but no workers received doses higher than 100 mSv in 5 consecutive years. The average annual effective dose of industrial radiography workers in Bangladesh is higher than the corresponding values in Tanzania, Greece, Poland, Australia, UK and lower than in Bosnia and Herzegovina, USA and Canada. However, the average annual effective dose is comparable to the corresponding values in China, Brazil, Germany and India. The status and trends in occupational doses show that radiation protection situation at the majority of the workplace were satisfactory. In spite of that, additional measures are required due to big differences observed in the maximum individual doses over the last 5-year. (author)

  3. Ionizing radiation from tobacco

    International Nuclear Information System (INIS)

    Westin, J.B.

    1987-01-01

    Accidents at nuclear power facilities seem inevitably to bring in their wake a great deal of concern on the part of both the lay and medical communities. Relatively little attention, however, is given to what may be the largest single worldwide source of effectively carcinogenic ionizing radiation: tobacco. The risk of cancer deaths from the Chernobyl disaster are tobacco smoke is discussed

  4. Basic ionizing radiation symbol

    International Nuclear Information System (INIS)

    1987-01-01

    A description is given of the standard symbol for ionizing radiation and of the conditions under which it should not be used. The Arabic equivalent of some English technical terms in this subject is given in one page. 1 ref., 1 fig

  5. Non-ionizing radiation

    International Nuclear Information System (INIS)

    Fischer, P.G.

    1983-01-01

    The still growing use of non-ionizing radiation such as ultraviolet radiation laser light, ultrasound and infrasound, has induced growing interest in the effects of these types of radiation on the human organism, and in probable hazards emanating from their application. As there are up to now no generally approved regulations or standards governing the use of non-ionizing radiation and the prevention of damage, it is up to the manufacturers of the relevant equipment to provide for safety in the use of their apparatus. This situation has led to a feeling of incertainty among manufacturers, as to how which kind of damage should be avoided. Practice has shown that there is a demand for guidelines stating limiting values, for measuring techniques clearly indicating safety thresholds, and for safety rules providing for safe handling. The task group 'Non-ionizing radiation' of the Radiation Protection Association started a programme to fulfill this task. Experts interested in this work have been invited to exchange their knowledge and experience in this field, and a collection of loose leaves will soon be published giving information and recommendations. (orig./HP) [de

  6. Epidemiology and ionizing radiations

    International Nuclear Information System (INIS)

    Bourguignon, M.; Masse, R.; Slama, R.; Spira, A.; Timarche, M.; Laurier, D.; Billon, S.; Rogel, A.; Telle Lamberton, M.; Catelinois, O.; Thierry, I.; Grosche, B.; Ron, E.; Vathaire, F. de; Cherie Challine, L.; Donadieu, J.; Pirard, Ph.; Bloch, J.; Setbon, M.

    2004-01-01

    The ionizing radiations have effects on living being. The determinist effects appear since a threshold of absorbed dose of radiation is reached. In return, the stochastic effects of ionizing radiations are these ones whom apparition cannot be described except in terms of probabilities. They are in one hand, cancers and leukemia, on the other hand, lesions of the genome potentially transmissible to the descendants. That is why epidemiology, defined by specialists as the science that studies the frequency and distribution of illness in time and space, the contribution of factors that determine this frequency and this distribution among human populations. This issue gathers and synthesizes the knowledge and examines the difficulties of methodologies. It allows to give its true place to epidemiology. (N.C.)

  7. Hygiene of ionizing radiations

    International Nuclear Information System (INIS)

    Legare, I.-M.; Conceicao Cunha, M. da

    1976-01-01

    The concepts of quality factor and rem are introduced and a table of biological effects of external ionizing radiation sources is presented. Natural exposures, with tables of background radiation sources and of doses due to cosmic rays on high altitude areas and their populations are treated, as well as medical exposures; artificial background; fallout; scientific, industrial and other sources. The maximum and limit doses for man are given and tables of maximum admissible doses of ionizing radiations for 16-18 year old workers professionaly exposed, for professionals eventually subjected to radiation in their work and for people eventually exposed. Professional protection is discussed and tables are given of half-value layer of water, concrete, iron and lead for radiations of different energies, as well as the classification of exposure zones to the radiations and of maximum acceptable contamination for surfaces. The basic safety standards for radiation protection are summarized; tables are given also with emergency references for internal irradiation. Procedures with patients which received radioisotopes are discussed. At last, consideration is given to the problem of radioactive wastes in connection with the medical use of radionuclides [pt

  8. Whole body monitoring - Goiania

    International Nuclear Information System (INIS)

    Oliveira, C.A.N. de; Lourenco, M.C.; Bertelli Neto, L.; Lucena, E.A. de; Becker, P.H.B.

    1988-01-01

    Due to the radiological Cs accident in Goiania, Goias in September 1987, it became necessary to evaluate internal contamination levels of: - Individual from the general public that for any reason had direct or indirect involvement with the radioactive source (group 1). - Occupationally involved persons (group 2). For each of these groups, procedures of whole body monitoring were developped. In order to attend group 1 individuals, the IRD/CNEN installed a whole body unit in the INAMPS General Hospital of Goiania in 11.08.87, which was later transferred to 121,57 street, Central Sector in Goiania in 2.06.88. In this unit 547 people were monitored, 356 from group 1 and 241 from group 2, until 04.13.88. In the IRD whole body counter installation, 194 individuals were counted, 185 from group 2 and 9 from group 1. The frequency of monitoring of each individual was established according to the Cs activity present in the body or to the job to be assigned. In this paper we will present some burden activity curves for Cs 137 as a function of the time elapsed from the first measurement. There people from group 1 were measured in both counters, the IRD and the Goiania ones. The values obtained in both installations are compatible with the body activity x time curve. (author) [pt

  9. Pregnancy and ionizing radiation

    International Nuclear Information System (INIS)

    Plataniotis, Th.N.; Nikolaou, K.I.; Syrgiamiotis, G.V.; Dousi, M.; Panou, Th.; Georgiadis, K.; Bougias, C.

    2008-01-01

    Full text: In this report there will be presented the effects of ionizing radiation at the fetus and the necessary radioprotection. The biological results on the fetus, caused by the irradiation, depend on the dose of ionizing radiation that it receives and the phase of its evolution. The imminent effects of the irradiation can cause the fetus death, abnormalities and mental retardation, which are the result of overdose. The effects are carcinogenesis and leukemia, which are relative to the acceptable irradiating dose at the fetus and accounts about 0,015 % per 1 mSv. The effects of ionizing radiation depend on the phase of the fetus evolution: 1 st phase (1 st - 2 nd week): presence of low danger; 2 nd phase (3 rd - 8 th week): for doses >100 mSv there is the possibility of dysplasia; 3 rd phase (8 th week - birth): this phase concerns the results with a percentage 0,015 % per 1 mSv. We always must follow some rules of radioprotection and especially at Classical radiation use of necessary protocols (low dose), at Nuclear Medicine use of the right radioisotope and the relative field of irradiation for the protection of the adjacent healthy tissues and at Radiotherapy extreme caution is required regarding the dose and the treatment. In any case, it is forbidden to end a pregnancy when the pregnant undergoes medical exams, in which the uterus is in the beam of irradiation. The radiographer must always discuss the possibility of pregnancy. (author)

  10. Applications of ionizing radiations

    International Nuclear Information System (INIS)

    2014-01-01

    Developments in standard applications and brand new nuclear technologies, with high impact on the future of the agriculture, medicine, industry and the environmental preservation. The Radiation Technology Center (CTR) mission is to apply the radiation and radioisotope technologies in Industry, Health, Agriculture, and Environmental Protection, expanding the scientific knowledge, improving human power resources, transferring technology, generating products and offering services for the Brazilian society. The CTR main R and D activities are in consonance with the IPEN Director Plan (2011-2013) and the Applications of Ionizing Radiation Program, with four subprograms: Irradiation of Food and Agricultural Products; Radiation and Radioisotopes Applications in Industry and Environment; Radioactive Sources and Radiation Applications in Human Health; and Radioactive Facilities and Equipment for the Applications of Nuclear Techniques

  11. Applications of ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Developments in standard applications and brand new nuclear technologies, with high impact on the future of the agriculture, medicine, industry and the environmental preservation. The Radiation Technology Center (CTR) mission is to apply the radiation and radioisotope technologies in Industry, Health, Agriculture, and Environmental Protection, expanding the scientific knowledge, improving human power resources, transferring technology, generating products and offering services for the Brazilian society. The CTR main R and D activities are in consonance with the IPEN Director Plan (2011-2013) and the Applications of Ionizing Radiation Program, with four subprograms: Irradiation of Food and Agricultural Products; Radiation and Radioisotopes Applications in Industry and Environment; Radioactive Sources and Radiation Applications in Human Health; and Radioactive Facilities and Equipment for the Applications of Nuclear Techniques.

  12. Estimating {sup 131}I biokinetics and radiation doses to the red marrow and whole body in thyroid cancer patients: probe detection versus image quantification

    Energy Technology Data Exchange (ETDEWEB)

    Willegaignon, Jose; Pelissoni, Rogerio Alexandre; Lima, Beatriz Christine de Godoy Diniz; Coura-Filho, George Barberio; Queiroz, Marcelo Araujo, E-mail: j.willegaignon@gmail.com [Instituto do Cancer do Estado de Sao Paulo Octavio Frias de Oliveira (ICESP), Sao Paulo, SP (Brazil); Sapienza, Marcelo Tatit; Buchpiguel, Carlos Alberto [Universidade de Sao Paulo (FM/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Departamento de Radiologia

    2016-05-15

    Objective: to compare the probe detection method with the image quantification method when estimating {sup 131}I biokinetics and radiation doses to the red marrow and whole body in the treatment of thyroid cancer patients. Materials and methods: fourteen patients with metastatic thyroid cancer, without metastatic bone involvement, were submitted to therapy planning in order to tailor the therapeutic amount of {sup 131}I to each individual. Whole-body scans and probe measurements were performed at 4, 24, 48, 72, and 96 h after {sup 131}I administration in order to estimate the effective half-life (T{sub eff}) and residence time of {sup 131}I in the body. Results: the mean values for T{sub eff} and residence time, respectively, were 19 ± 9 h and 28 ± 12 h for probe detection, compared with 20 ± 13 h and 29 ± 18 h for image quantification. The average dose to the red marrow and whole body, respectively, was 0.061 ± 0.041 mGy/MBq and 0.073 ± 0.040 mGy/MBq for probe detection, compared with 0.066 ± 0.055 mGy/MBq and 0.078 ± 0.056 mGy/MBq for image quantification. Statistical analysis proved that there were no significant differences between the two methods for estimating the T{sub eff} (p = 0.801), residence time (p = 0.801), dose to the red marrow (p = 0.708), and dose to the whole body (p = 0.811), even when we considered an optimized approach for calculating doses only at 4 h and 96 h after {sup 131}I administration (p > 0.914). Conclusion: there is full agreement as to the feasibility of using probe detection and image quantification when estimating {sup 131}I biokinetics and red-marrow/whole-body doses. However, because the probe detection method is ineffective in identifying tumor sites and critical organs during radionuclide therapy and therefore liable to skew adjustment of the amount of {sup 131}I to be administered to patients under such therapy, it should be used with caution. (author)

  13. Foundations of ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Pereslegin, I.A.

    1985-01-01

    Foundations of dosimetry in application to radiotherapy are presented. General characteristics of ionizing radiations and main characteristics of ionizing radiation sources, mostly used in radiotherapy, are given. Values and units for measuring ionizing radiation (activity of a radioactive substance, absorbed dose, exposure dose, integral dose and dose equivalent are considered. Different methods and instruments for ionizing radiation dosimetry are discussed. The attention is paid to the foundations of clinical dosimetry (representation of anatomo-topographic information, choice of radiation conditions, realization of radiation methods, corrections for a configuration and inhomogeneity of a patient's body, account of biological factors of radiation effects, instruments of dose field formation, control of irradiation procedure chosen)

  14. The use of discriminant analysis for evaluation of early-response multiple biomarkers of radiation exposure using non-human primate 6-Gy whole-body radiation model

    Energy Technology Data Exchange (ETDEWEB)

    Ossetrova, N.I. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: ossetrova@afrri.usuhs.mil; Farese, A.M.; MacVittie, T.J. [Marlene and Stewart Greenebaum Cancer Center, Bressler Research Building, Room 7-039, University of Maryland-Baltimore, 655 West Baltimore Street, Baltimore, MD 21201 (United States); Manglapus, G.L.; Blakely, W.F. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)

    2007-07-15

    The present need to rapidly identify severely irradiated individuals in mass-casualty and population-monitoring scenarios prompted an evaluation of potential protein biomarkers to provide early diagnostic information after exposure. The level of specific proteins measured using immunodiagnostic technologies may be useful as protein biomarkers to provide early diagnostic information for acute radiation exposures. Herein we present results from on-going studies using a non-human primate (NHP) 6-Gy X-rays ( 0.13Gymin{sup -1}) whole-body radiation model. Protein targets were measured by enzyme-linked immunosorbent assay (ELISA) in blood plasma before, 1, and 2 days after exposure. Exposure of 10 NHPs to 6 Gy resulted in the up-regulation of plasma levels of (a) p21 WAF1/CIP1, (b) interleukin 6 (IL-6), (c) tissue enzyme salivary {alpha}-amylase, and (d) C-reactive protein. Data presented show the potential utility of protein biomarkers selected from distinctly different pathways to detect radiation exposure. A correlation analysis demonstrated strong correlations among different combinations of four candidate radiation-responsive blood protein biomarkers. Data analyzed with use of multivariate discriminant analysis established very successful separation of NHP groups: 100% discrimination power for animals with correct classification for separation between groups before and 1 day after irradiation, and 95% discrimination power for separation between groups before and 2 days after irradiation. These results also demonstrate proof-in-concept that multiple protein biomarkers provide early diagnostic information to the medical community, along with classical biodosimetric methodologies, to effectively manage radiation casualty incidents.

  15. Ionizing radiation detector

    Science.gov (United States)

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  16. Pegylated G-CSF Inhibits Blood Cell Depletion, Increases Platelets, Blocks Splenomegaly, and Improves Survival after Whole-Body Ionizing Irradiation but Not after Irradiation Combined with Burn

    Directory of Open Access Journals (Sweden)

    Juliann G. Kiang

    2014-01-01

    Full Text Available Exposure to ionizing radiation alone (radiation injury, RI or combined with traumatic tissue injury (radiation combined injury, CI is a crucial life-threatening factor in nuclear and radiological accidents. As demonstrated in animal models, CI results in greater mortality than RI. In our laboratory, we found that B6D2F1/J female mice exposed to 60Co-γ-photon radiation followed by 15% total-body-surface-area skin burns experienced an increment of 18% higher mortality over a 30-day observation period compared to irradiation alone; that was accompanied by severe cytopenia, thrombopenia, erythropenia, and anemia. At the 30th day after injury, neutrophils, lymphocytes, and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were similar to basal levels. Comparing CI and RI mice, only RI induced splenomegaly. Both RI and CI resulted in bone marrow cell depletion. It was observed that only the RI mice treated with pegylated G-CSF after RI resulted in 100% survival over the 30-day period, and pegylated G-CSF mitigated RI-induced body-weight loss and depletion of WBC and platelets. Peg-G-CSF treatment sustained RBC balance, hemoglobin levels, and hematocrits and inhibited splenomegaly after RI. The results suggest that pegylated G-CSF effectively sustained animal survival by mitigating radiation-induced cytopenia, thrombopenia, erythropenia, and anemia.

  17. Biology of ionizing radiation effects

    International Nuclear Information System (INIS)

    Ferradini, C.; Pucheault, J.

    1983-01-01

    The present trends in biology of ionizing radiation are reviewed. The following topics are investigated: interaction of ionizing radiations with matter; the radiolysis of water and aqueous solutions; properties of the free radicals intervening in the couples O 2 /H 2 O and H 2 O/H 2 ; radiation chemistry of biological compounds; biological effects of ionizing radiations; biochemical mechanisms involving free radicals as intermediates; applications (biotechnological applications, origins of life) [fr

  18. Intercalibration of CDTN and IRD whole body counters

    International Nuclear Information System (INIS)

    Dantas, B.M.; Dantas, A.L.A.; Alonso, T.C.

    2008-01-01

    Full text: Intercalibration exercises are designed to harmonize analytical techniques and ensure reliability of measurement results performed in a laboratory network. Such strategy helps to improve laboratory performance among participants in future intercomparison exercises, when it is verified the metrological capacity, by determining accuracy, precision and reproducibility of data produced by each laboratory. In Brazil, there are currently four in vivo monitoring systems, located in IRD, in Rio de Janeiro, CDTN, in Belo Horizonte, IPEN, in Sao Paulo and CNAAA, in Angra dos Reis. Such systems, generically referred as whole body counters, aim to detect and quantify radionuclides in organs and tissues for radiological protection purposes and to provide useful information for studies on biokinetic behavior of radionuclides in humans and animals. The objective of this work is to establish a methodology to be applied for intercalibration of whole body counters. The IRD whole body counter is installed in a 15 cm steel shielded room where two NaI(Tl) and four HPGe detectors are calibrated for the determination of radionuclides in the energy range from 10 to 3000 keV. The CDTN whole body counter has one NaI detector set up in a shadow shield configuration, and is able to determine radionuclides emitting photons from 100 to 2000 keV. The intercalibration exercise described in this work was planed for whole body geometry using the scintillation detectors available in both laboratories. It was used a thin glass vial containing 2,6615 g of a solution of four gamma emitters ( 57 Co, 137 Cs, 54 Mn, 65 Zn), supplied by the National Laboratory for Metrology of Ionizing Radiation (LNMRI-IRD). The glass vial was measured in the same geometry in both IRD and CDTN whole body counters, being positioned at 31,5 cm distance from the NaI(Tl) detector of each laboratory. The calibration curves (photo peak channel and Efficiency vs Energy) of each detection system were compared. The

  19. Estimation of Radiation Doses in the Marshall Islands Based on Whole Body Counting of Cesium-137 (137Cs) and Plutonium Urinalysis

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J; Hickman, D; Kehl, S; Hamilton, T

    2007-06-11

    Under the auspices of the U.S. Department of Energy (USDOE), researchers from the Lawrence Livermore National Laboratory (LLNL) have recently implemented a series of initiatives to address long-term radiological surveillance needs at former nuclear test sites in the Republic of the Marshall Islands (RMI). The aim of this radiological surveillance monitoring program (RSMP) is to provide timely radiation protection for individuals in the Marshall Islands with respect to two of the most important internally deposited fallout radionuclides-cesium-137 ({sup 137}Cs) and long-lived isotopes 239 and 240 of plutonium ({sup 239+240}Pu) (Robison et al., 1997 and references therein). Therefore, whole-body counting for {sup 137}Cs and a sensitive bioassay for the presence of {sup 239+240}Pu excreted in urine were adopted as the two most applicable in vivo analytical methods to assess radiation doses for individuals in the RMI from internally deposited fallout radionuclides (see Hamilton et al., 2006a-c; Bell et al., 2002). Through 2005, the USDOE has established three permanent whole-body counting facilities in the Marshall Islands: the Enewetak Radiological Laboratory on Enewetak Atoll, the Utrok Whole-Body Counting Facility on Majuro Atoll, and the Rongelap Whole-Body Counting Facility on Rongelap Atoll. These whole-body counting facilities are operated and maintained by trained Marshallese technicians. Scientists from LLNL provide the technical support and training necessary for maintaining quality assurance for data acquisition and dose reporting. This technical basis document summarizes the methodologies used to calculate the annual total effective dose equivalent (TEDE; or dose for the calendar year of measurement) based on whole-body counting of internally deposited {sup 137}Cs and the measurement of {sup 239+240}Pu excreted in urine. Whole-body counting provides a direct measure of the total amount (or burden) of {sup 137}Cs present in the human body at the time of

  20. Whole-body biodistribution, radiation absorbed dose, and brain SPET imaging with [{sup 123}I]5-I-A-85380 in healthy human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Masahiro; Tamagnan, G.; Baldwin, R.M.; Khan, S.; Bozkurt, A. [Yale Univ., New Haven, CT (United States). School of Medicine; Seibyl, J.P.; Early, M. [Institute for Neurodegenerative Disorders, New Haven, CT (United States); Vaupel, B.D.; Horti, A.G.; Mukhin, A.G.; Kimes, A.S. [Brain Imaging Center, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD (United States); Zoghbi, S.S. [Yale Univ., New Haven, CT (United States). Dept. of Radiology; Koren, A.O.; London, E.D. [Brain Imaging Center, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD (United States); Departments of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA (United States); Innis, R.B. [Molecular Imaging Branch, National Institutes of Mental Health (United States)

    2002-02-01

    The biodistribution of radioactivity after the administration of a new tracer for {alpha}4{beta}2 nicotinic acetylcholine receptors (nAChRs), [{sup 123}I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), was studied in ten healthy human subjects. Following administration of 98{+-}6 MBq [{sup 123}I]5-I-A-85380, serial whole-body images were acquired over 24 h and corrected for attenuation. One to four brain single-photon emission tomography (SPET) images were also acquired between 2.5 and 24 h. Estimates of radiation absorbed dose were calculated using MIRDOSE 3.1 with a dynamic bladder model and a dynamic gastrointestinal tract model. The estimates of the highest absorbed dose ({mu}Gy/MBq) were for the urinary bladder wall (71 and 140), lower large intestine wall (70 and 72), and upper large intestine wall (63 and 64), with 2.4-h and 4.8-h urine voiding intervals, respectively. The whole brain activity at the time of the initial whole-body imaging at 14 min was 5.0% of the injected dose. Consistent with the known distribution of {alpha}4{beta}2 nAChRs, SPET images showed the highest activity in the thalamus. These results suggest that [{sup 123}I]5-I-A-85380 is a promising SPET agent to image {alpha}4{beta}2 nAChRs in humans, with acceptable dosimetry and high brain uptake. (orig.)

  1. Morphological and histochemical study of cleft palate induced in CD-1 mice by whole body x-radiation

    International Nuclear Information System (INIS)

    Lewis, C.E.

    1977-01-01

    Palatogenesis in CD-1 mice exposed to 300 or 400 rads of x-radiation in utero was compared with palate development of unirradiated fetuses to determine whether any correlation exists between time of irradiation (days nine through twelve) and the incidence of morphological or histochemical variations in fetal palate tissues. Data accumulated indicate that although x-radiation reduces fetal weight and crown-rump length and retards palate closure, growth, ossification and SDH activity, fetuses exhibit some recovery from radiation damage

  2. Worldwide exposures to ionizing radiation

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1993-01-01

    All of mankind is exposed to ionizing radiation from natural sources, from human practices that release natural and artificial radionuclides to the environment, and from medical radiation procedures. This paper reviews the assessment in the UNSCEAR 1993 Report of the exposures of human populations worldwide to the various sources of ionizing radiation

  3. Ghrelin Therapy Improves Survival after Whole-Body Ionizing Irradiation or Combined with Burn or Wound: Amelioration of Leukocytopenia, Thrombocytopenia, Splenomegaly, and Bone Marrow Injury

    Directory of Open Access Journals (Sweden)

    Juliann G. Kiang

    2014-01-01

    Full Text Available Exposure to ionizing radiation alone (RI or combined with traumatic tissue injury (CI is a crucial life-threatening factor in nuclear and radiological events. In our laboratory, mice exposed to 60Co-γ-photon radiation (9.5 Gy, 0.4 Gy/min, bilateral followed by 15% total-body-surface-area skin wounds (R-W CI or burns (R-B CI experienced an increment of ≥18% higher mortality over a 30-day observation period compared to RI alone. CI was accompanied by severe leukocytopenia, thrombocytopenia, erythropenia, and anemia. At the 30th day after injury, numbers of WBC and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were recovered towards preirradiation levels. Only RI induced splenomegaly. RI and CI resulted in bone-marrow cell depletion. In R-W CI mice, ghrelin (a hunger-stimulating peptide therapy increased survival, mitigated body-weight loss, accelerated wound healing, and increased hematocrit. In R-B CI mice, ghrelin therapy increased survival and numbers of neutrophils, lymphocytes, and platelets and ameliorated bone-marrow cell depletion. In RI mice, this treatment increased survival, hemoglobin, and hematocrit and inhibited splenomegaly. Our novel results are the first to suggest that ghrelin therapy effectively improved survival by mitigating CI-induced leukocytopenia, thrombocytopenia, and bone-marrow injury or the RI-induced decreased hemoglobin and hematocrit.

  4. Risk of whole body radiation exposure and protective measures in fluoroscopically guided interventional techniques: a prospective evaluation

    Directory of Open Access Journals (Sweden)

    Rivera Jose

    2003-08-01

    Full Text Available Abstract Background Fluoroscopic guidance is frequently utilized in interventional pain management. The major purpose of fluoroscopy is correct needle placement to ensure target specificity and accurate delivery of the injectate. Radiation exposure may be associated with risks to physician, patient and personnel. While there have been many studies evaluating the risk of radiation exposure and techniques to reduce this risk in the upper part of the body, the literature is scant in evaluating the risk of radiation exposure in the lower part of the body. Methods Radiation exposure risk to the physician was evaluated in 1156 patients undergoing interventional procedures under fluoroscopy by 3 physicians. Monitoring of scattered radiation exposure in the upper and lower body, inside and outside the lead apron was carried out. Results The average exposure per procedure was 12.0 ± 9.8 seconds, 9.0 ± 0.37 seconds, and 7.5 ± 1.27 seconds in Groups I, II, and III respectively. Scatter radiation exposure ranged from a low of 3.7 ± 0.29 seconds for caudal/interlaminar epidurals to 61.0 ± 9.0 seconds for discography. Inside the apron, over the thyroid collar on the neck, the scatter radiation exposure was 68 mREM in Group I consisting of 201 patients who had a total of 330 procedures with an average of 0.2060 mREM per procedure and 25 mREM in Group II consisting of 446 patients who had a total of 662 procedures with average of 0.0378 mREM per procedure. The scatter radiation exposure was 0 mREM in Group III consisting of 509 patients who had a total 827 procedures. Increased levels of exposures were observed in Groups I and II compared to Group III, and Group I compared to Group II. Groin exposure showed 0 mREM exposure in Groups I and II and 15 mREM in Group III. Scatter radiation exposure for groin outside the apron in Group I was 1260 mREM and per procedure was 3.8182 mREM. In Group II the scatter radiation exposure was 400 mREM and with 0.6042 m

  5. Comparison of computational models for estimation of whole body and organ radiation dose in rainbow trout from uptake of iodine-131 - Comparison of rainbow trout phantoms for estimation of whole body and organ radiation dose rates from uptake of iodine-131 in freshwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Nicole E. [Department of Environmental and Engineering Sciences, Clemson University, Clemson, South Carolina, 29634 (United States); Johnson, Thomas E.; Ruedig, Elizabeth; Pinder, John E. III [Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, Colorado, 80523 (United States)

    2014-07-01

    Internal radiation dose rates to biota are typically calculated utilizing dose conversion factors (DCF), which are values for absorbed dose rate per activity concentration (i.e. mGy d{sup -1} per Bq g{sup -1}). The current methodology employed by both the ICRP and within the ERICA Integrated Approach for calculating dose conversion coefficients is to use Monte Carlo modeling of a homogeneously distributed radionuclide within an ellipsoidal phantom chosen to represent a particular organism. It has been shown that for whole-body DCF, homogenous distribution is a reasonable assumption for electrons, and is associated with an uncertainty of less than 30% for photons. However, if a radionuclide has a specific tissue tropism (e.g. iodine-131 in thyroid) a much higher dose will be received by the organ or tissue than by the whole body. Internal organs are modeled generically as spheres within the ellipsoid phantom, due to the complex and variable nature of organ structure and arrangement within different types of organisms. Ratios of whole-body to organ mass offer conservative conversions of whole-body to organ specific DCF (Gomez-Ros et al 2008), but may considerably overestimate the organ dose; more accurate estimates can be made based on specific absorbed fractions and activity concentrations. Establishment of appropriate screening levels in the regulatory paradigm requires incorporation of sufficient knowledge of dose effects; the ICRP currently lists no derived consideration reference levels for organs, meaning that specific risks associated with organ dose rates are unavailable (ICRP 108). Model comparison and refinement is important in the process of determining both dose rates and dose effects, and here we develop and compare three models for rainbow trout (Oncorhynchus mykiss): the simple geometry described above, a more specific geometry employing anatomically relevant organ size and location, and voxel reconstruction of internal anatomy obtained from CT imaging

  6. Whole-body radiation dosimetry of 2-[18F]Fluoro-A-85380 in human PET imaging studies

    International Nuclear Information System (INIS)

    Obrzut, Sebastian L.; Koren, Andrei O.; Mandelkern, Mark A.; Brody, Arthur L.; Hoh, Carl K.; London, Edythe D.

    2005-01-01

    2-[ 18 F]Fluoro-A-85380 (2-[ 18 F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine, 2-[ 18 F]FA) is a recently developed PET radioligand for noninvasive imaging of nicotinic acetylcholine receptors. Previous radiation absorbed dose estimates for 2-[ 18 F]FA were limited to evaluation of activity in only several critical organs. Here, we performed 2-[ 18 F]FA radiation dosimetry studies on two healthy human volunteers to obtain data for all important body organs. Intravenous injection of 2.9 MBq/kg of 2-[ 18 F]FA was followed by dynamic PET imaging. Regions of interest were placed over images of each organ to generate time-activity curves, from which we computed residence times. Radiation absorbed doses were calculated from the residence times using the MIRDOSE 3.0 program (version 3.0, ORISE, Oak Ridge, TN). The urinary bladder wall receives the highest radiation absorbed dose (0.153 mGy/MBq, 0.566 rad/mCi, for a 2.4-h voiding interval), followed by the liver (0.0496 mGy/MBq, 0.184 rad/mCi) and the kidneys (0.0470 mGy/MBq, 0.174 rad/mCi). The mean effective dose equivalent is estimated to be 0.0278 mSv/MBq (0.103 rem/mCi), indicating that radiation dosimetry associated with 2-[ 18 F]FA is within acceptable limits

  7. Biomedical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Rosiak, J.M.; Pietrzak, M.

    1997-01-01

    Application of ionizing radiation for sterilization of medical devices, hygienization of cosmetics products as well as formation of biomaterials have been discussed. The advantages of radiation sterilization over the conventional methods have been indicated. The properties of modern biomaterials, hydrogels as well as some ways of their formation and modification under action of ionizing radiation were presented. Some commercial biomaterials of this kind produced in accordance with original Polish methods by means of radiation technique have been pointed out. (author)

  8. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams

    International Nuclear Information System (INIS)

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-01-01

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.

  9. Whole-body irradiation transiently diminishes the adrenocorticotropin response to recombinant human interleukin-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Perlstein, R.S.; Mehta, N.R.; Neta, R.; Whitnall, M.H. [Armed Forces Radiobiology Research Institute, Bethesda, MD (United States); Mougey, E.H. [Walter Reed Army Institute of Research, Washington, DC (United States)

    1995-03-01

    Recombinant human interleukin-1{alpha} (rhIL-1{alpha}) has significant potential as a radioprotector and/or treatment for radiation-induced hematopoietic injury. Both IL-1 and whole-body ionizing irradiation acutely stimulate the hypothalamic-pituitary-adrenal axis. We therefore assessed the interaction of whole-body irradiation and rhIL-1{alpha} in altering the functioning of the axis in mice. Specifically, we determined the adrenocorticotropin (ACTH) and corticosterone responses to rhIL-1{alpha} administered just before and hours to days after whole-body or sham irradiation. Our results indicate that whole-body irradiation does not potentiate the rhIL-1{alpha}-induced increase in ACTH levels at the doses used. In fact, the rhIL-1{alpha}-induced increase in plasma ACTH is transiently impaired when the cytokine is administered 5 h after, but not 1 h before, exposure to whole-body irradiation. The ACTH response may be inhibited by elevated corticosterone levels after whole-body irradiation, or by other radiation-induced effects on the pituitary gland and hypothalamus. 36 refs., 3 figs.

  10. Technical sheets of ionizing radiations. 2. Non-ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The biological effects of different non-ionizing radiations are studied: ultra-violet radiation, visible radiation, infrared radiation, micrometric waves, ultrasonics. In spite of their apparent diversity these radiations are similar in their physico-chemical effects, but in view of their widely varying production methods and types of application each type is considered separately. It is pointed out that no organization resembling the CIPR exists in the field of non-ionizing radiations, the result being a great disparity amongst the different legislations in force [fr

  11. Effect of ionizing whole-body irradiation on the primary and secondary antibody reaction of cows to injection of human gamma globulin

    International Nuclear Information System (INIS)

    Koch, F.; Buchholz, I.; Mehlhorn, G.

    1989-01-01

    In 3 experiments 29 cows were exposed to whole-body irradiation, using 9 MeV X-rays of a linear accelerator, with doses of 1.50 and 2.00 Gy or 60 Co gamma rays with a dose of 2.75 Gy, as a midline dose. 2 weeks prior to irradiation the first immunization was applied using human gamma globulin. 4 or 5 weeks after irradiation a second immunization was carried out. The antibody titres were investigated. The irradiation failed to affect the antibody titres after the first immunization. After the second immunization the antibody titres of the irradiated animals remained diminished significantly (α = 0.05). This has been attributed to a damage of the memory cell pool. (author)

  12. Radiation dosimetry estimates of "1"8F-alfatide II based on whole-body PET imaging of mice

    International Nuclear Information System (INIS)

    Wang, Si-yang; Bao, Xiao; Wang, Ming-wei; Zhang, Yong-ping; Zhang, Ying-jian; Zhang, Jian-ping

    2015-01-01

    We estimated the dosimetry of "1"8F-alfatide II with the method established by MIRD based on biodistribution data of mice. Six mice (three females and three males) were scanned for 160 min on an Inveon MicroPET/CT scanner after injection of "1"8F-alfatide II via tail vein. Eight source organs were delineated on the CT images and their residence times calculated. The data was then converted to human using scaling factors based on organ and body weight. The absorbed doses for human and the resulting effective dose were computed by OLINDA 1.1 software. The highest absorbed doses was observed in urinary bladder wall (male 0.102 mGy/MBq, female 0.147 mGy/MBq); and the lowest one was detected in brain (male 0.0030 mGy/MBq, female 0.0036). The total effective doses were 0.0127 mSv/MBq for male and 0.0166 mSv/MBq for female, respectively. A 370-MBq injection of "1"8F-alfatide II led to an estimated effective dose of 4.70 mSv for male and 6.14 mSv for female. The potential radiation burden associated with "1"8F-alfatide II/PET imaging therefore is comparable to other PET examinations. - Highlights: • We demonstrated a proper mice model to estimate human radiation dosimetry. • This is the first paper to estimate human radiation dosimetry of "1"8F-alfatide II. • Estimated effective dose are in the range of routine nuclear medicine studies.

  13. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ching-Ching, E-mail: cyang@tccn.edu.tw [Department of Medical Imaging and Radiological Sciences, Tzu-Chi College of Technology, 970, Hualien, Taiwan (China); Liu, Shu-Hsin [Department of Nuclear Medicine, Buddhist Tzu-Chi General Hospital, 970, Hualien, Taiwan and Department of Medical Imaging and Radiological Sciences, Tzu-Chi College of Technology, 970, Hualien, Taiwan (China); Mok, Greta S. P. [Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau (China); Wu, Tung-Hsin [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 112, Taipei, Taiwan (China)

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  14. Whole body MR-PET: a new internal dosimetry method for radiation transport calculation from biokinetic model data

    International Nuclear Information System (INIS)

    Nunes, Ana; Alves, Francisco; Patrício, Miguel

    2014-01-01

    In order to ensure the safe usage of new radiopharmaceuticals in Positron Emission Tomography (PET), it is necessary to quantify the doses delivered to the organs and tissues within the patients’ bodies. A framework that allows estimating the dose delivered by PET has been established by the MIRD Committee [1, 2] and ICRP []. Although this covers the most important terms and concepts in Internal Radiation Dosimetry (IRD), it does not provide a detailed guide to assist in the development of a full dosimetric study. We discuss the development, implementation, assessment and validation of an accurate method for IRD studies of PET radiotracers.

  15. Assessment of annual whole-body occupational radiation exposure in education, research and industrial sectors in Ghana (2000-09)

    International Nuclear Information System (INIS)

    Hasford, F.; Owusu-banahene, J.; Otoo, F.; Adu, S.; Sosu, E. K.; Amoako, J. K.; Darko, E. O.; Emi-reynolds, G.; Nani, E. K.; Boadu, M.; Arwui, C. C.; Yeboah, J.

    2008-01-01

    Institutions in the education, research and industrial sectors in Ghana are quite few in comparison to the medical sector. Occupational exposure to radiation in the education, research and industrial sectors in Ghana have been analysed for a 10 y period between 2000 and 2009, by extracting dose data from the database of the Radiation Protection Inst. (Ghana)) Atomic Energy Commission. Thirty-four institutions belonging to the three sectors were monitored out of which ∼65 % were in the industrial sector. During the 10 y study period, monitored institutions ranged from 18 to 23 while the exposed workers ranged from 246 to 156 between 2000 and 2009. Annual collective doses received by all the exposed workers reduced by a factor of 2 between 2000 and 2009. This is seen as a reduction in annual collective doses in education/research and industrial sectors by ∼39 and ∼62 %, respectively, for the 10 y period. Highest and least annual collective doses of 182.0 man mSv and 68.5 man mSv were all recorded in the industrial sector in 2000 and 2009, respectively. Annual average values for dose per institution and dose per exposed worker decreased by 49 and 42.9 %, respectively, between 2000 and 2009. Average dose per exposed worker for the 10 y period was least in the industrial sector and highest in the education/research sector with values 0.6 and 3.7 mSv, respectively. The mean of the ratio of annual occupationally exposed worker (OEW) doses for the industrial sector to the annual OEW doses for the education/research sector was 0.67, a suggestion that radiation protection practices are better in the industrial sector than they are in the education/research sector. Range of institutional average effective doses within the education/research and industrial sectors were 0.059-6.029, and 0.110-2.945 mSv, respectively. An average dose per all three sectors of 11.87 mSv and an average dose per exposed worker of 1.12 mSv were realised for the entire study period. The entire

  16. Ionizing radiation promotes protozoan reproduction

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1986-01-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism

  17. Chronic radiation injury with mice and dogs exposed to external whole-body irradiation at the Argonne National Laboratory

    International Nuclear Information System (INIS)

    Grahn, D.; Fritz, T.E.

    1986-01-01

    This document describes studies on chronic radiation injury in experimental animals and the extrapolation of derived injury parameters to man. Most of the large studies have used mice given single, weekly, or continuous exposure to cobalt-60 gamma rays, or, more recently, single or weekly exposure to fission neutrons from the JANUS reactor. Primary measures of injury have been life shortening and the associated major pathological changes, particularly neoplastic diseases. Recent and ongoing studies compare the effects of extremely low neutron exposures with gamma irradiations delivered as a single dose or in 60 equal weekly increments. Total neutron doses range from 1 to 40 rads; gamma-ray doses range from 22.5 to 600 rads. Selected genetic studies are performed concurrently to provide a nearly complete matrix of somatic and genetic effects of these low exposures. Studies with the beagle have complemented those with mice and have shown a strong parallelism in the responses of the two species. Present exposures are at 0.3, 0.75, and 1.88 rads per day of continuous gamma irradiation to test a model for the prediction of life shortening in man which has evolved from Argonne's long-term studies. The dog offers the opportunity for longitudinal clinical evaluations that are not possible in the mouse, to develop a broader view of the neoplastic disease spectrum, and to study the mechanisms of radiation induction of leukemia. Diverse statistical approaches have been used to measure excess risk, dose-response functions, and rates of injury and repair. Actuarial statistical methods have been favored since they permit a more direct means of extrapolation to man. 50 refs., 4 figs

  18. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Choi, Hyeong-Jwa [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Na, Tae-Young [College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-741 (Korea, Republic of); Nemeno, Judee Grace E.; Lee, Jeong Ik [Regenerative Medicine Laboratory, Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 143-701 (Korea, Republic of); Yoon, Taek Joon [Department of Food and Nutrition, Yuhan College, Bucheon, Gyeonggi-do, 422-749 (Korea, Republic of); Choi, In-Soo [Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Lee, Minyoung [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Lee, Jae-Seon [Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 400-712 (Korea, Republic of); Kang, Young-Sun, E-mail: kangys1967@naver.com [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of)

    2015-08-07

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.

  19. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    International Nuclear Information System (INIS)

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee; Choi, Hyeong-Jwa; Na, Tae-Young; Nemeno, Judee Grace E.; Lee, Jeong Ik; Yoon, Taek Joon; Choi, In-Soo; Lee, Minyoung; Lee, Jae-Seon; Kang, Young-Sun

    2015-01-01

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3 + apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b + cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1 + macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver

  20. Whole-body counter

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, G A; Kosterev, V V

    1975-01-24

    A counter for detecting radiation of a man (CRM) is described, which consists of two measuring converters and a recording device. In order to obtain data on spatial distribution of a gamma-radiating nuclide studied, a fixed collimator and a mobile coder made of separate slit elements are placed between the measuring converters and an object investigated.

  1. Motor reactivity of animals exposed to ionizing radiation and treated with psychotropic drugs

    International Nuclear Information System (INIS)

    Szwaja, S.

    1978-01-01

    The influence of ionizing radiation on motor reactivity of animals and the influence of selected psychotropic drugs (fenactil, haloperidol, relanium) on the changes invoked by ionizing radiation were studied experimentally in rats whose motor reactivity was assessed on the basis of conditional reflexes. In unirradiated rats, fenactil and haloperidol, but not relanium, disordered positive conditional reactions. Roentgen irradiation of the rats with a single dose on the whole body caused a drop in positive conditional reactions. Relanium and fenactil enhanced psychomotor activity of rats after exposure to ionizing radiation. (author)

  2. Motor reactivity of animals exposed to ionizing radiation and treated with psychotropic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Szwaja, S [Uniwersytet Jagiellonski, Krakow (Poland)

    1978-01-01

    The influence of ionizing radiation on motor reactivity of animals and the influence of selected psychotropic drugs (fenactil, haloperidol, relanium) on the changes invoked by ionizing radiation were studied experimentally in rats whose motor reactivity was assessed on the basis of conditional reflexes. In unirradiated rats, fenactil and haloperidol, but not relanium, disordered positive conditional reactions. Roentgen irradiation of the rats with a single dose on the whole body caused a drop in positive conditional reactions. Relanium and fenactil enhanced psychomotor activity of rats after exposure to ionizing radiation.

  3. Food irradiation with ionizing radiation

    International Nuclear Information System (INIS)

    Hrudkova, A.; Pohlova, M.; Sedlackova, J.

    1974-01-01

    Application possibilities are discussed of ionizing radiation in inhibiting plant germination, in radiopasteurization and radiosterilization of food. Also methods of combining radiation with thermal food sterilization are discussed. The problems of radiation doses and of hygienic purity of irradiated foodstuffs are dealt with. (B.S.)

  4. Ionizing radiation, radiation sources, radiation exposure, radiation effects. Pt. 2

    International Nuclear Information System (INIS)

    Schultz, E.

    1985-01-01

    Part 2 deals with radiation exposure due to artificial radiation sources. The article describes X-ray diagnosis complete with an analysis of major methods, nuclear-medical diagnosis, percutaneous radiation therapy, isotope therapy, radiation from industrial generation of nucler energy and other sources of ionizing radiation. In conclusion, the authors attempt to asses total dose, genetically significant dose and various hazards of total radiation exposure by means of a summation of all radiation impacts. (orig./WU) [de

  5. Ionizing radiation and the thymus

    International Nuclear Information System (INIS)

    Huiskamp, R.

    1986-01-01

    In this thesis the effects of whole body irradiation with fast fission neutrons and X-rays on the murine thymus are studied. Young adult CBA mice were exposed to whole body irradiation with either fast fission neutrons or X-rays. The results of the investigation of short- and long-term effects of the irradiation on the thymus showed a biphasic regeneration pattern followed by a marked decrease in relative thymus weight and cellularity which lasted up to at least 250 days. This late effect is attributed to possible loss of pluripotent stem cells and residual damage in the surviving stem cells in the bone marrow. The immunohistology of T cell subpopulations in the thymus of normal CBA/H mice was analyzed in order to describe the T cell composition of the irradiated thymus. The effects of irradiation with fast fission neutrons on the stromal cells of the thymus are studied in order to investigate whether the thymic stromal cells are involved in the regeneration process. The effect of graded doses of fission neutrons or X-rays on the lymphoid compartment on the thymus are studied in order to investigate the radiosensitivity of thymocyte subpopulations for these radiation types. Also the effects on the stromal compartment of the thymus are investigated. (Auth.)

  6. Wound trauma alters ionizing radiation dose assessment

    Directory of Open Access Journals (Sweden)

    Kiang Juliann G

    2012-06-01

    Full Text Available Abstract Background Wounding following whole-body γ-irradiation (radiation combined injury, RCI increases mortality. Wounding-induced increases in radiation mortality are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to bacterial infection. Among these factors, cytokines along with other biomarkers have been adopted for biodosimetric evaluation and assessment of radiation dose and injury. Therefore, wounding could complicate biodosimetric assessments. Results In this report, such confounding effects were addressed. Mice were given 60Co γ-photon radiation followed by skin wounding. Wound trauma exacerbated radiation-induced mortality, body-weight loss, and wound healing. Analyses of DNA damage in bone-marrow cells and peripheral blood mononuclear cells (PBMCs, changes in hematology and cytokine profiles, and fundamental clinical signs were evaluated. Early biomarkers (1 d after RCI vs. irradiation alone included significant decreases in survivin expression in bone marrow cells, enhanced increases in γ-H2AX formation in Lin+ bone marrow cells, enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood, and concomitant decreases in γ-H2AX formation in PBMCs and decreases in numbers of splenocytes, lymphocytes, and neutrophils. Intermediate biomarkers (7 – 10 d after RCI included continuously decreased γ-H2AX formation in PBMC and enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood. The clinical signs evaluated after RCI were increased water consumption, decreased body weight, and decreased wound healing rate and survival rate. Late clinical signs (30 d after RCI included poor survival and wound healing. Conclusion Results suggest that confounding factors such as wounding alters ionizing radiation dose assessment and agents inhibiting these responses may prove therapeutic for radiation combined

  7. Action of ionizing radiation on the carbohydrate metabolism enzymes

    International Nuclear Information System (INIS)

    Cherkasova, L.S.; Mironova, T.M.

    1976-01-01

    It follows from data reported in literature and those obtained in our laboratory that ionizing radiation does not drastically change the activity of enzymes of the carbohydrate metabolism in tissues of an animal organism. The data are reported on the effect of a whole-body single, fractionated or continuous irradiation of the enzymes of carbohydrate metabolism and the accompanying interrelated co-operative redistributions within the processes of aerobic and anaerobic glycolysis, and the pentose route of their conversion. The dependence of the postirradiation changes in the activity of enzymes on the neuroendocrine system response to irradiation has been demonstrated

  8. Safe use of ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    1973-01-01

    Based on the ''Code of Practice for the protection of persons against ionizing radiations arising from medical and dental use'' (CIS 74-423), this handbook shows how hospital staff can avoid exposing themselves and others to these hazards. It is designed particularly for junior and student nurses. Contents: ionizing radiations, their types and characteristics; their uses and dangers; basic principles in their safe use; safe use in practice; explanation of terms.

  9. [Proposals for the revision of radiation protection measures for doses up to 222 MBq iodine-131 for whole body scintiscan for the detection of metastatic lesions].

    Science.gov (United States)

    Karaveli, Maria; Hatzigiannaki, Anastasia; Dedousi, Eleni

    2006-01-01

    The goal of this study was to estimate the necessary period of time, required for radiation protection instructions to be followed by patients with differentiated thyroid carcinoma (DTC) after total thyroidectomy who are given iodine-131 ((131)I) for a whole body scintiscan (WBS) in relation to the instructions of the European Commission and the ICRP. In order to estimate and evaluate the dose received by the family members and the general public, we have studied 30 patients and were given a dose of 92-222 MBq of (131)I for a diagnostic WBS. The patients studied were four men with mean age+/-standard deviation (M+/-SD)=55+/-6 y and 26 women with: M+/-SD=47+/-14 y. Dose rate measurements were carried out at the Nuclear Medicine Department of the AHEPA University Hospital; 1 h after the patients had received the (131)I dose and 48 h later when they returned to the hospital for the WBS. The calculated doses received by the in-living relatives of the patients and by the general public, assuming that radiation protection measures were applied for 2d, ranged between 76-640 microSv and 22-171 microSv respectively. In conclusion, the results of this study, compared to the dose constraints suggested by the European Commission, indicate that the duration of radiation protection guidelines for patients receiving (131)I for diagnostic purposes could be reduced to only two days without any potential risk to family members or to members of the public. The case of children of the immediate family environment, aged less than 3 y, was not investigated in this study.

  10. Prenatal exposition on ionizing radiations

    International Nuclear Information System (INIS)

    2001-01-01

    The Sessions on Prenatal Exposition on Ionizing Radiations was organized by the Argentine Radioprotection Society, in Buenos Aires, between 8 and 9, November 2001. In this event, were presented papers on: biological effects of ionizing radiation; the radiation protection and the pregnant woman; embryo fetal development and its relationship with the responsiveness to teratogens; radioinduced delayed mental; neonatal irradiation: neurotoxicity and modulation of pharmacological response; pre implanted mouse embryos as a model of uranium toxicity studies; hereditary effects of the radiation and new advances from the UNSCEAR 2001; doses estimation in embryo

  11. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Brim, C.P.; Rieksts, G.A.; Rhoads, M.C.

    1987-05-01

    This document, a reprint of the Whole Body Counting Manual, was compiled to train personnel, document operation procedures, and outline quality assurance procedures. The current manual contains information on: the location, availability, and scope of services of Hanford's whole body counting facilities; the administrative aspect of the whole body counting operation; Hanford's whole body counting facilities; the step-by-step procedure involved in the different types of in vivo measurements; the detectors, preamplifiers and amplifiers, and spectroscopy equipment; the quality assurance aspect of equipment calibration and recordkeeping; data processing, record storage, results verification, report preparation, count summaries, and unit cost accounting; and the topics of minimum detectable amount and measurement accuracy and precision. 12 refs., 13 tabs

  12. Human whole body cold adaptation.

    NARCIS (Netherlands)

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced

  13. Research on internal dosimetry for some of gamma emitting nuclides for radiation workers by direct method (in-vivo) with using a chair-type whole-body counter

    International Nuclear Information System (INIS)

    Nguyen Van Hung; Pham Hung Thai

    2003-01-01

    This research objective is to establish a chair-type whole-body counter with using NaI(Ti) detector in large sizes and whole-body standard phantoms as well as to apply the computational program of LUDEP 2.0. Steel holder with a lead collimator, two whole-body standard phantoms in Vietnamese adults (one for male and another for female) by plastic material, electronic blocks of ADC and MCD (8K), MCA program for measuring gamma spectrum by VB6 language in Windows are established and made. In addition, applied research for the program of LUDEP 2.0 in order to calculate and evaluated internal doses for radiation workers is carried out. (author)

  14. Biodistribution and radiation dosimetry of the 18 kDa translocator protein (TSPO) radioligand [{sup 18}F]FEDAA1106: a human whole-body PET study

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Akihiro; Gulyas, Balazs; Varrone, Andrea; Karlsson, Per; Sjoholm, Nils; Halldin, Christer [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Larsson, Stig; Jonsson, Cathrine; Odh, Richard [Karolinska Institutet, Department of Nuclear Medicine, Stockholm (Sweden); Sparks, Richard [CDE Dosimetry Services, Inc., Knoxville, TN (United States); Tawil, Nabil Al [Karolinska University Hospital, Karolinska Trial Alliance, Stockholm (Sweden); Hoffmann, Anja; Zimmermann, Torsten; Thiele, Andrea [Bayer Schering Pharma AG, Berlin (Germany)

    2011-11-15

    [{sup 18}F]FEDAA1106 is a recently developed positron emission tomography (PET) radioligand for in vivo quantification of the 18 kDa translocator protein [TSPO or, as earlier called, the peripheral benzodiazepine receptor (PBR)]. TSPO imaging is expected to be useful for the clinical evaluation of neuroinflammatory diseases. The aim of this study was to provide dosimetry estimates for [{sup 18}F]FEDAA1106 based on human whole-body PET measurements. PET scans were performed for a total of 6.6 h after the injection of 183.8 {+-} 9.1 MBq of [{sup 18}F]FEDAA1106 in six healthy subjects. Regions of interest were drawn on coronal images. Estimates of the absorbed doses of radiation were calculated using the OLINDA software. Peak uptake was largest in lungs, followed by liver, small intestine, kidney, spleen and other organs. Peak values of the percent injected dose (%ID) at a time after radioligand injection were calculated for the lungs (27.1%ID at 0.2 h), liver (21.1%ID at 0.6 h), small intestine (10.4%ID at 6.3 h), kidney (4.9%ID at 1.8 h) and spleen (4.6%ID at 0.6 h). The largest absorbed dose was found in the spleen (0.12 mSv/MBq), followed by kidneys (0.094 mSv/MBq). The calculated mean effective dose was 0.036 mSv/MBq. Based on the distribution and dose estimates, the estimated radiation burden of [{sup 18}F]FEDAA1106 is moderately higher than that of [{sup 18}F]fluorodeoxyglucose (FDG). In clinical studies, the administered activity of this radioligand ought to be adjusted in line with regional regulations. This result would be helpful for further clinical TSPO imaging studies. (orig.)

  15. Whole-body distribution and radiation dosimetry of the dopamine transporter radioligand [{sup 11}C]PE2I in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Maria-Joao [Service Hospitalier Frederic Joliot, Institut d' Imagerie Biomedicale, Direction des Sciences du Vivant, Commissariat a l' Energie Atomique, F-91406 Orsay (France)]. E-mail: maria-joao.ribeiro@cea.fr; Ricard, Marcel [Service de Physique, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France); Lievre, Marie-Angele [Service Hospitalier Frederic Joliot, Institut d' Imagerie Biomedicale, Direction des Sciences du Vivant, Commissariat a l' Energie Atomique, F-91406 Orsay (France); Bourgeois, Sandrine [Service Hospitalier Frederic Joliot, Institut d' Imagerie Biomedicale, Direction des Sciences du Vivant, Commissariat a l' Energie Atomique, F-91406 Orsay (France); Emond, Patrick [INSERM U316, Laboratoire de Biophysique medicale et pharmaceutique, UFR des Sciences Pharmaceutiques, 37200 Tours (France); Gervais, Philippe [Service Hospitalier Frederic Joliot, Institut d' Imagerie Biomedicale, Direction des Sciences du Vivant, Commissariat a l' Energie Atomique, F-91406 Orsay (France); Dolle, Frederic [Service Hospitalier Frederic Joliot, Institut d' Imagerie Biomedicale, Direction des Sciences du Vivant, Commissariat a l' Energie Atomique, F-91406 Orsay (France); Syrota, Andre [Service Hospitalier Frederic Joliot, Institut d' Imagerie Biomedicale, Direction des Sciences du Vivant, Commissariat a l' Energie Atomique, F-91406 Orsay (France)

    2007-05-15

    Introduction: This study reports on the biodistribution and radiation dosimetry of a cocaine analog, the (E)-N-(3-iodoprop-2-enyl)-2{beta}-carbomethoxy-3{beta}-(4'-tolyl)nortropane (PE2I), labeled with carbon 11 ([{sup 11}C]PE2I). [{sup 11}C]PE2I is used in positron emission tomography (PET) for examination of the dopamine neuronal transporter (DAT). DAT radioligands are often used to evaluate the progression of Parkinson's disease or the efficiency of neuroprotective therapeutics, and, typically, these studies required several successive PET scans. Methods: In three healthy male volunteers, whole-body scans were performed up to 2 h following intravenous injection of 321{+-}6 MBq of [{sup 11}C]PE2I. For each subject, regions of interest were defined over all visible organs to generate time-activity curves and calculate the percentage of injected activity. Time-activity data were fitted to a monoexponential model, as an uptake phase followed by a mono-exponential washout, or bi-exponential model to obtain residence times. With the use of the MIRD method, several source organs were considered in estimating residence time and mean effective radiation absorbed doses. Results: Blood pressure and ECG findings remained unchanged after radioligand injection. The primary route of clearance was renal. Ten minutes after injection, high activities were observed in the kidneys, urinary-bladder, stomach, liver, salivary glands and brain. The urine bladder wall, stomach and liver received the highest absorbed doses. The average effective dose of [{sup 11}C]PE2I was estimated to be 6.4{+-}0.6 {mu}Sv/MBq. Conclusion: The amount of [{sup 11}C]PE2I required for adequate DAT PET imaging results in an acceptable effective dose equivalent permitting two or three repeated cerebral PET studies, with the injection of 222 MBq for each study.

  16. Whole-body distribution and radiation dosimetry of the dopamine transporter radioligand [11C]PE2I in healthy volunteers

    International Nuclear Information System (INIS)

    Ribeiro, Maria-Joao; Ricard, Marcel; Lievre, Marie-Angele; Bourgeois, Sandrine; Emond, Patrick; Gervais, Philippe; Dolle, Frederic; Syrota, Andre

    2007-01-01

    Introduction: This study reports on the biodistribution and radiation dosimetry of a cocaine analog, the (E)-N-(3-iodoprop-2-enyl)-2β-carbomethoxy-3β-(4'-tolyl)nortropane (PE2I), labeled with carbon 11 ([ 11 C]PE2I). [ 11 C]PE2I is used in positron emission tomography (PET) for examination of the dopamine neuronal transporter (DAT). DAT radioligands are often used to evaluate the progression of Parkinson's disease or the efficiency of neuroprotective therapeutics, and, typically, these studies required several successive PET scans. Methods: In three healthy male volunteers, whole-body scans were performed up to 2 h following intravenous injection of 321±6 MBq of [ 11 C]PE2I. For each subject, regions of interest were defined over all visible organs to generate time-activity curves and calculate the percentage of injected activity. Time-activity data were fitted to a monoexponential model, as an uptake phase followed by a mono-exponential washout, or bi-exponential model to obtain residence times. With the use of the MIRD method, several source organs were considered in estimating residence time and mean effective radiation absorbed doses. Results: Blood pressure and ECG findings remained unchanged after radioligand injection. The primary route of clearance was renal. Ten minutes after injection, high activities were observed in the kidneys, urinary-bladder, stomach, liver, salivary glands and brain. The urine bladder wall, stomach and liver received the highest absorbed doses. The average effective dose of [ 11 C]PE2I was estimated to be 6.4±0.6 μSv/MBq. Conclusion: The amount of [ 11 C]PE2I required for adequate DAT PET imaging results in an acceptable effective dose equivalent permitting two or three repeated cerebral PET studies, with the injection of 222 MBq for each study

  17. Ionizing radiation sources. Ionizing radiation interaction with matter

    International Nuclear Information System (INIS)

    Popits, R.

    1976-01-01

    Fundamentals of nuclear physics are reviewed under the headings: obtaining of X-rays and their properties; modes of radioactive decay of natural or man-made radionuclides; radioactive neutron sources; nuclear fission as basis for devising nuclear reactors and weapons; thermonuclear reactions; cosmic radiation. Basic aspects of ionizing radiation interactions with matter are considered with regard to charged particles, photon radiation, and neutrons. (A.B.)

  18. Preliminary study on bystander effect induced by ionizing radiation in vivo

    International Nuclear Information System (INIS)

    Chen Feng; Tu Yu

    2010-01-01

    In order to investigate the effect of γ-rays on neuro development of fetal brain tissue as bystander effect organ, pregnant Kunming mice were randomly divided into blank control group, 0.5 Gy whole-body exposed group, 0.5 Gy head exposed group, 1.0 Gy whole-body exposed group, 1.0 Gy head exposed group, 2.0 Gy whole-body exposed group and 2.0 Gy head exposed group. The exposed mice were exposed with a vertical single acute dose using 60 Co therapy apparatus on 9th day of pregnancy, and cesarean operation were performed to gain fetal mice on 18th day of pregnancy. Then the levels of AchE and Ach were detected using ELISA kit. Compared with the blank control group, the levels of Ach in 0.5 Gy and 1.0 Gy head exposed groups were decreased (p<0.05); the levels of AchE and Ach decreased in 2.0 Gy whole-body and head exposed groups(p<0.05); the level of Ach in 0.5 Gy whole-body exposed group increased (p<0.05). And bystander effect in fetal brain tissue was induced by ionizing radiation in head exposed groups, which was similar with that in the whole-body exposed groups. (authors)

  19. Natural sources of ionizing radiations

    International Nuclear Information System (INIS)

    Marej, A.N.

    1984-01-01

    Natural sources of ionizing radiations are described in detail. The sources are subdivided into sources of extraterrestrial origin (cosmic radiation) and sources of terrestrial origin. Data on the concentration of different nuclides in rocks, various soils, ground waters, atmospheric air, tissues of plants and animals, various food stuffs are presented. The content of natural radionuclides in environmental objects, related to human activities, is discussed

  20. Ionizing radiations: effects and sources

    International Nuclear Information System (INIS)

    Vignes, S.; Nenot, J.C.

    1978-01-01

    Having first mentioned the effects of ionizing radiations in cancerogenisis, pre-natal, and genetic fields, the authors present the different sources of radiations and estimate their respective contributions to the total irradiation dose. Their paper makes reference to the main elements of a report issued by the United Nations Scientific Committee in 1977 [fr

  1. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Heribanova, A.

    1995-01-01

    The basic principles and pathways of effects of ionizing radiation on living organisms and cells are outlined. The following topics are covered: effects of radiation on living matter (direct effects, radical or indirect effects, dual radiation action, and molecular biological theories); effects of radiation on cells and tissues (cell depletion, changes in the cytogenetic information, reparation mechanisms), dose-response relationship (deterministic effects, stochastic effects), and the effects of radiation on man (acute radiation sickness, acute local changes, fetus injuries, non-tumorous late injuries, malignant tumors, genetic changes). (P.A.). 3 tabs., 2 figs., 5 refs

  2. Ionizing radiation perception by insects

    International Nuclear Information System (INIS)

    Campanhola, C.

    1980-04-01

    The proof of the existence of a perception for ionizing radiation by insects was aimed at, as well as the determination of its processing mechanism. It was tried also to check if such perception induces the insects to keep away from the radiation source, proving therefore a protection against the harms caused by ionizing radiation, or else the stimulus for such behaviour is similar to that caused by light radiations. 60 Co and 241 Am were used as gamma radiation sources, the 60 Co source of 0.435mCi and the 241 Am of 99.68mCi activity. Adult insects were used with the following treatments : exposure to 60 Co and 241 Am radiation and non-exposure (control). A total of approximately 50 insects per replication was released in the central region of an opaque white wooden barrier divided into 3 sections with the same area - 60.0 cm diameter and 7.5 cm height - covered with a nylon screen. 5 replications per treatment were made and the distribution of the insects was evaluated by photographs taken at 15, 30, 45, and 60 minutes after release. Sitophilus oryzae (l., 1763) and Ephestia cautella (Walker, 1864) showed some response to 241 Am gamma radiation, i.e. negative tactism. It was concluded that ionizing radiations can be detected by insects through direct visual stimulus or by visual stimulus reslting from interaction of radiation-Cerenkov radiation - with some other occular component with a refraction index greater than water. Also, the activity of the radioactive source with regard to perception for ionizing radiation, is of relevance in comparison with the energy of the radiation emitted by same, or in other words, what really matters is the radiation dose absorbed. (Author) [pt

  3. Ionizing radiation and cancer prevention

    International Nuclear Information System (INIS)

    Hoel, D.G.

    1995-01-01

    Ionizing radiation long has been recognized as a cause of cancer. Among environmental cancer risks, radiation in unique in the variety of organs and tissues that it can affect. Numerous epidemiological studies with good dosimetry provide the basis for cancer risk estimation, including quantitative information derived from observed dose-response relationships. The amount of cancer attributable to ionizing radiation is difficult to estimate, but numbers such as 1 to 3% have been suggested. Some radiation-induced cancers attributable to ionizing radiation is difficult to estimate, but numbers such as 1 to 3% have been suggested. Some radiation-induced cancers attributable to naturally occurring exposures, such as cosmic and terrestrial radiation, are not preventable. The major natural radiation exposure, radon, can often be reduced, especially in the home, but not entirely eliminated. Medical use of radiation constitutes the other main category of exposure, radon, can often be reduced, especially in the home, but not entirely eliminated. Medical use of radiation constitutes the other main category of exposure; because of the importance of its benefits to one's health, the appropriate prevention strategy is to simply work to minimize exposures. 9 refs., 1 fig., 5 tabs

  4. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities

    OpenAIRE

    Diegeler, Sebastian; Hellweg, Christine E.

    2017-01-01

    Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an e...

  5. Down syndrome and ionizing radiation.

    Science.gov (United States)

    Verger, P

    1997-12-01

    This review examines the epidemiologic and experimental studies into the possible role ionizing radiation might play in Down Syndrome (trisomy 21). It is prompted by a report of a temporal cluster of cases of this chromosomal disorder observed in West Berlin exactly 9 mo after the radioactive cloud from Chernobyl passed. In approximately 90% of cases, Down Syndrome is due to the nondisjunction of chromosome 21, most often in the oocyte, which may be exposed to ionizing radiation during two separate periods: before the completion of the first meiosis or around the time of ovulation. Most epidemiologic studies into trisomies and exposure to ionizing radiation examine only the first period; the Chernobyl cluster is related to the second. Analysis of these epidemiologic results indicates that the possibility that ionizing radiation might be a risk factor in Down Syndrome cannot be excluded. The experimental results, although sometimes contradictory, demonstrate that irradiation may induce nondisjunction in oogenesis and spermatogenesis; they cannot, however, be easily extrapolated to humans. The weaknesses of epidemiologic studies into the risk factors for Down Syndrome at birth (especially the failure to take into account the trisomy cases leading to spontaneous abortion) are discussed. We envisage the utility and feasibility of new studies, in particular among women exposed to prolonged or repeated artificially-produced ionizing radiation.

  6. Injury by ionizing radiations

    International Nuclear Information System (INIS)

    Upton, A.C.

    1985-01-01

    In view of the vast amount of effort devoted to the study of radiation injury during the past century, it may be concluded that the effects of radiation are better understood than those of any other physical or chemical agent. To this extent, it is useful to review our experience with radiation in addressing health problems associated with other environmental agents

  7. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Experiments with small animals, tissue cultures, and inanimate materials help with understanding the effects of ionizing radiation that occur at the molecular level and cause the gross effects observed in man. Topics covered in this chapter include the following: Radiolysis of Water; Radiolysis of Organic Compounds; Radiolysis in Cells; Radiation Exposure and Dose Units; Dose Response Curves; Radiation Effects in Animals; Factors Affecting Health Risks. 8 refs., 3 figs., 5 tabs

  8. The dosimetry of ionizing radiation

    CERN Document Server

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  9. Hormesis with ionizing radiation

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1982-01-01

    This article reviews a book which summarizes and classifies more than 1250 references to experimental work with low-level radiation between 1898 and 1977; explains that the detailed material is presented in tabular form with type of radiation as the primary classification and type of organism and date of report as subclassifications; notes that an incredible variety of effects are specified for flora and fauna; praises the summaries of background radiation and of overall radiation-dose effects to a variety of organisms; and emphasizes the importance of information dealing with the public perception of radiation and its effects

  10. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs

  11. Radiation dosimetry of N-([{sup 11}C]methyl)benperidol as determined by whole-body PET imaging of primates

    Energy Technology Data Exchange (ETDEWEB)

    Antenor-Dorsey, Jo A.V. [Washington University School of Medicine, Department of Anatomy and Neurobiology, St. Louis, MO (United States); Laforest, Richard; Moerlein, Stephen M. [Washington University School of Medicine, Department of Radiology, St. Louis, MO (United States); Videen, Tom O. [Washington University School of Medicine, Department of Radiology, St. Louis, MO (United States); Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Perlmutter, Joel S. [Washington University School of Medicine, Department of Anatomy and Neurobiology, St. Louis, MO (United States); Washington University School of Medicine, Department of Radiology, St. Louis, MO (United States); Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Washington University School of Medicine, Program in Physical Therapy, St. Louis, MO (United States)

    2008-04-15

    N-([{sup 11}C]methyl)benperidol ([{sup 11}C]NMB) can be used for positron emission tomography (PET) measurements of D{sub 2}-like dopamine receptor binding in vivo. We report the absorbed radiation dosimetry of i.v.-administered {sup 11}C-NMB, a critical step before applying this radioligand to imaging studies in humans. Whole-body PET imaging with a CTI/Siemens ECAT 953B scanner was done in a male and a female baboon. After i.v. injection of 444-1221 MBq of {sup 11}C-NMB, sequential images taken from the head to the pelvis were collected for 3 h. Volumes of interest (VOIs) were identified that entirely encompassed small organs (whole brain, striatum, eyes, and myocardium). Large organs (liver, lungs, kidneys, lower large intestine, and urinary bladder) were sampled by drawing representative regions within the organ volume. Time-activity curves for each VOI were extracted from the PET, and organ residence times were calculated by analytical integration of a multi-exponential fit of the time-activity curves. Human radiation doses were estimated using OLINDA/EXM 1.0 and the standard human model. Highest retention was observed in the blood and liver, each with total residence times of 1.5 min. The highest absorbed radiation doses were to the heart (10.5 mGy/kBq) and kidney (9.19 mGy/kBq), making these the critical organs for [{sup 11}C]NMB. A heart absorption of 50 mGy would result from an injected dose of 4,762 MBq [{sup 11}C]NMB. Thus, this study suggests that up to 4,762 MBq of [{sup 11}C]NMB can be safely administered to human subjects for PET studies. Total body dose and effective dose for [{sup 11}C]NMB are 2.82 mGy/kBq and 3.7 mSv/kBq, respectively. (orig.)

  12. Radiation injuries/ionizing radiation

    International Nuclear Information System (INIS)

    Gooden, D.S.

    1991-01-01

    This book was written to aid trial attorneys involved in radiation litigation. Radiologists and medical physicists will also find it helpful as they prepare for trial, either as a litigant or an expert witness. Two chapters present checklists to guide attorneys for both plaintiffs and defendants. Gooden titles these checklists Elements of Damages and Elements of Proof and leads the reader to conclusions about each of these. One section that will be particularly helpful to attorneys contains sample interrogatories associated with a case of alleged radiation exposure resulting in a late radiation injury. There are interrogatories for the plaintiff to ask the defendant and for the defendant to ask the plaintiff

  13. Indoor ionizing radiation

    International Nuclear Information System (INIS)

    Ericson, S.O.; Lindvall, T.; Maansson, L-G.

    1986-01-01

    Radiation in indoor air is discussed in the perspective of the effective dose equivalents from other sources of radiation. Estimates of effective doses equivalents from indoor radon and its contribution to lung cancer incidence are reviewed. Swedish experiences with cost effective remedial actions are presented. The authors present optimal strategies for screening measurements and remedial actions in cost-benefit perspective. (author.)

  14. Effects of ionizing radiations

    International Nuclear Information System (INIS)

    Gaussens, G.

    1984-08-01

    After recalling radiation-matter interaction, influence on radiation effects of chemical composition, structure, irradiation atmosphere, dose rate, temperature of organic materials and evolution of electrical, mechanical and physical properties are reviewed. Then behaviour under irradiation of main organic materials: elastomers, thermoplastics, thermosetting plastics, oils and paints are examined. 68 refs [fr

  15. Non-ionizing radiation

    International Nuclear Information System (INIS)

    1988-11-01

    The technical papers deal with health hazards from radiation, rules for the prevention of accidents, the risk of cancer and radiation effects, as well as the international standardization of UV, light, IR, LASER, static and low-frequency fields, electromagnetic fields, cardiac pacemakers, infrasound, ultrasound, and visual display units. (DG) [de

  16. Whole-body counting 1990

    International Nuclear Information System (INIS)

    Strand, P.; Selnaes, T.D.

    1990-01-01

    In order to determine the doses from radiocesium in foods after the Chernobyl accident, four groups were chosen in 1987. Two groups, presumed to have a large consumption of food items with a high radiocesium content, were selected. These were Lapp reindeer breeders from central parts of Norway, and hunters a.o. from the municipality of Oeystre Slidre. Two other groups were randomly selected, one from the municipality of Sel, and one from Oslo. The persons in these two groups were presumed to have an average diet. The fall-out in Sel was fairly large (100 kBq/m 2 ), whereas in Oslo the fall-out level was low (2 kBq/m 2 ). The persons in each group were monitored once a year with whole-body counters, and in connection with these countings dietary surveys were preformed. In 1990 the Sel-group and the Lapps in central parts of Norway were followed. Average whole-body activity in each group is compared to earlier years's results, and an average yearly effective dose equivalent is computed. The Sel-group has an average whole-body activity of 2800 Bq for men, and 690 Bq for women. Compared to earlier years, there is a steady but slow decrease in whole-body activities. Yearly dose is calculated to 0.06 mSv for 1990. The Lapps in central parts of Norway have an average whole-body content of 23800 Bq for men and 13600 Bq for women. This results in an average yearly dose of 0.9 mSv for the individuals in the group. Compared to earlier years, the Lapp group show a decrease in whole-body contents since 1988. This decrease is larger among men than women. 5 refs., 8 figs., 6 tabs

  17. The evolution of radiation dose over time: Measurement of a patient cohort undergoing whole-body examinations on three computer tomography generations

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Roy P., E-mail: roy.marcus@med.uni-tuebingen.de [Institute of Diagnostic and Interventional Radiology, Eberhard-Karls-Universität, Tübingen (Germany); Department of Radiology, Mayo Clinic, Rochester, MN (United States); Koerner, Elise [Institute of Diagnostic and Interventional Radiology, Eberhard-Karls-Universität, Tübingen (Germany); Aydin, Roland C. [Institute for Computational Mechanics, Technische Universität München, Garching (Germany); Zinsser, Dominik; Finke, Tobias [Institute of Diagnostic and Interventional Radiology, Eberhard-Karls-Universität, Tübingen (Germany); Cyron, Christian J. [Institute for Computational Mechanics, Technische Universität München, Garching (Germany); Bamberg, Fabian; Nikolaou, Konstantin; Notohamiprodjo, Mike [Institute of Diagnostic and Interventional Radiology, Eberhard-Karls-Universität, Tübingen (Germany)

    2017-01-15

    Objectives: To evaluate and compare the radiation dose and image quality of whole-body-CT (WBCT) performed on the 3rd-generation dual-source-CT (DSCT) with 2nd-generation DSCT and 64-slices-Single-Source-CT (SSCT) in a large patient cohort. Material and methods: Using a monitoring and tracking software 1451, 747 and 1861 patients scanned with a one-spiral-thorax-abdomen-pelvis-CT-examination on a 3rd-, 2nd-generation DSCT and SSCT, respectively, were extracted from the PACS server. For the intra-individual analysis, 203 patients on the 3rd-generation DSCT were identified. Out of those 203 patients, 155 had the same examination on the 2nd-generation DSCT, 91 patients had the same examination on the SSCT and 43 patients had an examination on all three CT-generations. Automatic tube current modulation was active on all three CT-generations, whereas automatic tube voltage selection was only available on both DSCT-generations. Dose was recorded by the size-specific-dose-estimate-method (SSDE); signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated placing a ROI on the ascending aorta/liver and the subcutaneous adipose tissue at comparable level. Image quality of axillary and mediastinal lymph nodes and adrenal glands was assessed by two experienced radiologists. Results: Subjective image quality was excellent throughout all three CT-generations (p = 0.38–0.98). Quantitative image quality in both DSCT generations was superior to SSCT (p < 0.001). SNR and CNR in the liver parenchyma were superior in the 3rd-generation DSCT compared to the 2nd generation DSCT (p < 0.001), whereas there was no difference in the aorta. In the inter-individual analysis, CTDI{sub vol} was lower by 26.9% and 44.3% in the 3rd-generation DSCT, when compared to the 2nd-generation DSCT and SSCT, respectively; SSDE was lower by 31.5% and 51% in the 3rd-generation DSCT, when compared to the 2nd-generation DSCT and SSCT, respectively. In the intra-individual comparison CTDI

  18. Whole-body computed tomography

    International Nuclear Information System (INIS)

    Wegener, O.H.

    1992-01-01

    The vast literature on whole-body CT is presented in this bibliography which is published as a self-contained supplement to the monography entitled whole-body CT. For this documentation, the following journals have been scanned back to the year 1980: Journal of Computer Assisted Tomography (JCAT), Fortschritte auf dem Gebiet der Roentgenstrahlen (RoeFo), Radiology, American Journal of Roentgenology (AJR), Der Radiologe, Neuroradiology, and American Journal of Neuroradiology (AJNR). The supplement includes keyword indexes that can be searched for terms indicating body organs, body regions, or certain lesions. The author index offers an additional access to the publication wanted. (orig./MG) [de

  19. Whole-body retention studies of /sup 167/Tm--citrate. Estimation of radiation dose to humans from /sup 167/Tm--citrate

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, T; Ando, A [Kanazawa Univ. (Japan). School of Paramedicine; Mori, H; Ando, I; Sakamoto, K

    1978-02-01

    For the purpose of calculating absorbed dose to humans from /sup 167/Tm-citrate, the whole-body retention studies using 5 rats were carried out. Up to 40 days following intravenous injection of /sup 167/Tm-citrate, the whole-body counts were monitored with an animal counter. The whole-body retention curve was obtained with three exponential components. Namely, the 26% of the injected /sup 167/Tm-citrate had a biological half-time of 3.4 hours, 12.5% had a biological half-time of 99 hours and 61.5% had a biological half-time of 106 days. These results indicate, that three components consist of the rapid clearance from the kidneys, the retention in the liver and other soft tissues with relatively long half-time and the retention in the bones with long half-time. Based on these biological data and the MIRD Committee method, the average dose estimates to the bone and whole-body from intravenous administration of 1 mCi /sup 167/Tm-citrate were 7.08 rads and 1.28 rads, respectively.

  20. Carcinogenesis from ionizing radiation

    International Nuclear Information System (INIS)

    Merz, L.

    1992-01-01

    Additional cases of radiations-induced cancer resulting from an increase in the effective radiation dose to the public have become a matter of public interest after the Chernobyl 'disaster'. There has since been general concern in the minds of many people that they, their children and grandchildren would develop cancer after years or even decades because of the additional radiation exposure. An attempt has been made so settle this question for good by applying the 'dose-effect relationship', a principle generally accepted in radiation protection. This dose-effect relationship, which has been recommended by the International Commission on Radiological Protection and is used in radiation protection practice in Germany, implies the existence of a linear relationship between the added radiation dose and the relative rate of additional cases of cancer caused in the public. Any added dose, even the lowest dose, increases the rate of cancer in the public. There is no radiation dose threshold below which the cancer rate would not be increased. The new dose-effect relationship presented here, however, is not linear, contains a pronounced threshold level, but constitutes a better description of reality than the model used by the International Commission on Radiological Protection. The essence of the new concept is derived from principles of chaos theory. (orig.) [de

  1. 29 CFR 1910.1096 - Ionizing radiation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Ionizing radiation. 1910.1096 Section 1910.1096 Labor... Ionizing radiation. (a) Definitions applicable to this section. (1) Radiation includes alpha rays, beta... the quantity of ionizing radiation absorbed, per unit of mass, by the body or by any portion of the...

  2. Space Flight Ionizing Radiation Environments

    Science.gov (United States)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  3. Stimulating effects of ionizing radiation

    International Nuclear Information System (INIS)

    Jaworowski, Z.

    1995-01-01

    The influence of low doses on human organism is not definite known up to now. The worldwide discussion on this topic has been presented. A lot of analysed statistical data proved that the stimulating effect of low doses of ionizing radiation really exists and can have a beneficial influence on human health. 43 refs, 4 figs, 6 tabs

  4. Ionizing radiation accidents. Data interpretation

    International Nuclear Information System (INIS)

    Cascon, Adriana S.

    2003-01-01

    After a general outlook of the biological effects at the cellular and molecular level, the somatic effects of the ionizing radiation are described. Argentine regulations and the ICRP recommendations on radiological protection of professionally exposed workers are also summarized. The paper includes practical advices for the physician that has to take care of an irradiated patient

  5. Biopositive Effects of Ionizing Radiation?

    International Nuclear Information System (INIS)

    Broda, E.

    1972-01-01

    This paper was written for a talk given by E. Broda in Vienna for an event organised by the chemical physical society, the Austrian biochemical society and the Austrian biophysical society in December 1972. In this paper Broda analyses the question of biopositive effects of ionizing radiation. (nowak)

  6. Whole-body MRI screening

    Energy Technology Data Exchange (ETDEWEB)

    Puls, Ralf [HELIOS Klinikum Erfurt (Germany). Inst. of Diagnostic and Interventional Radiology and Neuroradiology; Hosten, Norbert (ed.) [Universitaetsklinikum Greifswald (Germany). Diagnostic Radiology and Neuroradiology

    2014-07-01

    The advent of dedicated whole-body MRI scanners has made it possible to image the human body from head to toe with excellent spatial resolution and with the sensitivity and specificity of conventional MR systems. A comprehensive screening examination by MRI relies on fast image acquisition, and this is now feasible owing to several very recent developments, including multichannel techniques, new surface coil systems, and automatic table movement. The daily analysis of whole-body MRI datasets uncovers many incidental findings, which are discussed by an interdisciplinary advisory board of physicians from all specialties. This book provides a systematic overview of these incidental findings with the aid of approximately 240 high-quality images. The radiologists involved in the project have written chapters on each organ system, presenting a structured compilation of the most common findings, their morphologic appearances on whole-body MRI, and guidance on their clinical management. Chapters on technical and ethical issues are also included. It is hoped that this book will assist other diagnosticians in deciding how to handle the most common incidental findings encountered when performing whole-body MRI.

  7. Whole-body MRI screening

    International Nuclear Information System (INIS)

    Puls, Ralf; Hosten, Norbert

    2014-01-01

    The advent of dedicated whole-body MRI scanners has made it possible to image the human body from head to toe with excellent spatial resolution and with the sensitivity and specificity of conventional MR systems. A comprehensive screening examination by MRI relies on fast image acquisition, and this is now feasible owing to several very recent developments, including multichannel techniques, new surface coil systems, and automatic table movement. The daily analysis of whole-body MRI datasets uncovers many incidental findings, which are discussed by an interdisciplinary advisory board of physicians from all specialties. This book provides a systematic overview of these incidental findings with the aid of approximately 240 high-quality images. The radiologists involved in the project have written chapters on each organ system, presenting a structured compilation of the most common findings, their morphologic appearances on whole-body MRI, and guidance on their clinical management. Chapters on technical and ethical issues are also included. It is hoped that this book will assist other diagnosticians in deciding how to handle the most common incidental findings encountered when performing whole-body MRI.

  8. Basic ionizing physic radiation

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    To become an expert in this field, radiographer must first master in radiation physics. That why the second chapter discussed on radiation physic. The topic that must covered such as atom and molecule, atomic structure, proton, isotope, half life, types of radiation and some basic formula such as formula for shielding, half life, half value layer, tenth value layer and more. All of this must be mastered by radiographer if they want to know more detail on this technique because this technique was a combination of theory and practical. Once they failed the theory they cannot go further on this technique. And to master this technique, once cannot depend on theory only. So, for this technique theory and practical must walk together.

  9. The problem of the recuperative capacity of mammals after acute sublethal whole-body exposure to high-energy radiation, with special regard to the juvenile organism

    International Nuclear Information System (INIS)

    Baumann, B.

    1978-01-01

    After a single acute whole-body irradiation with 200 kV x-rays (1.5 mm Cu, dose rate 45 min -1 ), radiosensitivitis (LD 50/30d) have been determined in 9 age groups of lactating mice and compared with those of adult mice. In split-dose experiments (Dc = 300 R) recovery rates after 1, 2, 3, 5, 10, and 100 days of recovery have been determined in animals 1, 6, 12, 16, and 80 days old; further examinations have been carried out after 3 days of recovery in 6 day-old animals. The findings are compared with earlier investigations in the same strain of animals and with literature on comparable investigations in mice and other mammals. During infancy, there is a slight, age-dependent increase in radiation resistance after a single exposure, and adult mice are about 10% more radiosensitive than juveniles. The recovery rate of lactating mice increases until 2 hours after irradiation, as in adult animals. In contrast to the values measured in adults, however, the recovery rate of animals 1 and 6 days old then drops to values of -27% resp. -63% of Dc = 300 R after 1 resp. 3 days: Sensitization. In animals 12 and 16 days old, too there is a decrease in recovery after 2 hours, but no marked sensitization. In all animals pre-irradiated in infancy, the recovery rate after 10 days is not higher than 45%, and even after 100 days there is a clear residual damage. In animals 6 days old, which are particularly radiosensitive, the highest sensitization was found 3 days after a pre-irradiation dose of 150 to 200 R, and a saturation of the sensitization mechanism was derived for higher doses. Biological causes of sensitization are still unknown. According to the author's literature studies, other species of mammals, too do not always follow the assumptions on the recuperative capacity of mammal organisms which have been derived from studies in adult mice. (orig.) [de

  10. Effects of ionizing radiation on the immune system

    International Nuclear Information System (INIS)

    Dubois, J.B.

    1986-01-01

    After reviewing the different lymphoid organs and the essential phases of the immune response, we studied the morphological and functional effects of ionizing radiation on the immunological system. Histologic changes in the lymph nodes, spleen, thymus, and different lymphocyte subpopulations were studied in relation with the radiation dose and irradiated volume (whole body irradiation, localized irradiation). Functional changes in the immune system induced by ionizing radiation were also investigated by a study of humoral-mediated immunity (antibody formation) and cell-mediated immunity (behavior of macrophages, B-cells, T suppressor cells, T helper cells, T effector cells, and natural killer cells). A study into the mechanisms of action of ionizing radiation and the immune processes it interferes with suggests several likely hypotheses (direct action on the immune cells, on their precursors, on seric mediators or on cell mediators). The effects on cancer patients' immune reactions of low radiation doses delivered to the various lymphoid organs are discussed, as well as the relationships between the host and the evolution of the tumor [fr

  11. Ionizing radiation and water reuse

    International Nuclear Information System (INIS)

    Borrely, Sueli Ivone; Sampa, Maria Helena de Oliveira; Oikawa, Hiroshi; Silveira, Carlos Gaia da; Duarte, Celina Lopes; Cherbakian, Eloisa Helena

    2002-01-01

    The aim of the present paper is to point out the possibility of including ionizing radiation for wastewater treatment and reuse. Radiation processing is an efficient technology which can be useful for water reuse once the process can reduce not only the biological contamination but also organic substances, promoting an important acute toxicity removal from aquatic resources. Final secondary effluents from three different wastewater treatment plant were submitted to electron beam radiation and the process efficacy was evaluated. Concerning disinfection, relatively low radiation doses (2,0 - 4,0 kGy) accounted for 4 to 6 cycle log reduction for total coliforms. When radiation was applied for general wastewater improvement related to the chemical contamination, radiation process reduced from 78% up to 100% the total acute toxicity, measured for crustaceans, D. similis, and for V. fiscehri bacteria. (author)

  12. Ionizing radiations, detection, dosimetry, spectrometry

    International Nuclear Information System (INIS)

    Blanc, D.

    1997-10-01

    A few works in French language are devoted to the detection of radiations. The purpose of this book is to fill a gap.The five first chapters are devoted to the properties of ionizing radiations (x rays, gamma rays, leptons, hadrons, nuclei) and to their interactions with matter. The way of classification of detectors is delicate and is studied in the chapter six. In the chapter seven are studied the statistics laws for counting and the spectrometry of particles is treated. The chapters eight to thirteen study the problems of ionization: charges transport in a gas, ionization chambers (theory of Boag), counters and proportional chambers, counters with 'streamers', chambers with derive, spark detectors, ionization chambers in liquid medium, Geiger-Mueller counters. The use of a luminous signal is the object of the chapters 14 to 16: conversion of a luminous signal in an electric signal, scintillators, use of the Cerenkov radiation. Then, we find the neutron detection with the chapter seventeen and the dosimetry of particles in the chapter eighteen. This book does not pretend to answer to specialists questions but can be useful to physicians, engineers or physics teachers. (N.C.)

  13. Non-ionizing radiation

    International Nuclear Information System (INIS)

    Tyrrell, R.M.; Pourzand, C.; Zhong, J.L.

    2003-01-01

    The ultraviolet A (320 - 380 nm) component of sunlight generates an oxidative stress in skin which contributes to both the acute (sunburn) and chronic (aging, skin cancer) effects of sunlight. The damaging effects occur via generation of active oxygen species and will be exacerbated by the presence of catalytically reactive iron so that the observation that UVA radiation causes an immediate release of 'free' iron in human skin fibroblasts and keratinocytes via the proteolysis of ferritin is likely to be biologically significant. UVA radiation also breaks down heme-containing proteins in the microsomal membrane to release free heme. The well-characterised activation of heme oxygenase 1 by UVA radiation will lead to breakdown of heme and further release of iron. Overall these interactions generate a strong oxidative stress on cells. Both the basal and UVA-induced levels of labile iron are 2-4 times higher in fibroblasts than keratinocytes and this is consistent with the higher resistance of keratinocytes to UVA-induced necrotic cell death. Modulating cellular iron levels by hemin (to enhance the levels) or iron chelators (to reduce the levels) has the predicted effect on levels of necrotic cell death. Overall these studies further illustrate the potent oxidising nature of UVA radiation. A series of genes activated by UVA radiation including heme oxygenase 1 (HO-1), ferritin and superoxide dismutase (SOD) may be involved in protection against the damaging effects of this oxidising carcinogen. HO will act by removing free heme and possibly by promoting the efflux of free iron, ferritin will bind free iron and SOD will remove superoxide anion. The strong response of HO-1 to oxidants in human skin fibroblasts provides a useful molecular model to study this inducible enzyme which appears to play a major role in anti-inflammatory activity in mammals and could play a significant role in preventing atherosclerosis. Several indirect lines of evidence support the role of UVA

  14. Cardiovascular whole-body MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Harald [Department of Clinical Radiology, University Hospitals Munich - Grosshadern Campus, Ludwig Maxmilians University Munich, Marchioninistr. 15, 81377 Munich (Germany)], E-mail: harald.kramer@med.uni-muenchen.de; Nikolaou, Konstantin; Reiser, Maximilian F. [Department of Clinical Radiology, University Hospitals Munich - Grosshadern Campus, Ludwig Maxmilians University Munich, Marchioninistr. 15, 81377 Munich (Germany)

    2009-06-15

    Cardiovascular diseases still rank number one in mortality statistics in the industrialized world. In these countries the five most common causes of death are associated to atherosclerotic changes of the arterial vasculature. Due to its often long lasting treatment and the possible loss of ability to work atherosclerotic disease constitutes an economic factor which should not be disregarded. Thus screening for atherosclerotic disease seems to be reasonable because as known the potential to influence atherosclerotic changes is higher in an early stage of the disease. Not in every case it is possible to cure the disease but sometimes progression can be controlled and decelerated. Imaging of the arterial vasculature was limited to invasive procedures associated with ionizing radiation for a long time. Non-invasive exams like the 'ankle-brachial-index' (ABI) can indicate the presence of PAOD, an exact localization of the pathologic changes is only possible with imaging methods. For cardiac imaging likewise the only non-invasive exams have been ECG and auscultation. Certainly echocardiography is an excellent technique to access cardiac function but it depends very much on both, the examining physician and the patient. MRI constitutes a non-invasive imaging modality without ionizing radiation offering excellent reproducible image quality.

  15. Cardiovascular whole-body MRI

    International Nuclear Information System (INIS)

    Kramer, Harald; Nikolaou, Konstantin; Reiser, Maximilian F.

    2009-01-01

    Cardiovascular diseases still rank number one in mortality statistics in the industrialized world. In these countries the five most common causes of death are associated to atherosclerotic changes of the arterial vasculature. Due to its often long lasting treatment and the possible loss of ability to work atherosclerotic disease constitutes an economic factor which should not be disregarded. Thus screening for atherosclerotic disease seems to be reasonable because as known the potential to influence atherosclerotic changes is higher in an early stage of the disease. Not in every case it is possible to cure the disease but sometimes progression can be controlled and decelerated. Imaging of the arterial vasculature was limited to invasive procedures associated with ionizing radiation for a long time. Non-invasive exams like the 'ankle-brachial-index' (ABI) can indicate the presence of PAOD, an exact localization of the pathologic changes is only possible with imaging methods. For cardiac imaging likewise the only non-invasive exams have been ECG and auscultation. Certainly echocardiography is an excellent technique to access cardiac function but it depends very much on both, the examining physician and the patient. MRI constitutes a non-invasive imaging modality without ionizing radiation offering excellent reproducible image quality.

  16. Generator for ionizing radiation

    International Nuclear Information System (INIS)

    Romanovskij, V.F.; Panasjuk, V.S.; Stepanov, B.M.; Ovtscharov, A.M.; Akimov, J.A.

    1979-01-01

    The X-ray, electron, or neutron generator contains a radiation source with an accelerating tube, whose shell encloses a resonance transformer, a subdivided tube insulator and a high-tension electrode for the accelerating tube. The accelerating tube can be evacuated. The high-tension winding of the resonance transformer lies within the tube insulator of the accelerating tube and the evacuated space between resonance transformer and tube insulator. The generator may be applied in medicine, in geophysical research or for activation analysis of materials. (DG) 891 HP/DG 892 BRE [de

  17. 29 CFR 1926.53 - Ionizing radiation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...

  18. Human whole body cold adaptation.

    OpenAIRE

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000?y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations...

  19. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Gisone, Pablo; Perez, Maria R.

    2001-01-01

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  20. NMR Metabolomics in Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Z.; Xiao, Xiongjie; Hu, Mary Y.

    2016-09-08

    Ionizing radiation is an invisible threat that cannot be seen, touched or smelled and exist either as particles or waves. Particle radiation can take the form of alpha, beta or neutrons, as well as high energy space particle radiation such as high energy iron, carbon and proton radiation, etc. (1) Non-particle radiation includes gamma- and x-rays. Publically, there is a growing concern about the adverse health effects due to ionizing radiation mainly because of the following facts. (a) The X-ray diagnostic images are taken routinely on patients. Even though the overall dosage from a single X-ray image such as a chest X-ray scan or a CT scan, also called X-ray computed tomography (X-ray CT), is low, repeated usage can cause serious health consequences, in particular with the possibility of developing cancer (2, 3). (b) Human space exploration has gone beyond moon and is planning to send human to the orbit of Mars by the mid-2030s. And a landing on Mars will follow.

  1. Epigenetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    EI-Naggar, A.M.

    2007-01-01

    Data generated during the last three decades provide evidence of Epigenetic Effects that ave-induced by ionizing radiation, particularly those of high LET values, and low level dose exposures. Epigenesist is defined as the stepwise process by which genetic information, as modified by environmental influences, is translated into the substance and behavior of cells, tissues, organism.The epigenetic effects cited in the literature are essentially classified into fine types depending on the type and nature of the effect induced.The most accepted postulation, for the occurrence of these epigenetic effects, is a radiation induced bio electric disturbances in the environment of the non-irradiated cellular volume. This will trigger signals that will induce effects in the unirradiated cells.The epigenetic effects referenced in the literature up to date are five types; namely, Genomic Instability, Bystander. Effects, Clastogenic Plasma Factors,, Abscopal Effects, and Tran generational Effects.The demonstration of Epigenetic Effects associated with exposure to ionizing radiation indicates the need to re- examine the concept of radiation dose and target size. Also an improved understanding of qualifiring and quantifying radiation risk estimates may be attained. Also, a more logical means to understand the underlying mechanisms of radiation induced carcinogenic transformation of cells

  2. Cell fusion by ionizing radiation

    International Nuclear Information System (INIS)

    Khair, M.B.

    1993-08-01

    The relevance and importance of cell fusion are illustrated by the notion that current interest in this phenomenon is shared by scientists in quite varied disciplines. The diversity of cellular membrane fusion phenomena could provoke one to think that there must be a multitude of mechanisms that can account for such diversity. But, in general, the mechanism for the fusion reaction itself could be very similar in many, or even all, cases. Cell fusion can be induced by several factors such as virus Sendai, polyethylene glycol, electric current and ionizing radiation. This article provides the reader with short view of recent progress in research on cell fusion and gives some explanations about fusion mechanisms. This study shows for the first time, the results of the cell fusion induced by ionizing radiations that we have obtained in our researches and the work performed by other groups. (author). 44 refs

  3. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Radford, E.P.

    1980-01-01

    This presentation is restricted to the health effects of low doses of ionizing radiation. In general, these cumulative exposures are well below 100 rem, or about 50 times background or less. The two effects of interest in this dose range are genetic mutations and cancer production. The genetic effects will not be discussed in detail. The chief reason for the rise in risk estimates for cancer is the longer follow-up of exposed populations

  4. Risks Associated with Ionizing Radiations

    International Nuclear Information System (INIS)

    Cascon, Adriana

    2009-01-01

    Medical use of ionizing radiations implies certain risks which are widely balanced by their diagnostic and therapeutic benefits. Nevertheless, knowledge about these risks and how to diagnose and prevent them minimizes their disadvantages and optimizes the quality and safety of the method. This article describes the aspects related to skin dose (nonstochastic effects), the importance of dose limit, the physiopathology of biological damage and, finally, the prevention measures. [es

  5. Hygienic regulation of ionizing radiations

    International Nuclear Information System (INIS)

    Saurov, M.M.

    1984-01-01

    Modern state of the problem on hygienic regulation of ionizing radiations is considered. Concepts and principles of the regulation based on risk concept are presented according to ICRP 26 and 27. Two types of risk are designated: ''absolute'' and ''relative'' ones. The concept of acceptable risk on the basis of cost - benefit ratio is substantiated. Special attention is paid to the principle of accounting the complex of health signs, when determining radiation hazard. To determine the level of permissible risk and permissible dose to population the concept of ''inadmissibility of s-tatistically significant risk'' has been developed. Standards, regulating population doses in the USSR, which are valid nowadays, are considered

  6. Whole body measurements in Bavarian school children

    International Nuclear Information System (INIS)

    Schmier, H.; Berg, D.

    1992-12-01

    On behalf of the Bavarian State Ministry for State Development and Environmental Affairs measurements were conducted using the whole body counters at the Institute for Radiation Hygiene (of the Federal Office for Radiation Protection), and the Institute for Radiation Biology (of the GSF Research Centre for Environment and Health). Between September 1988 and July 1990 about 1600 school children from all over Bavaria were investigated for incorporated radiocesium. The aim of these measurements was to evaluate the whole body activity due to regionally differing soil contaminations in Bavaria following the accident in the nuclear power plant in Chernobyl and to assess the effective dose from an intake of radionuclides for the pupils by comparing the results of their WBC measurements with those of reference groups of children which underwent WBC examinations at regular intervals at both institutes since the middle of the year 1986. The results of the WBC measurements of those pupils who had not eaten mushrooms in the days before the measurement are in good agreement with the results of comparative measurements in children living in the regions of Munich and Frankfurt-am-Main. Based on these results an effective dose of 0,2 mSv for the Munich region children and of 0,1 mSv for Nothern Bavarian children can be derived. For children living in the highest contaminated region of Bavaria, i.e. the counties adjacent to the Alps, no comparable reference group results are available, but the amount of incorporated radiocesium is only twice that for pupils in the Munich region. The mean value for the specific activity of radiocesium in South Bavarian school children who consumed mushrooms was found to be twice the value of pupils who did not. This is also true for that group of children whose parents had bought allegedly low contaminated foodstuffs. Other effecs of nutrition habits on the specific whole body activity could not be found. (orig.) [de

  7. Ionizing radiation and thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hall, P. (Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine); Holm, L.E. (Swedish Radiation Protection Inst., Stockholm (Sweden))

    1994-01-01

    Epidemiological studies provide the primary data source on cancer risk in man after exposure to ionizing radiation. The present paper discusses methodological difficulties in epidemiological studies and reviews current epidemiological knowledge on radiation-induced thyroid cancer. Most studies of radiation-induced cancer are of a ''historical observational'' type and are also non-experimental in design. Seldom is there an opportunity to consider other factors playing on cancer risk. Since many of the study subjects were exposed a long time ago there could also be difficulties in calculating the radiation doses, and to identify and follow the exposed subjects. Short exposure to low doses of gamma radiation can induce thyroid cancer in children, whereas a relationship between protracted low-dose exposure and thyroid cancer has not been established so far. The most important future issues concerning radiation-induced thyroid cancer are the risks following low radiation doses and/or protracted radiation exposure and cancer risks after [sup 131]I exposure in childhood. (authors). 35 refs., 3 tabs.

  8. Chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1987-01-01

    Over 40 years have passed since the research of the Manhattan Project suggested the possibility of chemical protection against ionizing radiation. During that time, much has been learned about the nature of radiation-induced injury and the factors governing the expression of that injury. Thousands of compounds have been tested for radioprotective efficacy, and numerous theories have been proposed to account for these actions. The literature on chemical radioprotection is large. In this article, the authors consider several of the mechanisms by which chemicals may protect against radiation injury. They have chosen to accent this view of radioprotector research as opposed to that research geared toward developing specific molecules as protective agents because they feel that such an approach is more beneficial in stimulating research of general applicability. This paper describes the matrix of biological factors upon which an exogenous radioprotector is superimposed, and examines evidence for and against various mechanisms by which these agents may protect biological systems against ionizing radiation. It concludes with a brief outlook for research in chemical radioprotection

  9. Whole body autoradiography, ch. 13

    International Nuclear Information System (INIS)

    Jonkman, J.H.G.

    1977-01-01

    The distribution of 35 S-ringlabelled thiazinamium methylsulphate has been studied by means of whole body autoradiography in a squirrel and in mice. Accumulation of activity was found in liver, kidney and intestines (the excretion of pathways). High concentrations were also found in organs with high amount of acetylcholine receptors and in the glandular tissue. No radioactivity was seen in the central nervous system, indicating no passage through the 'blood-brain barrier'. This is the most significant difference with its tertiary analogue Prometharine hydrochloride. In pregnant mice, high concentrations were found in the placenta but only low amounts were found in liver and kidneys of the foetuses

  10. Effects of ionizing radiation on vitamins

    International Nuclear Information System (INIS)

    Thayer, D.W.; Fox, J.B. Jr.; Lakritz, L.

    1991-01-01

    Vitamins are known to be sensitive to the effects of ionizing radiation. Since most foods contain a large proportion of water, the most probable reaction of the ionizing radiation would be with water; and as vitamins are present in very small amounts compared with other substances in the food they will be affected indirectly by the radiation. This chapter discusses the effect of ionizing radiation on water soluble vitamins and fat soluble vitamins. (author)

  11. [Ionizing and non-ionizing radiation (comparative risk estimations)].

    Science.gov (United States)

    Grigor'ev, Iu G

    2012-01-01

    The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.

  12. Device for detecting ionizing radiation

    International Nuclear Information System (INIS)

    Anatychuk, L.I.; Kharitonov, J.P.; Kusniruk, V.F.; Meir, V.A.; Melnik, A.P.; Ponomarev, V.S.; Skakodub, V.A.; Sokolov, A.D.; Subbotin, V.G.; Zhukovsky, A.N.

    1980-01-01

    The present invention relates to ionizing radiation sensors, and , more particularly, to semiconductor spectrometers with thermoelectric cooling, and can most advantageously be used in mineral raw material exploration and evaluation under field conditions. The spectrometer comprises a vacuum chamber with an entrance window for passing the radiation therethrough. The vacuum chamber accommodates a thermoelectric cooler formed by a set of peltier elements. A heat conducting plate is mounted on the cold side of the thermoelectric cooler, and its hot side is provided with a radiator. Mounted on the heat conducting plate are sets of peltier elements, integral with the thermoelectric cooler and independent of one another. The peltier elements of these sets are stacked so as to develop the minimum temperature conditions on one set carrying a semiconductor detector and to provide the maximum refrigeration capacity conditions on the other set provided with the field-effect transistor mounted thereon

  13. Whole-body magnetic resonance imaging in children: state of the art

    Directory of Open Access Journals (Sweden)

    Sara Reis Teixeira

    2015-04-01

    Full Text Available Whole-body imaging in children was classically performed with radiography, positron-emission tomography, either combined or not with computed tomography, the latter with the disadvantage of exposure to ionizing radiation. Whole-body magnetic resonance imaging (MRI, in association with the recently developed metabolic and functional techniques such as diffusion-weighted imaging, has brought the advantage of a comprehensive evaluation of pediatric patients without the risks inherent to ionizing radiation usually present in other conventional imaging methods. It is a rapid and sensitive method, particularly in pediatrics, for detecting and monitoring multifocal lesions in the body as a whole. In pediatrics, it is utilized for both oncologic and non-oncologic indications such as screening and diagnosis of tumors in patients with genetic syndromes, evaluation of disease extent and staging, evaluation of therapeutic response and post-therapy follow-up, evaluation of non neoplastic diseases such as multifocal osteomyelitis, vascular malformations and syndromes affecting multiple regions of the body. The present review was aimed at describing the major indications of whole-body MRI in pediatrics added of technical considerations.

  14. Phospholipid Topography of Whole-Body Sections of the Anopheles stephensi Mosquito, Characterized by High-Resolution Atmospheric-Pressure Scanning Microprobe Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.

    Science.gov (United States)

    Khalil, Saleh M; Römpp, Andreas; Pretzel, Jette; Becker, Katja; Spengler, Bernhard

    2015-11-17

    High-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) has been employed to study the molecular anatomical structure of rodent malaria vector Anopheles stephensi mosquitoes. A dedicated sample preparation method was developed which suits both, the special tissue properties of the sample and the requirements of high-resolution MALDI imaging. Embedding in 5% carboxymethylcellulose (CMC) was used to maintain the tissue integrity of the whole mosquitoes, being very soft, fragile, and difficult to handle. Individual lipid compounds, specifically representing certain cell types, tissue areas, or organs, were detected and imaged in 20 μm-thick whole-body tissue sections at a spatial resolution of 12 μm per image pixel. Mass spectrometric data and information quality were based on a mass resolution of 70,000 (at m/z 200) and a mass accuracy of better than 2 ppm in positive-ion mode on an orbital trapping mass spectrometer. A total of 67 imaged lipids were assigned by database search and, in a number of cases, identified via additional MS/MS fragmentation studies directly from tissue. This is the first MSI study at 12 μm spatial resolution of the malaria vector Anopheles. The study provides insights into the molecular anatomy of Anopheles stephensi and the distribution and localization of major classes of glycerophospholipids and sphingolipids. These data can be a basis for future experiments, investigating, e.g., the metabolism of Plasmodium-infected and -uninfected Anopheles mosquitoes.

  15. Whole-body γ-irradiation decelerates rat hepatocyte polyploidization.

    Science.gov (United States)

    Ikhtiar, Adnan M

    2015-07-01

    To characterize hepatocyte polyploidization induced by intermediate dose of γ-ray. Male Wistar strain rats were whole-body irradiated (WBI) with 2 Gy of γ-ray at the age of 1 month, and 5-6 rats were sacrificed monthly at 0-25 months after irradiation. The nuclear DNA content of individual hepatocytes was measured by flow cytometry, then hepatocytes were classified into various ploidy classes. Survival percentage, after exposure up to the end of the study, did not indicate any differences between the irradiated groups and controls. The degree of polyploidization in hepatocytes of irradiated rats, was significantly lower than that for the control after 1 month of exposure, and it continued to be lower after up to 8 months. Thereafter, the degree of polyploidization in the irradiated group slowly returned to the control level when the irradiated rats reached the age of 10 months. Intermediate dose of ionizing radiation, in contrast to high doses, decelerate hepatocyte polyploidization, which may coincides with the hypothesis of the beneficial effects of low doses of ionizing radiation.

  16. Ionizing radiation and non-ionizing radiation in educational environment

    International Nuclear Information System (INIS)

    Matsuzawa, Takao; Otsubo, Tomonobu; Ikke, Satoshi; Taguchi, Noriko; Takeda, Rie

    2005-01-01

    By chance, we measured gamma dose rates in our school, and around the JCO Tokai Plant during the criticality on September 30 in 1999, with our GM survey meter. At that time, we made sure to estimate the position of criticality reaction (source point), and the source intensity of criticality reaction, with our own data, measured along the public roads, route 6 and local road 62. The intensity of gamma dose rates along the road was analyzed as Lorentz functions. At the time, there were no environmental radiation data about the criticality accident, or all the data, especially radioactivity and dose rates around the JCO Tokai Plant, was closed to the public. Recently, we are interested in the intensity of non-ionizing radiation, especially extremely low frequency (ELF) magnetic field, and electric field, in our environment. We adopted the same method to analyze the source position and source intensity of an ELF magnetic field and electric behind a wall. (author)

  17. Physiological markers in insects indicating treatment with ionizing radiation

    International Nuclear Information System (INIS)

    Nation, J.L.; Smittle, B.J.; Milne, K.R.

    1999-01-01

    Seven markers or tests that can be applied to 3rd instars of the Caribbean fruit fly as indicators of exposure to ionizing radiation are described, including (1) whole body melanization, (2) phenoloxidase spot test, (3) quantitative phenoloxidase measurement, (4) measurement of the ratio between size of the supraesophageal ganglion and the proventriculus, (5) development of imaginal discs, (6) number of hemocytes in one μl of hemolymph, and (7) larval weight. The markers work best and are most definitive when larvae are exposed to at least 50 Gy no later than the first day of the 3rd instar. All of the tests are sensitive enough to be applied to a single 3rd instar larva. Combinations of some of the tests could be used on a single larva. Tests (1) and (2) are easiest to use and require no specific technical training, and seem to have the most potential for practical use in quarantine. (author)

  18. Human whole body cold adaptation.

    Science.gov (United States)

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  19. Leukemia and ionizing radiation revisited

    Energy Technology Data Exchange (ETDEWEB)

    Cuttler, J.M. [Cuttler & Associates Inc., Vaughan, Ontario (Canada); Welsh, J.S. [Loyola University-Chicago, Dept. or Radiation Oncology, Stritch School of Medicine, Maywood, Illinois (United States)

    2016-03-15

    A world-wide radiation health scare was created in the late 19508 to stop the testing of atomic bombs and block the development of nuclear energy. In spite of the large amount of evidence that contradicts the cancer predictions, this fear continues. It impairs the use of low radiation doses in medical diagnostic imaging and radiation therapy. This brief article revisits the second of two key studies, which revolutionized radiation protection, and identifies a serious error that was missed. This error in analyzing the leukemia incidence among the 195,000 survivors, in the combined exposed populations of Hiroshima and Nagasaki, invalidates use of the LNT model for assessing the risk of cancer from ionizing radiation. The threshold acute dose for radiation-induced leukemia, based on about 96,800 humans, is identified to be about 50 rem, or 0.5 Sv. It is reasonable to expect that the thresholds for other cancer types are higher than this level. No predictions or hints of excess cancer risk (or any other health risk) should be made for an acute exposure below this value until there is scientific evidence to support the LNT hypothesis. (author)

  20. Basic symbol for ionizing radiations (second revision)

    International Nuclear Information System (INIS)

    1992-01-01

    Includes a detailed description of basic symbol for ionizing radiations to be used to prevent about the presence, or possibility of presence, of ionizing radiations (X-ray, gamma radiation, particles, electrons, neutrons and protons), as well as to identify radioactive devices and materials

  1. Diagnostic imaging in polytrauma: comparison of radiation exposure from whole-body MSCT and conventional radiography with organ-specific CT; Radiologische Bildgebung beim Polytrauma: Dosisvergleich von Ganzkoerper-MSCT und konventionellem Roentgen mit organspezifischer CT

    Energy Technology Data Exchange (ETDEWEB)

    Wedegaertner, U.; Lorenzen, M.; Weber, C.; Adam, G. [Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum Hamburg-Eppendorf (Germany); Nagel, H.D. [Philips Medizin Systeme GmbH, Hamburg (Germany)

    2004-07-01

    Purpose: To compare the radiation dose of whole-body multislice CT (MSCT) and conventional radiography with organ-specific CT in polytrauma. Materials and Methods: The whole-body MSCT encompassing brain, neck and midface, chest, abdomen and pelvis was performed on a Somatom Volume Zoom (Siemens). Conventional radiography consisted of chest and cervical, thoracic and lumbar spine in two views as well as pelvis. Polymat, Siemens. Three combinations of organ specific CT were chosen: CT examination of (1) head and cervical spine, (2) head, cervical spine and chest, (3) head, cervical spine and abdomen. The effective doses of whole-body MSCT and conventional radiography with organ-specific CT were calculated. Results: Effective doses were 20 mSv for whole-body MSCT, 2 mSv for conventional x-ray, and 5 mSv for combination (1), 8 mSv for combination (2) and (3) 16 mSv for combination (3) of the organ-specific CT. The ratio of radiation dose between whole-body MSCT and radiography was 10: 1. This ratio was reduced to 3: 1, 2: 1 and 1: 1 when a combination of radiography and CT was performed. Conclusions: Whole-body MSCT in polytrauma compared to conventional radiography with organ-specific CT induces a threefold increased dose in unfavorable situations and no increased dose in favorable situations. Nevertheless, routine use of whole-body MSCT should be critically evaluated and should be adapted to the clinical benefit. (orig.) [German] Ziel: Dosisvergleich von Ganzkoerper-MSCT und konventioneller Basisdiagnostik mit organspezifischen Ct-Untersuchungen beim Polytrauma. Material und Methoden: Die Ganzkoerper-MSCT-Untersuchung von Schaedel, Mittelgesicht, HWS sowie Thorax, Abdomen und Becken erfolgte an einem Somatom-Volume-Zoom (Siemens). Die konventionelle Bildgebung, bestehend aus Thorax, Becken, HWS, BWS und LWs, wurde an einem Siemens-Polymat durchgefuehrt. Fuer die organspezifischen CT-Untersuchungen wurden 3 Kombinationen ausgewaehlt: (1) CCT + HWS, (2) CCT + HWS

  2. Social trust and ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Meadd, E. [Faculty of Environmental Studies, York University, Toronto, Ontario (Canada)

    2002-07-01

    The linkages that exist between the environmental risks associated with nuclear energy production (both perceived and real) and the myriad of social and political issues and processes that influence social trust are a current issue in literature, but are not well explored, particularly for the Canadian context. This paper will examine one particular issue and its relationship with social trust: ionizing radiation and public health. Social trust is defined for this paper as including interpersonal trust, but having a much broader focus, extending to public trust in governments, institutions, corporations, and the power elite, and across whole societies. Of particular interest for the nuclear energy issue is how waning social trust may impact the functioning of democratic decision-making processes, particularly those associated with the siting of waste facilities. Social trust is a central issue in the management of environmental risks, particularly those related to high technology; its absence is seen as a major cause of intractable conflict in decisions related to nuclear power generation and waste disposal. Understanding the dynamics of social trust is important if a resolution is to be found to the nuclear waste management debate in Canada, that is, one that involves broad public, or social, support. For instance, what factors cause distrust to emerge, and when distrust emerges, what authorities do members of affected communities seek out for information and support? This paper begins to examine social trust in relation to human health and ionizing radiation, particularly low dose radiation from radioactive wastes resulting from uranium and radium processing activities in Port Hope, Ontario. These activities date back to the 1930s and are of great concern to community members. This paper looks at some of the roots of public concern, for example, scientific uncertainty around whether or not human health is compromised by exposure to low dose ionizing radiation

  3. Social trust and ionizing radiation

    International Nuclear Information System (INIS)

    Meadd, E.

    2002-01-01

    The linkages that exist between the environmental risks associated with nuclear energy production (both perceived and real) and the myriad of social and political issues and processes that influence social trust are a current issue in literature, but are not well explored, particularly for the Canadian context. This paper will examine one particular issue and its relationship with social trust: ionizing radiation and public health. Social trust is defined for this paper as including interpersonal trust, but having a much broader focus, extending to public trust in governments, institutions, corporations, and the power elite, and across whole societies. Of particular interest for the nuclear energy issue is how waning social trust may impact the functioning of democratic decision-making processes, particularly those associated with the siting of waste facilities. Social trust is a central issue in the management of environmental risks, particularly those related to high technology; its absence is seen as a major cause of intractable conflict in decisions related to nuclear power generation and waste disposal. Understanding the dynamics of social trust is important if a resolution is to be found to the nuclear waste management debate in Canada, that is, one that involves broad public, or social, support. For instance, what factors cause distrust to emerge, and when distrust emerges, what authorities do members of affected communities seek out for information and support? This paper begins to examine social trust in relation to human health and ionizing radiation, particularly low dose radiation from radioactive wastes resulting from uranium and radium processing activities in Port Hope, Ontario. These activities date back to the 1930s and are of great concern to community members. This paper looks at some of the roots of public concern, for example, scientific uncertainty around whether or not human health is compromised by exposure to low dose ionizing radiation

  4. Regulatory control of ionizing radiations in Ecuador

    International Nuclear Information System (INIS)

    Benitez, Manuel

    1996-03-01

    This document deals with legal aspects for controlling ionizing radiations, radiological safety regulations and objectives, scopes and features of the national radioprotection planning in Ecuador. (The author)

  5. Effects of ionizing radiation on life

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    Radiobiology in the last years was able to find detailed explanations for the effects of ionizing radiation on living organisms. But it is still impossible to make exact statements concerning the damages by radiation. Even now, science has to content itself with probability data. Moreover no typical damages of ionizing radiation can be identified. Therefore, the risks of ionizing radiation can only be determined by comparison with the spontaneous rate of cancerous or genetic defects. The article describes the interaction of high-energy radiation with the molecules of the organism and their consequences for radiation protection. (orig.)

  6. The scrapie disease process is unaffected by ionizing radiation

    International Nuclear Information System (INIS)

    Fraser, H.; Farquhar, C.F.; McConnell, I.; Davies, D.

    1989-01-01

    The incubation period of scrapie, its degenerative neuropathology and the replication of its causal unconventional virus are all tightly controlled parameters of the experimental disease in mice. Each parameter can vary depending on the strain and dose of virus, on the route of infection, and on the host genotype. Exposure to whole-body gamma-irradiation from Cesium 137 has no effect on the progress or development of the disease, based on the three independent indices of incubation period, neuropathology, or infectibility by high or low doses of virus. These results are based on an extensive series of experiments in many mouse strains and are consistent using different strains (ME7, 22A, 79A, 87V) and doses of virus, routes of infection, timing and dose of radiation (3-15 Gy) administered as single or fractionated exposures with or without bone-marrow (b.m.) replacement therapy. Levels of infection in the spleen are unaltered after lethal whole-body irradiation of the scrapie-infected host, despite several-fold reductions in tissue mass due to the loss of proliferating myeloid and lymphoid precursor cells and their progeny. Contrary to our earlier suggestion, scrapie infection with the 22A virus does not reduce the effectiveness of post-exposure bone-marrow replacements to recolonize an infected host after repeated ionizing radiation totalling 15Gy. This work narrows the search for the candidate cells and biosynthetic systems which replicate the virus in the lymphoreticular and central nervous systems. Many programmed cellular events are radiation sensitive but protein synthesis is extremely radioresistant

  7. Specification for symbol for ionizing radiation

    International Nuclear Information System (INIS)

    1974-01-01

    This Malaysia Standard specification specifies a symbol recommended for use only to signify the actual or potential presence of ionizing radiation (#betta#, α, #betta# only) and to identify objects, devices, materials or combinations of materials which emit such radiation. (author)

  8. Sterilizing insects with ionizing radiation

    International Nuclear Information System (INIS)

    Bakri, A.; Mehta, K.; Lance, D.R.

    2005-01-01

    Exposure to ionizing radiation is currently the method of choice for rendering insects reproductively sterile for area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT). Gamma radiation from isotopic sources (cobalt-60 or caesium-137) is most often used, but high-energy electrons and X-rays are other practical options. Insect irradiation is safe and reliable when established safety and quality-assurance guidelines are followed. The key processing parameter is absorbed dose, which must be tightly controlled to ensure that treated insects are sufficiently sterile in their reproductive cells and yet able to compete for mates with wild insects. To that end, accurate dosimetry (measurement of absorbed dose) is critical. Irradiation data generated since the 1950s, covering over 300 arthropod species, indicate that the dose needed for sterilization of arthropods varies from less than 5 Gy for blaberid cockroaches to 300 Gy or more for some arctiid and pyralid moths. Factors such as oxygen level, and insect age and stage during irradiation, and many others, influence both the absorbed dose required for sterilization and the viability of irradiated insects. Consideration of these factors in the design of irradiation protocols can help to find a balance between the sterility and competitiveness of insects produced for programmes that release sterile insects. Many programmes apply 'precautionary' radiation doses to increase the security margin of sterilization, but this overdosing often lowers competitiveness to the point where the overall induced sterility in the wild population is reduced significantly. (author)

  9. 100 years of ionizing radiation protection

    International Nuclear Information System (INIS)

    Baltrukiewicz, Z.; Musialowicz, T.

    1999-01-01

    The development of radiation protection from the end of 19. century and evolution of opinion about injurious effect of ionizing radiation were presented. Observations of undesirable effects of ionizing radiation exposition, progress of radiobiology and dosimetry directed efforts toward radiation protection. These activities covered, at the beginning, limited number of persons and were subsequently extended to whole population. The current means, goals and regulations of radiological control have been discussed

  10. Effect of ionizing radiation on apoptosis in the cortex of mouse lymph node

    International Nuclear Information System (INIS)

    Chen Dong; Liu Jiamei; Liu Shuzheng

    1999-01-01

    Objective: To study the alteration of apoptosis in the cortex of mouse lymph node following whole body X-irradiation. Methods: The method of TdT-mediated dUTP nick end labelling (TUNEL) was used to detect apoptosis the cortex of mouse lymph node. Results: The sensitivity to high and low dose ionizing radiation was distinct in different area of the cortex. Conclusion: The decrease of apoptotic cells in the inter nodular and deep cortex indicate that low dose radiation may suppress the apoptosis of T lymphocytes and play a role in immune regulation

  11. Effect of ionizing radiation on active thyroid immunity

    International Nuclear Information System (INIS)

    Ibrahim, I.I.; Abdelaal, A.E.; AL-Gachari, A.I.; Hindy, O.W.; Abdalla, M.I.; Said, M.M.; Shoucha, M.A.; and Salama, F.M.

    1988-01-01

    The present study was carried out to explore the effect of exposure to ionizing radiation on the immune system in cocks. A total number of 36 mature Fayoumi cocks were randomly assigned to: control, 300 R and 600 r groups. Whole body irradiation was carried out in co-60 unit 24 hours. Prior to induction of immunity. Thyroglobulin (T G) immunity was induced in all birds and sera were collected before, 1, 2, 4, 6, 8 and 16 weeks. After immunization. T G antibodies were evaluated by using radioisotopic techniques: i- Ammonium sulphate method, ii-polyethylene glycol method and iii-The circulating thyroid hormones. The results obtained indicated the formation of thyroglobulin antibodies in all immunized birds at 6 weeks. After immunization and thereafter, although it was detected in some birds at 4 weeks. after immunization. The antibody titer increased sharply after the sixth Th week reaching its peak value at the sixteenth week interval. The suppressive effect of ionizing radiation on the immune response was evident in the irradiated groups, particularly the 600 r group. Some birds in the 600 r group were not able to respond appropriately to the challenge and did not survive until the end of observation period

  12. Benefits of adopting good radiation practices in reducing the whole body radiation dose to the nuclear medicine personnel during (18)F-fluorodeoxyglucose positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Verma, Shashwat; Kheruka, Subhash Chand; Maurya, Anil Kumar; Kumar, Narvesh; Gambhir, Sanjay; Kumari, Sarita

    2016-01-01

    Positron emission tomography has been established as an important imaging modality in the management of patients, especially in oncology. The higher gamma radiation energy of positron-emitting isotopes poses an additional radiation safety problem. Those working with this modality may likely to receive higher whole body doses than those working only in conventional nuclear medicine. The radiation exposure to the personnel occurs in dispensing the dose, administration of activity, patient positioning, and while removing the intravenous (i.v.) cannula. The estimation of radiation dose to Nuclear Medicine Physician (NMP) involved during administration of activity to the patient and technical staff assisting in these procedures in a positron emission tomography/computed tomography (PET/CT) facility was carried out. An i.v access was secured for the patient by putting the cannula and blood sugar was monitored. The activity was then dispensed and measured in the dose calibrator and administered to the patient by NMP. Personnel doses received by NMP and technical staff were measured using electronic pocket dosimeter. The radiation exposure levels at various working locations were assessed with the help of gamma survey meter. The radiation level at working distance while administering the radioactivity was found to be 106-170 μSv/h with a mean value of 126.5 ± 14.88 μSv/h which was reduced to 4.2-14.2 μSv/h with a mean value of 7.16 ± 2.29 μSv/h with introduction of L-bench for administration of radioactivity. This shows a mean exposure level reduction of 94.45 ± 1.03%. The radiation level at working distance, while removing the i.v. cannula postscanning was found to be 25-70 μSv/h with a mean value of 37.4 ± 13.16 μSv/h which was reduced to 1.0-5.0 μSv/h with a mean value of 2.77 ± 1.3 μSv/h with introduction of L-bench for removal of i.v cannula. This shows a mean exposure level reduction of 92.85 ± 1.78%. This study shows that good radiation practices are

  13. New Croatian Act on Ionizing Radiation Protection

    International Nuclear Information System (INIS)

    Grgic, S.

    1998-01-01

    According to the new Croatian Act on ionizing radiation protection which is in a final stage of genesis, Ministry of Health of the Republic of Croatia is the governmental body responsible for all aspects relating sources of ionizing radiation in Croatia: practices, licenses, users, transport, in medicine and industry as well, workers with sources of ionizing radiation, emergency preparedness in radiological accidents, storage of radioactive wastes, x-ray machines and other machines producing ionizing radiation and radioactive materials in the environment. Ministry of Health is responsible to the Government of the Republic of Croatia, closely collaborating with the Croatian Radiation Protection Institute, health institution for the performance of scientific and investigation activities in the field of radiation protection. Ministry of Health is also working together with the Croatian Institute for the Occupational Health. More emphasis has been laid on recent discussion among the world leading radiation protection experts on justification of the last recommendations of the ICRP 60 publication. (author)

  14. Biological Effects of Ionizing Radiation

    International Nuclear Information System (INIS)

    Durand, J.L.

    2000-01-01

    The aim of this work is to verify the existence of the adaptive response phenomenon induced by low doses of ionizing radiation in living cells.A wild-type yeast Saccharomyces cerevisiae (Baker's yeast) was chosen as the biological target.As a parameter to quantify the sensibility of the target to radiation, the Lethal Dose 50 (LD50 ) was observed. In our experimental condition a value of (60 ± 1) Gy was measured for LD50 with Dose Rate of (0.44 ± 0.03) Gy/min. The method employed to show up the adaptive response phenomenon consisted in exposing the sample to low ''conditioning'' doses, which would initiate these mechanisms. Later the samples with and without conditioning were exposed to higher ''challenging'' doses (such as LD50), and the surviving fractions were compared. In order to maximize the differences, the doses and the time between irradiations were varied. The best results were obtained with both a conditioning dose of (0.44 ± 0.03) Gy and a waiting time of 2 hs until the application of the challenging dose. Following this procedures the 80% of the conditioned samples has survived, after receiving the application of the LD50. The adaptive response phenomenon was also verified for a wide range of challenging doses

  15. Evaluation of radio-protective effect of melatonin on whole body irradiation induced liver tissue damage.

    Science.gov (United States)

    Shirazi, Alireza; Mihandoost, Ehsan; Ghobadi, Ghazale; Mohseni, Mehran; Ghazi-Khansari, Mahmoud

    2013-01-01

    Ionizing radiation interacts with biological systems to induce excessive fluxes of free radicals that attack various cellular components. Melatonin has been shown to be a direct free radical scavenger and indirect antioxidant via its stimulatory actions on the antioxidant system.The aim of this study was to evaluate the antioxidant role of melatonin against radiation-induced oxidative injury to the rat liver after whole body irradiation. In this experimental study,thirty-two rats were divided into four groups. Group 1 was the control group, group 2 only received melatonin (30 mg/kg on the first day and 30 mg/kg on the following days), group 3 only received whole body gamma irradiation of 10 Gy, and group 4 received 30 mg/kg melatonin 30 minutes prior to radiation plus whole body irradiation of 10 Gy plus 30 mg/kg melatonin daily through intraperitoneal (IP) injection for three days after irradiation. Three days after irradiation, all rats were sacrificed and their livers were excised to measure the biochemical parameters malondialdehyde (MDA) and glutathione (GSH). Each data point represents mean ± standard error on the mean (SEM) of at least eight animals per group. A one-way analysis of variance (ANOVA) was performed to compare different groups, followed by Tukey's multiple comparison tests (p<0.05). The results demonstrated that whole body irradiation induced liver tissue damage by increasing MDA levels and decreasing GSH levels. Hepatic MDA levels in irradiated rats that were treated with melatonin (30 mg/kg) were significantly decreased, while GSH levels were significantly increased, when compared to either of the control groups or the melatonin only group. The data suggest that administration of melatonin before and after irradiation may reduce liver damage caused by gamma irradiation.

  16. Non-Ionizing Radiation Used in Microwave Ovens

    Science.gov (United States)

    ... Non-Ionizing Radiation Used in Microwave Ovens Non-Ionizing Radiation Used in Microwave Ovens Explore the interactive, virtual ... can do Where to learn more About Non-Ionizing Radiation Used in Microwave Ovens Microwave Oven. Microwave ovens ...

  17. The evolution of whole-body imaging.

    LENUS (Irish Health Repository)

    Moran, Deirdre E

    2012-02-01

    This article reviews the evolution of whole-body imaging, discussing the history and development of radiography, nuclear medicine, computed tomography (CT), positron emission tomography (PET), combined PET-CT, and magnetic resonance imaging. The obstacles hindering progress toward whole-body imaging using each of these modalities, and the technical advances that were developed to overcome them, are reviewed. The effectiveness and the limitations of whole-body imaging with each of these techniques are also briefly discussed.

  18. Bystander Effects of Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Little, John B. [Harvard T.H. Chan School of Public Health, Boston, MA (United States). Dept. of Genetics and Complex Diseases

    2017-01-17

    The objectives of this grant renewal are to provide administrative support and travel funds to allow the continued participation of the principal investigator (Dr. John B. Little) as an advisor to research initiated by several research fellows from his laboratory. The actual research will be carried out under the direction of Dr. Hatsumi Nagasawa with the collaboration of Dr. Joel Bedford at the Colorado State University, and by Drs. Edouard Azzam and Sonia de Toledo at the University of Medicine and Dentistry of New Jersey. Dr. Little will advise on the planning of experiments and development of experimental protocols, the analysis of data, and the preparation of manuscripts for publication. The Specific Aims for several of the planned experiments include: 1) to extend studies of the role of recombinational repair in the bystander effect by examining other genes in this pathway and cell lines deficient in excision repair; 2) to continue studies to determine the nature of the damage signal transmitted to bystander cells including the expression of several connexins in the bystander response, and the extent to which the enhanced oxidative metabolism observed in bystander cells may relate to the nature of the transmitted bystander signal; 3) to utilize a genome-wide approach to examine the genetic basis for the hypersensitivity to ionization we have observed in unaffected parents of patients with hereditary retinoblastoma, as well as from a group of apparently normal individuals that show similar radiosensitivity; 4) to complete studies concerning the induction of high frequencies of cells with massive chromosome damage in clonal derivatives of p53 and p21 knockout mouse cell lines; in particular to examine the role of telomere changes in this phenomenon. Overall, the results of these studies should enhance our understanding of the risk of low-dose exposures to ionizing radiation, including human populations to residential radon as well as occupational exposures.

  19. Bystander Effects of Ionizing Radiation

    International Nuclear Information System (INIS)

    Little, John B.

    2017-01-01

    The objectives of this grant renewal are to provide administrative support and travel funds to allow the continued participation of the principal investigator (Dr. John B. Little) as an advisor to research initiated by several research fellows from his laboratory. The actual research will be carried out under the direction of Dr. Hatsumi Nagasawa with the collaboration of Dr. Joel Bedford at the Colorado State University, and by Drs. Edouard Azzam and Sonia de Toledo at the University of Medicine and Dentistry of New Jersey. Dr. Little will advise on the planning of experiments and development of experimental protocols, the analysis of data, and the preparation of manuscripts for publication. The Specific Aims for several of the planned experiments include: 1) to extend studies of the role of recombinational repair in the bystander effect by examining other genes in this pathway and cell lines deficient in excision repair; 2) to continue studies to determine the nature of the damage signal transmitted to bystander cells including the expression of several connexins in the bystander response, and the extent to which the enhanced oxidative metabolism observed in bystander cells may relate to the nature of the transmitted bystander signal; 3) to utilize a genome-wide approach to examine the genetic basis for the hypersensitivity to ionization we have observed in unaffected parents of patients with hereditary retinoblastoma, as well as from a group of apparently normal individuals that show similar radiosensitivity; 4) to complete studies concerning the induction of high frequencies of cells with massive chromosome damage in clonal derivatives of p53 and p21 knockout mouse cell lines; in particular to examine the role of telomere changes in this phenomenon. Overall, the results of these studies should enhance our understanding of the risk of low-dose exposures to ionizing radiation, including human populations to residential radon as well as occupational exposures.

  20. Ionizing radiation and genetic risks

    Energy Technology Data Exchange (ETDEWEB)

    Sankaranarayanan, K. [Department of Toxicogenetics, Leiden University Medical Centre, Sylvius Laboratories, Wassenaarseweg 72, 2333 AL Leiden (Netherlands)]. E-mail: sankaran@lumc.nl; Wassom, J.S. [YAHSGS, LLC, Richland, WA 99352 (United States); Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    2005-10-15

    Recent estimates of genetic risks from exposure of human populations to ionizing radiation are those presented in the 2001 report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). These estimates incorporate two important concepts, namely, the following: (1) most radiation-induced mutations are DNA deletions, often encompassing multiple genes, but only a small proportion of the induced deletions is compatible with offspring viability; and (2) the viability-compatible deletions induced in germ cells are more likely to manifest themselves as multi-system developmental anomalies rather than as single gene disorders. This paper: (a) pursues these concepts further in the light of knowledge of mechanisms of origin of deletions and other rearrangements from two fields of contemporary research: repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian somatic cells and human molecular genetics; and (b) extends them to deletions induced in the germ cell stages of importance for radiation risk estimation, namely, stem cell spermatogonia in males and oocytes in females. DSB repair studies in somatic cells have elucidated the roles of two mechanistically distinct pathways, namely, homologous recombination repair (HRR) that utilizes extensive sequence homology and non-homologous end-joining (NHEJ) that requires little or no homology at the junctions. A third process, single-strand annealing (SSA), which utilizes short direct repeat sequences, is considered a variant of HRR. HRR is most efficient in late S and G{sub 2} phases of the cell cycle and is a high fidelity mechanism. NHEJ operates in all cell cycle phases, but is especially important in G{sub 1}. In the context of radiation-induced DSBs, NHEJ is error-prone. SSA is also an error-prone mechanism and its role is presumably similar to that of HRR. Studies in human molecular genetics have demonstrated that the occurrence of large deletions, duplications or other

  1. Ionizing radiation and genetic risks

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.; Wassom, J.S.

    2005-01-01

    Recent estimates of genetic risks from exposure of human populations to ionizing radiation are those presented in the 2001 report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). These estimates incorporate two important concepts, namely, the following: (1) most radiation-induced mutations are DNA deletions, often encompassing multiple genes, but only a small proportion of the induced deletions is compatible with offspring viability; and (2) the viability-compatible deletions induced in germ cells are more likely to manifest themselves as multi-system developmental anomalies rather than as single gene disorders. This paper: (a) pursues these concepts further in the light of knowledge of mechanisms of origin of deletions and other rearrangements from two fields of contemporary research: repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian somatic cells and human molecular genetics; and (b) extends them to deletions induced in the germ cell stages of importance for radiation risk estimation, namely, stem cell spermatogonia in males and oocytes in females. DSB repair studies in somatic cells have elucidated the roles of two mechanistically distinct pathways, namely, homologous recombination repair (HRR) that utilizes extensive sequence homology and non-homologous end-joining (NHEJ) that requires little or no homology at the junctions. A third process, single-strand annealing (SSA), which utilizes short direct repeat sequences, is considered a variant of HRR. HRR is most efficient in late S and G 2 phases of the cell cycle and is a high fidelity mechanism. NHEJ operates in all cell cycle phases, but is especially important in G 1 . In the context of radiation-induced DSBs, NHEJ is error-prone. SSA is also an error-prone mechanism and its role is presumably similar to that of HRR. Studies in human molecular genetics have demonstrated that the occurrence of large deletions, duplications or other rearrangements

  2. Regulation on protection against ionizing radiations

    International Nuclear Information System (INIS)

    1995-01-01

    This regulation has as the objective to establish the criteria tending toward protecting the health of the population of the radiologic risks that can be derive from the employment of the ionizing radiations and similar activities. It establishes the requirements to comply with the radiactive installations, equipment transmitters of ionizing radiations, personal that works in them, operate the equipment and carry out any another similar activity such as: production, importation, exportation, transportation, transference of radioactive material or equipment generators of radiations ionizing. (S. Grainger) [es

  3. Exposure to non ionizing radiations

    International Nuclear Information System (INIS)

    Campanella, L.; Dragone, R.; Pastorelli, A.

    2001-01-01

    In the last years the exposure levels to electric, magnetic and electromagnetic fields of workers and citizens have dramatically increased due to the technological development as in the exemplar case of cellular phones. The object of this research concerns the biological evaluation of the risk from exposure to non ionizing radiations (NIR) by an opportunely designed biosensor based on immobilized Saccharomyces cerevisiae cells and by an amperometric transducer (Clark oxygen electrode). The results have been obtained by comparing the respiratory activities of exposed and not exposed yeast cells to NIR (at 900 MHz, frequency of the first generation cellular phones). The measurements have been performed by irradiation of the cells in a G-TEM chamber. The obtained results clearly show a decrease of the respiration activity of the irradiation cells in comparison with blank. This variation results to be proportional to the exposure time. Concerning reversibility of the damage it seems that the recovery of the initial conditions begins after 4 hours since the end of exposition and is complete within the following 48 hrs [it

  4. Ionizing radiation interactions with DNA: nanodosimetry

    International Nuclear Information System (INIS)

    Bug, Marion; Nettelbeck, Heidi; Hilgers, Gerhard; Rabus, Hans

    2011-01-01

    The metrology of ionizing radiation is based on measuring values that are averaged over macroscopic volume elements, for instance the energy dose is defined as ratio of the energy deposited on the absorber and the absorber mass. For biological or medical radiation effects the stochastic nature of radiation interaction id of main importance, esp. the interaction of ionizing radiation with the DNA as the genetic information carrier. For radiotherapy and risk evaluation purposes a comprehensive system of radiation weighing factors and other characteristics, like radiation quality or relative biological efficacy was developed. The nanodosimetry is aimed to develop a metrological basis relying on physical characteristics of the microscopic structure of ionizing radiation tracks. The article includes the development of experimental nanodosimetric methods, the respective calibration techniques, Monte-Carlo simulation of the particle track microstructure and the correlation nanodosimetry and biological efficiency.

  5. A comparison of two nuclear-medical techniques for effective renal plasma flow determination in rabbits: Radiation controlled infusion-pump and whole-body measurement according to Oberhausen

    International Nuclear Information System (INIS)

    Mayer-Wehrstein, R.

    1981-01-01

    Two nuclear techniques were investigated for determination of the effective renal plasma flow with J-131-Hippuran in rabbits: whole-body measurement according to Oberhausen and clearance determination with a radiation controlled feed back infusion pump. In the first method the clearance determination follows after a single injection of the testing substance in the decreasing phase of the blood level, in the second method a constant blood level of the testing substance is maintained. A technique was developed for the determination of the blood-tissue ratio by considering the values determined by the constant blood level. This way the exact clearance values were computet for the decreasing plasma level. Nineteen clearance determinations were performed in rabbits altogether. (orig.) [de

  6. 3D whole body scanners revisited

    NARCIS (Netherlands)

    Daanen, H.A.M.; Haar, F.B. ter

    2013-01-01

    An overview of whole body scanners in 1998 (H.A.M. Daanen, G.J. Van De Water. Whole body scanners, Displays 19 (1998) 111-120) shortly after they emerged to the market revealed that the systems were bulky, slow, expensive and low in resolution. This update shows that new developments in sensing and

  7. Genetic effects of ionizing radiations in Eucaryocytes

    International Nuclear Information System (INIS)

    Jullien, Pierre

    1976-01-01

    The litterature on the genetic effects of ionizing radiations is reviewed, especially as concerns specific loci or chromosome mutations. Extrapolation from one species to another is considered as well as extra-nuclear mutations [fr

  8. The effect of ionizing radiation on cyanophyta

    International Nuclear Information System (INIS)

    Kondrat'eva, N.V.; Shevchenko, T.F.; Golubkova, M.G.

    1989-01-01

    Publication data on the effect of ionizing radiation on cyanophyta are generalized. The conclusion about the presence of premises for forming cyanophyta radiobiology as special direction of procaryotic algae investigation is made

  9. Whole body MRI in children; Ganzkoerper-MRT bei Kindern

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Juergen F.; Tsiflikas, Ilias [Tuebingen Univ. (Germany). Bereich Kinderradiologie

    2014-09-15

    In pediatric patients whole body MRI has a relevant impact on both, diagnostic work-up and treatment. Using adapted sequence protocols comprehensive imaging without radiation exposure is possible avoiding additional examinations in many cases. Especially in bone marrow the differentiation between normal and abnormal finding can be difficult, therefore the knowledge of normal maturing of organs is important. Whole body diffusion weighted imaging particularly in neuroblastomas or sarcomas improves the low specificity of conventional MR-protocols. Technical prerequisites, examination protocol and strategies, image interpretation, indications and clinical relevance as well as advantages and disadvantages of whole body MRI will be discussed on the basis of application-oriented cases and the literature.

  10. The effect of ionizing radiation on lipid metabolism in lymphoid cells

    International Nuclear Information System (INIS)

    Kolomiytseva, I.K.; Novoselova, E.G.; Kulagina, T.P.; Kuzin, A.M.

    1987-01-01

    Lipid metabolism was studied in lymphoid tissues of rats after whole body irradiation with doses producing damage of different degrees to lymphoid cells (4-10 Gy). The content of free cholesterol, cholesterol esters, and total phospholipids was determined in peripheral blood lymphocytes and thymocytes 1-2 h after exposure. Simultaneously, the rate of in vitro incorporation of 2 14 C-acetate into total lipids, phospholipids, and cholesterol of lymphoid cells was estimated. It was shown that exposure of rats to ionizing radiation caused activation of lipogenesis. Cholesterol synthesis was activated after a dose of 4 Gy and decreased with increasing dose. (author)

  11. Conception of CTMSP ionizing radiation calibration laboratory

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2009-01-01

    The present paper describes the implantation process of an ionizing radiation calibration laboratory in a preexistent installation in CTMSP (bunker) approved by CNEN to operate with gamma-ray for non destructive testing. This laboratory will extend and improve the current metrological capacity for the attendance to the increasing demand for services of calibration of ionizing radiation measuring instruments. Statutory and regulatory requirements for the licensing of the installation are presented and deeply reviewed. (author)

  12. Pressing problems of measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Fominykh, V.I.; Yudin, M.F.

    1993-01-01

    The current system for ensuring the unity of measurements in the Russian Federation and countries of the former Soviet Union ensures a high quality of dosimetric, radiometric, and spectrometric measurements in accordance with the recommendations of the Consulative Committee on Standards for Measurements of Ionizing Radiations of the International Bureau of Weights and Measures (IBWM), International Organization on Radiological Units (ICRU), International Commission on Radiological Protection (ICRP), International Organization on Legislative Metrology (IOLM), International Atomic Energy Agency (IAEA), World Health Organization (WHO), etc. Frequent collation of the national primary and secondary standards of Russia with those of IBWM and the leading national laboratories of the world facilitate mutual verification of the measurements of ionizing radiations. The scope of scientific and scientific-technical problems that can be solved by using ionizing radiations has expanded significantly in recent years. In this paper the authors consider some pressing problems of the metrology of ionizing radiations which have arisen as a result of this expansion. These include the need for unity and reliability of measurements involved in radiation protection, the measurement of low doses involving low dose rates, ensuring the unity of measurements when monitoring the radiological security of the population, the need for more uniformity on an international scale regarding the basic physical quantities and their units for characterizing radiation fields, determination of the accuracy of measurement of the radiation dose absorbed by an irradiated tissue or organ, and the development of complex standards for ionizing radiations. 5 refs., 1 tab

  13. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    International Nuclear Information System (INIS)

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-01-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition

  14. Methodological guide for the implementation of a workstation radiation protection optimization approach: case of the external exposure of the whole body. Report nr 305

    International Nuclear Information System (INIS)

    Bataille, C.; Boucher, A.; Schieber, C.

    2008-02-01

    The first part of this report presents the different steps of the radiation protection optimization approach and proposes some methodological elements for its implementation when designing a maintenance or modification operation. For each step of this optimization approach, the guide presents objectives, peculiarities, recommendations to deepen the approach. The second part proposes a set of technical forms related to the study and the implementation of some actions aimed at dose reduction. These actions are notably: circuit rinsing, decontamination of an irradiation source, setting up of biological protections, removal of an irradiating component, tele-dosimetry, and so on

  15. Renal function changes associated with aging and ionizing radiation

    International Nuclear Information System (INIS)

    Miller, C.W.; Norrdin, R.W.; Sawyer, S.S.; Nealeigh, R.C.

    1978-01-01

    Renal function testing of irradiated and unirradiated beagles at CRHL has been carried out for the past 7 years using a simultaneous estimation of sodium sulfanilate and sodium iodohippurate 131 I clearance. Evidence has been cited that the beagle kidney is markedly sensitive to whole-body ionizing radiation delivered in the perinatal period. The objectives of this continuing study are to determine the nature of the progression of chronic renal disease, its possible association to hypertension, the impact of unilateral nephrectomy upon an already compromised renal parenchyma, and the age-related changes in renal function. Thus far, data seem to indicate the following conclusions: sulfanilate clearance appears to be a sensitive indicator of impending renal failure, exhibiting earlier and more obvious indicators than BUN (blood urea nitrogen) levels; hypertension does not appear to be a factor in radiation-induced renal failure in the adult dogs studied here, since the average arterial blood pressure was as high in normal control dogs as in irradiated dogs suffering from renal failure; unilateral nephrectomy affected unirradiated dogs less than irradiated animals with mild renal insufficiency. The BUN levels returned to prenephrectomy levels in 8 weeks in the unirradiated group, but required up to 1 year in the dogs with renal insufficiency; and an age related decrease inrenal function was observed in a group of unirradiated dogs studied from 0 to 2 through 13 years of age

  16. Role of Ionizing Radiation in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Neel K. Sharma

    2018-05-01

    Full Text Available Ionizing radiation (IR from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR.

  17. Role of Ionizing Radiation in Neurodegenerative Diseases

    Science.gov (United States)

    Sharma, Neel K.; Sharma, Rupali; Mathur, Deepali; Sharad, Shashwat; Minhas, Gillipsie; Bhatia, Kulsajan; Anand, Akshay; Ghosh, Sanchita P.

    2018-01-01

    Ionizing radiation (IR) from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR. PMID:29867445

  18. Code of practice for ionizing radiation

    International Nuclear Information System (INIS)

    Khoo Boo Huat

    1995-01-01

    Prior to 1984, the use of ionizing radiation in Malaysia was governed by the Radioactive Substances Act of 1968. After 1984, its use came under the control of Act 304, called the Atomic Energy Licensing Act 1984. Under powers vested by the Act, the Radiation Protection (Basic Safety Standards) Regulations 1988 were formulated to regulate its use. These Acts do not provide information on proper working procedures. With the publication of the codes of Practice by The Standards and Industrial Research Institute of Malaysia (SIRIM), the users are now able to follow proper guidelines and use ionizing radiation safely and beneficially. This paper discusses the relevant sections in the following codes: 1. Code of Practice for Radiation Protection (Medical X-ray Diagnosis) MS 838:1983. 2. Code of Practice for Safety in Laboratories Part 4: Ionizing radiation MS 1042: Part 4: 1992. (author)

  19. Protection policies for ionizing and UV radiation

    International Nuclear Information System (INIS)

    Bosnjakovic, B.F.M.

    1987-01-01

    Although ultraviolet radiation is generally considered as being part of non-ionizing radiation, the existing similarities with ionizing radiation are too striking to be overseen. A comparison of these two agents is becoming important in view of the increasing awareness of various environmental and health risks and the tendency to develop more uniform risk management policies with respect to the different physical and chemical agents. This paper explores the similarities and differences of UV and ionizing radiation from the point of view of policies either adopted or in development. Policy determinants include, among others, the following factors: biological effects, dosimetric quantities, relative contribution to exposure from different sources, hazard potential of different sources, quantification of detrimental consequences, public perception of the radiation hazards and regulation developments. These factors are discussed

  20. Genetic and somatic effects of ionizing radiation

    International Nuclear Information System (INIS)

    1986-01-01

    This is the ninth substantive report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) to the General Assembly. This report contains reviews on three special topics in the field of biological effects of ionizing radiation that are among those presently under consideration by the Committee: genetic effects of radiation, dose-response relationships for radiation-induced cancer and biological effects of pre-natal irradiation

  1. Quantitative whole body scintigraphy - a simplified approach

    International Nuclear Information System (INIS)

    Marienhagen, J.; Maenner, P.; Bock, E.; Schoenberger, J.; Eilles, C.

    1996-01-01

    In this paper we present investigations on a simplified method of quantitative whole body scintigraphy by using a dual head LFOV-gamma camera and a calibration algorithm without the need of additional attenuation or scatter correction. Validation of this approach to the anthropomorphic phantom as well as in patient studies showed a high accuracy concerning quantification of whole body activity (102.8% and 97.72%, resp.), by contrast organ activities were recovered with an error range up to 12%. The described method can be easily performed using commercially available software packages and is recommendable especially for quantitative whole body scintigraphy in a clinical setting. (orig.) [de

  2. 11C-ORM-13070, a novel PET ligand for brain α2C-adrenoceptors: radiometabolism, plasma pharmacokinetics, whole-body distribution and radiation dosimetry in healthy men

    International Nuclear Information System (INIS)

    Luoto, Pauliina; Oikonen, Vesa; Arponen, Eveliina; Helin, Semi; Virta, Jere; Virtanen, Kirsi; Roivainen, Anne; Suilamo, Sami; Herttuainen, Jukka; Hietamaeki, Johanna; Holopainen, Aila; Rouru, Juha; Sallinen, Jukka; Kailajaervi, Marita; Peltonen, Juha M.; Scheinin, Mika; Volanen, Iina; Rinne, Juha O.

    2014-01-01

    11 C-labelled 1-[(S)-1-(2,3-dihydrobenzo[1,2]dioxin-2-yl)methyl] -4-(3-methoxy-methylpyridin-2- yl)-piperazine ( 11 C-ORM-13070) is a novel PET tracer for imaging of α 2C -adrenoceptors in the human brain. Brain α 2C -adrenoceptors may be therapeutic targets in several neuropsychiatric disorders, including depression, schizophrenia and Alzheimer's disease. To validate the use of 11 C-ORM-13070 in humans, we investigated its radiometabolism, pharmacokinetics, whole-body distribution and radiation dose. Radiometabolism was studied in a test-retest setting in six healthy men. After intravenous injection of 11 C-ORM-13070, blood samples were drawn over 60 min. Plasma samples were analysed by radio-HPLC for intact tracer and its radioactive metabolites. Metabolite-corrected plasma time-activity curves were used for calculation of pharmacokinetics. In a separate group of 12 healthy men, the whole-body distribution of 11 C-ORM-13070 and radiation exposure were investigated by dynamic PET/CT imaging without blood sampling. Two radioactive metabolites of 11 C-ORM-13070 were detected in human arterial plasma. The proportion of unchanged 11 C-ORM-13070 decreased from 81 ± 4 % of total radioactivity at 4 min after tracer injection to 23 ± 4 % at 60 min. At least one of the radioactive metabolites penetrated into red blood cells, while the parent tracer remained in plasma. The apparent elimination rate constant and corresponding half-life of unchanged 11 C-ORM-13070 in arterial plasma were 0.0117 ± 0.0056 min -1 and 73.6 ± 35.8 min, respectively. The organs with the highest absorbed doses were the liver (12 μSv/MBq), gallbladder wall (12 μSv/MBq) and pancreas (9.1 μSv/MBq). The mean effective dose was 3.9 μSv/MBq, with a range of 3.6 - 4.2 μSv/MBq. 11 C-ORM-13070 was rapidly metabolized in human subjects after intravenous injection. The effective radiation dose of 11 C-ORM-13070 was in the same range as that of other 11 C-labelled brain receptor tracers. An injection

  3. Physician exposure to ionizing radiation during trauma resuscitation: A prospective clinical study

    International Nuclear Information System (INIS)

    Weiss, E.L.; Singer, C.M.; Benedict, S.H.; Baraff, L.J.

    1990-01-01

    A prospective study of emergency physician whole body and extremity exposure to ionizing radiation during trauma resuscitation over a three-month period was conducted. Radiation film badges and thermoluminescent dosimeter finger rings were permanently attached to leaded aprons worn by emergency medicine residents during all trauma resuscitations. One set of apron and finger ring dosimeters was designated for the resident who managed the airway and stabilized the neck, when necessary, during cervical spine radiography (A-CS resident). A separate set of dosimeters was designated for the resident supervising the resuscitation. During the study period, 150 major trauma patients requiring 481 radiographic studies were treated. The mean monthly cumulative whole body exposures were 136.7 +/- 85.0 and 103.3 +/- 60.3 mrem for A-CS and supervising residents, respectively. The mean weekly cumulative extremity exposures were 523.3 +/- 611.0 and 46.7 +/- 18.6 mrem for A-CS and supervising residents, respectively. Calculated whole body exposures per patient were 2.7 mrem for the A-CS resident and 2.1 mrem for the supervising resident. Calculated extremity exposures per patient were 41.9 +/- 48.9 and 3.7 +/- 1.5 mrem, respectively. To exceed the annual whole body exposure limit established by the National Council of Radiologic Protection, the A-CS resident, working 200 shifts per year, would have to treat 9.2 trauma patients per shift. To exceed the annual extremity exposure limit, the A-CS resident would have to treat 5.9 trauma patients per shift. Of note, European exposure limits are 10% of current US limits. We conclude that significant exposures may occur to physicians working in trauma centers and that the use of shielding devices is indicated

  4. Mechanism of effect of ionizing radiation on bcl-2 protein expression and apoptosis in mouse thymus

    International Nuclear Information System (INIS)

    Liu Jiamei; Chen Aijun; Chen Dong; Liu Shuzheng

    2002-01-01

    Objective: To study the mechanism of effect of ionizing radiation in varied doses of X-rays on bcl-2 express and apoptosis in mouse thymus. Methods: Immunohistochemistry, image analysis and transmission electron microscope were used in the study. Results: The expression of bcl-2 protein was limited within thymic medulla, decreased with 2 Gy, however, increased with 0.075 Gy after whole-body irradiation. Some typical apoptotic cells were found in thymic cortex after 2 Gy irradiation. The apoptotic cells decreased and mitotic metaphase increased after 0.075 Gy irradiation. Conclusion: The mechanism of effect of ionizing radiation on apoptosis of thymus was related with the expression of bcl-2 proteins

  5. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-05-01

    In this review radiation produced by the nuclear industry is placed into context with other sources of radiation in our world. Human health effects of radiation, derivation of standards and risk estimates are reviewed in this document. The implications of exposing the worker and the general population to radiation generated by nuclear power are assessed. Effects of radiation are also reviewed. Finally, gaps in our knowledge concerning radiation are identified and current research on biological effects, on environmental aspects, and on dosimetry of radiation within AECL and Canada is documented in this report. (author)

  6. VIII. Safety and method of work in ionizing radiation applications

    International Nuclear Information System (INIS)

    1984-01-01

    Ionizing radiation may damage the organism in two ways: the damage may be chronic or acute. The characteristics of the two types of damage are described. The Czechoslovak State Standard allows the level of 50 mSv as the maximum permissible dose for whole-body exposure for personnel working with radiation. In case of sources incorporated in the body of the workers the maximum permissible dose should not exceed the value of 2.8 μSv/h during decay. Precautions are given for operation with X-ray instruments. In the X-ray room good ventilation must be provided in view of the presence of ozone and oxides. Diagnostic and therapeutical instruments are placed in a separate room from control instruments. The walls are reinforced with barite concrete. Tables are given showing excitation voltage in kV of primary radiation at which the shortest wavelengths and corresponding voltage would be o.enerated scattered at different angles and with minimum wavelength. Also given are thicknesses of the lead layer in mm for different distances from the source and for different voltages in kV at 10 mA. Corrections are given for other current intensities. Radiation protection of personnel working with sealed sources may be achieved by shielding, shortening the time required for handling and the distance at which the source is operated. For operating unsealed radioactive sources various types of shieldings are used depending on the type of radiation. Workplaces are classified into three categories and hygiene regulations are summed up for work with unsealed sources. (E.S.)

  7. whole body vibration and spinal stabilisation

    African Journals Online (AJOL)

    A range of exercise modalities is used in the rehabilitation of indi- viduals with chronic lower ... effects of whole body vibration (WBV) therapy and conventional ... with musculoskeletal, sensory, emotional, cognitive and behavioural components ...

  8. Doses and biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Hrynkiewicz, A.

    1993-01-01

    The aim of the monograph is to review practical aspects of dosimetry. The work describes basic units which are used in dosimetry and natural as well as industrial sources of ionizing radiation. Information given in the monograph help in assessment of the radiation risk. 8 refs, 15 tabs

  9. Long-term effects of ionizing radiation

    International Nuclear Information System (INIS)

    Kaul, Alexander; Burkart, Werner; Grosche, Bernd; Jung, Thomas; Martignoni, Klaus; Stephan, Guenther

    1997-01-01

    This paper approaches the long-term effects of ionizing radiation considering the common thought that killing of cells is the basis for deterministic effects and that the subtle changes in genetic information are important in the development of radiation-induced cancer, or genetic effects if these changes are induced in germ cells

  10. The industrial applications of ionizing radiations

    International Nuclear Information System (INIS)

    1992-10-01

    This report presents all industrial applications of ionizing radiations in France, for food preservation, radiosterilization of drugs, medical materials and cosmetic products, for radiation chemistry of polymers. This report also describes the industrial plants of irradiation (electron, cobalt 60). Finally, it explains the legal and safety aspects

  11. Interaction of ionizing radiation with matter

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    Definition of ionizing radiation,interaction of electrons with matter,physical model of collision,elastic and inelastic collisions,range of electron in matter,interaction of photon with matter.Photoelectric effect , Compton effect,pair production,consideration of interaction of various radiations with soft tissue

  12. Effect of ionizing radiations on connective tissue

    International Nuclear Information System (INIS)

    Altman, K.I.; Gerber, G.B.

    1980-01-01

    The effects of ionizing radiations on connective tissue in lung, heart, vasculature, kidney, skin, and skeletal tissues are reviewed. Special emphasis is given to the effect of ionizing radiations on vasculo-connective tissue and fibrotic changes following radiation-induced injury to organs and tissues. In order to put the subject matter in proper prospective, the general biochemistry, physiology, and pathology of connective tissue is reviewed briefly together with the participation of connective tissue in disease. The review closes with an assessment of future problems and an enumeration and discussion of important, as yet unanswered questions

  13. Ionizing radiation environment for the TOMS mission

    Science.gov (United States)

    Lauriente, M.; Maloy, J. O.; Vampola, A. L.

    1992-01-01

    The Total Ozone Mapping Spectrometer (TOMS) will fly on several different spacecraft, each having an orbit which is approximately polar and 800-980 km in altitude. A description is given of the computer-based tools used for characterizing the spacecraft interactions with the ionizing radiation environment in orbit and the susceptibility requirements for ionizing radiation compatibility. The peak flux from the model was used to derive the expected radiation-induced noise in the South Atlantic Anomaly for the new TOMS instruments intended to fly on Advanced Earth Observatory System and Earth Probe.

  14. Internal dosimetry by whole body counting techniques

    International Nuclear Information System (INIS)

    Sharma, R.C.

    1995-01-01

    Over decades, whole body counting and bioassay - the two principal methods of internal dosimetry have been most widely used to assess, limit and control the intakes of radioactive materials and the consequent internal doses by the workers in nuclear industry. This paper deals with the whole body counting techniques. The problems inherent in the interpretation of monitoring data and likely future directions of development in the assessments of internal doses by direct methods are outlined. (author). 14 refs., 9 figs., 1 tab

  15. Whole-body counters in Canada

    International Nuclear Information System (INIS)

    Letourneau, C.

    1986-08-01

    A compilation of whole-body counting existing across Canada was prepared by AECB (Atomic Energy Control Board) staff. This work was initiated so that AECB staff and other concerned parties would have this information readily available, especially during urgent situations. This report is to be used for reference purposes only, as it makes no attempt to judge the present state of the art of whole-body counting

  16. Simultaneous whole-body PET-MRI in pediatric oncology. More than just reducing radiation?; Simultane Ganzkoerper-PET-MRT in der paediatrischen Onkologie. Mehr als nur Strahlenersparnis

    Energy Technology Data Exchange (ETDEWEB)

    Gatidis, S.; Gueckel, B.; Schaefer, J.F. [Universitaet Tuebingen, Radiologische Klinik, Diagnostische und Interventionelle Radiologie, Tuebingen (Germany); Fougere, C. la [Universitaet Tuebingen, Radiologische Klinik, Nuklearmedizin, Tuebingen (Germany); Schmitt, J. [Universitaet Tuebingen, Abteilung fuer Praeklinische Bildgebung und Radiopharmazie, Werner Siemens Imaging Center, Tuebingen (Germany)

    2016-07-15

    Diagnostic imaging plays an essential role in pediatric oncology with regard to diagnosis, therapy-planning, and the follow-up of solid tumors. The current imaging standard in pediatric oncology includes a variety of radiological and nuclear medicine imaging modalities depending on the specific tumor entity. The introduction of combined simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) has opened up new diagnostic options in pediatric oncology. This novel modality combines the excellent anatomical accuracy of MRI with the metabolic information of PET. In initial clinical studies, the technical feasibility and possible diagnostic advantages of combined PET-MRI have been in comparison with alternative imaging techniques. It was shown that a reduction in radiation exposure of up to 70 % is achievable compared with PET-CT. Furthermore, it has been shown that the number of imaging studies necessary can be markedly reduced using combined PET-MRI. Owing to its limited availability, combined PET-MRI is currently not used as a routine procedure. However, this new modality has the potential to become the imaging reference standard in pediatric oncology in the future. This review article summarizes the central aspects of pediatric oncological PET-MRI based on existing literature. Typical pediatric oncological PET-MRI cases are also presented. (orig.) [German] Die bildgebende Diagnostik spielt in der paediatrischen Onkologie eine zentrale Rolle fuer die Diagnose, die Therapieplanung und die Nachsorge solider Tumoren. Der aktuell bildgebende Standard in der paediatrischen Onkologie sieht - abhaengig von der vorliegenden Tumorentitaet - eine Kombination mehrerer radiologischer und nuklearmedizinischer Verfahren vor. Die Einfuehrung der simultanen Positronenemissionstomographie(PET)-Magnetresonanztomographie (MRT) hat neuartige Moeglichkeiten der Diagnostik in der paediatrischen Onkologie eroeffnet. Dabei kombiniert dieses neue Verfahren die

  17. Radiation ionization is an underestimated industrial technique

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Industrial radiation ionization requires electron beams coming from an accelerator or gamma radiation from a radioactive source (Co 60 ). The energy deposed in the irradiated material modifies its chemical bounds or kills micro-organisms. This process is used in medical material sterilization, in disinfestation of stored and packaged food products, in the production of plastic, in the coloring of glass, in the hardening of electronic components and in the modification of the properties of semi-conductors. For 40 years radiation ionization has been investigated, UNO (United Nations Organization) and WHO (World Health Organisation) recommend it for food processing. With a growing rate of 15% per year for the last 15 years, radiation ionization is now widely used. More than 170 gamma irradiation facilities are operating throughout the world. (A.C.)

  18. Case-control study of congenital malformations and occupational exposure to low-level ionizing radiation

    International Nuclear Information System (INIS)

    Sever, L.E.; Gilbert, E.S.; Hessol, N.A.; McIntyre, J.M.

    1988-01-01

    In a case-control study, the authors investigated the association of parental occupational exposure to low-level external whole-body penetrating ionizing radiation and risk of congenital malformations in their offspring. Cases and controls were ascertained from births in two counties in southeastern Washington State, where the Hanford Site has been a major employer. A unique feature of this study was the linking of quantitative individual measurement of external whole-body penetrating ionizing radiation exposure of employees at the Hanford Site, using personal dosimeters, and the disease outcome, congenital malformations. The study population included 672 malformation cases and 977 matched controls from births occurring from 1957 through 1980. Twelve specific malformation types were analyzed for evidence of association with employment of the parents at Hanford and with occupational exposure to ionizing radiation. Two defects, congenital dislocation of the hip and tracheoesophageal fistula, showed statistically significant associations with employment of the parents at Hanford, but not with parental radiation exposure. Neural tube defects showed a significant association with parental preconception exposure, on the basis of a small number of cases. Eleven other defects, including Down syndrome, for which an association with radiation was considered most likely, showed no evidence of such an association. When all malformations were analyzed as a group, there was no evidence of an association with employment of the parents at Hanford, but the relation of parental exposure to radiation before conception was in the positive direction (one-tailed p value between 0.05 and 0.10). Given the number of statistical tests conducted, some or all of the observed positive correlations are likely to represent false positive findings. 30 references

  19. Whole-body low-dose computed tomography in multiple myeloma staging: Superior diagnostic performance in the detection of bone lesions, vertebral compression fractures, rib fractures and extraskeletal findings compared to radiography with similar radiation exposure.

    Science.gov (United States)

    Lambert, Lukas; Ourednicek, Petr; Meckova, Zuzana; Gavelli, Giampaolo; Straub, Jan; Spicka, Ivan

    2017-04-01

    The primary objective of the present prospective study was to compare the diagnostic performance of conventional radiography (CR) and whole-body low-dose computed tomography (WBLDCT) with a comparable radiation dose reconstructed using hybrid iterative reconstruction technique, in terms of the detection of bone lesions, skeletal fractures, vertebral compressions and extraskeletal findings. The secondary objective was to evaluate lesion attenuation in relation to its size. A total of 74 patients underwent same-day skeletal survey by CR and WBLDCT. In CR and WBLDCT, two readers assessed the number of osteolytic lesions at each region and stage according to the International Myeloma Working Group (IMWG) criteria. A single reader additionally assessed extraskeletal findings and their significance, the number of vertebral compressions and bone fractures. The radiation exposure was 2.7±0.9 mSv for WBLDCT and 2.5±0.9 mSv for CR (P=0.054). CR detected bone involvement in 127 out of 486 regions (26%; Prib fractures compared with CR (188 vs. 47; Pfractures, vertebral compressions and extraskeletal findings, which results in up- or downstaging in 24% patients according to the IMWG criteria. The attenuation of osteolytic lesions can be measured with the avoidance of the partial volume effect.

  20. Metrology of ionizing radiations and environmental measurements

    International Nuclear Information System (INIS)

    Nourreddine, Abdel-Mjid

    2008-01-01

    The subject of radiation protection covers all measurements taken by the authorities to ensure protection of the population and its environment against the harmful effects of ionizing radiation. Dosimetry occupies an important place in this field, because it makes it possible to consider and to quantify the risk of using radiations in accordance with the prescribed limits. In this course, we will review the fundamental concepts used in the metrology and dosimetry of ionizing radiations. After classification of ionizing radiations according to their interactions with biological matter, we will present the various quantities and units brought into play and in particular the new operational quantities that are good estimators raising protection standards. They are directly connected to the annual limits of effective dose and of equivalent dose defined in the French regulation relating to the protection of the population and of workers against ionizing radiations. The average natural exposure of the population in France varies between 2 to 2.5 mSv per year, depending on geographic location. It comes principally from three sources: cosmic radiation, radioactive elements contained in the ground and radioactive elements that we absorb when breathing or eating. Radon, which is a naturally occurring radioactive gas, is a public health risk and represents 30% of the exposure. Finally, we will give some applications of dosimetry and environmental measurements developed recently at RaMsEs/IPHC laboratory of Strasbourg. (author)

  1. Chemical protection against ionizing radiation. Final report

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references

  2. Chemical protection against ionizing radiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  3. Health consequences of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Dalci, D.; Dorter, G.; Guclu, I.

    2004-01-01

    The increasing use of ionizing radiations all over the world induces an ever increasing interest of the professionals as well as of the whole society in health protection and the risk due to these practices. Shortly after its discovery, it was recognized that ionizing radiation can have adverse health effects and knowledge of its detrimental effects has accumulated. The fact that ionizing radiation produces biological damage has been known for many years. The biological effects of ionizing radiation for radiation protection considerations are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain 'threshold' an appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Syndromes, ARS) that occurs days to months after an acute radiation dose. ARS is a complex of acute injury manifestations that occur after a sufficiently large portion of a person's body is exposed to a high dose of ionizing radiation. Such irradiation initially injures all organs to some extent, but the timing and extent of the injury manifestations depend upon the type, rate, and dose of radiation received. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels (includes radioactive pollution). Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. In this

  4. Tumorigenic and tumoricidal actions of ionizing radiations

    International Nuclear Information System (INIS)

    Sanders, C.L.; Kathren, R.L.

    1983-01-01

    The book is divided into two approximately equal parts. The first four chapters are relatively lengthy and cover the basic principles of radiation biology, carcinogenesis and therapy, along with a brief introduction to radiological physics to orient the reader without background in this specialized related discipline. The remainder consists of twenty-four relatively brief chapters, each covering the radiation biology of a specific organ, tissue, or systems tissues, with emphasis on the tumorigenic and tumoricidal action of ionizing radiations

  5. Influence of ionizing radiation on human body

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2016-06-01

    Full Text Available This article describes positive and negative aspects of ionizing radiation and its effects on human body. Being a part of various medical procedures in medicine, ionising radiation has become an important aspect for both medical practitioners and patients. Commonly used in treatment, diagnostics and interventional radiology, its medical usage follows numerous rules, designed to reduce excessive exposure to ionizing radiation. Its widespread use makes it extremely important to research and confirm effects of various doses of radiation on patients of all ages. Two scientific theories, explaining radiation effects on human organism, stand in contrast: commonly accepted LNT-hypothesis and yet to be proven hormesis theory. Despite the fact that the current radiation protection standards are based on the linear theory (LNT-hypothesis, the hormesis theory arouses more and more interest, and numerous attempts are made to prove its validity. Further research expanding the knowledge on radiation hormesis can change the face of the future. Perhaps such researches will open up new possibilities for the use of ionizing radiation, as well as enable the calculation of the optimal and personalised radiation dose for each patient, allowing us to find a new “golden mean”. The authors therefore are careful and believe that these methods have a large future, primarily patient’s good should however be kept in mind.

  6. Whole-Body Exposure to 28Si-Radiation Dose-Dependently Disrupts Dentate Gyrus Neurogenesis and Proliferation in the Short Term and New Neuron Survival and Contextual Fear Conditioning in the Long Term.

    Science.gov (United States)

    Whoolery, Cody W; Walker, Angela K; Richardson, Devon R; Lucero, Melanie J; Reynolds, Ryan P; Beddow, David H; Clark, K Lyles; Shih, Hung-Ying; LeBlanc, Junie A; Cole, Mara G; Amaral, Wellington Z; Mukherjee, Shibani; Zhang, Shichuan; Ahn, Francisca; Bulin, Sarah E; DeCarolis, Nathan A; Rivera, Phillip D; Chen, Benjamin P C; Yun, Sanghee; Eisch, Amelia J

    2017-11-01

    Astronauts traveling to Mars will be exposed to chronic low doses of galactic cosmic space radiation, which contains highly charged, high-energy (HZE) particles. 56 Fe-HZE-particle exposure decreases hippocampal dentate gyrus (DG) neurogenesis and disrupts hippocampal function in young adult rodents, raising the possibility of impaired astronaut cognition and risk of mission failure. However, far less is known about how exposure to other HZE particles, such as 28 Si, influences hippocampal neurogenesis and function. To compare the influence of 28 Si exposure on indices of neurogenesis and hippocampal function with previous studies on 56 Fe exposure, 9-week-old C57BL/6J and Nestin-GFP mice (NGFP; made and maintained for 10 or more generations on a C57BL/6J background) received whole-body 28 Si-particle-radiation exposure (0, 0.2 and 1 Gy, 300 MeV/n, LET 67 KeV/μ, dose rate 1 Gy/min). For neurogenesis assessment, the NGFP mice were injected with the mitotic marker BrdU at 22 h postirradiation and brains were examined for indices of hippocampal proliferation and neurogenesis, including Ki67 + , BrdU + , BrdU + NeuN + and DCX + cell numbers at short- and long-term time points (24 h and 3 months postirradiation, respectively). In the short-term group, stereology revealed fewer Ki67 + , BrdU + and DCX + cells in 1-Gy-irradiated group relative to nonirradiated control mice, fewer Ki67 + and DCX + cells in 0.2 Gy group relative to control group and fewer BrdU + and DCX + cells in 1 Gy group relative to 0.2 Gy group. In contrast to the clearly observed radiation-induced, dose-dependent reductions in the short-term group across all markers, only a few neurogenesis indices were changed in the long-term irradiated groups. Notably, there were fewer surviving BrdU + cells in the 1 Gy group relative to 0- and 0.2-Gy-irradiated mice in the long-term group. When the short- and long-term groups were analyzed by sex, exposure to radiation had a similar effect on neurogenesis indices

  7. Ionizing radiation: benefits vs. risks

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.

    1986-01-01

    No one has been identifiably injured by radiation within the levels set by the NCRP and ICRP in 1934. This fact and the level of natural radiation (average dose 102 millirems/year) help provide standards against which the authors can view the relative increases in exposure from manmade sources of radiation. Because one person in five in the US will die of cancer from all causes, it is impossible to detect small increases in some types of cancer from radiation. A valid assumption is that any exposure to radiation carries some possibility of harm and should be kept below the level of the expected benefits. More is known about radiation toxicity than about any other potentially toxic substances. An obstacle to progress in the use of radioactive materials in biology and medicine is an exaggerated impression by the public of the risk of radiation. Several studies indicate that the public perceives the risk of radiation to be the greatest of all societal risks and at times does not distinguish peaceful from military uses of radiation. It behooves scientists and physicians to inform the public about the benefits as well as the risks of procedures involving radiation

  8. Ionizing radiation and wild birds: a review

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Schultz, V.

    1975-01-01

    Since the first atomic explosion, 16 July 1945 at the Trinity Site in south-central New Mexico, the impact of ionizing radiation on bird populations has been of concern to a few individuals. The proliferation of nuclear power plants has increased public concern as to possible deleterious effects of nuclear power plant operation on resident and migratory bird populations. Literature involving wild birds and ionizing radiation is not readily available, and only a few studies have been anywhere near comprehensive, with most effort directed towards monitoring radionuclide concentration in birds. The objective of the paper is to document the literature on wild birds and ionizing radiation including a brief description of pertinent papers

  9. Ionizing radiation effects on floating gates

    International Nuclear Information System (INIS)

    Cellere, G.; Paccagnella, A.; Visconti, A.; Bonanomi, M.

    2004-01-01

    Floating gate (FG) memories, and in particular Flash, are the dominant among modern nonvolatile memory technologies. Their performance under ionizing radiation was traditionally studied for the use in space, but has become of general interest in recent years. We are showing results on the charge loss from programmed FG arrays after 10 keV x-rays exposure. Exposure to ionizing radiation results in progressive discharge of the FG. More advanced devices, featuring smaller FG, are less sensitive to ionizing radiation that older ones. The reason is identified in the photoemission of electrons from FG, since at high doses it dominates over charge loss deriving from electron/hole pairs generation in the oxides

  10. Review Ionizing Radiation In The Environment

    International Nuclear Information System (INIS)

    Hassan, K.M.

    2007-01-01

    Our environment is pervaded by ionizing radiation of natural origin including terrestrial radionuclides and extra-terrestrial sources but man's activities can increase radiation levels by acting on natural sources or by producing artificial radionuclides. The energy released by radionuclides can be measured. The amount of energy generated in our bodies from the radioactive decay of within- body radionuclides is called internal dose. External dose results from gamma rays emitted by terrestrial sources such as the ground, building materials and from extraterrestrial sources. The major contributors to human exposure are radon and its daughters in the air that we breathe. Ionizing radiation can penetrate into matter and thus, causing damage by interacting with the atoms and molecules of the medium. If the medium is living tissue, damage to cells can take place. Very large doses of radiation will result in serious tissue, damage that may lead to death of the organism. Lower doses may also be harmful and do not cause the immediate damage of high doses but instead act to increase the likelihood of developing cancer. So, exposure to ionizing radiation can have health consequences, which is why we are concerned about and, to a large extent, is why this review paper was written. Exposure to ionizing radiation should be kept as minimum as practically possible. People are advised to monitor the concentrations of radon in their houses. In addition, the levels of radionuclides in drinking water should also be monitored in accordance with the guidelines used in the USA

  11. Management in the protection from ionizing radiation

    International Nuclear Information System (INIS)

    Radunovic, Miodrag; Nikolic, Krsto; Rakic, Goran

    2008-01-01

    There are numerous types and forms of endangering working and living environment, ranging from natural disasters to nuclear accidents. Challenges of the New Age determined that most of the countries reviewed its strategic decisions in the system of protection from ionizing radiation and nuclear safety and defined in a new way the threats, which could considerably imperil health of the population and national interests as well. Excessive radiation of the population became a serious and actual problem in the era of increasingly mass application of ionizing radiation, especially in medicine. The goal of this work is to reduce the risk through using knowledge and existing experiences, in particular when it comes to ionizing radiation in medicine. Optimization of the protection in radiology actually means an effort to find the compromise between quality information provided by diagnostics procedure and quality effects of therapy procedure on one side and dose of radiation received by patients on the other. Criteria for the quality management in the protection from ionizing radiation used in diagnostic radiology was given by the European Commission: European Guidelines on Quality Criteria for Diagnostic Radiographic Images, EUR, 16260. (author)

  12. The A.R.L. whole body monitor

    International Nuclear Information System (INIS)

    Kotler, L.H.

    1990-02-01

    This report describes a Whole Body Monitor based on four uncollimated NaI(Tl) detectors in a static geometry in use at the Australian Radiation Laboratory. A detailed discussion is presented on the methodology used to estimate the detector efficiency for any arbitrary source whose shape can be described analytically. This procedure is valid for photon emitters in the range 120 keV to 2.6 MeV. By the use of simple geometric models, this approach is applied to the whole body as well as for certain internal organs. For lower photon energies, a discussion of methods using NaI(Tl) detectors to detect in-vivo sources by analysis of pulse-height spectra, is presented. In addition, the application of the Whole Body Monitor in the study of human calcium metabolism, using the tracer 47 Ca is described. Results of measurments on the natural activity of possible candidates for components of the concrete base of the Whole Body Monitor are presented. 74 refs., 22 tabs., 40 figs

  13. Detection of metastatic thyroid carcinoma through whole body counting

    International Nuclear Information System (INIS)

    Novenario, H.S.; Pascacio, F.M.; Cruz, Benjamin de la; Anden, A.B.

    Whole body counters are not only used in measuring radioactivity in the body for radiation protection purposes but also in the measurement of iron absorption, body potassium and cesium, chronic blood loss, and also in the determination of the effectiveness of surgery, thyroid hormone and radioactive iodine therapy in thyroid carcinoma. This report deals with our experience in the use of a shadow-shield whole body counter in the determination of I-131 uptake by metastatic lesions of cancer of thyroid after total thyroidectomy and ablation therapy with I-131. This study was undertaken jointly by the Department of Nuclear Medicine, Veterans Memorial Hospital and the Biomedical Research Division of the Philippine Atomic Energy Commission. Preliminary results indicate that the 22 patients who underwent whole body counting after total thyroidectomy I-131 ablation therapy, 9 patients had elevated percentage retention of I-131, 10 patients with normal values and 3 patients with rising values. Foci of I-131 concentration in those with elevated and rising percentage concentration values were seen in the thyroidal bed scintiscans, while the 10 patients with normal values had negative scintiscans. The results of our observations confirm the results obtained by other workers abroad. Our preliminary results indicate that with the use of whole body counters a sensitive method of assessing whether functioning metastatic lesion of cancer of the thyroid still exist after total thyroidectomy and I-131 ablation therapy can be provided. (author)

  14. Recovery after whole-body radiation exposure

    International Nuclear Information System (INIS)

    Sattler, E.L.

    A recovery formula recommended by commissions III and IV of the Federal Ministry of Internal Affairs was tested on goldhamsters. Two test schemes were studied: in the first one recovery took place after irradiating 5 times ''equivalent'' to 100 R at a distance of 20 d with a combined residual damage ''equivalent'' to 100 R, in the second one with ''equivalent'' doses of up to the residual damage of 100 R at a distance of 11 d, which corresponds to a particularly bad recovery phase of the hamster. In both events the residual damage proved to be below the anticipated values. It is being discussed whether these results can be transferred to humans. (MG) [de

  15. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Ionizing radiation of cosmic or terrestrial origin is part of the environment in which all living things have evolved since the creation of the universe. The artificial radioactivity generated by medical diagnostic and treatment techniques, some industrial activities, radioactive fallout, etc. has now been added to this natural radioactivity. This article reviews the biological effects of the low doses of ionizing radiation to which the population is thus exposed. Their carcinogenic risk cannot simply be extrapolated from what we know about high-dose exposure. (author)

  16. Ionizing radiation decreases human cancer mortality rates

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1997-01-01

    Information from nine studies with exposed nuclear workers and military observers of atmospheric bomb explosions confirms the results from animal studies which showed that low doses of ionizing radiation are beneficial. The usual ''healthy worker effect'' was eliminated by using carefully selected control populations. The results from 13 million person-years show the cancer mortality rate of exposed persons is only 65.6% that of carefully selected unexposed controls. This overwhelming evidence makes it politically untenable and morally wrong to withhold public health benefits of low dose irradiation. Safe supplementation of ionizing radiation should become a public health service. (author)

  17. The situation of knowledge on ionizing radiation

    International Nuclear Information System (INIS)

    2005-01-01

    Occupational exposure to ionizing radiation occurs: during sources use, during the use of matter including radioactivity used for other properties than their radioactivity, in presence of natural radioactivity on the working area, following an accident during an industrial process. to protect man taken into account the incurred risk, goes by the risk evaluation, in taking into account the industrial process and exposure conditions of persons, then by the application of prevention measures that aim to control the contamination risks by radioactive matters as well as the exposure risks to ionizing radiations. (N.C.)

  18. Ionizing radiations and blood vessels

    International Nuclear Information System (INIS)

    Vorob'ev, E.I.; Stepanov, R.P.

    1985-01-01

    Data on phenomeology of radiation changes of blood vessels are systemized and the authors' experience is generalyzed. A critical analysis of modern conceptions on processes resulting in vessel structure damage after irradiation, is given. Special attention is paid to reparation and compensation of radiation injury of vessels

  19. Fast Atom Ionization in Strong Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2018-05-01

    The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

  20. Cardiovascular risks associated with low dose ionizing particle radiation.

    Directory of Open Access Journals (Sweden)

    Xinhua Yan

    Full Text Available Previous epidemiologic data demonstrate that cardiovascular (CV morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ((1H; 0.5 Gy, 1 GeV and iron ion ((56Fe; 0.15 Gy, 1GeV/nucleon irradiation with and without an acute myocardial ischemia (AMI event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in (56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, (56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.

  1. Bio-dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Kristova, R.; Stainova, A.; Deleva, S.; Popova, L.; Georgieva, D.

    2013-01-01

    Full text: Introduction: The impact of ionizing radiation in medical, occupational and accidental human exposure leads to adverse side effects such as increased mortality and carcinogenesis. Information about the level of absorbed dose is important for risk assessment and for implementation of appropriate therapy. In most cases of actual or suspected exposure to ionizing radiation biological dosimetry is the only way to assess the absorbed dose. What you will learn: In this work we discuss the methods for biodosimetry and technological developments in their application in various emergency situations. The application of biological dosimetry and assessment of the influence of external factors in the conduct of epidemiological studies of radiation effects in protracted low-dose ionizing radiation on humans is presented. Discussion: The results of cytogenetic analysis and biological evaluation of absorbed dose based on the analysis of dicentrics in peripheral blood lymphocytes of five people injured in a severe radiation accident in Bulgaria in 2011 are presented. The assessed individual doses of the injured persons are in the range of 1.2 to 5,2 Gy acute homogeneous irradiation and are in line with the estimates of international experts. Conclusion: An algorithm to conduct a biological assessment of the dose in limited radiation accidents and in large scale radiation accidents with large number irradiated or suspected for exposure persons is proposed

  2. Effect of Hippophae leaves on neurotransmitters and hematological parameters in whole body irradiated rats

    International Nuclear Information System (INIS)

    Gupta, Vanita; Prasad, Jagdish; Madhu Bala

    2012-01-01

    Till date no approved radio-protective agent is available world over. WR-2721 had severe side effects and was behaviourally toxic even at sub-lethal doses of ionizing radiation. Seabuckthorn (Hippophae rhamnoides L.) is known for its nutraceutical and therapeutic values. Our studies demonstrated that treatment with leaves of H. rhamnoides rendered > 90% whole body radioprotection in 60 Co-g-irradiated (10 Gy) mice population in comparison to 100% death in non-Hippophae treated irradiated (10 Gy) mice population. Our studies also demonstrated that treatment with leaves of H. rhamnoides prevented conditioned taste aversion (CTA) in irradiated (2 Gy) Sprague-Dawley rats. The present study was planned to evaluate the effects of aqueous extract of Hippophae leaves on changes in levels of neurotransmitters ((acetylcholine esterase (AChE) and dopamine (DA)) in plasma and brain, haematological parameters in blood/plasma; and brain histology in Sprague-Dawley rats showing CTA after 60 Co-g-irradiation (2 Gy). The results showed that whole body 60 Co-g-irradiation (2 Gy) (i) increased the levels of Ach, Eepinephrine (E) and norepinephrine (NE); oxidative stress (MDA and NO), and (ii) decreased the levels of DA; WBC counts and RBC counts and antioxidants (GSH), in comparison to untreated control. Treatment with 12 mg/kg b.w. drug concentration, prior to irradiation significantly (p<0.05) (i) decreased the levels of AChE, E and NE, and MDA and NO levels in plasma and brain, and (ii) increased the WBC counts; RBC counts and levels of antioxidants (GSH), in comparison to radiation control group. Histological changes in brain were also recorded. The results demonstrated that Hippophae leaves extract had neuro-protective and reduced oxidative stress in brain of whole body irradiated mice and could be, thereby contributing to behavioural protection. (author)

  3. Regulations for ionizing radiation protection

    International Nuclear Information System (INIS)

    1999-01-01

    General regulations and principles of radiation protection and safety are presented. In addition, the regulations for licensing and occupational and medical exposure as well as for safe transport of radioactive materials and wastes are given

  4. Ionizing radiations in food industry

    International Nuclear Information System (INIS)

    Adamo, M.; Tata, A.

    1999-01-01

    Foodstuffs treatment by ionization is able to produce both a shelf-life extension and/or a food borne diseases control through the pathogenic population reduction/elimination. The main process goal is to ensure the hygienic quality and the wholesomeness of products to be marketed, in order to limit food borne diseases originated mainly through the cross contamination process. In fact several products may contain pathogenic agents or bacteria (e.g. Salmonella and Campylbacter in poultry meat), whose associated pathologies are world-wide increasing. At present, over 40 countries provide clearances for the treatment of about 45 different types of foodstuffs and in over 20 of them the ionizing process is already industrially utilized for spices, poultry, shrimps and vegetables. As it refers to process economic aspects, market researches have shown cost figures ranging from few tens to some hundreds Lit/kg, depending on the dose to products. The costs are competitive with alternative treatments, beyond the recovery of economic productivity reduction caused by food borne diseases

  5. Occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1985-01-01

    An overview of occupational exposure is presented. Concepts and quantities used for radiation protection are explained as well as the ICRP system of dose limitation. The risks correlated to the limits are discussed. However, the actual exposure are often much lower than the limits and the average risk in radiation work is comparable with the average risk in other safe occupations. Actual exposures in various occupations are presented and discussed. (author)

  6. Applications of ionizing radiation for monuments conservation

    International Nuclear Information System (INIS)

    Chyzewski, M.; Galant, S.; Perkowski, J.

    1996-01-01

    Ionizing radiation can be used for conservation of monuments and old art objects. The irradiation of wooden and cellulose objects for disinfestation has been described. The irradiation conditions and lethal doses in respect to different species have been discussed. The different technique is the radiation consolidation of historical objects made of various materials. The method consists in radiation polymerization. The object undergoing conservation is saturated with monomer prior irradiation. The radiation polymerization results in consolidation of the object pieces and reinforcement of its material. 3 figs

  7. Genetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Childs, J.D.

    1980-01-01

    The genetic material in living organisms is susceptible to damage from a wide variety of causes including radiation exposure. Most of this damage is repaired by the organism; the residual damage and damage which is not correctly repaired can lead to genetic changes such as mutations. In lower organisms, most offspring carry an unaltered copy of the genetic information that was present in the parental organism, most of the genetic changes which do occur are not caused by natural background radiation, and the increase in frequency of genetic changes after irradiation at low-dose rates is directly proportional to total radiation dose. The same principles appear to be valid in mammals and other higher organisms. About 105 out of every 1000 humans born suffer from some genetic or partly-genetic condition requiring medical attention at some time. It has been estimated that approximately 1 person in every 2000 born carry a deleterious genetic mutation that was caused by the continued exposure of many generations of our ancestors to natural background radiation. On the same basis, it is predicted that the incidence of genetic diseases would be increased to 106 per 1000 in the children and grandchildren of radiation workers who were exposed to 1 rem per year commencing at age 18. However, there was no detectable change in the health and fitness of mice whose male ancestors were repeatedly exposed to high radiation doses up to 900 rem per generation. (auth)

  8. The toxic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Draghita Payet, A.C.

    2006-06-01

    The sources of radiations to which the human body is subjected are of natural or artificial origin and the irradiation of the human body can take place either by internal or external way. The ionizing radiations act at several levels of the human body, the main thing being the molecule of DNA. The ionizing radiations have no specificity, the effects on the human body can be: somatic, genetic or hereditary, teratogen. In the case of a human being irradiation, we proceed to the diagnosis and to the treatment of the irradiated person, however, to decrease the incidence of injuries we use the radiation protection. The treatment if necessary will be established according to the irradiation type. (N.C.)

  9. Radiobiology: Biologic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Held, K.D.

    1987-01-01

    The biologic effects after exposure to ionizing radiation, such as cell death or tissue injury, result from a chain of complex physical, chemical, metabolic, and histologic events. The time scale of these radiation actions spans many orders of magnitude. The physical absorption of ionizing radiation occurs in about 10 -18 s, while late carcinogenic and genetic effects are expressed years or even generations later. Collectively, these effects form the science of radiobiology. Many of the concepts discussed in this chapter have been developed through the study of effects generated in tissues by external radiation sources, but they apply generally and often specifically to internally distributed radiopharmaceuticals which form the central topic of this book

  10. Quantitation of repaglinide and metabolites in mouse whole-body thin tissue sections using droplet-based liquid microjunction surface sampling-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J; Kertesz, Vilmos; Gan, Jinping

    2016-03-25

    Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites were studied. Major organs (brain, lung, liver, kidney and muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed the same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. In addition, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Ionizing radiation and photosynthetic ability of cyanobacteria

    International Nuclear Information System (INIS)

    Agarwal, Rachna; Sainis, Jayashree K.

    2006-01-01

    Unicellular photoautotrophic cyanobacteria, Anacystis nidulans when exposed to lethal dose of 1.5 kGy of 60 Co γ- radiation (D 10 = 257.32 Gy) were as effective photosynthetical as unirradiated controls immediately after irradiation although level of ROS was higher by several magnitudes in these irradiated cells. The results suggested the preservation of the functional integrity of thylakoids even after exposure to lethal dose of ionizing radiation. (author)

  12. Protection against Ionizing Radiation, No. 1420

    International Nuclear Information System (INIS)

    1978-01-01

    This publication is a compilation of national legislative and regulatory provisions on radiation protection in force on 15 November 1978. In addition to the in extenso texts on the subject, only the relevant provisions in laws and regulations with a more general scope have been reproduced. This comprehensive compilation expands and updates a previous collection by the Official Gazette of the French Republic which covered only decrees and orders on the protection of workers against the hazards of ionizing radiation. (NEA) [fr

  13. Prevention of ionizing radiation injuries

    International Nuclear Information System (INIS)

    Suzuki, Masashi

    1976-01-01

    In the first age (1895 - 1940), radiation injuries of skin (75% of death caused by RI injury) and chronic radiation injury of heamatopoietic organs (almost remains) appeared in radiologist and people engaged in RI treatment for medical use, and Ra poisoning appeared in workers who treated aluminous paint. As prevention of radiation injuries in this age, measurement of radiation dose, shelter effect and finding of injuries were studied, and internal radiation allowed level was determined. From 1942 to 1960, acute RI injuries due to exposure of large amount of RI by an accident and secondary leukemia appeared to workers of atomic-bomb industries and researcher of atomic energy. U and Pu poisoning accompanied with development of nuclear fuel industry appeared. This expanded industrial hygiene of this age together with epidemiological data of atomic-bomb exposed people. From 1960 onward, it is an age of industry for peaceful use of atomic energy, and manifestation of various kinds of delayed injuries, especially malignant tumor due to RI exposure, is recognized. Labourer has many opportunity to encounter dangerously with pollution and injuries by RI, and regional examination of RI enterprise and countermeasure to decrease exposure dose were mentioned as future theme from a viewpoint of exposure dose of nation. (Kanao, N.)

  14. {sup 11}C-ORM-13070, a novel PET ligand for brain α{sub 2C}-adrenoceptors: radiometabolism, plasma pharmacokinetics, whole-body distribution and radiation dosimetry in healthy men

    Energy Technology Data Exchange (ETDEWEB)

    Luoto, Pauliina; Oikonen, Vesa; Arponen, Eveliina; Helin, Semi; Virta, Jere; Virtanen, Kirsi; Roivainen, Anne [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Suilamo, Sami [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Turku University Hospital, Department of Oncology and Radiotherapy, Turku (Finland); Herttuainen, Jukka; Hietamaeki, Johanna; Holopainen, Aila; Rouru, Juha; Sallinen, Jukka [Orion Pharma, Espoo and Turku (Finland); Kailajaervi, Marita [GE Healthcare, Turku Imanet, Turku (Finland); Peltonen, Juha M.; Scheinin, Mika; Volanen, Iina [University of Turku, CRST, Turku (Finland); Rinne, Juha O. [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); University of Turku, CRST, Turku (Finland); TYKSLAB, Unit of Clinical Pharmacology, Turku (Finland); University of Turku and Turku University Hospital, Division of Clinical Neurosciences, Turku (Finland)

    2014-10-15

    {sup 11}C-labelled 1-[(S)-1-(2,3-dihydrobenzo[1,2]dioxin-2-yl)methyl] -4-(3-methoxy-methylpyridin-2- yl)-piperazine ({sup 11}C-ORM-13070) is a novel PET tracer for imaging of α{sub 2C}-adrenoceptors in the human brain. Brain α{sub 2C}-adrenoceptors may be therapeutic targets in several neuropsychiatric disorders, including depression, schizophrenia and Alzheimer's disease. To validate the use of {sup 11}C-ORM-13070 in humans, we investigated its radiometabolism, pharmacokinetics, whole-body distribution and radiation dose. Radiometabolism was studied in a test-retest setting in six healthy men. After intravenous injection of {sup 11}C-ORM-13070, blood samples were drawn over 60 min. Plasma samples were analysed by radio-HPLC for intact tracer and its radioactive metabolites. Metabolite-corrected plasma time-activity curves were used for calculation of pharmacokinetics. In a separate group of 12 healthy men, the whole-body distribution of {sup 11}C-ORM-13070 and radiation exposure were investigated by dynamic PET/CT imaging without blood sampling. Two radioactive metabolites of {sup 11}C-ORM-13070 were detected in human arterial plasma. The proportion of unchanged {sup 11}C-ORM-13070 decreased from 81 ± 4 % of total radioactivity at 4 min after tracer injection to 23 ± 4 % at 60 min. At least one of the radioactive metabolites penetrated into red blood cells, while the parent tracer remained in plasma. The apparent elimination rate constant and corresponding half-life of unchanged {sup 11}C-ORM-13070 in arterial plasma were 0.0117 ± 0.0056 min{sup -1} and 73.6 ± 35.8 min, respectively. The organs with the highest absorbed doses were the liver (12 μSv/MBq), gallbladder wall (12 μSv/MBq) and pancreas (9.1 μSv/MBq). The mean effective dose was 3.9 μSv/MBq, with a range of 3.6 - 4.2 μSv/MBq. {sup 11}C-ORM-13070 was rapidly metabolized in human subjects after intravenous injection. The effective radiation dose of {sup 11}C-ORM-13070 was in the same range

  15. Roles of ionizing radiation in cell transformation

    International Nuclear Information System (INIS)

    Tobias, C.A.; Albright, N.W.; Yang, T.C.

    1983-07-01

    Earlier the authors described a repair misrepair model (RMR-I) which is applicable for radiations of low LET, e.g., x rays and gamma rays. RMR-II was described later. Here is introduced a mathematical modification of the RMR model, RMR-III, which is intended to describe lethal effects caused by heavily ionizing tracks. 31 references, 4 figures

  16. Alanine-polymer dosemeter of ionizing radiation

    International Nuclear Information System (INIS)

    Tomasinski, Z.; Mirkowski, K.; Panta, P.; Stachowicz, W.

    1994-01-01

    The method of chemical preparation of alanine-copolymer of ethylene and vinyl acetate has been worked out. The material has been in a form of rods. The content of alanine has not exceeded 30%. The ESR signal of alanine radicals has been detected after exposition to ionizing radiation. The dose-response relationship has been presented

  17. Preservation of almonds by ionizing radiation

    International Nuclear Information System (INIS)

    Trabelsi, M.

    1997-01-01

    During two months, a series of experiments was carried out to highlight the effects of preservation by ionizing radiation of a variety of Tunisian almonds. This technique was proved correct for doses less than 1 KGy. Nevertheless, this technique may be harmful to proteins.(author)

  18. Composite scintillators for detection of ionizing radiation

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  19. Ionizing radiation in the education of medicine

    International Nuclear Information System (INIS)

    Ivanova, N.

    2016-01-01

    Physics is a fundamental science that finds its applications in all areas of our lives. Its application in modern medicine is undeniable. In today’s medical practice special attention is dedicated to the use of ionizing radiation. The wide range of modern science and technology offers enormous possibilities for creation and implementation of new equipment using adequate doses of ionizing radiation. For accurate medical diagnostics and effective treatment of patients, this type of equipment must provide the necessary information to the physicians. On the other hand, the physicians should possess enough knowledge in the relative field of medicine. This paper contains information about the knowledge communicated to the students of the graduate program Medical Physics and Biophysics in the discipline Medicine in the first year of graduate study at the Medical University “Prof. Dr. Paraskev Stoyanov” of Varna. Firstly, we discuss the topics in the lectures of these two disciplines, concerning knowledge about ionizing radiation. Secondly, the respective laboratory exercises are described that illustrate the lectures in the graduate programs Medical Physics and Biophysics. Keywords: ionizing radiation, education, medicine, medical physics, biophysics

  20. Radiation, ionization, and detection in nuclear medicine

    International Nuclear Information System (INIS)

    Gupta, Tapan K.

    2013-01-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  1. Radiation, ionization, and detection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tapan K. [Radiation Monitoring Devices Research, Nuclear Medicine, Watertown, MA (United States)

    2013-08-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  2. Value of 100 kVp scan with sinogram-affirmed iterative reconstruction algorithm on a single-source CT system during whole-body CT for radiation and contrast medium dose reduction: an intra-individual feasibility study.

    Science.gov (United States)

    Nagayama, Y; Nakaura, T; Oda, S; Tsuji, A; Urata, J; Furusawa, M; Tanoue, S; Utsunomiya, D; Yamashita, Y

    2018-02-01

    To perform an intra-individual investigation of the usefulness of a contrast medium (CM) and radiation dose-reduction protocol using single-source computed tomography (CT) combined with 100 kVp and sinogram-affirmed iterative reconstruction (SAFIRE) for whole-body CT (WBCT; chest-abdomen-pelvis CT) in oncology patients. Forty-three oncology patients who had undergone WBCT under both 120 and 100 kVp protocols at different time points (mean interscan intervals: 98 days) were included retrospectively. The CM doses for the 120 and 100 kVp protocols were 600 and 480 mg iodine/kg, respectively; 120 kVp images were reconstructed with filtered back-projection (FBP), whereas 100 kVp images were reconstructed with FBP (100 kVp-F) and the SAFIRE (100 kVp-S). The size-specific dose estimate (SSDE), iodine load and image quality of each protocol were compared. The SSDE and iodine load of 100 kVp protocol were 34% and 21%, respectively, lower than of 120 kVp protocol (SSDE: 10.6±1.1 versus 16.1±1.8 mGy; iodine load: 24.8±4versus 31.5±5.5 g iodine, p<0.01). Contrast enhancement, objective image noise, contrast-to-noise-ratio, and visual score of 100 kVp-S were similar to or better than of 120 kVp protocol. Compared with the 120 kVp protocol, the combined use of 100 kVp and SAFIRE in WBCT for oncology assessment with an SSCT facilitated substantial reduction in the CM and radiation dose while maintaining image quality. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. Whole-body biodistribution and radiation dosimetry in monkeys and humans of the phosphodiesterase 4 radioligand [11C](R)-rolipram: comparison of two-dimensional planar, bisected and quadrisected image analyses

    International Nuclear Information System (INIS)

    Sprague, David R.; Fujita, Masahiro; Ryu, Yong Hoon; Liow, Jeih-San; Pike, Victor W.; Innis, Robert B.

    2008-01-01

    Introduction: [ 11 C](R)-Rolipram is a selective radioligand for positron emission tomography (PET) imaging of phosphodiesterase 4, an enzyme that metabolizes 3',5'-cyclic adenosine monophosphate. The aim of this study was to estimate the human radiation absorbed dose of the radioligand based on its biodistribution in both monkeys and humans. Methods: Whole-body PET images were acquired for 2 h after injecting [ 11 C](R)-rolipram in eight healthy humans and three monkeys. The simple method of using a single two-dimensional (2D) planar image was compared to more time-consuming methods that used two (bisected) or four (quadrisected) tomographic images in the anteroposterior direction. Results: Effective dose was 4.8 μGy/MBq based on 2D planar images. The effective dose was only slightly lower by 1% and 5% using the bisected and quadrisected images, respectively. Nevertheless, the two tomographic methods may have more accurately estimated the exposure of some organs (e.g., kidneys) that are asymmetrically located in the body or have radioactivity that appears to overlap on 2D planar images. Monkeys had a different biodistribution pattern compared to humans (e.g., greater urinary excretion) such that their data overestimated the effective dose in humans by 40%. Conclusions: The effective dose of [ 11 C](R)-rolipram was modest and comparable to that of other 11 C-labeled radioligands. The simple and far less time-consuming 2D planar method provided accurate and somewhat more conservative estimates of effective dose than the two tomographic methods. Although monkeys are commonly used to estimate human radiation exposures, their data gave a considerable overestimation for this radioligand

  4. [Oncogenic action of ionizing radiation

    International Nuclear Information System (INIS)

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs

  5. Ionizing radiations and blood vessels

    International Nuclear Information System (INIS)

    Vorob'ev, E.I.; Stepanov, R.P.

    1985-01-01

    Data on phenomenology of radiation-induced changes in blood vessels are systematized and authors' experience is generalized. Modern concepts about processes leading to vessel structure injury after irradiation is critically analyzed. Special attention is paid to reparation and compensation of X-ray vessel injury, consideration of which is not yet sufficiently elucidated in literature

  6. Application of ionizing radiation to preservation of mushrooms

    International Nuclear Information System (INIS)

    Smierzchalska, K.; Gubrynowicz, E.

    1979-01-01

    The influence of ionizing radiation on prolongation of preservation time and quality of mushrooms is discussed. Some numerical data are cited. The influence of ionizing radiation on growth rate and physiological processes is also presented. (A.S.)

  7. Ionizing radiation in earth's atmosphere and in space near earth.

    Science.gov (United States)

    2011-05-01

    The Civil Aerospace Medical Institute of the FAA is charged with identifying health hazards in air travel and in : commercial human space travel. This report addresses one of these hazards ionizing radiation. : Ionizing radiation is a subatomic p...

  8. Cytotoxic Effects of Ionizing Radiation and Chlorpyrifos on White Rats

    International Nuclear Information System (INIS)

    El-Bahkery, A.M.L.H.

    2014-01-01

    The hazard of accidental exposure to ionizing radiation (IR) and/or neurotoxic insecticides like the organophosphorus insecticide chlorpyrifos (CPF) represent series health problem for human. In the present work, the cytotoxic effects of ionizing radiation and chlorpyrifos on rats were studied where animals were under glutathione (GSH) depletion. Animals were pre-treated with single dose of Buthionine Sulfoximine (BSO) (200 mg/kg body weight, by oral intubation), then treated with high dose of CPF (30 mg/kg body weight) and or exposure to IR (single dose of 6 Gy whole body gamma ray) one hour after BSO treatment. Another groups of animals pertreated with N-acetyl cystiene (NAC) one hour before treated with CPF and/or IR. After 24 hours blood sample, liver and brain were taken and used for estimate the GSH level and the activities of glutathione-stransferase (GST), glutathione reductase (GR), acetyl cholinesterase (AChE), carboxyl esterase (CE), paraoxonase (PON) and arylesterase (AE). Also, native PAGE electrophoresis was undertaken for separating the CE and PON isozymes in plasma, liver and brain. The results indicated that CPF produced no change in GSH level. Whereas, treatment with either BSO or IR, produced decrease in GSH level. NAC restored GSH level near the control level in all treated groups CPF had no effect on GST activity and pretreatment with either BSO or NAC increased GST activity in CPF treated groups. Also, exposure to IR had no effect on GST activity. Whereas, IR in combination with CPF and/or NAC and/or BSO produced inhibition in plasma GST activity and increased liver GST activity. In addition, both CPF and IR had no effect on the activity of GR. Whereas, pre-treatment with either BSO or NAC produced inhibition in plasma and liver GR activity in CPF treated groups. No change had observed in the IR exposed groups. Treatment with CPF inhibited AChE activity in plasma, liver and brain. Whereas, exposure to IR inhibited AChE activity in brain only

  9. Radiation biology. Chapter 20

    Energy Technology Data Exchange (ETDEWEB)

    Wondergem, J. [International Atomic Energy Agency, Vienna (Austria)

    2014-09-15

    Radiation biology (radiobiology) is the study of the action of ionizing radiations on living matter. This chapter gives an overview of the biological effects of ionizing radiation and discusses the physical, chemical and biological variables that affect dose response at the cellular, tissue and whole body levels at doses and dose rates relevant to diagnostic radiology.

  10. Accumulation of lipid peroxidation products in eye structures of mice subjected to whole-body X-irradiation

    International Nuclear Information System (INIS)

    Sakina, N.L.; Dontsov, A.E.; Afanas'ev, G.G.; Ostrovskij, M.A.; Pelevina, I.I.

    1990-01-01

    In studying the effect of whole-body X-irradiation on the accumulation of lipid peroxidation products (conjugated dienes, TBA-active products, and Sciff bases) in retina and retinal pigmented epithelium of pigmented and nonpigmented mice it was shown that irradiation of dark-pigmented mice does not cause even a slight accumulation of lipid peroxidation products as compared to that in the controls. Albino mice exhibited a marked increase in the level of lipid peroxidation products which was manifested soon after irradiation and persisted for at least 3 months after irradiation. Melanine is suggested to participate in protecting eye structures against pro-oxidizing action of ionizing radiation

  11. Detection and measurement of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    All detection or measurement of radiation rests in the possibility of recognizing the interactions of radiation with matter. When radiation passes through any kind of material medium, all or a portion of its energy is transferred to this medium. This transferred energy produces an effect in the medium. In principle, the detection of radiation is based on the appearance and the observation of this effect. In theory, all of the effects produced by radiation may be used in detecting it: in practice, the effects most commonly employed are: (1) ionization of gases (gas detectors), or of some chemical substance which is transformed by radiation (photographic or chemical dosimeters); (2) excitations in scintillators or semiconductors (scintillation counters, semiconductor counters); (3) creation of structural defects through the passage of radiation (transparent thermoluminescent and radioluminescent detectors); and (4) raising of the temperature (calorimeters). This study evaluates in detail, instruments based on the ionization of gases and the production of luminescence. In addition, the authors summarize instruments which depend on other forms of interaction, used in radiation medicine and hygiene (radiology, nuclear medicine)

  12. Comparison of whole-body-imaging methods

    International Nuclear Information System (INIS)

    Rollo, F.D.; Hoffer, P.

    1977-01-01

    Currently there are four different devices that have found clinical utility in whole-body imaging. These are the rectilinear scanner, the multicrystal whole-body scanner, the Anger-type camera with a whole-body-imaging table, and the tomoscanner. In this text, the basic theory of operation and a discussion of the advantages and disadvantages in whole-body imaging is presented for each device. When applicable, a comparative assessment of the various devices is also presented. As with all else in life, there is no simple answer to the question ''which total body imaging device is best.'' Institutions with a very heavy total-body-imaging load may prefer to use an already available dual-headed rectilinear scanner system for these studies, rather than invest in a new instrument. Institutions with moderate total-body-imaging loads may wish to invest in moving table or moving camera devices which make total body imaging more convenient but retain the basic flexibility of the camera. The large-field Anger camera with or without motion offers another flexible option to these institutions. The laboratory with a very heavy total body imaging load may select efficiency over flexibility, thereby freeing up other instruments for additional studies. Finally, reliability as well as availability and quality of local service must be considered. After all, design features of an instrument become irrelevant when it is broken down and awaiting repair

  13. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  14. To manage the ionizing radiations risks

    International Nuclear Information System (INIS)

    Metivier, H.; Romerio, F.

    2000-01-01

    Mister Romerio's work tackles the problem of controversy revealed by the experts in the field of estimation and management of ionizing radiations risks. The author describes the three paradigms at the base of the debate: the relationship without threshold (typified by the ICRP and its adepts), these ones that think that low doses risks are overestimated ( Medicine Academia for example) or that ones that believe that dose limits are too severe and induce unwarranted costs; then that ones that think that these risks are under-estimated and limits should be more reduced, even stop these practices that lead to public exposure to ionizing radiations. The author details the uncertainties about the risk estimations, refreshes the knowledge in radiation protection with the explanations of the different paradigms. At the end a table summarize the positions of the three paradigms

  15. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  16. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2004-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  17. Exposure to ionizing radiation induced persistent gene expression changes in mouse mammary gland

    Data.gov (United States)

    National Aeronautics and Space Administration — Six to eight week old female C57BL/6J mice were exposed to 2 Gy of whole body xce xb3 radiation and mammary glands were surgically removed 2-month after radiation....

  18. The Ionizing Radiation Environment on the Moon

    Science.gov (United States)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The ionizing radiation environment on the moon that contributes to the radiation hazard for astronauts consists of galactic cosmic rays, solar energetic particles and albedo particles from the lunar surface. We will present calculations of the absorbed dose and the dose equivalent to various organs in this environment during quiet times and during large solar particle events. We will evaluate the contribution of solar particles other than protons and the contributions of the various forms of albedo. We will use the results to determine which particle fluxes must be known in order to estimate the radiation hazard.

  19. Measurements of whole-body radioactivity in the UK population

    International Nuclear Information System (INIS)

    Fenwick, J.D.; Boddy, K.; McKenzie, A.L.; Oxby, C.B.

    1992-01-01

    A national survey of whole-body radioactivity was undertaken. A mobile whole-body counter visited collaborating Medical Physics Departments and Hospitals in England and Wales. Data were also obtained from an installed whole-body counter at the West Cumberland Hospital, Whitehaven, and from a control site at Addenbrooke's Hospital, Cambridge. 1657 volunteer members of the public were measured, including 162 children. 36% of volunteers had been measured in a similar survey 2 years earlier, and showed between a two and five fold reduction in body radiocaesium. No radiocaesium was detected in 54% of people measured. Measurements showed a progressive fall over the course of the study, reaching a baseline of 0.3 Bq 137 Cs/gK. In 1989, the additional radiation dose incurred from radiocaesium varied from a maximum of 4.1 μSv in Cumbria to 1.5 μSv in the South East, compared with the average annual radiation dose of 2500 μSv due to all other causes. No other gamma-emitting radionuclides were found. Results are consistent with Chernobyl as the source of the radiocaesium detected. (author)

  20. Development of a low-cost whole body counter

    International Nuclear Information System (INIS)

    Smith, M.H.; Gross, G.P.

    1991-01-01

    This paper documents the construction and calibration of a whole-body counter for the Radiation Safety Office of the Mayo Clinic in Rochester, MN. Changes in the federal regulations may require improved documentation of internal dose for radiation workers. A relatively inexpensive and simple chair-type whole-body counter may suit the needs of many organizations for in vivo assessment of gamma emitting radionuclides. A simple calibration phantom and a spreadsheet computer program were developed in conjunction with the counter. The spreadsheet can be used to calculate an estimate of committed effective dose equivalent based on activity in a subject and data from ICRP Publication 30. Using a count time of 10 minutes, the counter's minimum detectable activity ranged from 370 Bq to 1,110 Bq for 60 Co and 57 Co respectively. Other institutions will be able to assemble whole-body counters at low cost, often from surplus components. The spreadsheet is easily adapted to the needs of any institution and uses current methodology to estimate internal dose

  1. Cataracts induced by microwave and ionizing radiation

    International Nuclear Information System (INIS)

    Lipman, R.M.; Tripathi, B.J.; Tripathi, R.C.

    1988-01-01

    Microwaves most commonly cause anterior and/or posterior subcapsular lenticular opacities in experimental animals and, as shown in epidemiologic studies and case reports, in human subjects. The formation of cataracts seems to be related directly to the power of the microwave and the duration of exposure. The mechanism of cataractogenesis includes deformation of heat-labile enzymes, such as glutathione peroxide, that ordinarily protect lens cell proteins and membrane lipids from oxidative damage. Oxidation of protein sulfhydryl groups and the formation of high-molecular-weight aggregates cause local variations in the orderly structure of the lens cells. An alternative mechanism is thermoelastic expansion through which pressure waves in the aqueous humor cause direct physical damage to the lens cells. Cataracts induced by ionizing radiation (e.g., X-rays and gamma rays) usually are observed in the posterior region of the lens, often in the form of a posterior subcapsular cataract. Increasing the dose of ionizing radiation causes increasing opacification of the lens, which appears after a decreasing latency period. Like cataract formation by microwaves, cataractogenesis induced by ionizing radiation is associated with damage to the lens cell membrane. Another possible mechanism is damage to lens cell DNA, with decreases in the production of protective enzymes and in sulfur-sulfur bond formation, and with altered protein concentrations. Until further definitive conclusions about the mechanisms of microwaves and ionizing radiation induced cataracts are reached, and alternative protective measures are found, one can only recommend mechanical shielding from these radiations to minimize the possibility of development of radiation-induced cataracts. 74 references

  2. Risks from ionizing radiation during pregnancy

    Directory of Open Access Journals (Sweden)

    mehrdad Gholami

    2007-04-01

    Full Text Available Gholami M1, Abedini MR2, Khossravi HR3, Akbari S4 1. Instructor, Department of medical physics, Faculty of medicine, Lorestan University of medical sciences 2. Assistant professor, Department of radiology, Faculty of medicine, Lorestan University of medical sciences 3. Assistant professor, Department of radiation protection, Iranian Atomic Energy Organization 4. Assistant professor, Department of gynecology, Faculty of medicine, Lorestan University of medical sciences Abstract Background: The discovery of the X-ray in November 1895 by the W. C. Roentgen caused the increasing use of x-ray, because of the benefits that patients get from the resultant the diagnosis. Since medical radiation exposure are mainly in artificial radiation sources, immediately after the x- ray discovery, progressive dermatitis and ophthalmic diseases were occurred in the early physicians and physicists. But delay effects were observed approximately 20 years after the x-ray discovery. History: Based on the studies, ionizing radiation is a potential hazard to the developing fetus, avoiding unnecessary radiation exposure to pregnant women is a standard practice in radiology, unless there are important clinical indications. Due to difference in stages of fetus development, using of the current radiation protection standards includes: justification of a practice, optimization of radiation protection procedures and dose limitation to prevent of serious radiation induced conditions is necessary. Conclusion: Conversely the somatic and genetic effects of x-rays, since the X-ray has the benefit effects, special in diagnostic and treatment procedures, there is increasing use of x-ray, so using of the latest radiation protection procedures is necessary. Radiation protection not only is a scientific subject but also is a philosophy, Moral and reasonable. since the ionizing radiation is a potential hazard to the developing fetus, avoiding unnecessary radiation exposure to the pregnant

  3. Ionization versus indirect effects of ionizing radiation on cellular DNA

    International Nuclear Information System (INIS)

    Cadet, Jean; Ravanat, Jean-Luc; Douki, Thierry

    2012-01-01

    Emphasis has been placed in the last decade on the elucidation of the main degradation pathways of isolated DNA mediated by hydroxyl radical (OH) and one-electron oxidation reactions as the result of indirect and direct effects of ionizing radiation respectively. This has led to the isolation and characterization of about 100 oxidized purine and pyrimidine nucleosides if hydroperoxide precursors and diastereomers are included. However, far less information is available on the mechanisms of radiation-induced degradation of bases in cellular DNA mostly due partly to analytical difficulties. It may be reminded that the measurement of oxidized nucleosides and bases in nuclear DNA is still a challenging issue which until recently has been hampered by the use of inappropriate methods such as the GC-MS that have led to overestimated values of the lesions by factors varying between two and three orders of magnitude. At the present, using the accurate and sensitive HPLC/MS/MS assay, 11 single modified nucleosides and bases were found to be generated in cellular DNA upon exposure to gamma rays and heavy ions. This validates several of the OH-mediated oxidation pathways of thymine, guanine and adenine that were previously inferred from model studies. The concomitant decrease in the yields of oxidized bases with the increase in the LET of heavy ions is accounted for by the preponderance of indirect effects in the damaging action of ionizing radiation on DNA. Further evidence for the major role played by .OH was provided by the results of exposure of cells to high intensity 266 nm laser pulses. Under these conditions 8-oxo-7,8-dihydroguanine is mostly produced by biphotonic ionization of DNA nucleobases and subsequent hole migration to guanine bases. It is likely that some of the oxidized bases that have been isolated as single lesions are in fact involved in clustered damage. Interestingly it was recently shown that a single oxidation hit is capable of generating complex

  4. Evaluation of Radiation Dose in Pediatric Whole-Body Dual-Modality 18F-FDG PET/CT Examinations%儿童全身18F-FDG PET/CT辐射剂量评估

    Institute of Scientific and Technical Information of China (English)

    吴震宇; 王辉

    2012-01-01

    Objective To evaluate the radiation dose of children patient in whole-body dual-modality 18F-FDG PET/CT examinations and discuss the possibility of radiation damage. Methods FET/CT studies on 60 children and teen-age youths patient( < 18y) were retrospectively reviewed. The effective dose of FET/CT was the summation of CT and PET dosimetry estimated by the conversion formula with automatic exposure control (AEC) technique. Result The mean dose of an individual CT study was 5. 9 ± 1. 8mSv (range; 2.8 to 10.8 mSv) , of PET study was 7.2 ±2.0mSv(range; 4.5to 12.4 mSv) and of PET/CT study was 13.1 ±2. 9mSv (range; 8.5 to 20.2 mSv). The proportion of dose due to CT scan is 45.2%. The effective dose due to CT scan ascend with age. Div-ice equipped with AEC technique can provide lower dose than fixed energe divice significantly. Conclusion Individual whole-body dual-modality 18F-FDG PET/CT examination equipped with AEC technique provides safety for children.%目的:研究和评估受检儿童在全身PET/CT显像中所受到的辐射剂量,并讨论其可能受到的辐射损伤.方法:选取60例接受全身PET/CT显像儿童患者(<18岁),在自动曝光技术下通过公式估算出CT和PET的全身有效剂量值,将估算结果与国外类似报道结果比较.结果:单次PET/CT显像,受检儿童所受CT有效剂量为(2.8~10.8)mSv,平均(5.9±1.8)mSv;PET有效剂量为(4.5~12.4)mSv,平均(7.2±2.0)mSv;PET/CT总有效剂量为(8.55~20.2)mSv,平均(13.1±2.9)mSv;CT有效剂量占总有效剂量比例为45.2%;年龄越大,CT所导致的辐射剂量也越大;自动曝光技术下儿童全身PET/CT辐射剂量明显低于固定能量PET/CT扫描.结论:配备有AEC技术的PET/CT单次检查所致辐射剂量对受检儿童来说是安全的.

  5. Measurement of indoor background ionizing radiation in some ...

    African Journals Online (AJOL)

    Certain types of building materials are known to be radioactive. Exposure to indoor ionizing radiation like exposure to any other type of ionizing radiation results in critical health challenges. Measurement of the background ionizing radiation profile within the Chemistry Research Laboratory and Physics Laboratory III all of ...

  6. Six categories of ionizing radiation quantities practical in various fields

    International Nuclear Information System (INIS)

    Zheng Junzheng; Zhuo Weihai

    2011-01-01

    This paper is the part of review on the evolvement of the systems for ionizing radiation quantities and units. In the paper, for better understanding and correct use of the relevant quantities of ionizing radiation, the major ionizing radiation quantities in various fields are divided into six categories. (authors)

  7. Measurement of absorbed radiation doses during whole body irradiation for bone marrow transplants using thermoluminescent dosimeters; Verificacao das doses de radiacao absorvidas durante a tecnica de irradiacao de corpo inteiro nos transplantes de medula ossea, por meio de dosimetros termoluminescentes

    Energy Technology Data Exchange (ETDEWEB)

    Giordani, Adelmo Jose; Segreto, Helena Cristina Comodo; Segreto, Roberto Araujo; Medeiros, Regina Bitelli; Oliveira, Jose Salvador R. de [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Setor de Radioterapia]. E-mail: adelmogiordani@ig.com.br

    2004-10-01

    The objective was to evaluate the precision of the absorbed radiation doses in bone marrow transplant therapy during whole body irradiation. Two-hundred CaSO{sub 4}:Dy + teflon tablets were calibrated in air and in 'phantom'. These tablets were randomly selected and divided in groups of five in the patients' body. The dosimetric readings were obtained using a Harshaw 4000A reader. Nine patients had their entire bodies irradiated in parallel and opposite laterals in a cobalt-60 Alcion II model, with a dose rate of 0.80 Gy/min at 80.5 cm, {l_brace}(10 ? 10) cm{sup 2} field. The dosimetry of this unit was performed using a Victoreen 500 dosimeter. For the determination of the mean dose at each point evaluated, the individual values of the tablets calibrated in air or 'phantom' were used, resulting in a build up of 2 mm to superficialize the dose at a distance of 300 cm. In 70% of the patients a variation of less than 5% in the dose was obtained. In 30% of the patients this variation was less than 10%, when values obtained were compared to the values calculated at each point. A mean absorption of 14% was seen in the head, and an increase of 2% of the administered dose was seen in the lungs. In patients with latero-lateral distance greater than 35 cm the variation between the calculated doses and the measured doses reached 30% of the desired dose, without the use of compensation filters. The measured values of the absorbed doses at the various anatomic points compared to the desired doses (theoretic) presented a tolerance of {+-} 10%, considering the existent anatomical differences and when using the individual calibration factors of the tablets. (author)

  8. Medical students' knowledge of ionizing radiation and radiation protection.

    Science.gov (United States)

    Hagi, Sarah K; Khafaji, Mawya A

    2011-05-01

    To assess the knowledge of fourth-year medical students in ionizing radiation, and to study the effect of a 3-hour lecture in correcting their misconceptions. A cohort study was conducted on fourth-year medical students at King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia during the academic year 2009-2010. A 7-question multiple choice test-type questionnaire administered before, and after a 3-hour didactic lecture was used to assess their knowledge. The data was collected from December 2009 to February 2010. The lecture was given to 333 (72%) participants, out of the total of 459 fourth-year medical students. It covered topics in ionizing radiation and radiation protection. The questionnaire was validated and analyzed by 6 content experts. Of the 333 who attended the lecture, only 253 (76%) students completed the pre- and post questionnaire, and were included in this study. The average student score improved from 47-78% representing a gain of 31% in knowledge (p=0.01). The results indicated that the fourth-year medical students' knowledge regarding ionizing radiation and radiation protection is inadequate. Additional lectures in radiation protection significantly improved their knowledge of the topic, and correct their current misunderstanding. This study has shown that even with one dedicated lecture, students can learn, and absorb general principles regarding ionizing radiation.

  9. Radiation exposure to the patient caused by single-photon transmission measurement for 3D whole-body PET; Die Strahlenexposition des Patienten durch die Einzelphotonen-Transmissionsmessung bei der PET

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A.; Donsch, P.; Kirsch, C.M. [Universitaet des Saarlandes, Homburg/Saar (Germany). Abt. fuer Nuklearmedizin; Seifert, H. [Universitaet des Saarlandes, Homburg/Saar (Germany). Abt. Strahlentherapie der Radiologischen Klinik

    2000-11-01

    Aim: The aim of the study was the determination of the radiation exposure to the patient caused by single-photon transmission measurement for 3D whole-body PET. Material and method: Single-photon-transmission measurement is performed using two Cs-137 pointsources (E{gamma}=662 keV, A=2*614 MBq) on a 3D PET scanner (ECAT ART). During a simulation of a whole body transmission scan (axial length: 75 cm, 6 contigous bed positions) dose measurements with thermoluminescent dosimeters were carried out using a thorax and an abdomen phantom. Following the guidelines of the ICRU report No. 60 an estimation of the effective dose caused by a single-photon transmission measurement was calculated. Results: For a total acquisition time of 360 min (6 beds with an acquisition time of 60 min per bed) the absorbed doses amounted to: Surface (xyphoid) 189 {mu}Gy, heart 196 {mu}Gy, lungs 234 {mu}Gy, vertebra 240 {mu}Gy, liver 204 {mu}Gy, gonads 205 {mu}Gy, thyroid 249 {mu}Gy and bladder 185 {mu}Gy resulting in a conversion factor of 1.7*10{sup -4} mSv/(h*MBq). The estimation of the effective dose for a patient's transmission (acquisition time of 3.2 min per bed) yields a value of 11 {mu}Sv. An estimation of the ratio of the conversion factors for transmission measurements in single-photon- and in coincidence mode (two Ge-68/Ga-68 rod sources of 40 MBq each), respectively, resulted in a value of 0.18. The comparison of the effective doses caused by single-photon transmission and by emission measurement (injection of 250 MBq of FDG) yields a ratio of 2.3*10{sup -3}. Conclusion: The radiation exposure of the patient caused by the transmission measurement for 3D whole-body-PET can be neglected. In comparison with the coincidence-transmission using uncollimated line sources of low activity the radiation exposure is still reduced using single photon transmission with collimated point sources of high activity. (orig.) [German] Ziel: Ziel war die Bestimmung der Strahlenexposition des

  10. Ionizing radiation exposure of LDEF

    Science.gov (United States)

    Benton, E. V. (Editor); Heinrich, W. (Editor)

    1990-01-01

    The Long Duration Exposure Facility (LDEF) was launched into orbit by the Space Shuttle 'Challenger' mission 41C on 6 April 1984 and was deployed on 8 April 1984. The original altitude of the circular orbit was 258.5 nautical miles (479 km) with the orbital inclination being 28.5 degrees. The 21,500 lb NASA Langley Research Center satellite, having dimensions of some 30x14 ft was one of the largest payloads ever deployed by the Space Shuttle. LDEF carried 57 major experiments and remained in orbit five years and nine months (completing 32,422 orbits). It was retrieved by the Shuttle 'Columbia' on January 11, 1990. By that time, the LDEF orbit had decayed to the altitude of 175 nm (324 km). The experiments were mounted around the periphery of the LDEF on 86 trays and involved the representation of more than 200 investigators, 33 private companies, 21 universities, seven NASA centers, nine Department of Defense laboratories and eight foreign countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures, power and propulsion. The data contained in the LDEF mission represents an invaluable asset and one which is not likely to be duplicated in the foreseeable future. The data and the subsequent knowledge which will evolve from the analysis of the LDEF experiments will have a very important bearing on the design and construction of the Space Station Freedom and indeed on other long-term, near-earth orbital space missions. A list of the LDEF experiments according to experiment category and sponsor is given, as well as a list of experiments containing radiation detectors on LDEF including the LDEF experiment number, the title of the experiment, the principal investigator, and the type of radiation detectors carried by the specific experiment.

  11. Evaluation of radiation dose in 64-row whole-body CT of multiple injured patients compared to 4-row CT; Evaluation der Strahlendosis bei Polytrauma-CT-Untersuchungen eines 64-Zeilen-CT im Vergleich zur 4-Zeilen-CT

    Energy Technology Data Exchange (ETDEWEB)

    Harrieder, A.; Geyer, L.L.; Koerner, M.; Deak, Z.; Wirth, S.; Reiser, M.; Linsenmaier, U. [Ludwig-Maximilians-Univ. Muenchen (Germany). Inst. fuer Klinische Radiologie

    2012-05-15

    Purpose: To evaluate radiation exposure in whole-body CT (WBCT) of multiple injured patients comparing 4-row multidetector computed tomography (MDCT) to 64-row MDCT. Materials and Methods: 200 WBCT studies were retrospectively evaluated: 92 4-row MDCT scans and 108 64-row MDCT scans. Each CT protocol was optimized for the particular CT system. The scan length, CT dose index (CTDI), and dose length product (DLP) were recorded and analyzed for radiation exposure. The mean effective dose was estimated based on conversion factors. Student's t-test was used for statistical analysis. Results: The mean CTDI{sub vol} values (mGy) of the thorax and abdomen were significantly reduced with 64-row MDCT (10.2 {+-} 2.5 vs. 11.4 {+-} 1.4, p < 0.001; 14.2 {+-} 3.7 vs. 16.1 {+-} 1.7, p < 0.001). The DLP values (mGy x cm) of the head and thorax were significantly increased with 64-row MDCT (1305.9 {+-} 201.1 vs. 849.8 {+-} 90.9, p < 0,001; 504.4 {+-} 134.4 vs. 471.5 {+-} 74.1, p = 0.030). The scan lengths (mm) were significantly increased with 64-row MDCT: head 223.6 {+-} 35.8 vs. 155.5 {+-} 12.3 (p < 0.001), thorax 427.4 {+-} 44.5 vs. 388.3 {+-} 57.5 (p < 0.001), abdomen 520.3 {+-} 50.2 vs. 490.8 {+-} 51.6 (p < 0.001). The estimated mean effective doses (mSv) were 22.4 {+-} 2.6 (4-row MDCT) and 24.1 {+-} 4.6 (64-row MDCT; p = 0.001), resulting in a percentage increase of 8 %. Conclusion: The radiation dose per slice of the thorax and abdomen can be significantly decreased by using 64-row MDCT. Due to the technical advances of modern 64-row MDCT systems, the scan field can be adapted to the clinical demands and, if necessary, enlarged without time loss. As a result, the estimated mean effective dose might be increased in WBCT. (orig.)

  12. Between-country comparison of whole-body SAR from personal exposure data in Urban areas.

    Science.gov (United States)

    Joseph, Wout; Frei, Patrizia; Röösli, Martin; Vermeeren, Günter; Bolte, John; Thuróczy, György; Gajšek, Peter; Trček, Tomaž; Mohler, Evelyn; Juhász, Péter; Finta, Viktoria; Martens, Luc

    2012-12-01

    In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), personal radio frequency electromagnetic field measurements were performed in different microenvironments such as homes, public transports, or outdoors using the same exposure meters. From the mean personal field exposure levels (excluding mobile phone exposure), whole-body absorption values in a 1-year-old child and adult male model were calculated using a statistical multipath exposure method and compared for the five countries. All mean absorptions (maximal total absorption of 3.4 µW/kg for the child and 1.8 µW/kg for the adult) were well below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) basic restriction of 0.08 W/kg for the general public. Generally, incident field exposure levels were well correlated with whole-body absorptions (SAR(wb) ), although the type of microenvironment, frequency of the signals, and dimensions of the considered phantom modify the relationship between these exposure measures. Exposure to the television and Digital Audio Broadcasting band caused relatively higher SAR(wb) values (up to 65%) for the 1-year-old child than signals at higher frequencies due to the body size-dependent absorption rates. Frequency Modulation (FM) caused relatively higher absorptions (up to 80%) in the adult male. Copyright © 2012 Wiley Periodicals, Inc.

  13. Expression of IL-1β mRNA in mice after whole body X-irradiation

    International Nuclear Information System (INIS)

    Nemoto, Kumie; Ishihara, Hiroshi; Tanaka, Izumi; Suzuki, Gen; Tsuneoka, Kazuko; Yoshida, Kazuko; Ohtsu, Hiroshi

    1995-01-01

    IL-1β is a stimulator of hematopoietic and inflammatory systems, and also acts as a radioprotector. After whole-body exposure to sublethal doses of ionizing radiation, the IL-1β mRNA level in spleen cells increases for a short time prior to regeneration of the spleen. We analyzed spleen cells of C3H/He mice after whole-body irradiation with 3 Gy x-rays to determine the cause of this short-term increase in the transcription level. An increase in the level of the message in spleen cells, found by Northern blot hybridization, reached its peak 5 to 7 days after irradiation. There was a low correlation between the curves of the mRNA level and the ratio of monocyte/macrophage lineage cells; a typical source of the message. Spleen macrophages that produce a large amount of the message were found 7 days after irradiation in an in situ hybridization experiment in which heterogeneous spleen cell populations were used. In contrast, spleen cells had no detectable levels of macrophages rich in IL-1β mRNA before and 17 days after irradiation. Additionally, the population of message-rich cells was 9.4% of the total number of monocytes/macrophages in the spleen. These results suggest that the short-term increase in IL-1β mRNA is a result of the heterogeneous differentiation of a subpopulation of spleen macrophages before regeneration of the spleen. (author)

  14. Modulator Effect of Turmeric on Oxidative Damage in Whole Body Gamma Irradiated rats

    International Nuclear Information System (INIS)

    Amin, H.H.; Abdou, M.I.

    2012-01-01

    Because of its penetrating power and its ability to travel great distances, gamma rays are considered the primary hazard to the population during most radiological emergencies. So, there is a need to develop medical countermeasures to protect the first responders and remediation workers from biomedical effect of ionizing radiation. Turmeric has been reported to have many beneficial health effects, including a strong anti-oxidant effect, anti-inflammatory and anti-microbial properties. In the present study, turmeric was investigated as a therapeutic agent against hazards induced by ionizing radiation on kidney, liver, urinary and serum calcium levels and blood counts. A daily dose of 0.5 g/kg body weight was used in whole body gamma irradiated female rats with 3 Gy. Radiation effects were followed up for four weeks post irradiation. The results revealed that the administration of turmeric post-irradiation resulted in a significant inhibition in the frequency of radiation induced oxidative damage. It could be concluded that definite turmeric dose exerts a vital modulator role against gamma irradiation hazard

  15. Detoxification of snake venom using ionizing radiation

    International Nuclear Information System (INIS)

    Rogero, J.R.; Nascimento, N.

    1995-01-01

    It is generally recognized that energy absorbed by ionizing radiation (gamma rays) can inactivate biological material in tow ways. A direct effects occurs when the primary event, i.e., ionization, is produced in the molecule itself. This is the case when a compound is irradiated in dry state. When a compound is irradiated in a solution, the indirect effect joins the direct. Since water is the most abundant constituent of biological material, it is important to consider the species produced by excitation and ionization of water itself, and the reaction of these species with the target molecules of biological importance. This indirect effect results from the reactions among the studied molecules and the products of radiation interaction with water or other solvents. Highly reactive compounds, the so-called free radicals, which are formed many reactions among themselves, with the dissolved gas, and with other molecules in the solution. With water, the excitation is less important than ionization which is followed within picosecond by the formation of free hydroxyl radicals and hydrated electrons. Alexander and Hamilton showed that irradiation of proteins has revealed damage to aminoacid side chains, production of new groups, splitting of peptide bonds and formation of intramolecular and intermolecular cross-links. With these results it would be possible to use ionizing radiation to change those proteins molecules in order to improve some of their properties according to the necessity. On the other hand, it is recognized that venoms in general are poorly immunogenic, yet fairly toxic. This cause problems because serotherapy is the treatment of choice in snakebite envenomations, and horse antivenom availability is dependent upon. (author)

  16. Overview of Atmospheric Ionizing Radiation (AIR)

    Science.gov (United States)

    Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Tai, H.; Shinn, J. L.

    2003-01-01

    The SuperSonic Transport (SST) development program within the US was based at the Langley Research Center as was the Apollo radiation testing facility (Space Radiation Effects Laboratory) with associated radiation research groups. It was natural for the issues of the SST to be first recognized by this unique combination of research programs. With a re-examination of the technologies for commercial supersonic flight and the possible development of a High Speed Civil Transport (HSCT), the remaining issues of the SST required resolution. It was the progress of SST radiation exposure research program founded by T. Foelsche at the Langley Research Center and the identified remaining issues after that project over twenty-five years ago which became the launch point of the current atmospheric ionizing radiation (AIR) research project. Added emphasis to the need for reassessment of atmospheric radiation resulted from the major lowering of the recommended occupational exposure limits, the inclusion of aircrew as radiation workers, and the recognition of civil aircrew as a major source of occupational exposures. Furthermore, the work of Ferenc Hajnal of the Environmental Measurements Laboratory brought greater focus to the uncertainties in the neutron flux at high altitudes. A re-examination of the issues involved was committed at the Langley Research Center and by the National Council on Radiation Protection (NCRP). As a result of the NCRP review, a new flight package was assembled and flown during solar minimum at which time the galactic cosmic radiation is at a maximum (June 1997). The present workshop is the initial analysis of the new data from that flight. The present paper is an overview of the status of knowledge of atmospheric ionizing radiations. We will re-examine the exposures of the world population and examine the context of aircrew exposures with implications for the results of the present research. A condensed version of this report was given at the 1998

  17. The effects of ionizing radiation on man

    International Nuclear Information System (INIS)

    Watson, G.M.

    1975-08-01

    This paper describes the major effects of ionizing radiation on man and the relationship between such effects and radiation dose, with the conclusion that standards of radiological safety must be based on the carcinogenetic and mutagenic properties of ionizing radiation. Man is exposed to radiation from natural sources and from man-made sources. Exposure from the latter should be regulated but, since there is little observational or experimental evidence for predicting the effects of the very small doses likely to be required for adequate standards of safety, it is necessary to infer them from what is seen at high doses. Because the formal relationship between dose and effect is not fully understood, simplifying assumptions are necessary to estimate the effects of low doses. Two such assumptions are conventionally used; that there is a linear relationship between dose and effect at all levels of dose, and that the rate at which a dose of radiation is given does not alter the magnitude of the effect. These assumptions are thought to be conservative, that is they will not lead to an underestimation of the effects of small radiation doses although they may give an over-estimate. (author)

  18. Ionizing radiation detector using multimode optical fibers

    International Nuclear Information System (INIS)

    Suter, J.J.; Poret, J.C.; Rosen, M.; Rifkind, J.M.

    1993-01-01

    An optical ionizing radiation detector, based on the attenuation of 850-nm light in 50/125-μm multimode fibers, is described. The detector is especially well suited for application on spacecraft because of its small design. The detection element consists of a section of coiled fibers that has been designed to strip higher-order optical modes. Cylindrical radiation shields with atomic numbers ranging from Z = 13 (aluminum too) Z = 82 (lead) were placed around the ionizing radiation detector so that the effectiveness of the detector could be measured. By exposing the shields and the detector to 1.25-MeV cobalt 60 radiation, the mass attenuation coefficients of the shields were measured. The detector is based on the phenomenon that radiation creates optical color centers in glass fibers. Electron spin resonance spectroscopy performed on the 50/125-μm fibers showed the presence of germanium oxide and phosphorus-based color centers. The intensity of these centers is directly related to the accumulated gamma radiation

  19. [Dose rate-dependent cellular and molecular effects of ionizing radiation].

    Science.gov (United States)

    Przybyszewski, Waldemar M; Wideł, Maria; Szurko, Agnieszka; Maniakowski, Zbigniew

    2008-09-11

    The aim of radiation therapy is to kill tumor cells while minimizing damage to normal cells. The ultimate effect of radiation can be apoptotic or necrotic cell death as well as cytogenetic damage resulting in genetic instability and/or cell death. The destructive effects of radiation arise from direct and indirect ionization events leading to peroxidation of macromolecules, especially those present in lipid-rich membrane structures as well as chromatin lipids. Lipid peroxidative end-products may damage DNA and proteins. A characteristic feature of radiation-induced peroxidation is an inverse dose-rate effect (IDRE), defined as an increase in the degree of oxidation(at constant absorbed dose) accompanying a lower dose rate. On the other hand, a low dose rate can lead to the accumulation of cells in G2, the radiosensitive phase of the cell cycle since cell cycle control points are not sensitive to low dose rates. Radiation dose rate may potentially be the main factor improving radiotherapy efficacy as well as affecting the intensity of normal tissue and whole-body side effects. A better understanding of dose rate-dependent biological effects may lead to improved therapeutic intervention and limit normal tissue reaction. The study reviews basic biological effects that depend on the dose rate of ionizing radiation.

  20. Radiation detector device for measuring ionizing radiation

    International Nuclear Information System (INIS)

    Brake, D. von der.

    1983-01-01

    The device contains a compensating filter circuit, which guarantees measurement of the radiation dose independent of the energy or independent of the energy and direction. The compensating filter circuit contains a carrier tube of a slightly absorbing metal with an order number not higher than 35, which surrounds a tubular detector and which carries several annular filter parts on its surface. (orig./HP) [de

  1. Chromosomal instability induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1995-01-01

    There is accumulating evidence indicating genomic instability can manifest multiple generations after cellular exposure to DNA damaging agents. For instance, some cells surviving exposure to ionizing radiations show delayed reproductive cell death, delayed mutation and / or delayed chromosomal instability. Such instability, especially chromosome destabilization has been implicated in mutation, gene amplification, cellular transformation, and cell killing. To investigate chromosomal instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells. The relationship between delayed chromosomal destabilization and other endpoints of genomic instability, namely; delayed mutation and gene amplification will be discussed, as will the potential cytogenetic and molecular mechanisms contributing to delayed chromosomal instability

  2. Ionizing-radiation warning - Supplementary symbol

    International Nuclear Information System (INIS)

    2007-01-01

    This International Standard specifies the symbol to warn of the presence of a dangerous level of ionizing radiation from a high-level sealed radioactive source that can cause death or serious injury if handled carelessly. This symbol is not intended to replace the basic ionizing radiation symbol [ISO 361, ISO 7010:2003, Table 1 (Reference number W003)], but to supplement it by providing further information on the danger associated with the source and the necessity for untrained or uninformed members of the public to stay away from it. This symbol is recommended for use with International Atomic Energy Agency (IAEA) Category 1, 2, and 3 sealed radioactive sources. These sources are defined by the IAEA as having the ability to cause death or serious injuries. The paper informs about scope, shape, proportions and colour of the symbol, and application of the symbol. An annex provides the technical specifications of the symbol

  3. Genetic variation in resistance to ionizing radiation

    International Nuclear Information System (INIS)

    Ayala, F.J.

    1991-01-01

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu,Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population ''null'' (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The roles of SOD level in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. In addition, we have pursued an unexpected genetic event-namely the nearly simultaneous transformation of several lines homozygous for the SOD ''null'' allele into predominately S lines. Using specifically designed probes and DNA amplification by means of the Tag polymerase chain reaction (PCR) we have shown that (1) the null allele was still present in the transformed lines, but was being gradually replaced by the S allele as a consequence of natural selection; and (2) that the transformation was due to the spontaneous deletion of a 0.68 Kb truncated P-element, the insertion of which is characteristic of the CA1 null allele

  4. About particular use of ionizing radiations

    International Nuclear Information System (INIS)

    2001-01-01

    Different uses of ionizing radiations are reviewed: tracers techniques, nuclear gauges, dating by carbon 14, silica doping, use of gamma irradiation for the density measurement in civil engineering, use of a electron capture detector to study by gas chromatography chlorinated contaminants in environment, neutron activation as environmental gauge, analysis of lead in paint and pollutants in ground and dusts, help for work of art valuation by x spectrometry. (N.C.)

  5. Mutation induction in plants by ionizing radiation

    International Nuclear Information System (INIS)

    1985-01-01

    This training film deals with the use of x-rays, gamma rays and fast neutrons for mutation induction in plants. Specific features of different types of ionizing radiation and of biological materials are outlined and methods demonstrated which control modifying factors and warrant an efficient physical mutagenesis. The first step of mutation breeding aims at an enhanced level of genetic variation which forms the basis for mutant selection and use in plant breeding

  6. Alloy nanoparticle synthesis using ionizing radiation

    Science.gov (United States)

    Nenoff, Tina M [Sandia Park, NM; Powers, Dana A [Albuquerque, NM; Zhang, Zhenyuan [Durham, NC

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  7. Color-indicator dosimeter for ionizing radiation

    International Nuclear Information System (INIS)

    Panchenkov, G.M.; Kozlov, L.L.; Molin, A.A.; Ershova, Z.F.; Mikhailov, L.M.; Juzvyak, A.G.; Valitov, R.B.; Churov, V.P.; Grinev, M.P.

    1980-01-01

    Colorimetric dosimeter of ionizing radiation, containing 70-100 w % of a thermoplastic polymer, 10-40 w. % of a softener, 0.5-3.0 w. % of stabilizer and two dyes compatible with the polymer is designed. The first dye is chosen among zanthene- polymethine- or pyrazolon dyes, while the other is a triarylmethane- indigo- thiazine- indophenol- indiamine- or indaniline dye. (E.G.)

  8. Objectives and functions of ionizing radiation metrology

    International Nuclear Information System (INIS)

    Rothe, H.

    1981-01-01

    Proceeding from the fundamental objectives of ionizing radiation metrology, the main tasks of metrological research and assurances of accurate measurements in dosimetry and activity determination are summarized. With a view to the technical performance of these tasks the state-of-the-art and the trends in reproduction and dissemination of dosimetric and activity units are outlined. Problems are derived that should be solved within the framework of the CMEA Standing Commissions on Standardization and on the Peaceful Uses of Atomic Energy. (author)

  9. Whole body MR imaging in diabetes

    International Nuclear Information System (INIS)

    Weckbach, Sabine; Schoenberg, Stefan O.

    2009-01-01

    Diabetes mellitus is a major cardiovascular risk factor and one of the major causes for morbidity and mortality worldwide. Diabetic complications have not only major impact on the quality of life of diabetic patients, but are also potentially life-threatening. Therefore prevention, diagnosis and therapy of these long-term complications are of high importance. However, diagnosis of the variety of complications from diabetes mellitus remains a diagnostic challenge and usually several diagnostic steps are necessary to diagnose or exclude these complications. In the last years whole body magnetic resonance imaging (WB-MRI) including whole body magnetic resonance angiography (WB-MRA) has been introduced for cardiovascular imaging and is now increasingly applied in clinical routine for the workup of patients with cardiovascular disease and for cardiovascular screening. The article summarizes rationales for WB-MRI in diabetes mellitus, technical concepts of disease specific cardiovascular WB-MRI in diabetes mellitus and discusses potential clinical consequences.

  10. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny.

    Science.gov (United States)

    Lemos, J; Neuparth, T; Trigo, M; Costa, P; Vieira, D; Cunha, L; Ponte, F; Costa, P S; Metello, L F; Carvalho, A P

    2017-02-01

    This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.

  11. Bacterial and archaeal resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Confalonieri, F; Sommer, S, E-mail: fabrice.confalonieri@u-psud.fr, E-mail: suzanne.sommer@u-psud.fr [University Paris-Sud, CNRS UMR8621, Institut de Genetique et Microbiologie, Batiments 400-409, Universite Paris-Sud, 91405 Orsay (France)

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  12. Tooth-germ damage by ionizing radiation

    International Nuclear Information System (INIS)

    Sobkowiak, E.M.; Beetke, E.; Bienengraeber, V.; Held, M.; Kittner, K.H.

    1977-01-01

    Experiments on animals (four-week-old dogs) were conducted in an investigation made to study the possibility of dose-dependent tooth-germ damage produced by ionizing radiation. The individual doses were 50 R and 200 R, respectively, and they were administered once to three times at weekly intervals. Hyperemia and edemata could be observed on tooth-germ pulps from 150 R onward. Both of these conditions became more acute as the radiation dose increased (from 150 R to 600 R). Possible damage to both the dentin and enamel is pointed out. (author)

  13. Genetic and chromosomal effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The genetic and chromosomal effects of ionizing radiations deal with those effects in the descendants of the individuals irradiated. The information base concerning genetic and chromosomal injury to humans from radiation is less adequate than is the information base for cancer and leukemia. As a result, it is not possible to make the kinds of quantitative estimates that have been made for carcinogenesis in previous chapters of this book. The chapter includes a detailed explanation of various types of genetic injuries such as chromosomal diseases, x-linked diseases, autosomal dominant diseases, recessive diseases, and irregularly inherited diseases. Quantitative estimates of mutation rates and incidences are given based on atomic bomb survivors data

  14. Ionizing radiations simulation on bipolar components

    International Nuclear Information System (INIS)

    Montagner, X.

    1999-01-01

    This thesis presents the ionizing radiation effects on bipolar components and more specially their behavior facing the total dose. The first part is devoted to the radiation environments with a special attention to the spatial environments and new emergent environments. The specificities of bipolar components are then presented and their behavior facing the interactions. The physical mechanisms bound to the dose rate are also discussed. The second part presents a physical analysis of degradations induced by the cumulated dosimetry on bipolar components and simulation with the ATLAS code. The third part exposes an electric empirical simulation induced by the cumulated dose in static conditions. (A.L.B.)

  15. Waveshifters and Scintillators for Ionizing Radiation Detection

    International Nuclear Information System (INIS)

    Baumgaugh, B.; Bishop, J.; Karmgard, D.; Marchant, J.; McKenna, M.; Ruchti, R.; Vigneault, M.; Hernandez, L.; Hurlbut, C.

    2007-01-01

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments

  16. Detection of food treated with ionizing radiation

    International Nuclear Information System (INIS)

    Delincee, H.

    1998-01-01

    Treatment of food with ionizing energy-'food irradiation'- is finally becoming reality in many countries. The benefits include an improvement in food hygiene, spoilage reduction and extension of shelf-life. Although properly irradiated food is safe and wholesome, consumers should be able to make their own free choice between irradiated and non-irradiated food. For this purpose labelling is indispensable. In order to check compliance with existing regulations, detection of radiation treatment by analysing the food itself is highly desirable. Significant progress has been made in recent years in developing analytical detection methods utilizing changes in food originating from the radiation treatment

  17. Exposure to low doses of ionizing radiations

    International Nuclear Information System (INIS)

    Le Guen, B.

    2008-01-01

    The author discusses the knowledge about the effects of ionizing radiations on mankind. Some of them have been well documented (skin cancer and leukaemia for the pioneer scientists who worked on radiations, some other types of cancer for workers who handled luminescent paints, rock miners, nuclear explosion survivors, patients submitted to radiological treatments). He also evokes the issue of hereditary cancers, and discusses the issue of low dose irradiation where some surveys can now be performed on workers. He discusses the biological effects of these low doses. He outlines that many questions remain about these effects, notably the influence of dose level and of dose rate level on the biological reaction

  18. Shall we be afraid by ionizing radiations?

    International Nuclear Information System (INIS)

    Gerard, P.

    1996-01-01

    A conference about ionizing radiations and the frighten they provoke was organised on the 30 May 1996 at Lyon in France. A responsible of the radiotherapy-oncology service, of the hospital center of Lyon, answered. The low doses are without effects on organs, for pregnant women if the dose is higher than 200 milli sieverts, abortion is advised; in fact the principle frighten is the carcinogens risk; the norms recommended by ICRP are to maintain the radiations doses in the a level as low as reasonably achievable. (ALARA principle)

  19. Whole-body monitoring: Goiania case, Brazil

    International Nuclear Information System (INIS)

    Oliveira, C.A.N. de; Lourenco, M.C.; Dantas, B.M.; Lucena, E.A. de; Becker, P.H.B.

    1988-01-01

    Due to the radiological Cs accident in Goiania, Goias in September 1987, it became necessary to evaluate internal contamination levels of: individuals from the general public that for any reason had direct or indirect involvement with the radioactive source (group 1); occupationally involved persons (group 2). For each of these groups, procedures of whole body monitoring were developped. In order to attend group 1 individuals, the IRD/CNEN installed a whole body unit in the INAMPS General Hospital of Goiania in 11.08.87, which was later transferred to 121, 57 street, Central Sector in Goiania in 2.06.88. In this unit 547 people were monitored, 356 from group 1 and 241 from group 2, until 04.13.88. In the IRD whole body counter installation, 194 individuals were counted, 185 from group 2 and 9 from group 1. The frequency of monitoring of each individual was stablished according to the Cs activity present in the body or to the job that will be done. Some body burden activity curves for Cs 137 as a function of the time elapsed from the first measurement, are presented. There people from group 1 were measured in both counters, the IRD and the Goiania ones. The values obtained in both installations are compatible with the body activity X time curve. (author) [pt

  20. Origin of irradiations by ionizing radiations

    International Nuclear Information System (INIS)

    Metivier, H.

    1998-01-01

    Irradiations by ionizing radiations proceed from two main sources: the natural radiations from the environment and the sources of 'human' origin, i.e. linked with modern technology. In most countries the irradiation by natural sources remains the most important. The irradiations for medical purposes comes in second position and depends on the degree of technological evolution of the country, and in the last position are the irradiations linked with nuclear industry. The inventory of these irradiations is regularly updated by the Scientific Committee of the United Nations for the study of ionizing radiation effects (UNSCEAR). In France the mean individual irradiation due to natural radioactivity is of 2 mSv per year of efficient dose and can vary with a factor 3 from one region to the other. Irradiation of medical diagnosis origin is of about 1 mSv per year. This paper presents successively: the natural irradiation sources (cosmic radiation, cosmic rays and cosmogenic radionuclides, the Earth's radiations, primary radionuclides and radon), the natural sources modified by the technology (extraction industries, fossil fuels and phosphated ores, aerial transports and space activities, consumer products), the irradiation sources of technological origin (nuclear weapons, electric power production, major accidents, occupational irradiations), and the medical irradiations (diagnosis techniques, radiology, nuclear medicine and therapeutic uses). (J.S.)

  1. Effects of ionizing radiation on bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Suhadi, F [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1976-10-01

    The differences of radiosensitivities among bacteria in addition to the dependence upon the species or strains also depends on the environmental condition during irradiation (temperature, medium, the presence of protective or sensitizing agents, the gas phase or atmosphere, and water activity, or degree of hydration) and on the effects of the environmental condition before and after irradiation treatment (temperature of incubation, age of culture and growth medium). In general, spores are more resistant to radiation than vegetatic bacteria, with the exception that a few cocci are the most radiation resistant bacteria (Micrococcus and Streptococcus). The application of ionizing radiation in the fields of microbiology supports the radiation sterilization of medical and pharmaceutical products. In addition, microbiological aspects of food preservation, especially radurization, radicidation, and immunization studies by using irradiated microorganisms, are also important.

  2. IONIZING RADIATION AS AN INDUSTRIAL HEALTH PROBLEM.

    Science.gov (United States)

    TREWIN, R B

    1964-01-04

    Ionizing radiation, first as x-rays, later in natural form, was discovered in Europe in the late 1890's. Immediate practical uses were found for these discoveries, particularly in medicine. Unfortunately, because of the crude early equipment and ignorance of the harmful effects of radiation, many people were injured, some fatally. Because of these experiences, committees and regulatory bodies were set up to study the problem. These have built up an impressive fund of knowledge useful in radiation protection.With the recent development of the peaceful uses of atomic energy, sources of radioactivity have appeared cheaply and in abundance. A rapidly growing number are finding industrial application. Because of their potential risk to humans, the industrial physician must acquire new knowledge and skills so that he may give proper guidance in this new realm of preventive medicine.The Radiation Protection Program of one such industry, the Hydro-Electric Power Commission of Ontario, is summarized.

  3. Ionizing Radiation as an Industrial Health Problem

    Science.gov (United States)

    Trewin, R. B.

    1964-01-01

    Ionizing radiation, first as x-rays, later in natural form, was discovered in Europe in the late 1890's. Immediate practical uses were found for these discoveries, particularly in medicine. Unfortunately, because of the crude early equipment and ignorance of the harmful effects of radiation, many people were injured, some fatally. Because of these experiences, committees and regulatory bodies were set up to study the problem. These have built up an impressive fund of knowledge useful in radiation protection. With the recent development of the peaceful uses of atomic energy, sources of radioactivity have appeared cheaply and in abundance. A rapidly growing number are finding industrial application. Because of their potential risk to humans, the industrial physician must acquire new knowledge and skills so that he may give proper guidance in this new realm of preventive medicine. The Radiation Protection Program of one such industry, the Hydro-Electric Power Commission of Ontario, is summarized. PMID:14105012

  4. Ionizing radiation, genetic risks and radiation protection

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1992-01-01

    With one method of risk estimation, designed as the doubling dose method, the estimates of total genetic risk (i.e., over all generation) for a population continuously exposed at a rate of 0.01 Gy/generation of low LET irradiation are about 120 cases of Mendelian and chromosomal diseases/10 6 live births and about the same number of cases for multifactorial diseases (i.e., a total of 240 cases/10 6 ). These estimates provide the basis for risk coefficients for genetic effects estimated by ICRP (1991) in its Publication 60. These are: 1.0%/Sv for the general population (which is 40% of 240/10 6 /0.01 Gy), and 0.6%/Sv for radiation workers (which is 60% of that for the general population). The results of genetic studies carried out on the Japanese survivors of A-bombs have shown no significant adverse effects attributable to parental radiation exposures. The studies of Gardner and colleagues suggest that the risk of leukaemia in children born to male workers in the nuclear reprocessing facility in Sellafield, U.K., may be increased. However, this finding is at variance with the results from the Japanese studies and at present, does not lend itself to a simple interpretation based on radiobiological principles. In the light of recent advances in the molecular biology of naturally-occurring human Mendelian diseases and what we presently know about multifactorial diseases, arguments are advanced to support the thesis that (i) current risk estimates for Mendelian diseases may be conservative and (ii) an overall doubling dose for all adverse genetic effects may be higher than the 1 Gy currently used (i.e., the relative risks are probably lower). (author)

  5. History of international symbol for ionizing radiation

    International Nuclear Information System (INIS)

    Franic, Z.

    1996-01-01

    The year 1996 marks the 50th anniversary of the radiation warning symbol as we currently know it. It was (except the colours used) doodled out at the University of California, Berkeley, sometime in 1946 by a small group of people. The key guy responsible was Nelson Garden, then the head of the Health Chemistry Group, at the Radiation Laboratory. The radiation warning symbol should not be confused with the civil defence symbol (circle divided into six equal sections, three of these being black and three yellow), designed to identify fallout shelters. The basic radiation symbol was eventually internationally standardized by ISO code: 361-1975 (E). Variations of this symbol are frequently used in logotypes radiation protection organizations or associations. Particularly nice are those of International Radiation Protection Association (IRPA) and Croatian Radiation Protection Association (CRPA) that combines traditional Croatian motives with high technology. However, apart from speculations, there is no definite answer why did the Berkeley people chose this particular symbol. Whatever the reason was, it was very good choice because the ionizing radiation symbol is simple, readily identifiable, i.e., not similar to other warning symbols, and discernible at a large distance. (author)

  6. Method and apparatus to monitor a beam of ionizing radiation

    Science.gov (United States)

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  7. Neurophysiological appropriateness of ionizing radiation effects

    International Nuclear Information System (INIS)

    Nyagu, A.I.; Loganovsky, K.N.

    1997-01-01

    The goal of this study was to compare bioelectrical activity of the brain in remote period of acute radiation sickness (ARS), chronic and prenatal irradiation as a result of the Chernobyl disaster. Registration of computerized 19-channel EEG, visual and somato-sensory evoked potentials have been carried out for 70 patients who had a verified ARS, 100 Chernobyl disaster survivors, who have been working in the Chernobyl exclusion zone since 1986-87 during 5 and more years, 50 prenatally irradiated children, and relevant controls. The relative risks of neurophysiological abnormalities are 4.5 for the ARS-patients, 3.6 for the chronically irradiated persons and 3.7 for the prenatally irradiated children. The data obtained testify to possibility of radiation-induced neurophysiological abnormalities in examined Chernobyl accident survivors which seems to be non-stochastic effects of ionizing radiation. For all examined irradiated patients it was typically an increasing of δ- and β- powers of EEG, particularly, in the frontal lobe shifted to the left fronto-temporal region, but spectral power of both θ- and α-range was significantly depressed. Aforesaid signs together with data of evoked potentials reflect the structural and functional abnormalities of limbic system and the left hemisphere as the first revealed neurophysiological appropriateness of ionizing radiation effects. (author)

  8. Neurophysiological appropriateness of ionizing radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Nyagu, A I; Loganovsky, K N [Department of Neurology, Inst. of Clinical Radiology, Scientific Centre for Radiation Medicine of Academy of Medical Sciences of Ukraine, Kiev (Ukraine)

    1997-11-01

    The goal of this study was to compare bioelectrical activity of the brain in remote period of acute radiation sickness (ARS), chronic and prenatal irradiation as a result of the Chernobyl disaster. Registration of computerized 19-channel EEG, visual and somato-sensory evoked potentials have been carried out for 70 patients who had a verified ARS, 100 Chernobyl disaster survivors, who have been working in the Chernobyl exclusion zone since 1986-87 during 5 and more years, 50 prenatally irradiated children, and relevant controls. The relative risks of neurophysiological abnormalities are 4.5 for the ARS-patients, 3.6 for the chronically irradiated persons and 3.7 for the prenatally irradiated children. The data obtained testify to possibility of radiation-induced neurophysiological abnormalities in examined Chernobyl accident survivors which seems to be non-stochastic effects of ionizing radiation. For all examined irradiated patients it was typically an increasing of {delta}- and {beta}- powers of EEG, particularly, in the frontal lobe shifted to the left fronto-temporal region, but spectral power of both {theta}- and {alpha}-range was significantly depressed. Aforesaid signs together with data of evoked potentials reflect the structural and functional abnormalities of limbic system and the left hemisphere as the first revealed neurophysiological appropriateness of ionizing radiation effects. (author). 25 refs.

  9. Influence of ionizing radiation on Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Szarota, Rosa Maria

    2006-01-01

    Chagas's disease is one of the major public health problems in South America, promoting high prejudice to the local population. Despite the massive efforts to control it, this disease has no cure and presents puzzling unsolved questions. Considering that many researchers have used ionizing radiation to modify protozoans or biomolecules, we investigated the immunological response aspects of susceptible and resistant mice using irradiated parasites. Low radiation doses preserved the reproductive and invasive capacities of the parasite. Both susceptible and resistant animals, after immunization with irradiated parasites produced specific antibodies. After a challenge, the animals presented low parasitaemia, excepting those immunized with the antigen irradiated with higher doses. Using low radiation doses, we were able to selectively isolate trypomastigotes, leading to an improvement in the quality of the immune response, as previously reported when performing complement system assays. These data highlight the importance of selecting trypomastigote forms for immunization against T. cruz; and point towards ionizing radiation as an alternative to achieve this selection, since when this procedure is performed using complement, the subsequent steps are impaired by the difficulties to remove this component from the system. (author)

  10. Electrical pulse burnout of transistors in intense ionizing radiation

    International Nuclear Information System (INIS)

    Hartman, E.F.; Evans, D.C.

    1975-01-01

    Tests examining possible synergistic effects of electrical pulses and ionizing radiation on transistors were performed and energy/power thresholds for transistor burnout determined. The effect of ionizing radiation on burnout thresholds was found to be minimal, indicating that electrical pulse testing in the absence of radiation produces burnout-threshold results which are applicable to IEMP studies. The conditions of ionized transistor junctions and radiation induced current surges at semiconductor device terminals are inherent in IEMP studies of electrical circuits

  11. Conjugate whole-body scanning system for quantitative measurement of organ distribution in vivo

    International Nuclear Information System (INIS)

    Tsui, B.M.W.; Chen, C.T.; Yasillo, N.J.; Ortega, C.J.; Charleston, D.B.; Lathrop, K.A.

    1979-01-01

    The determination of accurate, quantitative, biokinetic distribution of an internally dispersed radionuclide in humans is important in making realistic radiation absorbed dose estimates, studying biochemical transformations in health and disease, and developing clinical procedures indicative of abnormal functions. In order to collect these data, a whole-body imaging system is required which provides both adequate spatial resolution and some means of absolute quantitation. Based on these considerations, a new whole-body scanning system has been designed and constructed that employs the conjugate counting technique. The conjugate whole-body scanning system provides an efficient and accurate means of collecting absolute quantitative organ distribution data of radioactivity in vivo

  12. Metabolite localization by atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging in whole-body sections and individual organs of the rove beetle Paederus riparius.

    Science.gov (United States)

    Bhandari, Dhaka Ram; Schott, Matthias; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-03-01

    Mass spectrometry imaging provides for non-targeted, label-free chemical imaging. In this study, atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) was used for the first time to describe the chemical distribution of the defensive compounds pederin, pseudopederin, and pederon in tissue sections (16 μm thick) of the rove beetle Paederus riparius. The whole-insect tissue section was scanned with a 20-μm step size. Mass resolution of the orbital trapping mass spectrometer was set to 100,000 at m/z 200. Additionally, organ-specific compounds were identified for brain, nerve cord, eggs, gut, ovaries, and malpighian tubules. To confirm the distribution of the specific compounds, individual organs from the insect were dissected, and MSI experiments were performed on the dissected organs. Three ganglia of the nerve cord, with a dimension of 250-500 μm, were measured with 10-μm spatial resolution. High-quality m/z images, based on high spatial resolution and high mass accuracy were generated. These features helped to assign mass spectral peaks with high confidence. Mass accuracy of the imaging experiments was section. Without any labeling, we assigned key lipids for specific organs to describe their location in the body and to identify morphological structures with a specificity higher than with staining or immunohistology methods.

  13. Comparison between radiological protection against ionizing radiation and non ionizing radiation

    International Nuclear Information System (INIS)

    Jammet, H.P.

    1992-01-01

    Protection against IR and NIR developed in completely different ways because of the very different evolution of the techniques they involve. While as soon as 1928, the International Society of Radiology created the International Commission of Radiological Protection, we had to wait until 1977 to see the creation of the International Committee for NIR (INIRC) by IRPA. To compare protection against Ionizing Radiations and Non Ionizing Radiations we will first carry out a general analysis of its components and then we will draw the general conclusions leading to a quite comparable evolution. (author)

  14. Comparison between radiological protection against ionizing radiation and non-ionizing radiation

    International Nuclear Information System (INIS)

    Jammet, H.P.

    1988-01-01

    The comparison of doctrines concerning protection against ionizing and non-ionizing radiation is a difficult task, because of the many areas in which it is applied. Radiological pollution has grown during the century, but its evolution has not been concomitant. This has resulted in a distortion that can be identified in the successive steps of the evaluation and protection against such radiation. For a better understanding, this discussion deals with the differences in interaction with matter and the induction of the related risks, on the varieties of protection systems and monitoring procedures

  15. Whole-body intravoxel incoherent motion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas; Wurnig, Moritz C.; Eberhardt, Christian; Guggenberger, Roman; Boss, Andreas [University Hospital Zurich, Department of Radiology, Zurich (Switzerland); Luechinger, Roger [University and ETH Zurich, Institute of Biomedical Technology, Zurich (Switzerland)

    2015-07-15

    To investigate the technical feasibility of whole-body intravoxel incoherent motion (IVIM) imaging. Whole-body MR images of eight healthy volunteers were acquired at 3T using a spin-echo echo-planar imaging sequence with eight b-values. Coronal parametrical whole-body maps of diffusion (D), pseudodiffusion (D*), and the perfusion fraction (F{sub p}) were calculated. Image quality was rated qualitatively by two independent radiologists, and inter-reader reliability was tested with intra-class correlation coefficients (ICCs). Region of interest (ROI) analysis was performed in the brain, liver, kidney, and erector spinae muscle. Depiction of anatomic structures was rated as good on D maps and good to fair on D* and F{sub p} maps. Exemplary mean D (10{sup -3} mm{sup 2}/s), D* (10{sup -3} mm{sup 2}/s) and F{sub p} (%) values (± standard deviation) of the renal cortex were as follows: 1.7 ± 0.2; 15.6 ± 6.5; 20.9 ± 4.4. Inter-observer agreement was ''substantial'' to ''almost perfect'' (ICC = 0.80 - 0.92). The coefficient of variation of D* was significantly lower with the proposed algorithm compared to the conventional algorithm (p < 0.001), indicating higher stability. The proposed IVIM protocol allows computation of parametrical maps with good to fair image quality. Potential future clinical applications may include characterization of widespread disease such as metastatic tumours or inflammatory myopathies. (orig.)

  16. Comparison of damage induced by mercury chloride and ionizing radiation in the susceptible rat model

    International Nuclear Information System (INIS)

    Kim, Ji Hyang; Yoon, Yong Dal; Kim, Jin Kyu

    2003-01-01

    Mercury (Hg), one of the most diffused and hazardous organ-specific environmental contaminants, exists in a wide variety of physical and chemical states. Although the reports indicate that mercury induces a deleterious damage, little has been reported from the investigations of mercury effects in living things. The purpose of this study is to evaluate the effects of mercury chloride and ionizing radiation. Prepubertal male F-344 rats were administered mercury chloride in drinking water throughout the experimental period. Two weeks after whole body irradiation, organs were collected for measuring the induced injury. Serum levels of GOT, GPT, ALP, and LDH were checked in the experimental groups and the hematological analysis was accomplished in plasma. In conclusion, the target organ of mercury chloride seems to be urinary organs and the pattern of damage induced by mercury differs from that of the irradiated group

  17. Whole body counters: types, performance and uses

    International Nuclear Information System (INIS)

    Jales, R.L.C.

    1983-01-01

    The present monograph deals with Whole Counters, since its definition, evolution, performance, clinical indications and results. Scintillation crystals detection systems were described as well as scintillant solutions, plastic scintillations, and gaseous detectors, including its interplay forms and basal characteristics. Geometric arrangements of standard chair, arc and hammock, arrangements with scintillant solutions and plastic scintillations, as well as special geometric arrangements were equally commented. Clinic and experimental studies were also dealt with Whole Body Counters, giving examples with potassium, iron vitamin B 12 and albumin. (author)

  18. Ionizing radiation for insect control in grain and grain products

    International Nuclear Information System (INIS)

    Tilton, E.W.; Brower, J.H.

    1987-01-01

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  19. Stability of the translocation frequency following whole-body irradiation measured in rhesus monkeys

    Science.gov (United States)

    Lucas, J. N.; Hill, F. S.; Burk, C. E.; Cox, A. B.; Straume, T.

    1996-01-01

    Chromosome translocations are persistent indicators of prior exposure to ionizing radiation and the development of 'chromosome painting' to efficiently detect translocations has resulted in a powerful biological dosimetry tool for radiation dose reconstruction. However, the actual stability of the translocation frequency with time after exposure must be measured before it can be used reliably to obtain doses for individuals exposed years or decades previously. Human chromosome painting probes were used here to measure reciprocal translocation frequencies in cells from two tissues of 8 rhesus monkeys (Macaca mulatta) irradiated almost three decades previously. Six of the monkeys were exposed in 1965 to whole-body (fully penetrating) radiation and two were unexposed controls. The primates were irradiated as juveniles to single doses of 0.56, 1.13, 2.00, or 2.25 Gy. Blood lymphocytes (and skin fibroblasts from one individual) were obtained for cytogenetic analysis in 1993, near the end of the animals' lifespans. Results show identical dose-response relationships 28 y after exposure in vivo and immediately after exposure in vitro. Because chromosome aberrations are induced with identical frequencies in vivo and in vitro, these results demonstrate that the translocation frequencies induced in 1965 have not changed significantly during the almost three decades since exposure. Finally, our emerging biodosimetry data for individual radiation workers are now confirming the utility of reciprocal translocations measured by FISH in radiation dose reconstruction.

  20. Effects of ionizing radiations on proteins

    International Nuclear Information System (INIS)

    Maire, M. le; Foresta, B. de; Viel, A.; Thauvette, L.; Beauregard, G.; Potier, M.

    1990-01-01

    We have reinvestigated the use of ionizing radiations to measure the molecular mass of water-soluble or membrane proteins. Exposure of purified standard proteins to increasing doses of ionizing radiation causes progressive fragmentation of the native protein into defined peptide patterns. The coloured band corresponding to the intact protein was measured on the SDS gel as a function of dose to determine the dose (D 37.t ) corresponding to 37% of the initial amount of unfragmented protein deposited on the gel. This led to a calibration curve and the known molecular mass of the standard proteins. However, we have to conclude that this method is useless to determine the state of aggregation of a protein, since, for all the oligomers tested, the best fit was obtained by using the protomeric molecular mass, suggesting that there is no energy transfer between protomers. Furthermore, SDS greatly increases the fragmentation rate of proteins, which suggests additional calibration problems for membrane proteins in detergent or in the lipid bilayer. The main drawback of the technique is that some proteins behaved anomalously, leading to very large errors in the apparent target size as compared with true molecular mass. It is thus unreliable to apply the radiation method for absolute molecular-mass determination. We then focused on the novel finding that discrete fragmentation of proteins occurs at preferential sites, and this was studied with aspartate transcarbamylase. (author)

  1. Ionizing radiation in 21st century

    International Nuclear Information System (INIS)

    Jaworowski, Zbigniew

    2005-01-01

    The paper begins with the author's personal experience in Poland on the occasion of Chernobyl nuclear accident followed by main lessons that the author could deduce from the accident. After the discovery of ionizing radiation at the end of 19th century, social perception has altered between acceptance and rejection stemming from recognition of the basic aspects: usefulness for medical applications and for technical and scientific aims, beneficial effects of their low levels, and harmful effects of high levels. The author explains how linear no-threshold (LNT) assumption according to which even the lowest, near zero doses of radiation may cause cancer genetic harm has become established. Comparing the natural radioactivity of the earth's crust with the activity of much shorter-lived radioactive wastes from the nuclear power cycle, it is concluded that none of the man-made component of the radioactive wastes has higher-toxicity than the natural Th 232. The paper concludes by stating that one century has not been long enough to adapt mentally to ionizing radiation and radioactivity and perhaps 21st century will suffice for this adaptation. (S. Ohno)

  2. Ionization radiations - basis, risks and benefits

    International Nuclear Information System (INIS)

    Bodart, F.

    1991-01-01

    An attempt is made to discuss the use of ionizing radiations in an impartial way. Ionizing radiation is potentially harmfull; excessive doses have a devastating effect on living cells. However, there is no direct, conclusive evidence of human disability, either in the form of cancer or genetic anomalies, arising as a consequence of low-level doses of x- or gamma-rays of about 0.01 Gray (1 rad) the entire dose range involved in medical radiography or in nuclear industry. Statements appearing in the press that a certain number of excess cancers will be produced are estimates, based maybe on plausible assumptions, but estimates nevertheless; they are not measured quantities or established facts. A balanced view of radiation must include appreciation of the substantial benefits which result from their use in both medicine and industry. The risks are small and hard to demonstrate, and it is instructive to make a comparison with the other hazards occuring continually in an industrialized society, such as driving a motorcar or smoking cigarettes. (Author)

  3. Measuring ionizing radiation with a mobile device

    Science.gov (United States)

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  4. Medical uses non-ionizing radiation

    International Nuclear Information System (INIS)

    Ubeda Maeso, A.; Trillo Ruiz, M. A.

    2016-01-01

    This article reviews various clinical applications of non-ionizing radiation, focusing on the Hz-GHz frequency range. Depending on the signal characteristics, the applications cover several therapeutic areas, including osteology and traumatology, tissue regeneration, physiotherapy, chronic pain treatment, neurology, cardiology, urology and oncology. Electromagnetic therapies have proved simple, safe, low cost, devoid of side effects and able to treat the underlying pathology rather than simply alleviate the symptoms. Therefore, it is predictable that these therapies will have as serious impact on public health and associated costs. (Author)

  5. Pencil-shaped radiation detection ionization chamber

    International Nuclear Information System (INIS)

    Suzuki, A.

    1979-01-01

    A radiation detection ionization chamber is described. It consists of an elongated cylindrical pencil-shaped tubing forming an outer wall of the chamber and a center electrode disposed along the major axis of the tubing. The length of the chamber is substantially greater than the diameter. A cable connecting portion at one end of the chamber is provided for connecting the chamber to a triaxial cable. An end support portion is connected at the other end of the chamber for supporting and tensioning the center electrode. 17 claims

  6. Pregnancy and exposure to ionizing radiations

    International Nuclear Information System (INIS)

    Topsoba, T.L.; Tapsoba, T.L.; Cisse, R.; Lougue Sorgho, L.C.; Bamouni, Y.A.; Gassama Seck, S.

    2006-01-01

    The sensitivity of the embryo and foetus varies during pregnancy. Recent studies confirm that the principal damage is mental retardation. It is generally admitted that the risk is negligible for a dose 200 mSv.The objective of this work is to provide precise information on the various risks related to the irradiation for the foetus, according to the age of gestation and delivered dose, and the action to be taken in case of accidental irradiation. The medical use of ionizing radiation in pregnant women can only be considered within the framework of precise information. (author)

  7. Whole body detectors for clinical applications

    International Nuclear Information System (INIS)

    Silar, J.

    The requirements are presented on the parameters of whole-body detectors suitable for clinical retention assays and the detector-patient configuration described. A whole-body detector was developed with an axial configuration of two pairs of large-volume scintillation detectors with NaI(Tl) crystals. One pair is placed under the bed, the other above the bed on which the patient is being examined. The axes of the crystals are located at a distance of 90 cm apart. The field of vision of the detector is described for the application of a 137 Cs source in the air and in a 24 cm layer of water. The positive characteristics of the detector are listed as being homogeneous sensitivity, energy resolution, long-term stability of signal pulse amplitude and average pulse rate in the integral mode. The results obtained show that the detector may be used to evaluate the level of contamination of persons by gamma emitters within the region of approximately 800 Bq to 74 MBq. The error in converting the number of signal pulses in the integral mode does not exceed 50% for gamma emitters with a photon energy above 30O keV. (J.B.)

  8. Whole body acid-base modeling revisited.

    Science.gov (United States)

    Ring, Troels; Nielsen, Søren

    2017-04-01

    The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis. Copyright © 2017 the American Physiological Society.

  9. Study on the usefulness of whole body SPECT coronal image, MIP image in 67Ga scintigraphy

    International Nuclear Information System (INIS)

    Kawamura, Seiji

    2002-01-01

    In this study, we examined the usefulness of whole body coronal images and whole body cine display MIP images (CMIP) upon which image processing was carried out after whole body SPECT in comparison to the usefulness of whole body images (WB/SC) compensated by scattered radiation in tumor/inflammation scintigraphy with 67 Ga-citrate ( 67 Ga). Image interpretation was performed for the 120 patients with confirmed diagnoses, and the accuracy of their diagnoses was studied by three nuclear medical physicians and two clinical radiological technologists by means of sensitivity, specificity and ROC analysis. The resultant data show that sensitivity, specificity, accuracy and the area under the ROC curve Az in the WB/SC were approximately 65%, 86%, 74% and 0.724, respectively, whereas sensitivity, specificity, accuracy and Az of the image reading system in which CMIP is combined with whole body coronal images reconstructed by the OS-EM method were approximately 93%, 95%, 94% and 0.860, respectively. Furthermore, coronal images reconstructed by the OS-EM method tended to be superior to those produced by the FBP method in both diagnostic accuracy and ROC analysis. In conclusion, the image reading system in which CMIP is combined with whole body coronal images reconstructed by the OS-EM method was shown to be superior in diagnostic accuracy and ROC analysis. Our data suggest that whole body SPECT is an excellent technique as an alternative to WB/SC. (author)

  10. Low dose ionizing radiation exposure and cardiovascular disease mortality: cohort study based on Canadian national dose registry of radiation workers

    International Nuclear Information System (INIS)

    Zielinski, J. M.; Band, P. R.; Ashmore, P. J.; Jiang, H.; Shilnikova, N. S.; Tait, V. K.; Krewski, D.

    2009-01-01

    The purpose of our study was to assess the risk of cardiovascular disease (CVD) mortality in a Canadian cohort of 337 397 individuals (169 256 men and 168 141 women) occupationally exposed to ionizing radiation and included in the National Dose Registry (NDR) of Canada. Material and Methods: Exposure to high doses of ionizing radiation, such as those received during radiotherapy, leads to increased risk of cardiovascular diseases. The emerging evidence of excess risk of CVDs after exposure to doses well below those previously considered as safe warrants epidemiological studies of populations exposed to low levels of ionizing radiation. In the present study, the cohort consisted of employees at nuclear power stations (nuclear workers) as well as medical, dental and industrial workers. The mean whole body radiation dose was 8.6 mSv for men and 1.2 mSv for women. Results: During the study period (1951 - 1995), as many as 3 533 deaths from cardiovascular diseases have been identified (3 018 among men and 515 among women). In the cohort, CVD mortality was significantly lower than in the general population of Canada. The cohort showed a significant dose response both among men and women. Risk estimates of CVD mortality in the NDR cohort, when expressed as excess relative risk per unit dose, were higher than those in most other occupational cohorts and higher than in the studies of Japanese atomic bomb survivors. Conclusions: The study has demonstrated a strong positive association between radiation dose and the risk of CVD mortality. Caution needs to be exercised when interpreting these results, due to the potential bias introduced by dosimetry uncertainties, the possible record linkage errors, and especially by the lack of adjustment for non-radiation risk factors. (authors)

  11. Physiological benefits from low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1982-01-01

    Extensive literature indicates that minute doses of ionizing radiation benefit animal growth and development, fecundity, health and longevity. Specific improvements appear in neurologic function, growth rate and survival of young, wound healing, immune competence, and resistance to infection, radiation morbidity, and tumor induction and growth. Decreased mortality from these debilitating factors results in increased average life span following exposure to minute doses of ionizing radiation. The above phenomena suggest the possibility that ionizing radiation may be essential for life. Limited data with protozoa suggest that reproduction rates decrease when they are maintained in subambient radiation environments. This may be interpreted to be a radiation deficiency. Evidence must now be obtained to determine whether or not ionizing radiation is essential for growth, development, nutrient utilization, fecundity, health and longevity of higher animals. Whether or not ionizing radiation is found to be essential for these physiologic functions, the evidence reviewed indicates that the optimal amount of this ubiquitous agent is imperceptibly above ambient levels. (author)

  12. Health Effects of Non-Ionizing Radiation on Human

    International Nuclear Information System (INIS)

    Zubaidah-Alatas; Yanti Lusiyanti

    2001-01-01

    Increases of development and use of equipment that procedures non-ionizing radiant energy such as laser, radar, microwave ovens, power lines and hand phones, bring about public concern about the possible health effects owing to the non-ionizing radiation exposure. Non ionizing electromagnetic radiation compared to ionizing radiation, has longer wavelength, lower frequency, and lower photon energy in its interaction with body tissues. The term on non-ionizing radiation refers to the groups of electromagnetic radiations with energies less than about 10 eV corresponding to wavelengths in the ultraviolet, visible, infra red microwave and radiofrequency spectral regions. This paper describes the current state of knowledge about types of non-ionizing radiation and the health effects at molecular and cellular levels as well as its effects on human health. (author)

  13. Annual individual doses for personnel dealing with ionizing radiation sources

    International Nuclear Information System (INIS)

    Poplavskij, K.K.

    1982-01-01

    Data on annual individual doses for personnel of national economy enterprises, research institutes, high schools, medical establishments dealing with ionizing radiation sources are presented. It is shown that radiation dose for the personnel constitutes only shares of standards established by sanitary legislation. Numeral values of individual doses of the personnel are determined by the type, character and scope of using ionizing radiation sources

  14. Ionizing radiation effect on human reproduction

    International Nuclear Information System (INIS)

    Jirous, J.

    1987-01-01

    A review is presented of the existing knowledge on the adverse effects of ionizing radiation on human reproduction. Some interesting findings have been obtained by interapolating the results of studies in mouse embryos to humans, important knowledge has been obtained in studies involving the population of Hiroshima and Nagasaki. The review summarizes the knowledge in the following conclusions: (1) prior to the blastocyst stage, the mammalian embryo is insensitive to teratogenic and growth retarding radiation effects but is highly sensitive to the lethal radiation effect; (2) in the early organogenesis, the embryo is very sensitive to growth retarding, teratogenic and lethal radiation effects. It can, however, partly offset growth retardation in the post-natal period; (3) in the early fetal development stage, the fetus shows reduced sensitivity to teratogenic damage of many organs; sensitivity of the central nervous system and growth retardation remain which can only be compensated post-natally with difficulties; (4) in the late stage of pregnancy the fetus is not significantly deformed as a result of irradiation but permanent cellular depletion can result in various organs and tissues post-natally if radiation doses are high. (L.O.). 22 refs

  15. Atmospheric Ionizing Radiation (AIR) Project Review

    Science.gov (United States)

    Singleterry, R. C., Jr.; Wilson, J. W.; Whitehead, A. H.; Goldhagen, P. E.

    1999-01-01

    The National Council on Radiation Protection and Measurement (NCRP) and the National Academy of Science (NAS) established that the uncertainty in the data and models associated with the high-altitude radiation environment could and should be reduced. In response, the National Aeronautics and Space Administration (NASA) and the U.S. Department of Energy Environmental Measurements Laboratory (EML) created the Atmospheric Ionizing Radiation (AIR) Project under the auspices of the High Speed Research (HSR) Program Office at the Langley Research Center. NASA's HSR Program was developed to address the potential of a second-generation supersonic transport. A critical element focussed on the environmental issues, including the threat to crew and passengers posed by atmospheric radiation. Various international investigators were solicited to contribute instruments to fly on an ER-2 aircraft at altitudes similar to those proposed for the High Speed Civil Transport (HSCT). A list of participating investigators, their institutions, and instruments with quantities measured is presented. The flight series took place at solar minimum (radiation maximum) with northern, southern, and east/west flights. The investigators analyzed their data and presented preliminary results at the AIR Workshop in March, 1998. A review of these results are included.

  16. Ionizing radiation, nuclear energy and radiation protection for school

    International Nuclear Information System (INIS)

    Lucena, E.A.; Reis, R.G.; Pinho, A.S.; Alves, A.S.; Rio, M.A.P.; Reis, A.A.; Silva, J.W.S.; Paula, G.A. de; Goncalves Junior, M.A.

    2017-01-01

    Since the discovery of X-rays in 1895, ionizing radiation has been applied in many sectors of society, such as medicine, industry, safety, construction, engineering and research. However, population is unaware of both the applications of ionizing radiation and their risks and benefits. It can be seen that most people associate the terms 'radiation' and 'nuclear energy' with the atomic bomb or cancer, most likely because of warlike applications and the stealthy way radioactivity had been treated in the past. Thus, it is necessary to clarify the population about the main aspects related to the applications, risks and associated benefits. These knowledge can be disseminated in schools. Brazilian legislation for basic education provides for topics such as nuclear energy and radioactivity to high school students. However, some factors hamper such an educational practice, namely, few hours of class, textbooks do not address the subject, previous concepts obtained in the media, difficulty in dealing with the subject in the classroom, phobia, etc. One solution would be the approximation between schools and institutions that employ technologies involving radioactivity, which would allow students to know the practices, associated radiological protection, as well as the risks and benefits to society. Currently, with the increasing application of ionizing radiation, especially in medicine, it is necessary to demystify the use of radioactivity. (author)

  17. Protection of wood with ionizing radiation

    International Nuclear Information System (INIS)

    Jokel, J.; Paserin, V.

    1975-01-01

    The method is described of accelerated killing of wood cells by ionizing radiation. From the conducted experiments the relation was derived for the resistance of these cells to the effects of high-energy gamma radiation and a relationship was ascertained between the level of the irradiation of live cells and the spread of tylosis in beech trees. Live wood cells may be killed by doses of up to 25 J/g (2.5 Mrad). The occurrence and formation rate of tylosis is restricted by doses between 0.25 J/g to 4.5 J/g. Doses of more than 4.5 J/g prevent the occurrence of tylosis. (J.K.)

  18. Ionization detector with improved radiation source

    International Nuclear Information System (INIS)

    Solomon, E.F.

    1977-01-01

    The detector comprises a chamber having at least one radiation source disposed therein. The chamber includes spaced collector plates which form a part of a detection circuit for sensing changes in the ionization current in the chamber. The radiation source in one embodiment is in the form of a wound wire or ribbon suitably supported in the chamber and preferably a source of beta particles. The chamber may also include an adjustable electrode and the source may function as an adjustable current source by forming the wire or ribbon in an eliptical shape and rotating the structure. In another embodiment the source has a random shape and is homogeneously disposed in the chamber. 13 claims, 5 drawing figures

  19. Effects of ionizing radiations on insects

    International Nuclear Information System (INIS)

    Goyffon, Max.

    1978-01-01

    The most traditional effects caused by irradiation are development and morphogenesis disorders since on the whole the sensitivity of the developing organism to ionizing radiations is all the greater as the growth rate is faster. During the development of higher insects two categories of cell divide: larval cells on the one hand, which differentiate immediately after segmentation and give rise to larval organisms, and embryonic cells on the other which divide actively to form various islets or imaginal discs destined, each to its own extent, to provide the organs of the adult. Two cell categories thus coexist in the larva, one undergoing differentiation and the other multiplication, the radiosensitivity of which will be quite different for this very reason and will account at least partly, where the lethal effect of ionizing radiations is concerned, for the results observed. Three chapters deal in turn with effects on longevity, on regeneration and restoration and on morphogenesis and development. Strong doses give rise beyond a certain threshold to the appearance of acute radiodermatitis; their clinical signs and different degrees of seriousness liken them to burns of a special type [fr

  20. Vinyl acetate polymerization by ionizing radiation

    International Nuclear Information System (INIS)

    Mesquita, Andrea Cercan

    2002-01-01

    The aim of this work is the synthesis and characterization of the poly(vinyl acetate) using the ionizing radiation. Six polymerizations of vinyl acetate were carried out using three techniques of polymerization: in bulk, emulsion and solution. In the technique of solution polymerization were used two solvents, the alcohol ethyl and the methylethylketone, in two proportions 1:0.5 and 1:1 related to the monomer. The solutions were irradiated with gamma rays from a 60 Co source, with dose rate between 5.25 kGy/h and 6.26 kGy/h. The polymers obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The glass transition temperature (Tg) was investigated by Differential Scanning Calorimeter (DSC). The molecular weight was analyzed by the technique of Gel Permeation Chromatography (GPC). Tests of density, hardness and Vicat softening temperature were carried out. The infrared spectroscopy and others results confirmed that the polymers obtained by polymerization of vinyl acetate in bulk, emulsion and solution, using ionizing radiation, really correspond at poly(vinyl acetate). (author)

  1. Progressive behavioral changes in rats after exposure to low levels of ionizing radiation in utero

    International Nuclear Information System (INIS)

    Norton, S.; Kimler, B.F.; Mullenix, P.J.

    1991-01-01

    The deleterious effects of ionizing radiation on the developing brain may be not only prolonged but progressive. Fetuses were exposed to 0.75 Gy of ionizing radiation on gestational day 15 through whole body exposure of the pregnant rat. Three behavioral tests (gait analysis, continuous corridor activity and photographic analysis of sequences of behavioral acts) were performed at 1 and 3 months, postnatally. Body weight and thickness of the cerebral cortex of irradiated rats were 10-15 percent below controls throughout the period of study. Behavior in all tests was more affected at 3 months than at 1 month of age. Gait of control rats, as measured by the angle of advanced of hind feet, widened about 20 percent for males and 40 percent for females from 1 to 3 months, as expected, while, in irradiated rats, the angle widened only about 10 percent. Continuous corridor activity increased less than 10 percent in controls and about 35 percent in irradiated rats over the same period. In photographic analysis of behavior, controls increased their time spent standing by about 50 percent in males and 20 percent in females from 1 to 3 months of age. Irradiated males increased time standing only about 10 percent and irradiated females decreased about 30 percent over the same period. The data obtained in these experiments support other evidence that some behavioral alterations from perinatal exposure to radiation become more marked with maturation

  2. Non-Ionizing Radiation - sources, exposure and health effects

    International Nuclear Information System (INIS)

    Hietanen, M.

    2003-01-01

    Non-ionizing radiation contains the electromagnetic wavelengths from ultraviolet (UV) radiation to static electric and magnetic fields. Optical radiation consists of UV, visible and infrared (IR) radiation while EM fields include static, extremely low (ELF), low frequency (LF) and radiofrequency (RF) fields. The principal scientific organization on non-ionizing radiation is the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The main activity of ICNIRP is to provide guidance on safe exposure and protection of workers and members of the public by issuing statements and recommendations. (orig.)

  3. Ionizing radiation in tumor promotion and progression

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    1990-08-01

    Chronic exposure to beta radiation has been tested as a tumor promoting or progressing agent. The dorsal skins of groups of 25 female SENCAR mice were chemically initiated with a single exposure to DMBA, and chronic exposure to strontium-90/yttrium-90 beta radiation was tested as a stage 1, stage 2 or complete skin tumor promoter. Exposure of initiated mice to 0.5 gray twice a week for 13 weeks produced no papillomas, indicating no action as a complete promoter. Another similar group of animals was chemically promoted through stage 1 (with TPA) followed by 0.5 gray of beta radiation twice a week for 13 weeks. Again no papillomas developed indicating no action of chronic radiation as a stage 2 tumor promoter. The same radiation exposure protocol in another DMBA initiated group receiving both stage 1 and 2 chemical promotion resulted in a decrease in papilloma frequency, compared to the control group receiving no beta irradiation, indicating a tumor preventing effect of radiation at stage 2 promotion, probably by killing initiated cells. Chronic beta radiation was tested three different ways as a stage 1 tumor promoter. When compared to the appropriate control, beta radiation given after initiation as a stage 1 promoter (0.5 gray twice a week for 13 weeks), after initiation and along with a known stage 1 chemical promoter (1.0 gray twice a week for 2 weeks), or prior to initiation as a stage 1 promoter (0.5 gray twice a week for 4 weeks), each time showed a weak (∼ 15% stimulation) but statistically significant (p<0.01) ability to act as a stage 1 promoter. When tested as a tumor progressing agent delivered to pre-existing papillomas, beta radiation (0.5 gray twice a week for 13 weeks) increased carcinoma frequency from 0.52 to 0.68 carcinoma/animal, but this increase was not statistically significant at the 95% confidence level. We conclude that in the addition to the known initiating, progressing and complete carcinogenic action of acute exposures to ionizing

  4. Protective Effect of Exogenous Dehydro-epiandrosterone Sulfate (DHEAS) on Liver Cell Organs of Whole Body y-Irradiated Rats

    International Nuclear Information System (INIS)

    Abdel-Fattah, K.I.; El-Gawish, M.A.; Abou-Safi, H.M.

    2005-01-01

    Dehydroepiandrosterone (DHEA) and its sulfate (DHES) are adrenal hormones. They are powerful endogenous antioxidants and are important in protecting the cells from damage. The present work aimed to evaluate the exogenous DHEAS as a protector against the whole body exposure to gamma radiation damages on DNA and RNA content of the nuclear fraction, calcium and acid phosphatase in the mitochondria fraction and glutathione (GSH) and malonaldehyde (MDA) in the cytosol fraction in the liver of male rats. Fifty male albino rats weighing 130-150 g were categorized into the following groups: 1-Control untreated. 2-Exposed to whole body gamma irradiation (6.5 Gy). 3-Received a single oral administration of DHEAS at a dose level of 200 mg/kg b.wt. 4-Administered with DHEAS (200 mg/kg) two h pre-exposure to whole body gamma irradiation (6.5 Gy). Three time intervals were determined for tissue sampling: after one day, one week and two weeks post irradiation (groups 2 and 4) and post administration of DHEAS (group 3). The results showed that: 1- DHEAS has a radioprotective effect on DNA and RNA content decreases in the liver nuclear fraction. 2- It significantly ameliorated the changes in mitochondria Ca21 content and acid phosphatase activity. 3- It improved both GSH and MDA contents in the cytosolic fraction. It could be concluded that, DHEAS showed an obvious protective role against the hazard of gamma radiation on liver cells. Several mechanisms were discussed about its effects. Therefore, more investigations are needed to understand well the role of DHEAS in protecting the animal tissues against ionizing radiation hazard

  5. Non-ionizing radiation: an occupational apathy

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali

    2000-01-01

    Non-ionizing radiation, NIR, is widely used in various modern applications to the extent that its presence is common in some work places. However, due to inability of human beings to detect its presence make the radiation 'invisible' to the workers most of the time. Of late it is known that the radiation can be hazardous to human health if the exposure received is excessively high. Such proven health effects has led international organizations, such as, IRPA establishing standard guidelines and maximum permissible limits to control its exposure. Recent studies reveal that some work places do indicate the presence of the radiation at levels far exceeding the IRPA recommended limits. It is, therefore, the objective of this paper to highlight such hazardous situations, magnitude of the hazards involved and ways and means how to overcome the hazard so that workers can take necessary precaution and action to minimize the health risk associated with the hazard. However, due to time and space constraint, only five types of the NIR are elaborated in this paper, namely ELF, RF and microwave, UV, IR and laser

  6. Sterilization by ionizing radiation comparative evaluation

    International Nuclear Information System (INIS)

    Tata, A.; Giuliani, S.

    1996-01-01

    Sterilization of surgical and medical devices by ionizing radiation (gamma or accelerated electron beams) is currently regarded as one of the main industrial-scale applications of radiation technology processes. Considering the most widely utilized chemical-physical methods (i.e. ethylene oxide (EtO) fumigation and radiation treatment), about 10-12 millions m(3) of surgical and medical devices are estimated to be processed yearly all around the world, of which 7 on beams. Due to the increasing demand for reusable and single-use devices, and the need of assuring their sterility in order to prevent, as much as possible, the diffusion of serious infective diseases (among which for instance Aids), the market of sterilization of these items is considerably expanding. In the general depicted scenario, radiation technologies are expected to gain a leading role, even a part from their economic attractiveness, as an alternative to EtO treatment, which is more and more considered as responsible for increasing environmental, social and public health problems

  7. Myelopoiesis in whole-body-irradiated beagles

    International Nuclear Information System (INIS)

    Stevenson, A.F.G.

    1985-01-01

    The influence of dose-rate (DR) (either 5.2 or 52 cGy/min.) on the regeneration of bone marrow (BM) myelopoietic progenitor cells was studied in beagles after exposure to whole-body-irradiation (235, 375 and 1500 cGy + autologous BM-transplantation). Myelopoietic progenitor cells were assayed as colony-forming units in agar cultures (GM-CFU), in correlation with the colony-stimulation activity (CSA) in serum. At 235 cGy, the influence of DR on the recovery of GM-CFU was insignificant. However, at 375 cGy, the recovery was critically dependent on the DR. Depletion of GM-CFU numbers elevated CSA levels above pre-irradiation values. The DR determines the regenerative ability when the dose itself is critical to survival of the least number of hematopoietic stem cells (HSC) necessary for restitution. (author)

  8. The late biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-15

    Full text: The principal objective of the symposium was to review the current status of understanding of the late biological effects of ionizing radiation from external and internal sources. A second objective was to critically evaluate information obtained from epidemiological studies of human population groups as well as from animal experimentation in order to provide a solid scientific basis upon which problems of current concern, such as radiation protection standards and risk-benefit analysis, could be deliberated. Eighty-one papers were presented in 10 sessions which covered epidemiological studies of late effects in human populations exposed to internal and/or external ionizing radiation; quantitative and qualitative data from animal experimentation of late effects; methodological problems and modern approaches; factors influencing susceptibility or expression of late radiation injury; comparative evaluation of late effects induced by radiation and other environmental pollutants, and problems of risk assessment. In addition, there were two evening sessions for free discussion of problems of interpreting animal data, and of the epidemiological studies of occupationally exposed populations. Reports on atomic bomb survivors showed that these epidemiological studies are providing dependable data, such as dose-related excess infant mortality. The reports also revealed the need for consensus in the method employed in the interpretation of data. That was also the case with studies on occupationally exposed populations at Hanford plant, where disparate results were presented on radiation-induced neoplasia among radiation workers. These data are, however, considered not so significant in relative terms when compared to risks involved in other industries. It was recommended that national registry systems for the dosimetry and medical records of radiation workers be established and co-ordinated internationally in order to facilitate reliable epidemiological

  9. Effects of ionizing radiation and steady magnetic field on erythrocytes

    International Nuclear Information System (INIS)

    Ivanov, S. P.; Galutzov, B. P.; Kuzmanova, M. A.; Markov, M. S.

    1996-01-01

    A complex biophysical test for studying the effects of ionizing and non-ionizing radiation has been developed. The following cell and membrane parameters have been investigated: cell size, cell shape, cell distribution by size, electrophoretic mobility, extent of hemolysis, membrane transport and membrane impedance. Gamma ray doses of 2.2 Gy and 3.3 Gy were used as ionizing radiation and steady (DC) magnetic field of 5-90 mT representing the non-ionizing radiation. Erythrocytes from humans and rats were exposed in vitro to both ionizing and non-ionizing radiation. In some experiments ionizing radiation was applied in vivo as well. Each of the simultaneously studied parameters have been found to change as a function of applied radiation. The proposed test allows an estimation of the changes in the elastic, rheological and electrical parameters of cells and biological membranes. Results indicate that ionizing radiation is significantly more effective in an in vivo application, while magnetic fields are more effective when applied in vitro. Surprisingly, steady magnetic fields were found to act as protector against some harmful effects of ionizing radiation. (authors)

  10. The accidental exposure to ionizing radiations

    International Nuclear Information System (INIS)

    2001-01-01

    This article is divided in three parts, the first one gives the radioactivity sources, the doses and the effects, the second part is devoted to the medical exposures, the third part concerns the accidents and the biological effects of an irradiation the different syndromes ( the acute whole-body irradiation syndrome, the localized irradiation syndrome, the inflammatory syndrome, hematopoietic syndrome,neuro-vascular syndrome) are detailed. (N.C.)

  11. Radiation protection in the application of ionizing radiation in industry

    International Nuclear Information System (INIS)

    Mohamad Yusof Mohamad Ali

    1987-01-01

    There is a substantial increase in the use of ionizing radiation in industry throughout the country especially in the last five years or so. With this growth in the number of users and activity of sources used, and together with the introduction of the new Atomic Energy Licensing Act (AELA) in 1984, the question of radiation safety and protection of workers and members of the public in general, can no longer be taken lightly. It has to be dealt with effectively. In this paper, a general discussion and clarification on certain practical aspects of radiation protection as recommended by the International Atomic Energy Agency (IAEA) is presented. Amongst the topics chosen are those on area monitoring, personnel monitoring, leak testing of sealed sources and training of personnel. Also presented in the paper is a brief discussion about UTN's experience in giving out radiation protection services to various agencies throughout the country. (author)

  12. Tissue macrophage activation: a shared sign of exposure to ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Petrenyov, D.R.

    2012-01-01

    The features of oxidative metabolism of peritoneal macrophages were studied in rats exposed to ionizing and non-ionizing radiation. An increased RNS and ROS production reported in animals exposed to both source of radiation showing non-specific response of organism. (authors)

  13. Spectrum of chromosomal aberrations in peripheral lymphocytes of hospital workers occupationally exposed to low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Maffei, Francesca; Angelini, Sabrina; Forti, Giorgio Cantelli; Violante, Francesco S.; Lodi, Vittorio; Mattioli, Stefano; Hrelia, Patrizia

    2004-01-01

    Chromosome aberrations frequency was estimated in peripheral lymphocytes from hospital workers occupationally exposed to low levels of ionizing radiation and controls. Chromosome aberrations yield was analyzed by considering the effects of dose equivalent of ionizing radiation over time, and of confounding factors, such as age, gender and smoking status. Frequencies of aberrant cells and chromosome breaks were higher in exposed workers than in controls (P=0.007, and P=0.001, respectively). Seven dicentric aberrations were detected in the exposed group and only three in controls, but the mean frequencies were not significantly different. The dose equivalent to whole body of ionizing radiation (Hwb) did appear to influence the spectrum of chromosomal aberrations when the exposed workers were subdivided by a cut off at 50 mSv. The frequencies of chromosome breaks in both subgroups of workers were significantly higher than in controls (≤50 mSv, P=0.041; >50 mSv, P=0.018). On the other hand, the frequency of chromatid breaks observed in workers with Hwb >50 mSv was significantly higher than in controls (P=0.015) or workers with Hwb ≤50 mSv (P=0.046). Regarding the influence of confounding factors on genetic damage, smoking status and female gender seem to influence the increase in chromosome aberration frequencies in the study population. Overall, these results suggested that chromosome breaks might provide a good marker for assessing genetic damage in populations exposed to low levels of ionizing radiation

  14. Possibilities of whole-body MRI for investigating musculoskeletal diseases

    International Nuclear Information System (INIS)

    Lenk, S.; Claussen, C.D.; Schlemmer, H.P.; Fischer, S.; Koetter, I.

    2004-01-01

    This contribution outlines possibilities and limitations of whole-body MRI for investigating musculoskeletal diseases. Benefits and drawbacks of the novel whole-body MRI technology are discussed and a possible whole-body MRI sequence protocol for musculoskeletal examinations is proposed. Muscle, joint and bone diseases are discussed in which the application of whole-body MRI may be of advantage. Particularly, polymyositis, muscledystrophy, rheumatoid arthritis, spondylitis ancylosans, multiple trauma, skeletal metastases, multiple myeloma and malignant lymphoma are mentioned. Whole-body MRI opens new advantages for the examination of multifocal musculoskeletal diseases. The clinical benefit of this method for particular diseases has to be evaluated in further studies, however. (orig.) [de

  15. Metabolic turnover of pyridine nucleotides in ascites cells of sarcoma Sa 180 and in the liver tissue of rats before and after ionizing radiation

    International Nuclear Information System (INIS)

    Kunz, K.; Musil, J.

    1979-01-01

    The metabolic turnover of NADP + labeled with 14 C in the ribose moiety of their molecules was determined in the ascites cells of sarcoma Sa 180 and in the rat liver tissue. The half-lives of NAD + and NADP + in the Sa 180 sarcoma cells were 60 mins (NAD + ) and 90 mins (NADP + ), the corresponding values in the liver cells were 80 mins (NAD + ) and 120 mins (NADP + ). Experiments were conducted on animals aimed at ascertaining the time-dependent effect of ionizing radiation on the values of pooled NAD + and NADP + after 0.129 C/kg (500 R) and 0.387 C/kg (1500 R) whole-body irradiation, and the metabolic turnover of these nucleotides 5 h after whole-body irradiation with 0.387 C/kg (1500 R). Exposure to 0.129 C/kg (500 R) whole-body irradiation induced no apparent changes compared with the controls. Within 5 h of irradiation the whole-body dose of 0.387 C/kg (1500 R) produced changes in rat liver cells characterized by a reduction in the nucleotide biological half-lives (NAD + from 80 to 60 mins and NADP + from 120 to 70 mins). No such changes in the pyridine nucleotide turnover were detected in the Sa 180 ascites sarcoma cells. (author)

  16. The study on morphologic alteration of fetal mice and the change of MeCP2 in fetal brain induced by ionizing radiation

    International Nuclear Information System (INIS)

    Chen Feng; Zhang Fengxiang; Tu Yu

    2012-01-01

    Objective: In order to investigate the effect and the possible mechanism of γ-rays on neuro development of fetal brain tissue as bystander effect organ. Methods: pregnant kunming mice were randomly divided into blank control group, 0.5 Gy whole-body exposed group, 0.5 Gy head exposed group, 1.0 Gy whole-body exposed group, 1.0 Gy head exposed group, 2.0 Gy whole-body exposed group and 2.0 Gy head exposed group. The exposed mice were exposed with a vertical single acute dose using 60 Co therapy apparatus on the 9 th day of pregnancy, and cesarean operation were performed to gain fetal mice on the 18 th day of pregnancy. The number, the size, stillbirth, birth defects and abortion, and get fetal brains from live births were observed. Western-blot assay was used to detect the expression of MeCP2 protein. Results: Compared with the blank control group, the rates of stillbirth, birth defects and abortion ascended as the increase of doses; the expression of MeCP2 were upregulated except 0.5 Gy whole-body exposed group, there were no significant differences between groups. Conclusion: When the pregnant mice were exposed to ionizing radiation in the first trimester, bystander effect in fetal brain tissue was induced, within a certain range, the incidence of deterministic effects and stochastic effects ascended as the increase of doses. (authors)

  17. Is ionizing radiation regulated more stringently than chemical carcinogens

    International Nuclear Information System (INIS)

    Travis, C.C.; Pack, S.R.; Hattemer-Frey, H.A.

    1989-01-01

    It is widely believed that United States government agencies regulate exposure to ionizing radiation more stringently than exposure to chemical carcinogens. It is difficult to verify this perception, however, because chemical carcinogens and ionizing radiation are regulated using vastly different strategies. Chemical carcinogens are generally regulated individually. Regulators consider the risk of exposure to one chemical rather than the cumulative radiation exposure from all sources. Moreover, standards for chemical carcinogens are generally set in terms of quantities released or resultant environmental concentrations, while standards for ionizing radiation are set in terms of dose to the human body. Since chemicals and ionizing radiation cannot be compared on the basis of equal dose to the exposed individual, standards regulating chemicals and ionizing radiation cannot be compared directly. It is feasible, however, to compare the two sets of standards on the basis of equal risk to the exposed individual, assuming that standards for chemicals and ionizing radiation are equivalent if estimated risk levels are equitable. This paper compares risk levels associated with current standards for ionizing radiation and chemical carcinogens. The authors do not attempt to determine whether either type of risk is regulated too stringently or not stringently enough but endeavor only to ascertain if ionizing radiation is actually regulated more strictly than chemical carcinogens

  18. Changes in serum 25-hydroxyvitamin D and cholecalciferol after one whole-body exposure in a commercial tanning bed

    DEFF Research Database (Denmark)

    Langdahl, Jacob H; Schierbeck, Louise Lind; Bang, Ulrich Christian

    2012-01-01

    We wanted to evaluate the cutaneous synthesis of 25OHD and cholecalciferol after one whole-body exposure to ultraviolet radiation type B (UVB) in a randomized setup. Healthy volunteers were randomized to one whole-body exposure in a commercial tanning bed with UVB emission (UVB/UVA ratio 1...

  19. Responses of populations of small mammals to ionizing radiation

    International Nuclear Information System (INIS)

    Kitchings, J.T.

    1978-01-01

    Studies on the responses of small mammals to ionizing radiation have, over the past 30 years, documented numerous effects on direct mortality, reproduction, the hemopoietic systems, and radionuclide metabolism. Three general findings have resulted from past efforts: (1) ionizing radiation is a factor in environmental stress, (2) the response of wild small mammals to ionizing radiation is a mosaic of varying radiosensitivities interacting with environmental variables, and (3) one of the most sensitive organismal processes to radiation is reproduction. While an excellent understanding of the biological effects resulting from high or intermediate-level radiation exposures has been developed, this is not the case for effects of low-level doses

  20. Differential effect of ionizing radiation on transcription in repair-deficient and repair-proficient mice

    International Nuclear Information System (INIS)

    Munson, G.P.; Woloschak, G.E.

    1990-01-01

    Experiments were designed to examine in vivo changes in total transcription and in the expression of the c-fos gene following whole-body exposure of mice to JANUS fission-spectrum neutrons. Radiation repair-deficient (wst/wst) and -proficient (wst/., C57BL/6 x C3H F1) mice were exposed to JANUS fission-spectrum neutrons calibrated to deliver a gut dose of 50 cGy. Animals were sacrificed less than 10 or at 60 min postirradiation, and gut tissues were removed for study. Our results revealed that, in repair-proficient mice, an immediate depression (relative to untreated control) in total transcription was evident that continued through 1 h postirradiation. Conversely, radiation-sensitive wst/wst mice displayed doubled transcription levels postirradiation. Expression of c-fos was consistently depressed following radiation exposure in control and wst/wst mice. However, the depression of c-fos mRNA was delayed in wst/wst mice relative to controls. These results demonstrate abnormal regulation of transcription and of c-fos mRNA accumulation in repair-deficient wasted mice following exposure to ionizing radiation. In addition, this work documents rapid total transcriptional depression in normal mice following radiation exposure

  1. Decontamination of pesticide packing using ionizing radiation

    International Nuclear Information System (INIS)

    Duarte, C.L.; Mori, M.N.; Kodama, Yasko; Oikawa, H.; Sampa, M.H.O.

    2007-01-01

    The Brazilian agriculture activities have consumed about 288,000 tons of pesticides per year conditioned in about 107,000,000 packing with weight of approximately 23,000 tons. The discharge of empty plastic packing of pesticides can be an environmental concern causing problems to human health, animals, and plants if done without inspection and monitoring. The objective of this work is to study the ionizing radiation effect in the main pesticides used in Brazil for plastic packing decontamination. Among the commercial pesticides, chlorpyrifos has significant importance because of its wide distribution and extensive use and persistence. The radiation-induced degradation of chlorpyrifos in liquid samples and in polyethylene pack was studied by gamma radiolysis. Packing of high-density polyethylene (HDPE) three layer coextruded, named COEX, contaminated with chlorpyrifos, were irradiated using both a multipurpose Co-60 gamma irradiator and a gamma source with 5000 Ci total activity Gamma cell type. The chemical analysis of the chlorpyrifos was made using a gas chromatography associated to the Mass Spectrometry-GCMS from Shimadzu Model QP 5000. Gamma radiation was efficient for removing chlorpyrifos from the plastic packing, in all studied cases

  2. Decontamination of pesticide packing using ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, C.L. [Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/SP Av. Lineu Prestes 2.242, 05508-900, Sao Paulo, SP (Brazil)], E-mail: clduarte@ipen.br; Mori, M.N.; Kodama, Yasko; Oikawa, H.; Sampa, M.H.O. [Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/SP Av. Lineu Prestes 2.242, 05508-900, Sao Paulo, SP (Brazil)

    2007-11-15

    The Brazilian agriculture activities have consumed about 288,000 tons of pesticides per year conditioned in about 107,000,000 packing with weight of approximately 23,000 tons. The discharge of empty plastic packing of pesticides can be an environmental concern causing problems to human health, animals, and plants if done without inspection and monitoring. The objective of this work is to study the ionizing radiation effect in the main pesticides used in Brazil for plastic packing decontamination. Among the commercial pesticides, chlorpyrifos has significant importance because of its wide distribution and extensive use and persistence. The radiation-induced degradation of chlorpyrifos in liquid samples and in polyethylene pack was studied by gamma radiolysis. Packing of high-density polyethylene (HDPE) three layer coextruded, named COEX, contaminated with chlorpyrifos, were irradiated using both a multipurpose Co-60 gamma irradiator and a gamma source with 5000 Ci total activity Gamma cell type. The chemical analysis of the chlorpyrifos was made using a gas chromatography associated to the Mass Spectrometry-GCMS from Shimadzu Model QP 5000. Gamma radiation was efficient for removing chlorpyrifos from the plastic packing, in all studied cases.

  3. Non-Ionizing Radiation: Nature and Protection

    International Nuclear Information System (INIS)

    Abukasem, E.; Abdemalek, H.; Mosbah, D. S.

    2011-01-01

    Last century, the humanity witnessed a vast development, after the industrial revolution, in many aspects of life. There was a real revolution in world of communications, the electromagnetic waves were produced and used in many applications like wireless communications, radio and television transmissions, information transfer, medical diagnosis and many other useful applications. Non-ionizing radiation, the radiation which has no enough energy to remove an electron from an atom, becomes indispensable life necessity and currently it is a subject of public debate about its effects and hazards on human life and environments. The Arab Atomic Energy Agency recognized this fact and tried to raise the public awareness towards by organizing seminars, workshops and expert meetings in the Arab region in order to study the theoretical and applies aspects of this type of radiation as well as to shed the light on its possible hazards and effects on human life. This booklet came as a result of many expert meetings to be an Arabic simple and comprehensive guide line about the nature of and the different methods of protection from its possible effects and hazards.(author)

  4. Degradation of chlorpyrifos by ionizing radiation

    International Nuclear Information System (INIS)

    Mori, M.N.; Oikawa, H.; Sampa, M.H.O.; Duarte, C.L.

    2006-01-01

    Chlorpyrifos is an organophosphate pesticide commercialized since 1965 and it is now one of the top five commercial insecticides. It is registered for use in over 900 different pesticide formulations in the world. Chlorpyrifos poisoning usually affects many organs of the body, such as the central and peripheral nervous system, eyes, respiratory system, and the digestive tract. Depending on the pesticide formulation and type of application, chlorpyrifos residues may be detectable in water, soil, and on the surfaces from months to years. This paper presents preliminary studies of the removal of chlorpyrifos by exposition to ionizing radiation, to be applied in pesticide container decontamination. Samples containing various concentrations of chlorpyrifos in acetonitrile were irradiated with absorbed doses varying from 5 to 50 kGy, using a 60 Co gamma-source with 5,000 Ci activity (Gamma cell type). The chemical analysis of the chlorpyrifos and the by-products resulted from the radiolytic degradation were made using a gas chromatography associated to mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GCFID). (author)

  5. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities

    Directory of Open Access Journals (Sweden)

    Sebastian Diegeler

    2017-06-01

    Full Text Available Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.

  6. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities.

    Science.gov (United States)

    Diegeler, Sebastian; Hellweg, Christine E

    2017-01-01

    Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.

  7. Quality assurance in ionizing radiation application

    International Nuclear Information System (INIS)

    Rastkhah; Nasser.

    1995-01-01

    Quality assurance is a mean for controlling all the activities within an organization which affect the quality of the product or service. A series of international standards have been prepared which incorporate the accumulated knowledge and provide guidance on what activities within an organization should be controlled. A proposal on a quality assurance system to be implemented in ionizing radiation application centers is the primary concern of Atomic Energy Organization of Iran is represented. The Objectives were identification of quality related problems ;Comply with national and international requirements ;Controlling all activities within an organization which affects the quality and assurance of maintaining the quality within organization. In performing protection measures, risk, cost, benefit consideration, cause of problems and the classic solution are summarized in four chapters

  8. The natural sources of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Maximilien, R.

    1982-01-01

    Natural sources of ionizing radiation include external sources (cosmic rays, natural radionuclides present in the crust of the earth and in building materials) and internal sources (naturally occuring radionuclides in the human body, especially the potassium 40 and radon short lived decay products). The principal ways of human exposure to theses different components in ''normal'' areas are reviewed; some examples of the variability of exposure with respect to different regions of the world or the habits of life are given. Actual estimations of the doses delivered to the organs are presented; for the main contributors to population exposure, the conversion into effective dose equivalent has been made for allowing a better evaluation of their respective importance [fr

  9. Untargeted effects of ionizing radiation: Implications for radiation pathology

    International Nuclear Information System (INIS)

    Wright, Eric G; Coates, Philip J

    2006-01-01

    The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that have received damaging signals produced by irradiated cells (radiation-induced bystander effects) or that are the descendants of irradiated cells (radiation-induced genomic instability). Radiation-induced genomic instability is characterized by a number of delayed adverse responses including chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. Whilst the majority of studies to date have used in vitro systems, some adverse non-targeted effects have been demonstrated in vivo. However, at least for haemopoietic tissues, radiation-induced genomic instability in vivo may not necessarily be a reflection of genomically unstable cells. Rather the damage may reflect responses to ongoing production of damaging signals; i.e. bystander responses, but not in the sense used to describe the rapidly induced effects resulting from direct interaction of irradiated and non-irradiated cells. The findings are consistent with a delayed and long-lived tissue reaction to radiation injury characteristic of an inflammatory response with the potential for persisting bystander-mediated damage. An important implication of the findings is that contrary to conventional radiobiological dogma and interpretation of epidemiologically-based risk estimates, ionizing radiation may contribute to malignancy and particularly childhood leukaemia by promoting initiated cells rather than being the initiating agent. Untargeted mechanisms may also contribute to other pathological consequences

  10. Low Dose Ionizing Radiation Modulates Immune Function

    International Nuclear Information System (INIS)

    Nelson, Gregory A.

    2016-01-01

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a 'Th2 polarized' immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in

  11. Low Dose Ionizing Radiation Modulates Immune Function

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gregory A. [Loma Linda Univ., CA (United States)

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  12. Influence of ionizing radiation on the plasma membrane proteins

    International Nuclear Information System (INIS)

    Dreval', V.I.

    1992-01-01

    The effect of ionizing radiation on the meat cattle thymocytes plasma membranes was studied. Using fluorescence quenching technique the effect of irradiation of proteins conformation was investigated. The influence of ionizing radiation on the plasma membranes was shown to be followed by changes of the protein structure-dynamic organization

  13. Ionizing radiation sensitivity of DNA polymerase lambda-deficient cells.

    NARCIS (Netherlands)

    Vermeulen, C.; Bertocci, B.; Begg, A.C.; Vens, C.

    2007-01-01

    Ionizing radiation induces a diverse spectrum of DNA lesions, including strand breaks and oxidized bases. In mammalian cells, ionizing radiation-induced lesions are targets of non-homologous end joining, homologous recombination, and base excision repair. In vitro assays show a potential involvement

  14. Study of genomic instability induced by low dose ionizing radiation

    International Nuclear Information System (INIS)

    Seoane, A.; Crudeli, C.; Dulout, F.

    2006-01-01

    The crews of commercial flights and services staff of radiology and radiotherapy from hospitals are exposed to low doses of ionizing radiation. Genomic instability includes those adverse effects observed in cells, several generations after the exposure occurred. The purpose of this study was to analyze the occurrence of genomic instability by very low doses of ionizing radiation [es

  15. Clinical practitioners' knowledge of ionizing radiation doses in ...

    African Journals Online (AJOL)

    Questions on radiosensitivity of different organs, imaging modalities that use ionizing radiation and considerations for the choice of ionizing radiation (IR) based examinations were included. Participants were also asked for their preferred methods of filling any knowledge gap on IR issues. Responses were presented in ...

  16. Protective effects of melatonin on damage of thymocytes in mice induced by ionizing radiation

    International Nuclear Information System (INIS)

    Zhang Xuan; Wang Zhenqi; Liu Yang; Gong Shouliang; Zhang Ming; Liu Shuzheng

    2004-01-01

    Objective: To explore the effects of melatonin (MLT) on the damage of mouse thymocytes in vivo induced by ionizing radiation and its mechanism. Methods: The exogenous MLT was given to Kunming mice to establish the animal models of single and successive administration of MLT through intraperitoneal injection before whole-body irradiation with 1 Gy X-rays. For single administration of MLT, the apoptotic body percentage (ABP) and DNA lytic rate (DLR) in the thymocytes were determined with flow cytometry and fluorospectrophotometry, respectively, 12 h after irradiation. For successive administration of MLT, 3 H-TdR incorporative rate (HTIR ) was determined 24 h after irradiation. Results: The number of thymocytes in single administration group was significantly lower than that in the sham-irradiation group 12 h after irradiation with 1 Gy X-rays (P -1 MLT group was significantly higher, while the ABP and DLR were significantly lower than those in 0 mg·kg -1 MLT group (simple irradiation, P -1 MLT were significantly higher than that in 0 mg·kg -1 MLT group (P -1 MLT group was also significantly higher (P<0.05). Conclusion: The administration of exogenous MLT before irradiation can decrease the damage of mouse thymocytes induced by ionizing radiation, and has the protective effect on immune functions in mice. (authors)

  17. Whole-body nanoparticle aerosol inhalation exposures.

    Science.gov (United States)

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-05-07

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is sampling flowrate (m(3)/min), and t is the sampling

  18. Optical Imaging of Ionizing Radiation from Clinical Sources.

    Science.gov (United States)

    Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan

    2016-11-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. DNA damage caused by ionizing radiation

    International Nuclear Information System (INIS)

    Sachs, R.K.; Peili Chen; Hahnfeldt, P.J.; Klatky, L.R.

    1992-01-01

    A survey is given of continuous-time Markov chain models for ionizing radiation damage to the genome of mammalian cells. In such models, immediate damage induced by the radiation is regarded as a batch-Poisson arrival process of DNA double-strand breaks (DSBs). Enzymatic modification of the immediate damage is modeled as a Markov process similar to those described by the master equation of stochastic chemical kinetics. An illustrative example is the restitution/complete-exchange model. The model postulates that, after being induced by radiation, DSBs subsequently either undergo enzymatically mediated restitution (repair) or participate pairwise in chromosome exchanges. Some of the exchanges make irremediable lesions such as dicentric chromosome aberrations. One may have rapid irradiation followed by enzymatic DSB processing or have prolonged irradiation with both DSB arrival and enzymatic DSB processing continuing throughout the irradiation period. Methods for analyzing the Markov chains include using an approximate model for expected values, the discrete-time Markov chain embedded at transitions, partial differential equations for generating functions, normal perturbation theory, singular perturbation theory with scaling, numerical computations, and certain matrix methods that combine Perron-Frobenius theory with variational estimates. Applications to experimental results on expected values, variances, and statistical distributions of DNA lesions are briefly outlined. Continuous-time Markov chains are the most systematic of those radiation damage models that treat DSB-DSB interactions within the cell nucleus as homogeneous (e.g., ignore diffusion limitations). They contain virtually all other relevant homogeneous models and semiempirical summaries as special cases, limiting cases, or approximations. However, the Markov models do not seem to be well suited for studying spatial dependence of DSB interactions. 51 refs., 5 figs

  20. [Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications].

    Science.gov (United States)

    Wideł, Maria; Przybyszewski, Waldemar; Rzeszowska-Wolny, Joanna

    2009-08-18

    It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the "bystander effect" or "radiation-induced bystander effect" (RIBE). This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy), but also after conventional irradiation (X-rays, gamma rays) at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not definitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effect may have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation field and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The bystander effect may be a

  1. Radiation-induced bystander effect: The important part of ionizing radiation response. Potential clinical implications

    Directory of Open Access Journals (Sweden)

    Maria Wideł

    2009-08-01

    Full Text Available It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the “bystander effect” or “radiation-induced bystander effect” (RIBE. This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy, but also after conventional irradiation (X-rays, gamma rays at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not defi nitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effectmay have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation fi eld and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The

  2. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing micro-organisms. Eradi cation techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation-based sterilization processes. Due to their resistance to a variety of perturbations, the nonspore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-sporeforming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/m2), and desiccation (years). These resistive phenotypes of Deinococcus enhance the

  3. Whole body interaction with public displays

    CERN Document Server

    Walter, Robert

    2017-01-01

    This book develops valuable new approaches to digital out-of-home media and digital signage in urban environments. It offers solutions for communicating interactive features of digital signage to passers-by. Digital out-of-home media and digital signage screens are becoming increasingly interactive thanks to touch input technology and gesture recognition. To optimize their conversion rate, interactive public displays must 1) attract attention, 2) communicate to passers-by that they are interactive, 3) explain the interaction, and 4) provide a motivation for passers-by to interact. This book highlights solutions to problems 2 and 3 above. The focus is on whole-body interaction, where the positions and orientations of users and their individual body parts are captured by specialized sensors (e.g., depth cameras). The book presents revealing findings from a field study on communicating interactivity, a laboratory on analysing visual attention, a field study on mid-air gestures, and a field study on using mid-air...

  4. Whole-body 35-GHz security scanner

    Science.gov (United States)

    Appleby, Roger; Anderton, Rupert N.; Price, Sean; Sinclair, Gordon N.; Coward, Peter R.

    2004-08-01

    A 35GHz imager designed for Security Scanning has been previously demonstrated. That imager was based on a folded conical scan technology and was constructed from low cost materials such as expanded polystyrene and printed circuit board. In conjunction with an illumination chamber it was used to collect indoor imagery of people with weapons and contraband hidden under their clothing. That imager had a spot size of 20mm and covered a field of view of 20 x 10 degrees that partially covered the body of an adult from knees to shoulders. A new variant of this imager has been designed and constructed. It has a field of view of 36 x 18 degrees and is capable of covering the whole body of an adult. This was achieved by increasing the number of direct detection receivers from the 32 used in the previous design to 58, and by implementing an improved optical design. The optics consist of a front grid, a polarisation device which converts linear to circular polarisation and a rotating scanner. This new design uses high-density expanded polystyrene as a correcting element on the back of the front grid. This gives an added degree of freedom that allows the optical design to be diffraction limited over a very wide field of view. Obscuration by the receivers and associated components is minimised by integrating the post detection electronics at the receiver array.

  5. Changes in plasma (hydrocortisone) levels after whole-body irradiation with ultraviolet rays of defined wavelengths

    International Nuclear Information System (INIS)

    Bartelt, R.N.

    1983-01-01

    One hour after whole-body irradiation with a radiation source having its maximum of emission in the UVB range, at a radiation dose of 0.44 J/cm 2 , a significant fall in the mean values of the blood plasma hydrocortisone level (p [de

  6. Whole-body γ-irradiation effects on catecholamine concentration in animal tissues

    International Nuclear Information System (INIS)

    Makashev, Zh.K.; Uteshev, T.A.; Abylaev, Zh. A.; Zhurnist, A.G.

    2003-01-01

    On the whole-body gamma-radiation activity in the exchanges of catecholamines (adrenalin and non-adrenalin) and their predecessors (dopamine and DOPA) in the rats tissue organism, indicate the infringement of irradiated animals in different links of biological synthesis the bio-gen amines in different phases of the radiation: DOPA→dopamine, dopamine→adrenalin, adrenalin→non-adrenalin. (author)

  7. Effects of prenatal exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Miller, R.W.

    1990-01-01

    Prenatal exposure to ionizing radiation induces some effects that are seen at birth and others that cannot be detected until later in life. Data from A-bomb survivors in Hiroshima and Nagasaki show a diminished number of births after exposure under 4 wk of gestational age. Although a wide array of congenital malformations has been found in animal experimentation after such exposure to x rays, in humans only small head size (exposure at 4-17 wk) and mental retardation (exposure primarily at 8-15 wk) have been observed. In Hiroshima, small head size occurred after doses of 0.10-0.19 Gy or more, and an excess of mental retardation at 0.2-0.4 Gy or more. Intelligence test scores were reduced among A-bomb survivors exposed at 8-15 wk of gestational age by 21-29 IQ points per Gy. Other effects of in-utero exposure to atomic radiation include long-lasting complex chromosome abnormalities

  8. Effects of prenatal exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.W. (National Cancer Institute, Bethesda, MD (USA))

    1990-07-01

    Prenatal exposure to ionizing radiation induces some effects that are seen at birth and others that cannot be detected until later in life. Data from A-bomb survivors in Hiroshima and Nagasaki show a diminished number of births after exposure under 4 wk of gestational age. Although a wide array of congenital malformations has been found in animal experimentation after such exposure to x rays, in humans only small head size (exposure at 4-17 wk) and mental retardation (exposure primarily at 8-15 wk) have been observed. In Hiroshima, small head size occurred after doses of 0.10-0.19 Gy or more, and an excess of mental retardation at 0.2-0.4 Gy or more. Intelligence test scores were reduced among A-bomb survivors exposed at 8-15 wk of gestational age by 21-29 IQ points per Gy. Other effects of in-utero exposure to atomic radiation include long-lasting complex chromosome abnormalities.

  9. Ionizing radiations: medical and industrial applications

    International Nuclear Information System (INIS)

    Vidal, H.

    1994-01-01

    Medical diagnosis with X-rays is the best known use of ionizing radiations on account of its wide diffusion (about 57 500 units in France). Other medical applications of artificial radionuclides involving a smaller number of installations are also well known, i.e. gamma teletherapy (167 units), brachytherapy (119 units) or therapy using unsealed sources (257 units). The industrial uses of ionising radiation, the diversity of which is very large, are generally less well known. The use of X- and gamma rays for non-destructive testing or food preservation and the use of tracers have some notoriety, but few people know that radioactive sources are involved in the measurement of parameters controlling industrial processes. The number of persons authorized to hold, use and/or sell artificial radionuclides amounts to about 4 800, all applications included. Approximately 650 of them are involved in therapy and 500 in medical research. The aim of this paper, which is not exhaustive, is to review a few typical applications of radionuclides both in the medical and industrial fields. It also supplies data both on the number of people authorized to use each technique and the radionuclides involved. (author). 10 tabs

  10. Radiation protection training for users of ionizing radiation in Hungary

    International Nuclear Information System (INIS)

    Pellet, S.; Giczi, F.; Elek, R.; Temesi, A.; Csizmadia, H.; Sera, E.

    2012-01-01

    According to the current and previous regulation related to the safety use of ionizing radiation, the personnel involved must obtain special qualification in radiation protection. In Hungary the radiation protection training are performed by appropriately certified training centers on basic, advanced and comprehensive levels. Certification of the training centers is given by the competent radiological health/radiation protection authority. The office of the Chief Medical Officer is the certifying authority for advanced and comprehensive levels training, as well as competent Regional Radiological Health Authority is responsible for basic level courses. The content and length of courses are specified in the regulation for all three levels of industrial, laboratory and medical users, in general. Some of the universities, technical and medical oriented are certified for advanced training for students as gradual course. Recently in Hungary there are 47 certified training centers for advanced and comprehensive courses, where the trainers should have a five years job experience in radiation protection and successful completion of comprehensive level course in radiation protection. (authors)

  11. Environmental Ionizing Radiation Survey of Quarry Sites in Ilorin ...

    African Journals Online (AJOL)

    NJABS

    Besides, human exposure to radiations may increase if they live in areas with radiation doses above normal background value. Hence, this study involves the determination of background ionizing radiation levels around quarry sites in the industrial area of Ilorin with a view to assessing whether the radiation level is within ...

  12. Possibilities to reduce the effect of ionizing radiation by interaction of two types of radiation into a matter: ionized and non-ionized radiation

    International Nuclear Information System (INIS)

    Tanvir

    2007-01-01

    Full text: At present it has been accepted that ionized radiation can cause biological effects on the human body and the only way of preventing this effect, is by shielding the source of radiation by absorbing materials. On the other hand, the technology of non-ionizing radiation is upgraded. The canalization of radiation through the wave-guide based structures and optical fiber is well established. This reminds us that passing through benzene non-ionized radiation give the 'Raman' effect, which can ensure the secondary generation of non-ionized radiation with the wave length of nanometer and so far. These types of non-ionized radiation can easily be correlated with the gamma radiation, which is ionized. We know that high-energized photon usually interacts with matter and reduces its energy to the matter and generate electro-magnetic waves into the molecules of the matter. It is also well known that through the wave-guide based structures and optical fiber; the path of energy distribution of photon is likely to be optical energetic modes. If two types of photon from two types of radiation (ionized and non-ionized) interact with matter and pass through the optical fiber, they can generate optical modes with various wavelengths and phase velocities. With 'Raman' effect we can generate secondary electromagnetic waves of nanometer; as well as optical modes into the optical fiber. These optical modes from two types of radiation with various phase velocities, having the similar wavelength, can decrease or accelerate some modes. On the view of signal distribution, we can assume that if two similar signals pass through the circuit with phase difference 180P 0 P, then the result posses no signal. We are also reminded that photon of γ - radiation can spread from 0 deg. to 180 deg. C, where the 'Compton' loss of radiation is minimum. In view of the electro-magnetic theory of Maxwell we can assume the energetic field of optical modes, which are generated into the optical

  13. The Effects of Ionizing Radiation on the Oral Cavity.

    Science.gov (United States)

    de Barros da Cunha, Sandra Ribeiro; Ramos, Pedro Augusto Mendes; Nesrallah, Ana Cristina Aló; Parahyba, Cláudia Joffily; Fregnani, Eduardo Rodrigues; Aranha, Ana Cecília Corrêa

    2015-08-01

    The aim of this study is to present a literature review on the effects of the ionizing radiation from radiotherapy treatment on dental tissues. Among the effects of increasing global life expectancy and longevity of the teeth in the oral cavity, increasing rates of neoplastic diseases have been observed. One of the important treatment modalities for head and neck neoplastic diseases is radiotherapy, which uses ionizing radiation as the main mechanism of action. Therefore, it is essential for dentists to be aware of the changes in oral and dental tissues caused by ionizing radiation, and to develop treatment and prevention strategies. In general, there is still controversy about the effects of ionizing radiation on dental structures. However, qualitative and quantitative changes in saliva and oral microbiota, presence of oral mucositis and radiation-related caries are expected, as they represent the well-known side effects of treatment with ionizing radiation. Points that still remain unclear are the effects of radiotherapy on enamel and dentin, and on their mechanisms of bonding to contemporary adhesive materials. Ionizing radiation has shown important interaction with organic tissues, since more deleterious effects have been shown on the oral mucosa, salivary glands and dentin, than on enamel. With the increasing number of patients with cancer seeking dental treatment before and after head and neck radiotherapy, it is important for dentists to be aware of the effects of ionizing radiation on the oral cavity.

  14. Production of multimedia textbook: ionizing radiation and radiation protection

    International Nuclear Information System (INIS)

    Hola, O.; Holy, K.

    2005-01-01

    In our contribution we want to outline our plan of actions to be carried out for the creation of the first multimedia internet textbook in Slovakia in the field of ionizing radiation and radiation protection. In particular we want to describe first steps that have been performed at its realisation. This textbook would be applicable to the full-time study as well as to distance learning at traditional universities and technical universities. It will also be usable for various forms of in-service training by e-learning. Our objective is to create a modem internet textbook in radiation protection, of which production will be co- ordinated with other European Union countries. The output of our project -the multimedia textbook -will be available to all students at our university's servers and other users will have CDs at their disposal. We propose the use of this multimedia didactic means also in various forms of the distance e-learning. The main motivation for the implementation of distance courses is the necessity to update knowledge, skills and qualification in our contemporary rapidly developing world. The distance e-learning form of education can solve also the problem with the acquisition of the professional qualifications for the work with ionizing radiation. This is the reason for usage of the mentioned textbook not only as the fundamental and unified textbook for the students of universities, but also as the study material for the civil servants responsible for radiation protection, for in-service workers and providers of the professional training. (authors)

  15. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I.

    1982-04-01

    Of the important health effects of ionizing radiation, three important late effects - carcinogenesis, teratogenesis and mutagenesis are of greatest concern. This is because any exposure, even at low levels, carries some risk of such deleterious effects. As the dose of radiation increases above very low levels, the risk of health effects increases. Cancer-induction is the most important late somatic effect of low-dose ionizing radiation. Solid cancers, rather than leukemia, are principal late effects in exposed individuals. Tissues vary greatly in their susceptibility to radiation carcinogenesis. The most frequently occurring radiation-induced cancers in man include, in decreasing order of susceptibility: the female breast, the thyroid gland, the blood-forming tissues, the lung, certain organs of the gastrointestinal tract, and the bones. A number of biological and physical factors affect the cancer risk, such as age, sex, life-style, LET, and RBE. Despite uncertainty about low-level radiation risks, regulatory and advisory bodies must set standards for exposure, and individuals need information to be able to make informed judgments for themselves. From the point of view of the policy maker, the overriding concern is the fact that small doses of radiation can cause people to have more cancers than would otherwise be expected. While concern for all radiation effects exists, our human experience is limited to cancer-induction in exposed populations. This discussion is limited to cancer risk estimation and decision-making in relation to the health effects on populations of exposure to low levels of ionizing radiation. Here, low-level radiation will refer to yearly whole-body doses up to 5 rems or 0.05 Sv, or to cumulative doses up to 50 rems or 0.5 Sv from low-LET radiation and from high-LET radiation. (ERB)

  16. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1982-04-01

    Of the important health effects of ionizing radiation, three important late effects - carcinogenesis, teratogenesis and mutagenesis are of greatest concern. This is because any exposure, even at low levels, carries some risk of such deleterious effects. As the dose of radiation increases above very low levels, the risk of health effects increases. Cancer-induction is the most important late somatic effect of low-dose ionizing radiation. Solid cancers, rather than leukemia, are principal late effects in exposed individuals. Tissues vary greatly in their susceptibility to radiation carcinogenesis. The most frequently occurring radiation-induced cancers in man include, in decreasing order of susceptibility: the female breast, the thyroid gland, the blood-forming tissues, the lung, certain organs of the gastrointestinal tract, and the bones. A number of biological and physical factors affect the cancer risk, such as age, sex, life-style, LET, and RBE. Despite uncertainty about low-level radiation risks, regulatory and advisory bodies must set standards for exposure, and individuals need information to be able to make informed judgments for themselves. From the point of view of the policy maker, the overriding concern is the fact that small doses of radiation can cause people to have more cancers than would otherwise be expected. While concern for all radiation effects exists, our human experience is limited to cancer-induction in exposed populations. This discussion is limited to cancer risk estimation and decision-making in relation to the health effects on populations of exposure to low levels of ionizing radiation. Here, low-level radiation will refer to yearly whole-body doses up to 5 rems or 0.05 Sv, or to cumulative doses up to 50 rems or 0.5 Sv from low-LET radiation and from high-LET radiation

  17. New biomaterials obtained with ionizing radiations

    International Nuclear Information System (INIS)

    Gaussens, G.

    1982-01-01

    In present-day surgery and medicine use is increasingly made of materials foreign to the organism in order to remedy a physiological defect either temporarily or permanently. These materials, known as ''biomaterials'', take widely varying forms: plastics, metals, cements, ceramics, etc. Biomaterials can be classified in accordance with their function: (a) Devices designed to be fully implanted in the human body in order to replace an anatomical structure, either temporarily or permanently, such as articular, vascular, mammary and osteosynthetic prostheses, etc.; (b) Devices having prolonged contact with mucous tissues, such as intra-uterine devices, contact lenses, etc.; (c) Extracorporeal devices designed to treat blood such as artificial kidneys, blood oxygenators, etc.; and (d) Biomaterials can also be taken to mean chemically inert, implantable materials designed to produce a continuous discharge of substances containing pharmacologically active molecules, such as contraceptive devices or ocular devices (for treating glaucoma). The two most important criteria for a biomaterial are those of biological compatibility and biological functionality. Techniques using ionizing radiation as an energy source provide an excellent tool for synthesizing or modifying the properties of plastics. The properties of polymers can be improved, new polymers can be synthesized without chemical additives (often the cause of incompatibility with tissue or blood) and without increased temperature, and polymerization can be induced in the solid state using deep-frozen monomers. Also, radiation-induced modifications in polymers can be applied to semi-finished or finished products. Examples are also given of marketed biomaterials that have been produced using radiation chemistry techniques

  18. Obtention of gelatin biopolymers by ionizing radiation

    International Nuclear Information System (INIS)

    Takinami, Patricia Yoko Inamura

    2014-01-01

    The gelatin (Gel) is a biocompatible and biodegradable biopolymer, which naturally forms semi-solid colloids or hydrogels in aqueous solutions. As a hydrophilic polymer, the Gel has structural and physico-mechanical properties that distinguish it from synthetic hydrophilic polymers. The study of these properties led to the development of the present work. Thus, Gel-based films and hydrogels were developed using ionizing radiation technology by different techniques: irradiation with 60 Co, electron beam (EB) and/or pulsed EB. The Gel based-films enriched with different additives, such as glycerol (GLY), polyvinyl alcohol (PVA), butylated hydroxytoluene (BHT), acrylamide and/or vegetal fiber, were irradiated with doses from 10 to 60 kGy, depending on the additive; some parameters like mechanical properties, color, and water absorption were analyzed. In the radio-induced synthesis of GEL nanohydrogels, polyethylene glycol (PEG) and the mixture (MIX) of additives, PEG and GEL, the size, molar mass and surface morphology of the nanohydrogels were analyzed. There was a significant increase of gel fraction with increase of the radiation dose for the GEL/fiber samples. The GEL based-films with 10% PVA irradiated at 20 kGy showed the highest puncture strength. The addition of antioxidant BHT affected on some GEL based-films properties on applied conditions. Regarding the nanohydrogels, there was a decrease of hydrodynamic radius of MIX irradiated with 60 Co from 68 ± 25 nm (2 kGy) to 35 ± 4 nm (5 kGy). The radiation proved to be a convenient tool in the modification of polymeric materials for both, GEL films and hydrogels. (author)

  19. Dosimetric analysis for photon and electron beams in Whole body irradiation

    International Nuclear Information System (INIS)

    Hurtado G, M.

    1998-01-01

    To initiate the Whole body irradiation as an alternative for the treatment of the hematological diseases, leukemia and assistant for the osseous marrow transplantation, it may be taken account the application of International Protocols about control and quality assurance. It is established the intercomparison by the different dosimetric methods: cylindrical ionization chambers and parallel plane, radiographic emulsion film, semiconductor diodes (Mosfet transistors) and TLD-100 thermoluminescent crystals, obtained measurements for 140 x 140 cm 2 fields and large distances 340 cm respect conventional fields in Radiotherapy. The in vitro dosimetry was realized at the Universal Anthropomorphic puppet Alderson Rando basically with the cylindrical crystals (1 mm diameter) of TLD-100 lithium fluoride. It was obtained the dose value with a 0.6 cm 3 cylindrical ionization chamber and the Farmer electrometer for Whole body irradiation (ICT) with photons for electrons and were obtained values with the Markus plane parallel camera. Knowing the dose rate value to the source-surface distance DFS= 80 cm, it was calibrated the crystals with the reference radiation beam of 60 Co for obtaining the response curve: Dose vs. Tl lecture. It was characterized the 10 % of the total population for 300 crystals for applying the statistics corresponding. The luminescence curve obtained of Gaussian form was considered satisfactory by its stability during the pre-anneal lecture and anneal process, getting the main peak lecture at 300 Centigrade according to assigned parameters at lecture equipment TLD Harshaw model 4500. The results indicate the functional dependence with the distance DFS= 340 cm for the following depth PPD, the relations TMR and TPR, the TAR is not calculated by the increment of the dispersion in air. The penumbra increment indicates an increase of the radiation field respect of luminous field. The dispersion angle q 1 respect at the field central axis was determined and was

  20. Estimation of the contribution of ionization and excitation to the lethal effect of ionizing radiation

    International Nuclear Information System (INIS)

    Petin, V.G.; Komarov, V.P.

    1982-01-01

    A simple theoretical model is proposed for estimating the differential contribution of ionization and excitation to the lethal effect of ionizing radiation. Numerical results were obtained on the basis of published experimental data on the ability of bacterial cells Escherichia coli to undergo photoreactivation of radiation-induced damage. It was shown that inactivation by excitation may be highly significant for UV-hypersensitive cells capable of photoreactivation; inactivation by excitation increased with the energy of ionizing radiation and the volume of irradiated suspensions. The data are in qualitative agreement with the assumption of a possible contribution of the UV-component of Cerenkov radiation to the formation of excitations responsible for the lethal effect and the phenomenon of photoreactivation after ionizing radiation. Some predictions from the model are discussed. (orig.)

  1. Administration of ionizing radiation to human subjects in medical research

    International Nuclear Information System (INIS)

    1985-01-01

    Any administration of ionizing radiation to human subjects for the purposes of diagnostic or therapeutic research involving either irradiation or the administration of radionuclides, should be undertaken only after approval by an institutional ethics committee. The ethics committee should obtain advice from a person experienced in radiation protection before granting approval. The research proposal must conform to regulatory requirements relating to the use of ionizing radiation

  2. Surface and Bulk Nanostructuring of Polymers Using Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Güven, O.; Barsbay, M.; Ateş,; Akbulut, M. [Hacettepe University, Department of Chemistry, Ankara (Turkey)

    2009-07-01

    Ionizing radiation has long been known tobe a powerful tool in modifying and controlled the properties, forms and eventually end-uses of polymeric materials for a variety of applications. Industrial applications are full of successful examples of macro scale, bulk property modifications by radiation. Extremely short wavelength of ionizing radiation however, makes it an important and useful tool in creating very small size structures in polymers.

  3. Biological effects of the ionizing radiation. Press breakfast

    International Nuclear Information System (INIS)

    Flury-Herard, A.; Boiteux, S.; Dutrillaux, B.; Toledano, M.

    2000-06-01

    This document brings together the subjects discussed during the Press breakfast of 29 june 2000 on the biological effects of the ionizing radiations, with scientists of the CEA and the CNRS. It presents the research programs and provides inquiries on the NDA operating to introduce the NDA damages by ionizing radiations, the possible repairs and the repair efficiency facing the carcinogenesis. Those researches allow the scientists to define laws on radiation protection. (A.L.B.)

  4. Radiation damage to tetramethylsilane and tetramethylgermanium ionization chambers

    International Nuclear Information System (INIS)

    Hoshi, Y.; Higuchi, M.; Oyama, K.

    1994-01-01

    Two detector media suitable for a warm liquid, ionization chamber filled with tetramethylsilane (TMS) and tetramethylgermanium (TMG) were exposed to γ radiation form a 60 Co source up to dose 579 Gray and 902 Gray, respectively. The electron lifetimes and the free ion yields were measured as a function of accumulated radiation dose. A similar behavior of the electron lifetimes and the free ion yields with increasing radiation does was observed between the TMS and TMG ionization chambers

  5. Surface and Bulk Nanostructuring of Polymers Using Ionizing Radiation

    International Nuclear Information System (INIS)

    Güven, O.; Barsbay, M.; Ateş; Akbulut, M.

    2009-01-01

    Ionizing radiation has long been known tobe a powerful tool in modifying and controlled the properties, forms and eventually end-uses of polymeric materials for a variety of applications. Industrial applications are full of successful examples of macro scale, bulk property modifications by radiation. Extremely short wavelength of ionizing radiation however, makes it an important and useful tool in creating very small size structures in polymers

  6. Non controlled effect of ionizing radiations : involvement for radiation protection

    International Nuclear Information System (INIS)

    Little, J. B.

    2005-01-01

    It is widely accepted that damage to DNA is the critical event on irradiated cells, and that double strand breaks are the primary DNA lesions responsible for the biological effects of ionizing radiation. This has lead to the long standing paradigm that these effects, be they cytotoxicity, mutagenesis or malignant transformation, occur in irradiated cells as a consequences of the DNA damage they incur. Evidence has been accumulating over the past decade, however, to indicate that radiation may induce effects that ar not targeted to the irradiated cells itself. Two non-targeted effects will be described in this review. The first, radiation-induced genomic instability, is a phenomenon whereby signals are transmitted to the progeny of the irradiated cell over many generations, leading to the occurrence of genetic effects such as mutations and chromosomal aberrations arising in the distant descendants of the irradiated cell. Second, the bystander effect, is a phenomenon whereby irradiated cells transmit damage signals to non-irradiated cells in a mixed population, leading to genetic effects arising in these bystander cells that received no radiation exposure. the model system described in this review involves dense monolayer cultures exposed to very low fluences of alpha particles. The potential implications of these two phenomena for the analysis of the risk to the human population of exposure to low levels of ionising radiation is discussed. (Author) 111 refs

  7. Occupational exposure of fathers to ionizing radiation and the risk of leukaemia in offspring

    International Nuclear Information System (INIS)

    McLaughlin, J.R.; Clarke, E.A.; Anderson, T.W.; King, W.

    1992-08-01

    An epidemiologic study was performed to determine whether there was an association between childhood leukaemia and the occupational exposure of fathers in the nuclear industry to ionizing radiation prior to the child's conception. The study employed a case-control design. Children with cancer ('cases') and children who did not develop cancer ('controls') were compared with respect to their exposure history. The cases, which occurred from 1950 to 1988, consisted of children aged 0 to 14 years who died from or were diagnosed with leukaemia and were born to mothers who lived near an operating nuclear facility in Ontario. Eight controls were matched to each case according to date of birth and mother's residence. There were 112 cases and 890 controls (six controls died before the development of the associated case's leukaemia). Data on the occupational exposure of the 1002 fathers were obtained from the Canadian National Dose Registry (NDR) and examination of employer records. Links to the NDR were found for 95 fathers. For each father doses were obtained regarding whole body external dose, tritium dose, and (for uranium miners) internal exposures to the lungs due to radon and radon daughters. Radiation exposures were estimated (a) over the father's lifetime before the child's conception; (b) during the six months prior to the child's conception; (c) during the three months prior to the child's conception; and (d) over the father's lifetime, ending in the month of the child's diagnosis. There was no evidence of an elevated leukaemia risk in relation to any exposure period or exposure type, and there was no apparent gradient of effect with increasing radiation dose. It is concluded that there was no association between childhood leukaemia and the occupational exposure of fathers to ionizing radiation prior to conception or diagnosis. Odds ratios were close to 1.0 for all radiation dose categories and occupations except for uranium mining, which had a larger but not

  8. Mortality through 1990 among white male workers at the Los Alamos National Laboratory: Considering exposures to plutonium and external ionizing radiation

    International Nuclear Information System (INIS)

    Wiggs, L.D.; Johnson, E.R.; Cox-DeVore, C.A.; Voelz, G.L.

    1994-01-01

    A cohort mortality study was conducted of 15,727 white men employed by the Los Alamos National Laboratory, a nuclear research and development facility. Some of the workers at this facility have been exposed to various forms of ionizing radiation and other potentially hazardous materials. These analyses focused on whole-body ionizing radiation exposures and internal depositions of plutonium. The results indicated that overall mortality among this cohort is quite low, even after nearly 30 y of follow-up. No cause of death was significantly elevated among plutonium-exposed workers when compared with their unexposed coworkers; however, a rate ratio for lung cancer of 1.78 (95% CI = 0.79-3.99) was observed. A case of osteogenic sarcoma, a type of cancer related to plutonium exposure in animal studies, was also observed. Dose-response relationships for whole-body dose from external ionizing radiation and tritium were observed for cancers of the brain/central nervous system, the esophagus, and Hodgkin's disease. 34 refs., 1 fig., 7 tabs

  9. Densely Ionizing Radiation Effects on the Microenvironment Promote Aggressive Trp53 Null Mammary Carcinomas

    Data.gov (United States)

    National Aeronautics and Space Administration — Densely ionizing radiation is a major component of the space radiation environment and has potentially greater carcinogenic effect compared to sparsely ionizing...

  10. Response of the tumor and organs of the tumor-bearing animal to the action of an ionizing radiation

    International Nuclear Information System (INIS)

    Burlakova, E.B.; Gaintseva, V.D.; Pal'mina, N.P.; Sezina, N.P.

    1977-01-01

    Changes in the antioxigenic activity (AOA) of the liver of the tumor-bearing animals and the tumor have been studied after a single whole-body exposure of animals to a dose of 600 R. AOA of the liver of animals having hepatoma 22-a and Ehrlich ascites tumor (EAT) was found to decrease immediately after irradiation while that of the tumor itself can both increase (hepatoma 22-a) and decrease (EAT). Proceeding from the assumption that AOA is connected with tissue radiosensitivity it is suggested that the observed variations in the response of tumor cells and normal tissue to the action of ionizing radiation should be taken into account when developing the schemes of radiation effect on the tumor

  11. Biodistribution and Radiation Dosimetry of the Integrin Marker 64Cu-BaBaSar-RGD2 Determined from Whole-Body PET/CT in a Non-Human Primate

    Science.gov (United States)

    Liu, Shuanglong; Vorobyova, Ivetta; Park, Ryan; Conti, Peter S.

    2017-10-01

    Introduction: 64Cu-BaBaSar-RGD2 is a positron emission radiotracer taken up by integrin αvβ3, which is overexpressed in many malignancies. The aim of this study was to evaluate the biodistribution of 64Cu-BaBaSar-RGD2 in a non-human primate with positron emission tomography and to estimate the absorbed doses in major organs for human. Materials and methods: Whole-body PET imaging was done in a Siemens Biograph scanner in a male macaque monkey. After an i.v. injection of 13.1–19.7 MBq/kg of 64Cu-BaBaSar-RGD2, whole body scan was collected for a total duration of 180 min. Attenuation and scatter corrections were applied to reconstruction of the whole-body emission scan. After image reconstruction, three-dimensional volumes of interest (VOI) were hand-drawn on the PET transaxial or coronal slices of the frame where the organ was most conspicuous. Time-activity curves for each VOI were obtained, and residence time of each organ was calculated by integration of the time-activity curves. Human absorbed doses were estimated using the standard human model in OLINDA/EXM software. Results: Injection of 64Cu-BaBaSar-RGD2 was well tolerated in the macaque monkey, with no serious tracer-related adverse events observed. 64Cu-BaBaSar-RGD2 was cleared rapidly from the blood pool, with a 12.1-min biological half-time. Increased 64Cu-BaBaSar-RGD2 uptake was observed in the kidneys, and bladder, with mean percentage injected dose (ID%) values at 1 h after injection approximately 35.50 ± 6.47 and 36.89 ± 5.48, respectively. The calculated effective dose was 15.30 ± 2.21 µSv/MBq, and the kidneys had the highest absorbed dose at 108.43 ± 16.41 µGy/MBq using the non-voiding model. For an injected activity of 925 MBq 64Cu for human, the effective dose would be 14.2 ± 2.1 mSv. Discussion: Due to the limitation of the monkey number, we evaluated 64Cu-BaBaSar-RGD2 in the same monkey of three imaging sessions. Measured absorbed doses and effective doses of 64Cu-BaBaSar-RGD2 are

  12. Determination of calibration factors for whole body counting of members of public

    International Nuclear Information System (INIS)

    Vijayagopal, P.; Joyeeta, M.; Garg, S.P.; Vidhani, J.M.; Pendharkar, K.A.

    2005-01-01

    A Mobile Radiological Laboratory (MRL) was recently developed by Internal Dosimetry Division in BARC. In the event of an accident involving release of radioactive substances into the environment, there will be a need to measure both the external and the internal exposure of the population. MRL has been equipped with a variety of radiation detectors, radiation survey meters and a whole body monitor for this purpose. For whole body monitoring of members of public, detector systems are required to be calibrated with the age dependent phantoms of appropriate size for both male and female subjects. In this paper we present the results of the calibration studies carried out with shielded chair whole body counter of MRL using five different age dependent male phantoms representing the age groups of 1,5,10 and 15 year old children and 20 year old adult. Calibration work has been carried out using standard sources of 137 Cs, 133 Ba and 60 Co. (author)

  13. Biological evidence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Mirsch, Johanna

    2017-01-01

    Throughout life, every person is constantly exposed to different types of ionising radiation, without even noticing the exposure. The mean radiation exposure for people living in Germany amounts to approximately 4 mSv per year and encompasses the exposure from natural and man-made sources. The risks associated with exposure to low doses of radiation are still the subject of intense and highly controversial discussions, emphasizing the social relevance of studies investigating the effects of low radiation doses. In this thesis, DNA double-strand breaks (DSBs) were analyzed within three projects covering different aspects. DSBs are among the most hazardous DNA lesions induced by ionizing radiation, because this type of damage can easily lead to the loss of genetic information. Consequently, the DSB presents a high risk for the genetic integrity of the cell. In the first project, extensive results uncovered the track structure of charged particles in a biological model tissue. This provided the first biological data that could be used for comparison with data that were measured or predicted using theoretical physical dosimetry methods and mathematical simulations. Charged particles contribute significantly to the natural radiation exposure and are used increasingly in cancer radiotherapy because they are more efficient in tumor cell killing than X- or γ-rays. The difference in the biological effects of high energy charged particles compared with X- or γ-rays is largely determined by the spatial distribution of their energy deposition and the track structure inducing a three-dimensional damage pattern in living cells. This damage pattern consists of cells directly hit by the particle receiving a high dose and neighboring cells not directly hit by primary particles but exposed to far-reaching secondary electrons (δ-electrons). These cells receive a much lower dose deposition in the order of a few mGy. The radial dose distribution of single particle tracks was

  14. Effects of ionizing radiation on gastrointestinal function

    Energy Technology Data Exchange (ETDEWEB)

    Bertin, C; Dublineau, I; Griffiths, N M; Joubert, C; Linard, C; Martin, J M; Mathe, D; Scanff, P; Valette, P [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1994-10-01

    The aim of this project is to investigate the effects of ionizing radiation (<10 Gy) on several parameters of gastrointestinal function: (a) regulatory peptides; (b) pancreatic and biliary secretions and (c) electrolyte and lipid transport using both gamma alone (cobalt-60) and a mixture of gamma/neutron ({gamma}/N Silene reactor) in two animal models, the rat and the pig. Preliminary data in rats following gamma irradiation (2-8 Gy) show that plasma nurotensin gastrin releasing peptide and substance P are increased in a dose dependent manner most markedly between two and four days after exposure. Intestinal brush border marker enzyme activities (sucrose and leucine amino-peptidase) were also reduced. Such differences were more marked and persisted longer after {gamma}/N irradiation (2-4 Gy: +Pb: {gamma}/:N =0.2). Following the latter type of irradiation (4 Gy) plasma cholesterol increased as well as the cholesterol/phospholipid ratio. Analysis of cholesterol distribution in lipoprotein actions revealed a large increase in cholesterol carried b High Density Lipoprotein-1 (HDL1). In the pig following either type of irradiation the volumes of both pancreatic and biliary secretions were reduced. Irradiation of pigs with either {gamma} (6 Gy) alone or {gamma}/N (6 Gy: {gamma}/N I :1) resulted in a marked decrease in both brush border (sucrase: leucine aminopeptidase) and basolateral (sodium ump` aden late cyclase) enzyme activities. Vasoactive intestinal peptide (VIP) stimulated adenylate cyclase was markedly attenuated and in addition specific VIP binding was modified as shown by a reduction in receptor affinity. The significance of the data will be discussed and the importance of a new therapeutic strategies or new biological markers of radiation-induced gastrointestinal dysfunction.

  15. Device for the integral measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Micheron, Francois.

    1980-01-01

    This invention relates to devices for the integral determination of ionizing radiations, particularly to the construction of a portable dosemeter. Portable measuring instruments have been suggested in the past, particularly dosemeters in which the discharge of a capacitor under the action of ionizing radiations is measured. Since the charge of a capacitor is not stable owing to dielectric imperfections, these measuring instruments have to be recalibrated at frequent intervals. To overcome this drawback, the invention suggests using the discharge of an electret, electrically charged to a pre-set initial value, under the action of ionizing radiations, as the transducer means of a dosemeter used in conjunction with display or warning systems [fr

  16. Effects of ionizing radiation on plant tissue cultures

    International Nuclear Information System (INIS)

    Hell, K.G.

    1978-01-01

    A short review is done of the biological effects of ionizing radiations on plant tissues kept in culture, from the work of Gladys King, in 1949, with X-ray irradiated tobacco. The role of plant hormones is discussed in the processes of growth inhibition and growth restoration of irradiated tissues, as well as morphogenesis. Radioresistance of cells kept in culture and the use of ionizing radiations as mutagens are also commented. Some aspects of the biological effects of ionizing radiations that need to be investigated are discussed, and the problem of genome instability of plant tissues kept in culture is pointed out. (M.A.) [pt

  17. Performance of a pencil ionization chamber in various radiation beams

    International Nuclear Information System (INIS)

    Maia, A.F.; Caldas, L.V.E.

    2003-01-01

    Pencil ionization chambers were recommended for use exclusively in the computed tomography (CT) dosimetry, and, from the start, they were developed only with this application in view. In this work, we studied the behavior of a pencil ionization chamber in various radiation beams with the objective of extending its application. Stability tests were performed, and calibration coefficients were obtained for several standard radiation qualities of the therapeutical and diagnostic levels. The results show that the pencil ionization chamber can be used in several radiation beams other than those used in CT

  18. Decomposition of tetrachloroethylene by ionizing radiation

    International Nuclear Information System (INIS)

    Hakoda, T.; Hirota, K.; Hashimoto, S.

    1998-01-01

    Decomposition of tetrachloroethylene and other chloroethenes by ionizing radiation were examined to get information on treatment of industrial off-gas. Model gases, airs containing chloroethenes, were confined in batch reactors and irradiated with electron beam and gamma ray. The G-values of decomposition were larger in the order of tetrachloro- > trichloro- > trans-dichloro- > cis-dichloro- > monochloroethylene in electron beam irradiation and tetrachloro-, trichloro-, trans-dichloro- > cis-dichloro- > monochloroethylene in gamma ray irradiation. For tetrachloro-, trichloro- and trans-dichloroethylene, G-values of decomposition in EB irradiation increased with increase of chlorine atom in a molecule, while those in gamma ray irradiation were almost kept constant. The G-value of decomposition for tetrachloroethylene in EB irradiation was the largest of those for all chloroethenes. In order to examine the effect of the initial concentration on G-value of decomposition, airs containing 300 to 1,800 ppm of tetrachloroethylene were irradiated with electron beam and gamma ray. The G-values of decomposition in both irradiation increased with the initial concentration. Those in electron beam irradiation were two times larger than those in gamma ray irradiation

  19. Ionizing radiation source detection by personal TLD

    International Nuclear Information System (INIS)

    Marinkovic, O.; Mirkov, Z.

    2002-01-01

    The Laboratory for personal dosimetry has about 3000 workers under control. The most of them work in medicine. Some institutions, as big health centers, have different ionizing radiation sources. It is usefull to analyze what has been the source of irradiation, special when appears a dosimeter with high dose. Personal dosimetry equipment is Harshaw TLD Reader Model 6600 and dosimeters consist of two chips LiF TLD-100 assembled in bar-coded cards which are wearing in holders with one tissue-equivalent filter (to determine H(10)) and skin-equivalent the other (to determine H(0.07)). The calibration dosimeters have been irradiated in holders by different sources: x-ray (for 80keV and 100keV), 6 0C o, 9 0S r (for different distances from beta source) and foton beem (at radiotherapy accelerator by 6MeV, 10MeV and 18MeV). The dose ratio for two LiF cristals was calculated and represented with graphs. So, it is possible to calculate the ratio H(10)/H(0.07) for a personal TLD and analyze what has been the source of irradiation. Also, there is the calibration for determination the time of irradiation, according to glow curve deconvolution

  20. Prevention of cigarette smoke induced lung cancer by low let ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Charles L. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2008-12-15

    Lung cancer is the most prevalent global cancer, {approx}90% of which is caused by cigarette smoking. The LNT hypothesis has been inappropriately applied to estimate lung cancer risk due to ionizing radiation. A threshold of {approx}1 Gy for lung cancer has been observed in never smokers. Lung cancer risk among nuclear workers, radiologists and diagnostically exposed patients was typically reduced by {approx}40% following exposure to <100 mSv low LET radiation. The consistency and magnitude of reduced lung cancer in nuclear workers and occurrence of reduced lung cancer in exposed non-worker populations could not be explained by the HWE. Ecologic studies of indoor radon showed highly significant reductions in lung cancer risk. A similar reduction in lung cancer was seen in a recent well designed case-control study of indoor radon, indicating that exposure to radon at the EPA action level is associated with a decrease of {approx}60% in lung cancer. A cumulative whole-body dose of {approx}1 Gy gamma rays is associated with a marked decrease in smoking-induced lung cancer in plutonium workers. Low dose, low LET radiation appears to increase apoptosis mediated removal of {alpha}-particle and cigarette smoke transformed pulmonary cells before they can develop into lung cancer.