WorldWideScience

Sample records for whispering-gallery mode micro-kylix

  1. Whispering Gallery Mode Thermometry.

    Science.gov (United States)

    Corbellini, Simone; Ramella, Chiara; Yu, Lili; Pirola, Marco; Fernicola, Vito

    2016-10-29

    This paper presents a state-of-the-art whispering gallery mode (WGM) thermometer system, which could replace platinum resistance thermometers currently used in many industrial applications, thus overcoming some of their well-known limitations and their potential for providing lower measurement uncertainty. The temperature-sensing element is a sapphire-crystal-based whispering gallery mode resonator with the main resonant modes between 10 GHz and 20 GHz. In particular, it was found that the WGM around 13.6 GHz maximizes measurement performance, affording sub-millikelvin resolution and temperature stability of better than 1 mK at 0 °C. The thermometer system was made portable and low-cost by developing an ad hoc interrogation system (hardware and software) able to achieve an accuracy in the order of a few parts in 10⁸ in the determination of resonance frequencies. Herein we report the experimental assessment of the measurement stability, repeatability and resolution, and the calibration of the thermometer in the temperature range from -74 °C to 85 °C. The combined standard uncertainty for a single temperature calibration point is found to be within 5 mK (i.e., comparable with state-of-the-art for industrial thermometry), and is mainly due to the employed calibration setup. The uncertainty contribution of the WGM thermometer alone is within a millikelvin.

  2. Whispering Gallery Mode Thermometry

    Directory of Open Access Journals (Sweden)

    Simone Corbellini

    2016-10-01

    Full Text Available This paper presents a state-of-the-art whispering gallery mode (WGM thermometer system, which could replace platinum resistance thermometers currently used in many industrial applications, thus overcoming some of their well-known limitations and their potential for providing lower measurement uncertainty. The temperature-sensing element is a sapphire-crystal-based whispering gallery mode resonator with the main resonant modes between 10 GHz and 20 GHz. In particular, it was found that the WGM around 13.6 GHz maximizes measurement performance, affording sub-millikelvin resolution and temperature stability of better than 1 mK at 0 °C. The thermometer system was made portable and low-cost by developing an ad hoc interrogation system (hardware and software able to achieve an accuracy in the order of a few parts in 109 in the determination of resonance frequencies. Herein we report the experimental assessment of the measurement stability, repeatability and resolution, and the calibration of the thermometer in the temperature range from −74 °C to 85 °C. The combined standard uncertainty for a single temperature calibration point is found to be within 5 mK (i.e., comparable with state-of-the-art for industrial thermometry, and is mainly due to the employed calibration setup. The uncertainty contribution of the WGM thermometer alone is within a millikelvin.

  3. Whispering gallery mode sensors.

    Science.gov (United States)

    Foreman, Matthew R; Swaim, Jon D; Vollmer, Frank

    2015-06-30

    We present a comprehensive overview of sensor technology exploiting optical whispering gallery mode (WGM) resonances. After a short introduction we begin by detailing the fundamental principles and theory of WGMs in optical microcavities and the transduction mechanisms frequently employed for sensing purposes. Key recent theoretical contributions to the modeling and analysis of WGM systems are highlighted. Subsequently we review the state of the art of WGM sensors by outlining efforts made to date to improve current detection limits. Proposals in this vein are numerous and range, for example, from plasmonic enhancements and active cavities to hybrid optomechanical sensors, which are already working in the shot noise limited regime. In parallel to furthering WGM sensitivity, efforts to improve the time resolution are beginning to emerge. We therefore summarize the techniques being pursued in this vein. Ultimately WGM sensors aim for real-world applications, such as measurements of force and temperature, or alternatively gas and biosensing. Each such application is thus reviewed in turn, and important achievements are discussed. Finally, we adopt a more forward-looking perspective and discuss the outlook of WGM sensors within both a physical and biological context and consider how they may yet push the detection envelope further.

  4. Nanofabricated Optomechanical Whispering Gallery Mode Resonators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strong interest in whispering gallery mode resonators (WGMR) for use in chip-scale photonic devices is motivated by their high optical quality, mechanical simplicity...

  5. Whispering-gallery-mode-based seismometer

    Science.gov (United States)

    Fourguette, Dominique Claire; Otugen, M Volkan; Larocque, Liane Marie; Ritter, Greg Aan; Meeusen, Jason Jeffrey; Ioppolo, Tindaro

    2014-06-03

    A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.

  6. Optimized polaritonic modes in whispering gallery microcavities

    Science.gov (United States)

    Hu, Tao; Xie, Wei; Wu, Lin; Wang, Yafeng; Zhang, Long; Chen, Zhanghai

    2017-08-01

    We study both theoretically and experimentally the quality factor characteristic and the optimized polaritonic modes in a whispering gallery microcavity. The quality factors (Q-factors) of the resonant modes are determined by two main factors, i.e., the so called cavity loss and media loss. These two factors determine the final Q-factor and spontaneously lead to an optimized wavelength range for polariton modes. By using finite element analysis (FEA), we present the numerical simulation of resonant frequencies, field distributions and quality factors of the TE polarized whispering gallery modes (WGMs), which agree well with the experimental results. The control of optimized resonance in polaritonic system will be very useful for the development of semiconductor lasers with low threshold.

  7. Full-vectorial whispering-gallery-mode cavity analysis.

    Science.gov (United States)

    Du, Xuan; Vincent, Serge; Lu, Tao

    2013-09-23

    We present a full-vectorial three-dimensional whispering-gallery-mode microcavity analysis technique. With this technique, optical properties such as resonance wavelength, quality factor, and electromagnetic field distribution of a microcavity in the presence of individual nanoparticle adsorption can be simulated with high accuracy, even in the presence of field distortion from plasmon effects at a wavelength close to plasmon resonance. This formulation is applicable to a wide variety of whispering-gallery related problems, such as waveguide to cavity coupling and full wave propagation analysis of a general whispering-gallery-mode microcavity where axisymmetry along the azimuthal direction is not required.

  8. Aptasensors Based on Whispering Gallery Mode Resonators.

    Science.gov (United States)

    Nunzi Conti, Gualtiero; Berneschi, Simome; Soria, Silvia

    2016-07-16

    In this paper, we review the literature on optical evanescent field sensing in resonant cavities where aptamers are used as biochemical receptors. The combined advantages of highly sensitive whispering gallery mode resonator (WGMR)-based transducers, and of the unique properties of aptamers make this approach extremely interesting in the medical field, where there is a particularly high need for devices able to provide real time diagnosis for cancer, infectious diseases, or strokes. However, despite the superior performances of aptamers compared to antibodies and WGMR to other evanescent sensors, there is not much literature combining both types of receptors and transducers. Up to now, the WGMR that have been used are silica microspheres and silicon oxynitride (SiON) ring resonators.

  9. Aptasensors Based on Whispering Gallery Mode Resonators

    Directory of Open Access Journals (Sweden)

    Gualtiero Nunzi Conti

    2016-07-01

    Full Text Available In this paper, we review the literature on optical evanescent field sensing in resonant cavities where aptamers are used as biochemical receptors. The combined advantages of highly sensitive whispering gallery mode resonator (WGMR-based transducers, and of the unique properties of aptamers make this approach extremely interesting in the medical field, where there is a particularly high need for devices able to provide real time diagnosis for cancer, infectious diseases, or strokes. However, despite the superior performances of aptamers compared to antibodies and WGMR to other evanescent sensors, there is not much literature combining both types of receptors and transducers. Up to now, the WGMR that have been used are silica microspheres and silicon oxynitride (SiON ring resonators.

  10. Back-scatter based whispering gallery mode sensing

    National Research Council Canada - National Science Library

    Knittel, Joachim; Swaim, Jon D; McAuslan, David L; Brawley, George A; Bowen, Warwick P

    2013-01-01

    Whispering gallery mode biosensors allow selective unlabelled detection of single proteins and, combined with quantum limited sensitivity, the possibility for noninvasive real-time observation of motor molecule motion...

  11. Whispering gallery modes in deformed hexagonal resonators

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, Marius; Dietrich, Christof P. [Universitaet Leipzig, Fakultaet fuer Physik und Geowissenschaften, Institut fuer Experimentelle Physik II, Linnestr. 5, 04103 Leipzig (Germany)

    2012-05-15

    Optical resonances in polygonal resonators are due to whispering gallery modes (WGM). We investigate WGM in regular and deformed hexagonal ZnO microwire resonators. Four types of geometries are investigated: regular hexagonal and dodecagonal cross sections, hexagonal cross section elongated for one pair of facets and hexagonal cross section deformed by bending (uniaxial stress). Experimental data on mode energies and angular dispersion are correlated with model calculations and Poincare surfaces of section. Hexagonal ({phi} = 60 ), square ({phi} = 45 ), triangular ({phi} = 30 ), and Fabry-Perot modes ({phi} = 0 ) are observed in the various investigated geometries, {phi} being the angle of incidence at the facets with respect to the normal direction. Hexagonal WGMs (green, 6-WGM), triangular (red, 3-WGM), and double-triangular (blue, D3-WGM) rays in regular hexagons, elongated hexagons and hexagons deformed by bending. Triangular WGMs are stable modes in all three resonators. Hexagonal modes are not stable in the bent hexagon. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Reconfigurable Liquid Whispering Gallery Mode Microlasers.

    Science.gov (United States)

    Yang, Shancheng; Ta, Van Duong; Wang, Yue; Chen, Rui; He, Tingchao; Demir, Hilmi Volkan; Sun, Handong

    2016-06-03

    Engineering photonic devices from liquid has been emerging as a fascinating research avenue. Reconfigurably tuning liquid optical micro-devices are highly desirable but remain extremely challenging because of the fluidic nature. In this article we demonstrate an all-liquid tunable whispering gallery mode microlaser floating on a liquid surface fabricated by using inkjet print technique. We show that the cavity resonance of such liquid lasers could be reconfigurably manipulated by surface tension alteration originated from the tiny concentration change of the surfactant in the supporting liquid. As such, remarkable sensing of water-soluble organic compounds with a sensitivity of free spectral range as high as 19.85 THz / (mol · mL(-1)) and the detectivity limit around 5.56 × 10(-3) mol · mL(-1) is achieved. Our work provides not only a novel approach to effectively tuning a laser resonator but also new insight into potential applications in biological, chemical and environmental sensing.

  13. Observation of whispering gallery modes through electron beam-induced deposition

    NARCIS (Netherlands)

    Timmermans, F. J.; Chang, L.; Van Wolferen, H. A.G.M.; Lenferink, A. T.M.; Otto, C.

    2017-01-01

    Surprisingly intense spectra of whispering gallery modes were observed in polymer microbeads after illumination with electrons in a scanning electron microscope and subsequent laser illumination and spectral analysis. It will be proposed that whispering gallery mode resonances became visible after

  14. Ringing phenomenon based whispering-gallery-mode sensing.

    Science.gov (United States)

    Ye, Ming-Yong; Shen, Mei-Xia; Lin, Xiu-Min

    2016-01-22

    Highly sensitive sensing is one of the most important applications of whispering-gallery-mode (WGM) microresonators, which is usually accomplished through a tunable continuous-wave laser sweeping over a whispering-gallery mode with the help of a fiber taper in a relative slow speed. It is known that if a tunable continuous-wave laser sweeps over a high quality whispering-gallery mode in a fast speed, a ringing phenomenon will be observed. The ringing phenomenon in WGM microresonators is mainly used to measure the Q factors and mode-coupling strengths. Here we experimentally demonstrate that the WGM sensing can be achieved based on the ringing phenomenon. This kind of sensing is accomplished in a much shorter time and is immune to the noise caused by the laser wavelength drift.

  15. Liquid whispering-gallery-mode resonator as a humidity sensor.

    Science.gov (United States)

    Labrador-Páez, Lucía; Soler-Carracedo, Kevin; Hernández-Rodríguez, Miguel; Martín, Inocencio R; Carmon, Tal; Martin, Leopoldo L

    2017-01-23

    We experimentally demonstrate the high sensitivity of a novel liquid state, whispering-gallery-mode optical resonator to humidity changes. The optical resonator used consists of a droplet made of glycerol, a transparent liquid that enables high optical quality factor, doped with fluorescent material. As glycerol is highly hygroscopic, the refractive index and radius of the droplet change with ambient humidity. This produces a shift on the whispering gallery mode's wavelengths, which modulates the emission of the fluorescent material. This device shows an unpreceded sensitivity of 10-3 per relative humidity percent.

  16. Whispering gallery modes in zinc oxide micro- and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Czekalla, Christian; Nobis, Thomas; Rahm, Andreas; Cao, Bingqiang; Zuniga-Perez, Jesus; Sturm, Chris; Schmidt-Grund, Ruediger; Lorenz, Michael; Grundmann, Marius [Institut fuer Experimentelle Physik II, Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2010-06-15

    Optical whispering gallery mode (WGM) resonances have been observed in zinc oxide micro- and nanowire cavities. Using model calculations, the experimentally observed mode spectrum was reproduced. The effect has been observed for wire radii between 100 nm and 10 {mu}m corresponding to angular mode numbers from 1 to about 250. The whispering gallery effect was used to determine the refractive index of the wires as a function of the photon energy and temperature. Under high excitation conditions, WGM lasing was observed. Two methods for calculating the complex resonant modes are presented: a simple plane wave model and the numerical solution of the Helmholtz equation for the given resonator geometry. A typical photoluminescence (PL) spectrum showing WGM resonances and (inset) a scanning electron microscopy (SEM) image of a zinc oxide (ZnO) microwire. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. Back-scatter based whispering gallery mode sensing.

    Science.gov (United States)

    Knittel, Joachim; Swaim, Jon D; McAuslan, David L; Brawley, George A; Bowen, Warwick P

    2013-10-17

    Whispering gallery mode biosensors allow selective unlabelled detection of single proteins and, combined with quantum limited sensitivity, the possibility for noninvasive real-time observation of motor molecule motion. However, to date technical noise sources, most particularly low frequency laser noise, have constrained such applications. Here we introduce a new technique for whispering gallery mode sensing based on direct detection of back-scattered light. This experimentally straightforward technique is immune to frequency noise in principle, and further, acts to suppress thermorefractive noise. We demonstrate 27 dB of frequency noise suppression, eliminating frequency noise as a source of sensitivity degradation and allowing an absolute frequency shift sensitivity of 76 kHz. Our results open a new pathway towards single molecule biophysics experiments and ultrasensitive biosensors.

  18. Nonlinear optics and crystalline whispering gallery mode resonators

    Science.gov (United States)

    Matsko, Andrey B.; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We report on our recent results concerning fabrication of high-Q whispering gallery mode (WGM) crystalline resonators, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics. In particular, we demonstrate experimentally a tunable third-order optical filter fabricated from the three metalized resonators; and report observation of parametric frequency dobuling in a WGM resonator made of periodically poled lithium niobate (PPLN).

  19. Whispering gallery modes in a spherical microcavity with a photoluminescent shell

    Energy Technology Data Exchange (ETDEWEB)

    Grudinkin, S. A., E-mail: grudink@gvg.ioffe.ru; Dontsov, A. A.; Feoktistov, N. A. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Baranov, M. A.; Bogdanov, K. V. [ITMO University (Russian Federation); Averkiev, N. S.; Golubev, V. G. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2015-10-15

    Whispering-gallery mode spectra in optical microcavities based on spherical silica particles coated with a thin photoluminescent shell of hydrogenated amorphous silicon carbide are studied. The spectral positions of the whispering-gallery modes for spherical microcavities with a shell are calculated. The dependence of the spectral distance between the TE and TM modes on the shell thickness is examined.

  20. Whispering Gallery Modes in Standard Optical Fibres for Fibre Profiling Measurements and Sensing of Unlabelled Chemical Species

    OpenAIRE

    Anna Boleininger; Thomas Lake; Sophia Hami; Claire Vallance

    2010-01-01

    Whispering gallery mode resonances in liquid droplets and microspheres have attracted considerable attention due to their potential uses in a range of sensing and technological applications. We describe a whispering gallery mode sensor in which standard optical fibre is used as the whispering gallery mode resonator. The sensor is characterised in terms of the response of the whispering gallery mode spectrum to changes in resonator size, refractive index of the surrounding medium, and temperat...

  1. Effects of whispering gallery mode in microsphere super-resolution imaging

    Science.gov (United States)

    Zhou, Song; Deng, Yongbo; Zhou, Wenchao; Yu, Muxin; Urbach, H. P.; Wu, Yihui

    2017-09-01

    Whispering Gallery modes have been presented in microscopic glass spheres or toruses with many applications. In this paper, the possible approaches to enhance the imaging resolution by Whispering Gallery modes are discussed, including evanescent waves coupling, transformed and illustration by Whispering Gallery modes. It shows that the high-order scattering modes play the dominant role in the reconstructed virtual image when the Whispering Gallery modes exist. Furthermore, we find that the high image resolution of electric dipoles can be achieved, when the out-of-phase components exist from the illustration of Whispering Gallery modes. Those results of our simulation could contribute to the knowledge of microsphere-assisted super-resolution imaging and its potential applications.

  2. Cylindrical Beam Propagation Modelling of Perturbed Whispering-Gallery Mode Microcavities

    OpenAIRE

    Shirazi, Mohammad Amin Cheraghi; Yu, Wenyan; Vincent, Serge; Lu, Tao

    2013-01-01

    We simulate light propagation in perturbed whispering-gallery mode microcavities using a two-dimensional finite-difference beam prop- agation method in a cylindrical coordinate system. Optical properties of whispering-gallery microcavities perturbed by polystyrene nanobeads are investigated through this formulation. The light perturbation as well as quality factor degradation arising from cavity ellipticity are also studied.

  3. Cylindrical beam propagation modelling of perturbed whispering-gallery mode microcavities.

    Science.gov (United States)

    Shirazi, Mohammad Amin Cheraghi; Yu, Wenyan; Vincent, Serge; Lu, Tao

    2013-12-16

    We simulate light propagation in perturbed whispering-gallery mode microcavities using a two-dimensional finite-difference beam propagation method in a cylindrical coordinate system. Optical properties of whispering-gallery microcavities perturbed by polystyrene nanobeads are investigated through this formulation. The light perturbation as well as quality factor degradation arising from cavity ellipticity are also studied.

  4. Active chiral control of GHz acoustic whispering-gallery modes

    Science.gov (United States)

    Mezil, Sylvain; Fujita, Kentaro; Otsuka, Paul H.; Tomoda, Motonobu; Clark, Matt; Wright, Oliver B.; Matsuda, Osamu

    2017-10-01

    We selectively generate chiral surface-acoustic whispering-gallery modes in the gigahertz range on a microscopic disk by means of an ultrafast time-domain technique incorporating a spatial light modulator. Active chiral control is achieved by making use of an optical pump spatial profile in the form of a semicircular arc, positioned on the sample to break the symmetry of clockwise- and counterclockwise-propagating modes. Spatiotemporal Fourier transforms of the interferometrically monitored two-dimensional acoustic fields measured to micron resolution allow individual chiral modes and their azimuthal mode order, both positive and negative, to be distinguished. In particular, for modes with 15-fold rotational symmetry, we demonstrate ultrafast chiral control of surface acoustic waves in a micro-acoustic system with picosecond temporal resolution. Applications include nondestructive testing and surface acoustic wave devices.

  5. Unidirectional ultraviolet whispering gallery mode lasing from floating asymmetric circle GaN microdisk

    Science.gov (United States)

    Zhu, G. Y.; Qin, F. F.; Guo, J. Y.; Xu, C. X.; Wang, Y. J.

    2017-11-01

    Floating asymmetric circle and circle GaN microdisks are fabricated by using standard semiconductor techniques. Unidirectional ultraviolet whispering gallery mode lasing results from floating asymmetric circle GaN microdisks under optical pumping conditions at room temperature. The characteristics of the unidirectional whispering gallery mode lasing, including the lasing emission direction, threshold, emission intensity, and lasing mode number, are studied. A 2D finite difference time domain simulation on optical field distribution confirmed the resonance mechanism of whispering gallery mode lasing. This work is crucial for enhancing collection efficiency and facilitating the coupling of the electronic and photonic devices.

  6. Polarization-selective out-coupling of whispering gallery modes

    CERN Document Server

    Sedlmeir, Florian; Vogl, Ulrich; Zeltner, Richard; Schunk, Gerhard; Strekalov, Dmitry V; Marquardt, Christoph; Leuchs, Gerd; Schwefel, Harald G L

    2016-01-01

    Whispering gallery mode (WGM) resonators are an important building block for linear, nonlinear and quantum optical experiments. In such experiments, independent control of coupling rates to different modes can lead to improved conversion efficiencies and greater flexibility in generation of non-classical states based on parametric down conversion. In this work, we introduce a scheme which enables selective out-coupling of WGMs belonging to a specific polarization family, while the orthogonally polarized modes remain largely unperturbed. Our technique utilizes material birefringence in both the resonator and coupler such that a negative (positive) birefringence allows selective coupling to TE (TM) polarized WGMs. We formulate a new coupling condition suitable for describing the case where the refractive indices of the resonator and the coupler are almost the same, from which we derive the criterion for polarization-selective coupling. We experimentally demonstrate our proposed method using a lithium niobate di...

  7. Light scattering by magnons in whispering gallery mode cavities

    Science.gov (United States)

    Sharma, Sanchar; Blanter, Yaroslav M.; Bauer, Gerrit E. W.

    2017-09-01

    Brillouin light scattering is an established technique to study magnons, the elementary excitations of a magnet. Its efficiency can be enhanced by cavities that concentrate the light intensity. Here, we theoretically study inelastic scattering of photons by a magnetic sphere that supports optical whispering gallery modes in a plane normal to the magnetization. Magnons with low angular momenta scatter the light in the forward direction with a pronounced asymmetry in the Stokes and the anti-Stokes scattering strength, consistent with earlier studies. Magnons with large angular momenta constitute Damon-Eschbach modes which are shown to inelastically reflect light. The reflection spectrum contains either a Stokes or anti-Stokes peak, depending on the direction of the magnetization, a selection rule that can be explained by the chirality of the Damon-Eshbach magnons. The controllable energy transfer can be used to manage the thermodynamics of the magnet by light.

  8. Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators.

    Science.gov (United States)

    Farnesi, D; Barucci, A; Righini, G C; Berneschi, S; Soria, S; Nunzi Conti, G

    2014-03-07

    High quality factor whispering-gallery-mode microresonators are ideally suited for nonlinear optical interactions. We analyze, experimentally and theoretically, a variety of χ((3)) nonlinear interactions in silica microspheres, consisting of third harmonic generation and Raman assisted third order sum-frequency generation in the visible. A tunable, room temperature, cw multicolor emission in silica microspherical whispering-gallery-mode microresonators has been achieved by controlling the cavity mode dispersion and exciting nonequatorial modes for efficient frequency conversion.

  9. Whispering-Gallery Mode Resonators for Detecting Cancer.

    Science.gov (United States)

    Pongruengkiat, Weeratouch; Pechprasarn, Suejit

    2017-09-13

    Optical resonators are sensors well known for their high sensitivity and fast response time. These sensors have a wide range of applications, including in the biomedical fields, and cancer detection is one such promising application. Sensor diagnosis currently has many limitations, such as being expensive, highly invasive, and time-consuming. New developments are welcomed to overcome these limitations. Optical resonators have high sensitivity, which enable medical testing to detect disease in the early stage. Herein, we describe the principle of whispering-gallery mode and ring optical resonators. We also add to the knowledge of cancer biomarker diagnosis, where we discuss the application of optical resonators for specific biomarkers. Lastly, we discuss advancements in optical resonators for detecting cancer in terms of their ability to detect small amounts of cancer biomarkers.

  10. All-polymer whispering gallery mode sensor system.

    Science.gov (United States)

    Petermann, Ann Britt; Varkentin, Arthur; Roth, Bernhard; Morgner, Uwe; Meinhardt-Wollweber, Merve

    2016-03-21

    Sensors based on whispering gallery modes have been extensively investigated with respect to their possible application as physical or biological sensors. Instead of using a single resonator, we use an all polymer resonator array as sensing element. A tunable narrowband laser is coupled into a PMMA plate serving as an optical wave guide. PMMA spheres are placed in the evanescent field on the surface of the plate. Due to small size variations, some spheres are in resonance at a given wavelength while others are not. We show that this device is well suited for the determination of an unknown wavelength or for temperature measurements. Moreover, we discuss several general aspects of the sensor concept such as the number and size of sensing elements which are necessary for a correct measurement result, or the maximum acceptable linewidth of the laser.

  11. Dispersion analysis of whispering gallery mode microbubble resonators.

    Science.gov (United States)

    Riesen, Nicolas; Zhang, Wen Qi; Monro, Tanya M

    2016-04-18

    This paper examines the opportunities existing for engineering dispersion in non-silica whispering gallery mode microbubble resonators, for applications such as optical frequency comb generation. More specifically, the zero dispersion wavelength is analyzed as a function of microbubble diameter and wall thickness for several different material groups such as highly-nonlinear soft glasses, polymers and crystalline materials. The zero dispersion wavelength is shown to be highly-tunable by changing the thickness of the shell. Using certain materials it is shown that dispersion equalization can be realized at interesting wavelengths such as deep within the visible or mid-infrared, opening up new possibilities for optical frequency comb generation. This study represents the first extensive analysis of the prospects of using non-silica microbubbles for nonlinear optics.

  12. Microwave Photonics Systems Based on Whispering-gallery-mode Resonators

    Science.gov (United States)

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K.

    2013-01-01

    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency. PMID:23963358

  13. In-fiber Mach-Zehnder interferometer and sphere whispering gallery mode resonator coupling structure.

    Science.gov (United States)

    Shi, Leilei; Zhu, Tao; Huang, Dongmei; Liang, Chuancan; Liu, Min; Liang, Shibin

    2017-01-01

    An in-fiber Mach-Zehnder interferometer and sphere whispering gallery mode resonator coupling structure is demonstrated by femtosecond laser micromachining. Asymmetric spectra around the resonant wavelength of the whispering gallery cavities in different coupling states are experimentally observed. An extinction ratio of ∼7  dB and a slope of 117 dB/nm can be achieved in the asymmetric spectrum of the overcoupled whispering gallery cavity, where an additional π phase shift at the resonant wavelength is introduced to the Mach-Zehnder interferometer.

  14. The influence of the whispering gallery modes resonators shape on their sensitivity to the movement

    Science.gov (United States)

    Filatov, Yuri V.; Govorenko, Ekaterina V.; Kukaev, Alexander S.; Shalymov, Egor V.; Venediktov, Vladimir Yu.

    2017-05-01

    The optical whispering gallery modes resonators are axially symmetrical resonators with smooth edges, supporting the existence of the whispering gallery modes by the total internal reflection on the surface of the resonator. For today various types of such resonators were developed, namely the ball-shaped, tor-shaped, bottle-shaped, disk-shaped etc. The movement of whispering gallery modes resonators in inertial space causes the changes of their shape. The result is a spectral shift of the whispering gallery modes. Optical methods allow to register this shift with high precision. It can be used in particular for the measurement of angular velocities in inertial orientation and navigation systems. However, different types of resonators react to the movement on a miscellaneous. In addition, their sensitivity to movement can be changed when changing the geometric parameters of these resonators. This work is devoted to a research of these aspects.

  15. Whispering gallery mode emission from a composite system of J-aggregates and photonic microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Melnikau, Dzmitry; Savateeva, Diana [Centro de Física de Materiales (MPC, CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Po Manuel de Lardizabal 5, Donostia, San Sebastian 20018 (Spain); Rusakov, Konstantin I. [Department of Physics, Brest State Technical University, Brest 224017 (Belarus); Rakovich, Yury P., E-mail: Yury.Rakovich@ehu.es [Centro de Física de Materiales (MPC, CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Po Manuel de Lardizabal 5, Donostia, San Sebastian 20018 (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2014-01-15

    We report on development and characterization of Whispering Gallery Modes spherical microcavities integrated with organic dye molecules in a J-aggregate state. The microcavities are studied using micro-photoluminescence spectroscopy, and fluorescence lifetime imaging confocal microscopy. Directional emission of light from the microcavity is also experimentally demonstrated and attributed to the photonic jets generated in the microsphere. -- Highlights: • Report on the development and characterization of hybrid system consisting of thin shell of J-aggregates and spherical Whispering Gallery Mode microcavity. • An investigation of spontaneous emission rate in the shell of J-aggregates integrated with a Whispering Gallery Mode cavity. • Demonstration of directional emission from Whispering Gallery Mode cavity with J-aggregates which is highly desirable functionality for both micro- and nano-scale cavities.

  16. Optical sensors based on whispering gallery modes in fluorescent microbeads: size dependence and influence of substrate

    National Research Council Canada - National Science Library

    Francois, Alexandre; Himmelhaus, Michael

    2009-01-01

    Whispering gallery modes in surface-fixated fluorescent polystyrene microbeads are studied in view of their capability of sensing changes in the refractive index of the beads' environment by exposing...

  17. Whispering Gallery Modes in Standard Optical Fibres for Fibre Profiling Measurements and Sensing of Unlabelled Chemical Species

    Directory of Open Access Journals (Sweden)

    Anna Boleininger

    2010-03-01

    Full Text Available Whispering gallery mode resonances in liquid droplets and microspheres have attracted considerable attention due to their potential uses in a range of sensing and technological applications. We describe a whispering gallery mode sensor in which standard optical fibre is used as the whispering gallery mode resonator. The sensor is characterised in terms of the response of the whispering gallery mode spectrum to changes in resonator size, refractive index of the surrounding medium, and temperature, and its measurement capabilities are demonstrated through application to high-precision fibre geometry profiling and the detection of unlabelled biochemical species. The prototype sensor is capable of detecting unlabelled biomolecular species in attomole quantities.

  18. Whispering Gallery Modes in Standard Optical Fibres for Fibre Profiling Measurements and Sensing of Unlabelled Chemical Species

    Science.gov (United States)

    Boleininger, Anna; Lake, Thomas; Hami, Sophia; Vallance, Claire

    2010-01-01

    Whispering gallery mode resonances in liquid droplets and microspheres have attracted considerable attention due to their potential uses in a range of sensing and technological applications. We describe a whispering gallery mode sensor in which standard optical fibre is used as the whispering gallery mode resonator. The sensor is characterised in terms of the response of the whispering gallery mode spectrum to changes in resonator size, refractive index of the surrounding medium, and temperature, and its measurement capabilities are demonstrated through application to high-precision fibre geometry profiling and the detection of unlabelled biochemical species. The prototype sensor is capable of detecting unlabelled biomolecular species in attomole quantities. PMID:22294898

  19. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern

    DEFF Research Database (Denmark)

    Schunk, Gerhard; Fuerst, Josef U.; Förtsch, Michael

    2014-01-01

    Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMR...

  20. Whispering gallery modes in silicon nanocrystal coated microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Bianucci, P.; Clements, C.; Meldrum, A. [Department of Physics, University of Alberta, Edmonton (Canada); Rodriguez, J.R.; Hessel, C.M.; Veinot, J.G.C. [Department of Chemistry, University of Alberta, Edmonton (Canada)

    2009-05-15

    We present photoluminescence studies of silicon-nanocrystal (Si-NC) coated microcavities. The particular geometries studied are hollow fibers where there is a Si-NC coating in the inner surface and regular optical fibers and glass microspheres where the coating is on the outside surface. The coatings were prepared using an inexpensive and straightforward solution-based process that yields a high-quality film. The measured photoluminescence spectra from the resonators show high Q-factor (between 1200 and 2800) resonant modes that correspond with the whispering gallery modes expected from the confinement geometries. The presence of these modes is also an indication that the emission of the Si-NCs is coupled to the cavity. The combination of Si-NCs and optical microcavities with strong confinement has promising potential for applications like sensing, optical communications and may be a possible route toward a Si-NC laser. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Optofluidic whispering gallery mode microcapillary lasers for refractive index sensing

    Science.gov (United States)

    François, Alexandre; Riesen, Nicolas; Gardner, Kristy; Monro, Tanya M.; Meldrum, Al

    2016-12-01

    Whispering gallery modes (WGMs) allow for remarkable refractive index sensing performance with extremely low detection limits, and thus have found use in various emerging label free biosensing applications. Among the different types of resonators which have been studied, microcapillaries have the unique property of having the evanescent fields extend into and sample the medium inside the resonator, which is particularly interesting because the resonator itself serves as a microfluidic channel. Here, lasing of the WGMs in fluorescent microcapillaries is demonstrated for the first time, and their application to refractive index sensing is investigated. The laser gain medium used here is embedded inside a high refractive index polymer coating deposited onto the inner surface of the capillary. Lasing can only be realized for thick polymer coatings (in this case >= 800 nm), with higher Q factor but also stronger confinement of the propagating wave, which lowers the refractive index sensitivity compared to non-lasing capillaries which can have thinner polymer coatings. We however find that the large improvement in signal-to-noise ratio and Q factor realized upon lasing more than compensates for the reduced sensitivity, resulting in an order-of-magnitude improvement in the detection limit for refractive index sensing.

  2. Protein-based flexible whispering gallery mode resonators

    Science.gov (United States)

    Yilmaz, Huzeyfe; Pena-Francesch, Abdon; Xu, Linhua; Shreiner, Robert; Jung, Huihun; Huang, Steven H.; Özdemir, Sahin K.; Demirel, Melik C.; Yang, Lan

    2016-02-01

    The idea of creating photonics tools for sensing, imaging and material characterization has long been pursued and many achievements have been made. Approaching the level of solutions provided by nature however is hindered by routine choice of materials. To this end recent years have witnessed a great effort to engineer mechanically flexible photonic devices using polymer substrates. On the other hand, biodegradability and biocompatibility still remains to be incorporated. Hence biomimetics holds the key to overcome the limitations of traditional materials in photonics design. Natural proteins such as sucker ring teeth (SRT) and silk for instance have remarkable mechanical and optical properties that exceed the endeavors of most synthetic and natural polymers. Here we demonstrate for the first time, toroidal whispering gallery mode resonators (WGMR) fabricated entirely from protein structures such as SRT of Loligo vulgaris (European squid) and silk from Bombyx mori. We provide here complete optical and material characterization of proteinaceous WGMRs, revealing high quality factors in microscale and enhancement of Raman signatures by a microcavity. We also present a most simple application of a WGMR as a natural protein add-drop filter, made of SRT protein. Our work shows that with protein-based materials, optical, mechanical and thermal properties can be devised at the molecular level and it lays the groundwork for future eco-friendly, flexible photonics device design.

  3. Whispering-gallery mode resonators for highly unidirectional laser action

    Science.gov (United States)

    Wang, Qi Jie; Yan, Changling; Yu, Nanfang; Unterhinninghofen, Julia; Wiersig, Jan; Pflügl, Christian; Diehl, Laurent; Edamura, Tadataka; Yamanishi, Masamichi; Kan, Hirofumi; Capasso, Federico

    2010-01-01

    Optical microcavities can be designed to take advantage of total internal reflection, which results in resonators supporting whispering-gallery modes (WGMs) with a high-quality factor (Q factor). One of the crucial problems of these devices for practical applications such as designing microcavity lasers, however, is that their emission is nondirectional due to their radial symmetry, in addition to their inefficient power output coupling. Here we report the design of elliptical resonators with a wavelength-size notch at the boundary, which support in-plane highly unidirectional laser emission from WGMs. The notch acts as a small scatterer such that the Q factor of the WGMs is still very high. Using midinfrared (λ ∼ 10 μm) injection quantum cascade lasers as a model system, an in-plane beam divergence as small as 6 deg with a peak optical power of ∼5 mW at room temperature has been demonstrated. The beam divergence is insensitive to the pumping current and to the notch geometry, demonstrating the robustness of this resonator design. The latter is scalable to the visible and the near infrared, thus opening the door to very low-threshold, highly unidirectional microcavity diode lasers. PMID:21149678

  4. Whispering Gallery Mode Dip Sensor for Aqueous Sensing.

    Science.gov (United States)

    Agarwal, Monica; Teraoka, Iwao

    2015-10-20

    We report fabrication of a 4 mm thick, preassembled whispering gallery mode (WGM) sensor that can be repeatedly dipped into aqueous solutions and lifted. We built the viable photonic sensor assembly by bending an optical fiber by 90° and molding its tip into a sphere, thus, a long stem holding a submillimeter sensor at the end of a short arm of fiber, and positioning a pair of parallel cone-tipped tapers along the long stem so that the tips touch the sensor. Our sensor head is an optical fiber device just a few millimeters thick and yet has a sensitivity of the resonance wavelength shift comparable to the one obtained with conventional WGM sensors in a planar arrangement. Since dipping and lifting from the solution changes the temperature of the sensor, affecting the resonance wavelength, we enclosed a thermistor within the sensor head to monitor the temperature. We demonstrate that the resonance shift in repeated transfer of the sensor head between water and a solution of sucrose, after correction by the temperature change, is reproducible and agrees with a theoretical estimate of the shift for different concentrations.

  5. Whispering gallery mode temperature sensor of liquid microresonastor.

    Science.gov (United States)

    Liu, Zhihai; Liu, Lu; Zhu, Zongda; Zhang, Yu; Wei, Yong; Zhang, Xiaonan; Zhao, Enming; Zhang, Yaxun; Yang, Jun; Yuan, Libo

    2016-10-15

    We propose and demonstrate a whispering gallery mode (WGM) resonance-based temperature sensor, where the microresonator is made of a DCM (2-[2-[4-(dimethylamino)phenyl] ethenyl]-6-methyl-4H-pyran-4-ylidene)-doped oil droplet (a liquid material) immersed in the water solution. The oil droplet is trapped, controlled, and located by a dual-fiber optical tweezers, which prevents the deformation of the liquid droplet. We excite the fluorescence and lasing in the oil droplet and measure the shifts of the resonance wavelength at different temperatures. The results show that the resonance wavelength redshifts when the temperature increases. The testing sensitivity is 0.377 nm/°C in the temperature range 25°C-45°C. The results of the photobleaching testing of the dye indicate that measured errors can be reduced by reducing the measured time. As far as we know, this is the first time a WGM temperature sensor with a liquid state microcavity has been proposed. Compared with the solid microresonator, the utilization of the liquid microresonator improves the thermal sensitivity and provides the possibility of sensing in liquid samples or integrating into the chemical analyzers and microfluidic systems.

  6. Interfacing whispering gallery mode microresonators for environmental biosensing

    Science.gov (United States)

    Hunt, Heather K.; Dahmen, Jeremy L.; Soteropulos, Carol E.

    2014-03-01

    Label-free biosensors that combine high sensitivity and high specificity characteristics have shown tremendous potential for applications in medical diagnostics, and have more recently been extended to the food safety and environmental monitoring arenas. A unique type of label-free, optical biosensor, based on Whispering Gallery Mode microresonators, has tremendous potential to revolutionize biodetection due to its extreme sensitivity. The primary limitation of these biosensors, however, is that they require the addition of biorecognition elements to specifically target a biological species of interest. Therefore, the ability to selectively functionalize the microresonator for a specific target molecule, without degrading device performance, is extremely important, and represents the next step in translating these devices from laboratory to field environments. Here, we demonstrate a variety of straightforward bioconjugation strategies that not only impart specificity to optical microresonators, but also allow for the creation of multi-use platforms for complex environments. Of particular interest is the ability to detect harmful bacteria, insects, and fungi in crop and water systems. The resulting surface chemistries are illustrated with XPS, SEM, and fluorescence and optical microscopy, and the device sensitivity is determined via quantitative microcavity analysis. The ability to minimize non-specific adsorption and target unique molecules in complex environments is demonstrated via ellipsometry and in situ device testing. The resulting devices can be recycled several times without loss of sensitivity. By combining these high sensitivity biosensors with appropriate biochemistries, the resulting platforms can be extended to address broader issues in environmental biosensing that directly impact agriculture.

  7. Accurate identification of whispering gallery mode patterns of gyrotron with stabilized electro-optic imaging system

    Science.gov (United States)

    Lee, Ingeun; Sawant, Ashwini; Choe, Mun Seok; Lee, Dong-Joon; Choi, EunMi

    2018-01-01

    The precise field pattern measurement and analysis of a typical whispering gallery mode excited in a gyrotron are important to understand the interaction physics of the gyrotron. We precisely analyzed the characteristic of a whispering gallery mode, rotating TE6,2 mode, by a photonic-assisted W-band (75-110 GHz) electro-optic imaging measurement system. The whispering gallery mode in the W-band region diverges fast in free space as it propagates from the radiation port. Therefore, scanning the field patterns of a device-under-test should be performed as close as possible to identify the device's characteristics. We successfully accomplished visualizing highly accurate field patterns of a rotating and mixed whispering gallery mode based on the measured electric field magnitude and phase by using dual optical fiber-scale electro-optic (EO) probes. We observed the distorted fields when the typical open-ended waveguide and a general EO probe were used in the extremely near-field zone, whereas a very precise field was measured in a minimally invasive way by the proposed EO probe. The measured mode patterns were quantitatively analyzed by using a cross correlation function and a mode purity equation. This work promises a way to provide accurate electric field information in the generation of the whispering gallery mode in the millimeter and submillimeter regime.

  8. The influence of whispering gallery modes on the far field of ring lasers

    Science.gov (United States)

    Szedlak, Rolf; Holzbauer, Martin; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schwarzer, Clemens; Schrenk, Werner; Strasser, Gottfried

    2015-01-01

    We introduce ring lasers with continuous π-phase shifts in the second order distributed feedback grating. This configuration facilitates insights into the nature of the modal outcoupling in an optical cavity. The grating exploits the asymmetry of whispering gallery modes and induces a rotation of the far field pattern. We find that this rotation can be connected to the location of the mode relative to the grating. Furthermore, the direction of rotation depends on the radial order of the whispering gallery mode. This enables a distinct identification and characterization of the mode by simple analysis of the emission beam. PMID:26573341

  9. Whispering gallery modes in a glass microsphere as a function of temperature.

    Science.gov (United States)

    Martín, L L; Pérez-Rodríguez, C; Haro-González, P; Martín, I R

    2011-12-05

    Microspheres of Nd3+ doped barium titano silicate glass were prepared and the whispering gallery mode resonances were observed in a modified confocal microscope. A bulk sample of the same glass was calibrated as temperature sensor by the fluorescence intensity ratio technique. After that, the microsphere was heated by laser irradiation process technique in the microscope and the surface temperature was estimated using the fluorescence intensity ratio. This temperature is correlated with the displacement of the whispering gallery mode peaks, showing an average red-shift of 10 pm/K in a wide range of surface temperatures varying from 300 K to 950K. The limit of resolution in temperature was estimated for the fluorescence intensity ratio and the whispering gallery mode displacement, showing an improvement of an order of magnitude for the second method.

  10. In-fiber whispering-gallery-mode resonator fabricated by femtosecond laser micromachining.

    Science.gov (United States)

    Shi, Leilei; Zhu, Tao; Huang, Dongmei; Liu, Min; Deng, Ming; Huang, Wei

    2015-08-15

    An in-fiber whispering-gallery-mode resonator fabricated by femtosecond laser micromachining is demonstrated. The cylinder resonator cavity is fabricated by scanning the D-fiber cladding with infrared femtosecond pulses along a cylindrical trace with a radius of 25 μm and height of 20 μm. Quality factor on the order of 10(3) is achieved by smoothing the cavity surface with an ultrasonic cleaner, which is mainly limited by the surface roughness of several hundred nanometers. Resonant characteristics and polarization dependence of the proposed resonator are also studied in detail. Our method takes a step forward in the integration of whispering-gallery-mode resonators.

  11. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern.

    Science.gov (United States)

    Schunk, Gerhard; Fürst, Josef U; Förtsch, Michael; Strekalov, Dmitry V; Vogl, Ulrich; Sedlmeir, Florian; Schwefel, Harald G L; Leuchs, Gerd; Marquardt, Christoph

    2014-12-15

    Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs. The radial mode numbers q and the angular mode numbers p = ℓ-m are identified and labeled via far-field imaging. The polar mode numbers ℓ are determined unambiguously by fitting the frequency differences between individual whispering gallery modes (WGMs). This allows for the accurate determination of the geometry and the refractive index at different temperatures of the WGMR. For future applications in classical and quantum optics, this mode analysis enables one to control the narrow-band phase-matching conditions in nonlinear processes such as second-harmonic generation or parametric down-conversion.

  12. Using Whispering-Gallery-Mode Resonators for Refractometry

    Science.gov (United States)

    Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry; Iltchenko, Vladimir; Maleki, Lute

    2010-01-01

    A method of determining the refractive and absorptive properties of optically transparent materials involves a combination of theoretical and experimental analysis of electromagnetic responses of whispering-gallery-mode (WGM) resonator disks made of those materials. The method was conceived especially for use in studying transparent photorefractive materials, for which purpose this method affords unprecedented levels of sensitivity and accuracy. The method is expected to be particularly useful for measuring temporally varying refractive and absorptive properties of photorefractive materials at infrared wavelengths. Still more particularly, the method is expected to be useful for measuring drifts in these properties that are so slow that, heretofore, the properties were assumed to be constant. The basic idea of the method is to attempt to infer values of the photorefractive properties of a material by seeking to match (1) theoretical predictions of the spectral responses (or selected features thereof) of a WGM of known dimensions made of the material with (2) the actual spectral responses (or selected features thereof). Spectral features that are useful for this purpose include resonance frequencies, free spectral ranges (differences between resonance frequencies of adjacently numbered modes), and resonance quality factors (Q values). The method has been demonstrated in several experiments, one of which was performed on a WGM resonator made from a disk of LiNbO3 doped with 5 percent of MgO. The free spectral range of the resonator was approximately equal to 3.42 GHz at wavelengths in the vicinity of 780 nm, the smallest full width at half maximum of a mode was approximately equal to 50 MHz, and the thickness of the resonator in the area of mode localization was 30 microns. In the experiment, laser power of 9 mW was coupled into the resonator with an efficiency of 75 percent, and the laser was scanned over a frequency band 9 GHz wide at a nominal wavelength of

  13. All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    NARCIS (Netherlands)

    O'Shea, D.; Junge, C.; Poellinger, M.; Vogler, A.; Rauschenbeutel, A.

    2011-01-01

    We review our recent work on tunable, ultra-high quality factor whispering-gallery-mode bottle microresonators and highlight their applications in non-linear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q=3.6x10(8), a small mode volume, and

  14. Ultra-high Q whispering-gallery-mode bottle microresonators: properties and applications

    NARCIS (Netherlands)

    O'Shea, Danny; Junge, Christian; Nickel, Sebastian; Pöllinger, Michael; Rauschenbeutel, Arno; Kudryashov, Alexis V.; Paxton, Alan H.; Ilchenko, Vladimir S.

    2011-01-01

    Highly prolate-shaped whispering-gallery-mode "bottle microresonators" have recently attracted considerable attention due to their advantageous properties. We experimentally show that such resonators offer ultra-high quality factors, microscopic mode volumes, and near lossless in- and out-coupling

  15. HCMT interaction of whispering gallery modes in circuits of integrated optical microring or -disk resonators

    NARCIS (Netherlands)

    Franchimon, Ellen F.; Hiremath, K.R.; Stoffer, Remco; Hammer, Manfred

    Whispering gallery modes (WGMs) supported by open circular dielectric cavities are embedded into a 2-D hybrid coupled mode theory (HCMT) framework. The model enables convenient studies of supermode formation in composite circuits (CROWS, photonic molecules), and of their excitation by straight

  16. Coupled-mode induced transparency in a bottle whispering-gallery-mode resonator.

    Science.gov (United States)

    Wang, Yue; Zhang, Kun; Zhou, Song; Wu, Yi-Hui; Chi, Ming-Bo; Hao, Peng

    2016-04-15

    Whispering-gallery-mode (WGM) optical resonators are ideal systems for achieving electromagnetically induced transparency-like phenomenon. Here, we experimentally demonstrate that one or more transparent windows can be achieved with coupled-mode induced transparency (CMIT) in a single bottle WGM resonator due to the bottle's dense mode spectra and tunable resonant frequencies. This device offers an approach for multi-channel all-optical switching devices and sensitivity-enhanced WGM-based sensors.

  17. Investigation of a shift of whispering-gallery modes caused by deformations and tensions

    Science.gov (United States)

    Filatov, Yuri Vladimirovich; Kukaev, Alexander Sergeevich; Shalymov, Egor Vadimovich; Venediktov, Vladimir Yurievich

    2017-10-01

    The influence of centrifugal forces on angular velocity sensors that measure a spectral shift of whispering-gallery modes (WGMs) is investigated. Spherical WGM resonators of different materials are considered the sensing elements. The study is based on the results of the simulation in OOFELIE::Multiphysics software.

  18. Investigation of whispering gallery modes in microlasers by scanning near-field optical microscopy

    Science.gov (United States)

    Polubavkina, Yu S.; Kryzhanovskaya, N. V.; Nadtochiy, A. M.; Mintairov, A. M.; Lipovsky, A. A.; Scherbak, S. A.; Kulagina, M. M.; Maximov, M. V.; Zhukov, A. E.

    2017-11-01

    Near-field scanning optical microscopy (NSOM) with a spatial resolution below the light diffraction limit was used to study intensity distributions of the whispering gallery modes (WGMs) in quantum dot-based microdisk and microring lasers on GaAs with different outer diameters. Room temperature microphotoluminescence study (μPL) reveal lasing in microlasers of both geometries.

  19. Highly Stable On-Chip Embedded Organic Whispering Gallery Mode Lasers

    NARCIS (Netherlands)

    Lu, Shi-Yang; Fang, Hong-Hua; Feng, Jing; Xia, Hong; Zhang, Tie-Qiang; Chen, Qi-Dai; Sun, Hong-Bo; Fang, Honghua

    2014-01-01

    Chip-embedded organic resonator is fabricated with 2,5-Bis(4-biphenylyl)thiophene (BP1T) crystals encapsulated with polydimethylsiloxane (PDMS). Whispering gallery mode lasing is demonstrated in these on-chip embedded crystalline microresonators, without decline in the spectral properties, and

  20. Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D.V.; Elser, D.

    2010-01-01

    We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering-gallery-mode resonator made of lithium niobate. A conversion efficiency of 9% is achieved at 30  μW in-coupled continuous wave pump power. The observed saturation pump power of 3.2 m...

  1. Whispering gallery mode resonators for frequency metrology applications

    Science.gov (United States)

    Baumgartel, Lukas

    This dissertation describes an investigation into the use of whispering gallery mode (WGM) resonators for applications towards frequency reference and metrology. Laser stabilization and the measurement of optical frequencies have enabled myriad technologies of both academic and commercial interest. A technology which seems to span both motivations is optical atomic clocks. These devices are virtually unimaginable without the ultra stable lasers plus frequency measurement and down-conversion afforded by Fabry Perot (FP) cavities and model-locked laser combs, respectively. However, WGM resonators can potentially perform both of these tasks while having the distinct advantages of compactness and simplicity. This work represents progress towards understanding and mitigating the performance limitations of WGM cavities for such applications. A system for laser frequency stabilization to a the cavity via the Pound-Drever-Hall (PDH) method is described. While the laser lock itself is found to perform at the level of several parts in 1015, a variety of fundamental and technical mechanisms destabilize the WGM frequency itself. Owing to the relatively large thermal expansion coefficients in optical crystals, environmental temperature drifts set the stability limit at time scales greater than the thermal relaxation time of the crystal. Uncompensated, these drifts pull WGM frequencies about 3 orders of magnitude more than they would in an FP cavity. Thus, two temperature compensation schemes are developed. An active scheme measures and stabilizes the mode volume temperature to the level of several nK, reducing the effective temperature coefficient of the resonator to 1.7x10-7 K-1; simulations suggest that the value could eventually be as low as 3.5x10-8 K-1, on par with the aforementioned FP cavities. A second, passive scheme is also described, which employs a heterogeneous resonator structure that capitalizes on the thermo-mechanical properties of one material and the optical

  2. Interaction of whispering gallery modes in integrated optical micro-ring or -disk circuits: Hybrid CMT model

    NARCIS (Netherlands)

    Franchimon, Ellen F.; Hiremath, K.R.; Stoffer, Remco; Hammer, Manfred

    2013-01-01

    Whispering gallery modes supported by open circular dielectric cavities are embedded into a nonparametric two-dimensional frequency domain hybrid coupled mode theory framework. Regular aggregates of these cavities, including straight access channels, are investigated. The model enables convenient

  3. Feasibility of Passive Gas Sensor Based on Whispering Gallery Modes and its RADAR Interrogation: Theoretical and Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Hamida HALLIL

    2010-05-01

    Full Text Available Feasibility of gas sensors based on Titanium Dioxide (TiO2 dielectric resonator operating with whispering-gallery modes is presented. The gas or humidity adsorption modifies the TiO2 dielectric permittivity and such modification induces variation in the resonant frequencies of high-Q whispering-gallery modes in the millimeter-wave frequency range. Full-wave electromagnetic simulation indicates that the measurement of this variation allows the derivation of few pars-per-million fluctuations in gas or humidity concentration. For validation purposes very first prototypes of resonator operating with whispering-gallery modes in the millimeter-wave frequency range are micro-machined. The obtained measured performances confirm that such high-Q resonant modes are very sensitive to small variations in dielectric resonator permittivity. Moreover we validate experimentally that these small variations can be remotely detected from the RADAR interrogation of an antenna loaded by the whispering-gallery modes resonator.

  4. Efficient frequency generation in phoXonic cavities based on hollow whispering gallery mode resonators.

    Science.gov (United States)

    Farnesi, Daniele; Righini, Giancarlo; Nunzi Conti, Gualtiero; Soria, Silvia

    2017-03-07

    We report on nonlinear optical effects on phoxonic cavities based on hollow whispering gallery mode resonators pumped with a continuous wave laser. We observed stimulated scattering effects such as Brillouin and Raman, Kerr effects such as degenerated and non-degenerated four wave mixing, and dispersive wave generation. These effects happened concomitantly. Hollow resonators give rise to a very rich nonlinear scenario due to the coexistence of several family modes.

  5. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Grandidier, Jonathan; Callahan, Dennis M.; Munday, Jeremy N.; Atwater, Harry A. [Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2011-03-11

    Freely propagating sunlight can be diffractively coupled and transformed into several guided whispering gallery modes within an array of wavelength scale dielectric spheres. Incident optical power is then transferred to the thin-film cell by leaky mode coupling into a thin solar cell absorber layer and significantly enhances its efficiency by increasing the fraction of incident light absorbed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets.

    Science.gov (United States)

    Mur, Maruša; Sofi, Junaid Ahmad; Kvasić, Ivan; Mertelj, Alenka; Lisjak, Darja; Niranjan, Vidur; Muševič, Igor; Dhara, Surajit

    2017-01-23

    We report magnetic field tuning of the structure and Whispering Gallery Mode lasing from ferromagnetic nematic liquid crystal micro-droplets. Microlasers were prepared by dispersing a nematic liquid crystal, containing magnetic nanoparticles and fluorescent dye, in a glycerol-lecithin matrix. The droplets exhibit radial director structure, which shows elastic distortion at a very low external magnetic field. The fluorescent dye doped ferromagnetic nematic droplets show Whispering Gallery Mode lasing, which is tunable by the external magnetic field. The tuning of the WGM lasing modes is linear in magnetic field with a wavelength-shift of the order of 1 nm/100 mT. Depending on the lasing geometry, the WGMs are red- or blue-shifted.

  7. High-Q MgF₂ whispering gallery mode resonators for refractometric sensing in aqueous environment.

    Science.gov (United States)

    Sedlmeir, Florian; Zeltner, Richard; Leuchs, Gerd; Schwefel, Harald G L

    2014-12-15

    We present our experiments on refractometric sensing with ultrahigh-Q, crystalline, birefringent magnesium fluoride (MgF₂) whispering gallery mode resonators. The difference to fused silica which is most commonly used for sensing experiments is the small refractive index of MgF₂ which is very close to that of water. Compared to fused silica this leads to more than 50% longer evanescent fields and a 4.25 times larger sensitivity. Moreover the birefringence amplifies the sensitivity difference between TM and TE type modes which will enhance sensing experiments based on difference frequency measurements. We estimate the performance of our resonators and compare them with fused silica theoretically and present experimental data showing the interferometrically measured evanescent field decay and the sensitivity of mm-sized MgF₂ whispering gallery mode resonators immersed in water. These data show reasonable agreement with the developed theory. Furthermore, we observe stable Q factors in water well above 1 × 10⁸.

  8. Towards next-generation label-free biosensors: recent advances in whispering gallery mode sensors.

    Science.gov (United States)

    Kim, Eugene; Baaske, Martin D; Vollmer, Frank

    2017-03-29

    Whispering gallery mode biosensors have been widely exploited over the past decade to study molecular interactions by virtue of their high sensitivity and applicability in real-time kinetic analysis without the requirement to label. There have been immense research efforts made for advancing the instrumentation as well as the design of detection assays, with the common goal of progressing towards real-world sensing applications. We therefore review a set of recent developments made in this field and discuss the requirements that whispering gallery mode label-free sensors need to fulfill for making a real world impact outside of the laboratory. These requirements are directly related to the challenges that these sensors face, and the methods proposed to overcome them are discussed. Moving forward, we provide the future prospects and the potential impact of this technology.

  9. Scattering of e Polarized Whispering-Gallery mode from Concave Boundary

    Directory of Open Access Journals (Sweden)

    Alexander P. Anyutin

    2012-03-01

    Full Text Available In this work we present numerical results for the 2D problem of scattering E polarised whispering-gallery mode from concave convex perfectly conducting boundary. The results were obtained by applying the developed method of currants integral equations (CIE [6,7] for high frequency domain when the size of the scatterer match is greater than the wave length. We have applied the described procedure in order to find numerical solutions of scattering whispering-gallery mode by concave finite convex boundary as a part of a circular cylinder or part of parabolic cylinder. As incident wave we have considered cylindrical waves from line source and Gauss beam [6] with different effective width. It is shown that we have a complicated process of focusing and oscillating of the beam’s reflected field, both cylindrical and Gauss beam incident fields. The distortions of reflected field depend on shape of the boundary and parameters of the incident fields.

  10. Low threshold Rhodamine-doped whispering gallery mode microlasers fabricated by direct laser writing.

    Science.gov (United States)

    Tomazio, Nathália B; Boni, Leonardo De; Mendonca, Cleber R

    2017-08-17

    The combination of the outstanding properties of whispering gallery modes with both the flexibility and ease of processing of polymers is particularly attractive for photonics applications. However, the versatile fabrication of polymeric nano/microdevices with the desired photonic performance has proven challenging. Here, we report on lasing in Rhodamine B doped whispering gallery mode microcavities fabricated by direct laser writing via two-photon polymerization. Threshold pump energies as low as 12 nJ were achieved for free-space pulsed excitation at 532 nm. To the best of our knowledge, this is the lowest laser threshold attained for microcavities fabricated in a single step of femtosecond laser writing, a remarkable feat that stands out from other fabrication methods.

  11. White-Light Whispering Gallery Mode Optical Resonator System and Method

    Science.gov (United States)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical resonator system and method that includes a whispering-gallery mode (WGM) optical resonator that is capable of resonating across a broad, continuous swath of frequencies is provided. The optical resonator of the system is shaped to support at least one whispering gallery mode and includes a top surface, a bottom surface, a side wall, and a first curved transition region extending between the side wall and the top surface. The system further includes a coupler having a coupling surface which is arranged to face the transition region of the optical resonator and in the vicinity thereof such that an evanescent field emitted from the coupler is capable of being coupled into the optical resonator through the first curved transition region

  12. In situ tuning of whispering gallery modes of levitated silica microspheres

    Science.gov (United States)

    Minowa, Yosuke; Toyota, Yusuke; Ashida, Masaaki

    2017-06-01

    We demonstrated the tuning of whispering gallery modes (WGMs) of a silica microsphere during optical levitation through the annealing process. We determined the annealing temperature from the power balance between the CO2 laser light heating and several cooling processes. Cooling caused by heat conduction through the surrounding air molecules is the dominant process. We achieved a blue shift of the WGMs as large as 1 \\%, which was observed in the white-light scattering spectrum from the levitated microsphere.

  13. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization.

    Science.gov (United States)

    Lim, Jinkang; Savchenkov, Anatoliy A; Dale, Elijah; Liang, Wei; Eliyahu, Danny; Ilchenko, Vladimir; Matsko, Andrey B; Maleki, Lute; Wong, Chee Wei

    2017-03-31

    Ultrastable high-spectral-purity lasers have served as the cornerstone behind optical atomic clocks, quantum measurements, precision optical microwave generation, high-resolution optical spectroscopy, and sensing. Hertz-level lasers stabilized to high-finesse Fabry-Pérot cavities are typically used for these studies, which are large and fragile and remain laboratory instruments. There is a clear demand for rugged miniaturized lasers with stabilities comparable to those of bulk lasers. Over the past decade, ultrahigh-Q optical whispering-gallery-mode resonators have served as a platform for low-noise microlasers but have not yet reached the stabilities defined by their fundamental noise. Here, we show the noise characteristics of whispering-gallery-mode resonators and demonstrate a resonator-stabilized laser at this limit by compensating the intrinsic thermal expansion, allowing a sub-25 Hz linewidth and a 32 Hz Allan deviation. We also reveal the environmental sensitivities of the resonator at the thermodynamical noise limit and long-term frequency drifts governed by random-walk-noise statistics.High-quality optical resonators have the potential to provide a miniaturized frequency reference for metrology and sensing but they often lack stability. Here, Lim et al. experimentally characterize the stability of whispering-gallery resonators at their fundamental noise limits.

  14. Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide

    Science.gov (United States)

    Neilson, Jeffrey M

    2015-02-24

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  15. Generalized full-vector multi-mode matching analysis of whispering gallery microcavities.

    Science.gov (United States)

    Du, Xuan; Vincent, Serge; Faucher, Mathieu; Picard, Marie-Josée; Lu, Tao

    2014-06-02

    We outline a full-vectorial three-dimensional multi-mode matching technique in a cylindrical coordinate system that addresses the mutual coupling among multiple modes co-propagating in a perturbed whispering gallery mode microcavity. In addition to its superior accuracy in respect to our previously implemented single-mode matching technique, this current technique is suitable for modelling waveguide-to-cavity coupling where the influence of multi-mode coupling is non-negligible. Using this methodology, a robust scheme for hybrid integration of a microcavity onto a silicon-on-insulator platform is proposed.

  16. Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators.

    Science.gov (United States)

    Yang, Yong; Saurabh, Sunny; Ward, Jonathan; Chormaic, Síle Nic

    2015-04-15

    Coupled-mode-induced transparency is realized in a single microbubble whispering-gallery mode resonator. Using aerostatic tuning, we find that the pressure-induced shifting rates are different for different radial order modes. A finite element simulation considering both the strain and stress effects shows a GHz/bar difference, and this is confirmed by experiments. A transparency spectrum is obtained when a first-order mode shifts across a higher order mode through precise pressure tuning. The resulting lineshapes are fitted with the theory. This work lays a foundation for future applications in microbubble sensing.

  17. Coupled-mode induced transparency in aerostatically-tuned microbubble whispering gallery resonators

    CERN Document Server

    Yang, Yong; Ward, Jonathan; Chormaic, Síle Nic

    2015-01-01

    Coupled-mode induced transparency is realized in a single microbubble whispering gallery mode resonator. Using aerostatic tuning, we find that the pressure induced shifting rates are different for different radial order modes. A finite element simulation considering both the strain and stress effects shows a GHz/bar difference and this is confirmed by experiments. A transparency spectrum is obtained when a first order mode shifts across a higher order mode through precise pressure tuning. The resulting lineshapes are fitted with the theory. This work lays a foundation for future applications in microbubble sensing.

  18. Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities

    Science.gov (United States)

    Jaffrennou, P.; Claudon, J.; Bazin, M.; Malik, N. S.; Reitzenstein, S.; Worschech, L.; Kamp, M.; Forchel, A.; Gérard, J.-M.

    2010-02-01

    We report whispering gallery mode (WGM) lasing from high quality GaAs/AlAs micropillars with embedded InAs quantum dots, under continuous optical pumping. For temperatures ranging from 5 to 100 K, simultaneous lasing from TE1,1,m WGMs is observed for pillar diameters in the 3-4 μm range. Spectral linewidths and energy shifts of the lasing modes are analyzed as a function of the pump power. Thanks to the efficient heat sinking provided by the micropillar geometry, a clear line narrowing is observed above threshold. Moreover, the lasing mode energy remains stable for pump power as large as six times the lasing threshold.

  19. Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.

    2010-01-01

    In whispering gallery mode (WGM) resonator light is guided by continuous total internal reflection along a curved surface. Fabricating such resonators from an optically nonlinear material one takes advantage of their exceptionally high quality factors and small mode volumes to achieve extremely...... such an optical parametric oscillator (OPO) based on naturally phase-matched PDC in lithium niobate. We demonstrated a single-mode, strongly nondegenerate OPO with a threshold of 6.7  μW and linewidth under 10 MHz. This work demonstrates the remarkable capabilities of WGM-based OPOs....

  20. Optical Sensors Based on Whispering Gallery Modes in Fluorescent Microbeads: Size Dependence and Influence of Substrate

    Directory of Open Access Journals (Sweden)

    Alexandre Francois

    2009-08-01

    Full Text Available Whispering gallery modes in surface-fixated fluorescent polystyrene microbeads are studied in view of their capability of sensing changes in the refractive index of the beads’ environment by exposing them to water/glycerol mixtures of varying composition. The mode positions are analyzed by simultaneous fitting for mode number, bead radius, and environmental index. Down to a diameter of 8 μm, the sensor response follows the index of the bulk solution very well. For smaller bead sizes, some deviations occur, in particular for fluid indices not too different from that of water, which might be attributed to the presence of the substrate.

  1. Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor

    Science.gov (United States)

    Zhao, Liyuan; Wang, Yan; Yuan, Yonggui; Liu, Yongjun; Liu, Shuangqiang; Sun, Weimin; Yang, Jun; Li, Hanyang

    2017-11-01

    We developed a tunable whispering gallery mode (WGM) microlaser based on dye-doped cholesteric liquid crystal (CLC) microdroplets with controllable size in an aqueous environment. An individual dye-doped CLC microdroplet confined at the tip of a microcapillary was optically pumped via a tapered optical fiber tip positioned within its vicinity. Numerical simulations and various spectral characteristics verify the WGM resonance of the lasing in microdroplets. Thermal tuning of the lasing modes is realized due to the thermo-optic effect of CLC. The proposed CLC microdroplet-based WGM resonator was applied as a temperature sensor and exhibited maximum temperature sensitivity up to 0.96 nm/°C.

  2. Controlled assembly of organic whispering-gallery-mode microlasers as highly sensitive chemical vapor sensors.

    Science.gov (United States)

    Gao, Miaomiao; Wei, Cong; Lin, Xianqing; Liu, Yuan; Hu, Fengqin; Zhao, Yong Sheng

    2017-03-09

    We demonstrate the fabrication of organic high Q active whispering-gallery-mode (WGM) resonators from π-conjugated polymer by a controlled emulsion-solvent-evaporation method, which can simultaneously provide optical gain and act as an effective resonant cavity. By measuring the shift of their lasing modes on exposure to organic vapor, we successfully monitored the slight concentration variation in the chemical gas. These microlaser sensors demonstrated high detection sensitivity and good signal repeatability under continuous chemical gas treatments. The results offer an effective strategy to design miniaturized optical sensors.

  3. Integration of microsphere resonators with bioassay fluidics for whispering gallery mode imaging.

    Science.gov (United States)

    Kim, Daniel C; Armendariz, Kevin P; Dunn, Robert C

    2013-06-07

    Whispering gallery mode resonators are small, radially symmetric dielectrics that trap light through continuous total internal reflection. The resonant condition at which light is efficiently confined within the structure is linked with refractive index, which has led to the development of sensitive label-free sensing schemes based on whispering gallery mode resonators. One resonator design uses inexpensive high index glass microspheres that offer intrinsically superior optical characteristics, but have proven difficult to multiplex and integrate with the fluidics for sample delivery and fluid exchange necessary for assay development. Recently, we introduced a fluorescence imaging approach that enables large scale multiplexing with microsphere resonators, thus removing one obstacle for assay development. Here we report an approach for microsphere immobilization that overcomes limitations arising from their integration with fluidic delivery. The approach is an adaptation of a calcium-assisted glass bonding method originally developed for microfluidic glass chip fabrication. Microspheres bonded to glass using this technique are shown to be stable with respect to fluid flow and show no detectable loss in optical performance. Measured Q-factors, for example, remain unchanged following sphere bonding to the substrate. The stability of the immobilized resonators is further demonstrated by transferring lipid films onto the immobilized spheres using the Langmuir-Blodgett technique. Bilayers of DOPC doped with GM1 were transferred onto immobilized resonators to detect the binding of cholera toxin to GM1. Binding curves generated from shifts in the whispering gallery mode resonance result in a measured Kd of 1.5 × 10(-11) with a limit of detection of 3.3 pM. These results are discussed in terms of future assay development using microsphere resonators.

  4. Whispering Gallery Mode Based Optical Fiber Sensor for Measuring Concentration of Salt Solution

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available An optical fiber solution-concentration sensor based on whispering gallery mode (WGM is proposed in this paper. The WGM solution-concentration sensors were used to measure salt solutions, in which the concentrations ranged from 1% to 25% and the wavelength drifted from the left to the right. The experimental results showed an average sensitivity of approximately 0.372 nm/% and an R2 linearity of 0.8835. The proposed WGM sensors are of low cost, feasible for mass production, and durable for solution-concentration sensing.

  5. Performance of Eudragit Coated Whispering Gallery Mode Resonator-Based Immunosensors

    Directory of Open Access Journals (Sweden)

    Franco Cosi

    2012-10-01

    Full Text Available Whispering gallery mode resonators (WGMR are an efficient tool for the realization of optical biosensors. A high Q factor preservation is a crucial requirement for good biosensor performances. In this work we present an Eudragit®L100 coated microspherical WGMR as an efficient immunosensor. The developed resonator was morphologically characterized using fluorescence microscopy. The functionalization process was tuned to preserve the high Q factor of the resonator. The protein binding assay was optically characterized in terms of specificity in buffer solution.

  6. Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wanli; Xu Zhenyu; Feng Mang [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Du Jiangfeng, E-mail: mangfeng@wipm.ac.c, E-mail: djf@ustc.edu.c [Hefei National Laboratory for Physics Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2010-11-15

    We present a quantum electrodynamical model involving nitrogen-vacancy centers coupled to a whispering-gallery mode cavity. We consider two schemes to create the W state and Bell state, respectively. One scheme makes use of Raman transition with the cavity field virtually excited, and the other enables Bell state preparation and quantum information transfer by virtue of dark state evolution and adiabatic passage, which is tolerant to ambient noise and experimental parameter fluctuations. We justify our schemes by considering their experimental feasibility and challenge, using the currently available technology.

  7. THz Pyro-Optical Detector Based on LiNbO₃ Whispering Gallery Mode Microdisc Resonator.

    Science.gov (United States)

    Cosci, Alessandro; Cerminara, Matteo; Conti, Gualtiero Nunzi; Soria, Silvia; Righini, Giancarlo C; Pelli, Stefano

    2017-01-28

    This study analyzes the capabilities of a LiNbO₃ whispering gallery mode microdisc resonator as a potential bolometer detector in the THz range. The resonator is theoretically characterized in the stationary regime by its thermo-optic and thermal coefficients. Considering a Q-factor of 10⁷, a minimum detectable power of 20 μW was evaluated, three orders of magnitude above its noise equivalent power. This value opens up the feasibility of exploiting LiNbO₃ disc resonators as sensitive room-temperature detectors in the THz range.

  8. Solid-state Raman quantum memory in whispering gallery mode resonators: signal-to-noise ratio

    Science.gov (United States)

    Berezhnoi, Alexander; Kalachev, Alexey

    2017-10-01

    The possibility of implementation of optical quantum memory via off-resonant Raman absorption and emission of single-photon pulses in rare-earth-ion-doped crystals is theoretically analysed taking into account signal-to-noise ratio at the output of the memory device. The crystal 143Nd3+:Y7LiF4 is considered as an example. It is shown that the signal-to-noise ratio can exceed unity for single-photon input pulses provided that storage and retrieval of them is performed in the doped crystals forming a microcavity such as whispering gallery mode resonator.

  9. Rapid 3D µ-printing of polymer optical whispering-gallery mode resonators.

    Science.gov (United States)

    Wu, Jushuai; Guo, Xin; Zhang, A Ping; Tam, Hwa-Yaw

    2015-11-16

    A novel microfabrication method for rapid printing of polymer optical whispering-gallery mode (WGM) resonators is presented. A 3D micro-printing technology based on high-speed optical spatial modulator (SLM) and high-power UV light source is developed to fabricate suspended-disk WGM resonator array using SU-8 photoresist. The optical spectral responses of the fabricated polymer WGM resonators were measured with a biconically tapered optical fiber. Experimental results reveal that the demonstrated method is very flexible and time-saving for rapid fabrication of complex polymer WGM resonators.

  10. Optical Sensors Based on Whispering Gallery Modes in Fluorescent Microbeads: Response to Specific Interactions

    Science.gov (United States)

    Himmelhaus, Michael; Krishnamoorthy, Sivashankar; Francois, Alexandre

    2010-01-01

    Whispering gallery modes (WGMs) in surface-fixated fluorescent polystyrene microbeads are studied in view of their capability of sensing the formation of biochemical adsorption layers on their outer surface with the well-established biotin-streptavidin specific binding as the model system. Three different methods for analysis of the observed shifts in the WGM wavelength positions are applied and used to quantify the adsorbed mass densities, which are then compared with the results of a comparative surface plasmon resonance (SPR) study. PMID:22219711

  11. Polarized photoluminescence study of whispering gallery mode polaritons in ZnO microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liaoxin; Chen, Zhanghai; Ren, Qijun; Zhou, Weihang; Bai, Lihui; Shen, Xuechu [Surface Physics Laboratory, Department of Physics, Fudan University, Shanghai (China); Yu, Ke; Zhu, Z.Q. [Department of Electronic Engineering, East China Normal University, Shanghai (China)

    2009-01-15

    Polariton effect and its polarization dependence were studied in ZnO tapered whispering gallery (WG) microcavity at room temperature. By scanning the excitation along the tapered arm of ZnO tetrapod with different polarizations, the photo-exciton coupling strength were continuingly tuned and thus the resonant interaction between the WG optical modes and the excitons with different dipole orientation are clearly resolved. The experimental observations were well described by the plane wave model with excitonic polariton dispersions. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Optical apparatus for conversion of whispering-gallery modes into a free space gaussian like beam

    Science.gov (United States)

    Stallard, Barry W.; Makowski, Michael A.; Byers, Jack A.

    1992-01-01

    An optical converter for efficient conversion of millimeter wavelength whispering-gallery gyrotron output into a linearly polarized, free-space Gaussian-like beam. The converter uses a mode-converting taper and three mirror optics. The first mirror has an azimuthal tilt to eliminate the k.sub..phi. component of the propagation vector of the gyrotron output beam. The second mirror has a twist reflector to linearly polarize the beam. The third mirror has a constant phase surface so the converter output is in phase.

  13. Solid-state Raman quantum memory in whispering gallery mode resonators: signal-to-noise ratio

    Directory of Open Access Journals (Sweden)

    Berezhnoi Alexander

    2017-01-01

    Full Text Available The possibility of implementation of optical quantum memory via off-resonant Raman absorption and emission of single-photon pulses in rare-earth-ion-doped crystals is theoretically analysed taking into account signal-to-noise ratio at the output of the memory device. The crystal 143Nd3+:Y7LiF4 is considered as an example. It is shown that the signal-to-noise ratio can exceed unity for single-photon input pulses provided that storage and retrieval of them is performed in the doped crystals forming a microcavity such as whispering gallery mode resonator.

  14. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators

    CERN Document Server

    Lin, Guoping; Saleh, Khaldoun; Martinenghi, Romain; Beugnot, Jean-Charles; Sylvestre, Thibaut; Chembo, Yanne K

    2015-01-01

    We report the observation of stimulated Brillouin scattering and lasing at 1550~nm in barium fluoride (BaF$_2$) crystal. Brillouin lasing was achieved with ultra-high quality ($Q$) factor monolithic whispering gallery mode (WGM) mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from $8.2$ GHz up to $49$ GHz have been generated through cascaded Brillouin lasing. BaF$_2$ resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics.

  15. Whispering gallery mode photoemission from self-assembled poly-para-phenylenevinylene microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Kushida, Soh; Yamamoto, Yohei [Division of Materials Science and Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Braam, Daniel; Lorke, Axel [Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, Duisburg, D-47048 (Germany)

    2015-12-31

    Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMOPPV) self-assembles to form well-defined spheres with several micrometers in diameter upon addition of a methanol vapor into a chloroform solution of MDMOPPV. The single sphere of MDMOPPV with 5.7 µm diameter exhibits whispering gallery mode (WGM) photoemission upon excitation with focused laser beam. The periodic emission lines are characterized by transverse electric and magnetic WGMs, and Q-factor reaches ∼345 at the highest.

  16. Refractometry-based air pressure sensing using glass microspheres as high-Q whispering-gallery mode microresonators

    Science.gov (United States)

    Bianchetti, Arturo; Federico, Alejandro; Vincent, Serge; Subramanian, Sivaraman; Vollmer, Frank

    2017-07-01

    In this work a refractometric air pressure sensing platform based on spherical whispering-gallery mode microresonators is presented and analyzed. The sensitivity of this sensing approach is characterized by measuring the whispering-gallery mode spectral shifts caused by a change of air refractive index produced by dynamic sinusoidal pressure variations that lie between extremes of ± 1.8 kPa . A theoretical frame of work is developed to characterize the refractometric air pressure sensing platform by using the Ciddor equation for the refractive index of air, and a comparison is made against experimental results for the purpose of performance evaluation.

  17. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars

    DEFF Research Database (Denmark)

    Jin, Yabin; Fernez, Nicolas; Pennec, Yan

    2016-01-01

    We investigate the properties of a phononic crystal plate with hollow pillars and introduce the existence of whispering-gallery modes (WGMs). We show that by tuning the inner radius of the hollow pillar, these modes can merge inside both Bragg and low frequency band gaps, deserving phononic crystal...

  18. Pseudo-type-II tuning behavior and mode identification in whispering gallery optical parametric oscillators.

    Science.gov (United States)

    Meisenheimer, Sarah-Katharina; Fürst, Josef Urban; Schiller, Annelie; Holderied, Florian; Buse, Karsten; Breunig, Ingo

    2016-06-27

    Wavelength tuning of conventional mirror-based optical parametric oscillators (OPOs) exhibits parabolically-shaped tuning curves (type-0 and type-I phase matching) or tuning branches that cross each other with a finite slope (type-II phase matching). We predict and experimentally prove that whispering gallery OPOs based on type-0 phase matching show both tuning behaviors, depending on whether the mode numbers of the generated waves coincide or differ. We investigate the wavelength tuning of optical parametric oscillation in a millimeter-sized radially-poled lithium niobate disk pumped at 1 μm wavelength generating signal and idler waves between 1.7 and 2.6 μm wavelength. Our experimental findings excellently coincide with the theoretical predictions. The investigated whispering gallery optical parametric oscillator combines the employment of the highest nonlinear-optical coefficient of the material with a controlled type-II-like wavelength tuning and with the possibility of self-phase locking.

  19. Whispering-gallery-mode dye lasers in blue, green, and orange regions using dye-doped, solid, small spheres

    OpenAIRE

    Taniguchi, Hiroshi; Fujiwara, Tamiya; Yamada, Hiroshi; Tanosaki, Shinji; Baba, Mamoru

    1993-01-01

    A whispering-gallery-mode (WGM) dye laser in blue, green, and orange regions is reported using dye-doped, solid, small spheres. A WGM dye laser is pumped by a transversely excited atmospheric UV N2 laser. Some features of the WGM dye laser are demonstrated.

  20. Whispering-gallery mode lasing from optically free-standing InGaN microdisks.

    Science.gov (United States)

    Zhang, Xuhui; Cheung, Yuk Fai; Zhang, Yiyun; Choi, H W

    2014-10-01

    Optically pumped multi-mode whispering-gallery mode (WGM) lasing has been observed in optically free-standing InGaN/GaN quantum well microdisks at room temperature. The ∼6.6  μm optically isolated microdisks are patterned by microsphere lithography on GaN thin-films prepared by laser lift-off of the sapphire substrate, enabling superior optical confinement. The modes are determined to be of second order according to simulations. The lasing threshold is found to be ∼9.06  mJ/cm2, with a quality factor Q of ∼770 evaluated from the dominant mode at λ=430.2  nm, and a free space range (FSR) of 3.17 to 2.16 nm, which is mode-dependent.

  1. III-nitride tunable cup-cavities supporting quasi whispering gallery modes from ultraviolet to infrared

    Science.gov (United States)

    Shubina, T. V.; Pozina, G.; Jmerik, V. N.; Davydov, V. Yu.; Hemmingsson, C.; Andrianov, A. V.; Kazanov, D. R.; Ivanov, S. V.

    2015-01-01

    Rapidly developing nanophotonics needs microresonators for different spectral ranges, formed by chip-compatible technologies. In addition, the tunable ones are much in demand. Here, we present site-controlled III-nitride monocrystal cup-cavities grown by molecular beam epitaxy. The cup-cavities can operate from ultraviolet to near-infrared, supporting quasi whispering gallery modes up to room temperature. Besides, their energies are identical in large ’ripened’ crystals. In these cavities, the refractive index variation near an absorption edge causes the remarkable effect of mode switching, which is accompanied by the spatial redistribution of electric field intensity with concentration of light into a subwavelength volume. Our results shed light on the mode behavior in semiconductor cavities and open the way for single-growth-run manufacturing the devices comprising an active region and a cavity with tunable mode frequencies. PMID:26656267

  2. Tuning Whispering Gallery Mode Lasing from Self-Assembled Polymer Droplets

    Science.gov (United States)

    Ta, Van Duong; Chen, Rui; Sun, Han Dong

    2013-01-01

    Optical microcavities are important for both fundamental studies of light-matter interaction and applications such as microlasers, optical switches and filters etc... Tunable microresonators, in which resonant modes can be manipulated, are especially fascinating. Here we demonstrate a unique approach to mechanically tuning microresonators formed by polymer droplets with varying sizes. The droplets are self-assembly inside an elastic medium. By incorporating different dye molecules into the droplets, optically pumped lasing with selective wavelengths in a range of about 100 nm are achieved. Lasing action is ascribed to whispering gallery modes, verified by rigorous characterizations. Single longitudinal mode lasing is obtained when the droplet diameter is reduced to about 14 μm. Tuning lasing modes are clearly demonstrated by mechanical deformation. Our finding provides an excellent platform for exploring flexible and tunable microlasers for plastic optoelectronic devices. PMID:23449157

  3. All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    CERN Document Server

    O'Shea, D; Poellinger, M; Vogler, A; Rauschenbeutel, A

    2011-01-01

    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \\times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.

  4. Ultra-high Q whispering-gallery-mode bottle microresonators: properties and applications

    CERN Document Server

    O'Shea, D; Nickel, S; Poellinger, M; Rauschenbeutel, A; 10.1117/12.876790

    2011-01-01

    Highly prolate-shaped whispering-gallery-mode "bottle microresonators" have recently attracted considerable attention due to their advantageous properties. We experimentally show that such resonators offer ultra-high quality factors, microscopic mode volumes, and near lossless in- and out-coupling of light using ultra-thin optical fibers. Additionally, bottle microresonators have a simple and customizable mode structure. This enables full tunability using mechanical strain and simultaneous coupling of two ultra-thin coupling fibers in an add-drop configuration. We present two applications based on these characteristics: In a cavity quantum electrodynamics experiment, we actively stabilize the frequency of the bottle microresonator to an atomic transition and operate it in an ultra-high vacuum environment in order to couple single laser-cooled atoms to the resonator mode. In a second experiment, we show that the bottle microresonator can be used as a low-loss, narrow-band add-drop filter. Using the Kerr effect...

  5. On-Chip Glass Microspherical Shell Whispering Gallery Mode Resonators.

    Science.gov (United States)

    Zhang, Chenchen; Cocking, Alexander; Freeman, Eugene; Liu, Zhiwen; Tadigadapa, Srinivas

    2017-11-02

    Arrays of on-chip spherical glass shells of hundreds of micrometers in diameter with ultra-smooth surfaces and sub-micrometer wall thicknesses have been fabricated and have been shown to sustain optical resonance modes with high Q-factors of greater than 50 million. The resonators exhibit temperature sensitivity of -1.8 GHz K-1 and can be configured as ultra-high sensitivity thermal sensors for a broad range of applications. By virtue of the geometry's strong light-matter interaction, the inner surface provides an excellent on-chip sensing platform that truly opens up the possibility for reproducible, chip scale, ultra-high sensitivity microfluidic sensor arrays. As a proof of concept we demonstrate the sensitivity of the resonance frequency as water is filled inside the microspherical shell and is allowed to evaporate. By COMSOL modeling, the dependence of this interaction on glass shell thickness is elucidated and the experimentally measured sensitivities for two different shell thicknesses are explained.

  6. Whispering gallery mode lasing in optically isolated III-nitride nanorings.

    Science.gov (United States)

    Li, K H; Cheung, Y F; Choi, H W

    2015-06-01

    III-nitride nanorings fabricated from a combination of hybrid-nanosphere-lithography and laser lift-off processes is demonstrated. Being formed on an interfacial metallic layer optically coupling between the optical ring and its substrate is eliminated, maximizing optical confinement of whispering gallery resonant mode within the ring cavity. The tapered cross-sectional profile also promotes coupling of emitted light into resonant modes. Optically pumped lasing with a dominant peak at 421.5 nm is observed at room temperature, with threshold energy density of ∼6.5  mJ/cm2. Etch-induced sidewall roughness causes scattering of light at the interface to diminish confinement, and is also responsible for the mode-splitting effect according to finite-difference time-domain simulations.

  7. Visualizing the condensation of graphene whispering gallery modes into Landau levels in real-space

    Science.gov (United States)

    Gutierrez, Christopher; Walkup, Daniel; Ghahari, Fereshte; Watanabe, Kenji; Taniguchi, Takashi; Zhitenev, Nikolai B.; Stroscio, Joseph A.

    Recent methods for the creation of circular p-n junctions in graphene have opened the door to investigating the effects of spatial confinement on Dirac fermions, such as the formation of whispering gallery modes (WGMs). These quasi-bound modes can be confined even further into highly-degenerate Landau levels by the application of a perpendicular magnetic field. Here we use scanning tunneling microscopy and spectroscopy (STM/STS) to investigate the effects of increasing magnetic field on the graphene WGMs in graphene/boron nitride heterostructures. Using detailed differential conductance (dI/dV) mapping we directly visualize the condensation of the distinct WGMs into degenerate Landau levels. We further show that residual disorder allows for the imaging of cyclotron orbits and circular edge modes.

  8. Dielectric tuning and coupling of whispering gallery modes using an anisotropic prism

    CERN Document Server

    Foreman, Matthew R; Schwefel, Harald G L; Leuchs, Gerd

    2016-01-01

    Optical whispering gallery mode (WGM) resonators are a powerful and versatile tool used in many branches of science. Fine tuning of the central frequency and line width of individual resonances is however desirable in a number of applications including frequency conversion, optical communications and efficient light-matter coupling. To this end we present a detailed theoretical analysis of dielectric tuning of WGMs supported in axisymmetric resonators. Using the Bethe-Schwinger equation and adopting an angular spectrum field representation we study the resonance shift and mode broadening of high $Q$ WGMs when a planar dielectric substrate is brought close to the resonator. Particular focus is given to use of a uniaxial substrate with an arbitrarily aligned optic axis. Competing red and blue resonance shifts ($\\sim 30$ MHz), deriving from generation of a near field material polarisation and back action from the radiation continuum respectively, are found. Anomalous resonance shifts can hence be observed depend...

  9. Whispering-gallery-mode microlaser based on self-assembled organic single-crystalline hexagonal microdisks.

    Science.gov (United States)

    Wang, Xuedong; Liao, Qing; Kong, Qinghua; Zhang, Yi; Xu, Zhenzhen; Lu, Xiaomei; Fu, Hongbing

    2014-06-02

    Whispering-gallery-mode (WGM) resonators of semiconductor microdisks have been applied for achieving low-threshold and narrow-linewidth microlasers, but require sophisticated top-down processing technology. Organic single-crystalline hexagonal microdisks (HMDs) of p-distyrylbenzene (DSB) self-assembled from solution can function as WGM microresonators with a cavity quality factor (Q) of 210. Both multiple- and single-mode lasing had been achieved using DSB HMDs with an edge length of 4.3 and 1.2 μm, respectively. These organic microdisks fabricated by bottom-up self-assembly approach may offer potential applications as low-threshold microlaser sources for photonic circuit integration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator

    CERN Document Server

    Yang, Yong; Kasumie, Sho; Ward, Jonathan M; Chormaic, Síle Nic

    2016-01-01

    In whispering gallery mode resonator sensing applications, the conventional way to detect a change in the parameter to be measured is by observing the steady state transmission spectrum through the coupling waveguide. Alternatively, cavity ring-up spectroscopy (CRUS) sensing can be achieved transiently. In this work, we investigate CRUS using coupled mode equations and find analytical solutions with a large spectral broadening approximation of the input pulse. The relationships between the frequency detuning, coupling gap and ring-up peak height are determined and experimentally verified using an ultrahigh \\textit{Q}-factor silica microsphere. This work shows that distinctive dispersive and dissipative transient sensing can be realised by simply measuring the peak height of the CRUS signal, which might improve the data collection rate.

  11. Hollow Core, Whispering Gallery Resonator Sensors

    CERN Document Server

    Ward, Jonathan M; Chormaic, Síle Nic

    2014-01-01

    A review of hollow core whispering gallery resonators (WGRs)is given. After a short introduction to the topic of whispering gallery resonators we provide a description of whispering gallery modes in hollow or liquid core WGRs. Next, whispering gallery mode (WGM) sensing mechanisms are outlined and some fabrication methods for microbubbles, microcapillaries and other tubular WGM devices are discussed. We then focus on the most common applications of hollow core WGRs, namely refractive index and temperature sensing, gas sensing, force sensing, biosensing, and lasing. The review highlights some of the key papers in this field and gives the reader a general overview of the current state-of-the-art.

  12. Under-Coupling Whispering Gallery Mode Resonator Applied to Resonant Micro-Optic Gyroscope

    Directory of Open Access Journals (Sweden)

    Kun Qian

    2017-01-01

    Full Text Available As an important sensing element, the whispering gallery mode resonator (WGMR parameters seriously affect the resonant micro-optic gyroscope (RMOG performance. This work proposes an under-coupling resonator to improve the resonator’s Q value and to optimize the coupling coefficient to maximize the RMOG’s sensitivity. GeO2-doped silica waveguide-type resonators with different coupling coefficients were simulated, designed, fabricated and tested. An under-coupling ring resonator with a quality factor of 10 million is reported. The RMOG system was built based on this resonator and the scale factor was tested on a uniaxial high-precision rotating platform. Experimental results show that this resonator could improve the RMOG sensitivity by five times.

  13. Under-Coupling Whispering Gallery Mode Resonator Applied to Resonant Micro-Optic Gyroscope.

    Science.gov (United States)

    Qian, Kun; Tang, Jun; Guo, Hao; Liu, Wenyao; Liu, Jun; Xue, Chenyang; Zheng, Yongqiu; Zhang, Chengfei

    2017-01-06

    As an important sensing element, the whispering gallery mode resonator (WGMR) parameters seriously affect the resonant micro-optic gyroscope (RMOG) performance. This work proposes an under-coupling resonator to improve the resonator's Q value and to optimize the coupling coefficient to maximize the RMOG's sensitivity. GeO₂-doped silica waveguide-type resonators with different coupling coefficients were simulated, designed, fabricated and tested. An under-coupling ring resonator with a quality factor of 10 million is reported. The RMOG system was built based on this resonator and the scale factor was tested on a uniaxial high-precision rotating platform. Experimental results show that this resonator could improve the RMOG sensitivity by five times.

  14. Effect of crystalline family and orientation on stimulated Brillouin scattering in whispering-gallery mode resonators.

    Science.gov (United States)

    Diallo, Souleymane; Aubry, Jean-Pierre; Chembo, Yanne K

    2017-11-27

    Ultra-high Q whispering-gallery mode resonators pumped by a continuous-wave laser are known to enhance stimulated Brillouin scattering when optimal resonance and phase-matching conditions are met. In crystalline resonators, this process depends critically on the crystal orientation and family, which impose the elastic constants defining the velocity of the acoustic waves. In this article, we investigate the effect of crystalline orientation and family on this velocity which is proportional to the Brillouin frequency down-shift. In particular, the study is based on the development of a model and numerical simulations of acoustic wave velocities that propagate along the periphery of four fluoride crystals, namely calcium, magnesium, lithium and barium fluoride. We find that depending on the crystal and its orientation, the frequency excursion around the Brillouin offset can vary from few tens of kHz to more than a GHz.

  15. Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review.

    Science.gov (United States)

    Bozzola, Angelo; Perotto, Sara; De Angelis, Francesco

    2017-03-13

    In this review we present the state of the art and the most recent advances in the field of optical sensing with hybrid plasmonic-photonic whispering gallery mode (WGM) resonators. After a brief introduction on the basic physics behind photonic WGM resonators and localized surface plasmon (LSP) nanostructures, we analyze the different types of optical sensors specifically designed for bulk refractive index sensing, molecular binding and single object detection. We point out the physical and technological key points of the different approaches proposed in the literature, and we systematically compare hybrid sensors and purely photonic WGM sensors. This comparative analysis points out the real advantages brought by LSP nanostructures, and it identifies the most promising hybrid architectures.

  16. Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization

    Directory of Open Access Journals (Sweden)

    Hiroki Itobe

    2016-05-01

    Full Text Available We fabricated a calcium fluoride (CaF2 whispering gallery mode (WGM microcavity with a computer controlled ultra-precision cutting process. We observed a thermo-opto-mechanical (TOM oscillation in the CaF2 WGM microcavity, which may influence the stability of the optical output when the cavity is employed for Kerr comb generation. We studied experimentally and numerically the mechanism of the TOM oscillation and showed that it is strongly dependent on cavity diameter. In addition, our numerical study suggests that a microcavity structure fabricated with a hybrid material (i.e. CaF2 and silicon, which is compatible with an ultra-high Q and high thermal conductivity, will allow us to reduce the TOM oscillation and stabilize the optical output.

  17. Computational model and simulation for the whispering gallery modes inside micro-optical cavity

    Science.gov (United States)

    Ali, Amir R.; Erian, Abanoub M.; Shokry, Kirelloss

    2017-05-01

    A computational model for the whispering gallery modes inside a microsphere resonator is presented. In the archetypical microsphere resonator sensor, a tunable laser light beam is injected into an optical fiber and coupled with the resonator's cavity. The resonant optical coupling is achieved by bringing the fiber in the vicinity of the cavity's evanescent field. The transmission spectrum is then observed to detect the WGM shifts. In this paper, two-dimensional models of a single laser source put near the equator of a microsphere are simulated using COMSOL Multi-physics 5.1 electromagnetic waves, beam envelopes library. Afterwards, a three-dimensional model of two laser sources put near the horizontal and vertical equators of a microsphere is computed. The transmission spectrum of both simulations was taken and cross correlation was performed on them. Results show a big similarity between both simulations and could bring a breakthrough in the area of optical sensors.

  18. Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators.

    Science.gov (United States)

    Lin, Guoping; Diallo, Souleymane; Dudley, John M; Chembo, Yanne K

    2016-06-27

    Universal nonlinear scattering processes such as Brillouin, Raman, and Kerr effects are fundamental light-matter interactions of particular theoretical and experimental importance. They originate from the interaction of a laser field with an optical medium at the lattice, molecular, and electronic scale, respectively. These nonlinear effects are generally observed and analyzed separately, because they do not often occur concomitantly. In this article, we report the simultaneous excitation of these three fundamental interactions in mm-size ultra-high Q whispering gallery mode resonators under continuous wave pumping. Universal nonlinear scattering is demonstrated in barium fluoride and strontium fluoride, separately. We further propose a unified theory based on a spatiotemporal formalism for the understanding of this phenomenology.

  19. Low-threshold stimulated Brillouin scattering in high-Q whispering gallery mode tellurite microspheres.

    Science.gov (United States)

    Guo, Changlei; Che, Kaijun; Zhang, Pan; Wu, Jinshu; Huang, Yantang; Xu, Huiying; Cai, Zhiping

    2015-12-14

    We demonstrate the first observation of stimulated Brillouin scattering (SBS) in a high-Q whispering gallery mode tellurite microsphere. Tellurite glass with composition of 70TeO₂-20ZnO-5Na₂O-5La₂O₃ (molar ratio) was prepared in-house using a melt-quenching technique. Moreover, tellurite microspheres with Q in excess of 13 millions at 1550 nm were fabricated by melting tellurite microwires using a CO₂ laser. By pumping the tellurite microspheres with a tunable single frequency laser, SBS is further realized with a threshold as low as 0.58 mW. At last, the beat notes between the pump and the Stokes signals were measured, which indicated the Brillouin frequency shift is at the 8.2 GHz band for our tellurite glass. Our results could propel significant applications utilizing SBS by employing tellurite microspheres.

  20. Experimental demonstration of critical coupling of whispering gallery mode cavities on a Bloch surface wave platform.

    Science.gov (United States)

    Vosoughi Lahijani, B; Badri Ghavifekr, H; Dubey, R; Kim, M-S; Vartiainen, I; Roussey, M; Herzig, H P

    2017-12-15

    We experimentally demonstrate critical coupling of whispering gallery mode (WGM) disk resonators implemented on a Bloch surface wave platform using scanning near-field optical microscopy. The studied structure is a 60 nm thick TiO2 WGM disk cavity (radius of 100 μm) operating within the C-band telecommunication wavelength. An extinction ratio of 26 dB and a quality factor of 2200 are measured. Such a high extinction ratio verifies the critical coupling of the WGM resonator. This result paves the way to planar optical signal processing devices based on the proposed geometry, for which a critical coupling condition is a guarantee of optimum performance.

  1. Whispering gallery mode single nanoparticle detection and sizing: the validity of the dipole approximation.

    Science.gov (United States)

    Foreman, Matthew R; Keng, David; Treasurer, Eshan; Lopez, Jehovani R; Arnold, Stephen

    2017-03-01

    Interactions between whispering gallery modes (WGMs) and small nanoparticles are commonly modeled by treating the particle as a point dipole scatterer. This approach is assumed to be accurate as long as the nanoparticle radius, a, is small compared to the WGM wavelength λ. In this Letter, however, we show that the large field gradients associated with the evanescent decay of a WGM causes the dipole theory to significantly underestimate the interaction strength and, hence, the induced WGM resonance shift, even for particles as small as a∼λ/10. To mitigate this issue, we employ a renormalized Born approximation to more accurately determine nanoparticle-induced resonance shifts and, hence, enable improved particle sizing. The domain of validity of this approximation is investigated, and supporting experimental results are presented.

  2. Thermal sensing based on whispering gallery modes in tapered-fiber-coupled liquid crystal microdroplets

    Science.gov (United States)

    Wang, Yan; Li, Hanyang; Zhao, Liyuan; Liu, Yongjun; Liu, Shuangqiang; Yang, Jun

    2017-04-01

    We report the efficient coupling of optical whispering gallery modes (WGMs) in liquid crystal microdroplets suspended in immiscible aqueous environment. Individual nematic liquid crystal (NLC) microdroplet is confined at the tip of a microcapillary used to generate the microdroplets and coupled through a tapered optical fiber waveguide positioned in the vicinity of the microdroplets. Efficient coupling of WGMs is observed in the NLC microdroplets with a diameter of 50-150 μm. In addition, the wavelengths of the WGMs can be tuned by temperature, making such NLC microdroplets suitable for thermal sensors. A temperature sensitivity of 0.244 nm/°C is achieved in a 75-μm-diameter microdroplet. The estimated thermal resolution of the microdroplet sensor is 8.2 × 10-2 °C.

  3. Phase-locking transition in Raman combs generated with whispering gallery mode resonators.

    Science.gov (United States)

    Lin, Guoping; Chembo, Yanne K

    2016-08-15

    We investigate the mechanisms leading to phase locking in Raman optical frequency combs generated with ultrahigh Q crystalline whispering gallery mode disk resonators. We show that several regimes can be triggered depending on the pumping conditions, such as single-frequency Raman lasing, multimode operation involving more than one family of cavity eigenmodes, and Kerr-assisted Raman frequency comb generation. The phase locking and coherence of the combs are experimentally monitored through the measurement of beat signal spectra. These phase-locked combs, which feature high coherence and wide spectral spans, are obtained with pump powers in the range of a few tens of mW. In particular, Raman frequency combs with multiple free-spectral range spacings are reported, and the measured beat signal in the microwave domain features a 3 dB linewidth smaller than 50 Hz, thereby indicating phase locking.

  4. Adsorption detection for polylysine biomolecules based on high-Q silica capillary whispering gallery mode microresonator

    Science.gov (United States)

    Wu, Jixuan; Liu, Bo; Zhang, Hao; Song, Binbin

    2017-11-01

    A silica-capillary-based whispering gallery mode (WGM) microresonator has been proposed and experimentally demonstrated for the real-time monitoring of the polylysine adsorption process. The spectral characteristics of the WGM resonance dips with high quality factor and good wavelength selectivity have been investigated to evaluate the dynamic process for the binding of polylysine with a capillary surface. The WGM transmission spectrum shows a regular shift with increments of observation time, which could be exploited for the analysis of the polylysine adsorption process. The proposed WGM microresonator system possesses desirable qualities such as high sensitivity, fast response, label-free method, high detection resolution and compactness, which could find promising applications in histology and related bioengineering areas.

  5. The whispering gallery mode biosensor: label-free detection from virus to single protein

    Science.gov (United States)

    Holler, S.; Dantham, V. R.; Keng, D.; Kolchenko, V.; Arnold, S.; Mulroe, Brigid; Paspaley-Grbavac, M.

    2014-08-01

    The whispering gallery mode (WGM) biosensor is a micro-optical platform capable of sensitive label-free detection of biological particles. Described by the reactive sensing principle (RSP), this analytic formulation quantifies the response of the system to the adsorption of bioparticles. Guided by the RSP, the WGM biosensor enabling from detection of virus (e.g., Human Papillomavirus, HPV) to the ultimate goal of single protein detection. The latter was derived from insights into the RSP, which resulted in the development of a hybrid plasmonic WGM biosensor, which has recently demonstrated detection of individual protein cancer markers. Enhancements from bound gold nanoparticles provide the sensitivity to detect single protein molecules (66 kDa) with good signal-to-noise (S/N > 10), and project that detection of proteins as small as 5 kDa.

  6. Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor

    CERN Document Server

    Lin, Guoping; Henriet, Rémi; Jacquot, Maxime; Chembo, Yanne K

    2015-01-01

    We demonstrate a monolithic optical whispering gallery mode resonator fabricated with barium fluoride (BaF$_2$) with an ultra-high quality ($Q$) factor above $10^9$ at $1550$ nm, and measured with both the linewidth and cavity-ring-down methods. Vertical scanning optical profilometry shows that the root mean square surface roughness of $2$ nm is achieved for our mm-size disk. To the best of our knowledge, we show for the first time that one billion $Q$-factor is achievable by precision polishing in relatively soft crystals with mohs hardness of ~$3$. We show that complex thermo-optical dynamics can take place in these resonators. Beside usual applications in nonlinear optics and microwave photonics, high energy particle scintillation detection utilizing monolithic BaF$_2$ resonators potentially becomes feasible.

  7. Observation of energy oscillation between strongly-coupled counter-propagating ultra-high Q whispering gallery modes.

    Science.gov (United States)

    Yoshiki, Wataru; Chen-Jinnai, Akitoshi; Tetsumoto, Tomohiro; Tanabe, Takasumi

    2015-11-30

    We report the first experimental observation of an energy oscillation between two coupled ultra-high Q whispering gallery modes in the time domain. Two counter-propagating whispering gallery modes in a silica toroid microcavity were employed for this purpose. The combination of a large coupling coefficient between the two modes and an ultra-high Q factor, which creates a large Γ value of > 10, results in a clear energy oscillation. Our measurement is based on a drop-port measurement technique, which enables us to observe the light energy in the two modes directly. The oscillation period measured in the time domain precisely matched that inferred from mode splitting in the frequency domain, and the measured results showed excellent agreement with results calculated with the developed numerical model.

  8. High-Q MgF$_2$ whispering gallery mode resonators for refractometric sensing in aqueous environment

    CERN Document Server

    Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G L

    2014-01-01

    We present our experiments on refractometric sensing with ultrahigh-Q, crystalline, birefringent magnesium fluoride (MgF$_2$) whispering gallery mode resonators. The difference to fused silica which is most commonly used for sensing experiments is the small refractive index of MgF$_2$ which is very close to that of water. Compared to fused silica this leads to more than 50% longer evanescent fields and a 4.25 times larger sensitivity. Moreover the birefringence amplifies the sensitivity difference between TM and TE type modes which will enhance sensing experiments based on difference frequency measurements. We estimate the performance of our resonators and compare them with fused silica theoretically and present experimental data showing the interferometrically measured evanescent decay and the sensitivity of mm-sized MgF$_2$ whispering gallery mode resonators immersed in water. They show reasonable agreement with the developed theory. Furthermore, we observe stable Q factors in water well above $1 \\times 10^...

  9. Label-Free Biological and Chemical Sensing Using Whispering Gallery Mode Optical Resonators: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Judith Su

    2017-03-01

    Full Text Available Sensitive and rapid label-free biological and chemical sensors are needed for a wide variety of applications including early disease diagnosis and prognosis, the monitoring of food and water quality, as well as the detection of bacteria and viruses for public health concerns and chemical threat sensing. Whispering gallery mode optical resonator based sensing is a rapidly developing field due to the high sensitivity and speed of these devices as well as their label-free nature. Here, we describe the history of whispering gallery mode optical resonator sensors, the principles behind detection, the latest developments in the fields of biological and chemical sensing, current challenges toward widespread adoption of these devices, and an outlook for the future. In addition, we evaluate the performance capabilities of these sensors across three key parameters: sensitivity, selectivity, and speed.

  10. Label-Free Biological and Chemical Sensing Using Whispering Gallery Mode Optical Resonators: Past, Present, and Future.

    Science.gov (United States)

    Su, Judith

    2017-03-08

    Sensitive and rapid label-free biological and chemical sensors are needed for a wide variety of applications including early disease diagnosis and prognosis, the monitoring of food and water quality, as well as the detection of bacteria and viruses for public health concerns and chemical threat sensing. Whispering gallery mode optical resonator based sensing is a rapidly developing field due to the high sensitivity and speed of these devices as well as their label-free nature. Here, we describe the history of whispering gallery mode optical resonator sensors, the principles behind detection, the latest developments in the fields of biological and chemical sensing, current challenges toward widespread adoption of these devices, and an outlook for the future. In addition, we evaluate the performance capabilities of these sensors across three key parameters: sensitivity, selectivity, and speed.

  11. Surface plasmon resonance-based refractometry using whispering gallery modes in bent metalized single-mode optical fibers

    Science.gov (United States)

    Dyshlyuk, Anton V.; Mitsai, Evgeniy V.; Vitrik, Oleg B.

    2017-09-01

    The work is devoted to the numerical and experimental study of surface plasmon resonance in a bent single-mode optical fiber with metalized cladding. It was shown that with a proper combination of metal film thickness and bend radius one can achieve coupling between fundamental and surface plasmon modes through an intermediary of whispering gallery mode supported by the bent fiber's optical cladding. This brings about a dip in the transmission spectrum of the fiber at the resonant wavelength which depends strongly on the external medium refractive index, so that refractometric measurements can be performed with a sensitivity of ˜5 μm/RIU and resolution ˜4.10-6.

  12. Mode conversion in a tapered fiber via a whispering gallery mode resonator and its application as add/drop filter.

    Science.gov (United States)

    Huang, Ligang; Wang, Jie; Peng, Weihua; Zhang, Wending; Bo, Fang; Yu, Xuanyi; Gao, Feng; Chang, Pengfa; Song, Xiaobo; Zhang, Guoquan; Xu, Jingjun

    2016-02-01

    Based on the conversion between the fundamental mode (LP01) and the higher-order mode (LP11) in a tapered fiber via a whispering gallery mode resonator, an add/drop filter was proposed and demonstrated experimentally, in which the resonator only interacted with one tapered fiber, rather than two tapered fibers as in conventional configurations. The filter gains advantages of easy alignment and low scattering loss over the other filters based on tapered fiber and resonator, and will be useful in application.

  13. Application of whispering-gallery-mode optical microcavities for detection of silver nanoparticles in an aqueous medium

    Science.gov (United States)

    Samolenko, A. A.; Levin, G. G.; Lyaskovskii, V. L.; Min'kov, K. N.; Ivanov, A. D.; Bilenko, I. A.

    2017-06-01

    The results of an experimental investigation of a sensor intended for detection and measurement of concentration of nanoparticles in an aqueous medium, which is based on optical-dielectric whispering-gallery-mode microcavities, are presented. Variation of the frequency and Q-factor of the eigenmodes of the microcavity upon its interaction with silver nanoparticles is studied. It is demonstrated that this type of sensor can be used for measurement of infinitesimally low concentrations of nanoparticles.

  14. Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications.

    Science.gov (United States)

    Bog, Uwe; Brinkmann, Falko; Kalt, Heinz; Koos, Christian; Mappes, Timo; Hirtz, Michael; Fuchs, Harald; Köber, Sebastian

    2014-10-15

    A novel surface functionalization technique is presented for large-scale selective molecule deposition onto whispering gallery mode microgoblet cavities. The parallel technique allows damage-free individual functionalization of the cavities, arranged on-chip in densely packaged arrays. As the stamp pad a glass slide is utilized, bearing phospholipids with different functional head groups. Coated microcavities are characterized and demonstrated as biosensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. ZORRO: zirconium oxide resonators for all-in-one Raman and whispering-gallery-mode optical sensing.

    Science.gov (United States)

    Bontempi, N; Vassalini, I; Danesi, S; Alessandri, I

    2017-09-25

    We report the observation of whispering-gallery modes in 2 μm-sized SiO2/ZrO2 core/shell beads utilized as all-dielectric Raman enhancers. This allows us to achieve simultaneous optical and Raman ultrasensitive detection with a single spectral analysis. This opportunity opens exciting perspectives for the multimodal chemical sensing and fabrication of optical fiber devices.

  16. Silica core/conjugated polymer shell particles via seeded Knoevenagel dispersion polymerization - laser action in whispering gallery mode resonators.

    Science.gov (United States)

    Ciftci, Sibel; Mikosch, Annabel; Haehnle, Bastian; Witczak, Łukasz; Kuehne, Alexander J C

    2016-12-06

    Here, we present a seeded Knoevenagel dispersion polymerization to generate hybrid particles with a conjugated polymer shell on inorganic silica cores. This seeded dispersion polymerization facilitates the generation of core-shell particles, which exhibit whispering gallery mode lasing. The lasing threshold decreases while the spectral range of emission increases with increasing shell thickness. This novel seeded Knoevenagel dispersion polymerization opens up a facile and metal free pathway towards single particle conjugated polymer lasers on the micrometer scale.

  17. On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators.

    Science.gov (United States)

    Chembo, Yanne K; Yu, Nan

    2010-08-15

    Octave-spanning optical frequency combs are especially interesting in optical metrology owing to the ability of self-referencing. We report a theoretical study on the generation of octave-spanning combs in the whispering gallery modes of a microresonator. Through a modal expansion model simulation in a calcium fluoride microcavity, we show that a combination of suitable pump power, Kerr nonlinearity, and dispersion profile can lead to stable and robust octave-spanning optical frequency combs.

  18. Impact of the photorefractive and pyroelectric-electro-optic effect in lithium niobate on whispering-gallery modes.

    Science.gov (United States)

    Leidinger, Markus; Werner, Christoph S; Yoshiki, Wataru; Buse, Karsten; Breunig, Ingo

    2016-12-01

    Whispering-gallery resonators made of undoped and MgO-doped congruently grown lithium niobate are used to study electro-optic refractive index changes. Hereby, we focus on the volume photovoltaic and the pyroelectric effect, both providing an electric field driving the electro-optic effect. Our findings indicate that the light-induced photorefractive effect, combining the photovoltaic and electro-optic effect, is present only in the non-MgO-doped lithium niobate for exposure with light having wavelengths of up to 850 nm. This leads to strong resonance frequency shifts of the whispering-gallery modes. No photorefractive effect was observed in the MgO-doped material. One has to be aware that surface charges induced by the pyroelectric effect result in a similar phenomenon and are present in both materials.

  19. Single Mode ZnO Whispering-Gallery Submicron Cavity and Graphene Improved Lasing Performance.

    Science.gov (United States)

    Li, Jitao; Lin, Yi; Lu, Junfeng; Xu, Chunxiang; Wang, Yueyue; Shi, Zengliang; Dai, Jun

    2015-07-28

    Single-mode ultraviolet (UV) laser of ZnO is still in challenge so far, although it has been paid great attention along the past decades. In this work, single-mode lasing resonance was realized in a submicron-sized ZnO rod based on serially varying the dimension of the whispering-gallery mode (WGM) cavities. The lasing performance, such as the lasing quality factor (Q) and the lasing intensity, was remarkably improved by facilely covering monolayer graphene on the ZnO submicron-rod. The mode structure evolution from multimodes to single-mode was investigated systematically based on the total internal-wall reflection of the ZnO microcavities. Graphene-induced optical field confinement and lasing emission enhancement were revealed, indicating an energy coupling between graphene SP and ZnO exciton emission. This result demonstrated the response of graphene in the UV wavelength region and extended its potential applications besides many previous reports on the multifunctional graphene/semiconductor hybrid materials and devices in advanced electronics and optoelectronics areas.

  20. Simultaneous cooling of coupled mechanical oscillators using whispering gallery mode resonances.

    Science.gov (United States)

    Li, Ying Lia; Millen, James; Barker, P F

    2016-01-25

    We demonstrate simultaneous center-of-mass cooling of two coupled oscillators, consisting of a microsphere-cantilever and a tapered optical fiber. Excitation of a whispering gallery mode (WGM) of the microsphere, via the evanescent field of the taper, provides a transduction signal that continuously monitors the relative motion between these two microgram objects with a sensitivity of 3 pm. The cavity enhanced optical dipole force is used to provide feedback damping on the motion of the micron-diameter taper, whereas a piezo stack is used to damp the motion of the much larger (up to 180 μm in diameter), heavier (up to 1.5 × 10(-7) kg) and stiffer microsphere-cantilever. In each feedback scheme multiple mechanical modes of each oscillator can be cooled, and mode temperatures below 10 K are reached for the dominant mode, consistent with limits determined by the measurement noise of our system. This represents stabilization on the picometer level and is the first demonstration of using WGM resonances to cool the mechanical modes of both the WGM resonator and its coupling waveguide.

  1. Polarization-Selective Out-Coupling of Whispering-Gallery Modes

    Science.gov (United States)

    Sedlmeir, Florian; Foreman, Matthew R.; Vogl, Ulrich; Zeltner, Richard; Schunk, Gerhard; Strekalov, Dmitry V.; Marquardt, Christoph; Leuchs, Gerd; Schwefel, Harald G. L.

    2017-02-01

    Whispering-gallery mode (WGM) resonators are an important platform for linear, nonlinear, and quantum optical experiments. In such experiments, independent control of in-coupling and out-coupling rates to different modes can lead to higher conversion efficiencies and greater flexibility in the generation of nonclassical states based on parametric down-conversion. In this work, we introduce a scheme that enables selective out-coupling of WGMs belonging to a specific polarization family, while the orthogonally polarized modes remain largely unperturbed. Our technique utilizes material birefringence in both the resonator and the coupler such that a negative (positive) birefringence allows for polarization-selective coupling to TE (TM) WGMs. We formulate a refined coupling condition suitable for describing the case where the refractive indices of the resonator and the coupler are almost the same, from which we derive a criterion for polarization-selective coupling. Finally, we experimentally demonstrate our proposed method using a lithium niobate disk resonator coupled to a lithium niobate prism, where we show a 22-dB suppression of coupling to TM modes relative to TE modes.

  2. Investigation of plasmonic whispering-gallery mode characteristics for graphene monolayer coated dielectric nanodisks.

    Science.gov (United States)

    Zhao, Jing; Qiu, Weibin; Huang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2014-10-01

    In this Letter, we theoretically studied high-quality (Q) factor plasmonic whispering-gallery modes (WGMs) with ultrasmall mode volumes in graphene monolayer coated semiconductor nanodisks in the mid-infrared range. The influence of the chemical potential, the relaxation time of graphene, and the radius of the nanodisk on the cavity Q factor and the mode volume was numerically investigated. The numerical simulations showed that the plasmonic WGMs excited in this cavity had a deep subwavelength mode volume of 1.4×10(-5)(λ(0)/2n)(3), a cavity Q factor as high as 266 at a temperature lower than 250 K, and, consequently, a large Purcell factor of ∼1.2×10(7) when the chemical potential and relaxation time were assumed to be 0.9 eV and 1.4 ps, respectively. The results provide a possible application of plasmonic WGMs in the integration of nano-optoelectronic devices based on graphene.

  3. Stimulated Stokes and Antistokes Raman Scattering in Microspherical Whispering Gallery Mode Resonators.

    Science.gov (United States)

    Farnesi, Daniele; Berneschi, Simone; Cosi, Franco; Righini, Giancarlo C; Soria, Silvia; Nunzi Conti, Gualtiero

    2016-04-04

    Dielectric microspheres can confine light and sound for a length of time through high quality factor whispering gallery modes (WGM). Glass microspheres can be thought as a store of energy with a huge variety of applications: compact laser sources, highly sensitive biochemical sensors and nonlinear phenomena. A protocol for the fabrication of both the microspheres and coupling system is given. The couplers described here are tapered fibers. Efficient generation of nonlinear phenomena related to third order optical non-linear susceptibility Χ((3)) interactions in triply resonant silica microspheres is presented in this paper. The interactions here reported are: Stimulated Raman Scattering (SRS), and four wave mixing processes comprising Stimulated Anti-stokes Raman Scattering (SARS). A proof of the cavity-enhanced phenomenon is given by the lack of correlation among the pump, signal and idler: a resonant mode has to exist in order to obtain the pair of signal and idler. In the case of hyperparametric oscillations (four wave mixing and stimulated anti-stokes Raman scattering), the modes must fulfill the energy and momentum conservation and, last but not least, have a good spatial overlap.

  4. All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities.

    Science.gov (United States)

    Yoshiki, Wataru; Honda, Yoshihiro; Tetsumoto, Tomohiro; Furusawa, Kentaro; Sekine, Norihiko; Tanabe, Takasumi

    2017-09-06

    All-optical tunable buffering was recently achieved on a chip by using dynamically tuned coupled mode induced transparency, which is an optical analogue of electromagnetically induced transparency. However, the small Q s of about 105 used in those systems were limiting the maximum buffering time to a few hundred ps. Although employing an ultra-high Q whispering gallery mode (WGM) microcavity can significantly improve the maximum buffering time, the dynamic tuning of the WGM has remained challenging because thermo-optic and pressure tunings, which are widely used for WGM microcavities, have a very slow response. Here we demonstrate all-optical tunable buffering utilizing coupled ultra-high Q WGM cavities and the Kerr effect. The Kerr effect can change the refractive index instantaneously, and this allowed us to tune the WGM cavity very quickly. In addition, from among the various WGM cavities we employed a silica toroid microcavity for our experiments because it has an ultra-high Q factor (>2 × 107) and a small mode volume, and can be fabricated on a chip. Use of the Kerr effect and the silica toroid microcavity enabled us to observe an on-chip all-optical tunable buffering operation and achieve a maximum buffering time of 20 ns.

  5. Microstructured optical fiber for multichannel sensing based on Fano resonance of the whispering gallery modes.

    Science.gov (United States)

    Lin, Wei; Zhang, Hao; Chen, Shih-Chi; Liu, Bo; Liu, Yan-Ge

    2017-01-23

    We present the design and theoretical demonstration of a microstructured optical fiber (MOF) for multichannel sensing applications based on the Fano resonance among the different whispering-gallery modes (WGMs) propagating in the MOF. The proposed MOF consists of a number of capillary channels with different diameters inside a tubular frame. When the phases of the WGMs in the capillary channels and the frame are matched, the Fano resonance will occur and the resonant peaks can be observed in the output spectrum of the tubular frame resonator. Sensing signals from the individual channels can be detected by measuring the central wavelengths of the corresponding Fano resonant peaks. To demonstrate the practicality, we study a dual-channel MOF for bio-sensing applications, i.e., detecting the refractive index variation in biological samples. In the analysis, we have shown that channel 1 and 2 achieve a sensitivity of 29.0557 nm/RIU (refractive index unit) and 22.9160 nm/RIU in the TE mode; and 16.0694 nm/RIU and 13.3181 nm/RIU in the TM mode respectively, when the refractive index of the biological samples varies between 1.330 and 1.345. The new MOF can be a compact, flexible, and low-cost solution for a variety of applications including multichannel bio/chemical sensing, multi-microcavity laser, and tunable photonics devices.

  6. A FBG Intensity Modulation System Combined with an Optical Whispering Gallery Mode Edge Filter

    Directory of Open Access Journals (Sweden)

    Sheng-Feng Wang

    2016-03-01

    Full Text Available In this study, we demonstrated an edge filter–based fiber Bragg grating (FBG intensity modulation system to realize strain measurement. In order to establish a precise and highly sensitive intensity modulation system, we utilized a bent single-mode fiber to induce whispering gallery mode (WGM interference as an edge filter and combined that with a FBG sensor. The interference spectra of the attenuation band for the WGM edge filter were tuned by adjusting the bending radii. In addition, we compared and analyzed the signals from the proposed vibration interrogating system and a strain gauge. The measured voltage signals from the proposed interrogation system were in close agreement with measured strains of the strain gauge. The experimental results showed that when the resonant wavelength of the WGM edge filter was 1535.10 nm, the filtration was better and the noise was lower within 100 Hz. Moreover, as the frequency of piezoelectric transducer (PZT was at 400 and 1000 Hz, the better signal-to-noise ratios (SNRs of 28.54 and 25.97 were measured at wavelength 1542.05 nm of the edge filter.

  7. Split-disk micro-lasers: Tunable whispering gallery mode cavities

    Science.gov (United States)

    Siegle, T.; Remmel, M.; Krämmer, S.; Kalt, H.

    2017-09-01

    Optical micro-cavities of various types have emerged as promising photonic structures, for both the investigation of fundamental science in cavity quantum electrodynamics and simultaneously for various applications, e.g., lasers, filters, or modulators. In either branch a demand for adjustable and tunable photonic devices becomes apparent, which has been mainly based on the modification of the refractive index of the micro-resonators so far. In this paper, we report on a novel type of whispering gallery mode resonator where resonance tuning is achieved by modification of the configuration. This is realized by polymeric split-disks consisting of opposing half-disks with an intermediate air gap. Functionality of the split-disk concept and its figures of merit like low-threshold lasing are demonstrated for laser dye-doped split-disks fabricated by electron beam lithography on Si substrates. Reversible resonance tuning is achieved for split-disks structured onto elastomeric substrates by direct laser writing. The gap width and hence the resonance wavelength can be well-controlled by mechanically stretching the elastomer and exploiting the lateral shrinkage of the substrate. We demonstrate a broad spectral tunability of laser modes by more than three times the free spectral range. These cavities have the potential to form a key element of flexible and tunable photonic circuits based on polymers.

  8. Whispering-gallery-mode emission from biological luminescent protein microcavity assemblies.

    Science.gov (United States)

    Humar, Matjaž; Yun, Seok Hyun

    2017-01-01

    Fluorescence and bioluminescence are widely used to study biological systems from molecular to whole organism level. However, their broadband emission is often a bottleneck for sensitive spectral measurements and multiplexing. To overcome the limitation, the emitters can be coupled with optical cavity modes to generate narrowband spectral features. Here we demonstrate several types of emitter-resonator complexes made of fluorescent or bioluminescent proteins and artificially or naturally formed optical resonators. We engineered cells to express green fluorescent protein (GFP) fused with ABHD5, which binds to oil or lipid droplets supporting whispering gallery modes (WGM). The genetically-integrated complexes feature well-defined WGM spectral peaks. We measured WGM peaks from GFP-coated BaTiO3 beads (2.56 μm in diameter) during mitosis. Finally, we demonstrate cavity-enhanced bioluminescence using luciferase-coated beads and biochemical excitation. The ability to tailor spontaneous emission by cavity resonance inside biological systems should have applications in biological sensing, imaging and cell tagging.

  9. Whispering gallery mode lasing from hexagonal shaped layered lead iodide crystals.

    Science.gov (United States)

    Liu, Xinfeng; Ha, Son Tung; Zhang, Qing; de la Mata, Maria; Magen, César; Arbiol, Jordi; Sum, Tze Chien; Xiong, Qihua

    2015-01-27

    We report on the synthesis and optical gain properties of regularly shaped lead iodide (PbI2) platelets with thickness ranging from 10-500 nm synthesized by chemical vapor deposition methods. The as-prepared single crystalline platelets exhibit a near band edge emission of ∼ 500 nm. Whispering gallery mode (WGM) lasing from individual hexagonal shaped PbI2 platelets is demonstrated in the temperature-range of 77-210 K, where the lasing modes are supported by platelets as thin as 45 nm. The finite-difference time-domain simulation and the edge-length dependent threshold confirm the planar WGM lasing mechanism in such hexagonal shaped PbI2 platelet. Through a comprehensive study of power-dependent photoluminescence (PL) and time-resolved PL spectroscopy, we ascribe the WGM lasing to be biexcitonic in nature. Moreover, for different thicknesses of platelet, the lowest lasing threshold occurs in platelets of ∼ 120 nm, which attributes to the formation of a good Fabry-Pérot resonance cavity in the vertical direction between the top and bottom platelet surfaces that enhances the reflection. Our present study demonstrates the feasibility of planar light sources based on layered semiconductor materials and that their thickness-dependent threshold characteristic is beneficial for the optimization of layered material based optoelectronic devices.

  10. Split-disk micro-lasers: Tunable whispering gallery mode cavities

    Directory of Open Access Journals (Sweden)

    T. Siegle

    2017-09-01

    Full Text Available Optical micro-cavities of various types have emerged as promising photonic structures, for both the investigation of fundamental science in cavity quantum electrodynamics and simultaneously for various applications, e.g., lasers, filters, or modulators. In either branch a demand for adjustable and tunable photonic devices becomes apparent, which has been mainly based on the modification of the refractive index of the micro-resonators so far. In this paper, we report on a novel type of whispering gallery mode resonator where resonance tuning is achieved by modification of the configuration. This is realized by polymeric split-disks consisting of opposing half-disks with an intermediate air gap. Functionality of the split-disk concept and its figures of merit like low-threshold lasing are demonstrated for laser dye-doped split-disks fabricated by electron beam lithography on Si substrates. Reversible resonance tuning is achieved for split-disks structured onto elastomeric substrates by direct laser writing. The gap width and hence the resonance wavelength can be well-controlled by mechanically stretching the elastomer and exploiting the lateral shrinkage of the substrate. We demonstrate a broad spectral tunability of laser modes by more than three times the free spectral range. These cavities have the potential to form a key element of flexible and tunable photonic circuits based on polymers.

  11. Whispering-Gallery modes dynamics of GaAs-AlGaAs microdisk lasers

    Science.gov (United States)

    Heberle, Albert; Zhang, Botao

    2009-03-01

    Semiconductor microdisk lasers are of great interest because of their low threshold, high Q-factor and potential for quantum optical effects. A microdisk laser consists of a disk with typically 100 nm thickness and several microns diameter freely standing on a pedestal. Total reflection induces high-Q whispering-gallery modes inside the circular outer edge of the disk-shaped cavity. We investigated the picoseconds dynamics of GaAs/AlGaAs microdisk lasers after ultrafast optical excitation at a sample temperature of 10 Kelvin. Surface recombination was prevented by passivation. The emission was measured temporally and spectrally resolved with a streak camera connected to a confocal microscope. The spatial emission patterns of the lasers varied significantly with the position of the exciting laser spot and shifted blue shift with increasing excitation power. The devices emitted in one or two optical modes with an excitation-dependent turn-on delay of the order of 15 picoseconds and a 5 meV red shift with two time constants during the typically 50 picosecond emission time. These effects show the balance between carrier cooling, diffusion and recombination in connection with band gap renormalization and refractive index changes

  12. Ultrahigh Q whispering gallery mode electro-optic resonators on a silicon photonic chip.

    Science.gov (United States)

    Soltani, Mohammad; Ilchenko, Vladimir; Matsko, Andrey; Savchenkov, Anatoliy; Schlafer, John; Ryan, Colm; Maleki, Lute

    2016-09-15

    Crystalline whispering gallery mode (WGM) electro-optic resonators made of LiNbO3 and LiTaO3 are critical for a wide range of applications in nonlinear and quantum optics, as well as RF photonics, due to their remarkably ultrahigh Q(>108) and large electro-optic coefficient. Achieving efficient coupling of these resonators to planar on-chip optical waveguides is essential for any high-yield and robust practical applications. However, it has been very challenging to demonstrate such coupling while preserving the ultrahigh Q properties of the resonators. Here, we show how the silicon photonic platform can overcome this long-standing challenge. Silicon waveguides with appropriate designs enable efficient and strong coupling to these WGM electro-optic resonators. We discuss various integration architectures of these resonators onto a silicon chip and experimentally demonstrate critical coupling of a planar Si waveguide and an ultrahigh QLiTaO3 resonator (Q∼108). Our results show a promising path for widespread and practical applications of these resonators on a silicon photonic platform.

  13. Real-Time Detection of Staphylococcus Aureus Using Whispering Gallery Mode Optical Microdisks

    Directory of Open Access Journals (Sweden)

    Hala Ghali

    2016-05-01

    Full Text Available Whispering Gallery Mode (WGM microresonators have recently been studied as a means to achieve real-time label-free detection of biological targets such as virus particles, specific DNA sequences, or proteins. Due to their high quality (Q factors, WGM resonators can be highly sensitive. A biosensor also needs to be selective, requiring proper functionalization of its surface with the appropriate ligand that will attach the biomolecule of interest. In this paper, WGM microdisks are used as biosensors for detection of Staphylococcus aureus. The microdisks are functionalized with LysK, a phage protein specific for staphylococci at the genus level. A binding event on the surface shifts the resonance peak of the microdisk resonator towards longer wavelengths. This reactive shift can be used to estimate the surface density of bacteria that bind to the surface of the resonator. The limit of detection of a microdisk with a Q-factor around 104 is on the order of 5 pg/mL, corresponding to 20 cells. No binding of Escherichia coli to the resonators is seen, supporting the specificity of the functionalization scheme.

  14. Whispering Gallery Mode Laser from Carbon Dot-NaCl Hybrid Crystals.

    Science.gov (United States)

    Liu, Hongzhen; Wang, Fei; Wang, Yunpeng; Mei, Jingjing; Zhao, Dongxu

    2017-05-31

    Carbon dot (CD)-NaCl hybrid crystals are obtained by incorporating the CDs into NaCl matrix through a simple process. The embedded CDs have added the luminescence centers into NaCl, and as a result, the hybrid crystals present the fluorescence centered at 510 nm under the illumination of 365 nm light. Meanwhile, the phosphorescence with an average lifetime of 314 ms is achieved after the 365 nm light was turned off. Furthermore, optical gain and lasing phenomenon has been observed from hybrid crystals. When the pump power is low, a weak spontaneous emission can be observed from the hybrid crystal, whereas the lasing action was observed under high pump power. The lasing threshold is found to be 0.08 mW and corresponding Q factor is calculated to be 447. The tiny cubic crystal in hybrid crystals offers the whispering gallery mode (WGM) resonant cavity for lasing emission. That has provided a new approach for realizing lasing materials.

  15. Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation.

    Science.gov (United States)

    Huang, Steven H; Sheth, Saahil; Jain, Era; Jiang, Xuefeng; Zustiak, Silviya P; Yang, Lan

    2018-01-08

    Whispering gallery mode (WGM) resonators are compact and ultrasensitive devices, which enable label-free sensing at the single-molecule level. Despite their high sensitivity, WGM resonators have not been thoroughly investigated for use in dynamic biochemical processes including molecular diffusion and polymerization. In this work, the first report of using WGM sensors to continuously monitor a chemical reaction (i.e. gelation) in situ in a hydrogel is described. Specifically, we monitor and quantify the gelation dynamics of polyacrylamide hydrogels using WGM resonators and compare the results to an established measurement method based on rheology. Rheology measures changes in viscoelasticity, while WGM resonators measure changes in refractive index. Different gelation conditions were studied by varying the total monomer concentration and crosslinker concentration of the hydrogel precursor solution, and the resulting similarities and differences in the signal from the WGM resonator and rheology are elucidated. This work demonstrates that WGM alone or in combination with rheology can be used to investigate the gelation dynamics of hydrogels to provide insights into their gelation mechanisms.

  16. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)

    2017-03-26

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.

  17. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques.

    Science.gov (United States)

    Hammond, G Denise; Vojta, Adam L; Grant, Sheila A; Hunt, Heather K

    2016-06-15

    The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 10⁶. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring.

  18. Whispering Gallery Mode Resonators for Rapid Label-Free Biosensing in Small Volume Droplets

    Directory of Open Access Journals (Sweden)

    Sarah M. Wildgen

    2015-03-01

    Full Text Available Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection.

  19. Robust Whispering-Gallery-Mode Microbubble Lasers from Colloidal Quantum Dots.

    Science.gov (United States)

    Wang, Yue; Ta, Van Duong; Leck, Kheng Swee; Tan, Beng Hau Ian; Wang, Zeng; He, Tingchao; Ohl, Claus-Dieter; Demir, Hilmi Volkan; Sun, Handong

    2017-04-12

    Microlasers hold great promise for the development of photonics and optoelectronics. Among the discovered optical gain materials, colloidal quantum dots (CQDs) have been recognized as the most appealing candidate due to the facile emission tunability and solution processability. However, to date, it is still challenging to develop CQD-based microlasers with low cost yet high performance. Moreover, the poor long-term stability of CQDs remains to be the most critical issue, which may block their laser aspirations. Herein, we developed a unique but generic approach to forming a novel type of a whispering-gallery-mode (WGM) microbubble laser from the hybrid CQD/poly(methyl methacrylate) (PMMA) nanocomposites. The formation mechanism of the microbubbles was unraveled by recording the drying process of the nanocomposite droplets. Interestingly, these microbubbles naturally serve as the high-quality WGM laser resonators. By simply changing the CQDs, the lasing emission can be tuned across the whole visible spectral range. Importantly, these microbubble lasers exhibit unprecedented long-term stability (over one year), sufficient for practical applications. As a proof-of-concept, the potential of water vapor sensing was demonstrated. Our results represent a significant advance in microlasers based on the advantageous CQDs and may offer new possibilities for photonics and optoelectronics.

  20. Real-Time Detection of Staphylococcus Aureus Using Whispering Gallery Mode Optical Microdisks.

    Science.gov (United States)

    Ghali, Hala; Chibli, Hicham; Nadeau, Jay L; Bianucci, Pablo; Peter, Yves-Alain

    2016-05-03

    Whispering Gallery Mode (WGM) microresonators have recently been studied as a means to achieve real-time label-free detection of biological targets such as virus particles, specific DNA sequences, or proteins. Due to their high quality (Q) factors, WGM resonators can be highly sensitive. A biosensor also needs to be selective, requiring proper functionalization of its surface with the appropriate ligand that will attach the biomolecule of interest. In this paper, WGM microdisks are used as biosensors for detection of Staphylococcus aureus. The microdisks are functionalized with LysK, a phage protein specific for staphylococci at the genus level. A binding event on the surface shifts the resonance peak of the microdisk resonator towards longer wavelengths. This reactive shift can be used to estimate the surface density of bacteria that bind to the surface of the resonator. The limit of detection of a microdisk with a Q-factor around 10⁴ is on the order of 5 pg/mL, corresponding to 20 cells. No binding of Escherichia coli to the resonators is seen, supporting the specificity of the functionalization scheme.

  1. Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators.

    Science.gov (United States)

    Diallo, Souleymane; Lin, Guoping; Chembo, Yanne K

    2015-08-15

    In this Letter, we show that giant thermo-optical oscillations can be triggered in millimeter (mm)-size whispering gallery mode (WGM) disk resonators when they are pumped by a resonant continuous-wave laser. Our resonator is an ultrahigh-Q barium fluoride cavity that features a positive thermo-optic coefficient and a negative thermo-elastic coefficient. We demonstrate for the first time, to our knowledge, that the complex interplay between these two thermic coefficients and the intrinsic Kerr nonlinearity yields very sharp slow-fast relaxation oscillations with a slow timescale that can be exceptionally large, typically of the order of 1 s. We use a time-domain model to gain understanding into this instability, and we find that both the experimental and theoretical results are in excellent agreement. The understanding of these thermal effects is an essential requirement for every WGM-related application and our study demonstrates that even in the case of mm-size resonators, such effects can still be accurately analyzed using nonlinear time-domain models.

  2. Integrating Whispering Gallery Mode Refractive Index Sensing with Capillary Electrophoresis Separations Using Phase Sensitive Detection.

    Science.gov (United States)

    Kim, Daniel C; Dunn, Robert C

    2016-01-19

    Whispering gallery mode (WGM) resonators are small, radially symmetric dielectrics that recirculate light through continuous total internal reflection. High-Q resonances are observed that shift in response to changes in surrounding refractive index, leading to many applications in label-free sensing. Surface binding measurements with WGM resonators have demonstrated competitive analytical detection metrics compared to other sensing schemes. Similar figures of merit for detecting bulk refractive index changes, however, have proven more challenging. This has limited their use in applications such as capillary electrophoresis (CE), where their compact footprint and refractive index sensitivity offers advantages in nondestructive, universal detection. Here we couple WGM detection with CE by introducing a modulation scheme to improve detection limits. Phase sensitive WGM (PS-WGM) detection is developed to monitor real-time shifts in the WGM spectrum due to changes in surrounding refractive index. We directly compare phase sensitive detection with spectral measurements normally used to track WGM shifts. We report an improvement in detection limits by almost 300-fold using the PS-WGM method. The integrated CE with PS-WGM approach is demonstrated by detecting the separation of a three-component mixture of cations (Na(+), Li(+), and K(+)).

  3. A Guide to Quantitative Biomarker Assay Development using Whispering Gallery Mode Biosensors.

    Science.gov (United States)

    Robison, Heather M; Bailey, Ryan C

    2017-09-14

    Whispering gallery mode (WGM) sensors are a class of powerful analytical techniques defined by the measurement of changes in the local refractive index at or near the sensor surface. When functionalized with target-specific capture agents, analyte binding can be measured with very low limits of detection. There are many geometric manifestations of WGM sensors, with chip-integrated silicon photonic devices first commercialized because of the robust, wafer-scale device fabrication, facile optical interrogation, and amenability to the creation of multiplexed sensor arrays. Using these arrays, a number of biomolecular targets have been detected in both label-free and label-enhanced assay formats. For example, sub-picomolar detection limits for multiple cytokines were achieved using an enzymatically enhanced sandwich immunoassay that showed high analyte specificity suitable for detection in complex, clinical matrices. This protocol describes a generalizable approach for the development of quantitative, multiplexed immunoassays using silicon photonic microrings as an example WGM platform. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  4. Particle acceleration by wave scattering off dielectric spheres at whispering-gallery-mode resonance

    Directory of Open Access Journals (Sweden)

    Władysław Żakowicz

    2007-10-01

    Full Text Available The large electromagnetic fields, created in wave scattering near a perfect dielectric sphere at the condition of whispering-gallery-mode resonances, are investigated as driving units for high energy charged particle accelerators. For optimal trajectories passing near the scattering sphere, particle coupling with the field reduces to very short intervals, of the order of the wave period. Interacting fields can be almost 1000 times stronger than that in the incident wave. An example considered indicates that the instantaneous energy yield during this strong coupling interval is equivalent to ∼30  GeV/m, assuming the incident electric field E_{0}=100  MV/m. It was shown that the particle transverse deflection is negligible if the phase of the particle is optimal for acceleration. Hence, the acceleration process can be repeated many times. A rough estimate of the energy gain in a periodic chain of such elementary accelerating unit cells gives ΔEnergy/m≈5  GeV/m, which is several hundred times more than in contemporary operating and projected accelerators. Preliminary estimates of absorption losses in the scheme are given.

  5. Effects of Nanocylinders on the Whispering Gallery Modes in a Microcylinder

    Science.gov (United States)

    Han, Jinwoo

    2016-01-01

    Optical biosensors have been studied extensively for the detection and characterization of biological entities, such as viruses, bacteria, and biomolecules. A two-dimensional (2D) microcylinder resonator (Q∼2×105) was designed, and the effects of a nanocylinder on the whispering gallery modes (WGMs) were examined numerically. For this purpose, the finite element method with COMSOL multiphysics software was employed. The perturbation of the WGM resonances can be characterized by the shift and splitting of the resonance peaks, which varies according to the position, size, and refractive index of an embedded nanocylinder. The positional dependence shows a large splitting in the region of strong electric fields, and the size dependence shows a broad peak of the splitting at Rc=110 nm. These results are attributed to the changing degree of overlap of the WGMs with the nanocylinder. The refractive index dependences of splitting show linear behavior for a nanocylinder less than 50 nm in size, and the nonlinear behavior increases with increasing size of the nanocylinder. The optical resonator system is shown to be suitable for detecting impurity particles, which are smaller than the sizes of the node and antinode regions. PMID:27070622

  6. Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance.

    Science.gov (United States)

    Krämmer, Sarah; Rastjoo, Sanaz; Siegle, Tobias; Wondimu, Sentayehu F; Klusmann, Carolin; Koos, Christian; Kalt, Heinz

    2017-04-03

    Integration of optically active materials into whispering gallery mode (WGM) cavities enables low-threshold laser emission. In contrast to their passive counterparts, the WGMs of these microlasers can be pumped and read out easily via free-space optics. The WGMs interact with the cavity environment via their evanescent field, and thus lend themselves to label-free bio-sensing. The detection limit of such sensors, given as the ratio of the resolution of the whole measurement system to the sensitivity of the WGMs, is an important figure of merit. In this work we show that the detection limit of polymeric microdisk lasers can be improved by more than a factor of seven by optimizing their radius and thickness. We use the bulk refractive index sensitivity, the magnitude of the sensor reaction towards refractive index changes of the bulk environment, to quantify the sensing performance and show that it can be enhanced while the spectral resolution is maintained. Furthermore, we investigate the effect of the size of the cavity on the quality factor and the lasing threshold in an aqueous environment, hence allowing optimization of the cavity size for enhanced sensor performance. For all considered quantities, numerically computed expectations are verified by experimental results.

  7. Whispering Gallery Mode Resonators for Rapid Label-Free Biosensing in Small Volume Droplets

    Science.gov (United States)

    Wildgen, Sarah M.; Dunn, Robert C.

    2015-01-01

    Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection. PMID:25806835

  8. The Detection of Helicobacter hepaticus Using Whispering-Gallery Mode Microcavity Optical Sensors.

    Science.gov (United States)

    Anderson, Mark E; O'Brien, Emily C; Grayek, Emily N; Hermansen, James K; Hunt, Heather K

    2015-08-07

    Current bacterial detection techniques are relatively slow, require bulky instrumentation, and usually require some form of specialized training. The gold standard for bacterial detection is culture testing, which can take several days to receive a viable result. Therefore, simpler detection techniques that are both fast and sensitive could greatly improve bacterial detection and identification. Here, we present a new method for the detection of the bacteria Helicobacter hepaticus using whispering-gallery mode (WGM) optical microcavity-based sensors. Due to minimal reflection losses and low material adsorption, WGM-based sensors have ultra-high quality factors, resulting in high-sensitivity sensor devices. In this study, we have shown that bacteria can be non-specifically detected using WGM optical microcavity-based sensors. The minimum detection for the device was 1 × 10(4) cells/mL, and the minimum time of detection was found to be 750 s. Given that a cell density as low as 1 × 10(3) cells/mL for Helicobacter hepaticus can cause infection, the limit of detection shown here would be useful for most levels where Helicobacter hepaticus is biologically relevant. This study suggests a new approach for H. hepaticus detection using label-free optical sensors that is faster than, and potentially as sensitive as, standard techniques.

  9. Probing Stress-Induced Optical Birefringence of Glassy Polymers by Whispering Gallery Modes Light Localization

    Science.gov (United States)

    2017-01-01

    An optical resonance method for the determination of the strain- and stress-optical coefficients of optically transparent polymers is presented and exemplified for monodisperse and bidisperse molecular weight polystyrene (PS). This method employs whispering gallery modes (WGMs) resonation inside a spheroid polymeric cavity, suspended on an optical fiber taper waist, which, in turn, is used for subjecting the polymeric resonator to controlled strain conditions. The wavelength shifts of equal order transverse electric and transverse magnetic polarization WGMs are measured, as well as their relative birefringence versus applied strain. For monodisperse PS microspheroids (2 and 50 kDa) the stress-optical coefficient is negative, contrary to the results for bulk PS in the glassy state indicating different phenyl group orientation of the PS monomer with respect to the strain direction. In the bidisperse (2 and 50 kDa) spheroid with a symmetric monomer composition, local structural irregularities are probably responsible for the observed coupling between WGMs. The method possesses metrological capabilities for probing the molecular orientation of polymer-based resonators. PMID:29302634

  10. All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers.

    Science.gov (United States)

    Wienhold, T; Kraemmer, S; Wondimu, S F; Siegle, T; Bog, U; Weinzierl, U; Schmidt, S; Becker, H; Kalt, H; Mappes, T; Koeber, S; Koos, C

    2015-09-21

    We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 10(5) and are fabricated from poly(methyl methacrylate) (PMMA) using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow. In contrast to silica-based microtoroid resonators, this approach replaces technically demanding vacuum-based dry etching and serial laser-based reflow techniques by solution-based processing and parallel thermal reflow. This enables scaling to large-area substrates, and hence significantly reduces device costs. Moreover, the resonators can be fabricated on arbitrary substrate materials, e.g., on transparent and flexible polymer foils. Doping the microgoblets with the organic dye pyrromethene 597 transforms the passive resonators into lasers. Devices have lasing thresholds below 0.6 nJ per pulse and can be efficiently pumped via free-space optics using a compact and low-cost green laser diode. We demonstrate that arrays of microgoblet lasers can be readily integrated into a state-of-the-art microfluidic chip replicated via injection moulding. In a proof-of-principle experiment, we show the viability of the lab-on-a-chip via refractometric sensing, demonstrating a bulk refractive index sensitivity (BRIS) of 10.56 nm per refractive index unit.

  11. Effects of Nanocylinders on the Whispering Gallery Modes in a Microcylinder

    Directory of Open Access Journals (Sweden)

    Jinwoo Han

    2016-04-01

    Full Text Available Optical biosensors have been studied extensively for the detection and characterization of biological entities, such as viruses, bacteria, and biomolecules. A two-dimensional (2D microcylinder resonator ( Q ∼ 2 × 10 5 was designed, and the effects of a nanocylinder on the whispering gallery modes (WGMs were examined numerically. For this purpose, the finite element method with COMSOL multiphysics software was employed. The perturbation of the WGM resonances can be characterized by the shift and splitting of the resonance peaks, which varies according to the position, size, and refractive index of an embedded nanocylinder. The positional dependence shows a large splitting in the region of strong electric fields, and the size dependence shows a broad peak of the splitting at R c = 110 nm . These results are attributed to the changing degree of overlap of the WGMs with the nanocylinder. The refractive index dependences of splitting show linear behavior for a nanocylinder less than 50 nm in size, and the nonlinear behavior increases with increasing size of the nanocylinder. The optical resonator system is shown to be suitable for detecting impurity particles, which are smaller than the sizes of the node and antinode regions.

  12. The Detection of Helicobacter hepaticus Using Whispering-Gallery Mode Microcavity Optical Sensors

    Directory of Open Access Journals (Sweden)

    Mark E. Anderson

    2015-08-01

    Full Text Available Current bacterial detection techniques are relatively slow, require bulky instrumentation, and usually require some form of specialized training. The gold standard for bacterial detection is culture testing, which can take several days to receive a viable result. Therefore, simpler detection techniques that are both fast and sensitive could greatly improve bacterial detection and identification. Here, we present a new method for the detection of the bacteria Helicobacter hepaticus using whispering-gallery mode (WGM optical microcavity-based sensors. Due to minimal reflection losses and low material adsorption, WGM-based sensors have ultra-high quality factors, resulting in high-sensitivity sensor devices. In this study, we have shown that bacteria can be non-specifically detected using WGM optical microcavity-based sensors. The minimum detection for the device was 1 × 104 cells/mL, and the minimum time of detection was found to be 750 s. Given that a cell density as low as 1 × 103 cells/mL for Helicobacter hepaticus can cause infection, the limit of detection shown here would be useful for most levels where Helicobacter hepaticus is biologically relevant. This study suggests a new approach for H. hepaticus detection using label-free optical sensors that is faster than, and potentially as sensitive as, standard techniques.

  13. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques

    Directory of Open Access Journals (Sweden)

    G. Denise Hammond

    2016-06-01

    Full Text Available The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 106. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring.

  14. Optical signal processing and tracking of whispering gallery modes in real-time for sensing applications

    Science.gov (United States)

    Ali, Amir R.; Afifi, Amr N.; Taha, Hazem

    2017-05-01

    A novel approach for tracking of whispering gallery modes (WGM) in real-time for dielectric cavities used in sensing application is presented in this paper. Real-time tracking for the shifts of the WGM can be used to measure the physical quantity of interest precisely, under high repetition rates. The tracking algorithm is based on cross-correlation signal processing technique which has been proved to be accurate in WGM shifts detection. In order to achieve portability, the aforementioned real-time algorithm is implemented using a single-board re-configurable input-output hardware. The hardware platform used combines a real-time processor and a field programmable gate array (FPGA), it also allows for data exchange between them. The tracking algorithm's accuracy and real-time behavior is verified by preforming simulations based on experiments conducted on the dielectric cavity, where the cavity is used as a force sensor measuring mechanical compression. The light from a laser diode is tuned with rates up to 10 kHz and then tangentially coupled into the cavity to excite the WGM. Results show that shifts of the WGM are tracked by the algorithm providing real-time force readings.

  15. Whispering Gallery Mode Resonances from Ge Micro-Disks on Suspended Beams

    Directory of Open Access Journals (Sweden)

    Abdelrahman Zaher Al-Attili

    2015-05-01

    Full Text Available Ge is considered to be one of the most promising materials for realizing full monolithic integration of a light source on a silicon (Si photonic chip. Tensile-strain is required to convert Ge into an optical gain material and to reduce the pumping required for population inversion. Several methods of strain application to Ge are proposed in literature, of which the use of free-standing beams fabricated by micro-electro-mechanical systems (MEMS processes are capable of delivering very high strain values. However, it is challenging to make an optical cavity within free-standing Ge beams, and here, we demonstrate the fabrication of a simple cavity while imposing tensile strain by suspension using Ge-On-Insulator (GOI wafers. Ge micro-disks are made on top of suspended SiO$_{2}$ beams by partially removing the supporting Si substrate. According to Raman spectroscopy, a slight tensile strain was applied to the Ge disks through the bending of the SiO2 beams. Whispering-Gallery-Mode (WGM resonances were observed from a disk with a diameter of 3um, consistent with the finite-domain time-difference simulations. The quality (Q factor was 192, and upon increasing the pumping power, the Q-factor was degraded due to the red-shift of Ge direct-gap absorption edge caused by heating.

  16. Intensity fluctuations of erbium-doped whispering gallery mode lasers (Conference Presentation)

    Science.gov (United States)

    Féron, Patrice; Ceppe, Jean-Baptiste; Dumeige, Yannick; Mortier, Michel S.

    2017-02-01

    Micro spherical resonators have attracted significant attention in recent years due to their interesting optical properties and the range of applications for which they can be used. Most of the publications dedicated to micro spherical Laser are devoted to lasing effects in different materials where the spectral properties of the emission depends on (i) the choice of dopant (e.g. Er3+, Yb3+, Tm3+) and (ii) the host matrix (e.g. silica, fluoride, phosphate or telluride glass) in which the dopant is embedded. Yet, the dynamics of theses Lasers are still to be studied. This paper shows experimental results on the amplitude fluctuations of a Whispering Gallery Mode Laser, also known as relative intensity noise (RIN). It gives information about the dynamics inside the cavity, such as photon lifetime, effective pumping rate and noise sources. We use as active medium Er3+ doped fluoride ZBLALiP glass and also industrial IOG-1 Yb3+- Er3+ co-doped phosphate glass. Theses glasses are well adapted to the development of micro spherical Laser operating in the infrared region, in particular with emission wavelengths falling respectively in the C-band and C+L band. We have observed that the RIN can provide insurance about the emission of the Laser. Moreover, we have shown that a single-mode emission comes with the presence of multiple harmonics of the relaxation frequency, which is the signature of a Laser with high noise levels. In this particular case, the second and higher orders of intensity fluctuations cannot be neglected any longer in the small-signal analysis.

  17. Subwavelength silicon disk whispering-gallery-mode microcavities for size-dependent nanoparticles detection in the mid-infrared

    Science.gov (United States)

    Dionne, Jeffrey; Ashwath, Harshitha; Kuznetsova, Lyuba

    2017-05-01

    Three-dimensional finite-element-method numerical simulations are used to investigate a size-dependent sensing technique by observing the effects that a spherical nanoparticle had on the frequency resonances of whispering-gallery modes of a subwavelength silicon microdisk. Results show that the observed spectral shift varies significantly (˜2 to 8 nm) for the TM optical mode with an attached nanoparticle with radii between 150 and 400 nm. This frequency shift size-dependence makes it possible to identify viruses of different sizes by the resonant frequency change in the transmission spectrum in the mid-infrared.

  18. Surface plasmon-enhanced two-photon excited whispering-gallery modes ultraviolet laser from Zno microwire

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2017-11-01

    Full Text Available The two-photon excited UV laser with narrow line width and high Q value was obtained. The total internal reflection from the four side surfaces of the quadrilateral-ZnO microwire offered the whispering gallery mode (WGM resonant cavity. The UV emission, resonant mechanism, and laser mode characteristics were discussed in detail for this special type of micro-cavity. In addition, in order to enhance the power of the two-photon excited UV laser, the surface plasmon enhancement by the Au nanoparticles was also performed and explained well by the theory of the localized surface plasmon.

  19. Controllable fabrication and optical properties of Sn-doped ZnO hexagonal microdisk for whispering gallery mode microlaser

    Directory of Open Access Journals (Sweden)

    J. Dai

    2013-09-01

    Full Text Available We report a controllable method for fabricating hexagonal Sn doped ZnO microdisks. The photoluminescence mechanism of the Sn doped ZnO microdisks is investigated, the defect emission is attributed to the singly charged oxygen vacancy. Under the excitation of a femtosecond pulsed laser with a wavelength of 325 nm, exciton-exciton collision process is clearly demonstrated, and amplified spontaneous emission is further realized under strong excitation. Using the perfect hexagonal symmetric structure of the Sn doped ZnO microdisks, the whispering-gallery mode lasing with high quality factor and fine mode structure is obtained from a single microdisk.

  20. Surface plasmon-enhanced two-photon excited whispering-gallery modes ultraviolet laser from Zno microwire

    Science.gov (United States)

    Wang, Yunpeng; Zhu, Gangbei; Mei, Jingjing; Tian, Cancan; Liu, Hongzhen; Wang, Fei; Zhao, Dongxu

    2017-11-01

    The two-photon excited UV laser with narrow line width and high Q value was obtained. The total internal reflection from the four side surfaces of the quadrilateral-ZnO microwire offered the whispering gallery mode (WGM) resonant cavity. The UV emission, resonant mechanism, and laser mode characteristics were discussed in detail for this special type of micro-cavity. In addition, in order to enhance the power of the two-photon excited UV laser, the surface plasmon enhancement by the Au nanoparticles was also performed and explained well by the theory of the localized surface plasmon.

  1. Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle

    Science.gov (United States)

    Zhu, G. P.; Xu, C. X.; Zhu, J.; Lv, C. G.; Cui, Y. P.

    2009-02-01

    Wurtzite structural ZnO microneedles with hexagonal cross section were fabricated by vapor-phase transport method and an individual microneedle was employed as a lasing microcavity. Under excitation of a femtosecond pulse laser with 800 nm wavelength, the ultraviolet (UV) laser emission was obtained, which presented narrow linewidth and high Q value. The UV emission, resonant mechanism, and laser mode characteristics were discussed in detail. The results demonstrated that the UV laser originated from the whispering-gallery mode induced by two-photon absorption assisted by Rabi oscillation.

  2. Bio-optical sensor for brain activity measurement based on whispering gallery modes

    Science.gov (United States)

    Ali, Amir R.; Massoud, Yasmin M.

    2017-05-01

    In this paper, a high-resolution bio-optical sensor is developed for brain activity measurement. The aim is to develop an optical sensor with enough sensitivity to detect small electric field perturbations caused by neuronal action potential. The sensing element is a polymeric dielectric micro-resonator fabricated in a spherical shape with a few hundred microns in diameter. They are made of optical quality polymers that are soft which make them mechanically compatible with tissue. The sensors are attached to or embedded in optical fibers which serve as input/output conduits for the sensors. Hundreds or even thousands of spheres can be attached to a single fiber to detect and transmit signals at different locations. The high quality factor for the optical resonator makes it significantly used in such bio-medical applications. The sensing phenomenon is based on whispering gallery modes (WGM) shifts of the optical sensor. To mimic the brain signals, the spherical resonator is immersed in a homogeneous electrical field that is created by applying potential difference across two metallic plates. One of the plates has a variable voltage while the volt on the other plate kept fixed. Any small perturbations of the potential difference (voltage) lead to change in the electric field intensity. In turn the sensor morphology will be affected due to the change in the electrostriction force acting on it causing change in its WGM. By tracking these WGM shift on the transmission spectrum, the induced potential difference (voltage change) could be measured. Results of a mathematical model simulation agree well with the preliminary experiments. Also, the results show that the brain activity could be measured using this principle.

  3. Non-linear fluorescence excitation of Rhodamine 6G and TRITC labeled IgG in whispering gallery mode microresonators

    Science.gov (United States)

    Pastells, Carme; Marco, M. Pilar; Merino, David; Loza-Alvarez, Pablo; Pasquardini, Laura; Pederzolli, Cecilia; Farnesi, Daniele; Berneschi, Simone; Righini, Giancarlo C.; Nunzi Conti, Gualtiero; Soria Huguet, Silvia

    2015-03-01

    We report the non linear fluorescence real-time detection of labeled IgG covalently bonded to the surface of a microspherical whispering gallery mode resonator (WGMR). The immunoreagents have been immobilized onto the surface of the WGMR sensor after being activated with an epoxy silane and an orienting layer. The developed immunosensor presents great potential as a robust sensing device for fast and early detection of immunoreactions. We also tested the potential of microbubbles as nonlinear enhancement platform. The dyes used in these studies are tetramethyl rhodamine isothiocyanate and Rhodamine 6G. All measurements were performed in a modified confocal microscope.

  4. Measurements of the Complex Permittivity of Liquid Helium-4 in the Millimeter Wave Range by a Whispering Gallery Mode Resonator

    Science.gov (United States)

    Smorodin, A. V.; Rybalko, A. S.; Konstantinov, D.

    2017-06-01

    We report an experimental study of the electrical properties of liquid helium-4 in the temperature range 1.2-3 K. The experiment is carried out in the millimeter wave range using a whispering gallery mode dielectric resonator, and the complex permittivity of liquid helium is extracted from the data using the resonant perturbation method. The results for the temperature dependence of the dielectric constant are consistent with the previous studies. In addition, we find strong enhancement of the loss tangent around the superfluid transition temperature.

  5. THz Pyro-Optical Detector Based on LiNbO3 Whispering Gallery Mode Microdisc Resonator

    Science.gov (United States)

    Cosci, Alessandro; Cerminara, Matteo; Nunzi Conti, Gualtiero; Soria, Silvia; Righini, Giancarlo C.; Pelli, Stefano

    2017-01-01

    This study analyzes the capabilities of a LiNbO3 whispering gallery mode microdisc resonator as a potential bolometer detector in the THz range. The resonator is theoretically characterized in the stationary regime by its thermo-optic and thermal coefficients. Considering a Q-factor of 107, a minimum detectable power of 20 μW was evaluated, three orders of magnitude above its noise equivalent power. This value opens up the feasibility of exploiting LiNbO3 disc resonators as sensitive room-temperature detectors in the THz range. PMID:28134857

  6. Development of Whispering Gallery Mode Polymeric Micro-optical Electric Field Sensors

    Science.gov (United States)

    Ioppolo, Tindaro; Ötügen, Volkan; Ayaz, Ulas

    2013-01-01

    Optical modes of dielectric micro-cavities have received significant attention in recent years for their potential in a broad range of applications. The optical modes are frequently referred to as "whispering gallery modes" (WGM) or "morphology dependent resonances" (MDR) and exhibit high optical quality factors. Some proposed applications of micro-cavity optical resonators are in spectroscopy1, micro-cavity laser technology2, optical communications3-6 as well as sensor technology. The WGM-based sensor applications include those in biology7, trace gas detection8, and impurity detection in liquids9. Mechanical sensors based on microsphere resonators have also been proposed, including those for force10,11, pressure12, acceleration13 and wall shear stress14. In the present, we demonstrate a WGM-based electric field sensor, which builds on our previous studies15,16. A candidate application of this sensor is in the detection of neuronal action potential. The electric field sensor is based on polymeric multi-layered dielectric microspheres. The external electric field induces surface and body forces on the spheres (electrostriction effect) leading to elastic deformation. This change in the morphology of the spheres, leads to shifts in the WGM. The electric field-induced WGM shifts are interrogated by exciting the optical modes of the spheres by laser light. Light from a distributed feedback (DFB) laser (nominal wavelength of ~ 1.3 μm) is side-coupled into the microspheres using a tapered section of a single mode optical fiber. The base material of the spheres is polydimethylsiloxane (PDMS). Three microsphere geometries are used: (1) PDMS sphere with a 60:1 volumetric ratio of base-to-curing agent mixture, (2) multi layer sphere with 60:1 PDMS core, in order to increase the dielectric constant of the sphere, a middle layer of 60:1 PDMS that is mixed with varying amounts (2% to 10% by volume) of barium titanate and an outer layer of 60:1 PDMS and (3) solid silica sphere

  7. Microsensors based on a whispering gallery mode in AlGaN microdisks undercut by hydrogen-environment thermal etching.

    Science.gov (United States)

    Kouno, Tetsuya; Sakai, Masaru; Takeshima, Hoshi; Suzuki, Sho; Kikuchi, Akihiko; Kishino, Katsumi; Hara, Kazuhiko

    2017-04-20

    AlGaN microdisks were fabricated via a top-down process using electron-beam lithography, inductively coupled plasma reactive-ion etching, and hydrogen-environment thermal etching from commercial epitaxial wafers with a 100-300 nm thick AlGaN layer grown on a c-plane GaN layer by metal-organic chemical vapor deposition. The hydrogen-environment thermal etching performed well in undercutting the AlGaN microdisks owing to the selective etching for the GaN layer. The AlGaN microdisks acted as the whispering gallery mode (WGM) optical microresonators, exhibiting sharp resonant peaks in room temperature photoluminescence spectra. The evanescent component of the whispering gallery mode (WGM) is influenced by the ambient condition of the microdisk, resulting in the shift of the resonant peaks. The phenomenon is considered to be used for microsensors. Using the WGM in the AlGaN microdisks, we demonstrated microsensors and a microsensor system, which can potentially be used to evaluate biological and chemical actions in a microscale area in real time.

  8. Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity.

    Science.gov (United States)

    Kuo, Paulina S; Bravo-Abad, Jorge; Solomon, Glenn S

    2014-01-01

    The 4 crystal symmetry in materials such as GaAs can enable quasi-phasematching for efficient optical frequency conversion without poling, twinning or other engineered domain inversions. 4 symmetry means that a 90° rotation is equivalent to a crystallographic inversion. Therefore, when light circulates about the 4 axis, as in GaAs whispering-gallery-mode microdisks, it encounters effective domain inversions that can produce quasi-phasematching. Microdisk resonators also offer resonant field enhancement, resulting in highly efficient frequency conversion in micrometre-scale volumes. These devices can be integrated in photonic circuits as compact frequency convertors, sources of radiation or entangled photons. Here we present the first experimental observation of second-harmonic generation in a whispering-gallery-mode microcavity utilizing -quasi-phasematching. We use a tapered fibre to couple into the 5-μm diameter microdisk resonator, resulting in a normalized conversion efficiency η≈5 × 10(-5)mW(-1). Simulations indicate that when accounting for fibre-cavity scattering, the normalized conversion efficiency is η≈3 × 10(-3)mW(-1).

  9. Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity

    Science.gov (United States)

    Kuo, Paulina S.; Bravo-Abad, Jorge; Solomon, Glenn S.

    2014-01-01

    The crystal symmetry in materials such as GaAs can enable quasi-phasematching for efficient optical frequency conversion without poling, twinning or other engineered domain inversions. symmetry means that a 90° rotation is equivalent to a crystallographic inversion. Therefore, when light circulates about the axis, as in GaAs whispering-gallery-mode microdisks, it encounters effective domain inversions that can produce quasi-phasematching. Microdisk resonators also offer resonant field enhancement, resulting in highly efficient frequency conversion in micrometre-scale volumes. These devices can be integrated in photonic circuits as compact frequency convertors, sources of radiation or entangled photons. Here we present the first experimental observation of second-harmonic generation in a whispering-gallery-mode microcavity utilizing -quasi-phasematching. We use a tapered fibre to couple into the 5-μm diameter microdisk resonator, resulting in a normalized conversion efficiency η≈5 × 10−5 mW−1. Simulations indicate that when accounting for fibre-cavity scattering, the normalized conversion efficiency is η≈3 × 10−3 mW−1. PMID:24434576

  10. Observation of defect-assisted enhanced visible whispering gallery modes in ytterbium-doped ZnO microsphere

    Science.gov (United States)

    Khanum, Rizwana; Moirangthem, Rakesh S.; Das, Nayan Mani

    2017-06-01

    Smooth surfaced and crystalline undoped and ytterbium doped zinc oxide (ZnO) microspheres having an approximate size of 3-5 μm were synthesized by hydrothermal process. Out of these microspheres, a single microparticle was chosen and engaged as a whispering gallery wave microresonator. The defect induced luminescence from an individual ZnO microsphere was investigated with micro-photoluminescence measurement in the spectral range of 565 to 740 nm under the excitation of a green laser having a centered wavelength at 532 nm. The defects-related emissions from a single ZnO microsphere show optical resonance peaks so-called "whispering gallery modes" (WGMs) which are confirmed with the theoretical calculation. Further, ZnO microspheres were chemically doped with the different molar percentages of Ytterbium (Yb), and enhancement in their emission properties was investigated. Our experimental results show that ZnO microspheres with 0.5 mol. % doping of Yb gives the strongest optical emission and has highest Q-factor which can be employed in the development of WGM based optical biosensor or laser.

  11. Laser-frequency locking to a whispering-gallery-mode cavity by spatial interference of scattered light.

    Science.gov (United States)

    Zullo, R; Giorgini, A; Avino, S; Malara, P; De Natale, P; Gagliardi, G

    2016-02-01

    We present a simple and effective method for frequency locking a laser source to a free-space-coupled whispering-gallery-mode cavity. The scheme relies on the interference of spatial modes contained in the light scattered by the cavity, where low- and high-order modes are simultaneously excited. A dispersion-shaped signal proportional to the imaginary component of the resonant optical field is simply generated by spatial filtering of the scattered light. Locking of a diode laser to the equatorial modes of a liquid droplet resonator is demonstrated using this scheme, and its performance is compared to the Pound-Drever-Hall technique. This new approach makes laser-frequency locking straightforward and shows a number of advantages, including robustness, low cost, and no need for sophisticated optical and electronic components.

  12. Coupling single NV-centres to high-Q whispering gallery modes of a preselected frequency-matched microresonator

    Energy Technology Data Exchange (ETDEWEB)

    Schietinger, Stefan; Benson, Oliver [Nano-Optics, Institute of Physics, Humboldt-Universitaet zu Berlin, Hausvogteiplatz 5-7, D-10117 Berlin (Germany)], E-mail: schietinger@physik.hu-berlin.de

    2009-06-14

    In this paper, we report the controlled coupling of fluorescence from a single NV-centre in a single nanodiamond to the high-Q modes of a preselected microsphere. Microspheres from an ensemble with a finite size distribution can be characterized precisely via white light Mie-scattering. The mode spectrum of individual spheres can be determined with high precision. A sphere with an appropriate spectrum can be selected, and a nanodiamond containing a single NV-centre can be coupled to it. The spectral position of the calculated lowest order whispering gallery modes are found to be in very good agreement with the experimentally observed resonances of the coupled fluorescence from the single NV-re.

  13. Optical multistability and Fano line-shape control via mode coupling in whispering-gallery-mode microresonator optomechanics.

    Science.gov (United States)

    Zhang, Suzhen; Li, Jiahua; Yu, Rong; Wang, Wei; Wu, Ying

    2017-01-03

    We study a three-mode (i.e., a clockwise mode, a counterclockwise mode, and a mechanical mode) coherent coupling regime of the optical whispering-gallery-mode (WGM) microresonator optomechanical system by considering a pair of counterpropagating modes in a general case. The WGM microresonator is coherently driven by a strong control laser field and a relatively weak probe laser field via a tapered fiber. The system parameters utilized to explore this process correspond to experimentally demonstrated values in the WGM microresonator optomechanical systems. By properly adjusting the coupling rate of these two counterpropagating modes in the WGM microresonator, the steady-state displacement behaviors of the mechanical oscillation and the normalized power transmission and reflection spectra of the output fields are analyzed in detail. It is found that the mode coupling plays a crucial role in rich line-shape structures. Some interesting phenomena of the system, including optical multistability and sharp asymmetric Fano-shape optomechanically induced transparency (OMIT), can be generated with a large degree of control and tunability. Our obtained results in this study can be used for designing efficient all-optical switching and high-sensitivity sensor.

  14. Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity

    Science.gov (United States)

    Fan, Huibo; Xia, Changquan; Fan, Li; Wang, Lichun; Shen, Mingya

    2018-03-01

    We propose and numerically investigate the plasmonic whispering-gallery mode (WGM) with high-quality (Q) factor (as high as 285) and ultra-small mode volume (as low as 0 . 04 μm3) in the hybrid plasmonic microcavity with a sandwiched and electrically controlled graphene. The theoretical results present that the resonant wavelength of hybrid plasmonic microcavity dramatically changes and the corresponding intrinsic loss exhibits a distinct peak by electrically adjusting the permittivity of graphene around the epsilon-near-zero (ENZ) point. The influence of graphene with different layers on the characteristic of hybrid plasmonic microcavity is also analyzed. As a potential application, the plasmonic WGM microcavity with the sandwiched graphene could be applied for a refractometer with the sensitivity of higher than 1000 nm per refraction index unit (nm/RIU), and large figure of merit. The sensitivity can also be tuned by the electrically controlled graphene.

  15. Thermo-Optical Tuning of Whispering Gallery Modes in Er:Yb Doped Glass Microspheres to Arbitrary Probe Wavelengths

    CERN Document Server

    Watkins, Amy; Chormaic, Síle Nic

    2012-01-01

    We present experimental results on an all-optical, thermally-assisted technique for broad range tuning of microsphere cavity resonance modes to arbitrary probe wavelengths. An Er:Yb co-doped phosphate glass (Schott IOG-2) microsphere is pumped at 978 nm via the supporting stem and the heat generated by absorption of the pump light expands the cavity and changes the refractive index. This is a robust tuning method that decouples the pump from the probe and allows fine tuning of the microsphere's whispering gallery modes. Pump/probe experiments were performed to demonstrate thermo-optical tuning to specific probe wavelengths, including the 5S1/2 F = 3 to 5P3/2 F' = 4 laser cooling transition of 85Rb. This is of particular interest for cavity QED-type experiments, while the broad tuning range achievable is useful for integrated photonic devices, including sensors and modulators.

  16. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect.

    Science.gov (United States)

    Wang, Y Y; Xu, C X; Jiang, M M; Li, J T; Dai, J; Lu, J F; Li, P L

    2016-10-07

    The wide direct bandgap and strong exciton binding energy of ZnO have inspired examinations of ultraviolet lasing over the previous decades. However, regulation of the lasing mode, especially the realization of single mode lasing, is still a challenge. In this study, a ZnO comb-like structure with an array of microrods was selected to design coupled whispering-gallery-mode cavities, wherein the naturally varied air-gap between the adjacent microrods created a flexible condition for optical field coupling without any complicated micromanipulation. Spectral behaviour of lasing and coupling interaction between coupled ZnO microrods were systematically investigated. By regulating the nano-scale inter-space of dual coupled microrods, stable single-mode lasing with a higher Q factor and lower threshold was obtained successfully based on the Vernier effect. The formation conditions and the mechanism of single-mode lasing derived from the coupled ZnO microrods were discussed in detail. It also demonstrated an approach to construct high quality single-mode lasing by tuning the diameters of the coupled ZnO microrods.

  17. Reconfigurable optical spectra from perturbations on elliptical whispering gallery resonances

    OpenAIRE

    Mohageg, Makan; Maleki, Lute

    2008-01-01

    Elastic strain, electrical bias, and localized geometric deformations were applied to elliptical whispering-gallery-mode resonators fabricated with lithium niobate. The resultant perturbation of the mode spectrum is highly dependant on the modal indices, resulting in a discretely reconfigurable optical spectrum. Breaking of the spatial degeneracy of the whispering-gallery modes due to perturbation is also observed.

  18. Whispering Gallery mode ESR spectroscopy and parameters measurement in single crystal SrLaAlO4 at millikelvin temperature

    Science.gov (United States)

    Hosain, M. A.; Le Floch, J.-M.; Krupka, J.; Tobar, M. E.

    2017-08-01

    A cylindrical single crystal SrLaAlO4 Whispering Gallery mode dielectric resonator was cooled to millikelvin temperature using a dilution refrigerator. By controlling a DC-magnetic field, impurity ions' spins were coupled to a variety of modes allowing the measurement of hybrid spin-photon systems. This Electron Spin Resonance mapping technique allowed us to detect Cu2+,Fe3+ and Mn4+ impurity ions (at the level of parts per million (ppm) to parts per billion (ppb)), verified by the measurement of the spin parameters along with their site symmetry. Whispering Gallery modes exhibited Q-factors ⩾105 at a temperature less than 20mK , allowing sensitive spectroscopy with high precision. Measured hyperfine line constants of the Cu2+ ion shows different parallel g-factors, g‖Cu , of 2.526, 2.375, 2.246 and 2.142 . The spin-orbit coupling constant of the Cu2+ ion was determined to be λ ≃ - 635cm-1 . The low-spin state Fe3+ ion's measured parallel g-factor, g‖Fe , of 2.028 reveals tetragonal anisotropy. The Mn4+ ion is identified in the lattice, producing hyperfine structure with high-valued g-factors,g‖Mn , of 7.789, 7.745, 7.688, 7.613, 7.5304 and 7.446 . The hyperfine structures of the Cu2+ and Mn4+ ions show broadening of about 79G between 9.072GHz and 10.631GHz , and 24.5G broadening between 9.072GHz and 14.871GHz , respectively.

  19. Sensing operations based on hexagonal GaN microdisks acting as whispering-gallery mode optical microcavities.

    Science.gov (United States)

    Kouno, Tetsuya; Sakai, Masaru; Kishino, Katsumi; Hara, Kazuhiko

    2015-06-15

    Using room temperature photoluminescence measurements, we have demonstrated a sensing operation based on hexagonal GaN microdisks with a side length of approximately 1.5 μm that acted as optical microcavities. In the experiment, the optical microresonant systems based on the whispering-gallery mode (WGM) in the microdisks were affected by their ambient conditions, resulting in shifts of the lasing wavelength by varying the mixing ratios of isopropanol and o-xylene. We also obtained such shifts for aqueous solutions with varying sucrose concentrations. In addition, we demonstrated that tiny waterborne particles can be detected using a microdisk. These results indicate that the WGM in the hexagonal GaN microdisks potentially can be used to develop optical microbiosensors that can evaluate a limited area with a radius of 1-2 μm.

  20. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    Science.gov (United States)

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-07-29

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species.

  1. Multiphoton absorption-induced optical whispering-gallery modes in ZnO microcavities at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dai, J; Xu, C X; Guo, J Y; Li, Z H [State Key Laboratory of Bioelectronics, and Advanced Photonics Center, Southeast University, Nanjing 210096 (China); Sun, L X; Chen, Z H, E-mail: xcxseu@seu.edu.cn [State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433 (China)

    2011-01-19

    Ultralong ZnO microrods with a perfect hexagonal cross section were synthesized on a large scale by the vapour phase transport method and were employed as a whispering-gallery mode (WGM) cavity to realize optical resonance and lasing. An individual ZnO microrod was selected to investigate the multiphoton absorption-induced optical behaviours based on the enhancement of the nonlinear optical interaction in the WGM cavity. Three-photon absorption-induced UV lasing, second-harmonic generation and defect-related visible emission simultaneously present distinct WGMs under the excitation of femtosecond laser pulses at 1200 nm. When the pump laser was changed to 1240 nm, four-photon absorption-induced WGM lasing was observed. The characteristics and generation process of the above resonant signals were investigated in detail.

  2. Relationship between height and width of resonance peaks in a whispering gallery mode resonator immersed in water and sucrose solutions

    Science.gov (United States)

    Teraoka, Iwao; Yao, Haibei; Huiyi Luo, Natalie

    2017-06-01

    We employed a recently developed whispering gallery mode (WGM) dip sensor made of silica to obtain spectra for many resonance peaks in water and solutions of sucrose at different concentrations and thus having different refractive indices (RI). The apparent Q factor was estimated by fitting each peak profile in the busy resonance spectrum by a Lorentzian or a sum of Lorentzians. A plot of the Q factor as a function the peak height for all the peaks analyzed indicates a straight line with a negative slope as the upper limit, for each of water and the solutions. A coupling model for a resonator and a pair of fiber tapers to feed and pick up light, developed here, supports the presence of the upper limit. We also found that the round-trip attenuation of WGM was greater than the one estimated from light absorption by water, and the difference increased with the concentration of sucrose.

  3. Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules.

    Science.gov (United States)

    Wondimu, Sentayehu F; von der Ecken, Sebastian; Ahrens, Ralf; Freude, Wolfgang; Guber, Andreas E; Koos, Christian

    2017-05-16

    We present a multi-sensor chip comprising an array of whispering-gallery mode (WGM) micro-goblet lasers integrated into a digital microfluidic (DMF) system. In contrast to earlier demonstrations, the lasers are fabricated from dye-doped poly-methyl methacrylate (PMMA) at low cost using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow techniques. Pumping and read-out of the devices is accomplished via simple free-space optics, thereby allowing large-scale sensor arrays to be addressed. We demonstrate the viability of the system by bulk refractive index-sensing and by measuring the specific binding of streptavidin to a biotinylated sensor surface. This is the first time that optical cavities are used for label-free detection of biomolecules in a DMF system. This approach can be extended to a versatile detector platform that targets a wide range of clinically relevant biomolecules.

  4. Light-controlled microwave whispering-gallery-mode quasi-optical resonators at 50W LED array illumination

    Directory of Open Access Journals (Sweden)

    V. B. Yurchenko

    2015-08-01

    Full Text Available We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor that makes light-microwave interaction observable with an ordinary light (no laser at conventional brightness (like an office lighting in quasi-optical microwave structures at rather long (centimeter-scale wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel.

  5. Raman gain induced mode evolution and on-demand coupling control in whispering-gallery-mode microcavities.

    Science.gov (United States)

    Yang, Xu; Özdemir, Şahin Kaya; Peng, Bo; Yilmaz, Huzeyfe; Lei, Fu-Chuan; Long, Gui-Lu; Yang, Lan

    2015-11-16

    Waveguide-coupled optical resonators have played an important role in a wide range of applications including optical communication, sensing, nonlinear optics, slow/fast light, and cavity QED. In such a system, the coupling regimes strongly affect the resonance feature in the light transmission spectra, and hence the performance and outcomes of the applications. Therefore it is crucial to control the coupling between the waveguide and the microresonator. In this work, we investigated a fiber-taper coupled whispering-gallery-mode microresonator system, in which the coupling regime is traditionally controlled by adjusting the distance between the resonator and the fiber-taper mechanically. We propose and experimentally demonstrate that by utilizing Raman gain one can achieve on-demand control of the coupling regime without any mechanical movement in the resonator system. Particularly, the application of Raman gain is accompanied by Q enhancement. We also show that with the help of Raman gain control, the transitions between various coupling regimes can affect the light transmission spectra so as to provide better resolvability and signal amplification. This all-optical approach is also suitable for monolithically integrated and packaged waveguide-resonator systems, whose coupling regime is fixed at the time of manufacturing. It provides an effective route to control the light transmission in a waveguide-couple resonator system without mechanically moving individual optical components.

  6. Gyrotron whispering gallery mode coupler with a mode conversion reflector for exciting a circular symmetric uniform phase RF beam in a corrugated waveguide

    Science.gov (United States)

    Neilson, Jeffrey M.

    2017-07-25

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  7. Mathematical Model for Electric Field Sensor Based on Whispering Gallery Modes Using Navier’s Equation for Linear Elasticity

    Directory of Open Access Journals (Sweden)

    Amir R. Ali

    2017-01-01

    Full Text Available This paper presents and verifies the mathematical model of an electric field senor based on the whispering gallery mode (WGM. The sensing element is a dielectric microsphere, where the light is used to tune the optical modes of the microsphere. The light undergoes total internal reflection along the circumference of the sphere; then it experiences optical resonance. The WGM are monitored as sharp dips on the transmission spectrum. These modes are very sensitive to morphology changes of the sphere, such that, for every minute change in the sphere’s morphology, a shift in the transmission spectrum will happen and that is known as WGM shifts. Due to the electrostriction effect, the applied electric field will induce forces acting on the surface of the dielectric sphere. In turn, these forces will deform the sphere causing shifts in its WGM spectrum. The applied electric field can be obtained by calculating these shifts. Navier’s equation for linear elasticity is used to model the deformation of the sphere to find the WGM shift. The finite element numerical studies are performed to verify the introduced model and to study the behavior of the sensor at different values of microspheres’ Young’s modulus and dielectric constant. Furthermore, the sensitivity and resolution of the developed WGM electric filed sensor model will be presented in this paper.

  8. Whispering-gallery-mode based CH3NH3PbBr3 perovskite microrod lasers with high quality factors

    CERN Document Server

    Wang, Kaiyang; Zhang, Chen; Sun, Wenzhao; Gu, Zhiyuan; Xiao, Shumin; Song, Qinghai

    2016-01-01

    Lead halide perovskite based micro- and nano- lasers have been widely studied in past two years. Due to their long carrier diffusion length and high external quantum efficiency, lead halide perovskites have been considered to have bright future in optoelectronic devices, especially in the "green gap" wavelength region. However, the quality (Q) factors of perovskite lasers are unspectacular compared to conventional microdisk lasers. The record value of full width at half maximum (FWHM) at threshold is still around 0.22 nm. Herein we synthesized solution-processed, single-crystalline CH3NH3PbBr3 perovskite microrods and studied their lasing actions. In contrast to entirely pumping a microrod on substrate, we partially excited the microrods that were hanging in the air. Consequently, single-mode or few-mode laser emissions have been successfully obtained from the whispering-gallery like diamond modes, which are confined by total internal reflection within the transverse plane. Owning to the better light confinem...

  9. Maximization of the optical intra-cavity power of whispering-gallery mode resonators via coupling prism.

    Science.gov (United States)

    Santamaría-Botello, G A; García Muñoz, L E; Sedlmeir, F; Preu, S; Segovia-Vargas, D; Atia Abdalmalak, K; Llorente Romano, S; García Lampérez, A; Malzer, S; Döhler, G H; Schwefel, H G L; Weber, H B

    2016-11-14

    In this paper, a detailed description of the optical coupling into a Whispering Gallery Mode (WGM) resonator through a prism via frustrated total internal reflection (FTIR) is presented. The problem is modeled as three media with planar interfaces and closed expressions for FTIR are given. Then, the curvature of the resonator is taken into account and the mode overlap is theoretically studied. A new analytical expression giving the optimal geometry of a disc-shaped or ring-shaped resonator for maximizing the intra-cavity circulating power is presented. Such expression takes into consideration the spatial distribution of the WGM at the surface of the resonator, thus being more accurate than the currently used expressions. It also takes into account the geometry of the prism. It is shown an improvement in the geometry values used with the current expressions of about 30%. The reason why the pump laser signal can be seen in experiments under critical coupling is explained on this basis. Then, the conditions required for exciting the highest possible optical power inside the resonator are obtained. The aim is to achieve a highly-efficient up-conversion of a THz signal into the optical domain via the second-order nonlinearity of the resonator material.

  10. Protein-Based Three-Dimensional Whispering-Gallery-Mode Micro-Lasers with Stimulus-Responsiveness.

    Science.gov (United States)

    Sun, Yun-Lu; Hou, Zhi-Shan; Sun, Si-Ming; Zheng, Bo-Yuan; Ku, Jin-Feng; Dong, Wen-Fei; Chen, Qi-Dai; Sun, Hong-Bo

    2015-08-04

    For the first time, proteins, a promising biocompatible and functionality-designable biomacromolecule material, acted as the host material to construct three-dimensional (3D) whispering-gallery-mode (WGM) microlasers by multiphoton femtosecond laser direct writing (FsLDW). Protein/Rhodamine B (RhB) composite biopolymer was used as optical gain medium innovatively. By adopting high-viscosity aqueous protein ink and optimized scanning mode, protein-based WGM microlasers were customized with exquisite true 3D geometry and smooth morphology. Comparable to previously reported artificial polymers, protein-based WGM microlasers here were endowed with valuable performances including steady operation in air and even in aqueous environments, and a higher quality value (Q) of several thousands (without annealing). Due to the "smart" feature of protein hydrogel, lasing spectrum was responsively adjusted by step of ~0.4 nm blueshift per 0.83-mmol/L Na2SO4 concentration change (0 ~ 5-mmol/L in total leading to ~2.59-nm blueshift). Importantly, other performances including Q, FWHM, FSR, peak intensities, exhibited good stability during adjustments. So, these protein-based 3D WGM microlasers might have potential in applications like optical biosensing and tunable "smart" biolasers, useful in novel photonic biosystems and bioengineering.

  11. Dynamic Self-Referencing Approach to Whispering Gallery Mode Biosensing and Its Application to Measurement within Undiluted Serum.

    Science.gov (United States)

    Reynolds, Tess; François, Alexandre; Riesen, Nicolas; Turvey, Michelle E; Nicholls, Stephen J; Hoffmann, Peter; Monro, Tanya M

    2016-04-05

    Biosensing within complex biological samples requires a sensor that can compensate for fluctuations in the signal due to changing environmental conditions and nonspecific binding events. To achieve this, we developed a novel self-referenced biosensor consisting of two almost identically sized dye-doped polystyrene microspheres placed on adjacent holes at the tip of a microstructured optical fiber (MOF). Here self-referenced biosensing is demonstrated with the detection of Neutravidin in undiluted, immunoglobulin-deprived human serum samples. The MOF allows remote excitation and collection of the whispering gallery modes (WGMs) of the microspheres while also providing a robust and easy to manipulate dip-sensing platform. By taking advantage of surface functionalization techniques, one microsphere acts as a dynamic reference, compensating for nonspecific binding events and changes in the environment (such as refractive index and temperature), while the other microsphere is functionalized to detect a specific interaction. The almost identical size allows the two spheres to have virtually identical refractive index sensitivity and surface area, while still having discernible WGM spectra. This ensures their responses to nonspecific binding and environmental changes are almost identical, whereby any specific changes, such as binding events, can be monitored via the relative movement between the two sets of WGM peaks.

  12. Covert Photonic Barcodes Based on Light Controlled Acidichromism in Organic Dye Doped Whispering-Gallery-Mode Microdisks.

    Science.gov (United States)

    Gao, Zhenhua; Wei, Cong; Yan, Yongli; Zhang, Wei; Dong, Haiyun; Zhao, Jinyang; Yi, Jun; Zhang, Chunhuan; Li, Yong Jun; Zhao, Yong Sheng

    2017-08-01

    Photonic barcodes with a small footprint have demonstrated a great value for multiplexed high-throughput bioassays and tracking systems. Attempts to develop coding technology tend to focus on the generation of featured barcodes both with high coding capacity and accurate recognition. In this work, a strategy to design photonic barcodes is proposed based on whispering-gallery-mode (WGM) modulations in dye-doped microdisk resonant cavities, where each modulated photoluminescence spectrum constitutes the fingerprint of a corresponding microdisk. The WGM-based barcodes can achieve infinite encoding capacity through tuning the dimensions of the microdisks. These photonic barcodes can be well disguised and decoded based on the light controlled proton release and acidichromism of the organic materials, which are essential to fulfill the functions of anti-counterfeiting, information security, and so on. The results will pave an avenue to new types of flexible WGM-based components for optical data recording and security labels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Toward Automatic Label-Free Whispering Gallery Modes Biodetection with a Quantum Dot-Coated Microsphere Population

    Directory of Open Access Journals (Sweden)

    Boissinot K

    2010-01-01

    Full Text Available Abstract We explore a new calibration-free approach to biodetection based on whispering gallery modes (WGMs without a reference measure and relative shifts. Thus, the requirement to keep track of the sensor position is removed, and a freely moving population of fluorophore-doped polystyrene microspheres can now fulfill this role of sensing resonator. Breaking free from fixed surface-based biosensing promotes adhesion between the microsphere sensors and the analytes since both can now be thoroughly mixed. The 70-nm-wide spectrum of green fluorescent microbeads allows us to monitor over 20 WGMs simultaneously without needing evanescent light coupling into the microspheres, hence enabling remote sensing. Since the exact radius of each microsphere is unknown a priori, it requires algorithmic analyses to obtain a reliable result for the refractive index of a solution. We first test our approach with different solutions of alcohol in water obtaining 3 × 10−4 precision on the refractive index at lower concentrations. Then, the solutions of bacterial spores in water yield clear evidence of biodetection in the statistical analysis of WGMs from 50 microspheres. To extend the fluorescence spectral range of our WGM sensors, we present preliminary results on coating microspheres with CdSe/ZnS quantum dots.

  14. Toward Automatic Label-Free Whispering Gallery Modes Biodetection with a Quantum Dot-Coated Microsphere Population

    Science.gov (United States)

    Charlebois, M.; Paquet, A.; Verret, L. S.; Boissinot, K.; Boissinot, M.; Bergeron, M. G.; Allen, C. Nì.

    2010-03-01

    We explore a new calibration-free approach to biodetection based on whispering gallery modes (WGMs) without a reference measure and relative shifts. Thus, the requirement to keep track of the sensor position is removed, and a freely moving population of fluorophore-doped polystyrene microspheres can now fulfill this role of sensing resonator. Breaking free from fixed surface-based biosensing promotes adhesion between the microsphere sensors and the analytes since both can now be thoroughly mixed. The 70-nm-wide spectrum of green fluorescent microbeads allows us to monitor over 20 WGMs simultaneously without needing evanescent light coupling into the microspheres, hence enabling remote sensing. Since the exact radius of each microsphere is unknown a priori, it requires algorithmic analyses to obtain a reliable result for the refractive index of a solution. We first test our approach with different solutions of alcohol in water obtaining 3 × 10-4 precision on the refractive index at lower concentrations. Then, the solutions of bacterial spores in water yield clear evidence of biodetection in the statistical analysis of WGMs from 50 microspheres. To extend the fluorescence spectral range of our WGM sensors, we present preliminary results on coating microspheres with CdSe/ZnS quantum dots.

  15. Low-threshold whispering-gallery-mode microlasers fabricated in a Nd: glass substrate by three-dimensional femtosecond laser micromachining

    CERN Document Server

    Lin, Jintian; Song, Jiangxin; Zeng, Bin; He, Fei; Xu, Huailiang; Sugioka, Koji; Fang, Wei; Cheng, Ya

    2013-01-01

    We report on fabrication of whispering-gallery-mode microlasers in a Nd:glass chip by femtosecond laser three-dimensional (3D) micromachining. Main fabrication procedures include the fabrication of freestanding microdisks supported by thin pillars by femtosecond laser ablation of the glass substrate immersed in water, followed by CO2 laser annealing for surface smoothing. Lasing is observed at a pump threshold as low as ~69 {\\mu}W at room temperature with a continuous-wave laser diode operating at 780nm. This technique allows for fabrication of microcavities of high quality factors in various dielectric materials such as glasses and crystals.

  16. High quality factor whispering gallery modes from self-assembled hexagonal GaN rods grown by metal-organic vapor phase epitaxy.

    Science.gov (United States)

    Tessarek, C; Sarau, G; Kiometzis, M; Christiansen, S

    2013-02-11

    Self-assembled GaN rods were grown on sapphire by metal-organic vapor phase epitaxy using a simple two-step method that relies first on a nitridation step followed by GaN epitaxy. The mask-free rods formed without any additional catalyst. Most of the vertically aligned rods exhibit a regular hexagonal shape with sharp edges and smooth sidewall facets. Cathodo- and microphotoluminescence investigations were carried out on single GaN rods. Whispering gallery modes with quality factors greater than 4000 were measured demonstrating the high morphological and optical quality of the self-assembled GaN rods.

  17. Whispering gallery resonators for optical sensing

    Science.gov (United States)

    Madugani, Ramgopal; Kasumie, Sho; Yang, Yong; Ward, Jonathan; Lei, Fuchuan; Nic Chormaic, Síle

    2017-04-01

    In recent years, whispering gallery mode devices have extended their functionality across a number of research fields from photonics to sensing applications. Here, we will discuss environmental sensing applications, such as pressure, flow, and temperature using ultrahigh Q-factor microspheres fabricated from ultrathin optical fiber and microbubbles fabricated from pretapered glass capillary. We will discuss device fabrication and the different types of sensing that can be pursued using such systems. Finally, we will introduce the concept of using cavity ring-up spectroscopy to perform dispersive transient sensing, whereby a perturbation to the environment leads to a frequency mode shift, and dissipative transient sensing, which can lead to broadening of the mode, in a whispering gallery mode resonator.

  18. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators

    Energy Technology Data Exchange (ETDEWEB)

    Schliesser, A; Anetsberger, G; Riviere, R; Arcizet, O; Kippenberg, T J [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)], E-mail: tjk@mpq.mpg.de

    2008-09-15

    The inherent coupling of optical and mechanical modes in high finesse optical microresonators provides a natural, highly sensitive transduction mechanism for micromechanical vibration. Using homodyne and polarization spectroscopy techniques, we achieve shot-noise limited displacement sensitivities of 10{sup -19} m Hz{sup -1/2}. In an unprecedented manner, this enables the detection and study of a variety of mechanical modes, which are identified as radial breathing, flexural and torsional modes using three-dimensional finite element modeling. Furthermore, a broadband equivalent displacement noise is measured and found to agree well with models for thermorefractive noise in silica dielectric cavities. Implications for ground-state cooling, displacement sensing and Kerr squeezing are discussed.

  19. Optimisation of the prism coupling of optical whispering-gallery-mode microcavities

    Science.gov (United States)

    Demchenko, Yu A.; Bilenko, I. A.; Gorodetsky, M. L.

    2017-08-01

    The methods for increasing the coupling efficiency of a prism with spheroidal microcavities, aimed at exciting whisperinggallery modes, have been analytically investigated. Optimal angles of incidence and incident beam parameters are obtained for a spheroidal cavity. The cavity eigenfrequency shift caused by the presence of a prism and the introduced loss by it is calculated.

  20. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range

    CERN Document Server

    Lin, Guoping

    2015-01-01

    Optical whispering gallery mode (WGM) resonators have been very attracting platforms for versatile Kerr frequency comb generations. We report a systematic study on the material dispersion of various optical materials that are capable of supporting quality factors above $10^9$. Using an analytical approximation of WGM resonant frequencies in disk resonators, we investigate the effect of the geometry and transverse mode order on the total group-velocity dispersion ($GVD$). We demonstrate that the major radii and the radial mode indices play an important role in tailoring the $GVD$ of WGM resonators. In particular, our study shows that in WGM disk-resonators, the polar families of modes have very similar $GVD$, while the radial families of modes feature dispersion values that can differ by up to several orders of magnitude. The effect of these giant dispersion shifts are experimentally evidenced in Kerr comb generation with magnesium fluoride. From a more general perspective, this critical feature enables to pus...

  1. Lasing of whispering-gallery modes in asymmetric waveguide GaInP micro-disks with InP quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Y. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)], E-mail: ychu@nd.edu; Mintairov, A.M.; He, Y.; Merz, J.L. [Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States); Kalyuzhnyy, N.A.; Lantratov, V.M.; Mintairov, S.A. [Ioffe Physical Technical Institute, St. Petersburg (Russian Federation)

    2009-03-16

    Using wafer bonding (WB) and wet oxidation (WO) techniques, GaInP microdisks having an asymmetric waveguide (diameters D=1-3 {mu}m) with embedded InP quantum dots (size/density {approx}100 nm/{approx}10{sup 9} cm{sup -2}) have been fabricated on Si and GaAs substrates, respectively. The TE{sub m,l} (m=28-12, l=1,2) and TM{sub m,l} (m=25-10, l=1-4) whispering gallery modes with quality factors Q{approx}2-5x10{sup 3} have been identified in photoluminescence spectra of these microdisks (MDs) in the spectral range 720-770 nm. Lasing thresholds of 6 (30) {mu}W and mode coupling constants 0.9 (0.7) have been demonstrated for WO (WB) MDs.

  2. Broadband light-extraction enhanced by arrays of whispering gallery resonators

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Ou, Yiyu; Jokubavicius, Valdas

    2012-01-01

    We demonstrate a light-extraction approach using a whispering gallery resonators array. The wavelength-scale resonant dielectric nanospheres support whispering gallery modes, which can be coupled with the confined waveguide modes inside the bulk material, thus dramatically improving light...

  3. Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder.

    Science.gov (United States)

    Boriskin, Artem V; Boriskina, Svetlana V; Rolland, Anthony; Sauleau, Ronan; Nosich, Alexander I

    2008-05-01

    Our objective is the assessment of the accuracy of a conventional finite-difference time-domain (FDTD) code in the computation of the near- and far-field scattering characteristics of a circular dielectric cylinder. We excite the cylinder with an electric or magnetic line current and demonstrate the failure of the two-dimensional FDTD algorithm to accurately characterize the emission rate and the field patterns near high-Q whispering-gallery-mode resonances. This is proven by comparison with the exact series solutions. The computational errors in the emission rate are then studied at the resonances still detectable with FDTD, i.e., having Q-factors up to 10(3).

  4. Whispering gallery mode in periodic InGaN-based hexagonal nanoring arrays grown by rf-MBE using Ti-mask selective-area growth

    Energy Technology Data Exchange (ETDEWEB)

    Kouno, Tetsuya [Department of Engineering and Applied Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); CREST, Japan Science and Technology Agency, Tokyo (Japan); Kishino, Katsumi; Kikuchi, Akihiko [Department of Engineering and Applied Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Sophia Nanotechnology Research Center, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); CREST, Japan Science and Technology Agency, Tokyo (Japan)

    2010-01-15

    We fabricated periodic InGaN-based hexagonal nanoring arrays by rf-molecular beam epitaxy (rf-MBE) with Ti-mask selective-area growth (SAG). Multiple photoluminescence peaks from InGaN-based hexagonal nanorings were observed in room temperature photoluminescence (RT-PL) measurements with a 325 nm He-Cd laser. We employed a simple plane wave model and a two-dimensional finite difference time domain (2D-FDTD) method in the numerical analysis to investigate these multiple peaks. Experimental data was in good coincidence with calculated data, evincing that whispering gallery modes (WGMs) supported in the InGaN-based hexagonal nanorings were responsible for the multipeaks. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Classification of the micro and nanoparticles and biological agents by neural network analysis of the parameters of optical resonance of whispering gallery mode in dielectric microspheres

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas

    2011-07-01

    A novel technique for the label-free analysis of micro and nanoparticles including biomolecules using optical micro cavity resonance of whispering-gallery-type modes is being developed. Various schemes of the method using both standard and specially produced microspheres have been investigated to make further development for microbial application. It was demonstrated that optical resonance under optimal geometry could be detected under the laser power of less 1 microwatt. The sensitivity of developed schemes has been tested by monitoring the spectral shift of the whispering gallery modes. Water solutions of ethanol, ascorbic acid, blood phantoms including albumin and HCl, glucose, biotin, biomarker like C reactive protein so as bacteria and virus phantoms (gels of silica micro and nanoparticles) have been used. Structure of resonance spectra of the solutions was a specific subject of investigation. Probabilistic neural network classifier for biological agents and micro/nano particles classification has been developed. Several parameters of resonance spectra as spectral shift, broadening, diffuseness and others have been used as input parameters to develop a network classifier for micro and nanoparticles and biological agents in solution. Classification probability of approximately 98% for probes under investigation have been achieved. Developed approach have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor which can be used for development of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.

  6. InAsSb/InAsPSb multiple quantum well disk cavities with pedestal structures on a GaSb substrate for mid-infrared whispering-gallery-mode emission beyond 4  μm.

    Science.gov (United States)

    Lin, Yen-Chih; Mao, Ming-Hua; Wu, Chen-Jun; Lin, Hao-Hsiung

    2015-05-01

    The mid-infrared whispering-gallery-mode disk cavities with InAs0.85Sb0.15/InAs0.53P0.23Sb0.24 multiple quantum wells active medium on a GaSb substrate were fabricated. For this material system in the mid-infrared range, fabrication techniques were developed to form the disk cavity structure. The smooth sidewalls of the disk cavities were achieved by appropriate gas mixture flow ratio of BCl3/Ar in the inductively coupled plasma-reactive ion etching. In addition, selective wet etching technique was used to form the pedestal of the disk cavity using dilute hydrofluoric acid with good selectivity. For efficient confinement of the whispering gallery modes along the radial direction, the extent of the lateral etching was carefully controlled. The processed 30-μm-diameter disk cavities were optically pumped, and the whispering gallery modes with wavelengths around 4.1 μm can be observed up to 90 K.

  7. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range.

    Science.gov (United States)

    Lin, Guoping; Chembo, Yanne K

    2015-01-26

    Optical whispering gallery mode (WGM) resonators have been very attracting platforms for versatile Kerr frequency comb generations. We report a systematic study on the material dispersion of various optical materials that are capable of supporting quality factors above 109. Using an analytical approximation of WGM resonant frequencies in disk resonators, we investigate the effect of the geometry and transverse mode order on the total group-velocity dispersion (GVD). We demonstrate that the major radii and the radial mode indices play an important role in tailoring the GVD of WGM resonators. In particular, our study shows that in WGM disk-resonators, the polar families of modes have very similar GVD, while the radial families of modes feature dispersion values that can differ by up to several orders of magnitude. The effect of these giant dispersion shifts are experimentally evidenced in Kerr comb generation with magnesium fluoride. From a more general perspective, this critical feature enables to push the zero-dispersion wavelength of fluorite crystals towards the mid-infrared (mid-IR) range, thereby allowing for efficient Kerr comb generation in that spectral range. We show that barium fluoride is the most interesting crystal in this regard, due to its zero dispersion wavelength (ZDW) at 1.93 μm and an optimal dispersion profile in the mid-IR regime. We expect our results to facilitate the design of different platforms for Kerr frequency comb generations in both telecommunication and mid-IR spectral ranges.

  8. Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system.

    Science.gov (United States)

    Cao, Cong; Duan, Yu-Wen; Chen, Xi; Zhang, Ru; Wang, Tie-Jun; Wang, Chuan

    2017-07-24

    Quantum router is a key element needed for the construction of future complex quantum networks. However, quantum routing with photons, and its inverse, quantum decoupling, are difficult to implement as photons do not interact, or interact very weakly in nonlinear media. In this paper, we investigate the possibility of implementing photonic quantum routing based on effects in cavity quantum electrodynamics, and present a scheme for single-photon quantum routing controlled by the other photon using a hybrid system consisting of a single nitrogen-vacancy (NV) center coupled with a whispering-gallery-mode resonator-waveguide structure. Different from the cases in which classical information is used to control the path of quantum signals, both the control and signal photons are quantum in our implementation. Compared with the probabilistic quantum routing protocols based on linear optics, our scheme is deterministic and also scalable to multiple photons. We also present a scheme for single-photon quantum decoupling from an initial state with polarization and spatial-mode encoding, which can implement an inverse operation to the quantum routing. We discuss the feasibility of our schemes by considering current or near-future techniques, and show that both the schemes can operate effectively in the bad-cavity regime. We believe that the schemes could be key building blocks for future complex quantum networks and large-scale quantum information processing.

  9. Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting.

    Science.gov (United States)

    Zhang, Jianming; Jin, Xin; Morales-Guzman, Pablo I; Yu, Xin; Liu, Hong; Zhang, Hua; Razzari, Luca; Claverie, Jerome P

    2016-04-26

    Recently, surface plasmon resonance (SPR) effects have been widely used to construct photocatalysts which are active in the visible spectral region. Such plasmonic photocatalysts usually comprise a semiconductor material transparent in the visible range (such as TiO2) and plasmonic nano-objects (e.g., Au nanoparticles (Au NPs)). Specific SPRs, though, only partially cover the visible spectrum and feature weak light absorption. Here, we explore the unique role played by whispering gallery mode (WGM) resonances in the expression of the photocatalytic activity of plasmonic photocatalysts. Using numerical simulations, we demonstrate that, by solely exploiting a proper geometrical arrangement and WGM resonances in a TiO2 sphere, the plasmonic absorption can be extended over the entire visible range and can be increased by more than 40 times. Furthermore, the local electric field at the Au-TiO2 interface is also considerably enhanced. These results are experimentally corroborated, by means of absorption spectroscopy and Raman measurements. Accordingly, such WGM-assisted plasmonic photocatalysts, when employed in water splitting experiments, exhibit enhanced activity in the visible range. Our findings show a promising and straightforward way to design full solar spectrum photocatalysts.

  10. Analytical and simulation results of a triple micro whispering gallery mode probe system for a 3D blood flow rate sensor.

    Science.gov (United States)

    Phatharacorn, Prateep; Chiangga, Surasak; Yupapin, Preecha

    2016-11-20

    The whispering gallery mode (WGM) is generated by light propagating within a nonlinear micro-ring resonator, which is modeled and made by an InGaAsP/InP material, and called a Panda ring resonator. An imaging probe can also be formed by the micro-conjugate mirror function for the appropriate Panda ring parameter control. The 3D WGM probe can be generated and used for a 3D sensor head and imaging probe. The analytical details and simulation results are given, in which the simulation results are obtained by using the MATLAB and Optiwave programs. From the obtained results, such a design system can be configured to be a thin-film sensor system that can contact the sample surface for the required measurements The outputs of the system are in the form of a WGM beam, in which the 3D WGM probe is also available with the micro-conjugate mirror function. Such a 3D probe can penetrate into the blood vessel and content, from which the time delay among those probes can be detected and measured, and where finally the blood flow rate can be calculated and the blood content 3D image can also be seen and used for medical diagnosis. The tested results have shown that the blood flow rate of 0.72-1.11  μs-1, with the blood density of 1060  kgm-3, can be obtained.

  11. Ultra-sensitive optical biosensor based on whispering gallery modes: The effect of buffer solutions refractive index on their sensitivity and performance

    Science.gov (United States)

    Nadgaran, Hamid; Pourmand, Raheleh

    2013-01-01

    Background: Whispering gallery modes (WGM) biosensors are ultrasensitive systems that can measure amount of adsorbed layer onto the micro-cavity surface. They have many applications including protein, peptide growth, DNA and bacteria detection, molecular properties measurements and specific interaction and drug table recognitions due to their high sensitivity, compact size and label free sensing mechanism.     Objective: In this paper we investigate the effect of buffer solution on detection of specific biomolecules in WGM biosensors through its refractive index change. Methods: The propagation of electromagnetic waves in a dielectric microsphere is analyzed by solving Maxwell’s equations through proper boundary condition to find a concise relation for micro-cavity resonance shift. Results: Analysis of the buffer solution’s refractive index effects on detection of BSA by WGM biosensors are presented and it was shown that even a very small change in the refractive index of buffer solution can affect the biosensor wavelength shift and the sensitivity of biosensors. Conclusion: This study opens up a discussion in biosensor sensitivity based on true and reliable performance of the buffer solution through its accurate determination of refractive index and behavior. To avoid expensive methods of enhancing sensitivity, one can improve the sensitivity of WGM biosensor to some extent, by means of using proper buffer solution. PMID:25505748

  12. Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator.

    Science.gov (United States)

    He, Ling Yan; Wang, Tie-Jun; Wang, Chuan

    2016-07-11

    High-dimensional quantum system provides a higher capacity of quantum channel, which exhibits potential applications in quantum information processing. However, high-dimensional universal quantum logic gates is difficult to achieve directly with only high-dimensional interaction between two quantum systems and requires a large number of two-dimensional gates to build even a small high-dimensional quantum circuits. In this paper, we propose a scheme to implement a general controlled-flip (CF) gate where the high-dimensional single photon serve as the target qudit and stationary qubits work as the control logic qudit, by employing a three-level Λ-type system coupled with a whispering-gallery-mode microresonator. In our scheme, the required number of interaction times between the photon and solid state system reduce greatly compared with the traditional method which decomposes the high-dimensional Hilbert space into 2-dimensional quantum space, and it is on a shorter temporal scale for the experimental realization. Moreover, we discuss the performance and feasibility of our hybrid CF gate, concluding that it can be easily extended to a 2n-dimensional case and it is feasible with current technology.

  13. Single step integration of ZnO nano- and microneedles in Si trenches by novel flame transport approach: whispering gallery modes and photocatalytic properties.

    Science.gov (United States)

    Reimer, Tim; Paulowicz, Ingo; Röder, Robert; Kaps, Sören; Lupan, Oleg; Chemnitz, Steffen; Benecke, Wolfgang; Ronning, Carsten; Adelung, Rainer; Mishra, Yogendra K

    2014-05-28

    Direct growth of quasi-one-dimensional nano- and microstructures in desired places of complex shaped substrates using simple growth methods is highly demanded aspect for various applications. In this work, we have demonstrated direct integration of ZnO nano- and microneedles into Si trenches by a novel flame transport synthesis approach in a single fabrication step. Growth of partially and fully covered or filled trenches in Si substrate with ZnO nano- and microneedles has been investigated and is discussed here. Detailed microstructural studies revealed the evolution of the ZnO nano- and microneedles as well as their firm adhesion to the wall in the Si trenches. Micro-photoluminescence measurements at different locations along the length of needles confirmed the good crystalline quality and also the presence of whispering gallery mode resonances on the top of needles due to their hexagonal shape. Faceted ZnO nano- and microstructures are also very important candidates with regard to photocatalytic activity. First, photocatalytic measurements from the grown ZnO nano- and microneedles have shown strong degradation of methylene blue, which demonstrate that these structures can be of significant interest for photocatalysis and self-cleaning chromatography columns.

  14. Highly Efficient Integrated Generator of Tripartite Entanglement from χ (2) Whispering Gallery Microresonator

    Science.gov (United States)

    He, Guangqiang; Hu, Linxi; Li, Rongyu

    2017-08-01

    Whispering gallery microresonator (WGM) filled with nonlinear material has proven to be valuable for enhancing nonlinear optical effects. Here we explore the production of the pump-signal-idler tripartite entanglement based on the integrated high-Q whispering gallery mode cavities filled with lithium niobate. Our theoretical analysis about the entanglement condition when the van Loock and Furusawa criteria are violated paves the way for future investigation of integrated entanglement based on nonlinear high-Q microresonator. In addition, we present parameters used in our designed generator and our theoretical model is highly expansible to further exploration of entanglement over general χ (2) whispering gallery microresonator.

  15. PEG Functionalization of Whispering Gallery Mode Optical Microresonator Biosensors to Minimize Non-Specific Adsorption during Targeted, Label-Free Sensing

    Directory of Open Access Journals (Sweden)

    Fanyongjing Wang

    2015-07-01

    Full Text Available Whispering Gallery Mode (WGM optical microresonator biosensors are a powerful tool for targeted detection of analytes at extremely low concentrations. However, in complex environments, non-specific adsorption can significantly reduce their signal to noise ratio, limiting their accuracy. To overcome this, poly(ethylene glycol (PEG can be employed in conjunction with appropriate recognition elements to create a nonfouling surface capable of detecting targeted analytes. This paper investigates a general route for the addition of nonfouling elements to WGM optical biosensors to reduce non-specific adsorption, while also retaining high sensitivity. We use the avidin-biotin analyte-recognition element system, in conjunction with PEG nonfouling elements, as a proof-of-concept, and explore the extent of non-specific adsorption of lysozyme and fibrinogen at multiple concentrations, as well as the ability to detect avidin in a concentration-dependent fashion. Ellipsometry, contact angle measurement, fluorescence microscopy, and optical resonator characterization methods were used to study non-specific adsorption, the quality of the functionalized surface, and the biosensor’s performance. Using a recognition element ratio to nonfouling element ratio of 1:1, we showed that non-specific adsorption could be significantly reduced over the controls, and that high sensitivity could be maintained. Due to the frequent use of biotin-avidin-biotin sandwich complexes in functionalizing sensor surfaces with biotin-labeled recognition elements, this chemistry could provide a common basis for creating a non-fouling surface capable of targeted detection. This should improve the ability of WGM optical biosensors to operate in complex environments, extending their application towards real-world detection.

  16. PEG Functionalization of Whispering Gallery Mode Optical Microresonator Biosensors to Minimize Non-Specific Adsorption during Targeted, Label-Free Sensing.

    Science.gov (United States)

    Wang, Fanyongjing; Anderson, Mark; Bernards, Matthew T; Hunt, Heather K

    2015-07-24

    Whispering Gallery Mode (WGM) optical microresonator biosensors are a powerful tool for targeted detection of analytes at extremely low concentrations. However, in complex environments, non-specific adsorption can significantly reduce their signal to noise ratio, limiting their accuracy. To overcome this, poly(ethylene glycol) (PEG) can be employed in conjunction with appropriate recognition elements to create a nonfouling surface capable of detecting targeted analytes. This paper investigates a general route for the addition of nonfouling elements to WGM optical biosensors to reduce non-specific adsorption, while also retaining high sensitivity. We use the avidin-biotin analyte-recognition element system, in conjunction with PEG nonfouling elements, as a proof-of-concept, and explore the extent of non-specific adsorption of lysozyme and fibrinogen at multiple concentrations, as well as the ability to detect avidin in a concentration-dependent fashion. Ellipsometry, contact angle measurement, fluorescence microscopy, and optical resonator characterization methods were used to study non-specific adsorption, the quality of the functionalized surface, and the biosensor's performance. Using a recognition element ratio to nonfouling element ratio of 1:1, we showed that non-specific adsorption could be significantly reduced over the controls, and that high sensitivity could be maintained. Due to the frequent use of biotin-avidin-biotin sandwich complexes in functionalizing sensor surfaces with biotin-labeled recognition elements, this chemistry could provide a common basis for creating a non-fouling surface capable of targeted detection. This should improve the ability of WGM optical biosensors to operate in complex environments, extending their application towards real-world detection.

  17. Phone-sized whispering-gallery microresonator sensing system

    CERN Document Server

    Xu, Xiangyi; Zhao, Guangming; Yang, Lan

    2016-01-01

    We develop a compact whispering-gallery-mode (WGM) sensing system by integrating multiple components, including a tunable laser, a temperature controller, a function generator, an oscilloscope, a photodiode detector, and a testing computer, into a phone-sized embedded system. We demonstrate a thermal sensing experiment by using this portable system. Such a system successfully eliminates bulky measurement equipment required for characterizing optical resonators and will open up new avenues for practical sensing applications by using ultra-high Q WGM resonators.

  18. High-resolution photon-scanning tunneling microscope measurements of the whispering gallery modes in a cylindrical microresonator

    NARCIS (Netherlands)

    Klunder, D.J.W.; Balistreri, M.L.M.; Blom, F.C.; Driessen, A.; Hoekstra, Hugo; Kuipers, L.; van Hulst, N.F.

    2000-01-01

    A detailed analysis of spatio-spectral photon scanning tunneling microscope scans of the light intensity inside a cylindrical microresonator has been carried out. By comparing the experimental results with theory, it is shown that the inclusion of spectral mode-beat phenomena is crucial for an

  19. Understanding GaN/InGaN core–shell growth towards high quality factor whispering gallery modes from non-polar InGaN quantum wells on GaN rods

    Science.gov (United States)

    Tessarek, C.; Rechberger, S.; Dieker, C.; Heilmann, M.; Spiecker, E.; Christiansen, S.

    2017-12-01

    GaN microrods are used as a basis for subsequent InGaN quantum well (QW) and quantum dot deposition by metal-organic vapor phase epitaxy. The coverage of the shell along the sidewall of rods is dependent on the rod growth time and a complete coverage is obtained for shorter rod growth times. Transmission electron microscopy measurements are performed to reveal the structural properties of the InGaN layer on the sidewall facet and on the top facet. The presence of layers in the microrod and on the microrod surface will be discussed with respect to GaN and InGaN growth. A detailed model will be presented explaining the formation of multiple SiN layers and the partial and full coverage of the shell around the core. Cathodoluminescence measurements are performed to analyze the InGaN emission properties along the microrod and to study the microresonator properties of such hexagonal core–shell structures. High quality factor whispering gallery modes with Q∼ 1200 are reported for the first time in a GaN microrod/InGaN non-polar QW core–shell geometry. The GaN/InGaN core–shell microrods are expected to be promising building blocks for low-threshold laser diodes and ultra-sensitive optical sensors.

  20. Giant Rabi Splitting of Whispering Gallery Polaritons in GaN/InGaN Core-Shell Wire.

    Science.gov (United States)

    Gong, Su-Hyun; Ko, Suk-Min; Jang, Min-Ho; Cho, Yong-Hoon

    2015-07-08

    The hybrid nature of exciton polaritons opens up possibilities for developing a new concept nonlinear photonic device (e.g., polariton condensation, switching, and transistor) with great potential for controllability. Here, we proposed a novel type of polariton system resulting from strong coupling between a two-dimensional exciton and whispering gallery mode photon using a core-shell GaN/InGaN hexagonal wire. High quality, nonpolar InGaN multiple-quantum wells (MQWs) were conformally formed on a GaN core nanowire, which was spatially well matched with whispering gallery modes inside the wire. Both high longitudinal-transverse splitting of nonpolar MQWs and high spatial overlap with whispering gallery modes lead to unprecedented large Rabi splitting energy of ∼180 meV. This structure provides a robust polariton effect with a small footprint; thus, it could be utilized for a wide range of interesting applications.

  1. Nonlinear and Quantum Optics with Whispering Gallery Resonators

    CERN Document Server

    Strekalov, Dmitry V; Matsko, Andrey B; Schwefel, Harald G L; Leuchs, Gerd

    2016-01-01

    Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon was later realized to have a rather general nature, equally applicable to sound and all other waves, but in particular also to electromagnetic waves ranging from radio frequencies to ultraviolet light. Very high quality factors of optical WGM resonators persisting in a wide wavelength range, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.

  2. Whispering galleries and the control of artificial atoms.

    Science.gov (United States)

    Forrester, Derek Michael; Kusmartsev, Feodor V

    2016-04-28

    Quantum computation using artificial-atoms, such as novel superconducting circuits, can be sensitively controlled by external electromagnetic fields. These fields and the self-fields attributable to the coupled artificial-atoms influence the amount of quantum correlation in the system. However, control elements that can operate without complete destruction of the entanglement of the quantum-bits are difficult to engineer. Here we investigate the possibility of using closely-spaced-linear arrays of metallic-elliptical discs as whispering gallery waveguides to control artificial-atoms. The discs confine and guide radiation through the array with small notches etched into their sides that act as scatterers. We focus on π-ring artificial-atoms, which can generate their own spontaneous fluxes. We find that the micro-discs of the waveguides can be excited by terahertz frequency fields to exhibit whispering-modes and that a quantum-phase-gate composed of π-rings can be operated under their influence. Furthermore, we gauge the level of entanglement through the concurrence measure and show that under certain magnetic conditions a series of entanglement sudden-deaths and revivals occur between the two qubits. This is important for understanding the stability and life-time of qubit operations using, for example, a phase gate in a hybrid of quantum technologies composed of control elements and artificial-atoms.

  3. Thermal Properties of Whispering Gallery Mode Resonators

    Science.gov (United States)

    2014-12-22

    unique fabrication process which involves melting and reflowing glass material that produces extremely smooth surfaces. They also have very small...has a strong absorption at 10 µm wavelength. The beam from the CO2 laser was first expanded by a ZnSe lens and then passed through a small pinhole ...Only a small fraction of total IR radiation passes through the pinhole and reaches at the resonator. The microtoroid was placed at an angle of 45

  4. Electrodynamical Light Trapping Using Whispering-Gallery Resonances in Hyperbolic Cavities

    Directory of Open Access Journals (Sweden)

    Chihhui Wu

    2014-04-01

    Full Text Available We theoretically study spherical cavities composed of hyperbolic metamaterials with indefinite permittivity tensors. Such cavities are capable of electrodynamically confining fields with deep subwavelength cavity sizes. The supported resonant modes are analogous to the whispering-gallery modes found in dielectric microcavities with much larger physical sizes. Because of the nature of electrodynamical confinement, these hyperbolic metamaterial cavities exhibit quality factors higher than predicted in the electrostatic limit. In addition, confining electromagnetic fields into the small cavities results in an extremely high photonic local density of states.

  5. Wavelength shift in a whispering gallery microdisk due to bacterial sensing: A theoretical approach

    Directory of Open Access Journals (Sweden)

    Hala Ghali

    2017-04-01

    Full Text Available Whispering gallery mode microcavities have recently been studied as a means to achieve real-time label-free detection of biological targets such as virus particles, specific DNA sequences, or proteins. Binding of a biomolecule to the surface of a microresonator will increase its path length, leading to a shift in the resonance frequency according to the reactive sensing principle. In this paper, we develop a theoretical expression that will link the reactive shift to the bacteria and microdisk parameters and help quantify the number of bacteria that bind to the surface of a 200μm-diameter silica microdisk.

  6. Unified theory of whispering gallery multilayer microspheres with single dipole or active layer sources.

    Science.gov (United States)

    Hall, Jonathan M M; Reynolds, Tess; Henderson, Matthew R; Riesen, Nicolas; Monro, Tanya M; Afshar, Shahraam

    2017-03-20

    The development of a fast and reliable whispering gallery mode (WGM) simulator capable of generating spectra that are comparable with experiment is an important step forward for designing microresonators. We present a new model for generating WGM spectra for multilayer microspheres, which allows for an arbitrary number of concentric dielectric layers, and any number of embedded dipole sources or uniform distributions of dipole sources to be modeled. The mode excitation methods model embedded nanoparticles, or fluorescent dye coatings, from which normalized power spectra with accurate representation of the mode coupling efficiencies can be derived. In each case, the emitted power is expressed conveniently as a function of wavelength, with minimal computational load. The model makes use of the transfer-matrix approach, incorporating improvements to its stability, resulting in a reliable, general set of formulae for calculating whispering gallery mode spectra. In the specific cases of the dielectric microsphere and the single-layer coated microsphere, our model simplifies to confirmed formulae in the literature.

  7. One-dimensional finite-elements method for the analysis of whispering gallery microresonators.

    Science.gov (United States)

    Bagheri-Korani, Ebrahim; Mohammad-Taheri, Mahmoud; Shahabadi, Mahmoud

    2014-07-01

    By taking advantage of axial symmetry of the planar whispering gallery microresonators, the three-dimensional (3D) problem of the resonator is reduced to a two-dimensional (2D) one; thus, only the cross section of the resonator needs to be analyzed. Then, the proposed formulation, which works based on a combination of the finite-elements method (FEM) and Fourier expansion of the fields, can be applied to the 2D problem. First, the axial field variation is expressed in terms of a Fourier series. Then, a FEM method is applied to the radial field variation. This formulation yields an eigenvalue problem with sparse matrices and can be solved using a well-known numerical technique. This method takes into account both the radiation loss and the dielectric loss; hence, it works efficiently either for high number or low number modes. Efficiency of the method was investigated by comparison of the results with those of commercial software.

  8. Origin of optical losses in gallium arsenide disk whispering gallery resonators

    CERN Document Server

    Parrain, David; Wang, Guillaume; Guha, Biswarup; Santos, Eduardo Gil; Lemaitre, Aristide; Senellart, Pascale; Leo, Giuseppe; Ducci, Sara; Favero, Ivan

    2015-01-01

    Whispering gallery modes in GaAs disk resonators reach half a million of optical quality factor. These high Qs remain still well below the ultimate design limit set by bending losses. Here we investigate the origin of residual optical dissipation in these devices. A Transmission Electron Microscope analysis is combined with an improved Volume Current Method to precisely quantify optical scattering losses by roughness and waviness of the structures, and gauge their importance relative to intrinsic material and radiation losses. The analysis also provides a qualitative description of the surface reconstruction layer, whose optical absorption is then revealed by comparing spectroscopy experiments in air and in different liquids. Other linear and nonlinear optical loss channels in the disks are evaluated likewise. Routes are given to further improve the performances of these miniature GaAs cavities.

  9. Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator

    NARCIS (Netherlands)

    Poellinger, M.; O'Shea, D.; Warken, F.; Rauschenbeutel, A.

    2009-01-01

    Typical microresonators exhibit a large frequency spacing between resonances and a limited tunability. This impedes their use in a large class of applications which require a resonance of the microresonator to coincide with a predetermined frequency. Here, we experimentally overcome this limitation

  10. Lithium-Niobate-Silica Hybrid Whispering-Gallery-Mode Resonators.

    Science.gov (United States)

    Bo, Fang; Wang, Jie; Cui, Jiao; Ozdemir, Sahin Kaya; Kong, Yongfa; Zhang, Guoquan; Xu, Jingjun; Yang, Lan

    2015-12-22

    Lithium-niobate-silica hybrid resonators with quality factors higher than 10(5) are fabricated by depositing a layer of polycrystalline lithium niobate on the flat top surfaces of inverted-wedge silica microdisk resonators. All-optical modulation with improved performance over silica-only resonators and electro-optic modulation not achievable in silica-only resonators are realized in the hybrid resonators. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantum Light from a Whispering-Gallery-Mode Disk Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.

    2011-01-01

    Optical parametric down-conversion has proven to be a valuable source of nonclassical light. The process is inherently able to produce twin-beam correlations along with individual intensity squeezing of either parametric beam, when pumped far above threshold. Here, we present for the first time t...

  12. Electro-optic modulation of high-Q lithium niobate whispering gallery resonator with integrated ground plane (Conference Presentation)

    Science.gov (United States)

    Douglas, Kenneth; Moore, Jeremy; Friedman, Thomas; Eichenfield, Matthew

    2017-02-01

    We experimentally demonstrate electro-optic modulation in thin film lithium niobate microdisk resonators with an integrated bottom electrode fabricated from a z-cut Lithium Niobate on Insulator wafer. The structure consisted of a 400nm thick crystalline z-cut lithium niobate/2um SiO2/20nm Cr/100nm Au/10nm Cr film stack on top of a z-cut lithium niobate handle wafer. The integrated bottom electrode is located 2um beneath the resonator. This proximity, coupled with positioning an electrical probe close to the top of the resonator, allows large optical frequency shifts with low voltages. We observed a 0.111pm/V resonance shift of vertically polarized (TM) optical whispering gallery modes, with the voltage applied perpendicular to the wafer surface. This corresponds to a shift of one optical linewidth at an applied voltage of 180V, using the r33 component of the eletro-optic tensor. We observed a smaller shift of 0.066pm/V for the radially polarized (TE) modes, using the r13 component of the electro-optic tensor. The experiment was performed using a 1550nm tunable laser that was coupled to the optical resonator modes using a tapered optical fiber. To measure the electro-optic shift of the resonance, a voltage was applied across the device via DC probe tips and the peak shift was calibrated with a Toptica WS6 IR wavemeter with 200 MHz absolute accuracy. We also present a finite element model that accurately predicts the resonance shift as a function of applied voltage for both polarizations.

  13. Enhanced reflectance X-ray absorption fine structure sensitivity using a whispering-gallery waveguide

    CERN Document Server

    Chernov, V A; Kovalenko, N V; Zolotarev, K V

    2000-01-01

    A new technique of reflectance X-ray absorption fine structure (REFL-XAFS) utilizing waveguides where X-rays are reflected many times along the waveguide surface is discussed. The multiple total reflection (MTR) phenomenon highly increases X-ray interaction with the waveguide surface and hence offers higher sensitivity compared to conventional (single reflection) REFL-XAFS. On the one hand, this technique is a direct structural method for characterizing waveguides (e.g. capillaries) where the application of other methods is very difficult. On the other hand, the conventional thin wafer can be transformed to a whispering-gallery (WG) waveguide by bending to a curved mirror. Ray tracing calculations demonstrate that the WG waveguide is very suitable for REFL-XAFS measurements. This method was experimentally realized for a cylindrically bent silica wafer with the surface covered with a GeO sub 2 monolayer. The Ge K-edge REFL-XAFS measurements were performed using both MTR and conventional techniques. The MTR tec...

  14. Discovery of iron group impurity ion spin states in single crystal Y{sub 2}SiO{sub 5} with strong coupling to whispering gallery photons

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, Maxim; Farr, Warrick G.; Carmo Carvalho, Natalia do; Creedon, Daniel L.; Le Floch, Jean-Michel [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Probst, Sebastian [Physikalisches Institut, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Bushev, Pavel [Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken (Germany); Tobar, Michael E., E-mail: michael.tobar@uwa.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Western Australia, Crawley 6009 (Australia)

    2015-06-08

    Interaction of Whispering Gallery Modes (WGMs) with dilute spin ensembles in solids is an interesting paradigm of Hybrid Quantum Systems potentially beneficial for Quantum Signal Processing applications. Unexpected ion transitions are measured in single crystal Y{sub 2}SiO{sub 5} using WGM spectroscopy with large Zero Field Splittings at 14.7 GHz, 18.4 GHz, and 25.4 GHz, which also feature considerable anisotropy of the g-tensors as well as two inequivalent lattice sites, indicating spins from Iron Group Ion (IGI) impurities. The comparison of undoped and Rare-Earth doped crystals reveal that the IGIs are introduced during co-doping of Eu{sup 3+} or Er{sup 3+} with concentration at much lower levels of order 100 ppb. The strong coupling regime between an ensemble of IGI spins and WGM photons have been demonstrated at 18.4 GHz and near zero field. This approach together with useful optical properties of these ions opens avenues for “spins-in-solids” Quantum Electrodynamics.

  15. Development of Whispering Gallery Mode Polymeric Micro-optical Electric Field Sensors

    National Research Council Canada - National Science Library

    Ioppolo, Tindaro; Ötügen, Volkan; Ayaz, Ulas

    2013-01-01

    ...) and exhibit high optical quality factors. Some proposed applications of micro-cavity optical resonators are in spectroscopy1, micro-cavity laser technology2, optical communications3-6 as well as sensor technology...

  16. Whispering-gallery mode lasing from patterned molecular single-crystalline microcavity array

    NARCIS (Netherlands)

    Fang, Hong-Hua; Ding, Ran; Lu, Shi-Yang; Yang, Yue-De; Chen, Qi-Dai; Feng, Jing; Huang, Yong-Zhen; Sun, Hong-Bo; Fang, Honghua

    Organic single-crystalline materials have attracted great attention for laser applications. However, the fabrication of laser resonators and pattern of crystals are still intractable problems. Organic single crystals have been limited to fundamental property studies despite their superior photonic

  17. An Alternative Millimeter Wave Oscillator using a Dielectric Puck in the Whispering Gallery Mode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A majority of millimeter wave based systems used for space exploration, communications and research, require a millimeter wave oscillator. These oscillators have...

  18. Adiabatic tapered optical fiber fabrication for exciting whispering gallery modes in microcavities

    Science.gov (United States)

    Chenari, Z.; Latifi, H.; Hashemi, R. S.; Doroudmand, F.

    2014-05-01

    This article demonstrates an investigation and analysis of a tapered fiber fabrication using an etchant droplet method. To achieve precise control on process, a two-step etching method is proposed (using 48% concentration of HF acid and Buffered HF) which results in low-loss adiabatic tapered fiber. A spectrum analysis monitoring in addition to a microscopy system was used to verify the etching progress. Tapers with losses less than 0.4 dB in air and 4.5 dB in water are demonstrated. A biconical fiber taper fabricated using this method was used to excite the WGMs on a microsphere surface in aquatic environment.

  19. Towards a fully integrated optical gyroscope using whispering gallery modes resonators

    Science.gov (United States)

    Amrane, T.; Jager, J.-B.; Jager, T.; Calvo, V.; Léger, J.-M.

    2017-11-01

    Since the developments of lasers and the optical fibers in the 70s, the optical gyroscopes have been subject to an intensive research to improve both their resolution and stability performances. However the best optical gyroscopes currently on the market, the ring laser gyroscope and the interferometer fiber optic gyroscope are still macroscopic devices and cannot address specific applications where size and weight constraints are critical. One solution to overcome these limitations could be to use an integrated resonator as a sensitive part to build a fully Integrated Optical Resonant Gyroscope (IORG). To keep a high rotation sensitivity, which is usually degraded when downsizing this kind of optical sensors based on the Sagnac effect, the resonator has to exhibit a very high quality factor (Q): as detailed in equation (1) where the minimum rotation rate resolution for an IORG is given as a function of the resonator characteristics (Q and diameter D) and of the global system optical system characteristics (i.e. SNR and bandwidth B), the higher the Q×D product, the lower the resolution.

  20. Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere

    NARCIS (Netherlands)

    Zijlstra, P.; Zijlstra, Peter; van der Molen, K.L.; Mosk, Allard

    2007-01-01

    The authors propose the use of an optically trapped, dye doped polystyrene microsphere for spatial probing of the refractive index at any position in a fluid. Using the dye embedded in the microsphere as an internal broadband excitation source the authors eliminated the need for a tunable excitation

  1. Tuning whispering gallery mode lasing from self-assembled polymer droplets

    National Research Council Canada - National Science Library

    Ta, Van Duong; Chen, Rui; Sun, Han Dong

    2013-01-01

    .... The droplets are self-assembly inside an elastic medium. By incorporating different dye molecules into the droplets, optically pumped lasing with selective wavelengths in a range of about 100 nm are achieved...

  2. Mode-selective thermal radiation from a microsphere as a probe of optical properties of high-temperature materials

    Science.gov (United States)

    Morino, R.; Tajima, H.; Sonoda, H.; Kobayashi, H.; Kanamoto, R.; Odashima, H.; Tachikawa, M.

    2017-06-01

    Our spectroscopic method using laser trapping and heating has demonstrated that thermal emission from a metal oxide microsphere is enhanced at frequencies resonant with the whispering gallery modes of the spherical resonator. Only a mode series of a specific order effectively emits thermal photons, and spectral peaks shift from higher-order whispering gallery modes to fundamental whispering gallery modes as the size parameter decreases. These spectral profiles are analyzed with the Mie scattering theory and a semiclassical rate-equation model. The observed mode selectivity in thermal radiation is attributed to a matching between the rates of cavity damping and internal absorption. Excellent reproducibility of the observed spectral profiles leads to a precise determination of optical constants of extremely hot materials.

  3. Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions

    DEFF Research Database (Denmark)

    Schunk, G.; Vogl, U.; Sedlmeir, F.

    2016-01-01

    Quantum repeaters rely on interfacing flying qubits with quantum memories. The most common implementations include a narrowband single photon matched in bandwidth and central frequency to an atomic system. Previously, we demonstrated the compatibility of our versatile source of heralded single ph...

  4. Existence and switching behavior of bright and dark Kerr solitons in whispering-gallery mode resonators with zero group-velocity dispersion

    Science.gov (United States)

    Talla Mbé, Jimmi H.; Milián, Carles; Chembo, Yanne K.

    2017-07-01

    We use the generalized Lugiato-Lefever model to investigate the phenomenon of Kerr optical frequency comb generation when group-velocity dispersion is null. In that case, the first dispersion term that plays a leading role is third-order dispersion. We show that this term is sufficient to allow for the existence of both bright and dark solitons. We identify the areas in the parameter space where both kind of solitons can be excited inside the resonator. We also unveil a phenomenon of hysteretic switching between these two types of solitons when the power of the pump laser is cyclically varied. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  5. Cavity modes of tapered ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xiulai; Brossard, Frederic S F; Williams, David A [Hitachi Cambridge Laboratory, Hitachi Europe Ltd, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Collins, Daniel P; Holmes, Mark J; Taylor, Robert A [Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Zhang Xitian, E-mail: xx757@cam.ac.u, E-mail: xtzhangzhang@hotmail.co [Heilongjiang Key Laboratory for Advanced Functional Materials and Excited State Processes, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China)

    2010-08-15

    We report on a cavity mode mapping of ZnO tapered nanowires using micro-photoluminescence spectroscopy at room temperature. Both the Fabry-Perot (FP) and the whispering gallery (WG) modes are identified in a single wire. The emission spectra from single nanowires comprise regular Lorentzian peaks, which arise from the FP interference between the ends of the nanowire. The overall intensity along the tapered wire varies periodically. This variation is ascribed to WG mode resonances across the nanowire. The results agree well with the theoretical calculations using the finite-difference time-domain method.

  6. Investigation of the Mode Structures of Multiphoton Induced Ultraviolet Laser in a ZnO Microrod

    Directory of Open Access Journals (Sweden)

    Guangping Zhu

    2017-01-01

    Full Text Available Hexagonal wurtzite structural ZnO microrods were fabricated by vapor-phase transport method. Under the excitation of a pulse laser with 1200 nm wavelength, the multiphoton induced ultraviolet (UV laser was observed in a microrod. The dependence of the laser mode structures on pump intensity was investigated. The result indicates that the laser belongs to whispering gallery mode (WGM at low pump intensity and Fabry-Perot (FP mode at high pump intensity. The corresponding positive feedback mechanisms were discussed.

  7. Application of coupled mode theory and coherent superposition theory to phase-shift measurements on optical microresonators.

    Science.gov (United States)

    Barnes, Jack A; Loock, Hans-Peter

    2016-09-19

    Several mathematical models exist in the literature to describe the properties of optical resonators. Here, coupled mode theory and coherent superposition theory are compared and their consistency is demonstrated as they are applied to phase-shift cavity ring-down measurements in optical (micro-)cavities. In the particular case of a whispering gallery mode in a microsphere cavity these models are applied to transmission measurements and backscattering measurements through the fiber taper that couples light into the microresonator. It is shown that both models produce identical relations when applied to these traveling wave cavities.

  8. Modified transmission spectrum induced by two-mode interference in a single silica microsphere

    Energy Technology Data Exchange (ETDEWEB)

    Dong Chunhua; Zou Changling; Cui Jinming; Han Zhengfu; Guo Guangcan [Key Lab of Quantum Information, University of Science and Technology of China, Hefei 230026 (China); Xiao Yunfeng, E-mail: zfhan@ustc.edu.c [State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)

    2009-11-14

    We theoretically and experimentally study the resonant transmission spectrum of light in a fibre taper coupled with a single silica microsphere cavity system, where two whispering-gallery modes (WGMs) are simultaneously excited. By changing the taper position (correspondingly, tuning the resonant frequencies of the two WGMs and modulating their coupling conditions with the fibre taper), a sharp electromagnetically-induced- transparency-like window can be observed in the transmission spectrum. This line shape origins from the taper-mediated interference between two co-existing WGMs in a single microsphere. This measurement result agrees well with the theoretical analysis.

  9. Waveguide couplers for ferroelectric optical resonators

    OpenAIRE

    Grudinin, Ivan S.; Kozhanov, A.; Yu, N.

    2014-01-01

    We report a study of using the same material to fabricate a whispering gallery mode resonator and a coupler. Coupling to high Q whispering gallery modes of the lithium niobate resonator is demonstrated by means of the titanium-doped waveguide. The waveguide coupling approach opens possibilities for simpler and wider practical usage of whispering gallery mode resonators and their integration into optical devices.

  10. Stable switching among high-order modes in polariton condensates

    Science.gov (United States)

    Sun, Yongbao; Yoon, Yoseob; Khan, Saeed; Ge, Li; Steger, Mark; Pfeiffer, Loren N.; West, Ken; Türeci, Hakan E.; Snoke, David W.; Nelson, Keith A.

    2018-01-01

    We report multistate optical switching among high-order bouncing-ball modes ("ripples") and whispering-gallery modes ("petals") of exciton-polariton condensates in a laser-generated annular trap. By tailoring the diameter and power of the annular trap, the polariton condensate can be switched among different trapped modes, accompanied by redistribution of spatial densities and superlinear increase in the emission intensities, implying that polariton condensates in this geometry could be exploited for an all-optical multistate switch. A model based on non-Hermitian modes of the generalized Gross-Pitaevskii equation reveals that this mode switching arises from competition between pump-induced gain and in-plane polariton loss. The parameters for reproducible switching among trapped modes have been measured experimentally, giving us a phase diagram for mode switching. Taken together, the experimental result and theoretical modeling advance our fundamental understanding of the spontaneous emergence of coherence and move us toward its practical exploitation.

  11. Characterization of azimuthal and longitudinal modes in rolled-up InGaAs/GaAs microtubes at telecom wavelengths.

    Science.gov (United States)

    Zhong, Qiuhang; Tian, Zhaobing; Dastjerdi, M Hadi Tavakoli; Mi, Zetian; Plant, David V

    2013-08-12

    We report on theoretical and experimental investigation of azimuthal and longitudinal modes in rolled-up microtubes at telecom wavelengths. These microtubes are fabricated by selectively releasing a coherently strained InGaAs/GaAs bilayer. We apply planar waveguide method and a quasi-potential model to analyze the azimuthal and longitudinal modes in the microtubes near 1550 nm. Then we demonstrate these modes in transmission spectrum by evanescent light coupling. The experimental observations agree well with the calculated results. Surface-scattering-induced mode splitting is also observed in both transmission and reflection spectra at ~1600 nm. The mode splitting is in essence the non-degeneracy of clockwise and counter-clockwise whispering-gallery modes of the microtubes. This study is significant for understanding the physics of modes in microtubes and other microcavities with three-dimensional optical confinement, as well as for potential applications such as microtube-based photonic integrated devices and sensing purposes.

  12. Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells

    Science.gov (United States)

    Lin, Ya-Li; Gong, Ling-Li; Che, Kai-Jun; Li, Sen-Sen; Chu, Cheng-Xu; Cai, Zhi-Ping; Yang, Chaoyong James; Chen, Lu-Jian

    2017-05-01

    We examined the end-pumped lasing behaviors of dye doped cholesteric liquid crystal (DDCLC) microshells which were fabricated by glass capillary microfluidics. Several kinds of mode resonances, including distributed feedback, Fabry-Pérot (FP), and whispering gallery (WG) modes, can be robustly constructed in each individual DDCLC microshell by varying the beam diameter, namely, tuning the DDCLC gain area. The FP and WG modes were further confirmed experimentally, and the corresponding lasing mechanisms are clearly revealed from the unique material characteristics of DDCLC and the geometrical structure of the microshell. Additionally, we demonstrated that the osmotic pressure can be used to shrink/expand the microshell, productively tuning the excitation of lasing modes in a controlled manner. We wish our findings can provide a new insight into the design of DDCLC microlasers with tunable optical properties.

  13. Analysis of mode characteristics for microcircular resonators confined by different metallic materials

    Science.gov (United States)

    Qifeng, Yao; Yongzhen, Huang; Yuede, Yang; Jinlong, Xiao

    2016-12-01

    Mode characteristics of metallically confined microcircular resonators are theoretically studied by solving eigenvalue equations for two-dimensional multilayer structures. The influences of conventional metals including Au, Ag, Cu, Al, and Ti, on the mode wavelengths and Q factors of whispering gallery modes (WGMs) are analyzed and compared. The results show silver has the best optical confinement among these metals, and aluminum presents similar behavior to Au. However, Ti, which is usually applied to enhance the adhesion of p-electrode to semiconductors, results in a great dissipation for confined modes. Furthermore, circular microlasers with Al as both p-electrode and optical confinement medium are fabricated, and continuous-wave operations are realized at room temperature for the microlasers with a radius of 15 μm. Project supported by the National Natural Science Foundation of China (Nos. 61376048, 61106048).

  14. Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes

    Science.gov (United States)

    Song, Qinghai; Ge, Li; Wiersig, Jan; Cao, Hui

    2013-08-01

    The recent progresses in single crystalline wide bandgap hexagonal disk have stimulated intense research attention on pursuing ultraviolet (UV) laser diodes with low thresholds. While whispering-gallery modes based UV lasers have been successfully obtained in GaN, ZnO nanorods, and nanopillars, the reported thresholds are still very high, due to the low-quality (Q) factors of the hexagonal resonances. Here we demonstrate resonances whose Q factors can be more than two orders of magnitude higher than the hexagonal modes, promising the reduction of the energy consumption. The key to our finding is the avoided resonance crossing between superscar states along two sets of nearly degenerated triangle orbits, which leads to the formation of hexagram modes. The mode couplings suppress the field distributions at the corners and the deviations from triangle orbits simultaneously and therefore enhance the Q factors significantly.

  15. Efficient analysis of mode profiles in elliptical microcavity using dynamic-thermal electron-quantum medium FDTD method.

    Science.gov (United States)

    Khoo, E H; Ahmed, I; Goh, R S M; Lee, K H; Hung, T G G; Li, E P

    2013-03-11

    The dynamic-thermal electron-quantum medium finite-difference time-domain (DTEQM-FDTD) method is used for efficient analysis of mode profile in elliptical microcavity. The resonance peak of the elliptical microcavity is studied by varying the length ratio. It is observed that at some length ratios, cavity mode is excited instead of whispering gallery mode. This depicts that mode profiles are length ratio dependent. Through the implementation of the DTEQM-FDTD on graphic processing unit (GPU), the simulation time is reduced by 300 times as compared to the CPU. This leads to an efficient optimization approach to design microcavity lasers for wide range of applications in photonic integrated circuits.

  16. Optical mode confinement in the Al/SiO2 disk nanocavities with hyperbolic dispersion in the infrared spectral region

    Science.gov (United States)

    Bacco, Carla; Kelly, Priscilla; Kuznetsova, Lyuba

    2016-10-01

    This paper presents the results of a numerical study of the optical mode confinement in whispering gallery mode disk nanocavities with hyperbolic dispersion using nanolayered Al/SiO2 hyperbolic metamaterial with different Al fill fractions. The fundamental properties of the optical modes and resonance frequencies for the disk nanocavities are studied using the numerical finite-element method. Numerical simulations show that light can be well confined in a disk nanocavity with a radius of up to an order of magnitude smaller than free-space resonant wavelength. This paper will also focus on how Purcell factor and quality factor of the disk nanocavities are affected by the fill fraction of the aluminum in the nanolayered metamaterial. Potential future applications for disk nanocavities with hyperbolic dispersion include silicon photonics optical communications networks, ultrafast LEDs, and biological nanoparticles sensing.

  17. Tailoring optical resonant cavity modes in SnO2 microstructures through doping and shape engineering

    Science.gov (United States)

    García-Tecedor, M.; Maestre, D.; Cremades, A.; Piqueras, J.

    2017-10-01

    Optical resonances are effectively tailored by engineering size, morphology and doping in tin oxide microstructures. The use of Cr shifts the light confinement to the near-infrared region, as compared to the undoped microstructures, while achieving good Q and F factors. Other issues, such as appropriate thickness to width ratio, allow the selection of Fabry-Pérot or Whispering Gallery modes, or the appearance of a combination of both kinds of resonances in the same microstructure. Morphology variability would contribute with flexibility in the design of systems for different applications, while combining the observed waveguiding behavior with the optical resonances in the same material is an advantage for applications based in a monolithic design. Refraction index of Cr doped tin oxide has been obtained.

  18. VLF/LF/MF Whispering Gallery Propagation Studies.

    Science.gov (United States)

    1981-09-09

    can be expressed as ry0 HGF = AnGn (z)Gn(z) - tn)1/2ki(tn - z)Ai(t - ). (8)n n n ~ 2 (Yo 0 ~ If both the transmitting and receiving antennas are...6503 10 PR 1/2 [n ~D v- h [a sin D/aJ AnGn (Z)Gn(;) exp 1--61 V/m, (9) n where all lengths are in meters and the radiated power, PR’ is in kilowatts...P.Greifinger) 2 Pacific-Sierra Research Corp., 1456 Cloverfield Boulevard, Santa Monica , CA 90404 (E. C. Field) I Johns Hopkins University, Applied Physics

  19. Parity-Time-Symmetric Whispering-Gallery Microcavities

    Science.gov (United States)

    2014-04-06

    Nature Photon. 4, 46–49 (2010). 48. Dantham, V. R. et al. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano ...microcavities. μR1: active microtoroid; μR2: passive microtoroid; PD: photodetector; WDM: wavelength division multiplexer; FC: fiber connector; TEC ...resonators and fiber tapers as well as between the directly-coupled active and passive resonators. 5) Thermoelectric cooler ( TEC ) used to tune

  20. Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres.

    Science.gov (United States)

    Tang, Bing; Dong, Hongxing; Sun, Liaoxin; Zheng, Weihao; Wang, Qi; Sun, Fangfang; Jiang, Xiongwei; Pan, Anlian; Zhang, Long

    2017-11-28

    Single-mode laser is realized in a cesium lead halide perovskite submicron sphere at room temperature. All-inorganic cesium lead halide (CsPbX 3 , X = Cl, Br, I) microspheres with tunable sizes (0.2-10 μm) are first fabricated by a dual-source chemical vapor deposition method. Due to smooth surface and regular geometry structure of microspheres, whispering gallery resonant modes make a single-mode laser realized in a submicron sphere. Surprisingly, a single-mode laser with a very narrow line width (∼0.09 nm) was achieved successfully in the CsPbX 3 spherical cavity at low threshold (∼0.42 μJ cm -2 ) with a high cavity quality factor (∼6100), which are the best specifications of lasing modes in all natural nano/microcavities ever reported. By modulating the halide composition and sizes of the microspheres, the wavelength of a single-mode laser can be continuously tuned from red to violet (425-715 nm). This work illustrates that the well-controlled synthesis of metal cesium lead halide perovskite nano/microspheres may offer an alternative route to produce a widely tunable and greatly miniaturized single-mode laser.

  1. Surface plasmon resonance in a bent single-mode fiber with a metallized cladding experimental research

    Science.gov (United States)

    Dyshlyuk, A. V.; Mitsai, E. V.; Cherepakhin, A. B.; Vitrik, O. B.; Kulchin, Yu. N.

    2017-08-01

    The processes of surface plasmon resonance excitation in a bent single-mode optical fiber with a metallized cladding have been studied experimentally. It is shown that, for a certain combination of the bending radius of an optical fiber and the thickness of a metal film, a strong coupling between the fundamental and plasmon-polariton mode is achieved through a whispering gallery mode supported by the fiber cladding, which leads to the formation of a resonance dip with a depth of 30 dB or more in the transmission spectrum of an optical fiber loop. The position of the dip depends strongly on the ambient refractive index, which provides the possibility of refractometric measurements with a spectral sensitivity of 5 μm/RIU and a resolution of 4 × 10-6. Limits of measurement of the refractive index are determined by the operating spectral range and the bending radius of the optical fiber and are 1.42-1.44 for the setup used.

  2. Quality-factor enhancement of optical modes mediated by strong coupling in micron-size semiconductor disks

    Energy Technology Data Exchange (ETDEWEB)

    Benyoucef, M. [Institute of Nanostructure Technologies and Analytics, University of Kassel, 34132 Kassel (Germany); Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Shim, J.B.; Wiersig, J. [Institute for Theoretical Physics, University of Magdeburg, 39016 Magdeburg (Germany); Schmidt, O.G. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2012-05-15

    We investigate whispering gallery modes (WGMs) in coupled microdisks both experimentally and theoretically. In order to compensate small fluctuations in the mode energies, we controllably increase the refractive index of a microdisk by local laser heating leading to a red-shift of the confined modes. The maximum red-shift and a nearly unchanged Q-factor are achievable only if the laser beam is located at the center of the disk, while linewidth broadening is observed when the laser beam is focused far from the disk center. When WGM frequencies of two or even three disks are brought into resonance, clear anticrossings are observed, which witness the strong coupling between the resonators. The Q-factors in strongly coupled resonators are investigated experimentally and theoretically. The Q-factors of the same order WGMs show a splitting behavior leading to the formation of high-quality and low-quality supermodes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Nonlinear properties of high-Q optical microresonators in normal dispersion range

    Directory of Open Access Journals (Sweden)

    Shitikov Artem

    2017-01-01

    Full Text Available We demonstrate the generation of Kerr frequency combs and platicons in whispering gallery mode crystalline microresonators in normal group velocity regime at 780 nm and 1064 nm wavelengths.

  4. Измерения наночастиц диоксида титана в воздухе посредством оптических резонаторов

    OpenAIRE

    Minkov, Kirill

    2017-01-01

    In this report the authors provide the results of research devoted to interactions between titanium dioxide nanoparticles and whispering gallery mode optical resonators. They show possibility to determine nanoparticles concentration in air.

  5. Low-noise X-band Oscillator and Amplifier Technologies: Comparison and Status

    National Research Council Canada - National Science Library

    Howe, D. A; Hati, A

    2005-01-01

    .... Best-in-class results are presented based on recent measurements at NIST. In particular, comparisons are made between mature technologies of multiplied quartz, sapphire dielectric in whispering gallery mode (WGM...

  6. Interfacing Whispering-Gallery Microresonators and Free Space Light With Cavity Enhanced Rayleigh Scattering

    Science.gov (United States)

    2014-09-17

    air flow and mechanical vibrations). This significantly limits the practical use of fiber-taper-coupled WGMRs. Prism and on-chip waveguide couplers are...evanescent field channel exists for extracting light from WGMs, and for coupling light into WGMs using prisms , tapered fibers or waveguides21–25...more stable, but their applications are limited by the bulkiness of prism system, or the requirement of additional optics to couple light into the on

  7. Fabrication of disk droplets and evaluation of their lasing action.

    Science.gov (United States)

    Saito, Mitsunori; Hashimoto, Takuya; Taniguchi, Jumpei

    2017-10-15

    Disk resonators are difficult to create with droplets, since they self-form spheres due to the surface tension. In this study, disk (cylindrical) droplets were created by enclosing a dye (rhodamine 6G) solution in silicone rubber. Lasing actions of these droplets were examined by pulsed green laser excitation. In a large droplet (2 mm diameter), the whispering gallery mode emission was difficult to attain, since it competed with the radial or axial modes that made a round trip in the droplet. A disk droplet of 150 μm diameter exhibited a comb-like spectrum of the whispering gallery mode resonant emission.

  8. Controlling the frequency-temperature sensitivity of a cryogenic sapphire maser frequency standard by manipulating Fe3+ spins in the sapphire lattice

    Science.gov (United States)

    Benmessai, K.; Creedon, D. L.; Le Floch, J.-M.; Tobar, M. E.; Mrad, M.; Bourgeois, P.-Y.; Kersalé, Y.; Giordano, V.

    2012-02-01

    To create a stable signal from a cryogenic sapphire maser frequency standard, the frequency-temperature dependence of the supporting whispering gallery mode must be annulled. We report the ability to control this dependence by manipulating the paramagnetic susceptibility of Fe3+ ions in the sapphire lattice. We show that the maser signal depends on other whispering gallery modes tuned to the pump signal near 31 GHz, and the annulment point can be controlled to exist between 5 and 10 K, depending on the Fe3+ ion concentration and the frequency of the pump. This level of control has not been achieved previously and will allow improvements in the stability of such devices.

  9. Electromagnetic properties of terbium gallium garnet at millikelvin temperatures and low photon energy

    Science.gov (United States)

    Kostylev, Nikita; Goryachev, Maxim; Bushev, Pavel; Tobar, Michael E.

    2017-07-01

    Electromagnetic properties of single crystal terbium gallium garnet are characterised from room down to millikelvin temperatures using the whispering gallery mode method. Microwave spectroscopy is performed at low powers equivalent to a few photons in energy and conducted as functions of the magnetic field and temperature. A phase transition is detected close to the temperature of 3.5 K. This is observed for multiple whispering gallery modes causing an abrupt negative frequency shift and a change in transmission due to extra losses in the new phase caused by a change in complex magnetic susceptibility.

  10. Proton beam writing of dye doped polymer microlasers

    Energy Technology Data Exchange (ETDEWEB)

    Vanga, Sudheer Kumar, E-mail: physkv@nus.edu.sg; Bettiol, Andrew A.

    2015-04-01

    Proton beam writing is employed to fabricate smooth sidewall whispering gallery mode microcavities in dye-doped polymer. These microcavities acts as microlasers under optical excitation in ambient atmosphere. Different cavity designs are implemented to obtain directional laser emission from the whispering gallery mode lasers. The microcavities are fabricated in Rhodamine B doped SU-8 polymer and are optically pumped with 532 nm pulsed laser. These microlasers emit light within the emission band of Rhodamine B with operational wavelength around 600 nm and the required pumping laser threshold is lower than 3 μJ/mm{sup 2} for all the micro-lasers.

  11. Antiphase domain tailoring for combination of modal and 4¯ -quasi-phase matching in gallium phosphide microdisks.

    Science.gov (United States)

    Guillemé, P; Vallet, M; Stodolna, J; Ponchet, A; Cornet, C; Létoublon, A; Féron, P; Durand, O; Léger, Y; Dumeige, Y

    2016-06-27

    We propose a novel phase-matching scheme in GaP whispering-gallery-mode microdisks grown on Si substrate combining modal and 4¯ -quasi-phase-matching for second-harmonic-generation. The technique consists in unlocking parity-forbidden processes by tailoring the antiphase domain distribution in the GaP layer. Our proposal can be used to overcome the limitations of form birefringence phase-matching and 4¯ -quasi-phase-matching using high order whispering-gallery-modes. The high frequency conversion efficiency of this new scheme demonstrates the competitiveness of nonlinear photonic devices monolithically integrated on silicon.

  12. Direct Writing of Photonic Structures by Two-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Li Yan

    2013-11-01

    Full Text Available Single-mode dielectric-loaded surface plasmon-polariton nanowaveguides with strong mode confinement at excitation wavelength of 830 nm and high-Q polymer whispering gallery mode microcavities with surface roughness less than 12 nm have been directly written by two-photon polymerization, which pave the way to fabricate 3D plasmonic photonic structures by direct laser writing.

  13. CLIC 50 MW L-Band Multi-Beam Klystron

    CERN Document Server

    Jensen, E

    2006-01-01

    50 MW power sources at 937 MHz will be needed to accelerate the CLIC drive beams. We present a novel MBK concept with very many beamlets; this allows for small single beam perveance and high efficiency. The MBK features disc-shaped RF circuits operated in a whispering-gallery mode - a configuration permitting both high interaction impedance and easy spurious mode damping.

  14. Luminescence of Eu3+ rare-earth ions in Lu2O3 nanospheres

    Science.gov (United States)

    Zaitsev, S. V.; Gruzintsev, A. N.; Yermolayeva, Yu. V.; Matveevskaya, N. A.; Zverkova, I. I.; Emelchenko, G. A.; Tolmachev, A. V.

    2017-08-01

    The kinetics of luminescence of Eu3+ ions in Lu2O3:Eu nanospheres with diameters of 100-270 nm and a small standard deviation of the size distribution mode accelerating spontaneous luminescence, which is confirmed by the calculation of ranges of existence of whispering-gallery modes in studied nanospheres.

  15. A microring multimode laser using hollow polymer optical fibre

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 75; Issue 5. A microring ... Keywords. Dye-doped optical fibre; fibre laser; microcavity; whispering gallery mode. ... Cylindrical microcavities with diameters 155, 340 and 615 m were fabricated from a dye-doped hollow polymer optical fibre preform. An average mode ...

  16. Microring Diode Laser for THz Generation

    DEFF Research Database (Denmark)

    Mariani, S.; Andronico, A.; Favero, I.

    2013-01-01

    We report on the modeling and optical characterization of AlGaAs/InAs quantum-dot microring diode lasers designed for terahertz (THz) difference frequency generation (DFG) between two whispering gallery modes (WGMs) around 1.3 $\\mu$m. In order to investigate the spectral features of this active...

  17. Bottle microresonator with actively stabilized evanescent coupling

    NARCIS (Netherlands)

    Junge, C.; Nickel, S.; O'Shea, D.; Rauschenbeutel, A.

    2011-01-01

    The evanescent coupling of light between a whispering-gallery-mode bottle microresonator and a subwavelength-diameter coupling fiber is actively stabilized by means of the Pound-Drever-Hall technique. We demonstrate the stabilization of a critically coupled resonator with a control bandwidth of 0.1

  18. Fiber-Optical Switch Controlled by a Single Atom

    NARCIS (Netherlands)

    O'Shea, Danny; Junge, Christian; Volz, Juergen; Rauschenbeutel, Arno

    2013-01-01

    We demonstrate highly efficient switching of optical signals between two optical fibers controlled by a single atom. The key element of our experiment is a whispering-gallery-mode bottle microresonator, which is coupled to a single atom and interfaced by two tapered fiber couplers. This system

  19. Soliton Coupling Driven by Phase Fluctuations in Auto-Parametric Resonance

    CERN Document Server

    Binder, B

    2002-01-01

    In this paper the interaction of sine-Gordon solitons and mediating linear waves is modelled by a special case of auto-parametric resonance, the Rayleigh-type self-excited non-linear autonomous system driven by a statistical phase gradient related to the soliton energy. Spherical symmetry can stimulate "whispering gallery modes" (WGM) with integral coupling number M=137.

  20. Chaotic billiards and microlaser resonator design

    CERN Document Server

    Abdullah, T

    2001-01-01

    In this paper we will show how chaos can arise in deformed circular cavities and a bow tie shaped trajectory can give rise to enhanced laser emission in semiconductor micro disk lasers with increased output power and directionality from the obtained in whispering gallery modes. (author)

  1. Upconversion channels in Er3+ ZBLALiP fluoride glass microspheres

    NARCIS (Netherlands)

    O'Shea, D. G.; Ward, J. M.; Shortt, B. J.; Mortier, M.; Feron, P.; Chormaic, S. Nic

    2007-01-01

    We present results on the realization of a multicolour microspherical glass light source fabricated from the erbium doped fluoride glass ZBLALiP. Whispering gallery mode lasing and upconversion processes give rise to laser and fluorescent emissions at multiple wavelengths from the ultraviolet to the

  2. An all-fiber coupled multicolor microspherical light source

    NARCIS (Netherlands)

    O'Shea, Danny G.; Ward, Jonathan M.; Shortt, Brian J.; Chormaic, Sile Nic

    2007-01-01

    We present results on the realization of an all-taper coupled, multicolor microspherical light source fabricated,from the erbium-doped fluoride glass ZBLALiP. Whispering gallery mode lasing at 1555 nm and fluorescent emissions from the ultraviolet to the infrared (IR) have been observed. A tapered

  3. Plasmonic colour generation

    DEFF Research Database (Denmark)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.

    2016-01-01

    and whispering-gallery modes. We discuss plasmonic colour nanotechnology based on localized surface plasmon resonances, such as gap plasmons and hybridized disk–hole plasmons, which allow for colour printing with sub-diffraction resolution. We also address a range of fabrication approaches that enable large...

  4. Strong Coupling between Single Atoms and Nontransversal Photons

    NARCIS (Netherlands)

    Junge, Christian; O'Shea, Danny; Volz, Juergen; Rauschenbeutel, Arno

    2013-01-01

    Light is often described as a fully transverse-polarized wave, i.e., with an electric field vector that is orthogonal to the direction of propagation. However, light confined in dielectric structures such as optical waveguides or whispering-gallery-mode microresonators can have a strong longitudinal

  5. Ab initio description of nonlinear dynamics of coupled microdisk resonators with application to self-trapping dynamics

    OpenAIRE

    Ramezani, Hamidreza; Kottos, Tsampikos; Shuvayev, Vladimir; Deych, Lev

    2011-01-01

    Ab initio approach is used to describe the time evolution of the amplitudes of whispering gallery modes in a system of coupled microdisk resonators with Kerr nonlinearity. It is shown that this system demonstrates a transition between Josephson-like nonlinear oscillations and self-trapping behavior. Manifestation of this transition in the dynamics of radiative losses is studied.

  6. (DARPA) Optical Radiation Cooling and Heating In Integrated Devices: Circuit cavity optomechanics for cooling and amplification on a silicon chip

    Science.gov (United States)

    2015-07-16

    optimization more than 8 device parameters: lattice constant, filling factor, gap, disk radius, input waveguide termination, width, number of circular... lattices , and photonic crystal termination. From optics point of view, for the first time, we are able to achieve wavelength-size whispering gallery mode...the highly unresolved sideband regime, through coherent auxiliary cavity interferences. We further illustrated coherent strong Rabi coupling between

  7. Quantum-dot-based integrated non-linear sources

    DEFF Research Database (Denmark)

    Bernard, Alice; Mariani, Silvia; Andronico, Alessio

    2015-01-01

    The authors report on the design and the preliminary characterisation of two active non-linear sources in the terahertz and near-infrared range. The former is associated to difference-frequency generation between whispering gallery modes of an AlGaAs microring resonator, whereas the latter...

  8. Quantum-dot micropillars for parametric THz emission

    DEFF Research Database (Denmark)

    Mariani, S.; Andronico, A.; Favero, I.

    2013-01-01

    We report on the design, fabrication and optical investigation of AlGaAs microcavities for THz Difference Frequency Generation (DFG) between Whispering Gallery Modes (WGMs), where the pump and DFG wavelengths (λ ≈ 1.3 μm and λ ≈ 75-150 μm, respectively) lie on opposite sides of the Restrahlen ban...

  9. Numerical Investigation of Terahertz Emission Properties of Microring Difference-Frequency Resonators

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Bisgaard, Christer Zoffmann; Andronico, Alessio

    2013-01-01

    We investigate the electromagnetic design of whispering gallery mode (WGM) terahertz (THz) resonators. Terahertz radiation is generated by difference-frequency mixing of two electrically pumped high-order near-infrared laser WGM's at room temperature in the active cavity. Due to the leaky nature...

  10. Simulation of resonance focusing of light by dielectric cylinder with a square section

    Science.gov (United States)

    Kozlova, Elena S.; Kozlov, Dmitry A.; Kotlyar, Victor V.

    2017-04-01

    In this paper, a research on conditions for resonance excitation in a homogeneous dielectric cylinder with square crosssection is conducted using a FDTD-method. It is shown that in a cylinder with square cross-section resonant modes similar to whispering gallery modes can be excited, which helps in reducing the transverse dimensions of the focal spot. FDTD-method demonstrates an acceptable accuracy of the resonant mode detection.

  11. Bottle microresonator with actively stabilized evanescent coupling

    CERN Document Server

    Junge, C; O'Shea, D; Rauschenbeutel, A

    2011-01-01

    The evanescent coupling of light between a whispering-gallery-mode bottle microresonator and a sub-wavelength-diameter coupling fiber is actively stabilized by means of a Pound-Drever-Hall technique. We demonstrate the stabilization of a critically coupled resonator with a control bandwidth of 0.1 Hz, yielding a residual transmission of (9 \\pm 3) \\times 10^-3 for more than an hour. Simultaneously, the frequency of the resonator mode is actively stabilized.

  12. Nonlinear optical generation of time-delayed entanglement

    Energy Technology Data Exchange (ETDEWEB)

    McRae, Terry G; Bowen, Warwick P, E-mail: wbowen@physics.uq.edu.au [Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia)

    2011-05-14

    A model is presented of nth order nonlinear processes in whispering gallery mode resonators, with scattering coherently coupling degenerate counter propagating modes. It is shown that such systems generate strong squeezing and time-delayed entanglement. The model can be generally applied to any pair of nonlinear coherently coupled cavities and is of particular relevance to whispering gallery mode resonators. A feature of the entanglement is that, by tuning the coherent coupling rate the peak entanglement can be tuned to occur away from the carrier frequency. This has technological significance allowing low frequency noise sources around the carrier frequency to be avoided. All-optical time-delayed entanglement has many applications, such as an all-optical quantum memory.

  13. Ray and wave chaos in asymmetric resonant optical cavities

    CERN Document Server

    Nöckel, J U; Noeckel, Jens U.

    1998-01-01

    Optical resonators are essential components of lasers and other wavelength-sensitive optical devices. A resonator is characterized by a set of modes, each with a resonant frequency omega and resonance width Delta omega=1/tau, where tau is the lifetime of a photon in the mode. In a cylindrical or spherical dielectric resonator, extremely long-lived resonances are due to `whispering gallery' modes in which light circulates around the perimeter trapped by total internal reflection. These resonators emit light isotropically. Recently, a new category of asymmetric resonant cavities (ARCs) has been proposed in which substantial shape deformation leads to partially chaotic ray dynamics. This has been predicted to give rise to a universal, frequency-independent broadening of the whispering-gallery resonances, and highly anisotropic emission. Here we present solutions of the wave equation for ARCs which confirm many aspects of the earlier ray-optics model, but also reveal interesting frequency-dependent effects charac...

  14. Evanescent escape from the dielectric ellipse

    Energy Technology Data Exchange (ETDEWEB)

    Creagh, Stephen C; White, Michael M, E-mail: stephen.creagh@nottingham.ac.u [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-19

    The evanescent wave outside a whispering gallery mode of an elliptic dielectric cavity is described using the extension to complex phase space of the underlying family of rays. Evanescent waves outside dielectric cavities supporting whispering gallery modes are of practical importance in applications such as microlasers, wavelength filters and sensors. The elliptical case is interesting because it shares key topological features with generically deformed nonintegrable resonators but allows all the required ray data to be computed explicitly. This is in contrast to generic perturbations where natural boundaries can prevent direct computation of the required ray data for arbitrarily small deformations. It is found that while natural boundaries do intervene in the elliptical case, they do so at higher order in the short-wavelength approximations and only for sufficiently large deformations. Before natural boundaries intervene, complex WKB methods provide a good description of emission patterns.

  15. Coupling Light from a High-Q Microsphere Resonator Using a UV-induced Surface Grating

    Science.gov (United States)

    Ilchenko, V. S.; Starodubov, D. S.; Gorodetsky, M. L.; Maleki, L.; Feinberg, J.

    2000-01-01

    High-Q microspheres with whispering-gallery modes have very narrow resonances that can be used for fiber-optic filters, ultra-compact narrow-linewidth lasers and optical/microwave oscillators. Whispering-gallery modes were previously excited in microspheres using evanescent optical fields. The necessary phase synchronism was obtained by adjusting the incident angle of input light beam (prism coupler) or adjustment of the waveguide propagation constant (fiber taper coupler). For many applications, however, bulky near-field couplers are undesirable. They compromise the symmetry and generate stray fields. Also, the control of coupling is crucial for the performance of microsphere resonators: in analogy with radio frequency circuits, the loading Q-factor should be less than the intrinsic Q-factor, Q(sub L) less than or equal to Q(sub O). Ideally one should combine a stable coupling element and a resonator into a single microsphere component.

  16. Single fiber optical trapping of a liquid droplet and its application in microresonator

    Science.gov (United States)

    Liu, Zhihai; Chen, Yunhao; Zhao, Li; Zhang, Yu; Wei, Yong; Zhu, Zongda; Yang, Jun; Yuan, Libo

    2016-12-01

    We propose and demonstrate an optical trapping of a liquid droplet and its application based on an annular core microstructured optical fiber. We grind and polish the annular core fiber tip to be a special frustum cone shape to make sure the optical force large enough to trap the liquid droplet non-intrusively. The axial and transverse optical trapping forces are simulated. In addition, we investigate the whispering gallery modes resonance characteristic of the trapped liquid droplet as the example of applications. The whispering gallery modes spectrum is sensitive to the size of the micro liquid droplet. Due to the simple construction and flexible manipulation, the fiber-based optical trapping technology for micro liquid droplets trapping, manipulating, and controlling has great application penitential in many fields, such as physics, biology, and interdisciplinary studies.

  17. The relationship between resonance scattering and the formation of an acoustojet under the interaction of ultrasound with a dielectric sphere immersed in water

    Science.gov (United States)

    Minin, I. V.; Minin, O. V.; Tseplyaev, I. S.

    2017-08-01

    We demonstrated for the first time the influence of the main parameters of dielectric spherical cavity, immersed in water, to transformation of whispering gallery mode into acoustojet (acoustic jets) by interaction of acoustic plane wave scatterer. It has been shown that the relative speed of sound in the material, the relative density of the material and the radius of particle significantly affect the condition for the formation of WGM resonance. However, the "more sensitive" parameter is the relative speed of sound.

  18. Special function related to the concave-convex boundary problem of the diffraction theory

    CERN Document Server

    Kazakov, A Y

    2003-01-01

    The concave-convex boundary problem of the diffraction theory is studied. It corresponds to the scattering of a whispering gallery mode on the point of inflection of the boundary. A new special function related to this boundary problem is introduced and its particular properties are discussed. This special function is defined as a contour integral on the complex plane and its behaviour in different domains of parameters is considered.

  19. Second-harmonic generation in AlGaAs microdisks in the telecom range.

    Science.gov (United States)

    Mariani, S; Andronico, A; Lemaître, A; Favero, I; Ducci, S; Leo, G

    2014-05-15

    We report on second-harmonic generation in whispering-gallery-mode AlGaAs microcavities suspended on a GaAs pedestal. Frequency doubling of a 1.58 μm pump is observed with 7×10(-4)   W(-1) conversion efficiency. This device can be integrated in a monolithic photonic chip for classical and quantum applications in the telecom band.

  20. Investigating the Materials Limits on Coherence in Superconducting Charge Qubits

    Science.gov (United States)

    2014-12-04

    range of 1-2 microseconds. A study of planar devices (so-called “compact resonators ” coupled to a CPW feed structure) made from niobium on sapphire...Edwards, L. Frunzio, R. J. Schoelkopf, M. H. Devoret. Improving the quality factor of microwave compact resonators by optimizing their geometrical...superconducting whispering gallery mode resonators , Applied Physics Letters, ( 2013): 0. doi: 10.1063/1.4824201 S. Shankar, M. Hatridge, Z. Leghtas

  1. Analysis of an optical biosensor based on elastic light scattering from diamond-, glass-, and sapphire microspheres

    OpenAIRE

    Murib, Mohammed Sharif; Tran, Anh Quang; De Ceuninck, Ward; Schöning, J.M.; Nesladek, Milos; SERPENGÜZEL, Ali; Wagner, Patrick

    2012-01-01

    Deoxyribonucleic acid (DNA) and protein recognition are now standard tools in biology. In addition, the special optical properties of microsphere resonators expressed by the high quality factor (Q-factor) of whispering gallery modes (WGMs) or morphology dependent resonances (MDRs) have attracted the attention of the biophotonic community. Microsphere-based biosensors are considered as powerful candidates to achieve label-free recognition of single molecules due to the high sensitivity of thei...

  2. Tunable erbium-doped microbubble laser fabricated by sol-gel coating

    CERN Document Server

    Yang, Yong; Kasumie, Sho; Xu, Linhua; Ward, Jonathan; Yang, Lan; Chormaic, Síle Nic

    2016-01-01

    In this work, we show that the application of a sol-gel coating renders a microbubble whispering gallery resonator into an active device. During the fabrication of the resonator, a thin layer of erbium-doped sol-gel is applied to a tapered microcapillary, then a microbubble with a wall thickness of 1.3 $\\mu$m is formed with the rare earth diffused into its walls. The doped microbubble is pumped at 980 nm and lasing in the emission band of the Er$^{3+}$ ions with a wavelength of 1535 nm is observed. The laser wavelength can be tuned by aerostatic pressure tuning of the whispering gallery modes of the microbubble. Up to 240 pm tuning is observed with 2 bar of applied pressure. It is shown that the doped microbubble could be used as a compact, tunable laser source. The lasing microbubble can also be used to improve sensing capabilities in optofluidic sensing applications.

  3. Continuous-wave optical parametric oscillation tunable up to 8 μm wavelength

    Science.gov (United States)

    Breunig, Ingo; Fürst, Josef Urban; Hanka, Kevin; Buse, Karsten

    2017-06-01

    We demonstrate the first cw OPO emitting mid-infrared light at wavelengths up to 8 μm. This device is based on a 3.5-mm-diameter whispering gallery resonator made of silver gallium selenide (AgGaSe2) pumped by a compact distributed feedback laser diode emitting light at 1.57 μm wavelength. Phase-matching is achieved for a c-cut resonator disk pumped with extraordinarily polarized light at this wavelength. The oscillation thresholds are in the mW region, while the output power ranges from 10 to 800 μW. Wavelength tuning is achieved via changing the radial mode number of the pump wave and by changing the resonator temperature. Simulations predict that whispering gallery OPOs based on AgGaSe2 with diameters around 2 mm can generate idler waves exceeding 10 μm wavelength.

  4. Numerical simulation of eigenmodes of ring and race-track optical microresonators

    Science.gov (United States)

    Raskhodchikov, A. V.; Raskhodchikov, D. V.; Scherbak, S. A.; Lipovskii, A. A.

    2017-11-01

    We have performed a numerical study of whispering gallery modes of ring and race-track optical microresonators. Mode excitation was considered and their spectra and electromagnetic field distributions were calculated via numerical solution of the Helmholtz equation. We pay additional attention to features of eigenmodes in race-tracks in contrast with ring resonators. Particularly, we demonstrate that modes in race-tracks are not “classic” WGM in terms of total internal reflection from a single boundary, and an inner boundary is essential for their formation. The dependence of effective refractive index of race-tracks modes on the resonator width is shown.

  5. GaN quantum dots in (Al,Ga)N-based Microdisks

    Energy Technology Data Exchange (ETDEWEB)

    Sergent, S; Moreno, J C; Frayssinet, E; Laaroussi, Y; Chenot, S; Leroux, M; Semond, F [CRHEA-CNRS, Valbonne 06560 (France); Renard, J; Sam-Giao, D; Gayral, B [CEA-Grenoble, INAC, Grenoble 38054 Cedex 9 (France); Neel, D; David, S; Boucaud, P, E-mail: ss@crhea.cnrs.f [Institut d' Electronique Fondamentale, CNRS - Universite Paris Sud, Orsay 91405 (France)

    2010-02-01

    We report on the fabrication and study of (Al,Ga)N microdisks with embedded GaN quantum dots. In order to facilitate the microdisk fabrication, very thin (h < 120 nm) nitride epilayers containing optically efficient GaN quantum dots are grown directly on silicon substrates. The microdisks defined by optical lithography exhibit whispering-gallery modes with a short 1.2 nm mode spacing and quality factors as high as 2000. We show that the quality factor is limited by scattering losses due to the microdisk sidewall roughness. Finally, using e-beam lithography, we obtain microdisks with enhanced features.

  6. 2-D optical/opto-mechanical microfluidic sensing with micro-bubble resonators.

    Science.gov (United States)

    Chen, Zhenmin; Li, Ming; Wu, Xiang; Liu, Liying; Xu, Lei

    2015-07-13

    In this paper a new sensing scheme by simultaneously measuring optical refractive index change and sound speed change in an optofluidic thin wall micro-bubble resonator is reported. Sensitivity of sound speed is 4.2-6.8 MHz/ (km/s) for 3 types of mechanical modes. A 2-D optical/opto-mechanical sensing map is plotted by detecting both the whispering gallery mode resonance shift and the optomechanical resonance shift. This novel scheme provides a supplementary support to optical sensing when analytes do not respond to refractive index (RI) change.

  7. Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks

    Science.gov (United States)

    Roland, I.; Gromovyi, M.; Zeng, Y.; El Kurdi, M.; Sauvage, S.; Brimont, C.; Guillet, T.; Gayral, B.; Semond, F.; Duboz, J. Y.; de Micheli, M.; Checoury, X.; Boucaud, P.

    2016-01-01

    We demonstrate phase-matched second harmonic generation in gallium nitride on silicon microdisks. The microdisks are integrated with side-coupling bus waveguides in a two-dimensional photonic circuit. The second harmonic generation is excited with a continuous wave laser in the telecom band. By fabricating a series of microdisks with diameters varying by steps of 8 nm, we obtain a tuning of the whispering gallery mode resonances for the fundamental and harmonic waves. Phase matching is obtained when both resonances are matched with modes satisfying the conservation of orbital momentum, which leads to a pronounced enhancement of frequency conversion. PMID:27687007

  8. Enhancement of Optical Nonlinearities in Composite Media and Structures via Local Fields and Electromagnetic Coupling Effects

    Science.gov (United States)

    Smith, David D.

    2002-01-01

    This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.

  9. Cavity induced fluorescence enhancement of graphitic carbon nitride submicron flakes

    Science.gov (United States)

    Veluthandath, Aneesh Vincent; Reddy Bongu, Sudhakara; Ramaprabhu, Sundara; Ballabh Bisht, Prem

    2017-01-01

    Graphitic carbon nitride (g-C3N4), which is structurally analogous to graphene, shows excellent fluorescent yield. Sharp ripple structure is observed in the fluorescence spectra of g-C3N4 flakes grafted on the surface of single polymethyl methacrylate (PMMA) microspheres. The intensities and the number of modes of these structures nonlinearly vary with the size of micro-cavity and the coupled power. Theoretical simulations carried out with the help of Mie theory show that the ripple structure is due to modulation of the fluorescence by the whispering gallery modes (WGMs) of the spherical microcavity.

  10. A proposed experiment on ball lightning model

    Energy Technology Data Exchange (ETDEWEB)

    Ignatovich, Vladimir K., E-mail: v.ignatovi@gmail.com [Frank Laboratory for Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Ignatovich, Filipp V. [1565 Jefferson Rd., 420, Rochester, NY 14623 (United States)

    2011-09-19

    Highlights: → We propose to put a glass sphere inside an excited gas. → Then to put a light ray inside the glass in a whispering gallery mode. → If the light is resonant to gas excitation, it will be amplified at every reflection. → In ms time the light in the glass will be amplified, and will melt the glass. → A liquid shell kept integer by electrostriction forces is the ball lightning model. -- Abstract: We propose an experiment for strong light amplification at multiple total reflections from active gaseous media.

  11. Hemicylindrical and toroidal liquid microlens formed by pyro-electro-wetting.

    Science.gov (United States)

    Miccio, Lisa; Paturzo, Melania; Grilli, Simonetta; Vespini, Veronica; Ferraro, Pietro

    2009-04-01

    We found that by opportune functionalization of a polar dielectric substrate, a self-arrangement of hemicylindrical or toroidal-shaped liquid droplets can be obtained. The process takes place when a thermal stimulus is provided to a poled substrate whose surface is covered by an oily substance layer. Liquid droplet self-arrangement is due to the pyroelectric effect, and interferometric characterization of the droplets is also reported. We investigated this open microfluidic system for exploring the possibility to obtain liquid cylindrical microlens with variable focal length. Liquid microtoroidal structures arrays are also realized. They could find application as resonant liquid microcavities for whispering gallery modes.

  12. Development of optical WGM resonators for biosensors

    Science.gov (United States)

    Brice, I.; Pirktina, A.; Ubele, A.; Grundsteins, K.; Atvars, A.; Viter, R.; Alnis, J.

    2017-12-01

    Whispering Gallery Mode (WGM) resonators are very sensitive to nanoparticles attaching to the surface. We simulate this process using COMSOL Wave Optics module. Our spherical WGM resonators are produced by melting a tip of an optical fiber and we measure optical Q factors in the 105 range. Molecular oxygen lines of the air in the 760 nm region are used as reference markers when looking for the shifts of the WGM resonance lines. We demonstrate WGM microresonator surface coating with a layer of ZnO nanorods as well as with polystyrene microspheres. Coatings produce increased contact surface. Additional layer of antigens/antibodies will be coated to make high-specificity biosensors.

  13. Small scale optics

    CERN Document Server

    Yupapin, Preecha

    2013-01-01

    The behavior of light in small scale optics or nano/micro optical devices has shown promising results, which can be used for basic and applied research, especially in nanoelectronics. Small Scale Optics presents the use of optical nonlinear behaviors for spins, antennae, and whispering gallery modes within micro/nano devices and circuits, which can be used in many applications. This book proposes a new design for a small scale optical device-a microring resonator device. Most chapters are based on the proposed device, which uses a configuration know as a PANDA ring resonator. Analytical and nu

  14. Scanning near-field microscopy of microdisk resonator with InP/GalnP quantum dots using cantilever-based probes

    Science.gov (United States)

    Shelaev, A. V.; Mintairov, A. M.; Dorozhkin, P. S.; Bykov, V. A.

    2016-08-01

    We present cantilever-probe based scanning near-field microscopy (SNOM) studies of GaInP microdisks resonators (radii R=2 um and quality factors Q∼1000) with embedded InP quantum dots (QDs) emitting at ∼750 nm. Near-field photoluminescence spectroscopy in collection regime, using side excitation from micro-objective, was used for imaging of whispering-gallery modes (WGMs) with a spatial resolution below the light diffraction limit. Using collection-illumination regime we imaged the position of single InP/GaInP QDs in microdisk.

  15. All-photonic, dynamic control of optical path length in a silica sphere resonator.

    Science.gov (United States)

    Agarwal, Monica; Teraoka, Iwao

    2013-08-01

    We demonstrate dynamic control of the optical path length for probe light in a spherical dielectric resonator simply by multiplexing intense control light of another color and adjusting its wavelength. The fractional change in the path length, monitored by the resonance wavelengths of whispering gallery modes of the probe light, was nearly equal to the fractional change in the wavelength of the control light. The control was effective in both increasing and decreasing the wavelength, but the weaker the control light or the faster the wavelength change, the narrower the range of control.

  16. Nonstandard FDTD Simulation-Based Design of CROW Wavelength Splitters

    Directory of Open Access Journals (Sweden)

    Naoki Okada

    2011-01-01

    Full Text Available The finite-difference time-domain (FDTD algorithm has been used in simulation-based designs of many optical devices, but it fails to reproduce high-Q whispering gallery modes (WGMs. On the other hand, the nonstandard (NS FDTD algorithm can accurately compute WGMs and can be used to make simulation-based designs of WGM devices. Wavelength splitters using the coupled resonator optical waveguides (CROWs based on WGM couplings have recently attracted attention because they are potentially ultracompact. In this paper, we design a CROW wavelength splitter using NS FDTD simulations and demonstrate high interchannel extinction ratios of over 20 dB.

  17. Freestanding polymeric microdisk laser based on a microfiber knot

    Science.gov (United States)

    Sun, Huijin; Zhang, Hua; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan

    2017-05-01

    We experimentally investigate a stable freestanding whispering gallery mode (WGM) microlaser based on polymer microdisk formed by a ~500 µm diameter microfiber knot. A quality factor of about 14 700 and a relatively low lasing threshold with about 38.0 µJ/pulse are demonstrated in this structure. When a polymer microdisk is pumped by a 532 nm wavelength pulse laser, WGM lasing with a free spectral range (FSR) of 0.15 nm is observed from the polymer microdisk laser. This work provides a convenient and efficient approach to achieving a WGM microlaser based on a polymer microdisk and collecting the output light.

  18. Optical Microbottle Resonators for Sensing

    Directory of Open Access Journals (Sweden)

    Pablo Bianucci

    2016-11-01

    Full Text Available Whispering gallery mode (WGM optical microresonators have been shown to be the basis for sensors able to detect minute changes in their environment. This has made them a well-established platform for highly sensitive physical, chemical, and biological sensors. Microbottle resonators (MBR are a type of WGM optical microresonator. They share characteristics with other, more established, resonator geometries such as cylinders and spheres, while presenting their unique spectral signature and other distinguishing features. In this review, we discuss recent advances in the theory and fabrication of different kinds of MBRs, including hollow ones, and their application to optofluidic sensing.

  19. Fabrication of semiconductor microspheres with laser ablation in superfluid helium

    Science.gov (United States)

    Minowa, Yosuke; Oguni, Yuya; Ashida, Masaaki

    2017-04-01

    We fabricated semiconductor ZnO microspheres via the pulsed laser ablation in the superfluid helium. The scanning electron microscope observation revealed the high sphericity and smooth surface. We also observed whispering gallery mode resonances, the electromagnetic eigenmode resonances within the microspheres, in the cathodoluminescence spectrum, verifying the high symmetry of the fabricated microspheres. Further, we cross-sectioned the microspheres with using focused ion beam. The scanning electron microscope observation of the cross section uncovers the existence of small holes within the microspheres. The inner structure examination helps us to understand the microscopic mechanism of our fabrication method.

  20. On-chip integrated lasers for biophotonic applications

    DEFF Research Database (Denmark)

    Mappes, Timo; Wienhold, Tobias; Bog, Uwe

    Meeting the need of biomedical users, we develop disposable Lab-on-a-Chip systems based on commercially available polymers. We are combining passive microfluidics with active optical elements on-chip by integrating multiple solid-state and liquid-core lasers. While covering a wide range of laser ...... emission wavelengths, the chips have the size of microscope cover slips and use optical and fluidic interconnects only. Here, we present our latest realizations of integrated optofluidic lasers using whispering gallery mode or distributed feedback laser cavities....

  1. Electrical and thermal tuning of quality factor and free spectral range of optical resonance of nematic liquid crystal microdroplets

    Science.gov (United States)

    Sofi, Junaid Ahmad; Mohiddon, M. A.; Dutta, N.; Dhara, Surajit

    2017-08-01

    We experimentally study the effect of temperature and electric field on the quality (Q ) factor and free spectral range (FSR) of whispering-gallery-mode optical resonance of dye-doped nematic liquid crystal microdroplets. Both the Q factor and the FSR are highly sensitive to the temperature and electric field and are tunable. The Q factor decreases, whereas the FSR increases substantially, with increasing temperature and electric field. The variation of the Q factor and FSR is understood based on the change in the effective refractive index and the dynamic size of the microdroplets.

  2. Remote artificial eyes using micro-optical circuit for long-distance 3D imaging perception.

    Science.gov (United States)

    Thammawongsa, Nopparat; Yupapin, Preecha P

    2016-01-01

    A small-scale optical device incorporated with an optical nano-antenna is designed to operate as the remote artificial eye using a tiny conjugate mirror. A basic device known as a conjugate mirror can be formed using the artificial eye device, the partially reflected light intensities from input source are interfered and the 3D whispering gallery modes formed within the ring centers, which can be modulated and propagated to the object. The image pixel is obtained at the center ring and linked with the optic nerve in the remote area via the nano-antenna, which is useful for blind people.

  3. Morphology-Dependent Resonances and Their Applications to Sensing in Aerospace Environments

    Science.gov (United States)

    Adamovsky, G.; Otugen, M.V.

    2009-01-01

    This paper reviews recent developments in Morphology-Dependent Resonance (MDR)-based sensors for aerospace applications. The sensor concept is based on the detection of small shifts of optical resonances (also called the whispering gallery modes or WGM) of dielectric spheres caused by external effects. Recent developments in MRD-based micro-optical sensors for temperature, force, pressure, and concentration are discussed. In addition to the experimental configurations used in each type of prototype sensor, a brief overview is also given for analytical approaches to describe the sensor principle.

  4. Plasmonic Nanoparticle-based Protein Detection by Optical Shift of a Resonant Microcavity

    CERN Document Server

    Santiago-Cordoba, Miguel A; Vollmer, Frank; Demirel, Melik C

    2011-01-01

    We demonstrated a biosensing approach which, for the first time, combines the high-sensitivity of whispering gallery modes (WGM) with a metallic nanoparticle based assay. We provided a computational model based on generalized Mie theory to explain the higher sensitivity of protein detection through Plasmonic enhancement. We quantitatively analyzed the binding of a model protein (i.e., BSA) to gold nanoparticles from high-Q WGM resonance frequency shifts, and fit the results to an adsorption isotherm, which agrees with the theoretical predictions of a two-component adsorption model.

  5. Fluoride microresonators for mid-IR applications

    CERN Document Server

    Grudinin, Ivan S; Yu, Nan

    2016-01-01

    We study crystalline fluoride microresonators for mid-infrared applications. Whispering gallery mode resonators were fabricated with BaF$_2$, CaF$_2$ and MgF$_2$ crystals. The quality factors were measured at wavelengths of 1.56 {\\mu}m and 4.58 {\\mu}m. The impacts of fabrication technique, impurities, multiphonon absorption and surface water are investigated. It is found that MgF2 resonators have room temperature Q factor of $8.3\\times 10^6$ at wavelength of 4.58 {\\mu}m, limited by multiphonon absorption.

  6. Multimode laser emission from free-standing cylindrical microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Jaison, E-mail: jaisonpeter@cusat.ac.in; Radhakrishnan, P.; Nampoori, V.P.N.; Kailasnath, M.

    2014-05-01

    We report a well resolved whispering gallery mode (WGM) laser emission from a free-standing microring cavity based on a dye doped hollow polymer optical fiber (DDHPOF), which is transversely pumped by a pulsed Nd:YAG laser. The microring laser is characterized by a well-defined, low threshold pump power at which the emission spectral intensity dramatically increases and collapses into several dominant microcavity laser modes with reduced mode spacing and high Q-value. Resonant modes are excited inside the gain medium which is strongly confined along the radial direction so that the spacing of lasing modes is controlled by the diameter of the cylindrical microcavity. A variation in the free spectral range of WGM spectra from 0.23 to 0.09 nm coupled with a red-shift is observed with an increase in the diameter of DDHPOFs. - Highlights: • Different diameter free-standing cylindrical microcavity lasers have been fabricated and their performances have been evaluated. • The microring laser is characterized by a well-defined, low threshold pump power, with reduced mode spacing and high Q-value. • When the diameter of DDHPOF increases, the number of lasing peaks increases along with the decrease of the FSR as observed from our studies. • It is also found that whispering gallery lasing envelope is shifted from 559 to 571 nm (Stokes shift) with the diameter.

  7. Final Report Advanced Quasioptical Launcher System

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Neilson

    2010-04-30

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality to SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.

  8. Deformed microcavity quantum cascade lasers with directional emission

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qijie; Yan Changling; Diehl, Laurent; Yu Nanfang; Pfluegl, Christian; Belkin, Mikhail A; Capasso, Federico [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Hentschel, Martina [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, D-01187 Dresden (Germany); Wiersig, Jan [Institut fuer Theoretische Physik, Universitaet Magdeburg, Postfach 4120, D-39016 Magdeburg (Germany); Edamura, Tadataka; Yamanishi, Masamichi; Kan, Hirofumi [Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu 434-8601 (Japan)], E-mail: ldiehl@seas.harvard.edu, E-mail: capasso@seas.harvard.edu

    2009-12-15

    We report the experimental realization of deformed microcavity quantum cascade lasers (QCLs) with a Limacon-shaped chaotic resonator. Directional light emission with a beam divergence of {theta}{sub parallel}{approx}33 deg. from QCLs emitting at {lambda}{approx}10 {mu}m was obtained in the plane of the cavity for deformations in the range 0.37<{epsilon}<0.43. An excellent agreement between measured and calculated far-field profiles was found. Both simulations and experiments show that the Limacon-shaped microcavity preserves whispering gallery-like modes with high Q-factors for low deformations ({epsilon}<0.50). In addition, while the measured spectra show a transition from whispering gallery-like modes to a more complex mode structure at higher pumping currents, we observed 'universal far-field behavior' for different intracavity mode distributions in the Limacon microcavity, which can be explained by the distribution of unstable manifolds in ray optics simulations. Furthermore, the performance of the deformed microcavity lasers is robust with respect to variations of the deformation near its optimum value {epsilon}=0.40, which implies that this structure reduces the requirements on photolithography fabrication. The successful realization of these microcavity lasers may lead to applications in optoelectronics.

  9. Spinning optical resonator sensor for torsional vibrational applications measurements

    Science.gov (United States)

    Ali, Amir R.; Gatherer, Andrew; Ibrahim, Mariam S.

    2016-03-01

    Spinning spherical resonators in the torsional vibrational applications could cause a shift in its whispering gallery mode (WGM). The centripetal force acting on the spinning micro sphere resonator will leads to these WGM shifts. An analysis and experiment were carried out in this paper to investigate and demonstrate this effect using different polymeric resonators. In this experiment, centripetal force exerted by the DC-Motor on the sphere induces an elastic deformation of the resonator. This in turn induces a shift in the whispering gallery modes of the sphere resonator. Materials used for the sphere are polydimethylsiloxane (PDMS 60:1 where 60 parts base silicon elastomer to 1 part polymer curing agent by volume) with shear modulus (G≍1kPa), (PDMS 10:1) with shear modulus (G≍300kPa), polymethylmethacrylate (PMMA, G≍2.6×109GPa) and silica (G≍3×1010 GPa). The sphere size was kept constant with 1mm in diameter for all above materials. The optical modes of the sphere exit using a tapered single mode optical fiber that is coupled to a distributed feedback laser. The transmission spectrum through the fiber is monitored to detect WGM shifts. The results showed the resonators with smaller shear modulus G experience larger WGM shift due to the larger mechanical deformation induced by the applied external centripetal force. Also, the results show that angular velocity sensors used in the torsional vibrational applications could be designed using this principle.

  10. Nanofiltration and sensing of picomolar chemical residues in aqueous solution using an optical porous resonator in a microelectrofluidic channel.

    Science.gov (United States)

    Huang, Lei; Guo, Zhixiong

    2012-02-17

    For the first time the use of a porous microresonator placed in a microelectrofluidic system for integrated functions of nanofiltration and sensing of small biomolecules and chemical analytes in extremely dilute solution was proposed and investigated. As an example, aminoglycosides in drug residues in food and livestock products were considered as the trace chemical analyte. The filtration process of the charged analyte in aqueous solution driven by an applied electrical field and the accompanying optical whispering-gallery modes in the resonator are modeled. The dynamic process of adsorption and desorption of the analyte onto the porous matrix is studied. Deposition of the analyte inside the porous structure will alter the material refractive index of the resonator, and thus induce an optical resonance frequency shift. By measuring the optical frequency shift, the analyte concentration as well as the absorption/desorption process can be analyzed. Through an intensive numerical study, a correlation between the frequency shift and the analyte concentration and the applied electrical voltage gradient was obtained. This reveals a linear relationship between the resonance frequency shift and the analyte concentration. The applied electrical voltage substantially enhances the filtration capability and the magnitude of the optical frequency shift, pushing the porous resonator-based sensor to function at the extremely dilute picomolar concentration level for small bio/chemical molecules down to the sub-nanometer scale. Moreover, use of the second-order whispering-gallery mode is found to provide better sensitivity compared with the first-order mode.

  11. Failure Modes

    DEFF Research Database (Denmark)

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained s...

  12. Cavity optomechanics in a levitated helium drop

    Science.gov (United States)

    Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.

    2017-12-01

    We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.

  13. Broad spectral response photodetector based on individual tin-doped CdS nanowire

    Directory of Open Access Journals (Sweden)

    Weichang Zhou

    2014-12-01

    Full Text Available High purity and tin-doped 1D CdS micro/nano-structures were synthesized by a convenient thermal evaporation method. SEM, EDS, XRD and TEM were used to examine the morphology, composition, phase structure and crystallinity of as-prepared samples. Raman spectrum was used to confirm tin doped into CdS effectively. The effect of impurity on the photoresponse properties of photodetectors made from these as-prepared pure and tin-doped CdS micro/nano-structures under excitation of light with different wavelength was investigated. Various photoconductive parameters such as responsivity, external quantum efficiency, response time and stability were analyzed to evaluate the advantage of doped nanowires and the feasibility for photodetector application. Comparison with pure CdS nanobelt, the tin-doped CdS nanowires response to broader spectral range while keep the excellect photoconductive parameters. Both trapped state induced by tin impurity and optical whispering gallery mode microcavity effect in the doped CdS nanowires contribute to the broader spectral response. The micro-photoluminescence was used to confirm the whispering gallery mode effect and deep trapped state in the doped CdS nanowires.

  14. Strong coupling of hybrid and plasmonic resonances in liquid core plasmonic micro-bubble cavities.

    Science.gov (United States)

    Lu, Qijing; Li, Ming; Liao, Jie; Liu, Sheng; Wu, Xiang; Liu, Liying; Xu, Lei

    2015-12-15

    A thin-wall plasmonic micro-bubble resonator, which is a high-Q optofluidic silica bubble cavity with a thin Ag film on the inside wall of the bubble, is proposed and fabricated to manipulate coupling among various types of resonant modes by changing its wall thickness and refractive index of the liquid in the core. Coupling of high-Q whispering gallery mode/plasmonic resonant mode forms hybrid mode; the hybrid mode can again strongly couple with another interior plasmonic resonant mode in the bubble cavity to achieve tunable high-Q plasmonic resonance that can be feasibly accessed by standard tapered fiber coupling. Therefore, the novel cavity structure provides a unique, yet general, platform to study plasmonic/photonic, hybrid/plasmonic, and plasmonic/plasmonic coupling.

  15. Phononic Crystal Plate with Hollow Pillars Actively Controlled by Fluid Filling

    Directory of Open Access Journals (Sweden)

    Yabin Jin

    2016-05-01

    Full Text Available We investigate theoretically the properties of phononic crystal plates with hollow pillars. Such crystals can exhibit confined whispering gallery modes around the hollow parts of the pillars whose localization can be increased by separating the pillar from the plate by a full cylinder. We discuss the behaviors of these modes and their potential applications in guiding and filtering. Filling the hollow parts with a fluid gives rise to new localized modes, which depend on the physical properties and height of the fluid. Thus, these modes can be actively controlled for the purpose of multichannel multiplexing. In particular, one can obtain localized modes associated with the compressional vibrations of the fluid along its height. They can be used for the purpose of sensing the acoustic properties of the fluid or their variations with temperature.

  16. Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit

    CERN Document Server

    Weng, Wenle; Stace, Thomas M; Campbell, Geoff; Baynes, Fred N; Luiten, Andre N

    2014-01-01

    We demonstrate thermometry with a resolution of 80 $\\mathrm{nK} / \\sqrt{\\mathrm{Hz}}$ using an isotropic crystalline whispering-gallery mode resonator based on a dichroic dual-mode technique. We simultaneously excite two modes that have a mode frequency ratio very close to two ($\\pm0.3$ppm). The wavelength- and temperature-dependence of the refractive index means that the frequency difference between these modes is an ultra-sensitive proxy of the resonator temperature. This approach to temperature sensing automatically suppresses sensitivity to thermal expansion and vibrationally induced changes of the resonator. We also demonstrate active suppression of temperature fluctuations in the resonator by controlling the intensity of the driving laser. The residual temperature fluctuations are shown to be below the limits set by fundamental thermodynamic fluctuations of the resonator material.

  17. High quality factor of AlN microdisks embedding GaN quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mexis, M.; Guillet, T.; Brimont, C.; Bretagnon, T.; Gil, B. [GES, Universite des Sciences et Techniques du Languedoc, Place Eugene Bataillon, 34095 Montpellier (France); Sergent, S. [CHREA-CNRS, 06560 Valbonne (France); Universite de Nice Sophia Antipolis, Parc Valrose, 06102 Nice (France); Semond, F.; Leroux, M. [CHREA-CNRS, 06560 Valbonne (France); Neel, D.; David, S.; Checoury, X.; Boucaud, P. [Institut d' Electronique Fondamentale, CNRS - Universite Paris Sud, 91405 Orsay (France)

    2011-07-15

    We report the observation of high quality (Q) factor whispering gallery modes for GaN/AlN quantum dot based microdisks. Room temperature photoluminescence measurements show a large number of high Q modes on the whole PL spectral range. For the first time we report Q values up to 6000 for nitride based cavities. We attribute this improvement of the Q factor to the etching quality and to the relatively low cavity loss by inserting dots into the microdisks. The uniformity of the resonant modes with respect to a wide range of energies allows us to identify the different radial mode families. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Temperature Sensors Based on WGM Optical Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute; Itchenko, Vladimir; Matsko, Andrey; Strekalov, Dmitry

    2008-01-01

    A proposed technique for measuring temperature would exploit differences between the temperature dependences of the frequencies of two different electromagnetic modes of a whispering gallery-mode (WGM) optical resonator. An apparatus based on this technique was originally intended to be part of a control system for stabilizing a laser frequency in the face of temperature fluctuations. When suitably calibrated, apparatuses based on this technique could also serve as precise temperature sensors for purposes other than stabilization of lasers. A sensor according to the proposal would include (1) a transparent WGM dielectric resonator having at least two different sets of modes characterized by different thermo-optical constants and (2) optoelectronic instrumentation for measuring the difference between the temperature-dependent shifts of the resonance frequencies of the two sets of modes.

  19. Radiative rate modification in CdSe quantum dot-coated microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Veluthandath, Aneesh V.; Bisht, Prem B., E-mail: bisht@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2015-12-21

    Whispering gallery modes (WGMs) of the microparticles with spherical or cylindrical symmetry have exceptionally high quality factors and small mode volume. Quantum dots (QDs) are zero dimensional systems with variable band gap as well as luminescent properties with applications in photonics. In this paper, the WGMs have been observed in the luminescence spectra of CdSe QD-coated single silica microspheres. Theoretical estimations of variation of resonance frequency, electric field, and Q-values have been done for a multilayer coating of QDs on silica microspheres. Observed WGMs have been identified for their mode number and polarization using Mie theory. Broadening of modes due to material absorption has been observed. Splitting of WGMs has also been observed due to coherent coupling of counter propagating waves in the microcavity due to the presence of QDs. At room temperature, the time-resolved study indicates the modification of the radiative rate due to coupling of WGMs of the microcavity-QD hybrid system.

  20. Stand-Off Biodetection with Free-Space Coupled Asymmetric Microsphere Cavities

    Directory of Open Access Journals (Sweden)

    Zachary Ballard

    2015-04-01

    Full Text Available Asymmetric microsphere resonant cavities (ARCs allow for free-space coupling to high quality (Q whispering gallery modes (WGMs while exhibiting highly directional light emission, enabling WGM resonance measurements in the far-field. These remarkable characteristics make “stand-off” biodetection in which no coupling device is required in near-field contact with the resonator possible. Here we show asymmetric microsphere resonators fabricated from optical fibers which support dynamical tunneling to excite high-Q WGMs, and demonstrate free-space coupling to modes in an aqueous environment. We characterize the directional emission by fluorescence imaging, demonstrate coupled mode effects due to free space coupling by dynamical tunneling, and detect adsorption kinetics of a protein in aqueous solution. Based on our approach, new, more robust WGM biodetection schemes involving microfluidics and in-vivo measurements can be designed.

  1. Spin coating and plasma process for 2.5D integrated photonics on multilayer polymers

    Energy Technology Data Exchange (ETDEWEB)

    Zebda, A. [Institut de Physique de Rennes, IPR UMR CNRS 6251, Universite de Rennes I, 35042 Rennes (France); Camberlein, L. [Laboratoire d' Acoustique de l' Universite du Maine, Micro-Cap-Ouest, LAUM-UMR CNRS 6613, 72000 Le Mans (France); Beche, B. [Institut de Physique de Rennes, IPR UMR CNRS 6251, Universite de Rennes I, 35042 Rennes (France)], E-mail: bruno.beche@univ-rennes1.fr; Gaviot, E. [Laboratoire d' Acoustique de l' Universite du Maine, Micro-Cap-Ouest, LAUM-UMR CNRS 6613, 72000 Le Mans (France); Beche, E. [PROMES UPR CNRS 8521 - Odeillo 66125 Font-Romeu (France); Duval, D. [Institut de Physique de Rennes, IPR UMR CNRS 6251, Universite de Rennes I, 35042 Rennes (France); Zyss, J. [IFR d' Alembert, Laboratoire de Photonique Quantique et Moleculaire, ENS Cachan, LPQM-UMR CNRS 8537, 94235 Cachan (France); Jezequel, G.; Solal, F.; Godet, C. [Institut de Physique de Rennes, IPR UMR CNRS 6251, Universite de Rennes I, 35042 Rennes (France)

    2008-10-01

    Polymer spin coating, surface plasma treatment and selective UV-lithography processes have been developed to realize 2.5D photonic micro-resonators, made of disk- or ring-shaped upper rib waveguides, using common polymers such as SU8 (biphenol A ether glycidyl), PS233 (polymeric silane) and SOG (siloxane Spin on Glass). Both oxygen and argon plasma treatments, applied to PS233 and SOG before spin-coating the SU8, improve substantially the grip of multilayer devices (SU8 / PS233 or SU8 / SOG). Surface energy components derived from contact angle measurements have been used to optimize the processing conditions. In such integrated photonic devices, the both single-electromagnetic-modes called transverse electric (TE{sub 00}) and transverse magnetic (TM{sub 00}) have been excited in a SU8 micro-disk, with a single mode propagation strongly localized near the edge of the disk (i.e. the so called whispering gallery modes)

  2. Trapping of a microsphere pendulum through cavity-enhanced optical forces

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuqiang; Chormaic, Sile Nic [Physics Department, University College Cork, Cork (Ireland); M Ward, Jonathan [Photonics Centre, Tyndall National Institute, Prospect Row, Cork (Ireland); Minogin, Vladimir G, E-mail: yuqiang.wu@tyndall.i [Institute of Spectroscopy, Russian Academy of Sciences, 142190 Troitsk, Moscow Region (Russian Federation)

    2010-09-01

    Optical forces resulting from evanescently coupled microcavities can produce remarkable mechanical effects on micro- and nanoscale systems. Excitation of the symmetric and antisymmetric modes of the interacting whispering gallery modes (WGM) leads to significant attractive and repulsive forces. Here, we propose a method to spatially trap a microspherical resonator pendulum via the optical forces produced by two simultaneously excited WGMs of a photonic molecule, comprising two microspherical cavities. We discuss how the cavity-enhanced optical force generated in the photonic molecule can create an optomechanical potential of about 5 eV deep and 10 pm wide, which can be used to trap the pendulum at any given equilibrium position by a simple choice of laser frequencies. This result presents opportunities for very precise all-optical self-alignment of microsystems. Frequency splitting of a co-resonant mode from two similar-sized microspheres was observed experimentally and the mechanical characteristics of a microsphere pendulum were also studied.

  3. Simulation of High-Harmonic Fast-Wave Heating on the National Spherical Tokamak Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Green, David L [ORNL; Jaeger, Erwin Frederick [ORNL; Chen, Guangye [ORNL; Berry, Lee A [ORNL; Pugmire, Dave [ORNL; Canik, John [ORNL; Ryan, Philip Michael [ORNL

    2011-01-01

    Images associated with radio-frequency heating of low-confinement mode plasmas in the National Spherical Tokamak Experiment, as calculated by computer simulation, are presented. The AORSA code has been extended to simulate the whole antenna-to-plasma heating system by including both the kinetic physics of the well-confined core plasma and a poorly confined scrape-off plasma and vacuum vessel structure. The images presented show the 3-D electric wave field amplitude for various antenna phasings. Visualization of the simulation results in 3-D makes clear that -30 degrees phasing excites kilo-volt per meter coaxial standing modes in the scrape-off plasma and shows magnetic-field-aligned whispering-gallery type modes localized to the plasma edge.

  4. High Q-factor micro-cavity laser: Fabrication and lasing emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Pham Van Hoi; Ha Xuan Vinh; Chu Thi Thu Ha; Tran Thi Cham [Institute of Materials Science, Vietname Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Bui Van Thien [Faculty of Natural Science, College of Medicine, Thai Nguyen (Viet Nam); Gruzintsev, A N [Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences (IPMT-RAS) (Russian Federation)], E-mail: hoipv@ims.vast.ac.vn

    2009-09-01

    In this article the fabrication method and lasing emission properties of High-Q micro-cavity lasers based on High-concentration Erbium-doped silica-alumina glasses are presented in detail. The configurations of micro-cavities were spherical and/or modified toroidal forms. The lasing threshold of micro-cavity laser pumped by laser diodes was of hundred micro-watts and Q-factor of cavity had been achieved up-to 10{sup 8} in experiment. The emission power of one whispering-gallery-mode (WGM) lasing from micro-cavity laser was of 0.05-0.5 mW that would be enough for applying in the quantum information and optical sensor techniques. The modified toroidal micro-cavity permits to decrease the polar-mode of WGMs, which help to obtain the single-mode emission from micro-cavity lasers.

  5. Rolled-up TiO₂ optical microcavities for telecom and visible photonics.

    Science.gov (United States)

    Madani, Abbas; Böttner, Stefan; Jorgensen, Matthew R; Schmidt, Oliver G

    2014-01-15

    The fabrication of high-quality-factor polycrystalline TiO₂ vertically rolled-up microcavities (VRUMs) by the controlled release of differentially strained TiO₂ bilayered nanomembranes, operating at both telecom and visible wavelengths, is reported. Optical characterization of these resonators reveals quality factors as high as 3.8×10³ in the telecom wavelength range (1520-1570 nm) by interfacing a TiO₂ VRUMs with a tapered optical fiber. In addition, a splitting in the fundamental modes is experimentally observed due to the broken rotational symmetry in our resonators. This mode splitting indicates coupling between clockwise and counterclockwise traveling whispering gallery modes of the VRUMs. Moreover, we show that our biocompatible rolled-up TiO₂ resonators function at several positions along the tube, making them promising candidates for multiplexing and biosensing applications.

  6. Analysis of the design of a passive resonant miniature optical gyroscope based on integrated optics technologies

    Science.gov (United States)

    Feugnet, Gilles; Ravaille, Alexia; Schwartz, Sylvain; Bretenaker, Fabien

    2017-10-01

    We present a simple analysis of the design of a passive miniature resonant optical gyroscope. By combining the requirements on the angular random walk and the bias stability, we end up with simple expressions of the minimum diameter of the ring waveguide cavity and the maximum power that should be used to probe it. Using state-of-the-art performances of photonic integrated circuit and whispering gallery mode technologies in terms of propagation losses and mode size, we show that tactical grade gyroscope performances can be achieved with a diameter of a few cm provided the detrimental influence of the Kerr effect is mitigated using, for instance, an active control of the unbalance in the intensities. We further extend the analysis to medium performance gyroscope and give some hints on the efforts to be made to potentially demonstrate a miniature resonant optical gyroscope with this level of performance.

  7. Hybrid Microresonator Enhanced Emission from Silicon-Vacancy and Chromium-Related Color Centers in Diamond

    CERN Document Server

    Radulaski, Marina; Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G; Ishiwata, Hitoshi; Dory, Constantin; Alassaad, Kassem; Ferro, Gabriel; Shen, Zhi-Xun; Melosh, Nicholas; Chu, Steven; Vuckovic, Jelena

    2016-01-01

    We develop hybrid silicon carbide-nanodiamond microresonators for enhancing SiV- and Cr-related color center emission in diamond. Our approach utilizes the similarity of the refractive indices between the two materials, allowing for the resonant mode to be distributed across both components, which is beneficial for achieving Purcell enhancement. In a diamondoid-seeded chemical vapor deposition step, color center rich nanodiamonds are grown on top of 3C-SiC microdisks fabricated on a silicon wafer. The microdisk geometry facilitates preferential positioning of nanodiamonds relative to the whispering gallery mode field distribution. This scalable design has high yield and integrates diamond color centers with a CMOS-compatible platform.

  8. Optical properties of CdS nanoparticles embedded in polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Monte, A.F.G. [Universidade Federal de Uberlandia, Instituto de Fisica, Uberlandia MG 38400-902 (Brazil); Rabelo, D. [Universidade Federal de Goias, Instituto de Quimica, Goiania GO 74001-970 (Brazil); Morais, P.C., E-mail: pcmor@unb.b [Universidade de Brasilia, Instituto de Fisica, Brasilia DF 70919-970 (Brazil)

    2010-04-16

    Mesoporous microspheres of styrene-divinylbenzene (Sty-DVB) copolymer have been used as template for encapsulation of CdS nanocrystal-quantum-dots (NQDs). Raman, micro-photoluminescence and optical absorption were used to investigate the optical properties of the nanocomposites containing CdS NQDs. When a single microsphere nanocomposite is excited by a laser beam at room temperature, very strong and sharp whispering-gallery mode (WGM) is shown on the background of CdS NQD PL spectra, which confirms that coupling between the optical emission of the encapsulated NQDs and spherical cavity modes was realized. The results show that the microspheres loaded with CdS nanoparticles work as an optical microcavity allowing the observation of WGM. The lasing behavior is achieved at relatively low laser excitation intensity ({approx}1 mW) at room temperature. High-optical stability and low-threshold value make this optical system promising in visible microlaser applications.

  9. Refractometric Sensing of Heavy Oils in Fluorescent Core Microcapillaries

    Directory of Open Access Journals (Sweden)

    Zamora V.

    2015-03-01

    Full Text Available The refractometric sensing of calibrated heavy oils (density > 1 000 kg/m3 is demonstrated using fluorescent-core microcapillaries. A 25-micron capillary channel was first coated with a high-index layer of fluorescent silicon Quantum Dots (QD. This QD film supports the development of cylindrical Whispering Gallery Mode (WGM resonances inside the capillary. Heavy oils spanning a wide range of refractive index were pumped into the capillary channel, causing large shifts in the fluorescence WGM resonant wavelengths. The sensitivity for heavy oils approached 250 nm per Refractive Index Unit (nm/RIU at the higher oil indices, which is the highest sensitivity so far observed for a refractometric sensor operating in the fluorescence mode. This suggests that fluorescent core microcapillaries may be a viable microfluidic alternative for refractometric or chemical sensing in various stages of oil and gas processing, monitoring and usage.

  10. 3 GHz Barrel Open Cavity (BOC) RF pulse compressor for CTF3

    CERN Document Server

    Brown, Peter

    2004-01-01

    A prototype 3 GHz RF pulse compressor, based on a single 'Barrel shaped Open Cavity' (BOC), was designed, manufactured and successfully high power tested into a RF load. It is now planned to install five such devices in the CTF3 drive beam linac currently being built at CERN. A specific feature of the BOC is the so-called "whispering gallery" mode which has a high internal Q-factor. Contrary to other cavity-based pulse compressors, such as SLED or LIPS, with this mode one can operate in a resonant rotating wave regime. Consequently, when used as an RF pulse compressor a single BOC is sufficient, whereas the LIPS and SLED schemes require two cavities and a 3-dB hybrid. A short description of the BOC and the results of high power operation specific to the CTF3 drive beam linac are presented.

  11. Modeling of On-Chip Optical Nonreciprocity with an Active Microcavity

    Directory of Open Access Journals (Sweden)

    Jianming Wen

    2015-05-01

    Full Text Available On-chip nonreciprocal light transport holds a great impact on optical information processing and communications based upon integrated photonic devices. By harvesting gain-saturation nonlinearity, we recently demonstrated on-chip optical asymmetric transmission at telecommunication bands with superior nonreciprocal performances using only one active whispering-gallery-mode microtoroid resonator, beyond the commonly adopted magneto-optical (Faraday effect. Here, detailed theoretical analysis is presented with respect to the reported scheme. Despite the fact that our model is simply the standard coupled-mode theory, it agrees well with the experiment and describes the essential one-way light transport in this nonreciprocal device. Further discussions, including the connection with the second law of thermodynamics and Fano resonance, are also briefly made in the end.

  12. Determination of the refractive index of single crystal bulk samples and micro-structures

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Grund, R., E-mail: Schmidt-Grund@physik.uni-leipzig.de; Kuehne, P.; Czekalla, C.; Schumacher, D.; Sturm, C.; Grundmann, M.

    2011-02-28

    We present comparative studies for the exact determination of the refractive index of single crystals using spectroscopic ellipsometry and photonic-mode-structure investigations by means of spatially resolved photoluminescence spectroscopy, especially in the near band-gap spectral range. By applying such complementary methods we can overcome the uncertainties in the determination of the bulk refractive index introduced by surface properties. The physical effects used are the electromagnetic field reflection used by spectroscopic ellipsometry at large scale planar single crystals and the whispering-gallery-mode formation by total internal reflection in confined micro-structures. We demonstrate the applicability of such studies using the example of uniaxial ZnO bulk samples and micro-wires. By assuming a surface near region with electronic properties different from the bulk material, the method presented here gives the refractive index dispersion for both types of samples in an energy range from 1 to 3.4 eV.

  13. Ultraviolet lasing behavior in ZnO optical microcavities

    Directory of Open Access Journals (Sweden)

    Hongxing Dong

    2017-12-01

    Full Text Available Zinc oxide (ZnO optical microcavity modulated UV lasers have been attracting a wide range of research interests. As one of the most important materials in developing high quality microcavity and efficient UV–visible optoelectronic devices due to its wide band gap (3.37 eV and large exciton binding energy (∼60 meV. In this review, we summarized the latest development of ZnO optical cavity based microlasers, mainly including Fabry-Perot mode lasers and whispering gallery mode lasers. The synthesis and optical studies of ZnO optical microcavities with different morphologies were discussed in detail. Finally, we also consider that the research focus in the near future would include new nanotechnology and physical effects, such as nano/micro fabrication, surface plasmon enhancement, and quantum dot coupling, which may result in new and interesting physical phenomena.

  14. Advanced Output Coupling for High Power Gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Guss, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lohr, John [General Atomics, La Jolla, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-11-28

    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range of advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.

  15. Quasi-droplet Microbubbles for High Resolution Sensing Applications

    CERN Document Server

    Yang, Yong; Chormaic, Síle Nic

    2014-01-01

    Optical properties and sensing capabilities of fused silica microbubbles were studied numerically using a finite element method. Mode characteristics, such as quality factor (Q) and effective refractive index, were determined for different bubble diameters and shell thicknesses. For sensing applications with whispering gallery modes (WGMs), thinner shells yield improved sensitivity. However, the Q-factor decreases with reduced thickness and this limits the final resolution. Three types of sensing applications with microbubbles, based on their optimized geometrical parameters, were studied. Herein the so-called quasi-droplet regime is defined and discussed. It is shown that best resolution can be achieved when microbubbles act as quasi-droplets, even for water-filled cavities at the telecommunications C-band.

  16. Degenerate four-wave-mixing in a silica hollow bottle-like microresonator

    CERN Document Server

    Yang, Yong; Thompson, Ruth; Ward, Jonathan; Chormaic, Síle Nic

    2015-01-01

    A hollow bottle-like microresonator (BLMR) with ultra-high quality factor is fabricated from a microcapillary with nearly parabolic profile. At 1.55 $\\mu m$ pumping, degenerate four-wave mixing can be observed for a BLMR of diameter 102 $\\mu$m. The parabolic profile of the BLMR guarantees a nearly zero waveguide dispersion, which is theoretically discussed in detail. From the simulation, at 1.55 $\\mu$m wavelength in such a BLMR, the fundamental bottle mode is in the anomalous dispersion regime, whilst the ordinary whispering gallery mode (WGM) confined at the center of the BLMR is in the normal dispersion regime. Experimentally, no degenerate FWM is observed for the WGM selected by positioning the coupling tapered fiber in the same BLMR. Furthermore, dispersion tuning is briefly discussed. As the work predicted, the BLMR shows promise for the implementation of sparsely distributed, widely spanned frequency combs at the telecommunication wavelength.

  17. Optomechanical Transduction and Characterization of a Silica Microsphere Pendulum via Evanescent Light

    CERN Document Server

    Madugani, Ramgopal; Ward, Jonathan M; Le, Vu H; Chormaic, Síle Nic

    2015-01-01

    Transduction of the motion of a micron- or nano-sized object to an optical signal is essential for optomechanical systems. Here, we study the optical response of a cantilever-like, silica, microsphere pendulum, evanescently coupled to a ?ber taper. In this system, the optical coupling element also acts as the mechanical motion transducer and the pendulum's oscillations modulate the optical whispering gallery modes (WGMs) both dispersively and dissipatively. This unique mechanism leads to an experimentally-observable, asymmetric response function of the transduction spectrum. This phenomenon is explained by using coupled mode theory with Fourier transforms. The optomechanical transduction and its relation to the external coupling gap is experimentally investigated in depth and shows good agreement with the theory. A deep understanding of this mechanism is necessary in order to explore cooling and trapping of a micropendulum system.

  18. Simulating and studying the topological properties of generalized commensurate Aubry–André–Harper model with microresonator array

    Science.gov (United States)

    Cao, Ji; Xing, Yan; Qi, Lu; Wang, Dong-Yang; Bai, Cheng-Hua; Zhu, Ai-Dong; Zhang, Shou; Wang, Hong-Fu

    2018-01-01

    The Aubry–André or Harper (AAH) model has been studied extensively, against the background of quantum localization. Here we present a conceptually simple and experimentally feasible scheme to simulate a generalized 1D commensurate AAH model based on an array of whispering-gallery-mode microtoroid resonators connected via waveguides. We show that the commensurate off-diagonal AAH model exhibits topological zero-energy edge modes and topologically nontrivial properties. Compared with traditional commensurate AAH model, our model introduces the periodically modulated next-nearest-neighbor hopping term, and we find that the family of the model system can be made to exhibit topologically nontrivial properties by appropriate modulation of parameters.

  19. Optical Microbubble Resonators with High Refractive Index Inner Coating for Bio-Sensing Applications: An Analytical Approach

    Directory of Open Access Journals (Sweden)

    Andrea Barucci

    2016-11-01

    Full Text Available The design of Whispering Gallery Mode Resonators (WGMRs used as an optical transducer for biosensing represents the first and crucial step towards the optimization of the final device performance in terms of sensitivity and Limit of Detection (LoD. Here, we propose an analytical method for the design of an optical microbubble resonator (OMBR-based biosensor. In order to enhance the OMBR sensing performance, we consider a polymeric layer of high refractive index as an inner coating for the OMBR. The effect of this layer and other optical/geometrical parameters on the mode field distribution, sensitivity and LoD of the OMBR is assessed and discussed, both for transverse electric (TE and transverse magnetic (TM polarization. The obtained results do provide physical insights for the development of OMBR-based biosensor.

  20. Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity.

    Science.gov (United States)

    Jampani, V S R; Humar, M; Muševič, I

    2013-09-09

    We demonstrate the resonant transfer of light from a planar waveguide to a nematic liquid-crystal microdroplet immersed in water. A wide spectrum of light from a supercontinuum laser source is coupled into a high-refractive-index polymer waveguide using a prism-film coupler. The waveguide is in contact with a water dispersion of droplets from the nematic liquid-crystal 5CB. The evanescent field of the light in the waveguide is resonantly coupled to the whispering-gallery mode resonances, sustained by 5 - 20 μm-sized nematic liquid-crystal droplets, which are in close proximity to the waveguide. The resonant transfer of light is tuned by the temperature-induced shifting of the WGM resonances due to the temperature dependence of the refractive index of the nematic liquid crystal. The measurements are compared to the calculations of the coupled-mode theory.

  1. SNV's modes of ordering

    NARCIS (Netherlands)

    Hummel, John; Duim, van der Rene

    2016-01-01

    This article adopts an aidnographic approach to examine how internal organizational modes of ordering have influenced tourism development practices of SNV Netherlands Development Organisation (SNV). Our research revealed six modes of ordering: administration, project management, enterprising,

  2. Modes of log gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Rosseel, Jan; Townsend, Paul K.

    2011-01-01

    The physical modes of a recently proposed D-dimensional "critical gravity'', linearized about its anti-de Sitter vacuum, are investigated. All "log mode'' solutions, which we categorize as "spin-2'' or "Proca'', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized

  3. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  4. Mode selection laser

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a semiconductor mode selection laser, particularly to a VCSEL laser (200) having mode selection properties. The mode selection capability of the laser is achieved by configuring one of the reflectors (15,51) in the resonance cavity so that a reflectivity of the reflector...... (15) varies spatially in one dimension or two dimensions. Accordingly, the reflector (15) with spatially varying reflectivity is part both of the resonance cavity and the mode selection functionality of the laser. A plurality of the lasers configured with different mode selectors, i.e. different...... spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33...

  5. Conformal Organohalide Perovskites Enable Lasing on Spherical Resonators

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-28

    © 2014 American Chemical Society. Conformal integration of semiconductor gain media is broadly important in on-chip optical communication technology. Here we deploy atomic layer deposition to create conformally deposited organohalide perovskites-an attractive semiconducting gain medium-with the goal of achieving coherent light emission on spherical optical cavities. We demonstrate the high quality of perovskite gain media fabricated with this method, achieving optical gain in the nanosecond pulse regime with a threshold for amplified spontaneous emission of 65 ± 8 μJ cm-2. Through variable stripe length measurements, we report a net modal gain of 125 ± 22 cm-1 and a gain bandwidth of 50 ± 14 meV. Leveraging the high quality of the gain medium, we conformally coat silica microspheres with perovskite to form whispering gallery mode optical cavities and achieve lasing.

  6. On-chip sensing with high-Q amorphous silicon microdisk resonators

    Science.gov (United States)

    Lipka, T.; Amthor, J.; Müller, J.

    2013-05-01

    In this paper we present a low-loss hydrogenated amorphous silicon microdisk resonator which is employed for evanescent field refractive index sensing. The resonances of the whispering gallery modes have extinction ratios of measurements the resonators intrinsic limit of detection was calculated to be LOD=3.3x10-4 and the minimum detectable amount of NaCl diluted in DI-water was determined to be 0.0375%. The early results prove that photonic microdisk resonators that are fabricated with low-loss hydrogenated amorphous silicon material can be applied in a variety of different areas for label-free lab-on-chip sensing, including chemical, medical and bio-sensing applications.

  7. Fundamental limits in high-Q droplet microresonators

    Science.gov (United States)

    Giorgini, A.; Avino, S.; Malara, P.; de Natale, P.; Gagliardi, G.

    2017-02-01

    Liquid droplet whispering-gallery-mode microresonators open a new research frontier for sensing, optomechanics and photonic devices. At visible wavelengths, where most liquids are transparent, a major contribution to a droplet optical quality factor is expected theoretically from thermal surface distortions and capillary waves. Here, we investigate experimentally these predictions using transient cavity ring-down spectroscopy. With our scheme, the optical out-coupling and intrinsic loss are measured independently while any perturbation induced by thermal, acoustic and laser-frequency noise is avoided thanks to the ultra-short light-cavity interaction time. The measurements reveal a photon lifetime at least ten times longer than the thermal limit and indicate that capillary fluctuations activate surface scattering effects responsible for light coupling. This suggests that droplet microresonators are an ideal optical platform for ultra-sensitive spectroscopy of highly transparent liquid compounds in nano-liter volumes.

  8. Dispersive optomechanical coupling between a SiN nanomechanical oscillator and evanescent fields of a silica optical resonator

    Science.gov (United States)

    Dong, Chunhua; Htay Oo, Thein; Fiore, Victor; Wang, Hailin

    2013-03-01

    Tensile stressed SiN nanostrings can feature a picogram effective mass and a mechanical Q-factor exceeding a million. These remarkable nanomechanical oscillators can be dispersively-coupled to an ultra-high finesse optical microresonator via its evanescent field. This composite optomechanical system can potentially lead to a cooperativity that far exceeds that of monolithic optomechanical resonators. Here, we report an experimental study coupling a SiN nanostring to evanescent fields of a whispering gallery mode (WGM) in a silica microsphere. The slight deformation of the microsphere enables us to use free-space optical excitation to probe the optomechanical coupling. The dispersive coupling between a nanostring and the evanescent field of a WGM is generally expected to lead to a red shift in the resonance frequency of the WGM. Our experiments, however, reveal a blue frequency shift of the WGM. Detailed experimental studies and possible physical mechanisms for the blue shift will be presented.

  9. Hybrid Nanocavity Resonant Enhancement of Color Center Emission in Diamond

    Directory of Open Access Journals (Sweden)

    Paul E. Barclay

    2011-09-01

    Full Text Available Resonantly enhanced emission from the zero-phonon line of a diamond nitrogen-vacancy (NV center in single crystal diamond is demonstrated experimentally using a hybrid whispering gallery mode nanocavity. A 900 nm diameter ring nanocavity formed from gallium phosphide, whose sidewalls extend into a diamond substrate, is tuned onto resonance at a low temperature with the zero-phonon line of a negatively charged NV center implanted near the diamond surface. When the nanocavity is on resonance, the zero-phonon line intensity is enhanced by approximately an order of magnitude, and the spontaneous emission lifetime of the NV is reduced by as much as 18%, corresponding to a 6.3X enhancement of emission in the zero photon line.

  10. Aptamer Based Microsphere Biosensor for Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Xudong Fan

    2006-08-01

    Full Text Available We have developed an optical microsphere resonator biosensor using aptamer asreceptor for the measurement of the important biomolecule thrombin. The sphere surface ismodified with anti-thrombin aptamer, which has excellent binding affinity and selectivityfor thrombin. Binding of the thrombin at the sphere surface is monitored by the spectralposition of the microsphere’s whispering gallery mode resonances. A detection limit on theorder of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptameroligonucleotide and BSA are also carried out to confirm the specific binding betweenaptamer and thrombin. We expect that this demonstration will lead to the development ofhighly sensitive biomarker sensors based on aptamer with lower cost and higher throughputthan current technology.

  11. Simulation of single transparent molecule interaction with an optical microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Quan Haiyong; Guo Zhixiong [Department of Mechanical and Aerospace Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States)

    2007-09-19

    Finite-element simulations of nanoscale molecule interaction with the evanescent radiation field of an optical resonant microcavity are conducted to characterize the detection of single transparent molecules using the microcavity as an extremely sensitive micro/nano-sensor. The model sensor is an integrated device consisting of a dielectric microdisk and a waveguide that can be nanofabricated on Si-based dielectric thin film. When the microdisk is operated at a whispering-gallery mode, a strong evanescent field arises, surrounding the periphery of the cavity. Foreign target molecules such as proteins present in the near-field will interact with the electromagnetic resonant field and induce changes to the resonance. Such induced changes are investigated in this report and their significance in the detection of single molecules for nanotechnology development is discussed.

  12. Role of Edge Inclination in an Optical Microdisk Resonator for Label-Free Sensing

    Directory of Open Access Journals (Sweden)

    Davide Gandolfi

    2015-02-01

    Full Text Available In this paper, we report on the measurement and modeling of enhanced optical refractometric sensors based on whispering gallery modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide, which differ in their sidewall inclination angle. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. Device modeling shows that the optimization of the device is a delicate balance of the resonance quality factor and evanescent field overlap with the surrounding environment to analyze. By numerical simulations, we show that the microdisk thickness is critical to yield a high figure of merit for the sensor and that edge inclination should be kept as high as possible. We also show that bulk-sensing figures of merit as high as 1600 RIU-1 (refractive index unit are feasible.

  13. Ultraviolet to violet lasing from CdxZn1-xO microdisks produced by chemical vapor deposition

    Science.gov (United States)

    Chen, Zuxin; Chen, Xuechen; Chu, Sheng; Peng, Rufang

    2017-10-01

    High quality (HQ) hexagonal CdxZn1-xO microdisks, with bandgap from 3.02 eV to 3.22 eV, are grown by chemical vapor deposition (CVD). Structural and composition analyses indicate that the microdisks have hexagonal shape, single crystalline and tunable Cd concentration. By optical pumping, the microdisk functions as whispering-gallery-mode (WGM) resonator. Lasing from ultravoilet (UV, 385 nm) to violet (410 nm) is demonstrated at room temperature. The HQ factor (1283) is observed, only because of the WGM type resonance. The results demonstrate that the lasing characteristics of WGM cavity from CdxZn1-xO microdisks show promising applications in low threshold violet lasers and light emitting devices.

  14. Operation of an InAs quantum-dot embedded GaAs photonic crystal slab waveguide laser by using two-photon pumping for photonics integrated circuits

    Directory of Open Access Journals (Sweden)

    H. Oda

    2016-06-01

    Full Text Available The development of small sized laser operating above room temperature is important in the realization of optical integrated circuits. Recently, micro-lasers consisting of photonic crystals (PhCs and whispering gallery mode cavities have been demonstrated. Optically pumped laser devices could be easily designed using photonic crystal-slab waveguides (PhC-WGs with an air-bridge type structure. In this study, we observe lasing at 1.3μm from two-photon pumped InAs-quantum-dots embedded GaAs PhC-WGs above room temperature. This type of compact laser shows promise as a new light source in ultra-compact photonics integrated circuits.

  15. Efficient purification and concentration for Λ-type three-level entangled quantum dots using non-reciprocal microresonators

    Science.gov (United States)

    Gao, Wei-Chao; Cao, Cong; Wang, Tie-Jun; Wang, Chuan

    2017-08-01

    Distribution of maximal entanglement is a key technique in long-distance quantum communication. In particular, the entanglement distribution with high fidelity relies on the efficient entanglement purification and concentration. Here in this study, we present a feasible approach to complete the entanglement purification and entanglement concentration for Λ-type three-level entangled quantum dots by using the whispering-gallery-mode microcavity and the quantum dot coupled system. Exploiting the input-output process of the probe light, we design a parity check gate which allows the quantum non-demolition measurement on the remote entangled quantum dots. Moreover, one can distill a high-fidelity entangled solid-state ensemble from a mixed entangled state or less entangled state ensemble non-locally. The proposed protocol exhibits the advantages of high fidelity which could be further applied to quantum repeaters and quantum information processing with the current experimental technologies.

  16. On-Chip Fabrication of Glass Sphere Laser

    Directory of Open Access Journals (Sweden)

    Kishi Tetsuo

    2015-01-01

    Full Text Available Fabrication and application of glass spherical micro-cavity for lasing are reported. Surface-tension molding (StM and localized-laser heating (LLH techniques have been developed to fabricate glass super sphere, which is partially truncated spherical shape, and true spheres, respectively. Whispering gallery mode (WGM resonances or laser oscillations from the spherical glasses were demonstrated. Super-spherical glasses possessed WGM resonances on its equatorial plane. The equatorial plane with high roundness (>0.99 serves a high quality factor to lead laser oscillation. LLH technique enables us to fabricate true spheres on a transparent substrate. Tellurite glass spheres prepared by the LLH technique showed laser oscillation with few-mW-order thresholds by direct pumping. StM and LLH technique are very suitable for both preparation and utilization of glass spheres for optical micro-cavity.

  17. Dispersion relations and bending losses of cylindrical and spherical shells, slabs, and slot waveguides.

    Science.gov (United States)

    Kozyreff, Gregory; Acharyya, Nirmalendu

    2016-12-12

    We derive formulas for whispering gallery mode resonances and bending losses in infinite cylindrical dielectric shells and sets of concentric cylindrical shells. The formulas also apply to spherical shells and to sections of bent waveguides. The derivation is based on a Wentzel-Kramers-Brillouin (WKB) treatment of Helmholtz equation and can in principle be extended to any number of concentric shells. A distinctive limit analytically arises in the analysis when two shells are brought at very close distance to one another. In that limit, the two shells act as a slot waveguide. If the two shells are sufficiently apart, we identify a structural resonance between the individual shells, which can either lead to a substantial enhancement or suppression of radiation losses.

  18. Dispersion engineering of a microsphere via multi-layer coating.

    Science.gov (United States)

    Jin, Xueying; Wang, Jing; Wang, Mengyu; Dong, Yongchao; Li, Fei; Wang, Keyi

    2017-10-01

    Controlling dispersion of a whispering gallery mode resonator is of critical importance for many nonlinear applications, such as frequency comb generation, parametric oscillators, Raman lasers, stimulated Brillouin lasers, and ultrafast optics. Here, we show by numerical and theoretical modeling that dispersion can be strongly engineered in a three-layer-coated microsphere of high, low, and high refractive indices (RIs). We investigate the impact of the coating thickness, the gap between the two high-RI layers, the surrounding medium, and the coating materials on the group-velocity dispersion and discover that the dispersion is controllable over a broad range in both normal and anomalous dispersion regimes. Our approach provides dispersion engineering flexibility in any axisymmetric resonator with a three-layer-coating structure.

  19. Biosensors based on GaN nanoring optical cavities

    Science.gov (United States)

    Kouno, Tetsuya; Takeshima, Hoshi; Kishino, Katsumi; Sakai, Masaru; Hara, Kazuhiko

    2016-05-01

    Biosensors based on GaN nanoring optical cavities were demonstrated using room-temperature photoluminescence measurements. The outer diameter, height, and thickness of the GaN nanorings were approximately 750-800, 900, and 130-180 nm, respectively. The nanorings functioned as whispering-gallery-mode (WGM)-type optical cavities and exhibited sharp resonant peaks like lasing actions. The evanescent component of the WGM was strongly affected by the refractive index of the ambient environment, the type of liquid, and the sucrose concentration of the analyzed solution, resulting in shifts of the resonant wavelengths. The results indicate that the GaN nanorings can potentially be used in sugar sensors of the biosensors.

  20. A Microring Resonator Based Negative Permeability Metamaterial Sensor

    Directory of Open Access Journals (Sweden)

    Yao-Zhong Lan

    2011-08-01

    Full Text Available Metamaterials are artificial multifunctional materials that acquire their material properties from their structure, rather than inheriting them directly from the materials they are composed of, and they may provide novel tools to significantly enhance the sensitivity and resolution of sensors. In this paper, we derive the dispersion relation of a cylindrical dielectric waveguide loaded on a negative permeability metamaterial (NPM layer, and compute the resonant frequencies and electric field distribution of the corresponding Whispering-Gallery-Modes (WGMs. The theoretical resonant frequency and electric field distribution results are in good agreement with the full wave simulation results. We show that the NPM sensor based on a microring resonator possesses higher sensitivity than the traditional microring sensor since with the evanescent wave amplification and the increase of NPM layer thickness, the sensitivity will be greatly increased. This may open a door for designing sensors with specified sensitivity.

  1. Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity.

    Science.gov (United States)

    Li, Bei-Bei; Xiao, Yun-Feng; Yan, Meng-Yuan; Clements, William R; Gong, Qihuang

    2013-06-01

    We study the stimulated Raman emission of a high-Q polydimethylsiloxane (PDMS)-coated silica microsphere on a silicon chip. In this hybrid structure, as the thickness of the PDMS coating increases, the spatial distribution of the whispering gallery modes moves inside the PDMS layer, and the light emission switches from silica Raman lasing to PDMS Raman lasing. The Raman shift of the PDMS Raman laser is measured at 2900 cm(-1), corresponding to the strongest Raman fingerprint of bulk PDMS material. The threshold for this PDMS Raman lasing is demonstrated to be as low as 1.3 mW. This type of Raman emission from a surface-coated high-Q microcavity not only provides a route for extending lasing wavelengths, but also shows potential for detecting specific analytes.

  2. Millisecond Photon Lifetime in a Slow-Light Microcavity

    Science.gov (United States)

    Huet, V.; Rasoloniaina, A.; Guillemé, P.; Rochard, P.; Féron, P.; Mortier, M.; Levenson, A.; Bencheikh, K.; Yacomotti, A.; Dumeige, Y.

    2016-04-01

    Optical microcavities with ultralong photon storage times are of central importance for integrated nanophotonics. To date, record quality (Q ) factors up to 1011 have been measured in millimetric-size single-crystal whispering-gallery-mode (WGM) resonators, and 1010 in silica or glass microresonators. We show that, by introducing slow-light effects in an active WGM microresonator, it is possible to enhance the photon lifetime by several orders of magnitude, thus circumventing both fabrication imperfections and residual absorption. The slow-light effect is obtained from coherent population oscillations in an erbium-doped fluoride glass microsphere, producing strong dispersion of the WGM (group index ng˜106). As a result, a photon lifetime up to 2.5 ms at room temperature has been measured, corresponding to a Q factor of 3 ×1012 at 1530 nm. This system could yield a new type of optical memory microarray with ultralong storage times.

  3. A Solid State Ultraviolet Lasers Based on Cerium-Doped LiCaAIF(sub 6) Crystal Resonator

    Science.gov (United States)

    Yu, Nan; Le, Thanh; Schowalter, Steven J.; Rellergert, Wade; Jeet, Justin; Lin, Guoping; Hudson, Eric

    2012-01-01

    We report the first demonstration of a UV laser using a high-Q whispering gallery mode (WGM) resonator of Ce+: LiCaAlF6. We show that WGM resonators from LiCaAlF6 can achieve a Q of 2.6 x 10(sup 7) at UV. We demonstrated a UV laser at 290 nm with a pulsed pump laser at 266 nm. The experiments showed the low pump threshold intensity of 7.5 x 10(sup 9) W/m(sup 2) and slope efficiency of 25%. We have also observed lasing delay dynamics. These results are consistent with our modeling and theoretical estimates, and pave the way for a low threshold cw UV laser using WGM resonator cavity.

  4. Operation of an InAs quantum-dot embedded GaAs photonic crystal slab waveguide laser by using two-photon pumping for photonics integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Oda, H., E-mail: h-oda@photon.chitose.ac.jp; Yamanaka, A. [Chitose Institute of Science and Technology, 758-65 Chitose 066-8655 (Japan); Ozaki, N. [Faculty of Systems Engineering, Wakayama University, Wakayama 640-8510 (Japan); Ikeda, N.; Sugimoto, Y. [National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8561 (Japan)

    2016-06-15

    The development of small sized laser operating above room temperature is important in the realization of optical integrated circuits. Recently, micro-lasers consisting of photonic crystals (PhCs) and whispering gallery mode cavities have been demonstrated. Optically pumped laser devices could be easily designed using photonic crystal-slab waveguides (PhC-WGs) with an air-bridge type structure. In this study, we observe lasing at 1.3μm from two-photon pumped InAs-quantum-dots embedded GaAs PhC-WGs above room temperature. This type of compact laser shows promise as a new light source in ultra-compact photonics integrated circuits.

  5. Adiabatic tapered optical fiber fabrication in two step etching

    Science.gov (United States)

    Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.

    2016-01-01

    A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.

  6. Optofluidic microring flowmeter based on heat transfer effect

    Science.gov (United States)

    Gong, Yuan; Zhang, Minglei; Gong, Chaoyang; Wu, Yu; Rao, Yunjiang; Fan, Xudong

    2017-04-01

    We demonstrate an optofluidic flow rate sensor based on the heat transfer effect in a microfluidic channel for the lab-on-a-chip applications. By employing an optofluidic ring resonator (OFRR), the wavelength shift of the resonant dip of the whispering gallery mode is detected as a function of the flow rate when the flow is heated by a 1480 nm laser. A measurement range of 2 μL/min - 100 μL/min, a minimum detectable change of 30 nL/min for the flow rate detection are achieved. Experimental results indicate that the OFRR flow rate sensor has good repeatability and the inverse sensitivity is beneficial for detecting the low flow rate with high sensitivity.

  7. Optical sensors of bulk refractive index using optical fiber resonators

    Science.gov (United States)

    Eryürek, M.; Karadag, Y.; Ghafoor, M.; Bavili, N.; Cicek, K.; Kiraz, A.

    2017-05-01

    Optical fiber resonator (OFR) sensor is presented for bulk liquid refractive index (RI) sensing. The sensing mechanism relies on the spectral shifts of whispering gallery modes (WGMs) of OFRs which are excited using a tapered fiber. OFR liquid RI sensor is fully characterized using water solutions of ethanol and ethylene glycol (EG). A good agreement is achieved between the analytical calculations and experimental results for both TE and TM polarizations. The detection limit for bulk RI is calculated to be between 2.7 - 4.7 × 10-5 refractive index unit (RIU). The OFR sensor provides a robust, easy-to-fabricate and sensitive liquid refractive index sensor which can be employed in lab-on-a-chip applications.

  8. Synchronization Dynamics in a Designed Open System

    Science.gov (United States)

    Yokoshi, Nobuhiko; Odagiri, Kazuki; Ishikawa, Akira; Ishihara, Hajime

    2017-05-01

    We theoretically propose a unifying expression for synchronization dynamics between two-level constituents. Although synchronization phenomena require some substantial mediators, the distinct repercussions of their propagation delays remain obscure, especially in open systems. Our scheme directly incorporates the details of the constituents and mediators in an arbitrary environment. As one example, we demonstrate the synchronization dynamics of optical emitters on a dielectric microsphere. We reveal that the whispering gallery modes (WGMs) bridge the well-separated emitters and accelerate the synchronized fluorescence, known as superfluorescence. The emitters are found to overcome the significant and nonuniform retardation, and to build up their pronounced coherence by the WGMs, striking a balance between the roles of resonator and intermediary. Our work directly illustrates the dynamical aspects of many-body synchronizations and contributes to the exploration of research paradigms that consider designed open systems.

  9. Ge Microdisk with Lithographically-Tunable Strain using CMOS-Compatible Process

    CERN Document Server

    Sukhdeo, David S; Gupta, Shashank; Kim, Daeik; Woo, Sungdae; Kim, Youngmin; Vuckovic, Jelena; Saraswat, Krishna C; Nam, Donguk

    2015-01-01

    We present germanium microdisk optical resonators under a large biaxial tensile strain using a CMOS-compatible fabrication process. Biaxial tensile strain of ~0.7% is achieved by means of a stress concentration technique that allows the strain level to be customized by carefully selecting certain lithographic dimensions. The partial strain relaxation at the edges of a patterned germanium microdisk is compensated by depositing compressively stressed silicon nitride layer. Two-dimensional Raman spectroscopy measurements along with finite-element method simulations confirm a relatively homogeneous strain distribution within the final microdisk structure. Photoluminescence results show clear optical resonances due to whispering gallery modes which are in good agreement with finite-difference time-domain optical simulations. Our bandgap-customizable microdisks present a new route towards an efficient germanium light source for on-chip optical interconnects.

  10. Efficient free-space read-out of WGM lasers using circular micromirrors.

    Science.gov (United States)

    Wienhold, Tobias; Kraemmer, Sarah; Bacher, Andreas; Kalt, Heinz; Koos, Christian; Koeber, Sebastian; Mappes, Timo

    2015-01-26

    Lasing from whispering-gallery mode (WGM) resonators occurs omnidirectional in azimuthal plane. Most applications of WGM resonators require spectral analysis with off-chip detectors, where in-plane emission and beam divergence hinder efficient detection. We demonstrate redirecting WGM laser emission from all azimuthal angles using a circular micromirror placed around the cavity. By collecting reflections off the micromirror via free-space optics, read-out intensity improved by one order of magnitude. Blocking vertically emitted spontaneous emission and recording reflections off the micromirror only, signal-to-noise ratio improved from 4.6 dB to 15 dB. Our read-out concept may be applied to arbitrary WGM cavity geometries without deteriorating the cavity's quality factor.

  11. Bound states and perfect transmission scattering states in P T -symmetric open quantum systems

    Science.gov (United States)

    Garmon, Savannah; Gianfreda, Mariagiovanna; Hatano, Naomichi

    2014-03-01

    We study the point spectrum and transmission scattering spectrum in P T -symmetric open quantum systems containing balanced regions of energy amplification and attenuation, using tight-binding chains with matching sink and source sites as prototype models. For a given system geometry, we write the boundary conditions that permit scattering state and bound state solutions with wave functions that likewise satisfy P T symmetry; we further demonstrate the P T -symmetric scattering states give rise to perfect transmission through the scattering region. We also discuss bound states in continuum and other spectral effects that may be discovered in P T -symmetric open quantum systems. Finally we discuss the potential for experimental realization of our models in systems containing whispering gallery mode resonators with balanced loss and gain. S. G. acknowledges support from the Japan Society for the Promotion of Science.

  12. Temperature-induced tuning of emission spectra of liquid-crystal optical microcavities

    Science.gov (United States)

    Zemánek, Pavel; Pilát, Zdeněk.; Ježek, Jan; Bernatová, Silvie; Aas, Mehdi; Kiraz, Alper; Jonáš, Alexandr

    2016-12-01

    Emulsion droplets of liquid crystals (LC) suspended in water and labeled with a suitable fluorescent dye can serve as active optofluidic microcavities, since the contrast of refractive index between the LC droplets and the surrounding aqueous medium allows excitation of whispering gallery modes (WGMs) in the droplets. In addition, such emulsion droplets can be also stably trapped in three-dimensions using optical tweezers which stabilizes the droplets while investigating their spectral characteristics. We explore various combinations of fluorescently dyed LC droplets and host liquid - surfactant systems and show that the WGM emission spectrum of an optically trapped LC droplet-based cavity can be largely and (almost) reversibly tuned by controlled changes of the ambient temperature that induce phase transitions in the LC droplets. Our results indicate feasibility of this approach for creating miniature tunable sources of coherent light.

  13. Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source

    DEFF Research Database (Denmark)

    Schunk, Gerhard; Vogl, Ulrich; Strekalov, Dmitry V.

    2015-01-01

    wavelength-tuning mechanisms that allow a coarse tuning to either the cesium or rubidium wavelength, with subsequent continuous fine-tuning to the desired transition. As a demonstration of the functionality of the source, we performed a heralded single-photon measurement of the atomic decay. We present......Quantum information technology strongly relies on the coupling of optical photons with narrowband quantum systems, such as quantum dots, color centers, and atomic systems. This coupling requires matching the optical wavelength and bandwidth to the desired system, which presents a considerable...... problem for most available sources of quantum light. Here we demonstrate the coupling of alkali dipole transitions with a tunable source of photon pairs. Our source is based on spontaneous parametric downconversion in a triply resonant whispering gallery mode resonator. For this, we have developed novel...

  14. Tunable photonic elements at the surface of an optical fiber with piezoelectric core

    CERN Document Server

    Dmitriev, Artemiy V

    2016-01-01

    Tunable photonic elements at the surface of an optical fiber with piezoelectric core are proposed and analyzed theoretically. These elements are based on whispering gallery modes whose propagation along the fiber is fully controlled by nanoscale variation of the effective fiber radius, which can be tuned by means of a piezoelectric actuator embedded into the core. The developed theory allows one to express the introduced effective radius variation through the shape of the actuator and the voltage applied to it. In particular, the design of a miniature tunable optical delay line and a miniature tunable dispersion compensator is presented. The potential application of the suggested model to the design of a miniature optical buffer is discussed.

  15. Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  16. Microbubble Surface Modes

    NARCIS (Netherlands)

    Versluis, Michel; Palanchon, P.; Goertz, D.; van der Meer, S.M.; Chin, C.T.; Lohse, Detlef; de Jong, N.

    2004-01-01

    We have investigated surface vibrations generated by ultrasound excitation of individual unencapsulated micron-sized bubbles. In addition, we present surface modes (n=2 and 3) observed for phospholipid-coated ultrasound contrast agents excited through excitation of radial modes at frequencies

  17. Mode decomposition evolution equations.

    Science.gov (United States)

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2012-03-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  18. Shaft mode shape demonstration

    Science.gov (United States)

    Grissom, R.

    1985-01-01

    The dynamic response of a rotating machine is directly influenced by its geometric configuration and all aspects of the rotor construction. These determine two significant parameters, mass distribution and stiffness, which yield a spectrum of natural frequencies and mode shapes. The mode shapes can be presented as snapshots of the characteristic amplitude/phase reponse patterns of the shaft, due to the major forcing function of unbalance, at different rotative speeds. To demonstrate the three shaft mode shapes of the rotor rig using the Shaft Mode Demonstrator and oscilloscopes. The synchronous (1X) amplitude and phase of the rotor vibration in the vertical direction from several points along the shaft is displayed on corresponding points of the demonstrator. Unfiltered vibration from vertical and horizontal probe pairs is displayed on the oscilloscopes in orbit format for a dynamic presentation of the mode shape.

  19. Higher Order Mode Fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller

    This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others....... The research presented in this thesis falls in three parts. In the first part, a first time demonstration of the break of the azimuthal symmetry of the Bessel-like LP0X modes is presented. This effect, known as the bowtie effect, causes the mode to have an azimuthal dependence as well as a quasi......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...

  20. Mode choice model parameters estimation

    OpenAIRE

    Strnad, Irena

    2010-01-01

    The present work focuses on parameter estimation of two mode choice models: multinomial logit and EVA 2 model, where four different modes and five different trip purposes are taken into account. Mode choice model discusses the behavioral aspect of mode choice making and enables its application to a traffic model. Mode choice model includes mode choice affecting trip factors by using each mode and their relative importance to choice made. When trip factor values are known, it...

  1. Surface modes in physics

    CERN Document Server

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  2. Mode Gaussian beam tracing

    Science.gov (United States)

    Trofimov, M. Yu.; Zakharenko, A. D.; Kozitskiy, S. B.

    2016-10-01

    A mode parabolic equation in the ray centered coordinates for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the ASA wedge benchmark and proved an excellent agreement with the source images method in the case of cross-slope propagation. But in the cases of wave propagation at some angles to the cross-slope direction an account of mode interaction becomes necessary.

  3. Sliding mode control and observation

    CERN Document Server

    Shtessel, Yuri; Fridman, Leonid; Levant, Arie

    2014-01-01

    The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...

  4. Free boundary ballooning mode representation

    Science.gov (United States)

    Zheng, Linjin

    2012-03-01

    Considerable efforts have been made in this field to develop a free boundary ballooning mode representation, which can incorporate the peeling mode stability criterion. Those efforts have not succeeded, simply because the so-called ballooning mode invariance is broken toward plasma edge. This makes 1D description of high n modes at plasma edge become impossible, where n is toroidal mode number. Nevertheless, we prove that the existence of ``half" ballooning mode invariance toward plasma core enables an 1.δ-dimentional representation of the modes, where δ˜O(1/n). This considerably reduces the complicity in investigating high n modes at plasma edge and can be used to study peeling-ballooning modes. This technique can also be useful to extend the 1D calculation of fixed boundary ballooning modes for free boundary ballooning modes. Numerical example will also be presented together with the topological symmetry analysis.

  5. Modeli diskretne izbire

    Directory of Open Access Journals (Sweden)

    Boštjan Kerbler – Kefo

    2006-01-01

    Full Text Available V članku je sistematično predstavljena posebna oblika regresijskih metod – modelov diskretne izbire –, imenovanih tudi verjetnostni modeli. Poleg njihovega pomena so opisane še metodološke značilnosti pri njihovi izvedbi, natančneje pa so predstavljeni modeli binarne izbire in tisti z omejeno odvisno spremenljivko, logistični model ter modela probit in tobit kot izhodiščni metodološki pristopi k izvedbi modelov.

  6. Mode og mozzarella

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2013-01-01

    Under en samtale i Paolo Sorrentinos La grande bellezza/da. Den store skønhed (2013) anføres det, at Italiens primære eksportvarer er mode og mozzarella. Selve filmen vidner om, at Italien har andet at byde på – heriblandt filmkunst og Roms righoldige kulturhistorie.......Under en samtale i Paolo Sorrentinos La grande bellezza/da. Den store skønhed (2013) anføres det, at Italiens primære eksportvarer er mode og mozzarella. Selve filmen vidner om, at Italien har andet at byde på – heriblandt filmkunst og Roms righoldige kulturhistorie....

  7. Nonclassicality in two-mode BEC

    OpenAIRE

    Giri, Sandip Kumar; Sen, Biswajit; Ooi, C H Raymond; Pathak, Anirban

    2013-01-01

    The operator solution of a completely quantum mechanical Hamiltonian of the Raman processes is used here to investigate the possibility of obtaining intermodal entanglement between different modes involved in the Raman processes (e.g. pump mode, Stokes mode, vibration (phonon) mode and anti-Stokes mode). Intermodal entanglement is reported between a) pump mode and anti-Stokes mode, b) pump mode and vibration (phonon) mode c) Stokes mode and vibration phonon mode, d) Stokes mode and anti-stoke...

  8. 77 FR 54935 - Government-Owned Inventions, Available for Licensing.

    Science.gov (United States)

    2012-09-06

    ...-Degree Camera Head for Unmanned Surface Sea Vehicles; NASA Case No. NPO-47300-1: Textured Silicon Substrate Anode for LI Ion Battery; NASA Case No. NPO-47604-1: Whispering Gallery Optical Resonator...

  9. Vibrational modes of nanolines

    Science.gov (United States)

    Heyliger, Paul R.; Flannery, Colm M.; Johnson, Ward L.

    2008-04-01

    Brillouin-light-scattering spectra previously have been shown to provide information on acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element methods for modeling such modes are presented here. These methods provide a theoretical framework for determining elastic constants and dimensions of nanolines from measured spectra in the low gigahertz range. To make the calculations feasible for future incorporation in inversion algorithms, two approximations of the boundary conditions are employed in the calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of displacements along the nanoline length. The accuracy of these approximations is evaluated as a function of wavenumber and frequency. The great advantage of finite-element methods over other methods previously employed for nanolines is the ability to model any cross-sectional geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes. This paper is a contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.

  10. Mode Gaussian beam tracing

    CERN Document Server

    Trofimov, M Yu; Kozitskiy, S B

    2015-01-01

    An adiabatic mode Helmholtz equation for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the crosswedge benchmark and proved an excellent agreement with the source images method.

  11. New Modes of Citizenship

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian Mossfeldt

    2017-01-01

    in common that they involve important elements of autonomy and self-care and are part of an international movement toward empowering citizens and patients. This chapter discusses the relation between care innovation and new modes of citizenship in terms of the ‘active’ citizen. By way of an ethnographic...

  12. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  13. Theories and Modes

    Science.gov (United States)

    Apsche, Jack A.

    2005-01-01

    In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…

  14. Modes of perceiving and imagining

    OpenAIRE

    Nudds, Matthew

    2000-01-01

    We enjoy modes of sensory imagining corresponding to our five modes of perception - seeing, touching, hearing, smelling and tasting. An account of what constitutes these different modes of perseption needs also to explain what constitutes the corresponding modes of sensory perception. In this paper I argue that we can explain what distinguishes the different modes of sensory imagination in terms of their characteristic experiences without supposing that we must distinguish the senses in terms...

  15. Mode-to-mode energy transfers in convective patterns

    Indian Academy of Sciences (India)

    Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...

  16. Azimuthal decomposition of optical modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-07-01

    Full Text Available This presentation analyses the azimuthal decomposition of optical modes. Decomposition of azimuthal modes need two steps, namely generation and decomposition. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency...

  17. Free boundary ballooning mode representation

    Science.gov (United States)

    Zheng, L. J.

    2012-10-01

    A new type of ballooning mode invariance is found in this paper. Application of this invariance is shown to be able to reduce the two-dimensional problem of free boundary high n modes, such as the peeling-ballooning modes, to a one-dimensional problem. Here, n is toroidal mode number. In contrast to the conventional ballooning representation, which requires the translational invariance of the Fourier components of the perturbations, the new invariance reflects that the independent solutions of the high n mode equations are translationally invariant from one radial interval surrounding a single singular surface to the other intervals. The conventional ballooning mode invariance breaks down at the vicinity of plasma edge, since the Fourier components with rational surfaces in vacuum region are completely different from those with rational surfaces in plasma region. But, the new type of invariance remains valid. This overcomes the limitation of the conventional ballooning mode representation for studying free boundary modes.

  18. Aristotelian Syllogistic, Subalternate Modes, Theophrastus’ Modes and the Fourth Figure

    OpenAIRE

    СЛИНИН Я.А.

    2015-01-01

    In his treatise «New Essays Concerning Human Understanding» Leibniz gives some evidence which suggests that he believed that each of the four figures of Aristotle’s categorical syllogism has 6 correct modes. It is known that Aristotle stated and proved correct syllogisms modes in the three figures, with the fi rst of them having a number of the indirect modes. Why Aristotle did not explicitly introduced into his syllogistic subalternative modes and modes with conversed conclusion? In the pape...

  19. Damage mechanics - failure modes

    Energy Technology Data Exchange (ETDEWEB)

    Krajcinovic, D.; Vujosevic, M. [Arizona State Univ., Tempe, AZ (United States)

    1996-12-31

    The present study summarizes the results of the DOE sponsored research program focused on the brittle failure of solids with disordered microstructure. The failure is related to the stochastic processes on the microstructural scale; namely, the nucleation and growth of microcracks. The intrinsic failure modes, such as the percolation, localization and creep rupture, are studied by emphasizing the effect of the micro-structural disorder. A rich spectrum of physical phenomena and new concepts that emerges from this research demonstrates the reasons behind the limitations of traditional, deterministic, and local continuum models.

  20. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  1. Standardization of Keyword Search Mode

    Science.gov (United States)

    Su, Di

    2010-01-01

    In spite of its popularity, keyword search mode has not been standardized. Though information professionals are quick to adapt to various presentations of keyword search mode, novice end-users may find keyword search confusing. This article compares keyword search mode in some major reference databases and calls for standardization. (Contains 3…

  2. Raman amplification of OAM modes

    DEFF Research Database (Denmark)

    Ingerslev, Kasper; Gregg, Patrick; Galili, Michael

    2017-01-01

    The set of fibre modes carrying orbital angular momentum (OAM) is a possible basis for mode division multiplexing. In this regard, fibres supporting OAM modes have been fabricated [1], and optical communication using these fibres, has been demonstrated [2]. A vital part of any long range communic...

  3. Fluxon modes in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Madsen, Søren Peder

    2004-01-01

    We show how to construct fluxon modes from plasma modes in the inductively coupled stacked Josephson junctions, and consider some special cases of these fluxon modes analytically. In some cases we can find exact analytical solutions when we choose the bias current in a special way. We also consid...

  4. Design of large mode area, mode selection fiber

    Science.gov (United States)

    Jin, Liang; Xu, Li; Zhang, He; Zou, Yonggang; Ding, Ye; Ma, Xiaohui

    2014-12-01

    The paper study on the effect of index distribution on the mode field and calculated the mode distribution in various index profiles. A single mode gaussian hybrid multicore fiber with 19 hexagonally arranged high index quartz rods is designed and investigated. Theoretical and simulative results are presented and compared to the conventional large mode area double clad fiber, the fundamental mode (FM) area can be reached 694.28 μm2, the confinement loss of FM and high order modes (HOMs) are 0.186 dB/m and 1.48 dB/m respectively with the bending radius of 20 cm at 1.064 μm wavelength, moreover, the index distribution can resistant the mode field distortion, which caused by fiber bending. So the FM delivery can be formed and the beam quality can be improved.

  5. Viscoelastic pulsational mode

    Science.gov (United States)

    Dutta, Pranamika; Karmakar, Pralay Kumar

    2017-08-01

    We present a theoretical model analysis to study the linear pulsational mode dynamics in viscoelastic complex self-gravitating infinitely extended clouds in the presence of active frictional coupling and dust-charge fluctuations. The complex cloud consists of uniformly distributed lighter hot mutually thermalized electrons and ions, and heavier cold dust grains amid partial ionization in a homogeneous, quasi-neutral, hydrostatic equilibrium configuration. A normal mode analysis over the closed set of slightly perturbed cloud governing equations is employed to obtain a generalized dispersion relation (septic) of unique analytic construct on the plasma parameters. Two extreme cases of physical interest depending on the perturbation scaling, hydrodynamic limits and kinetic limits are considered. It is shown that the grain mass and viscoelastic relaxation time associated with the charged dust fluid play stabilizing roles to the fluctuations in the hydrodynamic regime. In contrast, however in the kinetic regime, the stabilizing effects are introduced by the dust mass, dust equilibrium density and equilibrium ionic population distribution. Besides, the oscillatory and propagatory features are illustrated numerically and interpreted in detail. The results are in good agreement with the previously reported findings as special corollaries in like situations. Finally, a focalized indication to new implications and applications of the outcomes in the astronomical context is foregrounded.

  6. Monolithic mode-selective few-mode multicore fiber multiplexers.

    Science.gov (United States)

    Riesen, Nicolas; Gross, Simon; Love, John D; Sasaki, Yusuke; Withford, Michael J

    2017-08-01

    With the capacity limits of standard single-mode optical fiber fast approaching, new technologies such as space-division multiplexing are required to avoid an Internet capacity crunch. Few-mode multicore fiber (FM-MCF) could allow for a two orders of magnitude increase in capacity by using the individual spatial modes in the different cores as unique data channels. We report the realization of a monolithic mode-selective few-mode multicore fiber multiplexer capable of addressing the individual modes of such a fiber. These compact multiplexers operate across the S + C + L telecommunications bands and were inscribed into a photonic chip using ultrafast laser inscription. They allow for the simultaneous multiplexing of the LP 01 , LP 11a and LP 11b modes of all cores in a 3-mode, 4-core fiber with excellent mode extinction ratios and low insertion losses. The devices are scalable to more modes and cores and therefore could represent an enabling technology for practical ultra-high capacity dense space-division multiplexing.

  7. Polarization Mode Dispersion

    CERN Document Server

    Galtarossa, Andrea

    2005-01-01

    This book contains a series of tutorial essays on polarization mode dispersion (PMD) by the leading experts in the field. It starts with an introductory review of the basic concepts and continues with more advanced topics, including a thorough review of PMD mitigation techniques. Topics covered include mathematical representation of PMD, how to properly model PMD in numerical simulations, how to accurately measure PMD and other related polarization effects, and how to infer fiber properties from polarization measurements. It includes discussions of other polarization effects such as polarization-dependent loss and the interaction of PMD with fiber nonlinearity. It additionally covers systems issues like the impact of PMD on wavelength division multiplexed systems. This book is intended for research scientists or engineers who wish to become familiar with PMD and its system impacts.

  8. The Integrated Mode Management Interface

    Science.gov (United States)

    Hutchins, Edwin

    1996-01-01

    Mode management is the processes of understanding the character and consequences of autoflight modes, planning and selecting the engagement, disengagement and transitions between modes, and anticipating automatic mode transitions made by the autoflight system itself. The state of the art is represented by the latest designs produced by each of the major airframe manufacturers, the Boeing 747-400, the Boeing 777, the McDonnell Douglas MD-11, and the Airbus A320/A340 family of airplanes. In these airplanes autoflight modes are selected by manipulating switches on the control panel. The state of the autoflight system is displayed on the flight mode annunciators. The integrated mode management interface (IMMI) is a graphical interface to autoflight mode management systems for aircraft equipped with flight management computer systems (FMCS). The interface consists of a vertical mode manager and a lateral mode manager. Autoflight modes are depicted by icons on a graphical display. Mode selection is accomplished by touching (or mousing) the appropriate icon. The IMMI provides flight crews with an integrated interface to autoflight systems for aircraft equipped with flight management computer systems (FMCS). The current version is modeled on the Boeing glass-cockpit airplanes (747-400, 757/767). It runs on the SGI Indigo workstation. A working prototype of this graphics-based crew interface to the autoflight mode management tasks of glass cockpit airplanes has been installed in the Advanced Concepts Flight Simulator of the CSSRF of NASA Ames Research Center. This IMMI replaces the devices in FMCS equipped airplanes currently known as mode control panel (Boeing), flight guidance control panel (McDonnell Douglas), and flight control unit (Airbus). It also augments the functions of the flight mode annunciators. All glass cockpit airplanes are sufficiently similar that the IMMI could be tailored to the mode management system of any modern cockpit. The IMMI does not replace the

  9. Waveguides having patterned, flattened modes

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, Michael J.; Pax, Paul H.; Dawson, Jay W.

    2015-10-27

    Field-flattening strands may be added to and arbitrarily positioned within a field-flattening shell to create a waveguide that supports a patterned, flattened mode. Patterning does not alter the effective index or flattened nature of the mode, but does alter the characteristics of other modes. Compared to a telecom fiber, a hexagonal pattern of strands allows for a three-fold increase in the flattened mode's area without reducing the separation between its effective index and that of its bend-coupled mode. Hexagonal strand and shell elements prove to be a reasonable approximation, and, thus, to be of practical benefit vis-a-vis fabrication, to those of circular cross section. Patterned flattened modes offer a new and valuable path to power scaling.

  10. Fabrication, characterization, and application of microresonators and resonant structures

    Science.gov (United States)

    Cohoon, Gregory A.

    Optical resonators are structures that allow light to circulate and store energy for a duration of time. This work primarily looks at the fabrication, characterization, and application of whispering gallery mode microresonators and the analysis of organic photonic crystal-like structures and simulation of their resonant effects. Whispering gallery mode (WGM) microresonators are a class of cylindrically symmetric optical resonator which light circulates around the equator of the structure. These resonators are named after acoustic whispering galleries, where a whisper can be heard anywhere along the perimeter of a circular room. These optical structures are known for their ultra high Q-factor and their low mode volume. Q-factor describes the photon lifetime in the cavity and is responsible for the energy buildup within the cavity and sharp spectral characteristics of WGM resonators. The energy buildup is ideal for non-linear optics and the sharp spectral features are beneficial for sensing applications. Characterization of microbubble resonators is done by coupling light from a tunable laser source via tapered optical fiber into the cavity. The fabrication of quality tapered optical fiber on the order of 1--2 microm is critical to working on WGM resonators. The measurement of Q-factors up to 2x10 8 and mode spectra are possible with these resonators and experimental techniques. This work focuses on microdisk and microbubble WGM resonators. The microdisk resonators are fabricated by femtosecond laser micromachining. The micromachined resonators are fabricated by ablating rotating optical fiber to generate the disk shape and then heated to reflow the surface to improve optical quality. These resonators have a spares mode spectrum and display a Q factor as high a 2x106. The microbubble resonators are hollow microresonators fabricated by heating a pressurized capillary tube which forms a bubble in the area exposed to heat. These have a wall thickness of 2--5 microm and

  11. Intrinsic localized modes and nonlinear impurity modes in curved ...

    Indian Academy of Sciences (India)

    We explore the nature of intrinsic localized modes (ILMs) in a curved Fermi–. Pasta–Ulam (FPU) chain ... We further demonstrate that a nonlinear impurity mode may be treated as a bound state of an ILM with the impurity .... length [14] and see that the particular choice of the chain geometry ensures the DB propagation with ...

  12. Mode Launcher Design for the Multi-moded DLDS

    CERN Document Server

    Li, Z

    2003-01-01

    The DLDS (Delay Line Distribution System) power delivery system proposed by KEK combines several klystrons to obtain the high peak power required to drive a TeV scale linear collider. In this system the combined klystron output is subdivided into shorter pulses by proper phasing of the sources, and each subpulse is delivered to various accelerator sections via separate waveguides. A cost-saving improvement suggested by SLAC is to use a single multimoded waveguide to deliver the power of all the subpulses. This scheme requires a mode launcher that can deliver each subpulse by way of a different waveguide mode through selective phasing of the sources when combining their power. We present a compact design for such a mode launcher that converts the power from four rectangular waveguide feeds to separate modes in a multi-moded circular guide through coupling slots. Such a design has been simulated and found to satisfy the requirements for high efficiency and low surface fields.

  13. Theory of psychological adaptive modes.

    Science.gov (United States)

    Lehti, Juha

    2016-05-01

    When an individual is facing a stressor and normal stress-response mechanism cannot guarantee sufficient adaptation, special emotional states, adaptive modes, are activated (for example a depressive reaction). Adaptive modes are involuntary states of mind, they are of comprehensive nature, they interfere with normal functioning, and they cannot be repressed or controlled the same way as many emotions. Their transformational nature differentiates them from other emotional states. The object of the adaptive mode is to optimize the problem-solving abilities according to the situation that has provoked the mode. Cognitions and emotions during the adaptive mode are different than in a normal mental state. These altered cognitions and emotional reactions guide the individual to use the correct coping skills in order to deal with the stressor. Successful adaptation will cause the adaptive mode to fade off since the adaptive mode is no longer necessary, and the process as a whole will lead to raised well-being. However, if the adaptation process is inadequate, then the transformation period is prolonged, and the adaptive mode will turn into a dysfunctional state. Many psychiatric disorders are such maladaptive processes. The maladaptive processes can be turned into functional ones by using adaptive skills that are used in functional adaptive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Transformation and Modes of Production

    DEFF Research Database (Denmark)

    Høst, Jeppe Engset

    2015-01-01

    modes of production and examine the ways of life that are enabled by the two modes of production. The central questions are around how market-based fisheries management transforms the principal preconditions for the self-employed fishers; and, in turn, why capitalist organized large-scale fisheries...

  15. Mode Combinations and International Operations

    DEFF Research Database (Denmark)

    Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.

    2011-01-01

    An enduring characteristic of extant literature on foreign operation modes is its discrete choice approach, where companies are assumed to choose one among a small number of distinctive alternatives. In this paper we use detailed information about the operations of six Norwegian companies in three...... key markets (China, UK and USA) as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...... reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time – providing a potentially important optional path for international expansion. Our data...

  16. Mode Combinations and International Operations

    DEFF Research Database (Denmark)

    Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.

    2011-01-01

    An enduring characteristic of extant literature on foreign operation modes is its discrete choice approach, where companies are assumed to choose one among a small number of distinctive alternatives. In this paper, detailed information about the operations of six Norwegian companies in three key...... markets (China, UK and USA) is used as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...... reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time—providing a potentially important optional path for international expansion. The data show...

  17. Mode coupling trigger of neoclassical magnetohydrodynamic tearing modes in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Gianakon, T.A.; Hegna, C.C.; Callen, J.D.

    1997-05-01

    Numerical studies of the nonlinear evolution of coupled magnetohydrodynamic - type tearing modes in three-dimensional toroidal geometry with neoclassical effects are presented. The inclusion of neoclassical physics introduces an additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm`s law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise {Delta}{prime} stable, albeit once a threshold island width is exceeded. A possible mechanism for exceeding or eliminating this threshold condition is demonstrated based on mode coupling due to toroidicity with a pre-existing instability at the q = 1 surface.

  18. Mode-by-mode hydrodynamics: Ideas and concepts

    Energy Technology Data Exchange (ETDEWEB)

    Floerchinger, Stefan

    2014-06-15

    The main ideas, technical concepts and perspectives for a mode resolved description of the hydrodynamical regime of relativistic heavy ion collisions are discussed. A background-fluctuation splitting and a Bessel–Fourier expansion for the fluctuating part of the hydrodynamical fields allows for a complete characterization of initial conditions, the fluid dynamical propagation of single modes, the study of interaction effects between modes, the determination of the associated particle spectra and the generalization of the whole program to event-by-event correlations and probability distributions.

  19. Resonant routing of optical pulses in coupled-cavity structures

    Science.gov (United States)

    Abolmaali, Farzaneh; Limberopoulos, Nicholaos I.; Urbas, Augustine M.; Maslov, Alexey V.; Astratov, Vasily N.

    2017-02-01

    The transmission properties of side-coupled circular cavity systems are studied based on numerical two-dimensional finite-difference time domain modeling. The spatial asymmetry is introduced due to different separations between the circular resonators and side-coupled stripe waveguides. These structures can be viewed as 4-port routers where different ports are connected due resonant coupling between the guided modes in stripe-waveguides and whispering gallery modes in circle resonators. It is found that due to strongly asymmetric geometry, significant optical losses, and mode conversion processes, such structures display strongly asymmetric optical transmission properties for the waves propagating in forward and backward directions between the ports. In non-optimized single microcavity structures, it results in isolation ratios on the order of 10 dB for wavelengths resonant with WGMs. In structures formed by two closely spaced circular resonators, WGMs are strongly coupled leading to formation of bonding and antibonding photonic molecular modes. It is shown that at the wavelengths resonant with hybridized molecular modes the isolation ratios can be increased beyond 20 dB. At the same time, different wavelengths can be preferentially coupled to different ports resulting in wavelength demultiplexing functionality.

  20. Exotic decay: Transition from cluster mode to fission mode

    Indian Academy of Sciences (India)

    ' reaction were studied taking interacting barrier consisting of Coulomb and proximity potential. Calculated half-life time shows that some modes of decay are well within the present upper limit for measurements (1/2 < 1030 s). Cluster ...

  1. Mode control and mode conversion in nonlinear aluminum nitride waveguides.

    Science.gov (United States)

    Stegmaier, Matthias; Pernice, Wolfram H P

    2013-11-04

    While single-mode waveguides are commonly used in integrated photonic circuits, emerging applications in nonlinear and quantum optics rely fundamentally on interactions between modes of different order. Here we propose several methods to evaluate the modal composition of both externally and device-internally excited guided waves and discuss a technique for efficient excitation of arbitrary modes. The applicability of these methods is verified in photonic circuits based on aluminum nitride. We control modal excitation through suitably engineered grating couplers and are able to perform a detailed study of waveguide-internal second harmonic generation. Efficient and broadband power conversion between orthogonal polarizations is realized within an asymmetric directional coupler to demonstrate selective excitation of arbitrary higher-order modes. Our approach holds promise for applications in nonlinear optics and frequency up/down-mixing in a chipscale framework.

  2. Principal Metabolic Flux Mode Analysis.

    Science.gov (United States)

    Bhadra, Sahely; Blomberg, Peter; Castillo, Sandra; Rousu, Juho; Wren, Jonathan

    2018-02-06

    In the analysis of metabolism, two distinct and complementary approaches are frequently used: Principal component analysis (PCA) and stoichiometric flux analysis. PCA is able to capture the main modes of variability in a set of experiments and does not make many prior assumptions about the data, but does not inherently take into account the flux mode structure of metabolism. Stoichiometric flux analysis methods, such as Flux Balance Analysis (FBA) and Elementary Mode Analysis, on the other hand, are able to capture the metabolic flux modes, however, they are primarily designed for the analysis of single samples at a time, and not best suited for exploratory analysis on a large sets of samples. We propose a new methodology for the analysis of metabolism, called Principal Metabolic Flux Mode Analysis (PMFA), which marries the PCA and stoichiometric flux analysis approaches in an elegant regularized optimization framework. In short, the method incorporates a variance maximization objective form PCA coupled with a stoichiometric regularizer, which penalizes projections that are far from any flux modes of the network. For interpretability, we also introduce a sparse variant of PMFA that favours flux modes that contain a small number of reactions. Our experiments demonstrate the versatility and capabilities of our methodology. The proposed method can be applied to genome-scale metabolic network in efficient way as PMFA does not enumerate elementary modes. In addition, the method is more robust on out-of-steady steady-state experimental data than competing flux mode analysis approaches. Matlab software for PMFA and SPMFA and data set used for experiments are available in https://github.com/aalto-ics-kepaco/PMFA. sahely@iitpkd.ac.in, juho.rousu@aalto.fi, Peter.Blomberg@vtt.fi, Sandra.Castillo@vtt.fi. Detailed results are in Supplementary files. Supplementary data are available at https://github.com/aalto-ics-kepaco/PMFA/blob/master/Results.zip.

  3. Mode synthesizing atomic force microscopy and mode-synthesizing sensing

    Science.gov (United States)

    Passian, Ali; Thundat, Thomas George; Tetard, Laurene

    2013-05-17

    A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.

  4. Distributed Mode Filtering Rod Fiber Amplifier With Improved Mode Stability

    DEFF Research Database (Denmark)

    Laurila, Marko; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2012-01-01

    We report 216W of average output power from a photonic crystal rod fiber amplifier. We demonstrate 44% power improvement before onset of the mode instability by operating the rod fiber in a leaky guiding regime.......We report 216W of average output power from a photonic crystal rod fiber amplifier. We demonstrate 44% power improvement before onset of the mode instability by operating the rod fiber in a leaky guiding regime....

  5. Intelligence and musical mode preference

    DEFF Research Database (Denmark)

    Bonetti, Leonardo; Costa, Marco

    2016-01-01

    The relationship between fluid intelligence and preference for major–minor musical mode was investigated in a sample of 80 university students. Intelligence was assessed by the Raven’s Advanced Progressive Matrices. Musical mode preference was assessed by presenting 14 pairs of musical stimuli...... that varied only in mode. Mood and personality were assessed, respectively, by the Brief Mood Introspection Scale and the Big Five Questionnaire. Preference for minor stimuli was related positively and significantly to fluid intelligence and openness to experience. The results add evidence of individual...

  6. Few-mode fiber technology for mode division multiplexing

    Science.gov (United States)

    Mori, Takayoshi; Sakamoto, Taiji; Wada, Masaki; Yamamoto, Takashi; Nakajima, Kazuhide

    2017-02-01

    We review recent progress on few-mode fiber (FMF) technologies for mode-division multiplexing (MDM) transmission. First, we introduce fibers for use without and with multiple-input multiple-output (MIMO) digital signal processing (DSP) to compensate for modal crosstalk, and briefly report recent work on FMF for use without/with a MIMO DSP system. We next discuss in detail a fiber for MIMO transmission systems, and show numerically that a graded-index core can flexibly tune the differential mode group delay (DMD) and a cladding trench can flexibly control the guiding mode number. We optimized the spacing of the core and trench. Accordingly, we can achieve a 6 LP (10 spatial) mode operation and a low DMD while preventing the high index difference that leads to manufacturing difficulties and any loss increase. We finally describe our experimental results for a 6 LP (10 spatial) mode transmission line for use in a C + L band wavelength-division multiplexing (WDM) MDM transmission with MIMO DSP.

  7. Fiber cavities with integrated mode matching optics.

    Science.gov (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  8. Adaptive Structural Mode Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M4 Engineering proposes the development of an adaptive structural mode control system. The adaptive control system will begin from a "baseline" dynamic model of the...

  9. Rotational Modes in Phononic Crystals

    Science.gov (United States)

    Wu, Ying; Peng, Pai; Mei, Jun

    2014-03-01

    We propose a lumped model for the rotational modes in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model not only can reproduce the dispersion relations in a certain range with one fitted parameter, but also gives simple analytical expressions for the frequencies of the eigenmodes at the high symmetry points in the Brillouin zone. These expressions provide physical understandings of the rotational modes as well as certain translational and hybrid mode, and predict the presence of accidental degeneracy of the rotational and dipolar modes, which leads to a Dirac-like cone in the Brillouin zone center. Supported by KAUST Baseline Research Fund, National Natural Science Foundation of China (Grants No. 10804086 and No. 11274120), and the Fundamental Research Funds for the Central Universities (Grant No. 2012ZZ0077).

  10. Amplitude damping of vortex modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-09-01

    Full Text Available An interferometer, mimicking an amplitude damping channel for vortex modes, is presented. Experimentally the action of the channel is in good agreement with that predicted theoretically. Since we can characterize the action of the channel on orbital...

  11. Novel Modes Workshop Summary Report

    Science.gov (United States)

    2015-12-01

    On December 2-3, 2014, the Federal Highway Administration's (FHWA's) Exploratory Advanced Research Program, with support from the John A. Volpe National Transportation Systems Center, convened the 2-day workshop "Novel Modes." It was held concurrentl...

  12. The Kuhnian mode of HPS

    DEFF Research Database (Denmark)

    Schindler, Samuel

    2013-01-01

    In this article I argue that a methodological challenge to an integrated history and philosophy of science approach put forth by Ronald Giere almost forty years ago can be met by what I call the Kuhnian mode of History and Philosophy of Science (HPS). Although in the Kuhnian mode of HPS norms about...... science are motivated by historical facts about scientific practice, the justifiers of the constructed norms are not historical facts. The Kuhnian mode of HPS therefore evades the naturalistic fallacy which Giere’s challenge is a version of. Against the backdrop of a discussion of Laudan’s normative...... naturalism I argue that the Kuhnian mode of HPS is a superior form of naturalism: it establishes contact to the practice of science without making itself dependent on its contingencies....

  13. Examination of the 'web mode effect'

    DEFF Research Database (Denmark)

    Clement, Sanne Lund; Shamshiri-Petersen, Ditte

    for different modes, and mode differences then are influenced by stratification differences. In both cases the real mode differences are nearly impossible to determine and remains rather speculative. The purpose of this contribution is to examine potential “web mode effects” in mixed-mode surveys. Compared...

  14. The Fifth Mode of Representation

    DEFF Research Database (Denmark)

    Hansen, Per Krogh; Behrendt, Poul Olaf

    2011-01-01

    “The fifth mode of representation: Ambiguous voices in unreliable third person narration”. Sammen med Poul Behrendt. In Per Krogh Hansen, Stefan Iversen, Henrik Skov Nielsen og Rolf Reitan (red.): Strange Voices. Walter de Gruyter, Berlin & New York......“The fifth mode of representation: Ambiguous voices in unreliable third person narration”. Sammen med Poul Behrendt. In Per Krogh Hansen, Stefan Iversen, Henrik Skov Nielsen og Rolf Reitan (red.): Strange Voices. Walter de Gruyter, Berlin & New York...

  15. An interdecadal American rainfall mode

    Science.gov (United States)

    Jury, Mark R.

    2009-04-01

    Low-frequency climate variability across the American continents and surrounding oceans is analyzed by application of singular value decomposition (SVD) to gauge-based rainfall and environmental anomaly fields in the period 1901-2002. A 5-year filter is used to maintain a focus on interdecadal cycles. The rainfall regime of particular interest (mode 1) is when West Africa and the Caribbean share positive loading and North and South America share negative loading. Wavelet cospectral energy is found at ˜8, 24, and 50 years for Caribbean/West African zones and 16 and 32 years for North/South America. West Africa and South America exhibit antiphase multidecadal variability, while North America and the Caribbean rainfall exhibit quasi-decadal cycles. The rainfall associations are nonstationary. In the early 1900s, Caribbean and South American rainfall were antiphase. Since 1930 low-frequency oscillations of North American (West African) rainfall have been positively (negatively) associated with South America. Low-frequency oscillations of North American rainfall have been consistently antiphase with respect to Caribbean rainfall; however, West Africa rainfall fluctuations have been in phase with the Caribbean more in the period 1920-1950 than at other times. Hemispheric-scale environmental SVD patterns and scores were compared with the leading rainfall modes. The north-south gradient modes in temperature are influential in respect of mode 1 rainfall, while east-west gradients relate to mode 2 (northern Brazil) rainfall. The ability of the GFDL2.1 coupled (ocean-atmosphere) general circulation model to represent interdecadal rainfall modes in the 20th century was evaluated. While mode 2 is reproduced, mode 1 remains elusive.

  16. Slow Light in Coupled Resonator Optical Waveguides

    Science.gov (United States)

    Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Recently, we discovered that a splitting of the whispering gallery modes (WGMs) occurs in coupled resonator optical waveguides (CROWs), and that these split modes are of a higher Q than the single-resonator modes, leading to enormous circulating intensity magnification factors that dramatically reduce thresholds for nonlinear optical (NLO) processes. As a result of the enhancements in Q, pulses propagating at a split resonance can propagate much slower (faster) for over (under)-coupled structures, due to the modified dispersion near the split resonance. Moreover, when loss is considered, the mode-splitting may be thought of as analogous to the Autler-Townes splitting that occurs in atomic three-level lambda systems, i.e., it gives rise to induced transparency as a result of destructive interference. In under- or over-coupled CROWs, this coupled resonator induced transparency (CRIT) allows slow light to be achieved at the single-ring resonance with no absorption, while maintaining intensities such that NLO effects are maximized. The intensity magnification of the circulating fields and phase transfer characteristics are examined in detail.

  17. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  18. Predicting high harmonic ion cyclotron heating efficiency in Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Green, David L [ORNL; Jaeger, E. F. [XCEL; Berry, Lee A [ORNL; Chen, Guangye [ORNL; Ryan, Philip Michael [ORNL; Canik, John [ORNL

    2011-01-01

    Observations of improved radio frequency (RF) heating efficiency in high-confinement (H-) mode plasmas on the National Spherical Tokamak Experiment (NSTX) are investigated by whole-device linear simulation. We present the first full-wave simulation to couple kinetic physics of the well confined core plasma to the poorly confined scrape-off plasma. The new simulation is used to scan the launched fast-wave spectrum and examine the steady-state electric wave field structure for experimental scenarios corresponding to both reduced, and improved RF heating efficiency. We find that launching toroidal wave-numbers that required for fast-wave propagation excites large amplitude (kVm 1 ) coaxial standing modes in the wave electric field between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggest these modes are a probable cause of degraded heating efficiency. Also, the H-mode density pedestal and fast-wave cutoff within the confined plasma allow for the excitation of whispering gallery type eigenmodes localised to the plasma edge.

  19. Normal modes and mode transformation of pure electron vortex beams.

    Science.gov (United States)

    Thirunavukkarasu, G; Mousley, M; Babiker, M; Yuan, J

    2017-02-28

    Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre-Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite-Gaussian beams.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  20. Investigating the Mode Structure of the Weakly Coherent Mode

    Science.gov (United States)

    Golfinopoulos, T.; Labombard, B.; Hubbard, A.; Hughes, J. W.; Whyte, D.; Granetz, R.; Davis, E. M.; Edlund, E.; Ennever, P.; Greenwald, M.; Marmar, E.; Porkolab, M.; Wolfe, S. M.; Wukitch, S. J.; Alcator C-Mod Team

    2017-10-01

    The Weakly Coherent Mode (WCM, 200-500 kHz, k⊥ρs < 0.1) is an edge phenomenon associated with I-mode, a steady state, ELM-free confinement regime that has been observed on the Alcator C-Mod, ASDEX-Upgrade, and DIII-D tokamaks. I-mode is characterized by high particle flux, creating a separation of transport channels that leads to the development of a temperature pedestal, but not a density pedestal. The WCM is thought to contribute to this increased particle flux, though its precise role in regulating edge transport is not well-understood. Here, we investigate the structure of the WCM, particularly regarding poloidal asymmetry, using data from poloidally- and toroidally-arrayed Mirnov coils, as well as phase contrast imaging, with radial profiles of Te, ne, and Φ in the scrape-off layer provided by the Mirror Langmuir Probe. The WCM phenomenology is then compared to that of the Quasi-Coherent Mode, the edge fluctuation responsible for exhausting impurities in the Enhanced Dα H-mode. This work is supported by USDoE award DE-FC02-99ER54512.

  1. Optically Mediated Hybridization Between Two Mechanical Modes

    CERN Document Server

    Shkarin, A B; Hoch, S W; Deutsch, C; Reichel, J; Harris, J G E

    2013-01-01

    In this paper we study a system consisting of two nearly degenerate mechanical modes that couple to a single mode of an optical cavity. We show that this coupling leads to nearly complete (99.5%) hybridization of the two mechanical modes into a bright mode that experiences strong optomechanical interactions and a dark mode that experiences almost no optomechanical interactions. We use this hybridization to transfer energy between the mechanical modes with 40% efficiency.

  2. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  3. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.

  4. Macroscopic (and microscopic massless modes

    Directory of Open Access Journals (Sweden)

    Michael C. Abbott

    2015-05-01

    Full Text Available We study certain spinning strings exploring the flat directions of AdS3×S3×S3×S1, the massless sector cousins of su(2 and sl(2 sector spinning strings. We describe these, and their vibrational modes, using the D(2,1;α2 algebraic curve. By exploiting a discrete symmetry of this structure which reverses the direction of motion on the spheres, and alters the masses of the fermionic modes s→κ−s, we find out how to treat the massless fermions which were previously missing from this formalism. We show that folded strings behave as a special case of circular strings, in a sense which includes their mode frequencies, and we are able to recover this fact in the worldsheet formalism. We use these frequencies to calculate one-loop corrections to the energy, with a version of the Beisert–Tseytlin resummation.

  5. Quasiadiabatic modes from viscous inhomogeneities

    CERN Document Server

    Giovannini, Massimo

    2016-04-20

    The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...

  6. Label-free, single-object sensing with a microring resonator: FDTD simulation.

    Science.gov (United States)

    Nguyen, Dan T; Norwood, Robert A

    2013-01-14

    Label-free, single-object sensing with a microring resonator is investigated numerically using the finite difference time-domain (FDTD) method. A pulse with ultra-wide bandwidth that spans over several resonant modes of the ring and of the sensing object is used for simulation, enabling a single-shot simulation of the microring sensing. The FDTD simulation not only can describe the circulation of the light in a whispering-gallery-mode (WGM) microring and multiple interactions between the light and the sensing object, but also other important factors of the sensing system, such as scattering and radiation losses. The FDTD results show that the simulation can yield a resonant shift of the WGM cavity modes. Furthermore, it can also extract eigenmodes of the sensing object, and therefore information from deep inside the object. The simulation method is not only suitable for a single object (single molecule, nano-, micro-scale particle) but can be extended to the problem of multiple objects as well.

  7. Template-Guided Self-Assembly of Discrete Optoplasmonic Molecules and Extended Optoplasmonic Arrays

    Directory of Open Access Journals (Sweden)

    Reinhard Björn M.

    2015-01-01

    Full Text Available The integration of metallic and dielectric building blocks into optoplasmonic structures creates new electromagnetic systems in which plasmonic and photonic modes can interact in the near-, intermediate- and farfield. The morphology-dependent electromagnetic coupling between the different building blocks in these hybrid structures provides a multitude of opportunities for controlling electromagnetic fields in both spatial and frequency domain as well as for engineering the phase landscape and the local density of optical states. Control over any of these properties requires, however, rational fabrication approaches for well-defined metal-dielectric hybrid structures. Template-guided self-assembly is a versatile fabrication method capable of integrating metallic and dielectric components into discrete optoplasmonic structures, arrays, or metasurfaces. The structural flexibility provided by the approach is illustrated by two representative implementations of optoplasmonic materials discussed in this review. In optoplasmonic atoms or molecules optical microcavities (OMs serve as whispering gallery mode resonators that provide a discrete photonic mode spectrum to interact with plasmonic nanostructures contained in the evanescent fields of the OMs. In extended hetero-nanoparticle arrays in-plane scattered light induces geometry-dependent photonic resonances that mix with the localized surface plasmon resonances of the metal nanoparticles.We characterize the fundamental electromagnetic working principles underlying both optoplasmonic approaches and review the fabrication strategies implemented to realize them.

  8. Silica Bottle Resonator Sensor for Refractive Index and Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Galina Nemova

    2016-01-01

    Full Text Available We propose and theoretically demonstrate a bottle resonator sensor with a nanoscale altitude and with alength several of hundreds of microns made on the top of the fiber with a radius of tens microns for refractive index and temperature sensor applications. The whispering gallery modes (WGMs in the resonators can be excited with a taper fiber placed on the top of the resonator. These sensors can be considered as an alternative to fiber Bragg grating (FBG sensors.The sensitivity of TM-polarized modes is higher than the sensitivity of the TE-polarized modes, but these values are comparable and both polarizations are suitable for sensor applications. The sensitivity ~150 (nm/RIU can be reached with abottle resonator on the fiber with the radius 10 μm. It can be improved with theuse of a fiber with a smaller radius. The temperature sensitivity is found to be ~10 pm/K. The temperature sensitivity can decrease ~10% for a fiber with a radius rco = 10 μm instead of a fiber with a radius rco = 100 μm. These sensors have sensitivities comparable to FBG sensors. A bottle resonator sensor with a nanoscale altitude made on the top of the fiber can be easily integrated in any fiber scheme.

  9. Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas.

    Science.gov (United States)

    Lin, Ying-Tsong; McMahon, Kara G; Lynch, James F; Siegmann, William L

    2013-01-01

    The acoustic ducting effect by curved nonlinear gravity waves in shallow water is studied through idealized models in this paper. The internal wave ducts are three-dimensional, bounded vertically by the sea surface and bottom, and horizontally by aligned wavefronts. Both normal mode and parabolic equation methods are taken to analyze the ducted sound field. Two types of horizontal acoustic modes can be found in the curved internal wave duct. One is a whispering-gallery type formed by the sound energy trapped along the outer and concave boundary of the duct, and the other is a fully bouncing type due to continual reflections from boundaries in the duct. The ducting condition depends on both internal-wave and acoustic-source parameters, and a parametric study is conducted to derive a general pattern. The parabolic equation method provides full-field modeling of the sound field, so it includes other acoustic effects caused by internal waves, such as mode coupling/scattering and horizontal Lloyd's mirror interference. Two examples are provided to present internal wave ducts with constant curvature and meandering wavefronts.

  10. Polymer based planar coupling of self-assembled bottle microresonators

    Science.gov (United States)

    Grimaldi, I. A.; Berneschi, S.; Testa, G.; Baldini, F.; Nunzi Conti, G.; Bernini, R.

    2014-12-01

    The investigation of a simple and self-assembling method for realizing polymeric micro-bottle resonators is reported. By dispensing precise amounts of SU-8 onto a cleaved optical fiber, employed as mechanical support, bottle microcavities with different shapes and diameters are fabricated. The balancing of surface energy between glass fiber and polymeric microresonator with surface tension of SU-8 confers different shape to these microstructures. Planar single-mode SU-8 based waveguide, realized on polymethylmethacrylate, is chosen for exciting the micro-bottle resonators by evanescent wave. The reliability of the fabrication process and the shape of the bottle microcavities are investigated through optical analysis. We observe whispering gallery modes in these resonant microstructures by a robust coupling with single mode planar waveguides around 1.5 μm wavelength. The resonance spectra of micro-bottle resonators and the spectral characteristics, such as Quality-factor (Q factor) and free spectral range, are evaluated for all the realized microstructures. SU-8 micro-bottle resonators show high Q-factors up to 3.8 × 104 and present a good mechanical stability. These features make these microcavities attractive for sensing and/or lasing applications in a planar platform.

  11. Investigation on 2D disks and stadiums micro-resonators structures based on UV210 polymer

    Science.gov (United States)

    Pluchon, D.; Huby, N.; Lhermite, H.; Duval, D.; Beche, B.

    2012-06-01

    In this paper, we report on the design and the overall realization of micro-resonators based on the development of adequate processes on UV210 polymer. These micro-optical structures are developed by deep ultraviolet lithography allowing fabrication of nano-structured devices by mean of low cost and reproducible processes. Resonant microstructures of disk and stadium shapes with various sizes were investigated. Structural and optical characterizations have been carried out to ensure their ability as integrated resonant micro-structures. At first, scanning electron microscopy studies confirm the UV-light process resolution down to 450 nm developed on UV210 polymer. Then, optical characterizations have been performed as regards spectral properties of such micro-resonators. Field intensity measurements in visible and infrared range have been realized and validate the aptitude of the micro-structures to propagate and to allow an evanescent photonic coupling between waveguides and micro-resonators. Finally, spectral analyses on TE modes demonstrate the presence of optical resonances associated to whispering gallery modes for disk structures and chaotic modes for stadium shapes. The UV210 polymer appears appropriate for the realization of microstructures requiring a few hundred nanometers gap-scale while maintaining adequate spectral properties for versatile applications in telecommunication and metrology.

  12. Glass-on-Glass Fabrication of Bottle-Shaped Tunable Micro-Lasers and Their Applications

    CERN Document Server

    Ward, Jonathan M; Chormaic, Sile Nic

    2016-01-01

    We describe a novel method for making microbottle-shaped lasers by using a CO$_2$ laser to melt Er:Yb glass onto silica microcapillaries or fibres. This is realised by the fact that the two glasses have different melting points. The CO$_2$ laser power is controlled to flow the doped glass around the silica cylinder. In the case of a capillary, the resulting geometry is a hollow, microbottle-shaped resonator. This is a simple method for fabricating a number of glass WGM lasers with a wide range of sizes on a single, micron-scale structure. The Er:Yb doped glass outer layer is pumped at 980 nm via a tapered optical fibre and whispering gallery mode (WGM) lasing is recorded around 1535 nm. This structure facilitates a new way to thermo-optically tune the microlaser modes by passing gas through the capillary. The cooling effect of the gas flow shifts the WGMs towards shorter wavelengths, thus thermal tuning of the lasing modes over 70 GHz is achieved. Results are fitted using the theory of hot wire anemometry, al...

  13. Soft mode and acoustic mode ferroelectric properties of deuterated ...

    Indian Academy of Sciences (India)

    SO4 crystal by a theoretical model which is extended with two sublattice pseudospin lattice coupled mode model by adding third, fourth and fifth order phonon anharmonic interaction terms as well as external electric field term in the crystal ...

  14. Nonlinear oscillations of TM-mode gyrotrons

    Science.gov (United States)

    Chang, Tsun-Hsu; Yao, Hsin-Yu; Su, Bo-Yuan; Huang, Wei-Chen; Wei, Bo-Yuan

    2017-12-01

    This study investigates the interaction between the relativistic electrons and the waves in cavities with fixed field profiles. Both the transverse electric (TE) and the transverse magnetic (TM) cavity modes are examined, including three first-axial modes, TE011, TM011, and TM111, and two zero-axial modes, TM010 and TM110. The first-axial modes have the same resonant frequency, so a direct comparison can be made. By sweeping the electron pitch factor (α) and the electron transit angle (Θ), the optimal converting efficiency of TM modes occurs at α = 1.5 and Θ = 1.5π, unlike the TE mode of α = 2.0 and Θ = 1.0π. The converting efficiencies of both the first-axial TM modes are much lower than that of TE011 mode. The starting currents of TM011 and TM111 modes are four times higher than that of TE011 mode, indicating that these two TM modes are very difficult to oscillate. This evidences that under the traditional operating conditions, the TM-mode gyrotrons are insignificant. However, the two unique, zero-axial TM modes have relatively high converting efficiency. The highest converting efficiency of TM110 is 27.4%, the same value as that of TE011 mode. The starting currents of TM110 mode and TE011 mode are at the same level. The results suggest that some TM-mode gyrotron oscillators are feasible and deserve further theoretical and experimental studies.

  15. Dually-mode-locked ND: YAG laser

    Science.gov (United States)

    Osmundson, J.; Rowe, E.; Santarpia, D.

    1974-01-01

    Mode-locking is stabilized effectively by conventional loss-modulator and phase-modulator, mode-locking elements placed in laser cavity in optical series with one another. Resulting dually-mode-locked system provides pulses with constant phase relative to mode-lock drive signal without presence of relaxation oscillation noise.

  16. Rubble Mound Breakwater Failure Modes

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Z., Liu

    1995-01-01

    The RMBFM-Project (Rubble Mound Breakwater Failure Modes) is sponsored by the Directorate General XII of the Commission of the European Communities under the Contract MAS-CT92- 0042, with the objective of contributing to the development of rational methods for the design of rubble mound breakwate...

  17. Mode structure of active resonators

    NARCIS (Netherlands)

    Ernst, G.J.; Witteman, W.J.

    1973-01-01

    An analysis is made of the mode structure of lasers when the interaction with the active medium is taken into account. We consider the combined effect of gain and refractive-index variations for arbitrary mirror configurations. Using a dimensionless round-trip matrix for a medium with a quadratic

  18. Single-mode optical fibres

    CERN Document Server

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  19. Theory of Modes and Impulses

    Science.gov (United States)

    Apsche, Jack A.

    2005-01-01

    In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…

  20. Two-mode Nonlinear Coherent States

    OpenAIRE

    Wang, Xiao-Guang

    2000-01-01

    Two-mode nonlinear coherent states are introduced in this paper. The pair coherent states and the two-mode Perelomov coherent states are special cases of the two-mode nonlinear coherent states. The exponential form of the two-mode nonlinear coherent states is given. The photon-added or photon-subtracted two-mode nonlinear coherent states are found to be two-mode nonlinear coherent states with different nonlinear functions. The parity coherent states are introduced as examples of two-mode nonl...