WorldWideScience

Sample records for whisking function promoted

  1. Recovery of whisking function promoted by manual stimulation of the vibrissal muscles after facial nerve injury requires insulin-like growth factor 1 (IGF-1).

    Science.gov (United States)

    Kiryakova, S; Söhnchen, J; Grosheva, M; Schuetz, U; Marinova, Ts; Dzhupanova, R; Sinis, N; Hübbers, C U; Skouras, E; Ankerne, J; Fries, J W U; Irintchev, A; Dunlop, S A; Angelov, D N

    2010-04-01

    Recently, we showed that manual stimulation (MS) of denervated vibrissal muscles enhanced functional recovery following facial nerve cut and suture (FFA) by reducing poly-innervation at the neuro-muscular junctions (NMJ). Although the cellular correlates of poly-innervation are established, with terminal Schwann cells (TSC) processes attracting axon sprouts to "bridge" adjacent NMJ, molecular correlates are poorly understood. Since quantitative RT-PCR revealed a rapid increase of IGF-1 mRNA in denervated muscles, we examined the effect of daily MS for 2 months after FFA in IGF-1(+/-) heterozygous mice; controls were wild-type (WT) littermates including intact animals. We quantified vibrissal motor performance and the percentage of NMJ bridged by S100-positive TSC. There were no differences between intact WT and IGF-1(+/-) mice for vibrissal whisking amplitude (48 degrees and 49 degrees ) or the percentage of bridged NMJ (0%). After FFA and handling alone (i.e. no MS) in WT animals, vibrissal whisking amplitude was reduced (60% lower than intact) and the percentage of bridged NMJ increased (42% more than intact). MS improved both the amplitude of vibrissal whisking (not significantly different from intact) and the percentage of bridged NMJ (12% more than intact). After FFA and handling in IGF-1(+/-) mice, the pattern was similar (whisking amplitude 57% lower than intact; proportion of bridged NMJ 42% more than intact). However, MS did not improve outcome (whisking amplitude 47% lower than intact; proportion of bridged NMJ 40% more than intact). We conclude that IGF-I is required to mediate the effects of MS on target muscle reinnervation and recovery of whisking function. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Non-invasive stimulation of the vibrissal pad improves recovery of whisking function after simultaneous lesion of the facial and infraorbital nerves in rats.

    Science.gov (United States)

    Bendella, H; Pavlov, S P; Grosheva, M; Irintchev, A; Angelova, S K; Merkel, D; Sinis, N; Kaidoglou, K; Skouras, E; Dunlop, S A; Angelov, Doychin N

    2011-07-01

    We have recently shown that manual stimulation of target muscles promotes functional recovery after transection and surgical repair to pure motor nerves (facial: whisking and blink reflex; hypoglossal: tongue position). However, following facial nerve repair, manual stimulation is detrimental if sensory afferent input is eliminated by, e.g., infraorbital nerve extirpation. To further understand the interplay between sensory input and motor recovery, we performed simultaneous cut-and-suture lesions on both the facial and the infraorbital nerves and examined whether stimulation of the sensory afferents from the vibrissae by a forced use would improve motor recovery. The efficacy of 3 treatment paradigms was assessed: removal of the contralateral vibrissae to ensure a maximal use of the ipsilateral ones (vibrissal stimulation; Group 2), manual stimulation of the ipsilateral vibrissal muscles (Group 3), and vibrissal stimulation followed by manual stimulation (Group 4). Data were compared to controls which underwent surgery but did not receive any treatment (Group 1). Four months after surgery, all three treatments significantly improved the amplitude of vibrissal whisking to 30° versus 11° in the controls of Group 1. The three treatments also reduced the degree of polyneuronal innervation of target muscle fibers to 37% versus 58% in Group 1. These findings indicate that forced vibrissal use and manual stimulation, either alone or sequentially, reduce target muscle polyinnervation and improve recovery of whisking function when both the sensory and the motor components of the trigemino-facial system regenerate.

  3. Whisking.

    Science.gov (United States)

    Sofroniew, Nicholas J; Svoboda, Karel

    2015-02-16

    Eyes may be 'the window to the soul' in humans, but whiskers provide a better path to the inner lives of rodents. The brain has remarkable abilities to focus its limited resources on information that matters, while ignoring a cacophony of distractions. While inspecting a visual scene, primates foveate to multiple salient locations, for example mouths and eyes in images of people, and ignore the rest. Similar processes have now been observed and studied in rodents in the context of whisker-based tactile sensation. Rodents use their mechanosensitive whiskers for a diverse range of tactile behaviors such as navigation, object recognition and social interactions. These animals move their whiskers in a purposive manner to locations of interest. The shapes of whiskers, as well as their movements, are exquisitely adapted for tactile exploration in the dark tight burrows where many rodents live. By studying whisker movements during tactile behaviors, we can learn about the tactile information available to rodents through their whiskers and how rodents direct their attention. In this primer, we focus on how the whisker movements of rats and mice are providing clues about the logic of active sensation and the underlying neural mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Saccharomyces cerevisiae in the Production of Whisk(ey

    Directory of Open Access Journals (Sweden)

    Graeme M. Walker

    2016-12-01

    Full Text Available Whisk(ey is a major global distilled spirit beverage. Whiskies are produced from cereal starches that are saccharified, fermented and distilled prior to spirit maturation. The strain of Saccharomyces cerevisiae employed in whisky fermentations is crucially important not only in terms of ethanol yields, but also for production of minor yeast metabolites which collectively contribute to development of spirit flavour and aroma characteristics. Distillers must therefore pay very careful attention to the strain of yeast exploited to ensure consistency of fermentation performance and spirit congener profiles. In the Scotch whisky industry, initiatives to address sustainability issues facing the industry (for example, reduced energy and water usage have resulted in a growing awareness regarding criteria for selecting new distilling yeasts with improved efficiency. For example, there is now a desire for Scotch whisky distilling yeasts to perform under more challenging conditions such as high gravity wort fermentations. This article highlights the important roles of S. cerevisiae strains in whisky production (with particular emphasis on Scotch and describes key fermentation performance attributes sought in distiller’s yeast, such as high alcohol yields, stress tolerance and desirable congener profiles. We hope that the information herein will be useful for whisky producers and yeast suppliers in selecting new distilling strains of S. cerevisiae, and for the scientific community to stimulate further research in this area.

  5. Elemental Profiles of Whisk(ey Allow Differentiation by Type and Region

    Directory of Open Access Journals (Sweden)

    Helene Hopfer

    2017-01-01

    Full Text Available Elemental fingerprints could provide an analytical approach to product differentiation and authentication, and have been used in the past for various distilled spirits, including brandy, gin, bourbon and tequila. However, a comparison of elemental differences between different whisk(ey types, such as Bourbon and Scotch, is still missing. In this study we compare the elemental fingerprints of 68 commercial whiskies for differentiation by type (Bourbon, Tennessee, Scotch, Irish, Japanese and region. Concentrations from sub-μg/L to mid-mg/L of 53 different elements were determined with inductively-coupled plasma—mass spectrometry (ICP-MS and microwave plasma—atomic emission spectroscopy (MP-AES, and used in subsequent statistical analyses. Significant differences in several elements were found for type, and allowed a classification according to whisk(ey type. Elemental differences were also found for different production areas within Scotland, thus, providing further evidence that Scotch whiskies could be differentiated by elemental analysis. Major sources of elemental differences seem to be processing equipment (Cu, Fe, Ni, Cd, Sn, Mo, V and raw materials, such as water (Ca, Mg, Fe, Mn, Sr.

  6. Psychedelics Promote Structural and Functional Neural Plasticity

    Directory of Open Access Journals (Sweden)

    Calvin Ly

    2018-06-01

    Full Text Available Summary: Atrophy of neurons in the prefrontal cortex (PFC plays a key role in the pathophysiology of depression and related disorders. The ability to promote both structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in vitro and in vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders. : Ly et al. demonstrate that psychedelic compounds such as LSD, DMT, and DOI increase dendritic arbor complexity, promote dendritic spine growth, and stimulate synapse formation. These cellular effects are similar to those produced by the fast-acting antidepressant ketamine and highlight the potential of psychedelics for treating depression and related disorders. Keywords: neural plasticity, psychedelic, spinogenesis, synaptogenesis, depression, LSD, DMT, ketamine, noribogaine, MDMA

  7. Promotion of health and human functionality

    Directory of Open Access Journals (Sweden)

    Ana Cristhina de Oliveira Brasil

    2013-08-01

    Full Text Available For the development of public health policies in Brazil, two aspects should be taken into consideration, namely, the demographic transition and the epidemiological transition. More and more, it is perceivable an increase in the number of elderly people living with numerous disabilities and also an epidemiological profile. National Household Sample Survey (Pesquisa Nacional por Amostra de Domicílios - PNAD 1998-2003 indicates a distribution of chronic diseases that, consequently, has generated an expressive number of disabilities. These people with disabilities need health services, and use them when they manage to access them. However, the current models of healthcare for the elderly or people with disabilities are expensive and, in some aspects, are not efficient, requiring preventive strategies and health equipment for the maintenance or recovery of health of an aged population. Thus, the public policy agenda of Brazil should give priority to the maintenance of the functionality of the aged, with monitoring of health status, specific preventive actions on health and education, and care seeking an integral and multidimensional attention, not necessarily focused on disease(1. The need to develop policies and strategies, particularly on health promotion, with a look detached from the disease is justified because health problems come not only from the disease, but from any other circumstance or health condition, such as, pregnancy , aging, stress, genetic predisposition – all classified by D-10, nevertheless, not being able to measure the status alterations related to health, and much less to sort and describe the context in which these problems occur, which complicates and jeopardizes the planning and solvability of actions and services in health, unlike the data by means of qualifiers that the International Classification of Functioning, Disability and Health (ICF has the potential to generate(2. Brazil is a member country of the World Health

  8. Promotion of Health and Human Functionality

    Directory of Open Access Journals (Sweden)

    Ana Cristhina de Oliveira Brasil

    2013-03-01

    Full Text Available For the development of public health policies in Brazil, two aspects should be taken into consideration, namely, the demographic transition and the epidemiological transition. More and more, it is perceivable an increase in the number of elderly people living with numerous disabilities and also an epidemiological profile. National Household Sample Survey (Pesquisa Nacional por Amostra de Domicílios - PNAD 1998-2003 indicates a distribution of chronic diseases that, consequently, has generated an expressive number of disabilities. These people with disabilities need health services, and use them when they manage to access them. However, the current models of healthcare for the elderly or people with disabilities are expensive and, in some aspects, are not efficient, requiring preventive strategies and health equipment for the maintenance or recovery of health of an aged population. Thus, the public policy agenda of Brazil should give priority to the maintenance of the functionality of the aged, with monitoring of health status, specific preventive actions on health and education, and care seeking an integral and multidimensional attention, not necessarily focused on disease(1.The need to develop policies and strategies, particularly on health promotion, with a look detached from the disease is justified because health problems come not only from the disease, but from any other circumstance or health condition, such as, pregnancy , aging, stress, genetic predisposition – all classified by D-10, nevertheless, not being able to measure the status alterations related to health, and much less to sort and describe the context in which these problems occur, which complicates and jeopardizes the planning and solvability of actions and services in health, unlike the data by means of qualifiers that the International Classification of Functioning, Disability and Health (ICF has the potential to generate(2.Brazil is a member country of the World Health

  9. Psychedelics Promote Structural and Functional Neural Plasticity.

    Science.gov (United States)

    Ly, Calvin; Greb, Alexandra C; Cameron, Lindsay P; Wong, Jonathan M; Barragan, Eden V; Wilson, Paige C; Burbach, Kyle F; Soltanzadeh Zarandi, Sina; Sood, Alexander; Paddy, Michael R; Duim, Whitney C; Dennis, Megan Y; McAllister, A Kimberley; Ori-McKenney, Kassandra M; Gray, John A; Olson, David E

    2018-06-12

    Atrophy of neurons in the prefrontal cortex (PFC) plays a key role in the pathophysiology of depression and related disorders. The ability to promote both structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in vitro and in vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Functional analysis of human and chimpanzee promoters.

    Science.gov (United States)

    Heissig, Florian; Krause, Johannes; Bryk, Jaroslaw; Khaitovich, Philipp; Enard, Wolfgang; Pääbo, Svante

    2005-01-01

    It has long been argued that changes in gene expression may provide an additional and crucial perspective on the evolutionary differences between humans and chimpanzees. To investigate how often expression differences seen in tissues are caused by sequence differences in the proximal promoters, we tested the expression activity in cultured cells of human and chimpanzee promoters from genes that differ in mRNA expression between human and chimpanzee tissues. Twelve promoters for which the corresponding gene had been shown to be differentially expressed between humans and chimpanzees in liver or brain were tested. Seven showed a significant difference in activity between the human promoter and the orthologous chimpanzee promoter in at least one of the two cell lines used. However, only three of them showed a difference in the same direction as in the tissues. Differences in proximal promoter activity are likely to be common between humans and chimpanzees, but are not linked in a simple fashion to gene-expression levels in tissues. This suggests that several genetic differences between humans and chimpanzees might be responsible for a single expression difference and thus that relevant expression differences between humans and chimpanzees will be difficult to predict from cell culture experiments or DNA sequences.

  11. The Role of RANTES Promoter Polymorphism in Functional Dyspepsia

    OpenAIRE

    Tahara, Tomomitsu; Shibata, Tomoyuki; Yamashita, Hiromi; Hirata, Ichiro; Arisawa, Tomiyasu

    2009-01-01

    Altered inflammatory immune responses have been shown to be associated with functional gastro intestinal disorder. We aimed to clarify the effect of functional promoter polymorphism of RANTES, which is a potent chemoattractant peptide for memory T lymphocytes and eosinophils, on the risk of functional dyspepsia in a Japanese population. RANTES promoter C-28G polymorphism was genotyped in 246 subjects including 134 FD patients according to Roma III criteria and 112 non-symptomatic healthy cont...

  12. Promoting Efficacy Research on Functional Analytic Psychotherapy

    Science.gov (United States)

    Maitland, Daniel W. M.; Gaynor, Scott T.

    2012-01-01

    Functional Analytic Psychotherapy (FAP) is a form of therapy grounded in behavioral principles that utilizes therapist reactions to shape target behavior. Despite a growing literature base, there is a paucity of research to establish the efficacy of FAP. As a general approach to psychotherapy, and how the therapeutic relationship produces change,…

  13. Does partial occlusion promote normal binocular function?

    Science.gov (United States)

    Li, Jingrong; Thompson, Benjamin; Ding, Zhaofeng; Chan, Lily Y L; Chen, Xiang; Yu, Minbin; Deng, Daming; Hess, Robert F

    2012-10-03

    There is growing evidence that abnormal binocular interactions play a key role in the amblyopia syndrome and represent a viable target for treatment interventions. In this context the use of partial occlusion using optical devices such as Bangerter filters as an alternative to complete occlusion is of particular interest. The aims of this study were to understand why Bangerter filters do not result in improved binocular outcomes compared to complete occlusion, and to compare the effects of Bangerter filters, optical blur and neutral density (ND) filters on normal binocular function. The effects of four strengths of Bangerter filters (0.8, 0.6, 0.4, 0.2) on letter and vernier acuity, contrast sensitivity, stereoacuity, and interocular suppression were measured in 21 observers with normal vision. In a subset of 14 observers, the partial occlusion effects of Bangerter filters, ND filters and plus lenses on stereopsis and interocular suppression were compared. Bangerter filters did not have graded effect on vision and induced significant disruption to binocular function. This disruption was greater than that of monocular defocus but weaker than that of ND filters. The effect of the Bangerter filters on stereopsis was more pronounced than their effect on monocular acuity, and the induced monocular acuity deficits did not predict the induced deficits in stereopsis. Bangerter filters appear to be particularly disruptive to binocular function. Other interventions, such as optical defocus and those employing computer generated dichoptic stimulus presentation, may be more appropriate than partial occlusion for targeting binocular function during amblyopia treatment.

  14. Conceptualizing Parental Autonomy Support: Adolescent Perceptions of Promotion of Independence versus Promotion of Volitional Functioning

    Science.gov (United States)

    Soenens, Bart; Vansteenkiste, Maarten; Lens, Willy; Luyckx, Koen; Goossens, Luc; Beyers, Wim; Ryan, Richard M.

    2007-01-01

    In current research on parenting, 2 ways of conceptualizing perceived parental autonomy support can be distinguished. Parental autonomy support can be defined in terms of promotion of independence (PI) or in terms of promotion of volitional functioning (PVF). This study aimed to establish the empirical distinctiveness of both conceptualizations…

  15. OPTIMIZATION OF PROMOTION EXPENSES USING A PRODUCTION FUNCTION

    Directory of Open Access Journals (Sweden)

    Gleb V. Kamenskiy

    2013-01-01

    Full Text Available This article describes an opportunity of application of the production function for optimization of promotion expenses. Second part of the article contains a data of a real enterprise to calculate an optimal advertising budget.

  16. Functional analysis of the OCA-B promoter.

    Science.gov (United States)

    Stevens, S; Wang, L; Roeder, R G

    2000-06-15

    OCA-B was identified as a B cell-specific coactivator that functions with either Oct-1 or Oct-2 to mediate efficient cell type-specific transcription via the octamer site (ATGCAAAT) both in vivo and in vitro. Mice lacking OCA-B exhibit normal Ag-independent B cell maturation. In contrast, Ag-dependent functions, including production of secondary Ig isotypes and germinal center formation, are greatly affected. To better understand OCA-B expression and, ultimately, the defects observed in the OCA-B knockout mice, we have cloned the OCA-B promoter and examined its function in both transformed and primary B cells. We show here that the OCA-B promoter is developmentally regulated, with activity increasing throughout B cell differentiation. Through physical and functional assays, we have found an activating transcription factor/cAMP response element binding protein binding site (or cAMP response element) that is crucial for OCA-B promoter activity. Furthermore, we demonstrate that IL-4 and anti-CD40 induce both the OCA-B promoter and octamer-dependent promoters, thus implicating OCA-B in B cell signaling events in the nucleus.

  17. Functional significance of SPINK1 promoter variants in chronic pancreatitis.

    Science.gov (United States)

    Derikx, Monique H M; Geisz, Andrea; Kereszturi, Éva; Sahin-Tóth, Miklós

    2015-05-01

    Chronic pancreatitis is a progressive inflammatory disorder of the pancreas, which often develops as a result of genetic predisposition. Some of the most frequently identified risk factors affect the serine protease inhibitor Kazal type 1 (SPINK1) gene, which encodes a trypsin inhibitor responsible for protecting the pancreas from premature trypsinogen activation. Recent genetic and functional studies indicated that promoter variants in the SPINK1 gene might contribute to disease risk in carriers. Here, we investigated the functional effects of 17 SPINK1 promoter variants using luciferase reporter gene expression assay in four different cell lines, including three pancreatic acinar cell lines (rat AR42J with or without dexamethasone-induced differentiation and mouse 266-6) and human embryonic kidney 293T cells. We found that most variants caused relatively small changes in promoter activity. Surprisingly, however, we observed significant variations in the effects of the promoter variants in the different cell lines. Only four variants exhibited consistently reduced promoter activity in all acinar cell lines, confirming previous reports that variants c.-108G>T, c.-142T>C, and c.-147A>G are risk factors for chronic pancreatitis and identifying c.-52G>T as a novel risk variant. In contrast, variant c.-215G>A, which is linked with the disease-associated splice-site mutation c.194 + 2T>C, caused increased promoter activity, which may mitigate the overall effect of the pathogenic haplotype. Our study lends further support to the notion that sequence evaluation of the SPINK1 promoter region in patients with chronic pancreatitis is justified as part of the etiological investigation. Copyright © 2015 the American Physiological Society.

  18. Promoters of Escherichia coli versus promoter islands: function and structure comparison.

    Directory of Open Access Journals (Sweden)

    Valeriy V Panyukov

    Full Text Available Expression of bacterial genes takes place under the control of RNA polymerase with exchangeable σ-subunits and multiple transcription factors. A typical promoter region contains one or several overlapping promoters. In the latter case promoters have the same or different σ-specificity and are often subjected to different regulatory stimuli. Genes, transcribed from multiple promoters, have on average higher expression levels. However, recently in the genome of Escherichia coli we found 78 regions with an extremely large number of potential transcription start points (promoter islands, PIs. It was shown that all PIs interact with RNA polymerase in vivo and are able to form transcriptionally competent open complexes both in vitro and in vivo but their transcriptional activity measured by oligonucleotide microarrays was very low, if any. Here we confirmed transcriptional defectiveness of PIs by analyzing the 5'-end specific RNA-seq data, but showed their ability to produce short oligos (9-14 bases. This combination of functional properties indicated a deliberate suppression of transcriptional activity within PIs. According to our data this suppression may be due to a specific conformation of the DNA double helix, which provides an ideal platform for interaction with both RNA polymerase and the histone-like nucleoid protein H-NS. The genomic DNA of E.coli contains therefore several dozen sites optimized by evolution for staying in a heterochromatin-like state. Since almost all promoter islands are associated with horizontally acquired genes, we offer them as specific components of bacterial evolution involved in acquisition of foreign genetic material by turning off the expression of toxic or useless aliens or by providing optimal promoter for beneficial genes. The putative molecular mechanism underlying the appearance of promoter islands within recipient genomes is discussed.

  19. Modifying Lipid Rafts Promotes Regeneration and Functional Recovery

    Directory of Open Access Journals (Sweden)

    Nardos G. Tassew

    2014-08-01

    Full Text Available Ideal strategies to ameliorate CNS damage should promote both neuronal survival and axon regeneration. The receptor Neogenin promotes neuronal apoptosis. Its ligand prevents death, but the resulting repulsive guidance molecule a (RGMa-Neogenin interaction also inhibits axonal growth, countering any prosurvival benefits. Here, we explore strategies to inhibit Neogenin, thus simultaneously enhancing survival and regeneration. We show that bone morphogenetic protein (BMP and RGMa-dependent recruitment of Neogenin into lipid rafts requires an interaction between RGMa and Neogenin subdomains. RGMa or Neogenin peptides that prevent this interaction, BMP inhibition by Noggin, or reduction of membrane cholesterol all block Neogenin raft localization, promote axon outgrowth, and prevent neuronal apoptosis. Blocking Neogenin raft association influences axonal pathfinding, enhances survival in the developing CNS, and promotes survival and regeneration in the injured adult optic nerve and spinal cord. Moreover, lowering cholesterol disrupts rafts and restores locomotor function after spinal cord injury. These data reveal a unified strategy to promote both survival and regeneration in the CNS.

  20. Brisk walking can promote functional recovery in chronic stroke patients

    OpenAIRE

    Batcho, Sèbiyo Charles; Stoquart, Gaëtan; Thonnard, Jean-Louis

    2013-01-01

    Objective: To determine whether regular brisk walking can promote functional recovery in community-dwelling stroke patients. Patients: A total of 44 chronic stroke patients, recruited in Belgium and Benin, respectively European high-income and African low-income countries. Methods: This longitudinal, single-cohort, observational study with 1 intervention period and 4 time-points of assessments (2 baseline, 1 post-intervention and 1 follow-up) was structured in 3 periods: pre-intervention peri...

  1. Functional effectiveness of threat appeals in exercise promotion messages

    Directory of Open Access Journals (Sweden)

    Olivier Mairesse

    2010-01-01

    Full Text Available As more than 70% of individuals in Western societies can be categorized as sedentary and inactivity has been recognized to lead to a series of serious physical and psychological disorders, the importance of physical activity promotion is ever more emphasized. Many social marketing campaigns use threat (or fear appeals to promote healthy behaviors. Theoretical models, such as the Extended Parallel Process Model integrate concepts as 'perceived threat' and 'perceived efficacy' to explain how such messages operate and can cause diverse behavioral reactions. It is however still not entirely clear how these different aspects are valuated and combined to determine desired versus undesired response behaviors in individuals. In a functional integration task, threat-appeal based exercise promotion messages varying in psychological threat and efficacy content were shown to sedentary employees in order to assess how they affect their intention to engage in physical exercise. Our results show that individuals can be categorized in 4 different clusters depending on the way they valuate threat and efficacy appeals: i.e. individuals sensitive to both types of cues, those sensitive to either the threat or the efficacy component in the message and those insensitive to either one of them. As different segments of receivers of the message react differently to threat and efficacy combinations, it is concluded that different approaches to designing effective mass media campaigns may be required for effective exercise promotion.

  2. Experimental strategies to promote functional recovery after peripheral nerve injuries.

    Science.gov (United States)

    Gordon, Tessa; Sulaiman, Olawale; Boyd, J Gordon

    2003-12-01

    The capacity of Schwann cells (SCs) in the peripheral nervous system to support axonal regeneration, in contrast to the oligodendrocytes in the central nervous system, has led to the misconception that peripheral nerve regeneration always restores function. Here, we consider how prolonged periods of time that injured neurons remain without targets during axonal regeneration (chronic axotomy) and that SCs in the distal nerve stumps remain chronically denervated (chronic denervation) progressively reduce the number of motoneurons that regenerate their axons. We demonstrate the effectiveness of low-dose, brain-derived neurotrophic and glial-derived neurotrophic factors to counteract the effects of chronic axotomy in promoting axonal regeneration. High-dose brain-derived neurotrophic factor (BDNF) on the other hand, acting through the p75 receptor, inhibits axonal regeneration and may be a factor in stopping regenerating axons from forming neuromuscular connections in skeletal muscle. The immunophilin, FK506, is also effective in promoting axonal regeneration after chronic axotomy. Chronic denervation of SCs (>1 month) severely deters axonal regeneration, although the few motor axons that do regenerate to reinnervate muscles become myelinated and form enlarged motor units in the reinnervated muscles. We found that in vitro incubation of chronically denervated SCs with transforming growth factor-beta re-established their growth-supportive phenotype in vivo, consistent with the idea that the interaction between invading macrophages and denervated SCs during Wallerian degeneration is essential to sustain axonal regeneration by promoting the growth-supportive SC phenotype. Finally, we consider the effectiveness of a brief period of 20 Hz electrical stimulation in promoting the regeneration of axons across the surgical gap after nerve repair.

  3. Structure and functional regulation of the CD38 promoter

    International Nuclear Information System (INIS)

    Sun Li; Iqbal, Jameel; Zaidi, Samir; Zhu Linglng; Zhang Xuefeng; Peng Yuanzheng; Moonga, Baljit S.; Zaidi, Mone

    2006-01-01

    CD38 has multiple roles in biology, including T lymphocyte signaling, neutrophil migration, neurotransmission, cell proliferation, apoptosis, and bone remodeling. To study the transcriptional control of the CD38 gene, we cloned a putative 1.8 kb promoter fragment from a rabbit genomic DNA library. Primer extension analysis indicated two transcription start sites consistent with the absence of a TATA box. Sequence analysis revealed several AP-1, AP-4, myo-D, GATA, and SP-1 sequences. MC3T3.E1 (osteoblast) or RAW-C3 (osteoclast precursor macrophage) cells were then transfected with the CD38 promoter or its deletion fragments ligated to the luciferase reporter gene. Except for the shortest 41 bp fragment, all fragments showed significant luciferase activity. There was a marked stimulation of basal activity in the 93 bp fragment that contained a GC box and SP-1 site. Furthermore, there were significant differences in the activity of the fragments in MC3T3.E1 and RAW-C3 cells. Intracellular Ca 2+ elevations by ionomycin (10 μM) in MC3T3.E1 cells inhibited promoter activity, except in the short 41 bp. In contrast, cAMP elevation by exposure to forskolin (100 μM) inhibited activation of all fragments, except the 0.6 and 1.2 kb fragments. Finally, TNF-α stimulated promoter activity in RAW-C3 cells transfected with the 93 bp and 1.0 kb fragments, consistent with the stimulation of CD38 mRNA by TNF-α. Physiologically, therefore, modulation of the expression of the NAD + -sensing enzyme, CD38, by Ca 2+ , cAMP, and cytokines, such as TNF-α may contribute to coupling the intense metabolic activity of osteoclasts and osteoblasts to their respective bone-resorbing and bone-forming functions

  4. Examining quality function deployment in safety promotion in Sweden.

    Science.gov (United States)

    Kullberg, Agneta; Nordqvist, Cecilia; Lindqvist, Kent; Timpka, Toomas

    2014-09-01

    The first-hand needs and demands of laypersons are not always considered when safety promotion programmes are being developed. We compared focal areas for interventions identified from residents' statements of safety needs with focal areas for interventions identified by local government professionals in a Swedish urban community certified by the international Safe Community movement supported by the World Health Organization. Quantitative and qualitative data on self-expressed safety needs from 787 housing residents were transformed into an intervention design, using the quality function deployment (QFD) technique and compared with the safety intervention programme developed by professionals at the municipality administrative office. The outcome of the comparison was investigated with regard to implications for the Safe Community movement. The QFD analysis identified the initiation and maintenance of social integrative processes in housing areas as the most highly prioritized interventions among the residents, but failed to highlight the safety needs of several vulnerable groups (the elderly, infants and persons with disabilities). The intervention programme designed by the public health professionals did not address the social integrative processes, but it did highlight the vulnerable groups. This study indicates that the QFD technique is suitable for providing residential safety promotion efforts with a quality orientation from the layperson's perspective. Views of public health professionals have to be included to ascertain that the needs of socially deprived residents are adequately taken into account. QFD can augment the methodological toolbox for safety promotion programmes, including interventions in residential areas. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Selective Androgen Receptor Modulators (SARMs) as Function Promoting Therapies

    Science.gov (United States)

    Bhasin, Shalender; Jasuja, Ravi

    2010-01-01

    Purpose of review The last decade has witnessed unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Recent Findings While steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5α-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with AR contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. Summary SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis. PMID:19357508

  6. Selective androgen receptor modulators as function promoting therapies.

    Science.gov (United States)

    Bhasin, Shalender; Jasuja, Ravi

    2009-05-01

    The past decade has witnessed an unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Although steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5alpha-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with androgen receptor (AR) contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand-binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis.

  7. Promoting the development of resilient academic functioning in maltreated children.

    Science.gov (United States)

    Holmes, Megan R; Yoon, Susan; Berg, Kristen A; Cage, Jamie L; Perzynski, Adam T

    2018-01-01

    This study examined (a) the extent of heterogeneity in the patterns of developmental trajectories of language development and academic functioning in children who have experienced maltreatment, (b) how maltreatment type (i.e., neglect or physical abuse) and timing of abuse explained variation in developmental trajectories, and (c) the extent to which individual protective factors (i.e., preschool attendance, prosocial skills), relationship protective factors (i.e., parental warmth, absence of past-year depressive episode, cognitive/verbal responsiveness) and community protective factors (i.e., neighborhood safety) promoted the development of resilient language/academic functioning trajectories. Longitudinal data analyses were conducted using cohort sequential Growth Mixture Model (CS-GMM) with a United States national representative sample of children reported to Child Protective Services (n=1,776). Five distinct developmental trajectories from birth to age 10 were identified including two resilient groups. Children who were neglected during infancy/toddlerhood or physically abused during preschool age were more likely to be in the poorer language/academic functioning groups (decreasing/recovery/decreasing and high decreasing) than the resilient high stable group. Child prosocial skills, caregiver warmth, and caregiver cognitive stimulation significantly predicted membership in the two resilient academic functioning groups (low increasing and high stable), after controlling for demographics and child physical abuse and neglect. Results suggest that it is possible for a maltreated child to successfully achieve competent academic functioning, despite the early adversity, and identifies three possible avenues of intervention points. This study also makes a significant contribution to the field of child development research through the novel use of CS-GMM, which has implications for future longitudinal data collection methodology. Copyright © 2017 Elsevier Ltd. All

  8. Brisk walking can promote functional recovery in chronic stroke patients.

    Science.gov (United States)

    Batcho, Charles Sèbiyo; Stoquart, Gaëtan; Thonnard, Jean-Louis

    2013-09-01

    To determine whether regular brisk walking can promote functional recovery in community-dwelling stroke patients. A total of 44 chronic stroke patients, recruited in Belgium and Benin, respectively European high-income and African low-income countries. This longitudinal, single-cohort, observational study with 1 intervention period and 4 time-points of assessments (2 baseline, 1 post-intervention and 1 follow-up) was structured in 3 periods: pre-intervention period (1 month), intervention period (3 months) and follow-up period (3 month). Intervention consisted of a 3 times/week group-based brisk walking programme. Primary outcome measures were ACTIVLIM-Stroke questionnaire and the 6-minute walk test (6MWT). Secondary outcome measures were the Stroke Impairment Assessment Set (SIAS), the Hospital Anxiety and Depression Scale (HADS), and the Berg Balance Scale (BBS). All outcome measures were stable during the pre-intervention period (p ≥ 0.16). They all improved significantly after intervention (p ≤ 0.01), except the HADS (p = 0.058). However, during the follow-up period, SIAS (p = 0.002) and BBS (p = 0.001) decreased, while ACTIVLIM-Stroke, 6MWT and HADS showed no significant change (p ≥ 0.13). This study suggests regular brisk walking as an effective approach to promote functional recovery in chronic stroke survivors. However, further studies are required before generalizing these results to the whole stroke population.

  9. Exosomes from eosinophils autoregulate and promote eosinophil functions.

    Science.gov (United States)

    Cañas, José Antonio; Sastre, Beatriz; Mazzeo, Carla; Fernández-Nieto, Mar; Rodrigo-Muñoz, José Manuel; González-Guerra, Andrés; Izquierdo, Manuel; Barranco, Pilar; Quirce, Santiago; Sastre, Joaquín; Del Pozo, Victoria

    2017-05-01

    Eosinophils are able to secrete exosomes that have an undefined role in asthma pathogenesis. We hypothesized that exosomes released by eosinophils autoregulate and promote eosinophil function. Eosinophils of patients with asthma ( n = 58) and healthy volunteers ( n = 16) were purified from peripheral blood, and exosomes were isolated and quantified from eosinophils of the asthmatic and healthy populations. Apoptosis, adhesion, adhesion molecules expression, and migration assays were performed with eosinophils in the presence or absence of exosomes from healthy and asthmatic individuals. Reactive oxygen species (ROS) were evaluated by flow cytometry with an intracellular fluorescent probe and nitric oxide (NO) and a colorimetric kit. In addition, exosomal proteins were analyzed by mass spectrometry. Eosinophil-derived exosomes induced an increase in NO and ROS production on eosinophils. Moreover, exosomes could act as a chemotactic factor on eosinophils, and they produced an increase in cell adhesion, giving rise to a specific augmentation of adhesion molecules, such as ICAM-1 and integrin α2. Protein content between exosomes from healthy and asthmatic individuals seems to be similar in both groups. In conclusion, we found that exosomes from the eosinophils of patients with asthma could modify several specific eosinophil functions related to asthma pathogenesis and that they could contribute fundamentally to the development and maintenance of asthma. © Society for Leukocyte Biology.

  10. The WHISK (Women's Health: Increasing the Awareness of Science and Knowledge) Pilot Project: Recognizing Sex and Gender Differences in Women's Health and Wellness.

    Science.gov (United States)

    Edwards, Lorece V; Dennis, Sabriya; Weaks, Francesca

    2013-09-01

    Women's health encompasses a continuum of biological, psychological, and social challenges that differ considerably from those of men. Despite the remarkable advances in science, women's health and sex differences research is slowly gaining recognition and acceptance. It is important that women's health gain attention as women are usually the gatekeepers of care for the family. Women's health and health outcomes are strongly influenced by sex and gender differences as well as geography. Around the world, the interplay of biology and culture brings about differences in men's and women's health, which have been largely overlooked. The Women's Health: Increasing the Awareness of Science and Knowledge (WHISK) Pilot Project was a multidisciplinary project aimed to increase the awareness of sex and gender differences in women's health and research among healthcare professionals. Theater expression and creative art were used to translate knowledge, enhance understanding, and increase the awareness of sex differences. Findings from this project clearly showed an apparent increase in knowledge and cultivation of new insights.

  11. The promotional functionality of evaluative language in tourism discourse

    Directory of Open Access Journals (Sweden)

    R. Mocini

    2013-10-01

    Full Text Available This study intends to investigate the use of evaluation in a corpus of British tourist brochures produced by tour operators specializing in the promotion of Italy. The theoretical framework is the Appraisal System developed mainly by White (1998, 2001 and Martin (2000 in order to study the discourse functions of evaluative resources. The creators of brochures resort mainly to two categories of Appraisal. The first concerns the expression of emotions (Affect, both in an implicit and explicit way, while the second category (Appreciation includes aesthetic assessments. Evaluation can be amplified by several linguistic devices which either sharpen the margins of an experiential category or intensify the meaning of a word, like those lexical items which include an assessment of intensity as part of their semantic load. The iteration of evalua­tive meanings constructs a prosody, bringing an emotional and aesthetic colour to the whole text which in­volves the reader and increases the perceived value of a tourist destination.

  12. Functional Effectiveness of Threat Appeals in Exercise Promotion Messages

    Science.gov (United States)

    Brengman, Malaika; Wauters, Birgit; Macharis, Cathy; Mairesse, Olivier

    2010-01-01

    As more than 70% of individuals in Western societies can be categorized as sedentary and inactivity has been recognized to lead to a series of serious physical and psychological disorders, the importance of physical activity promotion is ever more emphasized. Many social marketing campaigns use threat (or fear) appeals to promote healthy…

  13. Functional analysis of bipartite begomovirus coat protein promoter sequences

    International Nuclear Information System (INIS)

    Lacatus, Gabriela; Sunter, Garry

    2008-01-01

    We demonstrate that the AL2 gene of Cabbage leaf curl virus (CaLCuV) activates the CP promoter in mesophyll and acts to derepress the promoter in vascular tissue, similar to that observed for Tomato golden mosaic virus (TGMV). Binding studies indicate that sequences mediating repression and activation of the TGMV and CaLCuV CP promoter specifically bind different nuclear factors common to Nicotiana benthamiana, spinach and tomato. However, chromatin immunoprecipitation demonstrates that TGMV AL2 can interact with both sequences independently. Binding of nuclear protein(s) from different crop species to viral sequences conserved in both bipartite and monopartite begomoviruses, including TGMV, CaLCuV, Pepper golden mosaic virus and Tomato yellow leaf curl virus suggests that bipartite begomoviruses bind common host factors to regulate the CP promoter. This is consistent with a model in which AL2 interacts with different components of the cellular transcription machinery that bind viral sequences important for repression and activation of begomovirus CP promoters

  14. Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth

    International Nuclear Information System (INIS)

    Hopper, A P; Dugan, J M; Gill, A A; Haycock, J W; Claeyssens, F; Fox, O J L; May, P W

    2014-01-01

    In this study, we report the production of amine functionalized nanodiamond. The amine functionalized nanodiamond forms a conformal monolayer on a negatively charged surface produced via plasma polymerization of acrylic acid. Nanodiamond terminated surfaces were studied as substrates for neuronal cell culture. NG108-15 neuroblastoma-glyoma hybrid cells were successfully cultured upon amine functionalized nanodiamond coated surfaces for between 1 and 7 d. Additionally, primary dorsal root ganglion (DRG) neurons and Schwann cells isolated from Wistar rats were also successfully cultured over a period of 21 d illustrating the potential of the coating for applications in the treatment of peripheral nerve injury. (paper)

  15. Thermostability promotes the cooperative function of split adenylate kinases.

    Science.gov (United States)

    Nguyen, Peter Q; Liu, Shirley; Thompson, Jeremy C; Silberg, Jonathan J

    2008-05-01

    Proteins can often be cleaved to create inactive polypeptides that associate into functional complexes through non-covalent interactions, but little is known about what influences the cooperative function of the ensuing protein fragments. Here, we examine whether protein thermostability affects protein fragment complementation by characterizing the function of split adenylate kinases from the mesophile Bacillus subtilis (AKBs) and the hyperthermophile Thermotoga neapolitana (AKTn). Complementation studies revealed that the split AKTn supported the growth of Escherichia coli with a temperature-sensitive AK, but not the fragmented AKBs. However, weak complementation occurred when the AKBs fragments were fused to polypeptides that strongly associate, and this was enhanced by a Q16L mutation that thermostabilizes the full-length protein. To examine how the split AK homologs differ in structure and function, their catalytic activity, zinc content, and circular dichroism spectra were characterized. The reconstituted AKTn had higher levels of zinc, greater secondary structure, and >10(3)-fold more activity than the AKBs pair, albeit 17-fold less active than full-length AKTn. These findings provide evidence that the design of protein fragments that cooperatively function can be improved by choosing proteins with the greatest thermostability for bisection, and they suggest that this arises because hyperthermophilic protein fragments exhibit greater residual structure compared to their mesophilic counterparts.

  16. The promotion and control functions of atomic energy law

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The question about the purpose of atomic energy law may sound superfluous in Germany, a country where a highly differential legal framework for the peaceful utilization of nuclear power has existed for nearly 40 years in the Basic Law, the Atomic Energy Act, and its ordinances, and a comprehensive body of case laws. Yet, it is justified in view of the declared intention of the German federal government to establish an environmental code into which atomic energy law, hitherto an independent branch of the law, would be integrated, and it is justified also in view of persistent complaints that the present rules and regulations stifled investment activities. A look into some codes of law may help answer the question. Already in 1959, the authors of the Atomic Energy Act outlined the purposes of the legislation in relatively clear terms in Section 1. Besides the two foreign policy aspects of security and loyalty under treaties, which do not concern us in this connection, the key purposes of atomic energy law are stated there as promotion and protection. The protection purpose, which implies the need to protect life, health, and property from the hazards of nuclear energy and harmful effects of ionizing radiation, ranks second in the Act. In accordance with the ruling in 1972 of the Federal Administrative Court, however, it should rank at the top. (orig.) [de

  17. Improving Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord Injury

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0378 TITLE: Improving Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord Injury PRINCIPAL...TITLE AND SUBTITLE CordCorInjury 5a. CONTRACT NUMBER Improvi g Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord...care. However, despite these drastic interventions, the cervical injured patient is still susceptible to death due to respiratory complications

  18. Promoting consistent use of the communication function classification system (CFCS).

    Science.gov (United States)

    Cunningham, Barbara Jane; Rosenbaum, Peter; Hidecker, Mary Jo Cooley

    2016-01-01

    We developed a Knowledge Translation (KT) intervention to standardize the way speech-language pathologists working in Ontario Canada's Preschool Speech and Language Program (PSLP) used the Communication Function Classification System (CFCS). This tool was being used as part of a provincial program evaluation and standardizing its use was critical for establishing reliability and validity within the provincial dataset. Two theoretical foundations - Diffusion of Innovations and the Communication Persuasion Matrix - were used to develop and disseminate the intervention to standardize use of the CFCS among a cohort speech-language pathologists. A descriptive pre-test/post-test study was used to evaluate the intervention. Fifty-two participants completed an electronic pre-test survey, reviewed intervention materials online, and then immediately completed an electronic post-test survey. The intervention improved clinicians' understanding of how the CFCS should be used, their intentions to use the tool in the standardized way, and their abilities to make correct classifications using the tool. Findings from this work will be shared with representatives of the Ontario PSLP. The intervention may be disseminated to all speech-language pathologists working in the program. This study can be used as a model for developing and disseminating KT interventions for clinicians in paediatric rehabilitation. The Communication Function Classification System (CFCS) is a new tool that allows speech-language pathologists to classify children's skills into five meaningful levels of function. There is uncertainty and inconsistent practice in the field about the methods for using this tool. This study used combined two theoretical frameworks to develop an intervention to standardize use of the CFCS among a cohort of speech-language pathologists. The intervention effectively increased clinicians' understanding of the methods for using the CFCS, ability to make correct classifications, and

  19. Men's Sheds function and philosophy: towards a framework for future research and men's health promotion.

    Science.gov (United States)

    Wilson, Nathan J; Cordier, Reinie; Doma, Kenji; Misan, Gary; Vaz, Sharmila

    2015-08-01

    The Men's Shed movement supports a range of men's health promotion initiatives. This paper examines whether a Men's Shed typology could inform future research and enable more efficient and targeted health promotion activities through Men's Sheds. The International Men's Shed Survey consisted of a cross-sectional exploration of sheds, their members, and health and social activities. Survey data about shed 'function' and 'philosophy' were analysed using descriptive and inferential statistics. A framework of Men's Sheds based on function and philosophy demonstrated that most sheds serve a primary utility function, a secondary social function, but most importantly a primary social opportunity philosophy. Sheds with a primary health philosophy participated in fewer health promotion activities when compared with sheds without a primary health philosophy. In addition to the uniform health promotion resources distributed by the Men's Shed associations, specific health promotion activities, such as prostate education, are being initiated from an individual shed level. This framework can potentially be used to enable future research and health promotion activities to be more efficiently and effectively targeted. SO WHAT? Men experience poorer health and well being outcomes than women. This framework offers a novel approach to providing targeted health promotion activities to men in an environment where it is okay to talk about men's health.

  20. Transcranial brain stimulation to promote functional recovery after stroke

    DEFF Research Database (Denmark)

    Raffin, Estelle; Siebner, Hartwig R

    2014-01-01

    as a therapeutic tool. RECENT FINDINGS: Recent meta-analyses showed that the treatment effects of NIBS in patients with stroke are rather inconsistent across studies and the evidence for therapeutic efficacy is still uncertain. This raises the question of how NIBS can be developed further to improve its...... therapeutic efficacy. SUMMARY: This review addressed six questions: How does NIBS facilitate the recovery of function after stroke? Which brain regions should be targeted by NIBS? Is there a particularly effective NIBS modality that should be used? Does the location of the stroke influence the therapeutic...... will be critical to fully unfold the therapeutic effects of NIBS and will pave the way towards adaptive NIBS protocols, in which NIBS is tailored to the individual patient....

  1. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway

    DEFF Research Database (Denmark)

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-01-01

    in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function...

  2. Identification of functional DNA variants in the constitutive promoter region of MDM2

    Directory of Open Access Journals (Sweden)

    Lalonde Marie-Eve

    2012-09-01

    Full Text Available Abstract Although mutations in the oncoprotein murine double minute 2 (MDM2 are rare, MDM2 gene overexpression has been observed in several human tumors. Given that even modest changes in MDM2 levels might influence the p53 tumor suppressor signaling pathway, we postulated that sequence variation in the promoter region of MDM2 could lead to disregulated expression and variation in gene dosage. Two promoters have been reported for MDM2; an internal promoter (P2, which is located near the end of intron 1 and is p53-responsive, and an upstream constitutive promoter (P1, which is p53-independent. Both promoter regions contain DNA variants that could influence the expression levels of MDM2, including the well-studied single nucleotide polymorphism (SNP SNP309, which is located in the promoter P2; i.e., upstream of exon 2. In this report, we screened the promoter P1 for DNA variants and assessed the functional impact of the corresponding SNPs. Using the dbSNP database and genotyping validation in individuals of European descent, we identified three common SNPs (−1494 G > A; indel 40 bp; and −182 C > G. Three major promoter haplotypes were inferred by using these three promoter SNPs together with rs2279744 (SNP309. Following subcloning into a gene reporter system, we found that two of the haplotypes significantly influenced MDM2 promoter activity in a haplotype-specific manner. Site-directed mutagenesis experiments indicated that the 40 bp insertion/deletion variation is causing the observed allelic promoter activity. This study suggests that part of the variability in the MDM2 expression levels could be explained by allelic p53-independent P1 promoter activity.

  3. Spermatogenesis-related ring finger gene ZNF230 promoter: identification and functional analysis

    DEFF Research Database (Denmark)

    Xu, Wenming; Zhang, Sizhong; Qiu, Weimin

    2009-01-01

    reporter Plasmids. Overexpression and site-directed mutation test were used to characterize the cis-element. The results showed ZNF230 gene promoter to be GC rich and not contain a TATA box. Deletion analysis of the 5'-flanking region of ZNF230 in HEK293 cells indicated that the sequence encompassing from...... nt -131 to +152 has a basal transcriptional activity. Site-directed mutation test and mithramycin A treatment demonstrated that the ZNF230 promoter contained a functional Sp1 site. Overexpression of the Sox5 protein activated the promoter activity. A 312-bp fragment surrounding the transcription...

  4. Disruption of Lysosome Function Promotes Tumor Growth and Metastasis in Drosophila *

    OpenAIRE

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-01-01

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the RasV12 cells....

  5. Functional characterization of Pol III U6 promoters for gene knockdown and knockout in Plutella xylostella.

    Science.gov (United States)

    Huang, Yuping; Wang, Yajun; Zeng, Baosheng; Liu, Zhaoxia; Xu, Xuejiao; Meng, Qian; Huang, Yongping; Yang, Guang; Vasseur, Liette; Gurr, Geoff M; You, Minsheng

    2017-10-01

    RNA polymerase type III (Pol-III) promoters such as U6 are commonly used to express small RNAs, including short hairpin RNAs (shRNAs) and single guide RNAs (sgRNAs). Functional U6 promoters are widely used in CRISPR systems, and their characterization can facilitate genome editing of non-model organisms. In the present study, six U6 small nuclear RNA (snRNA) promoters containing two conserved elements of a proximal sequence element (PSEA) and a TATA box, were identified and characterized in the diamondback moth (Plutella xylostella) genome. Relative efficiency of the U6 promoters to express shRNA induced EGFP knockdown was tested in a P. xylostella cell line, revealing that the PxU6:3 promoter had the strongest expression effect. Further work with the PxU6:3 promoter showed its efficacy in EGFP knockout using CRISPR/Cas9 system in the cells. The expression plasmids with versatile Pxabd-A gene specific sgRNA driven by the PxU6:3 promoter, combined with Cas9 mRNA, could induce mutagenesis at specific genomic loci in vivo. The phenotypes induced by sgRNA expression plasmids were similar to those done in vitro transcription sgRNAs. A plasmid with two tandem arranged PxU6:3:sgRNA expression cassettes targeting Pxabd-A loci was generated, which caused a 28,856 bp fragment deletion, suggesting that the multi-sgRNA expression plasmid can be used for multi-targeting. Our work indicates that U6 snRNA promoters can be used for functional studies of genes with the approach of reverse genetics in P. xylostella. These essential promoters also provide valuable potential for CRISPR-derived gene drive as a tactic for population control in this globally significant pest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance.

    Science.gov (United States)

    Mensah, Sylvanus; Veldtman, Ruan; Assogbadjo, Achille E; Glèlè Kakaï, Romain; Seifert, Thomas

    2016-10-01

    The relationship between biodiversity and ecosystem function has increasingly been debated as the cornerstone of the processes behind ecosystem services delivery. Experimental and natural field-based studies have come up with nonconsistent patterns of biodiversity-ecosystem function, supporting either niche complementarity or selection effects hypothesis. Here, we used aboveground carbon (AGC) storage as proxy for ecosystem function in a South African mistbelt forest, and analyzed its relationship with species diversity, through functional diversity and functional dominance. We hypothesized that (1) diversity influences AGC through functional diversity and functional dominance effects; and (2) effects of diversity on AGC would be greater for functional dominance than for functional diversity. Community weight mean (CWM) of functional traits (wood density, specific leaf area, and maximum plant height) were calculated to assess functional dominance (selection effects). As for functional diversity (complementarity effects), multitrait functional diversity indices were computed. The first hypothesis was tested using structural equation modeling. For the second hypothesis, effects of environmental variables such as slope and altitude were tested first, and separate linear mixed-effects models were fitted afterward for functional diversity, functional dominance, and both. Results showed that AGC varied significantly along the slope gradient, with lower values at steeper sites. Species diversity (richness) had positive relationship with AGC, even when slope effects were considered. As predicted, diversity effects on AGC were mediated through functional diversity and functional dominance, suggesting that both the niche complementarity and the selection effects are not exclusively affecting carbon storage. However, the effects were greater for functional diversity than for functional dominance. Furthermore, functional dominance effects were strongly transmitted by CWM of

  7. Isolation and functional characterization of Lycopene β-cyclase (CYC-B promoter from Solanum habrochaites

    Directory of Open Access Journals (Sweden)

    Chinnusamy Viswanathan

    2010-04-01

    to -437 bp 5' to ATG led to significant increase in the activity of GUS in the transgenic plants. Promoter deletion analysis led to the identification of a short promoter region (-436 bp to ATG that exhibited a higher promoter strength but similar developmental expression pattern as compared with the full-length ShCYC-B promoter. Conclusion Functional characterization of the full-length ShCYC-B promoter and its deletion fragments in transient expression system in fruto as well as in stable transgenic tomato revealed that the promoter is developmentally regulated and its expression is upregulated in chromoplast-rich flowers and fruits. Our study identified a short promoter region with functional activity and developmental expression pattern similar to that of the full-length ShCYC-B promoter. This 436 bp promoter region can be used in promoter::reporter fusion molecular genetic screens to identify mutants impaired in CYC-B expression, and thus can be a valuable tool in understanding carotenoid metabolism in tomato. Moreover, this short promoter region of ShCYC-B may be useful in genetic engineering of carotenoid content and other agronomic traits in tomato fruits.

  8. The promoter of the glucoamylase-encoding gene of Aspergillus niger functions in Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.L. (Dept. of Agriculture, Madison, WI (United States) Univ. of Wisconsin, Madison (United States)); Gaskell, J.; Cullen, D. (Dept. of Agriculture, Madison, WI (United States)); Berka, R.M.; Yang, M.; Henner, D.J. (Genentech Inc., San Francisco, CA (United States))

    1990-01-01

    Promoter sequences from the Aspergillus niger glucoamylase-encoding gene (glaA) were linked to the bacterial hygromycin (Hy) phosphotransferase-encoding gene (hph) and this chimeric marker was used to select Hy-resistant (Hy[sup R]) Ustilago maydis transformants. This is an example of an Ascomycete promoter functioning in a Basidiomycete. Hy[sup R] transformants varied with respect to copy number of integrated vector, mitotic stability, and tolerance to Hy. Only 216 bp of glaA promoter sequence is required for expression in U. maydis but this promoter is not induced by starch as it is in Aspergillus spp. The transcription start points are the same in U. maydis and A. niger.

  9. Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum.

    Directory of Open Access Journals (Sweden)

    Shan Xin

    Full Text Available Apoplastic ascorbate oxidase (AO plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1 gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA. Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome, Gossypium raimondii (Gr, diploid cotton with a DD genome and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence

  10. Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum.

    Science.gov (United States)

    Xin, Shan; Tao, Chengcheng; Li, Hongbin

    2016-01-01

    Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element) was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA). Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element) might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome), Gossypium raimondii (Gr, diploid cotton with a DD genome) and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome) indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh) cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence with a

  11. High-Frequency Promoter Firing Links THO Complex Function to Heavy Chromatin Formation

    DEFF Research Database (Denmark)

    Mouaikel, John; Causse, Sébastien Z; Rougemaille, Mathieu

    2013-01-01

    The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes...... (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single......-molecule fluorescence insitu hybridization measurements show that heavy chromatin formation correlates with an unusually high firing pace of the promoter with more than 20 transcription events per minute. Heavy chromatin formation closely follows the modulation of promoter firing and strongly correlates with polymerase...

  12. Exploring strain-promoted 1,3-dipolar cycloadditions of end functionalized polymers

    NARCIS (Netherlands)

    Ledin, Petr A; Kolishetti, Nagesh; Hudlikar, Manish S; Boons, Geert-Jan

    2014-01-01

    Strain-promoted 1,3-dipolar cycloaddition of cyclooctynes with 1,3-dipoles such as azides, nitrones, and nitrile oxides, are of interest for the functionalization of polymers. In this study, we have explored the use of a 4-dibenzocyclooctynol (DIBO)-containing chain transfer agent in reversible

  13. Type 1 plaminogen activator inhibitor gene: Functional analysis and glucocorticoid regulation of its promoter

    International Nuclear Information System (INIS)

    Van Zonneveld, A.J.; Curriden, S.A.; Loskutoff, D.J.

    1988-01-01

    Plasminogen activator inhibitor type 1 is an important component of the fibrinolytic system and its biosynthesis is subject to complex regulation. To study this regulation at the level of transcription, the authors have identified and sequenced the promoter of the human plasminogen activator inhibitor type 1 gene. Nuclease protection experiments were performed by using endothelial cell mRNA and the transcription initiation (cap) site was established. Sequence analysis of the 5' flanking region of the gene revealed a perfect TATA box at position -28 to position -23, the conserved distance from the cap site. Comparative functional studies with the firefly luciferase gene as a reporter gene showed that fragments derived from this 5' flanking region exhibited high promoter activity when transfected into bovine aortic endothelial cells and mouse Ltk - fibroblasts but were inactive when introduced into HeLa cells. These studies indicate that the fragments contain the plasminogen activator inhibitor type 1 promoter and that it is expressed in a tissue-specific manner. Although the fragments were also silent in rat FTO2B hepatoma cells, their promoter activity could be induced up to 40-fold with the synthetic glucocorticoid dexamethasone. Promoter deletion mapping experiments and studies involving the fusion of promoter fragments to a heterologous gene indicated that dexamethasone induction is mediated by a glucocorticoid responsive element with enhancer-like properties located within the region between nucleotides -305 and +75 of the plasminogen activator inhibitor type 1 gene

  14. Identification and functional analysis of a CDE/CHR element in the POLDI promoter

    Institute of Scientific and Technical Information of China (English)

    SONG NanMeng; ZHU XiaoYu; SHI Lei; AN Jing; WU YanWei; SANG JianLi

    2009-01-01

    Chinese Center for Disease Control and Prevention, Beijing 102206, China DNA polymerase delta is encoded by the POLD1 gene, the transcription of which is strictly cell cy-cle-dependent. However, the means by which POLD1 transcription is regulated by the cell cycle mechanism is currently unknown. We discovered a novel element in the POLD1 promoter known as a CDE(cell cycle-dependent element)lCHR(cell cycle gene homology region) element. A series of luci-ferase reporter constructs containing various POLD1 promoter mutations were used to investigate the role of the CDF_JCHR element in POLD1 transcription. When the CDE/CHR element was mutated, the promoter activity was up-regulated, and the cell-cycle related factors E2F1 and p21 stopped regulating the promoter. Furthermore, cell cycle-dependent changes in the promoter activity required the integra-tive CDE/CHR element. Electrophoretic mobility shift assay (EMSA) revealed the presence of at least three types of DNA/protein complexes binding to the CDE/CHR element. Our findings provide strong evidence that the CDE/CHR-like sequence is an active functional element in the POLD1 promoter, which is important for the cell cycle regulation of the POLD1 gene.

  15. Herbicide and fertilizers promote analogous phylogenetic responses but opposite functional responses in plant communities

    DEFF Research Database (Denmark)

    Pellissier, Loïc; Wisz, Mary S.; Strandberg, Beate

    2014-01-01

    on long-term experiment we show that fertilizer and herbicides (glyphosate) have contrasting effects on functional structure, but can increase phylogenetic diversity in semi-natural plant communities. We found that an increase in nitrogen promoted an increase in the average specific leaf area and canopy...... height at the community level, but an increase in glyphosate promoted a decrease in those traits. Phylogenetic diversity of plant communities increased when herbicide and fertilizer were applied together, likely because functional traits facilitating plant success in those conditions were......Throughout the world, herbicides and fertilizers change species composition in agricultural communities, but how do the cumulative effects of these chemicals impact the functional and phylogenetic structure of non-targeted communities when they drift into adjacent semi-natural habitats? Based...

  16. Practical measures of cognitive function and promotion of their performance in the context of research

    Directory of Open Access Journals (Sweden)

    Mariusz Gujski

    2016-07-01

    Full Text Available The aging of the population generates a number of very interesting research questions in the fields of medicine, psychology, sociology, demography, and many others. One of the issues subject to both intensive research by scientists and exploration by practitioners is associated with cognitive functions. The article presents current knowledge regarding practical actions in the field of promoting cognitive function using diagnostic programmes and training using modern technologies. An important aspect presented in this study is also related to the welfare of the maintenance or improvement of cognitive function. Information and communication technologies will contribute to the dissemination of computerized cognitive training, also personalized.

  17. Characterization and functional analyses of the human G protein-coupled receptor kinase 4 gene promoter.

    Science.gov (United States)

    Hasenkamp, Sandra; Telgmann, Ralph; Staessen, Jan A; Hagedorn, Claudia; Dördelmann, Corinna; Bek, Martin; Brand-Herrmann, Stefan-Martin; Brand, Eva

    2008-10-01

    The G protein-coupled receptor kinase 4 is involved in renal sodium handling and blood pressure regulation. Missense variants have already been tested functionally and are associated with hypertension, but no data on promoter analyses are yet available. We scanned 94 hypertensive white subjects for genetic variation and performed promoter reporter gene analyses in HEK293T, COS7, and SaOs-2 cells. Transient transfections with various full lengths and wild-type deletion constructs revealed that 1851 bp of the flanking region and 275 bp of the 5'-untranslated region were sufficient for transcriptional activities and composed a powerful cis-active element in the distal 293 bp. The -1702T and +2T alleles resulted in drastic general reductions of promoter function, whereas an activity increasing effect of +268C was cell type specific. Electrophoretic mobility-shift assay, supershift, and cotransfection analyses of transcription factor binding sites predicted in silico (Alibaba2.1/Transfac7) resulted in allele-specific binding patterns of nuclear proteins and identified the participation of CCAAT/enhancer-binding protein transcription factor family members. The G protein-coupled receptor kinase 4 core promoter resides in the first 1851 bp upstream of its transcription start site. The 4 identified genetic variants within this region exert allele-specific impact on both cell type- and stimulation-dependent transcription and may affect the expression balance of renal G protein-coupled receptor kinase 4.

  18. Genome-wide function of H2B ubiquitylation in promoter and genic regions.

    Science.gov (United States)

    Batta, Kiran; Zhang, Zhenhai; Yen, Kuangyu; Goffman, David B; Pugh, B Franklin

    2011-11-01

    Nucleosomal organization in and around genes may contribute substantially to transcriptional regulation. The contribution of histone modifications to genome-wide nucleosomal organization has not been systematically evaluated. In the present study, we examine the role of H2BK123 ubiquitylation, a key regulator of several histone modifications, on nucleosomal organization at promoter, genic, and transcription termination regions in Saccharomyces cerevisiae. Using high-resolution MNase chromatin immunoprecipitation and sequencing (ChIP-seq), we map nucleosome positioning and occupancy in mutants of the H2BK123 ubiquitylation pathway. We found that H2B ubiquitylation-mediated nucleosome formation and/or stability inhibits the assembly of the transcription machinery at normally quiescent promoters, whereas ubiquitylation within highly active gene bodies promotes transcription elongation. This regulation does not proceed through ubiquitylation-regulated histone marks at H3K4, K36, and K79. Our findings suggest that mechanistically similar functions of H2B ubiquitylation (nucleosome assembly) elicit different functional outcomes on genes depending on its positional context in promoters (repressive) versus transcribed regions (activating).

  19. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia

    Science.gov (United States)

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-01-01

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108

  20. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway.

    Science.gov (United States)

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-05-12

    Ubiquitin and ubiquitin-like proteins (UBLs) function in a wide array of cellular processes. UBL5 is an atypical UBL that does not form covalent conjugates with cellular proteins and which has a known role in modulating pre-mRNA splicing. Here, we report an unexpected involvement of human UBL5 in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function in response to DNA damage and hypersensitivity to ICLs. By mapping the sequence determinants underlying UBL5-FANCI binding, we generated separation-of-function mutants to demonstrate that key aspects of FA pathway function, including FANCI-FANCD2 heterodimerization, FANCD2 and FANCI monoubiquitylation and maintenance of chromosome stability after ICLs, are compromised when the UBL5-FANCI interaction is selectively inhibited by mutations in either protein. Together, our findings establish UBL5 as a factor that promotes the functionality of the FA DNA repair pathway. © 2015 The Authors.

  1. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    Science.gov (United States)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  2. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders

    OpenAIRE

    Andari, Elissar; Duhamel, Jean-René; Zalla, Tiziana; Herbrecht, Evelyn; Leboyer, Marion; Sirigu, Angela

    2010-01-01

    Social adaptation requires specific cognitive and emotional competences. Individuals with high-functioning autism or with Asperger syndrome cannot understand or engage in social situations despite preserved intellectual abilities. Recently, it has been suggested that oxytocin, a hormone known to promote mother-infant bonds, may be implicated in the social deficit of autism. We investigated the behavioral effects of oxytocin in 13 subjects with autism. In a simulated ball game where participan...

  3. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Linard Filli

    2015-01-01

    Full Text Available Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of structural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The formation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identified as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the existence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic interventions (e.g., fiber-growth enhancing interventions, rehabilitation. This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of propriospinal circuits to maximize functional recovery after spinal cord injury.

  4. Recombinational micro-evolution of functionally different metallothionein promoter alleles from Orchesella cincta

    Directory of Open Access Journals (Sweden)

    van Straalen Nico M

    2007-06-01

    Full Text Available Abstract Background Metallothionein (mt transcription is elevated in heavy metal tolerant field populations of Orchesella cincta (Collembola. This suggests that natural selection acts on transcriptional regulation of mt in springtails at sites where cadmium (Cd levels in soil reach toxic values This study investigates the nature and the evolutionary origin of polymorphisms in the metallothionein promoter (pmt and their functional significance for mt expression. Results We sequenced approximately 1600 bp upstream the mt coding region by genome walking. Nine pmt alleles were discovered in NW-European populations. They differ in the number of some indels, consensus transcription factor binding sites and core promoter elements. Extensive recombination events between some of the alleles can be inferred from the alignment. A deviation from neutral expectations was detected in a cadmium tolerant population, pointing towards balancing selection on some promoter stretches. Luciferase constructs were made from the most abundant alleles, and responses to Cd, paraquat (oxidative stress inducer and moulting hormone were studied in cell lines. By using paraquat we were able to dissect the effect of oxidative stress from the Cd specific effect, and extensive differences in mt induction levels between these two stressors were observed. Conclusion The pmt alleles evolved by a number of recombination events, and exhibited differential inducibilities by Cd, paraquat and molting hormone. In a tolerant population from a metal contaminated site, promoter allele frequencies differed significantly from a reference site and nucleotide polymorphisms in some promoter stretches deviated from neutral expectations, revealing a signature of balancing selection. Our results suggest that the structural differences in the Orchesella cincta metallothionein promoter alleles contribute to the metallothionein -over-expresser phenotype in cadmium tolerant populations.

  5. Cloning and Functional Analysis of Phosphoethanolamine Methyltransferase Promoter from Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Gai-Li Niu

    2018-01-01

    Full Text Available Betaine, a non-toxic osmoprotectant, is believed to accumulate considerably in plants under stress conditions to maintain the osmotic pressure and promote a variety of processes involved in growth and development. Phosphoethanolamine N-methyltransferase (PEAMT, a key enzyme for betaine synthesis, is reported to be regulated by its upstream promoter. In the present investigation, by using the transgenic approach, a 1048 bp long promoter region of ZmPEAMT gene from Zea mays was cloned and functionally characterized in tobacco. Computational analysis affirmed the existence of abiotic stress responsive cis-elements like ABRE, MYC, HST, LST etc., as well as pathogen, wound and phytohormone responsive motifs. For transformation in tobacco, four 5′-deletion constructs of 826 bp (P2, 642 bp (P3, 428 bp (P4 and 245 bp (P5 were constructed from the 1048 bp (P1 promoter fragment. The transgenic plants generated through a single event exhibited a promising expression of GUS reporter protein in the leaf tissues of treated with salt, drought, oxidative and cold stress as well as control plants. The GUS expression level progressively reduced from P1 to P5 in the leaf tissues, whereas a maximal expression was observed with the P3 construct in the leaves of control plants. The expression of GUS was noted to be higher in the leaves of osmotically- or salt-treated transgenic plants than that in the untreated (control plants. An effective expression of GUS in the transgenic plants manifests that this promoter can be employed for both stress-inducible and constitutive expression of gene(s. Due to this characteristic, this potential promoter can be effectively used for genetic engineering of several crops.

  6. Clinical evaluation of immune-promoting functions of the developed product (HemoHIM)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Soo; Lee, Ill Kyoo; Kwon, Soon Gil [The Catholic University of Korea, Seoul (Korea, Republic of)

    2007-07-15

    We performed a clinical study to evaluate the immune promotion and antioxidant effects of the developed product (HemoHIM) in healthy or subhealthy people. Volunteers with white blood cell numbers between 5000 and 10000/ul were recruited and the subjects were selected by appropriate inclusion and exclusion rules. The subjects were randomly assigned to 3 groups (HemoHIM 6g/day, HemoHIM 12g/day, Placebo). HemoHIM or placebo were adminstered for 2 months and the blood were collected and analyzed at 1 month and 2 month after the intake. The collected blood was analyzed for blood cell number, serum biochemical values (liver and kidney function), immunological activity of blood cells, antioxidant activity of blood plasma, and stress hormone level in the saliva. Finally the data of 88 subjects were analyzed for the immune promoting and antioxidant effects of HemoHIM. In results, no significant changes in blood cell numbers (white blood cell, lymphocyte, red blood cell) were observed in HemoHIM intake groups. However, NK cell activity were increased in HemoHIM intake groups and also IFN-gamma and IL-12, the biomarkers of immune cell functions, were increased in proportion to the dose and intake periode of HemoHIM. The antioxidant biomarker (TAS) was not significantly changed by HemoHIM intake. Besides, the serum biochemical analysis for liver and kidney functions, and the general medical examination showed the HemoHIM showed no side-effects, thus reconfirming its safety in humans. In conclusion, this study showed HemoHIM has a significant effects on the promotion of immune functions, while it has neither side-effects nor toxicity in humans. The results of this study may be utilized for the scientific data to acquire the Health Functional Food Certification of HemoHIM from Korea FDA

  7. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Science.gov (United States)

    Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-Ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2011-01-01

    Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  8. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Kazuya Kitamura

    Full Text Available Many therapeutic interventions for spinal cord injury (SCI using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF, which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  9. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    International Nuclear Information System (INIS)

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-01-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function

  10. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    Energy Technology Data Exchange (ETDEWEB)

    Sangsuwan, Jiraporn [Department of Molecular Biology and Bioinformatics, Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn [Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function.

  11. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Stephen J A Davies

    2011-03-01

    Full Text Available Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human

  12. Characterization and functional analysis of the Paralichthys olivaceus prdm1 gene promoter.

    Science.gov (United States)

    Li, Peizhen; Wang, Bo; Cao, Dandan; Liu, Yuezhong; Zhang, Quanqi; Wang, Xubo

    2017-10-01

    PR domain containing protein 1 (Prdm1) is a transcriptional repressor identified in various species and plays multiple important roles in immune response and embryonic development. However, little is known about the transcriptional regulation of the prdm1 gene. This study aims to characterize the promoter of Paralichthys olivaceus prdm1 (Po-prdm1) gene and determine the regulatory mechanism of Po-prdm1 expression. A 2000bp-long 5'-flanking region (translation initiation site designated as +1) of the Po-prdm1 gene was isolated and characterized. The regulatory elements in this fragment were then investigated and many putative transcription factor (TF) binding sites involved in immunity and multiple tissue development were identified. A 5'-deletion analysis was then conducted, and the ability of the deletion mutants to promote luciferase and green fluorescent protein (GFP) expression in a flounder gill cell line was examined. The results revealed that the minimal promoter is located in the region between -446 and -13bp, and the region between -1415 and -13bp enhanced the promoter activity. Site-directed mutation analysis was subsequently performed on the putative regulatory elements sites, and the results indicated that FOXP1, MSX and BCL6 binding sites play negative functional roles in the regulation of the Po-prdm1 expression in FG cells. In vivo analysis demonstrated that a GFP reporter gene containing 1.4kb-long promoter fragment (-1415/-13) was expressed in the head and trunk muscle fibres of transient transgenic zebrafish embryos. Our study provided the basic information for the exploration of Po-prdm1 regulation and expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Promotion of health and human functionality - 10.5020/18061230.2013.p5

    Directory of Open Access Journals (Sweden)

    Ana Cristhina de Oliveira Brasil

    2013-08-01

    Full Text Available For the development of public health policies in Brazil, two aspects should be taken into consideration, namely, the demographic transition and the epidemiological transition. More and more, it is perceivable an increase in the number of elderly people living with numerous disabilities and also an epidemiological profile. National Household Sample Survey (Pesquisa Nacional por Amostra de Domicílios - PNAD 1998-2003 indicates a distribution of chronic diseases that, consequently, has generated an expressive number of disabilities. These people with disabilities need health services, and use them when they manage to access them. However, the current models of healthcare for the elderly or people with disabilities are expensive and, in some aspects, are not efficient, requiring preventive strategies and health equipment for the maintenance or recovery of health of an aged population. Thus, the public policy agenda of Brazil should give priority to the maintenance of the functionality of the aged, with monitoring of health status, specific preventive actions on health and education, and care seeking an integral and multidimensional attention, not necessarily focused on disease(1. The need to develop policies and strategies, particularly on health promotion, with a look detached from the disease is justified because health problems come not only from the disease, but from any other circumstance or health condition, such as, pregnancy , aging, stress, genetic predisposition – all classified by D-10, nevertheless, not being able to measure the status alterations related to health, and much less to sort and describe the context in which these problems occur, which complicates and jeopardizes the planning and solvability of actions and services in health, unlike the data by means of qualifiers that the International Classification of Functioning, Disability and Health (ICF has the potential to generate(2. Brazil is a member country of the World Health

  14. Electroacupuncture promotes post-stroke functional recovery via enhancing endogenous neurogenesis in mouse focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Yu Ri Kim

    Full Text Available To investigate the question of whether electroacupuncture (EA promotes functional recovery via enhancement of proliferation and differentiation of neuronal stem cells (NSCs in ischemic stroke, EA stimulation with 2 Hz was applied at bilateral acupoints to Baihui (GV20 and Dazhui (GV14 in middle cerebral artery occlusion (MCAO mice. EA stimulation improved neuromotor function and cognitive ability after ischemic stroke. EA stimulation resulted in an increase in the number of proliferated cells, especially in the subventricular zone (SVZ of the ipsilateral hemisphere. Although a very limited number of NSCs survived and differentiated into neurons or astrocytes, EA treatment resulted in a significant increase in the number of proliferative cells and differentiated cells in the hippocampus and SVZ of the ipsilateral hemisphere compared to MCAO mice. EA stimulation resulted in significantly increased mRNA expression of brain-derived neurotrophic factor (BDNF and vascular endothelial growth factor (VEGF. Protein levels of these factors were confirmed in the ipsilateral hippocampus and SVZ by immunohistochemical and Western blotting analyses. Expression of phosphorylated phosphatidylinositol-3-kinase, BDNF, and VEGF-mediated down-stream were enhanced by EA stimulation in newly formed neuroblasts. These results indicate that EA treatment after ischemic stroke may promote post-stroke functional recovery by enhancement of proliferation and differentiation of NSCs via the BDNF and VEGF signaling pathway.

  15. Herbicide and fertilizers promote analogous phylogenetic responses but opposite functional responses in plant communities

    International Nuclear Information System (INIS)

    Pellissier, Loïc; Wisz, Mary S; Strandberg, Beate; Damgaard, Christian

    2014-01-01

    Throughout the world, herbicides and fertilizers change species composition in agricultural communities, but how do the cumulative effects of these chemicals impact the functional and phylogenetic structure of non-targeted communities when they drift into adjacent semi-natural habitats? Based on long-term experiment we show that fertilizer and herbicides (glyphosate) have contrasting effects on functional structure, but can increase phylogenetic diversity in semi-natural plant communities. We found that an increase in nitrogen promoted an increase in the average specific leaf area and canopy height at the community level, but an increase in glyphosate promoted a decrease in those traits. Phylogenetic diversity of plant communities increased when herbicide and fertilizer were applied together, likely because functional traits facilitating plant success in those conditions were not phylogenetically conserved. Species richness also decreased with increasing levels of nitrogen and glyphosate. Our results suggest that predicting the cumulative effects of agrochemicals is more complex than anticipated due to their distinct selection of traits that may or may not be conserved phylogenetically. Precautionary efforts to mitigate drift of agricultural chemicals into semi-natural habitats are warranted to prevent unforeseeable biodiversity shifts. (paper)

  16. Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Maria Isabel, E-mail: maria.isabel.castellanos@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Mas-Moruno, Carlos, E-mail: carles.mas.moruno@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Grau, Anna, E-mail: agraugar@gmail.com [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Serra-Picamal, Xavier, E-mail: xserrapicamal@gmail.com [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Trepat, Xavier, E-mail: xtrepat@ub.edu [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Albericio, Fernando, E-mail: fernando.albericio@irbbarcelona.org [Department of Chemistry, University of Barcelona, CIBER-BBN, 08028 Barcelona (Spain); Joner, Michael, E-mail: michaeljoner@me.com [Department of Cardiology, Deutsches Herzzentrum München, 80636 Munich (Germany); CVPath Institute, Gaithersburg, MD 20878 (United States); and others

    2017-01-30

    Highlights: • We immobilized peptides on CoCr alloy through physisorption and covalent bonding. • Surface activation is an essential step prior to silanization to enhance peptide attachment. • Biofunctionalized surface characteristics were discussed. • RGDS, YIGSR and combination peptides display an improved HUVECs adhesion and proliferation. - Abstract: Biomimetic surface modification with peptides that have specific cell-binding moieties is a promising approach to improve endothelialization of metal-based stents. In this study, we functionalized CoCr surfaces with RGDS, REDV, YIGSR peptides and their combinations to promote endothelial cells (ECs) adhesion and proliferation. An extensive characterization of the functionalized surfaces was performed by XPS analysis, surface charge and quartz crystal microbalance with dissipation monitoring (QCM-D), which demonstrated the successful immobilization of the peptides to the surface. Cell studies demonstrated that the covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represents the most powerful strategy to enhance the early stages of ECs adhesion and proliferation, indicating a positive synergistic effect between the two peptide motifs. Although these peptide sequences slightly increased smooth muscle cells (SMCs) adhesion, these values were ten times lower than those observed for ECs. The combination of RGDS with the REDV sequence did not show synergistic effects in promoting the adhesion or proliferation of ECs. The strategy presented in this study holds great potential to overcome clinical limitations of current metal stents by enhancing their capacity to support surface endothelialization.

  17. Curcumin promotes nerve regeneration and functional recovery after sciatic nerve crush injury in diabetic rats.

    Science.gov (United States)

    Ma, Junxiong; Yu, Hailong; Liu, Jun; Chen, Yu; Wang, Qi; Xiang, Liangbi

    2016-01-01

    Curcumin is capable of promoting peripheral nerve regeneration in normal condition. However, it is unclear whether its beneficial effect on nerve regeneration still exists under diabetic mellitus. The present study was designed to investigate such a possibility. Diabetes in rats was developed by a single dose of streptozotocin at 50 mg/kg. Immediately after nerve crush injury, the diabetic rats were intraperitoneally administrated daily for 4 weeks with curcumin (50 mg/kg, 100 mg/kg and 300 mg/kg), or normal saline, respectively. The axonal regeneration was investigated by morphometric analysis and retrograde labeling. The functional recovery was evaluated by electrophysiological studies and behavioral analysis. Axonal regeneration and functional recovery was significantly enhanced by curcumin, which were significantly better than those in vehicle saline group. In addition, high doses of curcumin (100 mg/kg and 300 mg/kg) achieved better axonal regeneration and functional recovery than low dose (50 mg/kg). In conclusion, curcumin is capable of promoting nerve regeneration after sciatic nerve crush injury in diabetes mellitus, highlighting its therapeutic values as a neuroprotective agent for peripheral nerve injury repair in diabetes mellitus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.

    Science.gov (United States)

    Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H

    2016-03-01

    An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 min after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 min. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS+c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 min/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor

  19. Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL gene family

    Directory of Open Access Journals (Sweden)

    Jill Christine Preston

    2013-04-01

    Full Text Available The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL family of transcription factors is functionally diverse, controlling a number of fundamental aspects of plant growth and development, including vegetative phase change, flowering time, branching, and leaf initiation rate. In natural plant populations, variation in flowering time and shoot architecture have major consequences for fitness. Likewise, in crop species, variation in branching and developmental rate impact biomass and yield. Thus, studies aimed at dissecting how the various functions are partitioned among different SPL genes in diverse plant lineages are key to providing insight into the genetic basis of local adaptation and have already garnered attention by crop breeders. Here we use phylogenetic reconstruction to reveal nine major SPL gene lineages, each of which is described in terms of function and diversification. To assess evidence for ancestral and derived functions within each SPL gene lineage, we use ancestral character state reconstructions. Our analyses suggest an emerging pattern of sub-functionalization, neo-functionalization, and possible convergent evolution following both ancient and recent gene duplication. Based on these analyses we suggest future avenues of research that may prove fruitful for elucidating the importance of SPL gene evolution in plant growth and development.

  20. Comparing the Functioning of Youth and Adult Partnerships for Health Promotion.

    Science.gov (United States)

    Brown, Louis D; Redelfs, Alisha H; Taylor, Thomas J; Messer, Reanna L

    2015-09-01

    Youth partnerships are a promising but understudied strategy for prevention and health promotion. Specifically, little is known about how the functioning of youth partnerships differs from that of adult partnerships. Accordingly, this study compared the functioning of youth partnerships with that of adult partnerships. Several aspects of partnership functioning, including leadership, task focus, cohesion, participation costs and benefits, and community support, were examined. Standardized partnership functioning surveys were administered to participants in three smoke-free youth coalitions (n = 44; 45 % female; 43 % non-Hispanic white; mean age = 13) and in 53 Communities That Care adult coalitions (n = 673; 69 % female; 88 % non-Hispanic white; mean age = 49). Multilevel regression analyses showed that most aspects of partnership functioning did not differ significantly between youth and adult partnerships. These findings are encouraging given the success of the adult partnerships in reducing community-level rates of substance use and delinquency. Although youth partnership functioning appears to be strong enough to support effective prevention strategies, youth partnerships faced substantially more participation difficulties than adult partnerships. Strategies that youth partnerships can use to manage these challenges, such as creative scheduling and increasing opportunities for youth to help others directly, are discussed.

  1. Use of a Y-tube conduit after facial nerve injury reduces collateral axonal branching at the lesion site but neither reduces polyinnervation of motor endplates nor improves functional recovery.

    Science.gov (United States)

    Hizay, Arzu; Ozsoy, Umut; Demirel, Bahadir Murat; Ozsoy, Ozlem; Angelova, Srebrina K; Ankerne, Janina; Sarikcioglu, Sureyya Bilmen; Dunlop, Sarah A; Angelov, Doychin N; Sarikcioglu, Levent

    2012-06-01

    Despite increased understanding of peripheral nerve regeneration, functional recovery after surgical repair remains disappointing. A major contributing factor is the extensive collateral branching at the lesion site, which leads to inaccurate axonal navigation and aberrant reinnervation of targets. To determine whether the Y tube reconstruction improved axonal regrowth and whether this was associated with improved function. We used a Y-tube conduit with the aim of improving navigation of regenerating axons after facial nerve transection in rats. Retrograde labeling from the zygomatic and buccal branches showed a halving in the number of double-labeled facial motor neurons (15% vs 8%; P facial-facial anastomosis coaptation. However, in both surgical groups, the proportion of polyinnervated motor endplates was similar (≈ 30%; P > .05), and video-based motion analysis of whisking revealed similarly poor function. Although Y-tube reconstruction decreases axonal branching at the lesion site and improves axonal navigation compared with facial-facial anastomosis coaptation, it fails to promote monoinnervation of motor endplates and confers no functional benefit.

  2. First functional polymorphism in CFTR promoter that results in decreased transcriptional activity and Sp1/USF binding

    International Nuclear Information System (INIS)

    Taulan, M.; Lopez, E.; Guittard, C.; Rene, C.; Baux, D.; Altieri, J.P.; DesGeorges, M.; Claustres, M.; Romey, M.C.

    2007-01-01

    Growing evidences show that functionally relevant polymorphisms in various promoters alter both transcriptional activity and affinities of existing protein-DNA interactions, and thus influence disease progression in humans. We previously reported the -94G>T CFTR promoter variant in a female CF patient in whom any known disease-causing mutation has been detected. To investigate whether the -94G>T could be a regulatory variant, we have proceeded to in silico analyses and functional studies including EMSA and reporter gene assays. Our data indicate that the promoter variant decreases basal CFTR transcriptional activity in different epithelial cells and alters binding affinities of both Sp1 and USF nuclear proteins to the CFTR promoter. The present report provides evidence for the first functional polymorphism that negatively affects the CFTR transcriptional activity and demonstrates a cooperative role of Sp1 and USF transcription factors in transactivation of the CFTR gene promoter

  3. Targeting artificial transcription factors to the utrophin A promoter: effects on dystrophic pathology and muscle function.

    Science.gov (United States)

    Lu, Yifan; Tian, Chai; Danialou, Gawiyou; Gilbert, Rénald; Petrof, Basil J; Karpati, George; Nalbantoglu, Josephine

    2008-12-12

    Duchenne muscular dystrophy is caused by a genetic defect in the dystrophin gene. The absence of dystrophin results in muscle fiber necrosis and regeneration, leading to progressive muscle fiber loss. Utrophin is a close analogue of dystrophin. A substantial, ectopic expression of utrophin in the extrasynaptic sarcolemma of dystrophin-deficient muscle fibers can prevent deleterious effects of dystrophin deficiency. An alternative approach for the extrasynaptic up-regulation of utrophin involves the augmentation of utrophin transcription via the endogenous utrophin A promoter using custom-designed transcriptional activator proteins with zinc finger (ZFP) motifs. We tested a panel of custom-designed ZFP for their ability to activate the utrophin A promoter. Expression of one such ZFP efficiently increased, in a time-dependent manner, utrophin transcript and protein levels both in vitro and in vivo. In dystrophic mouse (mdx) muscles, administration of adenoviral vectors expressing this ZFP led to significant enhancement of muscle function with decreased necrosis, restoration of the dystrophin-associated proteins, and improved resistance to eccentric contractions. These studies provide evidence that specifically designed ZFPs can act as strong transcriptional activators of the utrophin A promoter. These may thus serve as attractive therapeutic agents for dystrophin deficiency states such as Duchenne muscular dystrophy.

  4. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function

    DEFF Research Database (Denmark)

    Jensen, Kim Steen; Binderup, Tina; Jensen, Klaus Thorleif

    2011-01-01

    Exposure of metazoan organisms to hypoxia engages a metabolic switch orchestrated by the hypoxia-inducible factor 1 (HIF-1). HIF-1 mediates induction of glycolysis and active repression of mitochondrial respiration that reduces oxygen consumption and inhibits the production of potentially harmful...... tumour tissue in vivo and that FoxO3A short-hairpin RNA (shRNA)-expressing xenograft tumours are decreased in size and metabolically changed. Our findings define a novel mechanism by which FoxO3A promotes metabolic adaptation and stress resistance in hypoxia....... reactive oxygen species (ROS). Here, we show that FoxO3A is activated in hypoxia downstream of HIF-1 and mediates the hypoxic repression of a set of nuclear-encoded mitochondrial genes. FoxO3A is required for hypoxic suppression of mitochondrial mass, oxygen consumption, and ROS production and promotes...... cell survival in hypoxia. FoxO3A is recruited to the promoters of nuclear-encoded mitochondrial genes where it directly antagonizes c-Myc function via a mechanism that does not require binding to the consensus FoxO recognition element. Furthermore, we show that FoxO3A is activated in human hypoxic...

  5. A Novel Growth-Promoting Pathway Formed by GDNF-Overexpressing Schwann Cells Promotes Propriospinal Axonal Regeneration, Synapse formation, and Partial Recovery of Function after Spinal Cord Injury

    Science.gov (United States)

    Deng, Lingxiao; Deng, Ping; Ruan, Yiwen; Xu, Zao Cheng; Liu, Naikui; Wen, Xuejun; Smith, George M.; Xu, Xiao-Ming

    2013-01-01

    Descending propriospinal neurons (DPSN) are known to establish functional relays for supraspinal signals, and they display a greater growth response after injury than do the long projecting axons. However, their regenerative response is still deficient due to their failure to depart from growth supportive cellular transplants back into the host spinal cord, which contains numerous impediments to axon growth. Here we report the construction of a continuous growth-promoting pathway in adult rats, formed by grafted Schwann cells (SCs) overexpressing glial cell line-derived neurotrophic factor (GDNF). We demonstrate that such a growth-promoting pathway, extending from the axonal cut ends to the site of innervation in the distal spinal cord, promoted regeneration of DPSN axons through and beyond the lesion gap of a spinal cord hemisection. Within the distal host spinal cord, regenerated DPSN axons formed synapses with host neurons leading to the restoration of action potentials and partial recovery of function. PMID:23536080

  6. Promoter hypermethylation of KLF4 inactivates its tumor suppressor function in cervical carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Wen-Ting Yang

    Full Text Available OBJECTIVE: The KLF4 gene has been shown to be inactivated in cervical carcinogenesis as a tumor suppressor. However, the mechanism of KLF4 silencing in cervical carcinomas has not yet been identified. DNA methylation plays a key role in stable suppression of gene expression. METHODS: The methylation status of the KLF4 promoter CpG islands was analyzed by bisulfite sequencing (BSQ in tissues of normal cervix and cervical cancer. KLF4 gene expression was detected by RT-PCR, immunohistochemistry and western blot. KLF4 promoter methylation in cervical cancer cell line was determined by BSQ and methylation-specific polymerase chain reaction (MS-PCR. Cell proliferation ability was detected by cell growth curve and MTT assay. RESULTS: The methylated allele was found in 41.90% of 24 cervical cancer tissues but only in 11.11% of 11 normal cervix tissues (P<0.005. KLF4 mRNA levels were significantly reduced in cervical cancer tissues compared with normal cervix tissues (P<0.01 and KLF4 mRNA expression showed a significant negative correlation with the promoter hypermethylation (r = -0.486, P = 0.003. Cervical cancer cell lines also showed a significant negative correlation between KLF4 expression and hypermethylation. After treatment with the demethylating agent 5-Azacytidine (5-Aza, the expression of KLF4 in the cervical cancer cell lines at both mRNA and protein levels was drastically increased, the cell proliferation ability was inhibited and the chemosensitivity for cisplatin was significantly increased. CONCLUSION: KLF4 gene is inactivated by methylation-induced silencing mechanisms in a large subset of cervical carcinomas and KLF4 promoter hypermethylation inactivates the gene's function as a tumor suppressor in cervical carcinogenesis.

  7. Identifying functional transcription factor binding sites in yeast by considering their positional preference in the promoters.

    Directory of Open Access Journals (Sweden)

    Fu-Jou Lai

    Full Text Available Transcription factor binding site (TFBS identification plays an important role in deciphering gene regulatory codes. With comprehensive knowledge of TFBSs, one can understand molecular mechanisms of gene regulation. In the recent decades, various computational approaches have been proposed to predict TFBSs in the genome. The TFBS dataset of a TF generated by each algorithm is a ranked list of predicted TFBSs of that TF, where top ranked TFBSs are statistically significant ones. However, whether these statistically significant TFBSs are functional (i.e. biologically relevant is still unknown. Here we develop a post-processor, called the functional propensity calculator (FPC, to assign a functional propensity to each TFBS in the existing computationally predicted TFBS datasets. It is known that functional TFBSs reveal strong positional preference towards the transcriptional start site (TSS. This motivates us to take TFBS position relative to the TSS as the key idea in building our FPC. Based on our calculated functional propensities, the TFBSs of a TF in the original TFBS dataset could be reordered, where top ranked TFBSs are now the ones with high functional propensities. To validate the biological significance of our results, we perform three published statistical tests to assess the enrichment of Gene Ontology (GO terms, the enrichment of physical protein-protein interactions, and the tendency of being co-expressed. The top ranked TFBSs in our reordered TFBS dataset outperform the top ranked TFBSs in the original TFBS dataset, justifying the effectiveness of our post-processor in extracting functional TFBSs from the original TFBS dataset. More importantly, assigning functional propensities to putative TFBSs enables biologists to easily identify which TFBSs in the promoter of interest are likely to be biologically relevant and are good candidates to do further detailed experimental investigation. The FPC is implemented as a web tool at http://santiago.ee.ncku.edu.tw/FPC/.

  8. Promoting a functional macroinvertebrate approach in the biomonitoring of Italian lotic systems

    Directory of Open Access Journals (Sweden)

    Richard W. Merritt

    2016-06-01

    Full Text Available Over fifty years of research on freshwater macroinvertebrates has been driven largely by the state of the taxonomy of these organisms. Significant advances have been and continue to be made in developing ever more refined keys to macroinvertebrate groups. When advances in macroinvertebrate ecological research are restricted by the level of detail in identifications, then analysis by function is a viable alternative. The focus on function, namely adaptations of macroinvertebrates to habitats and the utilization of food resources, has facilitated ecological evaluation of freshwater ecosystems. This classification is based not on what insects eat, but how they obtain their food. These categories are called 'functional feeding groups', as the name implies, denoting their functional role when describing how and where they feed. This is the basis for the functional feeding group (FFG method that was initially developed in the early 1960s. Taxonomy is applied only to the level of detail that allows assignment to one of five functional feeding group categories: detrital shredders, scrapers, filtering collectors, gatherers, and predators. The aim of this short communication, originating from the presentation of R.W. Merritt at the Biomonitoring Symposium in Rome, 2015, is to promote the use of a functional approach in biomonitoring, especially in Italian and European lotic systems. Here, we present two case studies and we discuss the advantages of the method, especially considering the great availability of quantitative data on macroinvertebrates after the implementation of the WFD 2000/60. We are confident that the increase of functional assessment of ecosystem attributes could have important and direct repercussions in the understanding and management of running waters.

  9. l-Theanine as a Functional Food Additive: Its Role in Disease Prevention and Health Promotion

    Directory of Open Access Journals (Sweden)

    Jackson Williams

    2016-05-01

    Full Text Available Tea has been consumed for thousands of years and is an integral part of people’s daily routine, as an everyday drink and a therapeutic aid for health promotion. Consumption of tea has been linked to a sense of relaxation commonly associated with the content of the non-proteinogenic amino acid theanine, which is found within the tea leaves. The aim of this review article is to outline the current methods for synthesis, extraction and purification of theanine, as well as to examine its potential benefits related to human health. These include improvements in cognitive and immune function, cancer prevention, reduced cardiovascular risk and its potential usefulness as a functional food product.

  10. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture.

    Science.gov (United States)

    Eychenne, Thomas; Novikova, Elizaveta; Barrault, Marie-Bénédicte; Alibert, Olivier; Boschiero, Claire; Peixeiro, Nuno; Cornu, David; Redeker, Virginie; Kuras, Laurent; Nicolas, Pierre; Werner, Michel; Soutourina, Julie

    2016-09-15

    Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator-TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts. © 2016 Eychenne et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C)

    Science.gov (United States)

    Alfieri, Claudio; Zhang, Suyang

    2017-01-01

    The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes. PMID:29167309

  12. GADD34 Function in Protein Trafficking Promotes Adaptation to Hyperosmotic Stress in Human Corneal Cells

    Directory of Open Access Journals (Sweden)

    Dawid Krokowski

    2017-12-01

    Full Text Available Summary: GADD34, a stress-induced regulatory subunit of the phosphatase PP1, is known to function in hyperosmotic stress through its well-known role in the integrated stress response (ISR pathway. Adaptation to hyperosmotic stress is important for the health of corneal epithelial cells exposed to changes in extracellular osmolarity, with maladaptation leading to dry eye syndrome. This adaptation includes induction of SNAT2, an endoplasmic reticulum (ER-Golgi-processed protein, which helps to reverse the stress-induced loss of cell volume and promote homeostasis through amino acid uptake. Here, we show that GADD34 promotes the processing of proteins synthesized on the ER during hyperosmotic stress independent of its action in the ISR. We show that GADD34/PP1 phosphatase activity reverses hyperosmotic-stress-induced Golgi fragmentation and is important for cis- to trans-Golgi trafficking of SNAT2, thereby promoting SNAT2 plasma membrane localization and function. These results suggest that GADD34 is a protective molecule for ocular diseases such as dry eye syndrome. : Here, Krokowski et al. show that GADD34/PP1 protects the microtubule network, prevents Golgi fragmentation, and preserves protein trafficking independent of its action in the integrated stress response (ISR. In osmoadaptation, GADD34 facilitates trans-Golgi-mediated processing of the endoplasmic reticulum (ER-synthesized amino acid transporter SNAT2, which in turn increases amino acid uptake. Keywords: SNAT2, GADD34, hyperosmotic stress, amino acid transport, Golgi fragmentation, ISR

  13. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    Science.gov (United States)

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  14. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Science.gov (United States)

    Jeong, Ye-Ji; Jung, Myung Gu; Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  15. The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Tauchi Ryoji

    2012-03-01

    Full Text Available Abstract Background Chondroitin sulfate proteoglycans are major inhibitory molecules for neural plasticity under both physiological and pathological conditions. The chondroitin sulfate degrading enzyme chondroitinase ABC promotes functional recovery after spinal cord injury, and restores experience-dependent plasticity, such as ocular dominance plasticity and fear erasure plasticity, in adult rodents. These data suggest that the sugar chain in a proteoglycan moiety is essential for the inhibitory activity of proteoglycans. However, the significance of the core protein has not been studied extensively. Furthermore, considering that chondroitinase ABC is derived from bacteria, a mammalian endogenous enzyme which can inactivate the proteoglycans' activity is desirable for clinical use. Methods The degradation activity of ADAMTS-4 was estimated for the core proteins of chondroitin sulfate proteoglycans, that is, brevican, neurocan and phosphacan. To evaluate the biological significance of ADMATS-4 activity, an in vitro neurite growth assay and an in vivo neuronal injury model, spinal cord contusion injury, were employed. Results ADAMTS-4 digested proteoglycans, and reversed their inhibition of neurite outgrowth. Local administration of ADAMTS-4 significantly promoted motor function recovery after spinal cord injury. Supporting these findings, the ADAMTS-4-treated spinal cord exhibited enhanced axonal regeneration/sprouting after spinal cord injury. Conclusions Our data suggest that the core protein in a proteoglycan moiety is also important for the inhibition of neural plasticity, and provides a potentially safer tool for the treatment of neuronal injuries.

  16. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks.

    Science.gov (United States)

    Rao, Zhuang; Tang, Beibei; Wu, Peiyi

    2017-07-12

    In this study, two functionalized metal-organic frameworks (MOFs), UiO-66-SO 3 H and UiO-66-NH 2 , were synthesized. Then, different composite proton exchange membranes (PEMs) were prepared by single doping and codoping of these two MOFs, respectively. It was found that codoping of these two MOFs with suitable sizes was more conducive to the proton conductivity enhancement of the composite PEM. A synergistic effect between these two MOFs led to the the formation of more consecutive hydration channels in the composite PEM. It further greatly promoted the proton conductivity of the composite PEM. The proton conductivity of the codoped PEM reached up to 0.256 S/cm under 90 °C, 95% RH, which was ∼1.17 times higher than that of the recast Nafion (0.118 S/cm). Besides, the methanol permeability of the codoped PEM was prominently decreased owing to the methanol trapping effect of the pores of these two MOFs. Meanwhile, the high water and thermal stabilities of these two MOFs were beneficial to the high proton conductivity stability of the codoped PEM under high humidity and high temperature. The proton conductivity of the codoped PEM was almost unchanged throughout 3000 min of testing under 90 °C, 95% RH. This work provides a valuable reference for designing different functionalized MOFs to synergistically promote the proton conductivities of PEMs.

  17. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription.

    Science.gov (United States)

    Ellerström, M; Stålberg, K; Ezcurra, I; Rask, L

    1996-12-01

    The promoter region (-309 to +44) of the Brassica napus storage protein gene napA was studied in transgenic tobacco by successive 5' as well as internal deletions fused to the reporter gene GUS (beta-glucuronidase). The expression in the two main tissues of the seed, the endosperm and the embryo, was shown to be differentially regulated. This tissue-specific regulation within the seed was found to affect the developmental expression during seed development. The region between -309 to -152, which has a large effect on quantitative expression, was shown to harbour four elements regulating embryo and one regulating endosperm expression. This region also displayed enhancer activity. Deletion of eight bp from position -152 to position -144 totally abolished the activity of the napA promoter. This deletion disrupted a cis element with similarity to an ABA-responsive element (ABRE) overlapping with an E-box, demonstrating its crucial importance for quantitative expression. An internal deletion of the region -133 to -120, resulted in increased activity in both leaves and endosperm and a decreased activity in the embryo. Within this region, a cis element similar to the (CA)n element, found in other storage protein promoters, was identified. This suggest that the (CA)n element is important for conferring seed specificity by serving both as an activator and a repressor element.

  18. [Functional meat products; development and evaluation of their health-promoting properties].

    Science.gov (United States)

    Olmedilla-Alonso, Begoña; Jiménez-Colmenero, Francisco

    2014-06-01

    For a number of reasons, meat products are an exceptionally adequate means for introducing different bioactive compounds into the diet without modifying eating habits. In recent years, there has been a notable development of meat products designed as potentially functional foods. Within the framework of the functional food, this article provides a general view of the reasons that motivate and justify their formulation, with special emphasis on: a) aspects to be considered in their design in order to be able to make nutrition claims and statements concerning their health-promoting properties; b) the strategies employed to optimize the presence of functional ingredients, favoring the presence of beneficial bioactive compounds and limiting others with negative consequences for our health, and c) the procedures for demonstrating a relationship between the consumption of potentially functional meat products with beneficial effects on health and the way in which these studies are reflected in the literature. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. Hypoxia Enhances Immunosuppression by Inhibiting CD4+ Effector T Cell Function and Promoting Treg Activity

    Directory of Open Access Journals (Sweden)

    Astrid M. Westendorf

    2017-03-01

    Full Text Available Background/Aims: Hypoxia occurs in many pathological conditions, including inflammation and cancer. Within this context, hypoxia was shown to inhibit but also to promote T cell responses. Due to this controversial function, we aimed to explore whether an insufficient anti-tumour response during colitis-associated colon cancer could be ascribed to a hypoxic microenvironment. Methods: Colitis-associated colon cancer was induced in wildtype mice, and hypoxia as well as T cell immunity were analysed in the colonic tumour tissues. In addition, CD4+ effector T cells and regulatory T cells were cultured under normoxic and hypoxic conditions and examined regarding their phenotype and function. Results: We observed severe hypoxia in the colon of mice suffering from colitis-associated colon cancer that was accompanied by a reduced differentiation of CD4+ effector T cells and an enhanced number and suppressive activity of regulatory T cells. Complementary ex vivo and in vitro studies revealed that T cell stimulation under hypoxic conditions inhibited the differentiation, proliferation and IFN-γ production of TH1 cells and enhanced the suppressive capacity of regulatory T cells. Moreover, we identified an active role for HIF-1α in the modulation of CD4+ T cell functions under hypoxic conditions. Conclusion: Our data indicate that oxygen availability can function as a local modulator of CD4+ T cell responses and thus influences tumour immune surveillance in inflammation-associated colon cancer.

  20. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila.

    Science.gov (United States)

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-07-09

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the Ras(V12) cells. Knocking down either of the two other components of the Class C VPS complex, carnation (car) and vps16A, also renders Ras(V12) cells capable for uncontrolled growth and metastatic behavior. Finally, chemical disruption of the lysosomal function by feeding animals with antimalarial drugs, chloroquine or monensin, leads to malignant tumor growth of the Ras(V12) cells. Taken together, our data provide evidence for a causative role of lysosome dysfunction in tumor growth and invasion and indicate that members of the Class C VPS complex behave as tumor suppressors.

  1. Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus

    Directory of Open Access Journals (Sweden)

    Yin Weilun

    2010-01-01

    Full Text Available Abstract Background CBL1 is a calcium sensor that regulates drought, cold and salt signals in Arabidopsis. Overexpression of CBL1 gene in Arabidopsis and in Ammopiptanthus mongolicus showed different tolerant activities. We are interested in understanding the molecular mechanism of the upstream region of the CBL1 gene of A. mongolicus (AmCBL1. We investigated and characterized the promoter of the AmCBL1 gene, for promoters play a very important role in regulating gene expression in eukaryotes. Results A 1683-bp 5' flanking region was isolated from A. mongolicus. The sequence was identified as AmCBL1 promoter. Analysis of the promoter sequence indicated a 690-bp intron and some basic cis-acting elements were related to various environmental stresses and plant hormones. To identify the functional region of the AmCBL1 promoter, five plant expression vectors fused with the GUS (β-glucuronidase gene, driven by series deleted fragments of AmCBL1 promoter at different lengths from -1659, -1414, -1048, -296 to -167 bp relative to the transcriptional start site were constructed and transformed into Nicotiana tabacum L. cv. 89. Functional properties of each promoter segment were examined by GUS staining and fluorescence quantitative analyses using at least three single-copy PCR-positive plants of transgenic tobacco, treated with various environmental stresses and plant hormones for different times. We demonstrated that the AmCBL1 promoter was a vascular-specific and multiple-stress-inducible promoter. Our results further imply that the promoter fragment B1S3 possessed sufficient essential cis-acting elements, accounting for vascular-specific and stress-induced expression patterns. It may also indicate that for response to some stresses certain cis-elements are required in tissues outside the region of the B1S3 construct. Conclusions To help resolve uncertainties about the upstream regulatory mechanism of the CBL1 gene in desert plants, we suggest that

  2. Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism

    LENUS (Irish Health Repository)

    Tansey, Katherine E

    2011-03-31

    Abstract Background Arginine vasopressin (AVP) has been hypothesized to play a role in aetiology of autism based on a demonstrated involvement in the regulation of social behaviours. The arginine vasopressin receptor 1A gene (AVPR1A) is widely expressed in the brain and is considered to be a key receptor for regulation of social behaviour. Moreover, genetic variation at AVPR1A has been reported to be associated with autism. Evidence from non-human mammals implicates variation in the 5\\'-flanking region of AVPR1A in variable gene expression and social behaviour. Methods We examined four tagging single nucleotide polymorphisms (SNPs) (rs3803107, rs1042615, rs3741865, rs11174815) and three microsatellites (RS3, RS1 and AVR) at the AVPR1A gene for association in an autism cohort from Ireland. Two 5\\'-flanking region polymorphisms in the human AVPR1A, RS3 and RS1, were also tested for their effect on relative promoter activity. Results The short alleles of RS1 and the SNP rs11174815 show weak association with autism in the Irish population (P = 0.036 and P = 0.008, respectively). Both RS1 and RS3 showed differences in relative promoter activity by length. Shorter repeat alleles of RS1 and RS3 decreased relative promoter activity in the human neuroblastoma cell line SH-SY5Y. Conclusions These aligning results can be interpreted as a functional route for this association, namely that shorter alleles of RS1 lead to decreased AVPR1A transcription, which may proffer increased susceptibility to the autism phenotype.

  3. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs.

    Science.gov (United States)

    Qazi, Taimoor H; Mooney, David J; Duda, Georg N; Geissler, Sven

    2017-09-01

    Mesenchymal stromal cells (MSCs) secrete paracrine factors that play crucial roles during tissue regeneration. Whether this paracrine function is influenced by the properties of biomaterials in general, and those used for cell delivery in particular, largely remains unexplored. Here, we investigated if three-dimensional culture in distinct microenvironments - nanoporous hydrogels (mean pore size ∼5 nm) and macroporous scaffolds (mean pore size ∼120 μm) - affects the secretion pattern of MSCs, and consequently leads to differential paracrine effects on target progenitor cells such as myoblasts. We report that compared to MSCs encapsulated in hydrogels, scaffold seeded MSCs show an enhanced secretion profile and exert beneficial paracrine effects on various myoblast functions including migration and proliferation. Additionally, we show that the heightened paracrine effects of scaffold seeded cells can in part be attributed to N-cadherin mediated cell-cell interactions during culture. In hydrogels, this physical interaction between cells is prevented by the encapsulating matrix. Functionally blocking N-cadherin negatively affected the secretion profile and paracrine effects of MSCs on myoblasts, with stronger effects observed for scaffold seeded compared to hydrogel encapsulated cells. Together, these findings demonstrate that the therapeutic potency of MSCs can be enhanced by biomaterials that promote cell-cell interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Intraspinal Delivery of Polyethylene Glycol-coated Gold Nanoparticles Promotes Functional Recovery After Spinal Cord Injury.

    Science.gov (United States)

    Papastefanaki, Florentia; Jakovcevski, Igor; Poulia, Nafsika; Djogo, Nevena; Schulz, Florian; Martinovic, Tamara; Ciric, Darko; Loers, Gabrielle; Vossmeyer, Tobias; Weller, Horst; Schachner, Melitta; Matsas, Rebecca

    2015-06-01

    Failure of the mammalian central nervous system (CNS) to regenerate effectively after injury leads to mostly irreversible functional impairment. Gold nanoparticles (AuNPs) are promising candidates for drug delivery in combination with tissue-compatible reagents, such as polyethylene glycol (PEG). PEG administration in CNS injury models has received interest for potential therapy, but toxicity and low bioavailability prevents clinical application. Here we show that intraspinal delivery of PEG-functionalized 40-nm-AuNPs at early stages after mouse spinal cord injury is beneficial for recovery. Positive outcome of hind limb motor function was accompanied by attenuated inflammatory response, enhanced motor neuron survival, and increased myelination of spared or regrown/sprouted axons. No adverse effects, such as body weight loss, ill health, or increased mortality were observed. We propose that PEG-AuNPs represent a favorable drug-delivery platform with therapeutic potential that could be further enhanced if PEG-AuNPs are used as carriers of regeneration-promoting molecules.

  5. Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke

    Science.gov (United States)

    Volz, L. J.; Rehme, A. K.; Michely, J.; Nettekoven, C.; Eickhoff, S. B.; Fink, G. R.; Grefkes, C.

    2016-01-01

    Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis. PMID:26980614

  6. Trichostatin A Promotes the Generation and Suppressive Functions of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Cristian Doñas

    2013-01-01

    Full Text Available Regulatory T cells are a specific subset of lymphocytes that suppress immune responses and play a crucial role in the maintenance of self-tolerance. They can be generated in the thymus as well as in the periphery through differentiation of naïve CD4+ T cells. The forkhead box P3 transcription factor (Foxp3 is a crucial molecule regulating the generation and function of Tregs. Here we show that the foxp3 gene promoter becomes hyperacetylated in in vitro differentiated Tregs compared to naïve CD4+ T cells. We also show that the histone deacetylase inhibitor TSA stimulated the in vitro differentiation of naïve CD4+ T cells into Tregs and that this induction was accompanied by a global increase in histone H3 acetylation. Importantly, we also demonstrated that Tregs generated in the presence of TSA have phenotypical and functional differences from the Tregs generated in the absence of TSA. Thus, TSA-generated Tregs showed increased suppressive activities, which could potentially be explained by a mechanism involving the ectonucleotidases CD39 and CD73. Our data show that TSA could potentially be used to enhance the differentiation and suppressive function of CD4+Foxp3+ Treg cells.

  7. CD163 promotes hematoma absorption and improves neurological functions in patients with intracerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Wen-jing Xie

    2016-01-01

    Full Text Available Clinical outcomes are positively associated with hematoma absorption. The monocyte-macrophage scavenger receptor, CD163, plays an important role in the metabolism of hemoglobin, and a soluble form of CD163 is present in plasma and other tissue fluids; therefore, we speculated that serum CD163 affects hematoma absorption after intracerebral hemorrhage. Patients with intracerebral hemorrhage were divided into high- and low-level groups according to the average CD163 level (1,977.79 ± 832.91 ng/mL. Compared with the high-level group, the low-level group had a significantly slower hematoma absorption rate, and significantly increased National Institutes of Health Stroke Scale scores and modified Rankin Scale scores. These results suggest that CD163 promotes hematoma absorption and the recovery of neurological function in patients with intracerebral hemorrhage.

  8. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders.

    Science.gov (United States)

    Andari, Elissar; Duhamel, Jean-René; Zalla, Tiziana; Herbrecht, Evelyn; Leboyer, Marion; Sirigu, Angela

    2010-03-02

    Social adaptation requires specific cognitive and emotional competences. Individuals with high-functioning autism or with Asperger syndrome cannot understand or engage in social situations despite preserved intellectual abilities. Recently, it has been suggested that oxytocin, a hormone known to promote mother-infant bonds, may be implicated in the social deficit of autism. We investigated the behavioral effects of oxytocin in 13 subjects with autism. In a simulated ball game where participants interacted with fictitious partners, we found that after oxytocin inhalation, patients exhibited stronger interactions with the most socially cooperative partner and reported enhanced feelings of trust and preference. Also, during free viewing of pictures of faces, oxytocin selectively increased patients' gazing time on the socially informative region of the face, namely the eyes. Thus, under oxytocin, patients respond more strongly to others and exhibit more appropriate social behavior and affect, suggesting a therapeutic potential of oxytocin through its action on a core dimension of autism.

  9. Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion.

    Science.gov (United States)

    Pereira, Ana Margarida; Machado, Raul; da Costa, André; Ribeiro, Artur; Collins, Tony; Gomes, Andreia C; Leonor, Isabel B; Kaplan, David L; Reis, Rui L; Casal, Margarida

    2017-01-01

    The objective of this work was to exploit the fibronectin type II (FNII) module from human matrix metalloproteinase-2 as a functional domain for the development of silk-based biopolymer blends that display enhanced cell adhesion properties. The DNA sequence of spider dragline silk protein (6mer) was genetically fused with the FNII coding sequence and expressed in Escherichia coli. The chimeric protein 6mer+FNII was purified by non-chromatographic methods. Films prepared from 6mer+FNII by solvent casting promoted only limited cell adhesion of human skin fibroblasts. However, the performance of the material in terms of cell adhesion was significantly improved when 6mer+FNII was combined with a silk-elastin-like protein in a concentration-dependent behavior. With this work we describe a novel class of biopolymer that promote cell adhesion and potentially useful as biomaterials for tissue engineering and regenerative medicine. This work reports the development of biocompatible silk-based composites with enhanced cell adhesion properties suitable for biomedical applications in regenerative medicine. The biocomposites were produced by combining a genetically engineered silk-elastin-like protein with a genetically engineered spider-silk-based polypeptide carrying the three domains of the fibronectin type II module from human metalloproteinase-2. These composites were processed into free-standing films by solvent casting and characterized for their biological behavior. To our knowledge this is the first report of the exploitation of all three FNII domains as a functional domain for the development of bioinspired materials with improved biological performance. The present study highlights the potential of using genetically engineered protein-based composites as a platform for the development of new bioinspired biomaterials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. PDGF-metronidazole-encapsulated nanofibrous functional layers on collagen membrane promote alveolar ridge regeneration

    Directory of Open Access Journals (Sweden)

    Ho MH

    2017-08-01

    Full Text Available Ming-Hua Ho,1 Hao-Chieh Chang,2,3 Yu-Chia Chang,3 Jeiannete Claudia,1 Tzu-Chiao Lin,2 Po-Chun Chang2,3 1Department of Chemical Engineering, College of Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; 2Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; 3Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan Abstract: This study aimed to develop a functionally graded membrane (FGM to prevent infection and promote tissue regeneration. Poly(L-lactide-co-D,L-lactide encapsulating platelet-derived growth factor (PDLLA-PDGF or metronidazole (PDLLA-MTZ was electrospun to form a nanofibrous layer on the inner or outer surface of a clinically available collagen membrane, respectively. The membrane was characterized for the morphology, molecule release profile, in vitro and in vivo biocompatibility, and preclinical efficiency for alveolar ridge regeneration. The PDLLA-MTZ and PDLLA-PDGF nanofibers were 800–900 nm in diameter, and the thicknesses of the functional layers were 20–30 µm, with sustained molecule release over 28 days. All of the membranes tested were compatible with cell survival in vitro and showed good tissue integration with minimal fibrous capsule formation or inflammation. Cell proliferation was especially prominent on the PDLLA-PDGF layer in vivo. On the alveolar ridge, all FGMs reduced wound dehiscence compared with the control collagen membrane, and the FGM with PDLLA-PDGF promoted osteogenesis significantly. In conclusion, the FGMs with PDLLA-PDGF and PDLLA-MTZ showed high biocompatibility and facilitated wound healing compared with conventional membrane, and the FGM with PDLLA-PDGF enhanced alveolar ridge regeneration in vivo. The design represents a beneficial modification, which may be easily adapted for future clinical use. Keywords: tissue engineering, platelet-derived growth factor, metronidazole, alveolar process

  11. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity.

    Science.gov (United States)

    Malykhina, Anna P; Lei, Qi; Erickson, Chris S; Epstein, Miles L; Saban, Marcia R; Davis, Carole A; Saban, Ricardo

    2012-12-19

    This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity.In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor.To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na(+) channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and

  12. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    Directory of Open Access Journals (Sweden)

    Malykhina Anna P

    2012-12-01

    Full Text Available Abstract Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1 and cholinergic nerves (ChAT was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a

  13. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    Science.gov (United States)

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  14. Construction of a fucoidan/laminin functional multilayer to direction vascular cell fate and promotion hemocompatibility

    International Nuclear Information System (INIS)

    Ye, Changrong; Wang, Yan; Su, Hong; Yang, Ping; Huang, Nan; Maitz, Manfred F.; Zhao, Anshan

    2016-01-01

    Surface biofunctional modification of cardiovascular stents is a versatile approach to reduce the adverse effects after implantation. In this work, a novel multifunctional coating was fabricated by coimmobilization of the sulfated polysaccharide of brown algae fucoidan and laminin to biomimic the vascular intimal conditions in order to support rapid endothelialization, prevent restenosis and improve hemocompatibility. The surface properties of the coating such as hydrophilicity, bonding density of biomolecules and stability were evaluated and optimized. According to the biocompatibility tests, the fucoidan/laminin multilayer coated surface displayed less platelet adhesion with favorable anticoagulant property. In addition, the fucoidan/laminin complex showed function to selectively regulate vascular cells growth behavior. The proliferation of endothelial cells (ECs) on the fucoidan/laminin biofunctional coating was significantly promoted. For the smooth muscle cells (SMCs), inhibitory effects on cell adhesion and proliferation were observed. In conclusion, the fucoidan/laminin biofunctional coating was successfully fabricated with desirable anticoagulant and endothelialization properties which show a promising application in the vascular devices such as vascular stents or grafts surface modification. - Highlights: • Construction of fucoidan/laminin functional multilayer to biomimic the basement membrane of vascular • The fucoidan/laminin complex demonstrates anti-coagulation property. • The fucoidan/laminin complex can selectively regulate EC and SMC growth behavior to prevent restenosis.

  15. Functional characterization of the vitellogenin promoter in the silkworm, Bombyx mori.

    Science.gov (United States)

    Xu, J; Wang, Y Q; Li, Z Q; Ling, L; Zeng, B S; You, L; Chen, Y Z; Aslam, A F M; Huang, Y P; Tan, A J

    2014-10-01

    Genetic transformation and genome editing technologies have been successfully established in the lepidopteran insect model, the domesticated silkworm, Bombyx mori, providing great potential for functional genomics and practical applications. However, the current lack of cis-regulatory elements in B. mori gene manipulation research limits further exploitation in functional gene analysis. In the present study, we characterized a B. mori endogenous promoter, Bmvgp, which is a 798-bp DNA sequence adjacent to the 5'-end of the vitellogenin gene (Bmvg). PiggyBac-based transgenic analysis shows that Bmvgp precisely directs expression of a reporter gene, enhanced green fluorescent protein (EGFP), in a sex-, tissue- and stage-specific manner. In transgenic animals, EGFP expression can be detected in the female fat body from larval-pupal ecdysis to the following pupal and adult stage. Furthermore, in vitro and in vivo experiments revealed that EGFP expression can be activated by 20-hydroxyecdysone, which is consistent with endogenous Bmvg expression. These data indicate that Bmvgp is an effective endogenous cis-regulatory element in B. mori. © 2014 The Royal Entomological Society.

  16. Construction of a fucoidan/laminin functional multilayer to direction vascular cell fate and promotion hemocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Changrong; Wang, Yan; Su, Hong; Yang, Ping; Huang, Nan [Key Laboratory of Advanced Materials Technology of Ministry of Education, Department of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Maitz, Manfred F. [Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden 01069 (Germany); Zhao, Anshan [Key Laboratory of Advanced Materials Technology of Ministry of Education, Department of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-07-01

    Surface biofunctional modification of cardiovascular stents is a versatile approach to reduce the adverse effects after implantation. In this work, a novel multifunctional coating was fabricated by coimmobilization of the sulfated polysaccharide of brown algae fucoidan and laminin to biomimic the vascular intimal conditions in order to support rapid endothelialization, prevent restenosis and improve hemocompatibility. The surface properties of the coating such as hydrophilicity, bonding density of biomolecules and stability were evaluated and optimized. According to the biocompatibility tests, the fucoidan/laminin multilayer coated surface displayed less platelet adhesion with favorable anticoagulant property. In addition, the fucoidan/laminin complex showed function to selectively regulate vascular cells growth behavior. The proliferation of endothelial cells (ECs) on the fucoidan/laminin biofunctional coating was significantly promoted. For the smooth muscle cells (SMCs), inhibitory effects on cell adhesion and proliferation were observed. In conclusion, the fucoidan/laminin biofunctional coating was successfully fabricated with desirable anticoagulant and endothelialization properties which show a promising application in the vascular devices such as vascular stents or grafts surface modification. - Highlights: • Construction of fucoidan/laminin functional multilayer to biomimic the basement membrane of vascular • The fucoidan/laminin complex demonstrates anti-coagulation property. • The fucoidan/laminin complex can selectively regulate EC and SMC growth behavior to prevent restenosis.

  17. Self concepts, health locus of control and cognitive functioning associated with health-promoting lifestyles in schizophrenia.

    Science.gov (United States)

    Chuang, Shu Ping; Wu, Jo Yung Wei; Wang, Chien Shu; Liu, Chia Hsuan; Pan, Li Hsiang

    2016-10-01

    The study aimed to investigate the relationship among self concepts, health locus of control, cognitive functioning and health-promoting lifestyles in patients diagnosed with schizophrenia. We examined health-promoting lifestyles through self-efficacy, self-esteem, health locus of control and neurocognitive factors. Fifty-six people with schizophrenia were enrolled in the study group. All subjects participated in the self-esteem (Rosenberg Self-Esteem Scale), self-efficacy (General Self-Efficacy Scale), health locus of control (The Multidimensional Health Locus of Control Scales), health-promoting lifestyles (Health Promotion Life-style Profile-II) and a series of neurocognitive measures. Stepwise regression analysis revealed that self-efficacy, internal health locus of control and attentional set-shifting accounted for 42% of the variance in total health-promoting lifestyles scores. Self-efficacy, self-esteem, internal and powerful others health locus of control and attentional set-shifting were significant predictors for domains of health-promoting lifestyles, respectively. Study findings can help mental health professionals maintain and improve health-promoting behaviors through a better understanding of self-esteem, self-efficacy, health locus of control and neurocognitive functioning among people with schizophrenia. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Promoting functional foods as acceptable alternatives to doping: potential for information-based social marketing approach.

    Science.gov (United States)

    James, Ricky; Naughton, Declan P; Petróczi, Andrea

    2010-11-10

    Substances with performance enhancing properties appear on a continuum, ranging from prohibited performance enhancing drugs (PED) through dietary supplements to functional foods (FF). Anti-doping messages designed to dissuade athletes from using PEDs have been typically based on moralising sport competition and/or employing scare campaigns with focus on the negative consequences. Campaigns offering comparable and acceptable alternatives are nonexistent, nor are athletes helped in finding these for themselves. It is timely that social marketing strategies for anti-doping prevention and intervention incorporate media messages that complement the existing approaches by promoting comparable and acceptable alternatives to doping. To facilitate this process, the aim of this study was to ascertain whether a single exposure knowledge-based information intervention led to increased knowledge and subsequently result in changes in beliefs and automatic associations regarding performance enhancements. In a repeated measure design, 115 male recreational gym users were recruited and provided with a brief information pamphlet on nitrite/nitrate and erythropoietin as a comparison. Measures of knowledge, beliefs and automatic associations were taken before and after the intervention with at least 24 hours between the two assessments. The psychological tests included explicit measures of beliefs and cognitive attitudes toward FF and PED using a self-reported questionnaire and computerised assessments of automatic associations using the modified and shortened version of the Implicit Association Test. The information based intervention significantly increased knowledge (p social marketing campaigns for drug free sport should follow appropriate market segmentation and use targeted messages via promoting the natural form as opposed to the purified form of the main active ingredient.

  19. Promoting functional foods as acceptable alternatives to doping: potential for information-based social marketing approach

    Directory of Open Access Journals (Sweden)

    Petróczi Andrea

    2010-11-01

    Full Text Available Abstract Background Substances with performance enhancing properties appear on a continuum, ranging from prohibited performance enhancing drugs (PED through dietary supplements to functional foods (FF. Anti-doping messages designed to dissuade athletes from using PEDs have been typically based on moralising sport competition and/or employing scare campaigns with focus on the negative consequences. Campaigns offering comparable and acceptable alternatives are nonexistent, nor are athletes helped in finding these for themselves. It is timely that social marketing strategies for anti-doping prevention and intervention incorporate media messages that complement the existing approaches by promoting comparable and acceptable alternatives to doping. To facilitate this process, the aim of this study was to ascertain whether a single exposure knowledge-based information intervention led to increased knowledge and subsequently result in changes in beliefs and automatic associations regarding performance enhancements. Methods In a repeated measure design, 115 male recreational gym users were recruited and provided with a brief information pamphlet on nitrite/nitrate and erythropoietin as a comparison. Measures of knowledge, beliefs and automatic associations were taken before and after the intervention with at least 24 hours between the two assessments. The psychological tests included explicit measures of beliefs and cognitive attitudes toward FF and PED using a self-reported questionnaire and computerised assessments of automatic associations using the modified and shortened version of the Implicit Association Test. Results The information based intervention significantly increased knowledge (p p p Conclusion Evidence was found that even a single exposure to a persuasive positive message can lead to belief change and can create new or alter existing associations - but only in the specific domain. Interventions to change outcome expectations in a positive

  20. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    Directory of Open Access Journals (Sweden)

    Patricia J Ward

    Full Text Available Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2, we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2 to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555 was greater in mice that received optical treatment. Thus, the acute (1 hour, one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-. We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.

  1. Cyclic-glycine-proline accelerates mammary involution by promoting apoptosis and inhibiting IGF-1 function.

    Science.gov (United States)

    Singh-Mallah, Gagandeep; McMahon, Christopher D; Guan, Jian; Singh, Kuljeet

    2017-12-01

    In rodents, post-lactational involution of mammary glands is characterized by the loss of mammary epithelial cells via apoptosis, which is associated with a decline in the expression of insulin-like growth factor-1 (IGF-1). Overexpression of IGF-1 delays involution by inhibiting apoptosis of epithelial cells and preserving the remaining secretory alveoli. Cyclic-glycine-proline (cGP), a metabolite of IGF-1, normalizes IGF-1 function under pathological conditions by regulating the bioavailability of IGF-1. The present study investigated the effect of cGP on the physiological decline in IGF-1 function during post-lactational mammary involution. Rat dams were gavaged with either cGP (3 mg/kg) or saline once per day from post-natal d8-22. Before collecting tissue on post-natal d23, a pair of mammary glands were sealed on d20 (72 hr-engorgement, thus representative of late-involution) and d22 (24 hr-engorgement, thus representative of mid-involution), while the remaining glands were allowed to involute naturally (early-involution). During early-involution, cGP accelerated the loss of mammary cells through apoptosis, resulting in an earlier clearance of intact secretory alveoli compared with the control group. This coincided with an earlier up-regulation of the cell survival factors, Bcl-xl and IGF-1R, in the early-involution cGP glands compared with the control glands. During late-involution, cGP reduced the bioactivity of IGF-1, which was evident through decreased phosphorylation of IGF-1R in the regressed alveoli. Maternal administration of cGP did not alter milk production and composition during early-, peak-, or late-stage of lactation. These data show that cGP accelerates post-lactational involution by promoting apoptosis and the physiological decline in IGF-1 function. © 2017 Wiley Periodicals, Inc.

  2. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy.

    Directory of Open Access Journals (Sweden)

    Catarina Oliveira Silva

    Full Text Available The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100-200 nm showed a plasmon absorption band located within the near-infrared range (650-900 nm, optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0-25%. Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue.

  3. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy

    Science.gov (United States)

    Silva, Catarina Oliveira; Petersen, Steffen B.; Reis, Catarina Pinto; Rijo, Patrícia; Molpeceres, Jesús; Fernandes, Ana Sofia; Gonçalves, Odete; Gomes, Andreia C.; Correia, Isabel; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2016-01-01

    The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100–200 nm) showed a plasmon absorption band located within the near-infrared range (650–900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0–25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue. PMID:27788212

  4. The Pacific White Shrimp β-actin Promoter: Functional Properties and the Potential Application for Transduction System Using Recombinant Baculovirus.

    Science.gov (United States)

    Shi, Yingli; Xiang, Jianhai; Zhou, Guangzhou; Ron, Tetsuzan Benny; Tong, Hsin-I; Kang, Wen; Sun, Si; Lu, Yuanan

    2016-06-01

    A newly isolated Pacific white shrimp (Litopenaeus vannamei) beta-actin promoter SbaP and its derivative compact construct SbaP (ENX) have recently been demonstrated to promote ectopic gene expression in vitro and in vivo. To further explore the potential transduction application, this newly isolated shrimp promoter SbaP was comparatively tested with cytomegalovirus (CMV), simian virus 40 (SV40), polyhedrin (Polh), and white spot syndrome virus immediate early gene 1 (WSSV ie1) four constitutive promoters and a beta-actin promoter (TbaP) from tilapia fish to characterize its promoting function in eight different cell lines. Luciferase quantitation assays revealed that SbaP can drive luciferase gene expression in all eight cell lines including sf21 (insect), PAC2 (zebrafish), EPC (carp), CHSE-214 (chinook salmon), GSTEF (green sea turtle), MS-1 (monk seal), 293T (human), and HeLa (human), but at different levels. Comparative analysis revealed that the promoting activity of SbaP was lower (≤10-fold) than CMV but higher (2-20 folds) than Polh in most of these cell lines tested. Whereas, SbaP mediated luciferase expression in sf21 cells was over 20-fold higher than CMV, SV40, Polh, and TbaP promoter. Compared to the SbaP, SbaP (ENX), which was constructed on the basis of SbaP by deletion of two "negative" regulatory elements, exhibited no significant change of promoting activity in EPC and PAC2 cells, but a 5 and 16 % lower promoting effect in 293T and HeLa cells, respectively. Additionally, a recombinant baculovirus was constructed under the control of SbaP (ENX), and efficient promoter activity of newly generated baculoviral vector was detected both in vitro of infected sf21 cells and in vivo of injected indicator shrimp. These results warrant the potential application of SbaP, particularly SbaP (ENX) in ectopic gene expression in future.

  5. Mechanisms underlying the promotion of functional recovery by deferoxamine after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-01-01

    Full Text Available Deferoxamine, a clinically safe drug used for treating iron overload, also repairs spinal cord injury although the mechanism for this action remains unknown. Here, we determined whether deferoxamine was therapeutic in a rat model of spinal cord injury and explored potential mechanisms for this effect. Spinal cord injury was induced by impacting the spinal cord at the thoracic T10 vertebra level. One group of injured rats received deferoxamine, a second injured group received saline, and a third group was sham operated. Both 2 days and 2 weeks after spinal cord injury, total iron ion levels and protein expression levels of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1β and the pro-apoptotic protein caspase-3 in the spinal cords of the injured deferoxamine-treated rats were significantly lower than those in the injured saline-treated group. The percentage of the area positive for glial fibrillary acidic protein immunoreactivity and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were also significantly decreased both 2 days and 2 weeks post injury, while the number of NeuN-positive cells and the percentage of the area positive for the oligodendrocyte marker CNPase were increased in the injured deferoxamine-treated rats. At 14–56 days post injury, hind limb motor function in the deferoxamine-treated rats was superior to that in the saline-treated rats. These results suggest that deferoxamine decreases total iron ion, tumor necrosis factor-α, interleukin-1β, and caspase-3 expression levels after spinal cord injury and inhibits apoptosis and glial scar formation to promote motor function recovery.

  6. Italian ICF training programs: describing and promoting human functioning and research.

    Science.gov (United States)

    Francescutti, Carlo; Fusaro, Guido; Leonardi, Matilde; Martinuzzi, Andrea; Sala, Marina; Russo, Emanuela; Frare, Mara; Pradal, Monica; Zampogna, Daniela; Cosentino, Alessandro; Raggi, Alberto

    2009-01-01

    Purpose of the article is to report on 5 years of ICF training experiences in Italy aimed at promoting a consistent approach to ICF's field application. More than 7000 persons participated in around 150 training events: almost half were organised by political bodies, at national, regional or local level, directly linked to implementation experiences. Few training events were organised by the school sector, while training commissioned by NGOs represent a relevant area and, in our opinion, constitute the first step towards a full inclusion of persons with disabilities. Central pillars of our training modules are: the inclusion of all ICF components in the description of functional profiles, the need of providing brief theoretical background information before moving to practical aspects and the importance of providing personalised face to face training modules, in contrast to self-administered learning modules, or web-based protocols. On the basis of our experience, we can conclude that training's objectives are generally reached: trainees improved their knowledge of the ICF and its related tools, and are able to begin practical applications in their contexts.

  7. NF45/ILF2 tissue expression, promoter analysis, and interleukin-2 transactivating function

    International Nuclear Information System (INIS)

    Zhao Guohua; Shi Lingfang; Qiu Daoming; Hu Hong; Kao, Peter N.

    2005-01-01

    NF45/ILF2 associates with NF90/ILF3 in the nucleus and regulates IL-2 gene transcription at the antigen receptor response element (ARRE)/NF-AT DNA target sequence (P.N. Kao, L. Chen, G. Brock, J. Ng, A.J. Smith, B. Corthesy, J. Biol. Chem. 269 (1994) 20691-20699). NF45 is widely expressed in normal tissues, especially testis, brain, and kidney, with a predominantly nuclear distribution. NF45 mRNA expression is increased in lymphoma and leukemia cell lines. The human and murine NF45 proteins differ only by substitution of valine by isoleucine at amino acid 142. Fluorescence in situ hybridization localized the human NF45 gene to chromosome 1q21.3, and mouse NF45 gene to chromosome 3F1. Promoter analysis of 2.5 kB of the murine NF45 gene reveals that significant activation is conferred by factors, possible including NF-Y, that bind to the CCAAT-box sequence. The function of human NF45 in regulating IL-2 gene expression was characterized in Jurkat T-cells stably transfected with plasmids directing expression of NF45 cDNA in sense or antisense orientations. NF45 sense expression increased IL-2 luciferase reporter gene activity 120-fold, and IL-2 protein expression 2-fold compared to control cells. NF45 is a highly conserved, regulated transcriptional activator, and one target gene is IL-2

  8. Synthesis of a Novel Allyl-Functionalized Deep Eutectic Solvent to Promote Dissolution of Cellulose

    Directory of Open Access Journals (Sweden)

    Hongwei Ren

    2016-08-01

    Full Text Available Deep eutectic solvents (DESs offer attractive options for the “green” dissolution of cellulose. However, the protic hydroxyl group causes weak dissolving ability of DESs, requiring the substitution of hydroxyl groups in the cation. In this study, a novel allyl-functionalized DES was synthesized and characterized, and its possible effect on improved dissolution of cellulose was investigated. The DES was synthesized by a eutectic mixture of allyl triethyl ammonium chloride ([ATEAm]Cl and oxalic acid (Oxa at a molar ratio of 1:1 and a freezing point of 49 °C. The [ATEAm]Cl-Oxa exhibited high polarity (56.40 kcal/mol, dipolarity/polarizability effects (1.10, hydrogen-bond donating acidity (0.41, hydrogen-bond basicity (0.89, and low viscosity (76 cP at 120 °C owing to the π-π conjugative effect induced by the allyl group. The correlation between temperature and viscosity on the [ATEAm]Cl-Oxa fit the Arrhenius equation well. The [ATEAm]Cl-Oxa showed low pseudo activation energy for viscous flow (44.56 kJ/mol. The improved properties of the [ATEAm]Cl-Oxa noticeably promoted the solubility (6.48 wt.% of cellulose.

  9. CIITA promoter I CARD-deficient mice express functional MHC class II genes in myeloid and lymphoid compartments.

    Science.gov (United States)

    Zinzow-Kramer, W M; Long, A B; Youngblood, B A; Rosenthal, K M; Butler, R; Mohammed, A-U-R; Skountzou, I; Ahmed, R; Evavold, B D; Boss, J M

    2012-06-01

    Three distinct promoters control the master regulator of major histocompatibility complex (MHC) class II expression, class II transactivator (CIITA), in a cell type-specific manner. Promoter I (pI) CIITA, expressed primarily by dendritic cells (DCs) and macrophages, expresses a unique isoform that contains a caspase-recruitment domain (CARD). The activity and function of this isoform are not understood, but are believed to enhance the function of CIITA in antigen-presenting cells. To determine whether isoform I of CIITA has specific functions, CIITA mutant mice were created in which isoform I was replaced with isoform III sequences. Mice in which pI and the CARD-encoding exon were deleted were also created. No defect in the formation of CD4 T cells, the ability to respond to a model antigen or bacterial or viral challenge was observed in mice lacking CIITA isoform I. Although CIITA and MHC-II expression was decreased in splenic DCs, pI knockout animals expressed CIITA from downstream promoters, suggesting that control of pI activity is mediated by unknown distal elements that could act at pIII, the B-cell promoter. Thus, no critical function is linked to the CARD domain of CIITA isoform I with respect to basic immune system development, function and challenge.

  10. Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum

    OpenAIRE

    Xin, Shan; Tao, Chengcheng; Li, Hongbin

    2016-01-01

    Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibite...

  11. EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice.

    Directory of Open Access Journals (Sweden)

    Yona Goldshmit

    Full Text Available Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration following spinal cord injury is promoted in the absence of the axon guidance protein EphA4. Antagonism of EphA4 was therefore proposed as a potential therapy to promote recovery from spinal cord injury. To further assess this potential, two soluble recombinant blockers of EphA4, unclustered ephrin-A5-Fc and EphA4-Fc, were examined for their ability to promote axonal regeneration and to improve functional outcome following spinal cord hemisection in wildtype mice. A 2-week administration of either of these blockers following spinal cord injury was sufficient to promote substantial axonal regeneration and functional recovery by 5 weeks following injury. Both inhibitors produced a moderate reduction in astrocytic gliosis, indicating that much of the effect of the blockers may be due to promotion of axon growth. These studies provide definitive evidence that soluble inhibitors of EphA4 function offer considerable therapeutic potential for the treatment of spinal cord injury and may have broader potential for the treatment of other central nervous system injuries.

  12. Promoting Appropriate Behavior in Daily Life Contexts Using Functional Analytic Psychotherapy in Early-Adolescent Children

    Science.gov (United States)

    Cattivelli, Roberto; Tirelli, Valentina; Berardo, Federica; Perini, Silvia

    2012-01-01

    The topics of social skills development in adolescents and ways to promote this process have been amply investigated in both the clinical and educational literature. Yet, although this line of research has led to the development of many different approaches for this population, most have shown little effectiveness in promoting further social…

  13. Porcine synapsin 1: SYN1 gene analysis and functional characterization of the promoter

    DEFF Research Database (Denmark)

    Hedegaard, Claus; Kjaer-Sorensen, Kasper; Madsen, Lone Bruhn

    2013-01-01

    of elements responsible for neuron-specific expression. Expression analysis of SYN1 demonstrated presence of transcript during embryonic development. Analysis of GFP expression in transgenic zebrafish embryos suggests that the pig SYN1 promoter directs expression in neuronal cells. Thus, the SYN1 promoter...

  14. Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells

    DEFF Research Database (Denmark)

    Mortensen, O V; Thomassen, M; Larsen, M B

    1999-01-01

    were found to possess the additional 379 bp fragment. The integrity of the promoter was furthermore confirmed by genomic Southern blotting. The promoter activity was analyzed by reporter gene assays in neuronal and non-neuronal serotonergic cell lines. In immortalized serotonergic raphe neurons, RN46A...

  15. Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice

    OpenAIRE

    Gu, Zhen; Li, Fengqiao; Zhang, Yi Ping; Shields, Lisa B.E.; Hu, Xiaoling; Zheng, Yiyan; Yu, Panpan; Zhang, Yongjie; Cai, Jun; Vitek, Michael P.; Shields, Christopher B.

    2014-01-01

    Objective Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG1...

  16. How does health-promoting lifestyle relate to sexual function among women of reproductive age in Iran?

    Science.gov (United States)

    Abedi, Parvin; Jorfi, Maryam; Afshari, Poorandokht; Fakhri, Ahmad

    2017-08-01

    This study aimed to evaluate the relation between health-promoting lifestyle and sexual function among women of reproductive age. In this cross-sectional study, 1200 women were recruited randomly from 10 public health centers in Ahvaz, Iran. A demographic questionnaire, Health Promoting Lifestyle Profile 2 (HPLP2), and Female Sexual Function Index (FSFI) were used for data collection. The inclusion criteria were as follows: women aged 15-45 years, married, monogamous, and having basic literacy. Data were analyzed using Kruskal-Wallis test, chi-square test, Spearman correlation coefficient, and logistic regression. All aspects of sexual function showed a significant relationship with different dimensions of HPLP2, except for pain and physical activity ( p function than other women (OR = 1.10, 95% CI: 1.06-1.14, p relations and stress management also showed a significant correlation with sexual function. Results of this study showed that health-promoting lifestyle dimensions are significantly related to all aspects of sexual function in women of reproductive age. Health policy makers should take lifestyle-related factors of reproductive-aged women into account when seeking to improve the sexual wellbeing of this population. Further attention should also be given to assessing the direction of causality.

  17. Functional Analysis of Maize Silk-Specific ZmbZIP25 Promoter

    Directory of Open Access Journals (Sweden)

    Wanying Li

    2018-03-01

    Full Text Available ZmbZIP25 (Zea mays bZIP (basic leucine zipper transcription factor 25 is a function-unknown protein that belongs to the D group of the bZIP transcription factor family. RNA-seq data showed that the expression of ZmbZIP25 was tissue-specific in maize silks, and this specificity was confirmed by RT-PCR (reverse transcription-polymerase chain reaction. In situ RNA hybridization showed that ZmbZIP25 was expressed exclusively in the xylem of maize silks. A 5′ RACE (rapid amplification of cDNA ends assay identified an adenine residue as the transcription start site of the ZmbZIP25 gene. To characterize this silk-specific promoter, we isolated and analyzed a 2450 bp (from −2083 to +367 and a 2600 bp sequence of ZmbZIP25 (from −2083 to +517, the transcription start site was denoted +1. Stable expression assays in Arabidopsis showed that the expression of the reporter gene GUS driven by the 2450 bp ZmbZIP25 5′-flanking fragment occurred exclusively in the papillae of Arabidopsis stigmas. Furthermore, transient expression assays in maize indicated that GUS and GFP expression driven by the 2450 bp ZmbZIP25 5′-flanking sequences occurred only in maize silks and not in other tissues. However, no GUS or GFP expression was driven by the 2600 bp ZmbZIP25 5′-flanking sequences in either stable or transient expression assays. A series of deletion analyses of the 2450 bp ZmbZIP25 5′-flanking sequence was performed in transgenic Arabidopsis plants, and probable elements prediction analysis revealed the possible presence of negative regulatory elements within the 161 bp region from −1117 to −957 that were responsible for the specificity of the ZmbZIP25 5′-flanking sequence.

  18. Functional promoter upstream p53 regulatory sequence of IGFBP3 that is silenced by tumor specific methylation

    International Nuclear Information System (INIS)

    Hanafusa, Tadashi; Shinji, Toshiyuki; Shiraha, Hidenori; Nouso, Kazuhiro; Iwasaki, Yoshiaki; Yumoto, Eichiro; Ono, Toshiro; Koide, Norio

    2005-01-01

    Insulin-like growth factor binding protein (IGFBP)-3 functions as a carrier of insulin-like growth factors (IGFs) in circulation and a mediator of the growth suppression signal in cells. There are two reported p53 regulatory regions in the IGFBP3 gene; one upstream of the promoter and one intronic. We previously reported a hot spot of promoter hypermethylation of IGFBP-3 in human hepatocellular carcinomas and derivative cell lines. As the hot spot locates at the putative upstream p53 consensus sequences, these p53 consensus sequences are really functional is a question to be answered. In this study, we examined the p53 consensus sequences upstream of the IGFBP-3 promoter for the p53 induced expression of IGFBP-3. Deletion, mutagenesis, and methylation constructs of IGFBP-3 promoter were assessed in the human hepatoblastoma cell line HepG2 for promoter activity. Deletions and mutations of these sequences completely abolished the expression of IGFBP-3 in the presence of p53 overexpression. In vitro methylation of these p53 consensus sequences also suppressed IGFBP-3 expression. In contrast, the expression of IGFBP-3 was not affected in the absence of p53 overexpression. Further, we observed by electrophoresis mobility shift assay that p53 binding to the promoter region was diminished when methylated. From these observations, we conclude that four out of eleven p53 consensus sequences upstream of the IGFBP-3 promoter are essential for the p53 induced expression of IGFBP-3, and hypermethylation of these sequences selectively suppresses p53 induced IGFBP-3 expression in HepG2 cells

  19. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267

    NARCIS (Netherlands)

    Kruijt, M.; Tran, H.; Raaijmakers, J.M.

    2009-01-01

    Aims: Plant growth-promoting Pseudomonas putida strain 267, originally isolated from the rhizosphere of black pepper, produces biosurfactants that cause lysis of zoospores of the oomycete pathogen Phytophthora capsici. The biosurfactants were characterized, the biosynthesis gene(s) partially

  20. The frequent evolutionary birth and death of functional promoters in mouse and human

    DEFF Research Database (Denmark)

    Young, Robert S.; Hayashizaki, Yosihide; Andersson, Robin

    2015-01-01

    Promoters are central to the regulation of gene expression. Changes in gene regulation are thought to underlie much of the adaptive diversification between species and phenotypic variation within populations. In contrast to earlier work emphasizing the importance of enhancer evolution and subtle...... diverged. Tissue-restricted promoters are the most evolutionarily volatile where retrotransposition is an important, but not the sole source of innovation. There is considerable heterogeneity of turnover rates between promoters in different tissues, but the consistency of these in both lineages suggests...... decaying with weak transcriptional output and relaxed selective constraint. Our results suggest that promoter gain and loss is an important process in the evolutionary rewiring of gene regulation and may be a significant source of phenotypic diversification....

  1. Development and Provision of Functional Foods to Promote Health on Long-Duration Space Missions

    Science.gov (United States)

    Bermudez-Aguirre, D.; Cooper, M. R.; Douglas, G.; Smith, S.

    2016-01-01

    During long-duration NASA space missions, such as proposed missions to Mars, astronauts may experience negative physiological effects such as bone loss. Functional foods such as high-lycopene, high-flavonoids and high-omega-3 products and fruits and vegetables may mitigate the negative effects of spaceflight on physiological factors including the bone health of crewmembers. Previous studies showed that current ISS provisions provide high-lycopene and high-omega-3 food items but the variety is limited, which could promote menu fatigue. Bioactive compounds can degrade like other chemical compounds and lose functionality. The native concentrations and stability of bioactive compounds have never been determined in spaceflight foods, and adequate information is not available for commercial products for the storage durations required for space exploration (5 years). The purpose of this task is to develop new spaceflight foods that are high in omega-3 fatty acids, lycopene, or flavonoids, identify commercial products with these bioactive compounds that meet spaceflight requirements, and define the stability of these nutrients in storage to enable purposeful functional food incorporation into the space food system. The impact of storage temperature on the stability of lutein, lycopene, beta-carotene, omega-3 fatty acids, phenolics, anthocyanins and sterols is being studied in 12 ISS menu items stored at three different temperatures (4, 21, 35 degree C) over 2 years. Additionally, nutrient and quality stability are being assessed on a larger food set stored at 21 degree C over 2 years that contains twelve newly developed foods, 10 commercial products repackaged to spaceflight requirements, and another 5 current ISS menu items expected to be good sources of omega-3 fatty acids, lycopene, or flavonoids. All items were shipped overnight to the Linus Pauling Institute at Oregon State University (Corvalis, OR) after processing and 1-year of storage and analyzed for bioactive

  2. Function of Corynebacterium glutamicum promoters in Eschrichia coli, Streptomyces lividans, and Baccillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Pátek, Miroslav; Muth, G.; Wohlleben, W.

    2003-01-01

    Roč. 104, - (2003), s. 325-334 ISSN 0168-1656 R&D Projects: GA AV ČR IPP1050128; GA ČR GA525/01/0916 Institutional research plan: CEZ:AV0Z5020903 Keywords : corynebacterium glutamicum * escherichia coli * promoters Subject RIV: EE - Microbiology, Virology Impact factor: 2.543, year: 2003

  3. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function

    OpenAIRE

    Jensen, Kim Steen; Binderup, Tina; Jensen, Klaus Thorleif; Therkelsen, Ib; Borup, Rehannah; Nilsson, Elise; Multhaupt, Hinke; Bouchard, Caroline; Quistorff, Bjørn; Kjær, Andreas; Landberg, Göran; Staller, Peter

    2011-01-01

    This paper characterizes FoxO3A as required for hypoxic suppression of mitochondrial mass, oxygen consumption, and ROS production. Mechanistically, FoxO3A is shown to promote hypoxic cell survival by directly antagonizing c-Myc at nuclear encoded mitochondrial genes.

  4. Extra Virgin Olive Oil Polyphenols Promote Cholesterol Efflux and Improve HDL Functionality

    Directory of Open Access Journals (Sweden)

    Hicham Berrougui

    2015-01-01

    Full Text Available Results of the present work give evidence from the beneficial role of extra virgin olive of oil (EVOO consumption towards oxidative stress and cardiovascular diseases. Polyphenols contained in EVOO are responsible for inhibiting lipoproteins oxidative damages and promoting reverse cholesterol transport process via ABCA1 pathway.

  5. Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice.

    Science.gov (United States)

    Gu, Zhen; Li, Fengqiao; Zhang, Yi Ping; Shields, Lisa B E; Hu, Xiaoling; Zheng, Yiyan; Yu, Panpan; Zhang, Yongjie; Cai, Jun; Vitek, Michael P; Shields, Christopher B

    2013-04-01

    Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and associated functional recovery in animal model

  6. Diversity of Dominant Bacterial Taxa in Activated Sludge Promotes Functional Resistance following Toxic Shock Loading

    KAUST Repository

    Saikaly, Pascal; Oerther, Daniel B. Barton

    2010-01-01

    and functional resistance. In this system, activated sludge bacterial communities with higher biodiversity are functionally more resistant to disturbance caused by toxic shock loading. © 2010 Springer Science+Business Media, LLC.

  7. Si-Jun-Zi Decoction Treatment Promotes the Restoration of Intestinal Function after Obstruction by Regulating Intestinal Homeostasis

    Directory of Open Access Journals (Sweden)

    Xiangyang Yu

    2014-01-01

    Full Text Available Intestinal obstruction is a common disease requiring abdominal surgery with significant morbidity and mortality. Currently, an effective medical treatment for obstruction, other than surgical resection or decompression, does not exist. Si-Jun-Zi Decoction is a famous Chinese medicine used to replenish qi and invigorate the functions of the spleen. Modern pharmacological studies show that this prescription can improve gastrointestinal function and strengthen immune function. In this study, we investigated the effects of a famous Chinese herbal formula, Si-Jun-Zi Decoction, on the restoration of intestinal function after the relief of obstruction in a rabbit model. We found that Si-Jun-Zi Decoction could reduce intestinal mucosal injury while promoting the recovery of the small intestine. Further, Si-Jun-Zi Decoction could regulate the intestinal immune system. Our results suggest that Si-Jun-Zi Decoction promotes the restoration of intestinal function after obstruction by regulating intestinal homeostasis. Our observations indicate that Si-Jun-Zi Decoction is potentially a therapeutic drug for intestinal obstruction.

  8. Function of the EGR-1/TIS8 radiation inducible promoter in a minimal HSV-1 amplicon system

    International Nuclear Information System (INIS)

    Spear, M.A.; Sakamoto, K.M.; Herrlinger, U.; Pechan, P.; Breakefield, X.O.

    1997-01-01

    Purpose: To evaluate function of the EGR-1/TIS8 promoter region in minimal HSV-1 amplicon system in order to determine the feasibility of using the system to regulate vector replication with radiation. Materials and Methods: A 600-base pair 5' upstream region of the EGR-1 promoter linked to chloramphenicol acetyltransferase (CAT) was recombined into a minimal HSV-1 amplicon vector system (pONEC). pONEC or a control plasmid was transfected into U87 glioma cells using the Lipofectamine method. Thirty-six hours later one aliquot of cells from each transfection was irradiated to a dose of 20 Gy and another identical aliquot served as a control. CAT activity was assayed 8 hours after irradiation. Results: pONEC transfected cells irradiated with 20 Gy demonstrated 2.0 fold increase in CAT activity compared to non-irradiated cells. Cells transfected with control plasmid showed no change in CAT activity. Unirradiated pONEC cells had CAT activity 1.3 times those transfected with control plasmid. Conclusion: We have previously created HSV-1 gene therapy amplicon vector systems which allow virus-amplicon interdependent replication, with the intent of regulating replication. The above data demonstrates that a minimal amplicon system will allow radiation dependent regulation by the EGR-1 promoter, thus indicating the possibility of using this system to regulate onsite, spatially and temporally regulated vector production. Baseline CAT activity was higher and relative induction lower than other reported expression constructs, which raises concern for the ability of the system to produce a differential in transcription levels sufficient for this purpose. This is possibly the result of residual promoter/enhancer elements remaining in the HSV-1 sequences. We are attempting to create constructs lacking these elements. Addition of secondary promoter sequences may also be of use. We are also currently evaluating the efficacy of the putative IEX-1 radiation inducible promoter region in

  9. Functional promoter variant in zinc finger protein 202 predicts severe atherosclerosis and ischemic heart disease

    DEFF Research Database (Denmark)

    Frikke-Schmidt, R.; Nordestgaard, Børge; Grande, Peer

    2008-01-01

    Objectives This study was designed to test the hypotheses that single nucleotide polymorphisms ( SNPs), in zinc finger protein 202 ( ZNF202), predict severe atherosclerosis and ischemic heart disease ( IHD). Background ZNF202 is a transcriptional repressor controlling promoter elements in genes...... involved in vascular maintenance and lipid metabolism. Methods We first determined genotype association for 9 ZNF202 SNPs with severe atherosclerosis ( ankle brachial index >0.7 vs. ...,998 controls. Finally, we determined whether g. -660A>G altered transcriptional activity of the ZNF202 promoter in vitro. Results Cross-sectionally, ZNF202 g. -660 GG versus AA homozygosity predicted an odds ratio for severe atherosclerosis of 2.01 ( 95% confidence interval [CI]: 1.34 to 3.01). Prospectively...

  10. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Xu, Mingli; Hu, Tieqiang; Zhao, Jianfei; Park, Mee-Yeon; Earley, Keith W; Wu, Gang; Yang, Li; Poethig, R Scott

    2016-08-01

    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development.

  11. Functional role of bacteria from invasive Phragmites australis in promotion of host growth

    Science.gov (United States)

    Soares, M. A.; Li, H-Y; Kowalski, Kurt P.; Bergen, M.; Torres, M. S.; White, J. F.

    2016-01-01

    We hypothesize that bacterial endophytes may enhance the competitiveness and invasiveness of Phragmites australis. To evaluate this hypothesis, endophytic bacteria were isolated from P. australis. The majority of the shoot meristem isolates represent species from phyla Firmicutes, Proteobacteria, and Actinobacteria. We chose one species from each phylum to characterize further and to conduct growth promotion experiments in Phragmites. Bacteria tested include Bacillus amyloliquefaciens A9a, Achromobacter spanius B1, and Microbacterium oxydans B2. Isolates were characterized for known growth promotional traits, including indole acetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis activity. Potentially defensive antimicrobial lipopeptides were assayed for through application of co-culturing experiments and mass spectrometer analysis. B. amyloliquefaciens A9a and M. oxydans B2 produced IAA. B. amyloliquefaciens A9a secreted antifungal lipopeptides. Capability to promote growth of P. australis under low nitrogen conditions was evaluated in greenhouse experiments. All three isolates were found to increase the growth of P. australis under low soil nitrogen conditions and showed increased absorption of isotopic nitrogen into plants. This suggests that the Phragmites microbes we evaluated most likely promote growth of Phragmites by enhanced scavenging of nitrogenous compounds from the rhizosphere and transfer to host roots. Collectively, our results support the hypothesis that endophytic bacteria play a role in enhancing growth of P. australis in natural populations. Gaining a better understanding of the precise contributions and mechanisms of endophytes in enabling P. australis to develop high densities rapidly could lead to new symbiosis-based strategies for management and control of the host.

  12. Increased sales and thefts of candy as a function of sales promotion activities: Preliminary findings.

    Science.gov (United States)

    Carter, N; Kindstedt, A; Melin, L

    1995-01-01

    We used an A-B-A design to evaluate the effects of two commonly used promotional activities-price reduction and increased exposure, in combination and separately-on sales and thefts of candy at a grocery store. The combination of activities and the increased exposure condition produced the greatest increases in sales. The combination of activities was also associated with the greatest increase in thefts.

  13. Functional analysis of the rice rubisco activase promoter in transgenic Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang [Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China); Chen, Fan [Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080 (China); Lu, Congming, E-mail: lucm@ibcas.ac.cn [Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Rice rubisco activase promoter was analyzed in transgenic Arabidopsis system. Black-Right-Pointing-Pointer Region conferring tissue specific and light inducible expression of Rca was identified. Black-Right-Pointing-Pointer -58 to +43 bp region mediates tissue-specific expression of rice Rca. Black-Right-Pointing-Pointer Light inducible expression of rice Rca is mediated by -297 to -58 bp region. Black-Right-Pointing-Pointer Rice nuclear proteins bind specifically with the light inducible region. -- Abstract: To gain a better understanding of the regulatory mechanism of the rice rubisco activase (Rca) gene, variants of the Rca gene promoter (one full-length and four deletion mutants) fused to the coding region of the bacterial reporter gene {beta}-glucuronidase (GUS) were introduced into Arabidopsis via Agrobacterium-mediated transformation. Our results show that a 340 bp fragment spanning from -297 to +43 bp relative to the transcription initiation site is enough to promote tissue-specific and light-inducible expression of the rice Rca gene as done by the full-length promoter (-1428 to +43 bp). Further deletion analysis indicated that the region conferring tissue-specificity of Rca expression is localized within a 105 bp fragment from -58 to +43 bp, while light-inducible expression of Rca is mediated by the region from -297 to -58 bp. Gel shift assays and competition experiments demonstrated that rice nuclear proteins bind specifically with the fragment conferring light responsiveness at more than one binding site. This implies that multiple cis-elements may be involved in light-induced expression of the rice Rca gene. These works provide a useful reference for understanding transcriptional regulation mechanism of the rice Rca gene, and lay a strong foundation for further detection of related cis-elements and trans-factors.

  14. Functional model of the system promotion affiliate program in partner networks

    OpenAIRE

    Дмитро Сергійович Міроненко

    2017-01-01

    Structural analysis of business processes in promoting affiliate programs in the advertisement network has been done. Processes are considered according to the IDEF0 methodology. The viewpoints of advertisers, webmasters and marketers greatly experienced in affiliate marketing have been taken into account. A virtual company and the business process in it (affiliate program publication and selection, comparative analysis of the affiliate program, advertisement program start, summing up and eff...

  15. Functional analysis of the rice rubisco activase promoter in transgenic Arabidopsis

    International Nuclear Information System (INIS)

    Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang; Chen, Fan; Lu, Congming

    2012-01-01

    Highlights: ► Rice rubisco activase promoter was analyzed in transgenic Arabidopsis system. ► Region conferring tissue specific and light inducible expression of Rca was identified. ► −58 to +43 bp region mediates tissue-specific expression of rice Rca. ► Light inducible expression of rice Rca is mediated by −297 to −58 bp region. ► Rice nuclear proteins bind specifically with the light inducible region. -- Abstract: To gain a better understanding of the regulatory mechanism of the rice rubisco activase (Rca) gene, variants of the Rca gene promoter (one full-length and four deletion mutants) fused to the coding region of the bacterial reporter gene β-glucuronidase (GUS) were introduced into Arabidopsis via Agrobacterium-mediated transformation. Our results show that a 340 bp fragment spanning from −297 to +43 bp relative to the transcription initiation site is enough to promote tissue-specific and light-inducible expression of the rice Rca gene as done by the full-length promoter (−1428 to +43 bp). Further deletion analysis indicated that the region conferring tissue-specificity of Rca expression is localized within a 105 bp fragment from −58 to +43 bp, while light-inducible expression of Rca is mediated by the region from −297 to −58 bp. Gel shift assays and competition experiments demonstrated that rice nuclear proteins bind specifically with the fragment conferring light responsiveness at more than one binding site. This implies that multiple cis-elements may be involved in light-induced expression of the rice Rca gene. These works provide a useful reference for understanding transcriptional regulation mechanism of the rice Rca gene, and lay a strong foundation for further detection of related cis-elements and trans-factors.

  16. Ligand-Promoted C(sp(3) )-H Olefination en Route to Multi-functionalized Pyrazoles.

    Science.gov (United States)

    Yang, Weibo; Ye, Shengqing; Schmidt, Yvonne; Stamos, Dean; Yu, Jin-Quan

    2016-05-17

    A Pd-catalyzed/N-heterocycle-directed C(sp(3) )-H olefination has been developed. The monoprotected amino acid ligand (MPAA) is found to significantly promote Pd-catalyzed C(sp(3) )-H olefination for the first time. Cu(OAc)2 instead of Ag(+) salts are used as the terminal oxidant. This reaction provides a useful method for the synthesis of alkylated pyrazoles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Functional molecular analysis of a circadian clock gene timeless promoter from the drosophilid fly Chymomyza costata

    Czech Academy of Sciences Publication Activity Database

    Kobelková, Alena; Bajgar, Adam; Doležel, David

    2010-01-01

    Roč. 25, č. 6 (2010), s. 399-409 ISSN 0748-7304 R&D Projects: GA ČR GP204/08/P579; GA ČR(CZ) GA204/07/1032; GA AV ČR IAA500960802 Institutional research plan: CEZ:AV0Z50070508 Keywords : timeless promoter * E-box * Chymomyza costata Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.309, year: 2010

  18. Elucidation and functional characterization of CsPSY and CsUGT promoters in Crocus sativus L.

    Science.gov (United States)

    Bhat, Archana; Mishra, Sonal; Kaul, Sanjana; Dhar, Manoj K

    2018-01-01

    The dried stigmas of Crocus sativus constitute the saffron, which is considered to be the costliest spice of the world. Saffron is valuable for its constituents, which are mainly apocarotenoids. In order to enhance the production of apocarotenoids, it is imperative to understand the regulation of apocarotenoid biosynthetic pathway. In C. sativus, although the pathway has been elucidated, the information regarding the regulation of the pathwaygenes is scanty. During the present investigation, the characterization of promoters regulating the expression of two important genes i.e. CsPSY and CsUGT was performed. We successfully cloned the promoters of both the genes, which were functionally characterized in Crocus sativus and Nicotiana tabaccum. In silico analysis of the promoters demonstrated the presence of several important cis regulatory elements responding tolight, hormonesand interaction with transcription factors (TFs). Further analysis suggested the regulation of CsPSY promoter by Abscisic acid (ABA) and that of CsUGT by Gibberellic acid (GA). In addition, we also observed ABA and GA mediated modulation in the expression of significant TFs and CsPSY and CsUGT transcripts. Overall, the study addresses issues related to regulation of key genes of apocarotenoid pathway in C.sativus.

  19. Comprehensive genetic assessment of a functional TLR9 promoter polymorphism: no replicable association with asthma or asthma-related phenotypes

    Directory of Open Access Journals (Sweden)

    Celedón Juan C

    2011-02-01

    Full Text Available Abstract Background Prior studies suggest a role for a variant (rs5743836 in the promoter of toll-like receptor 9 (TLR9 in asthma and other inflammatory diseases. We performed detailed genetic association studies of the functional variant rs5743836 with asthma susceptibility and asthma-related phenotypes in three independent cohorts. Methods rs5743836 was genotyped in two family-based cohorts of children with asthma and a case-control study of adult asthmatics. Association analyses were performed using chi square, family-based and population-based testing. A luciferase assay was performed to investigate whether rs5743836 genotype influences TLR9 promoter activity. Results Contrary to prior reports, rs5743836 was not associated with asthma in any of the three cohorts. Marginally significant associations were found with FEV1 and FVC (p = 0.003 and p = 0.008, respectively in one of the family-based cohorts, but these associations were not significant after correcting for multiple comparisons. Higher promoter activity of the CC genotype was demonstrated by luciferase assay, confirming the functional importance of this variant. Conclusion Although rs5743836 confers regulatory effects on TLR9 transcription, this variant does not appear to be an important asthma-susceptibility locus.

  20. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    Science.gov (United States)

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  1. Effect of an educational intervention to promote intradialysis aerobic exercises on the functional state of hemodialysis patients from Mexico

    Directory of Open Access Journals (Sweden)

    Carlos Enrique Cabrera-Pivaral

    2016-11-01

    Full Text Available Introduction: Health education search to influence on persons’ attitude for to improve your health by mean of healthy habits promotion. In patients with hemodialysis your functional capacity usually is diminished for physical inactivity. Objective: To evaluate the effect of a health education intervention for aerobic exercise’s promotion on the functional capacity in hemodialysis patients from Mexico. Methods: Quasi-experimental study beforeafter with control group in Hospital Medical Care Units of the Mexican Institute of Social Security, Jalisco’s Delegation, with a universe of 26 patients with hemodialysis purposively sampled, 14 in Group “A” (experimental and 12 in Group “B” (control. It included variables: age, gender and functional capacity. The intervention consisted of directed dialogue on biopsychosocial factors of renal disease, functional capacity and nutrition, with accompaniment in aerobic exercises of 30 minutes/week for 20 weeks. It evaluated functional capacity with Delta Test and it compared means before and after with Student’s T (p ≤ 0,05. Results: There were no statistically significant differences between age and gender of patients in the “A” and “B” Groups. Mean functional capacity before and after: Group “A” 14 ± 5 vs 8 ± 4 (p < 0,001, Group “B” 16 ± 4 vs 17 ± 5 (p = 0,405. Conclusions: The health education influenced favorably on the physical activity of patients with hemodialysis and improved your functional capacity. To implement aerobic exercise programs during hemodialysis sessions it advisable.

  2. Visual Restoration after Cataract Surgery Promotes Functional and Structural Brain Recovery

    Directory of Open Access Journals (Sweden)

    Haotian Lin

    2018-04-01

    Full Text Available Background: Visual function and brain function decline concurrently with aging. Notably, cataract patients often present with accelerated age-related decreases in brain function, but the underlying mechanisms are still unclear. Optical structures of the anterior segment of the eyes, such as the lens and cornea, can be readily reconstructed to improve refraction and vision quality. However, the effects of visual restoration on human brain function and structure remain largely unexplored. Methods: A prospective, controlled clinical trial was conducted. Twenty-six patients with bilateral age-related cataracts (ARCs who underwent phacoemulsification and intraocular lens implantation and 26 healthy controls without ARC, matched for age, sex, and education, were recruited. Visual functions (including visual acuity, visual evoke potential, and contrast sensitivity, the Mini-Mental State Examination and functional magnetic resonance imaging (including the fractional amplitude of low-frequency fluctuations and grey matter volume variation were assessed for all the participants and reexamined for ARC patients after cataract surgery. This trial was registered with ClinicalTrials.gov (NCT02644720. Findings: Compared with the healthy controls, the ARC patients presented decreased brain functionality as well as structural alterations in visual and cognitive-related brain areas preoperatively. Three months postoperatively, significant functional improvements were observed in the visual and cognitive-related brain areas of the patients. Six months postoperatively, the patients' grey matter volumes in these areas were significantly increased. Notably, both the function and structure in the visual and cognitive-related brain areas of the patients improved significantly and became comparable to those of the healthy controls 6 months postoperatively. Interpretation: We demonstrated that ocular reconstruction can functionally and structurally reverse cataract

  3. Melatonin successfully rescues hippocampal bioenergetics and improves cognitive function following drug intoxication by promoting Nrf2-ARE signaling activity.

    Science.gov (United States)

    Chen, Li-You; Renn, Ting-Yi; Liao, Wen-Chieh; Mai, Fu-Der; Ho, Ying-Jui; Hsiao, George; Lee, Ai-Wei; Chang, Hung-Ming

    2017-09-01

    Prolonged exposure to gamma-hydroxybutyric acid (GHB) would cause drug intoxication in which impaired cognitive function results from enhanced hippocampal oxidative stress may serve as a major symptom in this deficiency. Considering melatonin possesses significant anti-oxidative efficacy, this study aimed to determine whether melatonin would successfully promote the nuclear factor erythroid 2-related factor 2 and antioxidant responsive element (Nrf2-ARE) signaling, depress oxidative stress, and rescue hippocampal bioenergetics and cognitive function following drug intoxication injury. Adolescent rats subjected to 10 days of GHB were received melatonin at doses of either 10 or 100 mg/kg. Time-of-flight secondary ion mass spectrometry, biochemical assay, quantitative histochemistry, [ 14 C]-2-deoxyglucose analysis, together with Morris water maze were employed to detect the molecular signaling, oxidative status, bioenergetic level, as well as the cognitive performances, respectively. Results indicated that in GHB-intoxicated rats, enhanced oxidative stress, increased cholesterol level, and decreased anti-oxidative enzymes activities were detected in hippocampal regions. Intense oxidative stress paralleled well with reduced bioenergetics and poor performance in behavioral testing. However, in rats treated with melatonin following GHB intoxication, all above parameters and cognitive function were gradually returned to nearly normal levels. Melatonin also remarkably promoted the translocation of Nrf2 from cytoplasm to nucleus in a dose-dependent manner, thereby increased the Nrf2-ARE signaling-related downstream anti-oxidative enzymes activities. As melatonin effectively rescues hippocampal bioenergetics through depressing the oxidative stress by promoting Nrf2-ARE molecular machinery, this study thus highlights for the first time that clinical use of melatonin may serve as a therapeutic strategy to improve the cognitive function in unsuspecting victims suffered from

  4. Anyalysis of Msx1 and Msx2 Transactivation Function in the Context of the Heat Shock 70 (Hspa1b) Gene Promoter

    OpenAIRE

    Zhuang, Fengfeng; Nguyen, Manuel P.; Shuler, Charles; Liu, Yi-Hsin

    2009-01-01

    Previous studies have shown that Msx proteins control gene transcription predominantly through repression mechanisms. However, gene expression studies using either the gain-of-function or the loss-of-function mutants revealed many gene targets whose expression require functional Msx proteins. To date, investigations into the mechanisms of Msx-dependent trans-activation have been hindered by the lack of a responsive promoter. Here, we demonstrated the usefulness of the mouse Hspa1b promoter in...

  5. Functional Foods and Nutraceuticals as Dietary Intervention in Chronic Diseases; Novel Perspectives for Health Promotion and Disease Prevention.

    Science.gov (United States)

    Adefegha, Stephen Adeniyi

    2017-12-27

    Functional foods describe the importance of foods in promoting health and preventing diseases aside their primary role of providing the body with the required amount of essential nutrients such as proteins, carbohydrates, vitamins, fats, and oils needed for its healthy survival. This review explains the interaction of functional food bioactive compounds including polyphenols (phenolic acids [hydroxybenzoic acids and hydroxycinnamic acids], flavonoids [flavonols, flavones, flavanols, flavanones, isoflavones, proanthocyanidins], stilbenes, and lignans), terpenoids, carotenoids, alkaloids, omega-3 and polyunsaturated fatty acids, among others with critical enzymes (α- amylase, α- glucosidase, angiotensin-I converting enzyme [ACE], acetylcholinesterase [AChE], and arginase) linked to some degenerative diseases (type-2 diabetes, cardiovascular diseases [hypertension], neurodegenerative diseases [Alzheimer's disease] and erectile dysfunction). Different functional food bioactive compounds may synergistically/additively confer an overwhelming protection against these degenerative diseases by modulating/altering the activities of these critical enzymes of physiological importance.

  6. Functional characterization of the Gentiana lutea zeaxanthin epoxidase (GlZEP) promoter in transgenic tomato plants.

    Science.gov (United States)

    Yang, Qingjie; Yuan, Dawei; Shi, Lianxuan; Capell, Teresa; Bai, Chao; Wen, Nuan; Lu, Xiaodan; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2012-10-01

    The accumulation of carotenoids in plants depends critically on the spatiotemporal expression profiles of the genes encoding enzymes in the carotenogenic pathway. We cloned and characterized the Gentiana lutea zeaxanthin epoxidase (GlZEP) promoter to determine its role in the regulation of carotenogenesis, because the native gene is expressed at high levels in petals, which contain abundant chromoplasts. We transformed tomato (Solanum lycopersicum cv. Micro-Tom) plants with the gusA gene encoding the reporter enzyme β-glucuronidase (GUS) under the control of the GlZEP promoter, and investigated the reporter expression profile at the mRNA and protein levels. We detected high levels of gusA expression and GUS activity in chromoplast-containing flowers and fruits, but minimal levels in immature fruits containing green chloroplasts, in sepals, leaves, stems and roots. GlZEP-gusA expression was strictly associated with fruit development and chromoplast differentiation, suggesting an evolutionarily-conserved link between ZEP and the differentiation of organelles that store carotenoid pigments. The impact of our results on current models for the regulation of carotenogenesis in plants is discussed.

  7. Cloning and functional analysis of promoters of three GnRH genes in a cichlid

    International Nuclear Information System (INIS)

    Kitahashi, Takashi; Sato, Hideki; Sakuma, Yasuo; Parhar, Ishwar S.

    2005-01-01

    Mechanisms regulating gonadotropin-releasing hormone (GnRH) types, a key molecule for reproductive physiology, remain unclear. In the present study, we cloned the promoters of GnRH1, GnRH2, and GnRH3 genes in the tilapia, Oreochromis niloticus; and found putative binding sites for glucocorticoid receptors, Sp1, C/EBP, GATA, and Oct-1, but not for androgen receptors in all three GnRH promoters using computer analysis. The presence of binding sites for progesterone receptors in GnRH1, estrogen receptors in GnRH1 and GnRH2, and thyroid hormone receptors in GnRH1 and GnRH3 suggests direct action of steroid hormones on GnRH types. Our observation of SOX and LINE-like sequences exclusively in GnRH1, COUP in GnRH2, and retinoid X receptors in GnRH3 suggests their role in sexual differentiation, midbrain segmentation, and visual cue integration, respectively. Thus, the characteristic binding sites for nuclear receptors and transcription factors support the notion that each GnRH type is regulated differently and has distinct physiological roles

  8. Non-invasive brain stimulation to promote motor and functional recovery following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Aysegul Gunduz

    2017-01-01

    Full Text Available We conducted a systematic review of studies using non-invasive brain stimulation (NIBS: repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS as a research and clinical tool aimed at improving motor and functional recovery or spasticity in patients following spinal cord injury (SCI under the assumption that if the residual corticospinal circuits could be stimulated appropriately, the changes might be accompanied by functional recovery or an improvement in spasticity. This review summarizes the literature on the changes induced by NIBS in the motor and functional recovery and spasticity control of the upper and lower extremities following SCI.

  9. Structural and functional analysis of mouse Msx1 gene promoter: sequence conservation with human MSX1 promoter points at potential regulatory elements.

    Science.gov (United States)

    Gonzalez, S M; Ferland, L H; Robert, B; Abdelhay, E

    1998-06-01

    Vertebrate Msx genes are related to one of the most divergent homeobox genes of Drosophila, the muscle segment homeobox (msh) gene, and are expressed in a well-defined pattern at sites of tissue interactions. This pattern of expression is conserved in vertebrates as diverse as quail, zebrafish, and mouse in a range of sites including neural crest, appendages, and craniofacial structures. In the present work, we performed structural and functional analyses in order to identify potential cis-acting elements that may be regulating Msx1 gene expression. To this end, a 4.9-kb segment of the 5'-flanking region was sequenced and analyzed for transcription-factor binding sites. Four regions showing a high concentration of these sites were identified. Transfection assays with fragments of regulatory sequences driving the expression of the bacterial lacZ reporter gene showed that a region of 4 kb upstream of the transcription start site contains positive and negative elements responsible for controlling gene expression. Interestingly, a fragment of 130 bp seems to contain the minimal elements necessary for gene expression, as its removal completely abolishes gene expression in cultured cells. These results are reinforced by comparison of this region with the human Msx1 gene promoter, which shows extensive conservation, including many consensus binding sites, suggesting a regulatory role for them.

  10. Conjugation-promoted reaction of open-cage fullerene: A density functional theory study

    KAUST Repository

    Guo, Yong; Yan, Jingjing; Khashab, Niveen M.

    2012-01-01

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated

  11. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Ana, E-mail: ana-sierra@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Subbotina, Ekaterina, E-mail: ekaterina-subbotina@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Zhu, Zhiyong, E-mail: zhiyong-zhu@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Gao, Zhan, E-mail: zhan-gao@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Koganti, Siva Rama Krishna, E-mail: sivaramakrishna.koganti@ttuhc.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Coetzee, William A., E-mail: william.coetzee@nyumc.org [Department of Pediatrics, NYU School of Medicine, New York, NY 10016 (United States); Goldhamer, David J., E-mail: david.goldhamer@uconn.edu [Center for Regenerative Biology, Department of Molecular and Cell Biology, Advanced Technology Laboratory, University of Connecticut, 1392 Storrs Road Unit 4243, Storrs, Connecticut 06269 (United States); Hodgson-Zingman, Denice M., E-mail: denice-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Zingman, Leonid V., E-mail: leonid-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Veterans Affairs, Medical Center, Iowa City, IA 52242 (United States)

    2016-02-26

    Sarcolemmal ATP-sensitive potassium (K{sub ATP}) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K{sub ATP} channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K{sub ATP} channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K{sub ATP} channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K{sub ATP} channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K{sup +} channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K{sub ATP} channel deficient skeletal muscle.

  12. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    International Nuclear Information System (INIS)

    Sierra, Ana; Subbotina, Ekaterina; Zhu, Zhiyong; Gao, Zhan; Koganti, Siva Rama Krishna; Coetzee, William A.; Goldhamer, David J.; Hodgson-Zingman, Denice M.; Zingman, Leonid V.

    2016-01-01

    Sarcolemmal ATP-sensitive potassium (K_A_T_P) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K_A_T_P channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K_A_T_P channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K_A_T_P channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K_A_T_P channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K"+ channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K_A_T_P channel deficient skeletal muscle.

  13. Diversity of Dominant Bacterial Taxa in Activated Sludge Promotes Functional Resistance following Toxic Shock Loading

    KAUST Repository

    Saikaly, Pascal

    2010-12-14

    Examining the relationship between biodiversity and functional stability (resistance and resilience) of activated sludge bacterial communities following disturbance is an important first step towards developing strategies for the design of robust biological wastewater treatment systems. This study investigates the relationship between functional resistance and biodiversity of dominant bacterial taxa by subjecting activated sludge samples, with different levels of biodiversity, to toxic shock loading with cupric sulfate (Cu[II]), 3,5-dichlorophenol (3,5-DCP), or 4-nitrophenol (4-NP). Respirometric batch experiments were performed to determine the functional resistance of activated sludge bacterial community to the three toxicants. Functional resistance was estimated as the 30 min IC50 or the concentration of toxicant that results in a 50% reduction in oxygen utilization rate compared to a referential state represented by a control receiving no toxicant. Biodiversity of dominant bacterial taxa was assessed using polymerase chain reaction-terminal restriction fragment length polymorphism (PCR-T-RFLP) targeting the 16S ribosomal RNA (16S rRNA) gene. Statistical analysis of 30 min IC50 values and PCR-T-RFLP data showed a significant positive correlation (P<0.05) between functional resistance and microbial diversity for each of the three toxicants tested. To our knowledge, this is the first study showing a positive correlation between biodiversity of dominant bacterial taxa in activated sludge and functional resistance. In this system, activated sludge bacterial communities with higher biodiversity are functionally more resistant to disturbance caused by toxic shock loading. © 2010 Springer Science+Business Media, LLC.

  14. Development Model Sustainable Promoted by the Family Agriculture in Function of Environmental Preservation

    Directory of Open Access Journals (Sweden)

    Sônia Maria Agra Zamith

    2016-10-01

    Full Text Available The objective of the research is to indicate directions of alternatives to self-sustainable development outlined at the principle of a family socioeconomic context, and sustainability, environmental  protection  promoted  by  family  agriculture.  The  inclusion  of  Family agriculture model in the discussion, of the preliminary verification of the agricultural production methods used by family units at the time ensuring the livelihood and allows the marketing  of  surplus  production  levels.  The  method  employed  was  the  hypothetical- deductive, with explanatory purpose, which means corresponded to the selection of authors who have the necessary support to the understanding of the precautionary principle in environmental law.

  15. Functional model of the system promotion affiliate program in partner networks

    Directory of Open Access Journals (Sweden)

    Дмитро Сергійович Міроненко

    2017-07-01

    Full Text Available Structural analysis of business processes in promoting affiliate programs in the advertisement network has been done. Processes are considered according to the IDEF0 methodology. The viewpoints of advertisers, webmasters and marketers greatly experienced in affiliate marketing have been taken into account. A virtual company and the business process in it (affiliate program publication and selection, comparative analysis of the affiliate program, advertisement program start, summing up and effectiveness analysis of the affiliate programis the subject of the research. The basic and additional characteristics of the affiliate program must be considered for its effective promotion. The basic characteristics are: description, the main goal, advertiser’s commission for successful operations, test period duration, type of traffic, advertisement materials, targeting. The additional characteristics are: rated online resource, which provides goods or services as compared to the analogues, ranking by country, ranking by category, time spent on making up the internet website, number of the online resource pages, the percentage of visitors who leave the website directly at the entrance page or look through not more than one site, the visitors country of residence, the source of the traffic used by the visitors, the keywords, from which the social networking resources visitors come, interests of the visitors, Internet resources analogues, relating to Internet resource Mobile Apps. The criteria of evaluation the effectiveness of affiliate programs and advertising in general have been introduced: effective number of visitors (visitor becomes effective after the goal, an action, target number of the visitors, costs of advertising, conversion, profit and return on investment

  16. Early enteral immune nutrition support after radical operation for gastric cancer on promoting the recovery of gastrointestinal function and immune function

    Directory of Open Access Journals (Sweden)

    Zhi-Gang Li

    2016-05-01

    Full Text Available Objective: To analyze the effect of early enteral immune nutrition support after radical operation for gastric cancer on the recovery of gastrointestinal function and immune function. Methods: A total of 106 cases of patients received radical operation for gastric cancer in our hospital were selected as research subjects, and according to different ways of postoperative nutrition intervention, all patients were divided into observation group (n=50 and control group (n=56. Control group received conventional enteral nutrition intervention, observation group received postoperative early enteral immune nutrition support, and then differences in postoperative intestinal mucosa barrier function, gastrointestinal hormone levels, immune function levels and nutrition-related indicator values were compared between two groups. Results: After observation group received enteral immune nutrition intervention, serum DAO, PS and D-lactate levels as well as urine L/M ratio were lower than those of control group; serum GAS, CCK, MTL and SP values of observation group after intervention were higher than those of control group, and GLU, VIP, GIP and SS values were lower than those of control group; CD4, IgG, NK cell, C3, C4, CH50 and S-IgA levels of observation group after intervention were higher than those of control group; serum ALB, PRE, TRF and RBP levels of observation group after intervention were higher than those of control group. Conclusion: Early enteral immune nutrition support after radical operation for gastric cancer is conducive to the recovery of gastrointestinal function and the promotion of immune state, eventually promotes patients’ postoperative overall recovery and has active clinical significance.

  17. Mental exercising through simple socializing: social interaction promotes general cognitive functioning.

    Science.gov (United States)

    Ybarra, Oscar; Burnstein, Eugene; Winkielman, Piotr; Keller, Matthew C; Manis, Melvin; Chan, Emily; Rodriguez, Joel

    2008-02-01

    Social interaction is a central feature of people's life and engages a variety of cognitive resources. Thus, social interaction should facilitate general cognitive functioning. Previous studies suggest such a link, but they used special populations (e.g., elderly with cognitive impairment), measured social interaction indirectly (e.g., via marital status), and only assessed effects of extended interaction in correlational designs. Here the relation between mental functioning and direct indicators of social interaction was examined in a younger and healthier population. Study 1 using survey methodology found a positive relationship between social interaction, assessed via amount of actual social contact, and cognitive functioning in people from three age groups including younger adults. Study 2 using an experimental design found that a small amount of social interaction (10 min) can facilitate cognitive performance. The findings are discussed in the context of the benefits social relationships have for so many aspects of people's lives.

  18. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Cen; Zhao, Yuhan; Liu, Juan; Lin, Alan W; Tan, Victor M; Drake, Justin M; Liu, Lianxin; Boateng, Michael N; Li, Jun; Feng, Zhaohui; Hu, Wenwei

    2017-08-15

    Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53. © 2017 Yue et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Identification of a functional element in the promoter of the silkworm (Bombyx mori) fat body-specific gene Bmlp3.

    Science.gov (United States)

    Xu, Hanfu; Deng, Dangjun; Yuan, Lin; Wang, Yuancheng; Wang, Feng; Xia, Qingyou

    2014-08-01

    30K proteins are a group of structurally related proteins that play important roles in the life cycle of the silkworm Bombyx mori and are largely synthesized and regulated in a time-dependent manner in the fat body. Little is known about the upstream regulatory elements associated with the genes encoding these proteins. In the present study, the promoter of Bmlp3, a fat body-specific gene encoding a 30K protein family member, was characterized by joining sequences containing the Bmlp3 promoter with various amounts of 5' upstream sequences to a luciferase reporter gene. The results indicated that the sequences from -150 to -250bp and -597 to -675bp upstream of the Bmlp3 transcription start site were necessary for high levels of luciferase activity. Further analysis showed that a 21-bp sequence located between -230 and -250 was specifically recognized by nuclear factors from silkworm fat bodies and BmE cells, and could enhance luciferase reporter-gene expression 2.8-fold in BmE cells. This study provides new insights into the Bmlp3 promoter and contributes to the further clarification of the function and developmental regulation of Bmlp3. Copyright © 2014. Published by Elsevier B.V.

  20. Memory function and serotonin transporter promoter gene polymorphism in ecstasy (MDMA) users

    NARCIS (Netherlands)

    Reneman, Liesbeth; Schilt, T.; de Win, Maartje M.; Booij, Jan; Schmand, Ben; van den Brink, Wim; Bakker, Onno

    2006-01-01

    Although 3,4-methylenedioxymethamphetamine (MDMA or ecstasy) has been shown to damage brain serotonin (5-HT) neurons in animals and possibly humans, little is known about the long-term consequences of MDMA-induced 5-HT neurotoxic lesions on functions in which 5-HT is involved, such as cognitive

  1. Using Multiple Schedules during Functional Communication Training to Promote Rapid Transfer of Treatment Effects

    Science.gov (United States)

    Fisher, Wayne W.; Greer, Brian D.; Fuhrman, Ashley M.; Querim, Angie C.

    2015-01-01

    Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects across settings and…

  2. S,O-Ligand-Promoted Palladium-Catalyzed C-H Functionalization Reactions of Nondirected Arenes

    NARCIS (Netherlands)

    Naksomboon, K.; Valderas, C.; Gomez-Martinez, M.; Alvarez-Casao, Y.; Fernández Ibáñez, M.A.

    Pd(II)-catalyzed C-H functionalization of non directed arenes has been realized using an inexpensive and easily accessible type of bidentate S,O-ligand. The catalytic system shows high efficiency in the C-H olefination reaction of electron-rich and electron-poor arenes. This methodology is

  3. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth.

    Science.gov (United States)

    Deng, X; Shao, G; Zhang, H-T; Li, C; Zhang, D; Cheng, L; Elzey, B D; Pili, R; Ratliff, T L; Huang, J; Hu, C-D

    2017-03-02

    Protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues on histones H4R3, H3R8 and H2AR3. Accumulating evidence suggests that PRMT5 may function as an oncogene to drive cancer cell growth by epigenetic inactivation of several tumor suppressors. Here, we provide evidence that PRMT5 promotes prostate cancer cell growth by epigenetically activating transcription of the androgen receptor (AR) in prostate cancer cells. Knockdown of PRMT5 or inhibition of PRMT5 by a specific inhibitor reduces the expression of AR and suppresses the growth of multiple AR-positive, but not AR-negative, prostate cancer cells. Significantly, knockdown of PRMT5 in AR-positive LNCaP cells completely suppresses the growth of xenograft tumors in mice. Molecular analysis reveals that PRMT5 binds to the proximal promoter region of the AR gene and contributes mainly to the enriched symmetric dimethylation of H4R3 in the same region. Mechanistically, PRMT5 is recruited to the AR promoter by its interaction with Sp1, the major transcription factor responsible for AR transcription, and forms a complex with Brg1, an ATP-dependent chromatin remodeler, on the proximal promoter region of the AR gene. Furthermore, PRMT5 expression in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues, and PRMT5 expression correlates positively with AR expression at both the protein and mRNA levels. Taken together, our results identify PRMT5 as a novel epigenetic activator of AR in prostate cancer. Given that inhibiting AR transcriptional activity or androgen synthesis remains the major mechanism of action for most existing anti-androgen agents, our findings also raise an interesting possibility that targeting PRMT5 may represent a novel approach for prostate cancer treatment by eliminating AR expression.

  4. Muscle type-specific responses to NAD+ salvage biosynthesis promote muscle function in Caenorhabditis elegans.

    Science.gov (United States)

    Vrablik, Tracy L; Wang, Wenqing; Upadhyay, Awani; Hanna-Rose, Wendy

    2011-01-15

    Salvage biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) from nicotinamide (NAM) lowers NAM levels and replenishes the critical molecule NAD(+) after it is hydrolyzed. This pathway is emerging as a regulator of multiple biological processes. Here we probe the contribution of the NAM-NAD(+) salvage pathway to muscle development and function using Caenorhabditis elegans. C. elegans males with mutations in the nicotinamidase pnc-1, which catalyzes the first step of this NAD(+) salvage pathway, cannot mate due to a spicule muscle defect. Multiple muscle types are impaired in the hermaphrodites, including body wall muscles, pharyngeal muscles and vulval muscles. An active NAD(+) salvage pathway is required for optimal function of each muscle cell type. However, we found surprising muscle-cell-type specificity in terms of both the timing and relative sensitivity to perturbation of NAD(+) production or NAM levels. Active NAD(+) biosynthesis during development is critical for function of the male spicule protractor muscles during adulthood, but these muscles can surprisingly do without salvage biosynthesis in adulthood under the conditions examined. The body wall muscles require ongoing NAD(+) salvage biosynthesis both during development and adulthood for maximum function. The vulval muscles do not function in the presence of elevated NAM concentrations, but NAM supplementation is only slightly deleterious to body wall muscles during development or upon acute application in adults. Thus, the pathway plays distinct roles in different tissues. As NAM-NAD(+) biosynthesis also impacts muscle differentiation in vertebrates, we propose that similar complexities may be found among vertebrate muscle cell types. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria.

    Science.gov (United States)

    Danecka, Marta K; Woidy, Mathias; Zschocke, Johannes; Feillet, François; Muntau, Ania C; Gersting, Søren W

    2015-03-01

    In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Programmed cell death promotes male sterility in the functional dioecious Opuntia stenopetala (Cactaceae).

    Science.gov (United States)

    Flores-Rentería, Lluvia; Orozco-Arroyo, Gregorio; Cruz-García, Felipe; García-Campusano, Florencia; Alfaro, Isabel; Vázquez-Santana, Sonia

    2013-09-01

    The sexual separation in dioecious species has interested biologists for decades; however, the cellular mechanism leading to unisexuality has been poorly understood. In this study, the cellular changes that lead to male sterility in the functionally dioecious cactus, Opuntia stenopetala, are described. The spatial and temporal patterns of programmed cell death (PCD) were determined in the anthers of male and female flowers using scanning electron microscopy analysis and histological observations, focusing attention on the transition from bisexual to unisexual development. In addition, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assays were used as an indicator of DNA fragmentation to corroborate PCD. PCD was detected in anthers of both female and male flowers, but their patterns differed in time and space. Functionally male individuals developed viable pollen, and normal development involved PCD on each layer of the anther wall, which occurred progressively from the inner (tapetum) to the outer layer (epidermis). Conversely, functional female individuals aborted anthers by premature and displaced PCD. In anthers of female flowers, the first signs of PCD, such as a nucleus with irregular shape, fragmented and condensed chromatin, high vacuolization and condensed cytoplasm, occurred at the microspore mother cell stage. Later these features were observed simultaneously in all anther wall layers, connective tissue and filament. Neither pollen formation nor anther dehiscence was detected in female flowers of O. stenopetala due to total anther disruption. Temporal and spatial changes in the patterns of PCD are responsible for male sterility of female flowers in O. stenopetala. Male fertility requires the co-ordination of different events, which, when altered, can lead to male sterility and to functionally unisexual individuals. PCD could be a widespread mechanism in the determination of functionally dioecious species.

  7. Using Virtual Technology to Promote Functional Communication in Aphasia: Preliminary Evidence From Interactive Dialogues With Human and Virtual Clinicians.

    Science.gov (United States)

    Kalinyak-Fliszar, Michelene; Martin, Nadine; Keshner, Emily; Rudnicky, Alex; Shi, Justin; Teodoro, Gregory

    2015-11-01

    We investigated the feasibility of using a virtual clinician (VC) to promote functional communication abilities of persons with aphasia (PWAs). We aimed to determine whether the quantity and quality of verbal output in dialogues with a VC would be the same or greater than those with a human clinician (HC). Four PWAs practiced dialogues for 2 sessions each with a HC and VC. Dialogues from before and after practice were transcribed and analyzed for content. We compared measures taken before and after practice in the VC and HC conditions. Results were mixed. Participants either produced more verbal output with the VC or showed no difference on this measure between the VC and HC conditions. Participants also showed some improvement in postpractice narratives. Results provide support for the feasibility and applicability of virtual technology to real-life communication contexts to improve functional communication in PWAs.

  8. Distinguishing the Transcription Regulation Patterns in Promoters of Human Genes with Different Function or Evolutionary Age

    KAUST Repository

    Alam, Tanvir

    2012-07-01

    Distinguishing transcription regulatory patterns of different gene groups is a common problem in various bioinformatics studies. In this work we developed a methodology to deal with such a problem based on machine learning techniques. We applied our method to two biologically important problems related to detecting a difference in transcription regulation of: a/ protein-coding and long non-coding RNAs (lncRNAs) in human, as well as b/ a difference between primate-specific and non-primate-specific long non-coding RNAs. Our method is capable to classify RNAs using various regulatory features of genes that transcribe into these RNAs, such as nucleotide frequencies, transcription factor binding sites, de novo sequence motifs, CpG islands, repetitive elements, histone modification marks, and others. Ten-fold cross-validation tests suggest that our model can distinguish protein-coding and non-coding RNAs with accuracy above 80%. Twenty-fold cross-validation tests suggest that our model can distinguish primate-specific from non-primate-specific promoters of lncRNAs with accuracy above 80%. Consequently, we can hypothesize that transcription of the groups of genes mentioned above are regulated by different mechanisms. Feature selection techniques allowed us to reduce the number of features significantly while keeping the accuracy around 80%. Consequently, we can conclude that selected features play significant role in transcription regulation of coding and non-coding genes, as well as primate-specific and non-primate-specific lncRNA genes.

  9. Identification and functional analysis of a second RBF-2 binding site within the HIV-1 promoter

    International Nuclear Information System (INIS)

    Dahabieh, Matthew S.; Ooms, Marcel; Malcolm, Tom; Simon, Viviana; Sadowski, Ivan

    2011-01-01

    Transcription from the HIV-1 long terminal repeat (LTR) is mediated by numerous host transcription factors. In this study we characterized an E-box motif (RBE1) within the core promoter that was previously implicated in both transcriptional activation and repression. We show that RBE1 is a binding site for the RBF-2 transcription factor complex (USF1, USF2, and TFII-I), previously shown to bind an upstream viral element, RBE3. The RBE1 and RBE3 elements formed complexes of identical mobility and protein constituents in gel shift assays, both with Jurkat T-cell nuclear extracts and recombinant USF/TFII-I. Furthermore, both elements are regulators of HIV-1 expression; mutations in LTR-luciferase reporters and in HIV-1 molecular clones resulted in decreased transcription, virion production, and proviral expression in infected cells. Collectively, our data indicate that RBE1 is a bona fide RBF-2 binding site and that the RBE1 and RBE3 elements are necessary for mediating proper transcription from the HIV-1 LTR.

  10. α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Lorenzo Di Cesare Mannelli

    2015-01-01

    Full Text Available Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property of α7 nicotinic-acetylcholine-receptor (nAChR agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role of α7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of the α7 nAChR agonist PNU-282987 (PNU. Oxaliplatin (1 μM, 48 h reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase. On the contrary, the coculture incubation with 10 μM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-β1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. The α7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism. α7 nAChR is suggested for recovering the homeostatic role of astrocytes.

  11. Ubiquitination of MBNL1 Is Required for Its Cytoplasmic Localization and Function in Promoting Neurite Outgrowth

    Directory of Open Access Journals (Sweden)

    Pei-Ying Wang

    2018-02-01

    Full Text Available The Muscleblind-like protein family (MBNL plays an important role in regulating the transition between differentiation and pluripotency and in the pathogenesis of myotonic dystrophy type 1 (DM1, a CTG expansion disorder. How different MBNL isoforms contribute to the differentiation and are affected in DM1 has not been investigated. Here, we show that the MBNL1 cytoplasmic, but not nuclear, isoform promotes neurite morphogenesis and reverses the morphological defects caused by expanded CUG RNA. Cytoplasmic MBNL1 is polyubiquitinated by lysine 63 (K63. Reduced cytoplasmic MBNL1 in the DM1 mouse brain is consistent with the reduced extent of K63 ubiquitination. Expanded CUG RNA induced the deubiqutination of cytoplasmic MBNL1, which resulted in nuclear translocation and morphological impairment that could be ameliorated by inhibiting K63-linked polyubiquitin chain degradation. Our results suggest that K63-linked ubiquitination of MBNL1 is required for its cytoplasmic localization and that deubiquitination of cytoplasmic MBNL1 is pathogenic in the DM1 brain.

  12. A novel functional polymorphism in the Cdc6 promoter is associated with the risk for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Xiong Xingdong; Fang Jianhong; Qiu Fuen; Zhao Jing; Cheng Jiasen; Yuan Yunfei; Li Shengping; Zhuang Shimei

    2008-01-01

    Cdc6 is essential for DNA replication and its deregulation is involved in carcinogenesis. To date, the biological significance of the polymorphism in Cdc6 promoter is still unknown. In this study, we aimed to evaluate the influence of the Cdc6 -515A>G polymorphism (rs4134994) on the individual's susceptibility to cancer and on the function of Cdc6. The Cdc6 -515A>G polymorphism was genotyped in 387 hepatocellular carcinoma (HCC) and 389 age- and sex-matched healthy subjects. The association between the genotypes and the risk for HCC was then estimated by unconditional logistic regression analysis with adjustment for age, sex and HBV status. Compared with the AA homozygotes, the homozygous GG genotype (adjusted OR = 0.36, 95% confidence interval (CI) = 0.18-0.72, P = 0.004) or the combined AG/GG genotypes (adjusted OR = 0.56, 95% CI = 0.36-0.86, P = 0.008) were statistically significantly associated with the reduced risk for HCC. Moreover, the analysis using luciferase reporter system showed that the G-allelic Cdc6 promoter displayed a decreased transcriptional activity compared with the A-allelic one. These results indicate that the individuals with G allele may have reduced Cdc6 expression and are therefore in reduced risk for HCC. Further investigation using electrophoretic mobility shift assay (EMSA) revealed that the G allele had a stronger binding strength to nuclear protein(s) which might function as negative regulator(s) for Cdc6 transcription. Our findings suggest that the -515A>G polymorphism may affect the Cdc6 promoter binding affinity with nuclear protein(s) and in turn the Cdc6 expression, which consequently modulates the individual's susceptibility to HCC

  13. Functional collagen conduits combined with human mesenchymal stem cells promote regeneration after sciatic nerve transection in dogs.

    Science.gov (United States)

    Cui, Yi; Yao, Yao; Zhao, Yannan; Xiao, Zhifeng; Cao, Zongfu; Han, Sufang; Li, Xing; Huan, Yong; Pan, Juli; Dai, Jianwu

    2018-05-01

    Numerous studies have focused on the development of novel and innovative approaches for the treatment of peripheral nerve injury using artificial nerve guide conduits. In this study, we attempted to bridge 3.5-cm defects of the sciatic nerve with a longitudinally oriented collagen conduit (LOCC) loaded with human umbilical cord mesenchymal stem cells (hUC-MSCs). The LOCC contains a bundle of longitudinally aligned collagenous fibres enclosed in a hollow collagen tube. Our previous studies showed that an LOCC combined with neurotrophic factors enhances peripheral nerve regeneration. However, it remained unknown whether an LOCC seeded with hUC-MSCs could also promote regeneration. In this study, using various histological and electrophysiological analyses, we found that an LOCC provides mechanical support to newly growing nerves and functions as a structural scaffold for cells, thereby stimulating sciatic nerve regeneration. The LOCC and hUC-MSCs synergistically promoted regeneration and improved the functional recovery in a dog model of sciatic nerve injury. Therefore, the combined use of an LOCC and hUC-MSCs might have therapeutic potential for the treatment of peripheral nerve injury. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-beta promoter.

    Science.gov (United States)

    Jääskeläinen, Kirsi M; Kaukinen, Pasi; Minskaya, Ekaterina S; Plyusnina, Angelina; Vapalahti, Olli; Elliott, Richard M; Weber, Friedemann; Vaheri, Antti; Plyusnin, Alexander

    2007-10-01

    The S RNA genome segment of hantaviruses carried by Arvicolinae and Sigmodontinae rodents encodes the nucleocapsid (N) protein and has an overlapping (+1) open reading frame (ORF) for a putative nonstructural protein (NSs). The aim of this study was to determine whether the ORF is functional. A protein corresponding to the predicted size of Tula virus (TULV) NSs was detected using coupled in vitro transcription and translation from a cloned S segment cDNA, and a protein corresponding to the predicted size of Puumala virus (PUUV) NSs was detected in infected cells by Western blotting with an anti-peptide serum. The activities of the interferon beta (IFN-beta) promoter, and nuclear factor kappa B (NF-kappaB)- and interferon regulatory factor-3 (IRF-3) responsive promoters, were inhibited in COS-7 cells transiently expressing TULV or PUUV NSs. Also IFN-beta mRNA levels in IFN-competent MRC5 cells either infected with TULV or transiently expressing NSs were decreased. These data demonstrate that Tula and Puumala hantaviruses have a functional NSs ORF. The findings may explain why the NSs ORF has been preserved in the genome of most hantaviruses during their long evolution and why hantavirus-infected cells secrete relatively low levels of IFNs. (c) 2007 Wiley-Liss, Inc.

  15. Using multiple schedules during functional communication training to promote rapid transfer of treatment effects.

    Science.gov (United States)

    Fisher, Wayne W; Greer, Brian D; Fuhrman, Ashley M; Querim, Angie C

    2015-12-01

    Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects across settings and therapists. With 2 children, we conducted FCT in the context of mixed (baseline) and multiple (treatment) schedules introduced across settings or therapists using a multiple baseline design. Results indicated that when the multiple schedules were introduced, the functional communication response came under rapid discriminative control, and problem behavior remained at near-zero rates. We extended these findings with another individual by using a more traditional baseline in which problem behavior produced reinforcement. Results replicated those of the previous participants and showed rapid reductions in problem behavior when multiple schedules were implemented across settings. © Society for the Experimental Analysis of Behavior.

  16. Microsoft Technology as an Optimization Tool in Promoting Security and Functionality of the Educational System

    Directory of Open Access Journals (Sweden)

    Jelena Jardas Antonic

    2008-10-01

    Full Text Available Abstract - In the cooperation with the City of Rijeka, the project of analysis of the functional and security situation of information infrastructure has been initiated in 24 schools in the authority of the city. Having completed the multicriteria analysis of the collected data, we have built a model of implementing Microsoft service technologies. The implementation should satisfy the elementary security principles that are required by the security standards today, maximizing functionality of infrastructure and minimizing network administration tasks. Server technology that has been used in this solution is Microsoft Widows 2003 Server R2 and Internet Security and Acceleration Server 2006, as well as the GFI WebMonitor and antivirus.

  17. Functionalized isothianaphthene monomers that promote quinoidal character in donor-acceptor copolymers for organic photovoltaics

    KAUST Repository

    Douglas, Jessica D.

    2012-05-22

    A series of low band gap isothianaphthene-based (ITN) polymers with various electron-withdrawing substituents and intrinsic quinoidal character were synthesized, characterized, and tested in organic photovoltaic (OPV) devices. The three investigated ITN cores contained either ester, imide, or nitrile functionalities and were each synthesized in only four linear steps. The relative electron-withdrawing strength of the three substituents on the ITN moiety was evaluated and correlated to the optical and electronic properties of ITN-based copolymers. The ester- and imide-containing p-type polymers reached device efficiencies as high as 3% in bulk heterojunction blends with phenyl C 61-butyric acid methyl ester (PC 61BM), while the significantly electron-deficient nitrile-functionalized polymer behaved as an n-type material with an efficiency of 0.3% in bilayer devices with poly(3-(4-n-octyl)phenylthiophene) (POPT). © 2012 American Chemical Society.

  18. Biomimetic hydrogels direct spinal progenitor cell differentiation and promote functional recovery after spinal cord injury

    Science.gov (United States)

    Geissler, Sydney A.; Sabin, Alexandra L.; Besser, Rachel R.; Gooden, Olivia M.; Shirk, Bryce D.; Nguyen, Quan M.; Khaing, Zin Z.; Schmidt, Christine E.

    2018-04-01

    Objective. Demyelination that results from disease or traumatic injury, such as spinal cord injury (SCI), can have a devastating effect on neural function and recovery. Many researchers are examining treatments to minimize demyelination by improving oligodendrocyte availability in vivo. Transplantation of stem and oligodendrocyte progenitor cells is a promising option, however, trials are plagued by undirected differentiation. Here we introduce a biomaterial that has been optimized to direct the differentiation of neural progenitor cells (NPCs) toward oligodendrocytes as a cell delivery vehicle after SCI. Approach. A collagen-based hydrogel was modified to mimic the mechanical properties of the neonatal spinal cord, and components present in the developing extracellular matrix were included to provide appropriate chemical cues to the NPCs to direct their differentiation toward oligodendrocytes. The hydrogel with cells was then transplanted into a unilateral cervical contusion model of SCI to examine the functional recovery with this treatment. Six behavioral tests and histological assessment were performed to examine the in vivo response to this treatment. Main results. Our results demonstrate that we can achieve a significant increase in oligodendrocyte differentiation of NPCs compared to standard culture conditions using a three-component biomaterial composed of collagen, hyaluronic acid, and laminin that has mechanical properties matched to those of neonatal neural tissue. Additionally, SCI rats with hydrogel transplants, with and without NPCs, showed functional recovery. Animals transplanted with hydrogels with NPCs showed significantly increased functional recovery over six weeks compared to the media control group. Significance. The three-component hydrogel presented here has the potential to provide cues to direct differentiation in vivo to encourage regeneration of the central nervous system.

  19. CRISPR/Cas9 Promotes Functional Study of Testis Specific X-Linked Gene In Vivo.

    Directory of Open Access Journals (Sweden)

    Minyan Li

    Full Text Available Mammalian spermatogenesis is a highly regulated multistage process of sperm generation. It is hard to uncover the real function of a testis specific gene in vitro since the in vitro model is not yet mature. With the development of the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 system, we can now rapidly generate knockout mouse models of testis specific genes to study the process of spermatogenesis in vivo. SYCP3-like X-linked 2 (SLX2 is a germ cell specific component, which contains a Cor1 domain and belongs to the XLR (X-linked, lymphocyte regulated family. Previous studies suggested that SLX2 might play an important role in mouse spermatogenesis based on its subcellular localization and interacting proteins. However, the function of SLX2 in vivo is still elusive. Here, to investigate the functions of SLX2 in spermatogenesis, we disrupted the Slx2 gene by using the CRISPR/Cas9 system. Since Slx2 is a testis specific X-linked gene, we obtained knockout male mice in the first generation and accelerated the study process. Compared with wild-type mice, Slx2 knockout mice have normal testis and epididymis. Histological observation of testes sections showed that Slx2 knockout affected none of the three main stages of spermatogenesis: mitosis, meiosis and spermiogenesis. In addition, we further confirmed that disruption of Slx2 did not affect the number of spermatogonial stem cells, meiosis progression or XY body formation by immunofluorescence analysis. As spermatogenesis was normal in Slx2 knockout mice, these mice were fertile. Taken together, we showed that Slx2 itself is not an essential gene for mouse spermatogenesis and CRISPR/Cas9 technique could speed up the functional study of testis specific X-linked gene in vivo.

  20. Promoting functional foods as acceptable alternatives to doping: potential for information-based social marketing approach

    OpenAIRE

    Petróczi Andrea; Naughton Declan P; James Ricky

    2010-01-01

    Abstract Background Substances with performance enhancing properties appear on a continuum, ranging from prohibited performance enhancing drugs (PED) through dietary supplements to functional foods (FF). Anti-doping messages designed to dissuade athletes from using PEDs have been typically based on moralising sport competition and/or employing scare campaigns with focus on the negative consequences. Campaigns offering comparable and acceptable alternatives are nonexistent, nor are athletes he...

  1. Impaired atrial electromechanical function and atrial fibrillation promotion in alloxan-induced diabetic rabbits.

    Science.gov (United States)

    Fu, Huaying; Liu, Changle; Li, Jian; Zhou, Changyu; Cheng, Lijun; Liu, Tong; Li, Guangping

    2013-01-01

    Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation (AF). However, the underlying mechanisms are still not clearly elucidated. The aim of this study was to evaluate the atrial electromechanical function, atrial electrophysiological changes and AF inducibility in alloxan-induced diabetic rabbits. In 8 alloxan-induced diabetic rabbits and 8 controls, we evaluated atrial electromechanical function by tissue Doppler imaging. Isolated Langendorff-perfused rabbit hearts were prepared to measure atrial refractory effective period (AERP) and its dispersion (AERPD), interatrial conduction time (IACT) and vulnerability to AF. Atrial interstitial fibrosis was evaluated by Sirius-Red staining. Compared with controls, left atrial lateral wall Pa'-start interval (Pastart) and right atrial wall Pastart were increased in diabetic rabbits. AERPD was increased and IACT was prolonged in diabetic rabbits. Inducibility of AF in diabetic group was significant higher than controls (6/8 vs. 1/8, p TEMA); left atrial lateral wall Papeak and TEMA, left atrial posterior wall TEMA, and IACT were correlated with atrial areas of fibrosis. Atrial electromechanical function is impaired in diabetic rabbits, and is associated with atrial fibrosis and interatrial electrical conduction delay.

  2. Exercise promotes motor functional recovery in rats with corticospinal tract injury: anti-apoptosis mechanism

    Directory of Open Access Journals (Sweden)

    Ting-ting Hou

    2015-01-01

    Full Text Available Studies have shown that exercise interventions can improve functional recovery after spinal cord injury, but the mechanism of action remains unclear. To investigate the mechanism, we established a unilateral corticospinal tract injury model in rats by pyramidotomy, and used a single pellet reaching task and horizontal ladder walking task as exercise interventions postoperatively. Functional recovery of forelimbs and forepaws in the rat models was noticeably enhanced after the exercises. Furthermore, TUNEL staining revealed significantly fewer apoptotic cells in the spinal cord of exercised rats, and western blot analysis showed that spinal cord expression of the apoptosis-related protein caspase-3 was significantly lower, and the expression of Bcl-2 was significantly higher, while the expression of Bax was not signifiantly changed after exercise, compared with the non-exercised group. Expression of these proteins decreased with time after injury, towards the levels observed in sham-operated rats, however at 4 weeks postoperatively, caspase-3 expression remained significantly greater than in sham-operated rats. The present findings indicate that a reduction in apoptosis is one of the mechanisms underlying the improvement of functional recovery by exercise interventions after corticospinal tract injury.

  3. Thioetherification of chloroheteroarenes: a binuclear catalyst promotes wide scope and high functional-group tolerance.

    Science.gov (United States)

    Platon, Mélanie; Wijaya, Novi; Rampazzi, Vincent; Cui, Luchao; Rousselin, Yoann; Saeys, Mark; Hierso, Jean-Cyrille

    2014-09-22

    A constrained binuclear palladium catalyst system affords selective thioetherification of a wide range of functionalized arenethiols with chloroheteroaromatic partners with the highest turnover numbers (TONs) reported to date and tolerates a large variety of reactive functions. The scope of this system includes the coupling of thiophenols with six- and five-membered 2-chloroheteroarenes (i.e., functionalized pyridine, pyrazine, quinoline, pyrimidine, furane, and thiazole) and 3-bromoheteroarenes (i.e., pyridine and furane). Electron-rich congested thiophenols and fluorinated thiophenols are also suitable partners. The coupling of unprotected amino-2-chloropyridines with thiophenol and the successful employment of synthetically valuable chlorothiophenols are described with the same catalyst system. DFT studies attribute the high performance of this binuclear palladium catalyst to the decreased stability of thiolate-containing resting states. Palladium loading was as low as 0.2 mol %, which is important for industrial application and is a step forward in solving catalyst activation/deactivation problems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Exposure of Monocytes to Lipoarabinomannan Promotes Their Differentiation into Functionally and Phenotypically Immature Macrophages

    Directory of Open Access Journals (Sweden)

    Leslie Chávez-Galán

    2015-01-01

    Full Text Available Lipoarabinomannan (LAM is a lipid virulence factor secreted by Mycobacterium tuberculosis (Mtb, the etiologic agent of tuberculosis. LAM can be measured in the urine or serum of tuberculosis patients (TB-patients. Circulating monocytes are the precursor cells of alveolar macrophages and might be exposed to LAM in patients with active TB. We speculated that exposing monocytes to LAM could produce phenotypically and functionally immature macrophages. To test our hypothesis, human monocytes were stimulated with LAM (24–120 hours and various readouts were measured. The study showed that when monocytes were exposed to LAM, the frequency of CD68+, CD33+, and CD86+ macrophages decreased, suggesting that monocyte differentiation into mature macrophages was affected. Regarding functionality markers, TLR2+ and TLR4+ macrophages also decreased, but the percentage of MMR+ expression did not change. LAM-exposed monocytes generated macrophages that were less efficient in producing proinflammatory cytokines such as TNF-α and IFN-γ; however, their phagocytic capacity was not modified. Taken together, these data indicate that LAM exposure influenced monocyte differentiation and produced poorly functional macrophages with a different phenotype. These results may help us understand how mycobacteria can limit the quality of the innate and adaptive immune responses.

  5. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267.

    Science.gov (United States)

    Kruijt, Marco; Tran, Ha; Raaijmakers, Jos M

    2009-08-01

    Plant growth-promoting Pseudomonas putida strain 267, originally isolated from the rhizosphere of black pepper, produces biosurfactants that cause lysis of zoospores of the oomycete pathogen Phytophthora capsici. The biosurfactants were characterized, the biosynthesis gene(s) partially identified, and their role in control of Phytophthora damping-off of cucumber evaluated. The biosurfactants were shown to lyse zoospores of Phy. capsici and inhibit growth of the fungal pathogens Botrytis cinerea and Rhizoctonia solani. In vitro assays further showed that the biosurfactants of strain 267 are essential in swarming motility and biofilm formation. In spite of the zoosporicidal activity, the biosurfactants did not play a significant role in control of Phytophthora damping-off of cucumber, since both wild type strain 267 and its biosurfactant-deficient mutant were equally effective, and addition of the biosurfactants did not provide control. Genetic characterization revealed that surfactant biosynthesis in strain 267 is governed by homologues of PsoA and PsoB, two nonribosomal peptide synthetases involved in production of the cyclic lipopeptides (CLPs) putisolvin I and II. The structural relatedness of the biosurfactants of strain 267 to putisolvins I and II was supported by LC-MS and MS-MS analyses. The biosurfactants produced by Ps. putida 267 were identified as putisolvin-like CLPs; they are essential in swarming motility and biofilm formation, and have zoosporicidal and antifungal activities. Strain 267 provides excellent biocontrol activity against Phytophthora damping-off of cucumber, but the lipopeptide surfactants are not involved in disease suppression. Pseudomonas putida 267 suppresses Phy. capsici damping-off of cucumber and provides a potential supplementary strategy to control this economically important oomycete pathogen. The putisolvin-like biosurfactants exhibit zoosporicidal and antifungal activities, yet they do not contribute to biocontrol of Phy

  6. Galactosylated poly(ε-caprolactone) membrane promoted liver-specific functions of HepG2 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan, E-mail: zhang_yan@ecust.edu.cn [The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Yi [The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen, Min; Zhou, Yan [The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-08-01

    The lack of pendant functional groups on the PCL backbone has been a great challenge for surface bioactivation of poly(ε-caprolactone) (PCL). In the present study, covalently galactosylated PCL (GPCL) was developed through coupling between the amino-functionalized PCL (NPCL) and the lactobionic acid (LA) and its potential application in maintenance of physiological functions of HepG2 cells was further evaluated. The structure and properties of GPCL were explored by {sup 1}H NMR, FT-IR, GPC and DSC. Moreover, the incorporation of galactose ligands onto GPCL membranes not only promoted higher wettability, but also radically changed surface morphology in comparison with PCL and NPCL according to the contact angle measurement and atomic force microscopy. When HepG2 cells were seeded onto these membranes, the cells on GPCL membranes showed more pronounced cell adhesion and tended to form aggregates during the initial adhesion stage and then progressively grew into multi-layer structures compared to those without galactose ligands by the observation with fluorescence microscope and scanning electron microscopy. Furthermore, live–dead assay and functional tests demonstrated that HepG2 cells on GPCL membranes had superior viability and maintained better liver-specific functions. Collectively, GPCL has great potential for hepatic tissue engineering scaffolds. - Graphical abstract: The specific recognition between the galactose ligands on the galactosylated poly(ε-caprolactone) membrane and the ASGPR on the HepG2 cell surface. The galactosylated poly(ε-caprolactone) membranes improved the cell-matrix interaction. The galactosylated functionalized PCL scaffold is a potential candidate for liver tissue engineering. - Highlights: • The specific recognition between the galactose ligands on the galactosylated poly(ε-caprolactone) membrane and the ASGPR on the HepG2 cell surface. • The galactosylated poly(ε-caprolactone) membranes improved the cell-matrix interaction.

  7. Exercise Training and Recreational Activities to Promote Executive Functions in Chronic Stroke: A Proof-of-Concept Study

    Science.gov (United States)

    Liu-Ambrose, Teresa; Eng, Janice J

    2015-01-01

    Background Stroke survivors represent a target population in need of intervention strategies to promote cognitive function and prevent dementia. Both exercise and recreational activities are promising strategies. We assessed the effect of a six-month exercise and recreation program on executive functions in adults with chronic stroke. Methods A six-month ancillary study within a multi-centre randomized trial. Twenty-eight chronic stroke survivors (i.e., ≥ 12 months since an index stroke) were randomized to one of two experimental groups: intervention (INT; n=12) or delayed intervention (D-INT; n=16). Participants of the INT group received a six-month community-based structured program that included two sessions of exercise training and one session of recreation and leisure activities per week. Participants of the D-INT group received usual care. The primary outcome measure was the Stroop Test, a cognitive test of selective attention and conflict resolution. Secondary cognitive measures included set shifting and working memory. Mood, functional capacity, and general balance and mobility were additional secondary outcome measures. Results Compared with the D-INT group, the INT group significantly improved selective attention and conflict resolution (p=0.02), working memory (p=0.04), and functional capacity (p=0.02) at the end of the six-month intervention period. Improved selective attention and conflict resolution was significantly associated with functional capacity at six months (r=0.39; p=0.04). Conclusions This is the first randomized study to demonstrate that an exercise and recreation program can significantly benefit executive functions in community-dwelling chronic stroke survivors who are mildly cognitively impaired – a population at high-risk for dementia and functional decline. Thus, clinicians should consider prescribing exercise and recreational activities in the cognitive rehabilitation of chronic stroke survivors. Clinical Trial Registration http

  8. Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration.

    Science.gov (United States)

    Wood, Matthew D; MacEwan, Matthew R; French, Alexander R; Moore, Amy M; Hunter, Daniel A; Mackinnon, Susan E; Moran, Daniel W; Borschel, Gregory H; Sakiyama-Elbert, Shelly E

    2010-08-15

    Glial-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) have both been shown to enhance peripheral nerve regeneration following injury and target different neuronal populations. The delivery of either growth factor at the site of injury may, therefore, result in quantitative differences in motor nerve regeneration and functional recovery. In this study we evaluated the effect of affinity-based delivery of GDNF or NGF from fibrin-filled nerve guidance conduits (NGCs) on motor nerve regeneration and functional recovery in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated consisting of GDNF or NGF and the affinity-based delivery system (DS) within NGCs, control groups excluding the DS and/or growth factor, and nerve isografts. Groups with growth factor in the conduit demonstrated equivalent or superior performance in behavioral tests and relative muscle mass measurements compared to isografts at 12 weeks. Additionally, groups with GDNF demonstrated greater specific twitch and tetanic force production in extensor digitorum longus (EDL) muscle than the isograft control, while groups with NGF produced demonstrated similar force production compared to the isograft control. Assessment of motor axon regeneration by retrograde labeling further revealed that the number of ventral horn neurons regenerating across NGCs containing GDNF and NGF DS was similar to the isograft group and these counts were greater than the groups without growth factor. Overall, the GDNF DS group demonstrated superior functional recovery and equivalent motor nerve regeneration compared to the isograft control, suggesting it has potential as a treatment for motor nerve injury.

  9. Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain.

    Science.gov (United States)

    Nation, Kelsey M; De Felice, Milena; Hernandez, Pablo I; Dodick, David W; Neugebauer, Volker; Navratilova, Edita; Porreca, Frank

    2018-05-01

    The response of diffuse noxious inhibitory controls (DNIC) is often decreased, or lost, in stress-related functional pain syndromes. Because the dynorphin/kappa opioid receptor (KOR) pathway is activated by stress, we determined its role in DNIC using a model of stress-induced functional pain. Male, Sprague-Dawley rats were primed for 7 days with systemic morphine resulting in opioid-induced hyperalgesia. Fourteen days after priming, when hyperalgesia was resolved, rats were exposed to environmental stress and DNIC was evaluated by measuring hind paw response threshold to noxious pressure (test stimulus) after capsaicin injection in the forepaw (conditioning stimulus). Morphine priming without stress did not alter DNIC. However, stress produced a loss of DNIC in morphine-primed rats in both hind paws that was abolished by systemic administration of the KOR antagonist, nor-binaltorphimine (nor-BNI). Microinjection of nor-BNI into the right, but not left, central nucleus of the amygdala (CeA) prevented the loss of DNIC in morphine-primed rats. Diffuse noxious inhibitory controls were not modulated by bilateral nor-BNI in the rostral ventromedial medulla. Stress increased dynorphin content in both the left and right CeA of primed rats, reaching significance only in the right CeA; no change was observed in the rostral ventromedial medulla or hypothalamus. Although morphine priming alone is not sufficient to influence DNIC, it establishes a state of latent sensitization that amplifies the consequences of stress. After priming, stress-induced dynorphin/KOR signaling from the right CeA inhibits DNIC in both hind paws, likely reflecting enhanced descending facilitation that masks descending inhibition. Kappa opioid receptor antagonists may provide a new therapeutic strategy for stress-related functional pain disorders.

  10. ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function

    DEFF Research Database (Denmark)

    Ahlskog, Johanna K; Larsen, Brian D; Achanta, Kavya

    2016-01-01

    DNA damage activates the ATM and ATR kinases that coordinate checkpoint and DNA repair pathways. An essential step in homology-directed repair (HDR) of DNA breaks is the formation of RAD51 nucleofilaments mediated by PALB2-BRCA2; however, roles of ATM and ATR in this critical step of HDR are poor...... function, as the PALB2-dependent checkpoint response is normal in cells expressing the phospho-deficient PALB2 mutant. Collectively, our findings highlight a critical importance of PALB2 phosphorylation as a novel regulatory step in genome maintenance after genotoxic stress....

  11. CD147 promotes the formation of functional osteoclasts through NFATc1 signalling

    International Nuclear Information System (INIS)

    Nishioku, Tsuyoshi; Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi

    2016-01-01

    CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. - Highlights: • CD147 expression was markedly upregulated during osteoclast differentiation. • Downregulation of CD147 expression inhibited osteoclastgenesis and bone resorption. • Decreased CD147 expression inhibited RANKL-induced nuclear translocation of NFATc1.

  12. CD147 promotes the formation of functional osteoclasts through NFATc1 signalling.

    Science.gov (United States)

    Nishioku, Tsuyoshi; Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi

    2016-04-29

    CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Bacterial genotoxin functions as immune-modulator and promotes host survival

    Directory of Open Access Journals (Sweden)

    Riccardo Guidi

    2016-07-01

    Full Text Available Bacterial genotoxins are effectors that cause DNA damage in target cells. Many aspects of the biology of these toxins have been characterised in vitro, such as structure, cellular internalisation pathways and effects on the target cells. However, little is known about their function in vivo. Salmonella enterica serovar Typhi (S. Typhi is a Gram-negative, intracellular bacterium that causes typhoid fever, a debilitating disease infecting more than 20 million people every year. S. Typhi produce a genotoxin named typhoid toxin (TT, but its role in the contest of host infection is poorly characterized. The major obstacle in addressing this issue is that S. Typhi is exclusively a human pathogen. To overcome this limitation, we have used as model bacterium S. Typhimurium, and engineered it to produce endogenous levels of an active and inactive typhoid toxin, hereby named as TT (or genotoxic and cdtB (or control, respectively. To our surprise, infection with the genotoxin strain strongly suppressed intestinal inflammation, leading to a better survival of the host during the acute phase of infection, suggesting typhoid toxin may exert a protective role. The presence of a functional genotoxin was also associated with an increased frequency of asymptomatic carriers.

  14. Assessing and Promoting Functional Resilience in Flight Crews During Exploration Missions

    Science.gov (United States)

    Shelhamer, M.

    2015-01-01

    The NASA Human Research Program works to mitigate risks to health and performance on extended missions. However, research should be directed not only to mitigating known risks, but also to providing crews with tools to assess and enhance resilience, as a group and individually. We can draw on ideas from complexity theory to assess resilience. The entire crew or the individual crewmember can be viewed as a complex system composed of subsystems; the interactions between subsystems are of crucial importance. Understanding the interactions can provide important information even in the absence of complete information on the component subsystems. Enabled by advances in noninvasive measurement of physiological and behavioral parameters, subsystem monitoring can be implemented within a mission and during training to establish baselines. Coupled with mathematical modeling, this can provide assessment of health and function. Since the web of physiological systems (and crewmembers) can be interpreted as a network in mathematical terms, we can draw on recent work that relates the structure of such networks to their resilience (ability to self-organize in the face of perturbation). Some of the many parameters and interactions to choose from include: sleep cycles, coordination of work and meal times, cardiorespiratory rhythms, circadian rhythms and body temperature, stress markers and cognition, sleep and performance, immune function and nutritional status. Tools for resilience are then the means to measure and analyze these parameters, incorporate them into models of normal variability and interconnectedness, and recognize when parameters or their couplings are outside of normal limits.

  15. CD147 promotes the formation of functional osteoclasts through NFATc1 signalling

    Energy Technology Data Exchange (ETDEWEB)

    Nishioku, Tsuyoshi, E-mail: nishiokut@niu.ac.jp [Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298 (Japan); Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi [Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan)

    2016-04-29

    CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. - Highlights: • CD147 expression was markedly upregulated during osteoclast differentiation. • Downregulation of CD147 expression inhibited osteoclastgenesis and bone resorption. • Decreased CD147 expression inhibited RANKL-induced nuclear translocation of NFATc1.

  16. MCUR1 Is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics

    Directory of Open Access Journals (Sweden)

    Dhanendra Tomar

    2016-05-01

    Full Text Available Mitochondrial Ca2+ Uniporter (MCU-dependent mitochondrial Ca2+ uptake is the primary mechanism for increasing matrix Ca2+ in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here, we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1 (MCUR1 have severely impaired [Ca2+]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation, and migration but elicited autophagy. These studies establish the existence of a MCU complex that assembles at the mitochondrial integral membrane and regulates Ca2+-dependent mitochondrial metabolism.

  17. Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions

    Directory of Open Access Journals (Sweden)

    Lefeng Wang

    2017-01-01

    Full Text Available Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC, leading to barrier dysfunction and acute respiratory distress syndrome (ARDS. Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix] of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.

  18. Genomic structure and promoter functional analysis of GnRH3 gene in large yellow croaker (Larimichthys crocea).

    Science.gov (United States)

    Huang, Wei; Zhang, Jianshe; Liao, Zhi; Lv, Zhenming; Wu, Huifei; Zhu, Aiyi; Wu, Changwen

    2016-01-15

    Gonadotropin-releasing hormone III (GnRH3) is considered to be a key neurohormone in fish reproduction control. In the present study, the cDNA and genomic sequences of GnRH3 were cloned and characterized from large yellow croaker Larimichthys crocea. The cDNA encoded a protein of 99 amino acids with four functional motifs. The full-length genome sequence was composed of 3797 nucleotides, including four exons and three introns. Higher identities of amino acid sequences and conserved exon-intron organizations were found between LcGnRH3 and other GnRH3 genes. In addition, some special features of the sequences were detected in partial species. For example, two specific residues (V and A) were found in the family Sciaenidae, and the unique 75-72 bp type of the open reading frame 2 and 3 existed in the family Cyprinidae. Analysis of the 2576 bp promoter fragment of LcGnRH3 showed a number of transcription factor binding sites, such as AP1, CREB, GATA-1, HSF, FOXA2, and FOXL1. Promoter functional analysis using an EGFP reporter fusion in zebrafish larvae presented positive signals in the brain, including the olfactory region, the terminal nerve ganglion, the telencephalon, and the hypothalamus. The expression pattern was generally consistent with the endogenous GnRH3 GFP-expressing transgenic zebrafish lines, but the details were different. These results indicate that the structure and function of LcGnRH3 are generally similar to the other teleost GnRH3 genes, but there exist some distinctions among them. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Conjugation-promoted reaction of open-cage fullerene: a density functional theory study.

    Science.gov (United States)

    Guo, Yong; Yan, Jingjing; Khashab, Niveen M

    2012-02-01

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated. The obtained results show that the reaction of a carbonyl group on a fullerene orifice with triethyl phosphite most likely proceeds along the classical Abramov reaction; however, the classical product is not stable and is converted into the experimental product. An attack on a fullerene carbonyl carbon will trigger a rearrangement of the phosphate group to the carbonyl oxygen as the conversion transition state is stabilized by fullerene conjugation. This work provides a new insight on the reactivity of open-cage fullerenes, which may prove helpful in designing new switchable fullerene systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Migrate small, sound big: functional constraints on body size promote tracheal elongation in cranes.

    Science.gov (United States)

    Jones, M R; Witt, C C

    2014-06-01

    Organismal traits often represent the outcome of opposing selection pressures. Although social or sexual selection can cause the evolution of traits that constrain function or survival (e.g. ornamental feathers), it is unclear how the strength and direction of selection respond to ecological shifts that increase the severity of the constraint. For example, reduced body size might evolve by natural selection to enhance flight performance in migratory birds, but social or sexual selection favouring large body size may provide a countervailing force. Tracheal elongation is a potential outcome of these opposing pressures because it allows birds to convey an auditory signal of exaggerated body size. We predicted that the evolution of migration in cranes has coincided with a reduction in body size and a concomitant intensification of social or sexual selection for apparent large body size via tracheal elongation. We used a phylogenetic comparative approach to examine the relationships among migration distance, body mass and trachea length in cranes. As predicted, we found that migration distance correlated negatively with body size and positively with proportional trachea length. This result was consistent with our hypothesis that evolutionary reductions in body size led to intensified selection for trachea length. The most likely ultimate causes of intensified positive selection on trachea length are the direct benefits of conveying a large body size in intraspecific contests for mates and territories. We conclude that the strength of social or sexual selection on crane body size is linked to the degree of functional constraint. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  1. Toll like Receptor 2 engagement on CD4+ T cells promotes TH9 differentiation and function.

    Science.gov (United States)

    Karim, Ahmad Faisal; Reba, Scott M; Li, Qing; Boom, W Henry; Rojas, Roxana E

    2017-09-01

    We have recently demonstrated that mycobacterial ligands engage Toll like receptor 2 (TLR2) on CD4 + T cells and up-regulate T-cell receptor (TCR) triggered Th1 responses in vitro and in vivo. To better understand the role of T-cell expressed TLR2 on CD4 + T-cell differentiation and function, we conducted a gene expression analysis of murine naïve CD4 + T-cells stimulated in the presence or absence of TLR2 co-stimulation. Unexpectedly, naïve CD4 + T-cells co-stimulated via TLR2 showed a significant up-regulation of Il9 mRNA compared to cells co-stimulated via CD28. Under TH9 differentiation, we observed up-regulation of TH9 differentiation, evidenced by increases in both percent of IL-9 secreting cells and IL-9 in culture supernatants in the presence of TLR2 agonist both in polyclonal and Ag85B cognate peptide specific stimulations. Under non-polarizing conditions, TLR2 engagement on CD4 + T-cells had minimal effect on IL-9 secretion and TH9 differentiation, likely due to a prominent effect of TLR2 signaling on IFN-γ secretion and TH1 differentiation. We also report that, TLR2 signaling in CD4 + T cells increased expression of transcription factors BATF and PU.1, known to positively regulate TH9 differentiation. These results reveal a novel role of T-cell expressed TLR2 in enhancing the differentiation and function of TH9 T cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Identification, Functional Study, and Promoter Analysis of HbMFT1, a Homolog of MFT from Rubber Tree (Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Zhenghong Bi

    2016-03-01

    Full Text Available A homolog of MOTHER OF FT AND TFL1 (MFT was isolated from Hevea brasiliensis and its biological function was investigated. Protein multiple sequence alignment and phylogenetic analysis revealed that HbMFT1 conserved critical amino acid residues to distinguish MFT, FLOWERING LOCUS T (FT and TERMINAL FLOWER1 (TFL1-like proteins and showed a closer genetic relationship to the MFT-like group. The accumulation of HbMFT1 was generally detected in various tissues except pericarps, with the highest expression in embryos and relatively higher expression in roots and stems of seedlings, flowering inflorescences, and male and female flowers. HbMFT1 putative promoter analysis showed that tissue-specific, environmental change responsive and hormone-signaling responsive elements were generally present. HbMFT1 was strongly induced under a short-day condition at 28 °C, with the highest expression after the onset of a day. Overexpression of HbMFT1 inhibited seed germination, seedling growth, and flowering in transgenic Arabidopsis. The qRT-PCR further confirmed that APETALA1 (AP1 and FRUITFULL (FUL were drastically down-regulated in 35S::HbMFT1 plants. A histochemical β-glucuronidase (GUS assay showed that HbMFT1::GUS activity was mainly detected in stamens and mature seeds coinciding with its original expression and notably induced in rosette leaves and seedlings of transgenic Arabidopsis by exogenous abscisic acid (ABA due to the presence of ABA cis-elements in HbMFT1 promoter. These results suggested that HbMFT1 was mainly involved in maintenance of seed maturation and stamen development, but negatively controlled germination, growth and development of seedlings and flowering. In addition, the HbMFT1 promoter can be utilized in controlling transgene expression in stamens and seeds of rubber tree or other plant species.

  3. Maresin 1 Promotes Inflammatory Resolution, Neuroprotection, and Functional Neurological Recovery After Spinal Cord Injury.

    Science.gov (United States)

    Francos-Quijorna, Isaac; Santos-Nogueira, Eva; Gronert, Karsten; Sullivan, Aaron B; Kopp, Marcel A; Brommer, Benedikt; David, Samuel; Schwab, Jan M; López-Vales, Ruben

    2017-11-29

    Resolution of inflammation is defective after spinal cord injury (SCI), which impairs tissue integrity and remodeling and leads to functional deficits. Effective pharmacological treatments for SCI are not currently available. Maresin 1 (MaR1) is a highly conserved specialized proresolving mediator (SPM) hosting potent anti-inflammatory and proresolving properties with potent tissue regenerative actions. Here, we provide evidence that the inappropriate biosynthesis of SPM in the lesioned spinal cord hampers the resolution of inflammation and leads to deleterious consequences on neurological outcome in adult female mice. We report that, after spinal cord contusion injury in adult female mice, the biosynthesis of SPM is not induced in the lesion site up to 2 weeks after injury. Exogenous administration of MaR1, a highly conserved SPM, propagated inflammatory resolution after SCI, as revealed by accelerated clearance of neutrophils and a reduction in macrophage accumulation at the lesion site. In the search of mechanisms underlying the proresolving actions of MaR1 in SCI, we found that this SPM facilitated several hallmarks of resolution of inflammation, including reduction of proinflammatory cytokines (CXCL1, CXCL2, CCL3, CCL4, IL6, and CSF3), silencing of major inflammatory intracellular signaling cascades (STAT1, STAT3, STAT5, p38, and ERK1/2), redirection of macrophage activation toward a prorepair phenotype, and increase of the phagocytic engulfment of neutrophils by macrophages. Interestingly, MaR1 administration improved locomotor recovery significantly and mitigated secondary injury progression in a clinical relevant model of SCI. These findings suggest that proresolution, immunoresolvent therapies constitute a novel approach to improving neurological recovery after acute SCI. SIGNIFICANCE STATEMENT Inflammation is a protective response to injury or infection. To result in tissue homeostasis, inflammation has to resolve over time. Incomplete or delayed

  4. Anxiolytics may promote locomotor function recovery in spinal cord injury patients

    Directory of Open Access Journals (Sweden)

    Pierre A Guertin

    2008-09-01

    Full Text Available Pierre A GuertinNeuroscience Unit, Laval University Medical Center (CHUL, Quebec City, CanadaAbstract: Recent findings in animal models of paraplegia suggest that specific nonbenzodiazepine anxiolytics may temporarily restore locomotor functions after spinal cord injury (SCI. Experiments using in vitro models have revealed, indeed, that selective serotonin receptor (5-HTR ligands such as 5-HTR1A agonists, known as relatively safe anxiolytics, can acutely elicit episodes of rhythmic neuronal activity refered to as fictive locomotion in isolated spinal cord preparations. Along the same line, in vivo studies have recently shown that this subclass of anxiolytics can induce, shortly after systemic administration (eg, orally or subcutaneously, some locomotor-like hindlimb movements during 45–60 minutes in completely spinal cord-transected (Tx rodents. Using ‘knock-out’ mice (eg, 5-HTR7-/- and selective antagonists, it has been clearly established that both 5-HTR1A and 5-HTR7 were critically involved in mediating the pro-locomotor effects induced by 8-OH-DPAT (typically referred to as a 5-HTR1A agonist in Tx animals. Taken together, these in vitro and in vivo data strongly support the idea that 5-HTR1A agonists may eventually become constitutive elements of a novel first-in-class combinatorial treatment aimed at periodically inducing short episodes of treadmill stepping in SCI patients.Keywords: 5-HT agonists, anxiolytics, locomotion, SCI

  5. Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function.

    Science.gov (United States)

    Shimoyama, Atsuko; Wada, Masahiro; Ikeda, Fumiyo; Hata, Kenji; Matsubara, Takuma; Nifuji, Akira; Noda, Masaki; Amano, Katsuhiko; Yamaguchi, Akira; Nishimura, Riko; Yoneda, Toshiyuki

    2007-07-01

    Genetic and cell biological studies have indicated that Indian hedgehog (Ihh) plays an important role in bone development and osteoblast differentiation. However, the molecular mechanism by which Ihh regulates osteoblast differentiation is complex and remains to be fully elucidated. In this study, we investigated the role of Ihh signaling in osteoblast differentiation using mesenchymal cells and primary osteoblasts. We observed that Ihh stimulated alkaline phosphatase (ALP) activity, osteocalcin expression, and calcification. Overexpression of Gli2- but not Gli3-induced ALP, osteocalcin expression, and calcification of these cells. In contrast, dominant-negative Gli2 markedly inhibited Ihh-dependent osteoblast differentiation. Ihh treatment or Gli2 overexpression also up-regulated the expression of Runx2, an essential transcription factor for osteoblastogenesis, and enhanced the transcriptional activity and osteogenic action of Runx2. Coimmunoprecipitation analysis demonstrated a physical interaction between Gli2 and Runx2. Moreover, Ihh or Gli2 overexpression failed to increase ALP activity in Runx2-deficient mesenchymal cells. Collectively, these results suggest that Ihh regulates osteoblast differentiation of mesenchymal cells through up-regulation of the expression and function of Runx2 by Gli2.

  6. Conjugation-promoted reaction of open-cage fullerene: A density functional theory study

    KAUST Repository

    Guo, Yong

    2012-01-20

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated. The obtained results show that the reaction of a carbonyl group on a fullerene orifice with triethyl phosphite most likely proceeds along the classical Abramov reaction; however, the classical product is not stable and is converted into the experimental product. An attack on a fullerene carbonyl carbon will trigger a rearrangement of the phosphate group to the carbonyl oxygen as the conversion transition state is stabilized by fullerene conjugation. This work provides a new insight on the reactivity of open-cage fullerenes, which may prove helpful in designing new switchable fullerene systems. Not that classical: The reaction of a carbonyl group on the fullerene orifice with triethyl phosphite most likely proceeds following the Abramov reaction to firstly form a classical product. However, this product is not stable and turns into an experimental product as the conversion transition state is stabilized by fullerene conjugation (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Scaffoldless tissue-engineered nerve conduit promotes peripheral nerve regeneration and functional recovery after tibial nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    Aaron M. Adams; Keith W. VanDusen; Tatiana Y. Kostrominova; Jacob P. Mertens; Lisa M. Larkin

    2017-01-01

    Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibroblast conduit (EFC), and autograft in a 10-mm tibial nerve gap. ENCs were fabricated utilizing primary fibroblasts and the nerve cells of rats on embryonic day 15 (E15). EFCs were fabricated utilizing primary fi-broblasts only. Following a 12-week recovery, nerve repair was assessed by measuring contractile properties in the medial gastrocnemius muscle, distal motor nerve conduction velocity in the lateral gastrocnemius, and histology of muscle and nerve. The autografts, ENCs and EFCs reestablished 96%, 87% and 84% of native distal motor nerve conduction velocity in the lateral gastrocnemius, 100%, 44% and 44% of native specific force of medical gastrocnemius, and 63%, 61% and 67% of native medial gastrocnemius mass, re-spectively. Histology of the repaired nerve revealed large axons in the autograft, larger but fewer axons in the ENC repair, and many smaller axons in the EFC repair. Muscle histology revealed similar muscle fiber cross-sectional areas among autograft, ENC and EFC repairs. In conclusion, both ENCs and EFCs promot-ed nerve regeneration in a 10-mm tibial nerve gap repair, suggesting that the E15 rat nerve cells may not be necessary for nerve regeneration, and EFC alone can suffice for peripheral nerve injury repair.

  8. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs

    Directory of Open Access Journals (Sweden)

    Ayesha Bhatia

    2016-01-01

    Full Text Available Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5–treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  9. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs.

    Science.gov (United States)

    Bhatia, Ayesha; O'Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5-treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  10. Catalysis mechanism of Pd-promoted γ-alumina in the thermal decomposition of methane to hydrogen: A density functional theory study

    International Nuclear Information System (INIS)

    Salam, M. Abdus; Abdullah, Bawadi

    2017-01-01

    Thermo-catalytic methane decomposition to elemental hydrogen mechanism in transitional metals (Pd, Ni & Mo) promoted Al_2O_3 (001) catalyst have been studied using the density functional theory (DFT). Decomposition reactions are spontaneous and favourable above 775 K for all promoter. Pd-promoted Al_2O_3 (001) catalyst demonstrates a breakthrough decomposition activity in hydrogen production as compared to Ni− and Mo-promoted Al_2O_3 (001) catalysts. The activation energy (E_a) range of the catalysis for Pd promoted Al_2O_3 (001) catalysts is 0.003–0.34 eV. Whereas, Ni and Mo promoted Al_2O_3 (001) catalysts display activation energy E_a in the range of 0.63–1.15 eV and 0.04–5.98 eV, respectively. Pd-promoted catalyst also shows a higher adsorption energy (−0.68 eV) and reactivity than that of Ni and Mo promoted Al_2O_3 (001) catalysts. The rates of successive decomposition of methane are found to be 16.15 × 10"1"2, 15.95 × 10"1"2 and 16.09 × 10"1"2 s"−"1 for the promoter of Pd, Ni and Mo, respectively. Pd promoted Al_2O_3 (001) catalyst reduces the methane decomposition temperature (775 K) and deactivation rate significantly. The catalytic conditions and catalyst is promising in producing hydrogen to support hydrogen economy. - Highlights: • Transition metals (Pd, Ni & Mo) promoted γ-alumina catalysts are designed successfully. • Pd-promoted catalyst showed breakthrough activity in methane decomposition to hydrogen. • DFT study explored the catalysis mechanism of methane decomposition at atomic level. • Pd-promoted catalyst reduced temperature and activation barrier of methane decomposition reaction significantly.

  11. Endothelial cell-derived matrix promotes the metabolic functional maturation of hepatocyte via integrin-Src signalling.

    Science.gov (United States)

    Guo, Xinyue; Li, Weihong; Ma, Minghui; Lu, Xin; Zhang, Haiyan

    2017-11-01

    The extracellular matrix (ECM) microenvironment is involved in the regulation of hepatocyte phenotype and function. Recently, the cell-derived extracellular matrix has been proposed to represent the bioactive and biocompatible materials of the native ECM. Here, we show that the endothelial cell-derived matrix (EC matrix) promotes the metabolic maturation of human adipose stem cell-derived hepatocyte-like cells (hASC-HLCs) through the activation of the transcription factor forkhead box protein A2 (FOXA2) and the nuclear receptors hepatocyte nuclear factor 4 alpha (HNF4α) and pregnane X receptor (PXR). Reducing the fibronectin content in the EC matrix or silencing the expression of α5 integrin in the hASC-HLCs inhibited the effect of the EC matrix on Src phosphorylation and hepatocyte maturation. The inhibition of Src phosphorylation using the inhibitor PP2 or silencing the expression of Src in hASC-HLCs also attenuated the up-regulation of the metabolic function of hASC-HLCs in a nuclear receptor-dependent manner. These data elucidate integrin-Src signalling linking the extrinsic EC matrix signals and metabolic functional maturation of hepatocyte. This study provides a model for studying the interaction between hepatocytes and non-parenchymal cell-derived matrix. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. Chemical chaperones exceed the chaperone effects of RIC-3 in promoting assembly of functional α7 AChRs.

    Directory of Open Access Journals (Sweden)

    Alexander Kuryatov

    Full Text Available Functional α7 nicotinic acetylcholine receptors (AChRs do not assemble efficiently in cells transfected with α7 subunits unless the cells are also transfected with the chaperone protein RIC-3. Despite the presence of RIC-3, large amounts of these subunits remain improperly assembled. Thus, additional chaperone proteins are probably required for efficient assembly of α7 AChRs. Cholinergic ligands can act as pharmacological chaperones to promote assembly of mature AChRs and upregulate the amount of functional AChRs. In addition, we have found that the chemical chaperones 4-phenylbutyric acid (PBA and valproic acid (VPA greatly increase the amount of functional α7 AChRs produced in a cell line expressing both α7 and RIC-3. Increased α7 AChR expression allows assay of drug action using a membrane potential-sensitive fluorescent indicator. Both PBA and VPA also increase α7 expression in the SH-SY5Y neuroblastoma cell line that endogenously expresses α7 AChRs. VPA increases expression of endogenous α7 AChRs in hippocampal neurons but PBA does not. RIC-3 is insufficient for optimal assembly of α7 AChRs, but provides assay conditions for detecting additional chaperones. Chemical chaperones are a useful pragmatic approach to express high levels of human α7 AChRs for drug selection and characterization and possibly to increase α7 expression in vivo.

  13. Efficacy of walking exercise in promoting cognitive-psychosocial functions in men with prostate cancer receiving androgen deprivation therapy

    Directory of Open Access Journals (Sweden)

    Lee C

    2012-07-01

    Full Text Available Abstract Background Prostate cancer is the most commonly diagnosed non-melanoma cancer among men. Androgen deprivation therapy (ADT has been the core therapy for men with advanced prostate cancer. It is only in recent years that clinicians began to recognize the cognitive-psychosocial side effects from ADT, which significantly compromise the quality of life of prostate cancer survivors. The objectives of the study are to determine the efficacy of a simple and accessible home-based, walking exercise program in promoting cognitive and psychosocial functions of men with prostate cancer receiving ADT. Methods A 6-month prospective, single-blinded, randomized controlled trial will be conducted to compare the Exercise Group with the Control Group. Twenty men with prostate cancer starting ADT will be recruited and randomly assigned to one of the two groups: the Exercise Group will receive instructions in setting up an individualized 6-month home-based, walking exercise program, while the Control Group will receive standard medical advice from the attending physician. The primary outcomes will be psychosocial and cognitive functions. Cognitive functions including memory, attention, working memory, and executive function will be assessed using a battery of neurocognitive tests at baseline and 6 months. Psychosocial functions including depression, anxiety and self-esteem will be assessed at baseline, 3 and 6 months using the Center for Epidemiological Studies Depression Scale, Spielberger State-Trait Anxiety Inventory, and Rosenberg Self-Esteem Scale. Discussion The significance of the cognitive-psychosocial side effects of ADT in men with prostate cancer has only been recently recognized, and the management remains unclear. This study addresses this issue by designing a simple and accessible home-based, exercise program that may potentially have significant impact on reducing the cognitive and psychosocial side effects of ADT, and ultimately

  14. Assessing and Promoting Functional Resilience in Flight Crews During Exploration Missions

    Science.gov (United States)

    Shelhamer, Mark

    2015-01-01

    NASA plans to send humans to Mars in about 20 years. The NASA Human Research Program supports research to mitigate the major risks to human health and performance on extended missions. However, there will undoubtedly be unforeseen events on any mission of this nature - thus mitigation of known risks alone is not sufficient to ensure optimal crew health and performance. Research should be directed not only to mitigating known risks, but also to providing crews with the tools to assess and enhance resilience, as a group and individually. We can draw on ideas from complexity theory and network theory to assess crew and individual resilience. The entire crew or the individual crewmember can be viewed as a complex system that is composed of subsystems (individual crewmembers or physiological subsystems), and the interactions between subsystems are of crucial importance for overall health and performance. An understanding of the structure of the interactions can provide important information even in the absence of complete information on the component subsystems. This is critical in human spaceflight, since insufficient flight opportunities exist to elucidate the details of each subsystem. Enabled by recent advances in noninvasive measurement of physiological and behavioral parameters, subsystem monitoring can be implemented within a mission and also during preflight training to establish baseline values and ranges. Coupled with appropriate mathematical modeling, this can provide real-time assessment of health and function, and detect early indications of imminent breakdown. Since the interconnected web of physiological systems (and crewmembers) can be interpreted as a network in mathematical terms, we can draw on recent work that relates the structure of such networks to their resilience (ability to self-organize in the face of perturbation). There are many parameters and interactions to choose from. Normal variability is an established characteristic of a healthy

  15. Functional promoter haplotypes of the human FAS gene are associated with the phenotype of SLE characterized by thrombocytopenia

    DEFF Research Database (Denmark)

    Nolsøe, R L; Kelly, J A; Pociot, F

    2005-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by production of autoantibodies against intracellular antigens and tissue injury. Defective apoptosis of activated immune cells leads to the development of autoantibodies in SLE. FasL initiated apoptosis is central...... for peripheral tolerance. Fas deficiencies in humans and mice predispose toward systemic autoimmunity. SLE is conferred by many genes. The genetic effects may be concentrated by familial clustering or by stratifying of subphenotypes. We have tested polymorphisms and haplotypes in FAS and FASL for association...... to SLE or subphenotypes in 126 multiplex American SLE pedigrees and found association of the FAS codon214 AC(C/T) as well as the FAS-670G>A'-codon214 AC(C/T)' haplotype to thrombocytopenia in SLE. Furthermore we have functionally characterized the FAS/FASL promoter polymorphisms associated with SLE...

  16. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    International Nuclear Information System (INIS)

    Rodrigues, L.P.; Iglesias, D.; Nicola, F.C.; Steffens, D.; Valentim, L.; Witczak, A.; Zanatta, G.; Achaval, M.; Pranke, P.; Netto, C.A.

    2011-01-01

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10 6 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10 6 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation

  17. Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB

    Science.gov (United States)

    Zhang, Yanling.; Zhen, Wei.; Maechler, Pierre; Liu, Dongmin

    2013-01-01

    Chronic hyperlipidemia causes β-cell apoptosis and dysfunction, thereby contributing to the pathogenesis of T2D. Thus, searching for agents to promote pancreatic β-cell survival and improve its function could be a promising strategy to prevent and treat T2D. We investigated the effects of kaempferol, a small molecule isolated from ginkgo biloba, on apoptosis and function of β-cells and further determined the mechanism underlying its actions. Kaempferol treatment promoted viability, inhibited apoptosis, and reduced caspase-3 activity in INS-1E cells and human islets chronically exposed to palmitate. In addition, kaempferol prevented the lipotoxicity-induced down-regulation of anti-apoptotic proteins Akt and Bcl-2. The cytoprotective effects of kaempferol were associated with improved insulin secretion, synthesis, and PDX-1 expression. Chronic hyperlipidemia significantly diminished cAMP production, PKA activation, and CREB phosphorylation and its regulated transcriptional activity in β-cells, all of which were restored by kaempferol treatment. Disruption of CREB expression by transfection of CREB siRNA in INS-1E cells or adenoviral transfer of dominant-negative forms of CREB in human islets ablated kaempferol protection of β-cell apoptosis and dysfunction caused by palmitate. Incubation of INS-1E cells or human islets with kaempferol for 48 h induced PDX-1 expression. This effect of kaempferol on PDX-1 expression was not shared by a host of structurally related flavonoid compounds. PDX-1 gene knockdown reduced kaempferol–stimulated cAMP generation and CREB activation in INS-1E cells. These findings demonstrate that kaempferol is a novel survivor factor for pancreatic β-cells via up-regulating the PDX-1/cAMP/PKA/CREB signaling cascade. PMID:22819546

  18. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    International Nuclear Information System (INIS)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline; Sun, Jianmin; Jögi, Annika; Neumann, Drorit; Rönnstrand, Lars; Påhlman, Sven

    2014-01-01

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα + ) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells

  19. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Sun, Jianmin [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Jögi, Annika [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Neumann, Drorit [Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rönnstrand, Lars [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Påhlman, Sven, E-mail: sven.pahlman@med.lu.se [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  20. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  1. Functional variant in complement C3 gene promoter and genetic susceptibility to temporal lobe epilepsy and febrile seizures.

    Directory of Open Access Journals (Sweden)

    Sarah Jamali

    Full Text Available BACKGROUND: Human mesial temporal lobe epilepsies (MTLE represent the most frequent form of partial epilepsies and are frequently preceded by febrile seizures (FS in infancy and early childhood. Genetic associations of several complement genes including its central component C3 with disorders of the central nervous system, and the existence of C3 dysregulation in the epilepsies and in the MTLE particularly, make it the C3 gene a good candidate for human MTLE. METHODOLOGY/PRINCIPAL FINDINGS: A case-control association study of the C3 gene was performed in a first series of 122 patients with MTLE and 196 controls. Four haplotypes (HAP1 to 4 comprising GF100472, a newly discovered dinucleotide repeat polymorphism [(CA8 to (CA15] in the C3 promoter region showed significant association after Bonferroni correction, in the subgroup of MTLE patients having a personal history of FS (MTLE-FS+. Replication analysis in independent patients and controls confirmed that the rare HAP4 haplotype comprising the minimal length allele of GF100472 [(CA8], protected against MTLE-FS+. A fifth haplotype (HAP5 with medium-size (CA11 allele of GF100472 displayed four times higher frequency in controls than in the first cohort of MTLE-FS+ and showed a protective effect against FS through a high statistical significance in an independent population of 97 pure FS. Consistently, (CA11 allele by its own protected against pure FS in a second group of 148 FS patients. Reporter gene assays showed that GF100472 significantly influenced C3 promoter activity (the higher the number of repeats, the lower the transcriptional activity. Taken together, the consistent genetic data and the functional analysis presented here indicate that a newly-identified and functional polymorphism in the promoter of the complement C3 gene might participate in the genetic susceptibility to human MTLE with a history of FS, and to pure FS. CONCLUSIONS/SIGNIFICANCE: The present study provides important

  2. Zinc deficiency promotes cystitis-related bladder pain by enhancing function and expression of Cav3.2 in mice.

    Science.gov (United States)

    Ozaki, Tomoka; Matsuoka, Junki; Tsubota, Maho; Tomita, Shiori; Sekiguchi, Fumiko; Minami, Takeshi; Kawabata, Atsufumi

    2018-01-15

    Ca v 3.2 T-type Ca 2+ channel activity is suppressed by zinc that binds to the extracellular histidine-191 of Ca v 3.2, and enhanced by H 2 S that interacts with zinc. Ca v 3.2 in nociceptors is upregulated in an activity-dependent manner. The enhanced Ca v 3.2 activity by H 2 S formed by the upregulated cystathionine-γ-lyase (CSE) is involved in the cyclophosphamide (CPA)-induced cystitis-related bladder pain in mice. We thus asked if zinc deficiency affects the cystitis-related bladder pain in mice by altering Ca v 3.2 function and/or expression. Dietary zinc deficiency for 2 weeks greatly decreased zinc concentrations in the plasma but not bladder tissue, and enhanced the bladder pain/referred hyperalgesia (BP/RH) following CPA at 200mg/kg, a subeffective dose, but not 400mg/kg, a maximal dose, an effect abolished by pharmacological blockade or gene silencing of Ca v 3.2. Acute zinc deficiency caused by systemic N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylendiamine (TPEN), a zinc chelator, mimicked the dietary zinc deficiency-induced Ca v 3.2-dependent promotion of BP/RH following CPA at 200mg/kg. CPA at 400mg/kg alone or TPEN plus CPA at 200mg/kg caused Ca v 3.2 overexpression accompanied by upregulation of Egr-1 and USP5, known to promote transcriptional expression and reduce proteasomal degradation of Ca v 3.2, respectively, in the dorsal root ganglia (DRG). The CSE inhibitor, β-cyano-l-alanine, prevented the BP/RH and upregulation of Ca v 3.2, Egr-1 and USP5 in DRG following TPEN plus CPA at 200mg/kg. Together, zinc deficiency promotes bladder pain accompanying CPA-induced cystitis by enhancing function and expression of Ca v 3.2 in nociceptors, suggesting a novel therapeutic avenue for treatment of bladder pain, such as zinc supplementation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Self-care essential extras: an integration of holistic nursing, functional medicine, and health coaching to promote therapeutic lifestyle change and decrease chronic disease.

    Science.gov (United States)

    Scattergood, Donna M

    2010-01-01

    The Essential Vitality Program blends holistic nursing, functional medicine, and health coaching to promote lifestyle changes that modify risk factors of costly chronic disease. Karl is a client who experienced enhanced vitality, decreased chronic pain and medications use, and improved meaningful functioning, by partnering with a holistic nurse coach.

  4. The zinc finger E-box-binding homeobox 1 (Zeb1) promotes the conversion of mouse fibroblasts into functional neurons.

    Science.gov (United States)

    Yan, Long; Li, Yue; Shi, Zixiao; Lu, Xiaoyin; Ma, Jiao; Hu, Baoyang; Jiao, Jianwei; Wang, Hongmei

    2017-08-04

    The zinc finger E-box-binding transcription factor Zeb1 plays a pivotal role in the epithelial-mesenchymal transition. Numerous studies have focused on the molecular mechanisms by which Zeb1 contributes to this process. However, the functions of Zeb1 beyond the epithelial-mesenchymal transition remain largely elusive. Using a transdifferentiation system to convert mouse embryonic fibroblasts (MEFs) into functional neurons via the neuronal transcription factors achaete-scute family bHLH (basic helix-loop-helix) transcription factor1 ( Ascl1 ), POU class 3 homeobox 2 (POU3F2/ Brn2 ), and neurogenin 2 (Neurog2, Ngn2 ) (ABN), we found that Zeb1 was up-regulated during the early stages of transdifferentiation. Knocking down Zeb1 dramatically attenuated the transdifferentiation efficiency, whereas Zeb1 overexpression obviously increased the efficiency of transdifferentiation from MEFs to neurons. Interestingly, Zeb1 improved the transdifferentiation efficiency induced by even a single transcription factor ( e.g. Asc1 or Ngn2 ). Zeb1 also rapidly promoted the maturation of induced neuron cells to functional neurons and improved the formation of neuronal patterns and electrophysiological characteristics. Induced neuron cells could form functional synapse in vivo after transplantation. Genome-wide RNA arrays showed that Zeb1 overexpression up-regulated the expression of neuron-specific genes and down-regulated the expression of epithelial-specific genes during conversion. Taken together, our results reveal a new role for Zeb1 in the transdifferentiation of MEFs into neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Functional characterization of a strong bi-directional constitutive plant promoter isolated from cotton leaf curl Burewala virus.

    Directory of Open Access Journals (Sweden)

    Zainul A Khan

    Full Text Available Cotton leaf curl Burewala virus (CLCuBuV, belonging to the genus Begomovirus, possesses single-stranded monopartite DNA genome. The bidirectional promoters representing Rep and coat protein (CP genes of CLCuBuV were characterized and their efficacy was assayed. Rep and CP promoters of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV were fused with β-glucuronidase (GUS and green fluorescent protein (GFP reporter genes. GUS activity in individual plant cells driven by Rep, CP and 35S promoters was estimated using real-time PCR and fluorometric GUS assay. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi leaves showed highest expression driven by Rep promoter followed by 35S promoter and CP promoter. The expression level of GUS driven by Rep promoter in transformed tobacco plants was shown to be two to four-fold higher than that of 35S promoter, while the expression by CP promoter was slightly lower. Further, the expression of GFP was monitored in agroinfiltrated leaves of N. benthamiana, N. tabacum and cotton (Gossypium hirsutum plants using confocal laser scanning microscopy. Rep promoter showed strong consistent transient expression in tobacco and cotton leaves as compared to 35S promoter. The strong constitutive CLCuBuV Rep promoter developed in this study could be very useful for high level expression of transgenes in a wide variety of plant cells.

  6. The potential of electrical stimulation to promote functional recovery after peripheral nerve injury--comparisons between rats and humans.

    Science.gov (United States)

    Gordon, T; Brushart, T M; Amirjani, N; Chan, K M

    2007-01-01

    The declining capacity for injured peripheral nerves to regenerate their axons with time and distance is accounted for, at least in part, by the chronic axotomy of the neurons and Schwann cell denervation prior to target reinnervation. A largely unrecognized site of delay is the surgical suture site where, in rats, 4 weeks is required for all neurons to regenerate their axons across the site. Low frequency stimulation for just 1 h after surgery accelerates this axon crossing in association with upregulation of neurotrophic factors in the neurons. We translated these findings to human patients by examining the number of reinnervated motor units in the median nerve-innervated thenar muscles before and after carpel tunnel release surgery in a randomized controlled trial. Motor unit number estimates (MUNE) in patients with moderate and severe carpal tunnel syndrome were significantly lower than normal. This number increased significantly by 6-8 months after surgery and reached normal values by 12 months in contrast to a non-significant increase in the control unstimulated group. Tests including the Purdue Pegboard Test verified the more rapid functional recovery after stimulation. The data indicate a feasible strategy to promote axonal regeneration in humans that has the potential to improve functional outcomes, especially in combination with strategies to sustain the regenerative capacity of neurons and the support of Schwann cells over distance and time.

  7. Black Tea High-Molecular-Weight Polyphenol-Rich Fraction Promotes Hypertrophy during Functional Overload in Mice

    Directory of Open Access Journals (Sweden)

    Yuki Aoki

    2017-03-01

    Full Text Available Mitochondria activation factor (MAF is a high-molecular-weight polyphenol extracted from black tea that stimulates training-induced 5′ adenosine monophosphate-activated protein kinase (AMPK activation and improves endurance capacity. Originally, MAF was purified from black tea using butanol and acetone, making it unsuitable for food preparation. Hence, we extracted a MAF-rich sample “E80” from black tea, using ethanol and water only. Here, we examined the effects of E80 on resistance training. Eight-week old C57BL/6 mice were fed with a normal diet or a diet containing 0.5% E80 for 4, 7 and 14 days under conditions of functional overload. It was found that E80 administration promoted overload-induced hypertrophy and induced phosphorylation of the Akt/mammalian target of rapamycin (mTOR pathway proteins, such as Akt, P70 ribosomal protein S6 kinase (p70S6K, and S6 in the plantaris muscle. Therefore, functional overload and E80 administration accelerated mTOR signaling and increased protein synthesis in the muscle, thereby inducing hypertrophy.

  8. WNT10B functional dualism: beta-catenin/Tcf-dependent growth promotion or independent suppression with deregulated expression in cancer.

    Science.gov (United States)

    Yoshikawa, Hirohide; Matsubara, Kenichi; Zhou, Xiaoling; Okamura, Shu; Kubo, Takahiko; Murase, Yaeko; Shikauchi, Yuko; Esteller, Manel; Herman, James G; Wei Wang, Xin; Harris, Curtis C

    2007-11-01

    We found aberrant DNA methylation of the WNT10B promoter region in 46% of primary hepatocellular carcinoma (HCC) and 15% of colon cancer samples. Three of 10 HCC and one of two colon cancer cell lines demonstrated low or no expression, and 5-aza-2'deoxycytidine reactivated WNT10B expression with the induction of demethylation, indicating that WNT10B is silenced by DNA methylation in some cancers, whereas WNT10B expression is up-regulated in seven of the 10 HCC cell lines and a colon cancer cell line. These results indicate that WNT10B can be deregulated by either overexpression or silencing in cancer. We found that WNT10B up-regulated beta-catenin/Tcf activity. However, WNT10B-overexpressing cells demonstrated a reduced growth rate and anchorage-independent growth that is independent of the beta-catenin/Tcf activation, because mutant beta-catenin-transduced cells did not suppress growth, and dominant-negative hTcf-4 failed to alleviate the growth suppression by WNT10B. Although WNT10B expression alone inhibits cell growth, it acts synergistically with the fibroblast growth factor (FGF) to stimulate cell growth. WNT10B is bifunctional, one function of which is involved in beta-catenin/Tcf activation, and the other function is related to the down-regulation of cell growth through a different mechanism. We suggest that FGF switches WNT10B from a negative to a positive cell growth regulator.

  9. Creative music therapy to promote brain structure, function, and neurobehavioral outcomes in preterm infants: a randomized controlled pilot trial protocol.

    Science.gov (United States)

    Haslbeck, Friederike Barbara; Bucher, Hans-Ulrich; Bassler, Dirk; Hagmann, Cornelia

    2017-01-01

    Preterm birth is associated with increased risk of neurological impairment and deficits in cognition, motor function, and behavioral problems. Limited studies indicate that multi-sensory experiences support brain development in preterm infants. Music appears to promote neurobiological processes and neuronal learning in the human brain. Creative music therapy (CMT) is an individualized, interactive therapeutic approach based on the theory and methods of Nordoff and Robbins. CMT may promote brain development in preterm infants via concurrent interaction and meaningful auditory stimulation. We hypothesize that preterm infants who receive creative music therapy during neonatal intensive care admission will have developmental benefits short- and long-term brain function. A prospective, randomized controlled single-center pilot trial involving 60 clinically stable preterm infants under 32 weeks of gestational age is conducted in preparation for a multi-center trial. Thirty infants each are randomized to either standard neonatal intensive care or standard care with CMT. Music therapy intervention is approximately 20 min in duration three times per week. A trained music therapist sings for the infants in lullaby style, individually entrained and adjusted to the infant's rhythm and affect. Primary objectives of this study are feasibility of protocol implementation and investigating the potential mechanism of efficacy for this new intervention. To examine the effect of this new intervention, non-invasive, quantitative magnetic resonance imaging (MRI) methods at corrected age and standardized neurodevelopmental assessments using the Bayley Scales of Infant and Toddler Development third edition at a corrected age of 24 months and Kaufman Assessment Battery for Children at 5 years will be performed. All assessments will be performed and analyzed by blinded experts. To our knowledge, this is the first randomized controlled clinical trial to systematically examine possible

  10. Emerging Importance of Helicases in Plant Stress Tolerance: Characterization of Oryza sativa Repair Helicase XPB2 Promoter and Its Functional Validation in Tobacco under Multiple Stresses.

    Science.gov (United States)

    Raikwar, Shailendra; Srivastava, Vineet K; Gill, Sarvajeet S; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. Helicases, the unique molecular motors, are emerged as prospective molecules to engineer stress tolerance in plants and are involved in nucleic acid metabolism including DNA repair. The repair helicase, XPB is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress conditions. Here, we report the in silico analysis of novel stress inducible promoter of Oryza sativa XPB2 (OsXPB2). The in vivo validation of functionality/activity of OsXPB2 promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. The present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration, or cold) and hormone (Auxin, ABA, or MeJA) induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA, or ABA responsive, respectively. Functional analysis was done by Agrobacterium-mediated transient assay using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present findings suggest that OsXPB2 promoter is a multi-stress inducible promoter and has potential applications in sustainable crop production under abiotic stresses by regulating desirable pattern of gene expression.

  11. A 1-kb bacteriophage lambda fragment functions as an insulator to effectively block enhancer-promoter interactions in Arabidopsis thaliana

    Science.gov (United States)

    The 35S cauliflower mosaic virus (CaMV) promoter contains an enhancer element that is able to override the tissue-, organ- and developmental-stage specificity of nearby promoters. Consequently, the precise control of transgene expression in transgenic plants, which often contain the 35S CaMV promot...

  12. A functional variant in the stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork.

    Directory of Open Access Journals (Sweden)

    Joan Estany

    Full Text Available There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18 ∶ 1 by desaturating stearic acid (18 ∶ 0. Here we describe a total of 18 mutations in the promoter and 3' non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18 ∶ 1/18 ∶ 0 in muscle increases from 3.78 to 4.43 in opposite homozygotes without affecting fat content (18 ∶ 0+18 ∶ 1, intramuscular fat content, and backfat thickness. No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs (g.2108C>T; g.2228T>C; g.2281A>G of the promoter region was additively associated to enhanced 18 ∶ 1/18 ∶ 0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18 ∶ 1/18 ∶ 0 and, consequently, the proportion of monounsaturated to saturated fat.

  13. Design Of the Approximation Function of a Pedometer based on Artificial Neural Network for the Healthy Life Style Promotion in Diabetic Patients

    OpenAIRE

    Vega Corona, Antonio; Zárate Banda, Magdalena; Barron Adame, Jose Miguel; Martínez Celorio, René Alfredo; Andina de la Fuente, Diego

    2008-01-01

    The present study describes the design of an Artificial Neural Network to synthesize the Approximation Function of a Pedometer for the Healthy Life Style Promotion. Experimentally, the approximation function is synthesized using three basic digital pedometers of low cost, these pedometers were calibrated with an advanced pedometer that calculates calories consumed and computes distance travelled with personal stride input. The synthesized approximation function by means of the designed neural...

  14. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema.

    Science.gov (United States)

    Oki, Hiroshi; Yazawa, Takuya; Baba, Yasuko; Kanegae, Yumi; Sato, Hanako; Sakamoto, Seiko; Goto, Takahisa; Saito, Izumu; Kurahashi, Kiyoyasu

    2017-07-01

    Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 10 9 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  15. Combining neurotrophin-transduced schwann cells and rolipram to promote functional recovery from subacute spinal cord injury.

    Science.gov (United States)

    Flora, Govinder; Joseph, Gravil; Patel, Samik; Singh, Amanpreet; Bleicher, Drew; Barakat, David J; Louro, Jack; Fenton, Stephanie; Garg, Maneesh; Bunge, Mary Bartlett; Pearse, Damien D

    2013-01-01

    Following spinal cord injury (SCI), both an inhibitory environment and lack of intrinsic growth capacity impede axonal regeneration. In a previous study, prevention of cyclic adenosine monophosphate (AMP) hydrolysis by the phosphodiesterase-4 inhibitor rolipram, in combination with Schwann cell (SC) grafts, promoted significant supraspinal and proprioceptive fiber growth and/or sparing and improved locomotion. In another study, transplanted SCs transduced to generate a bifunctional neurotrophin (D15A) led to significant increases in graft SCs and axons, including supraspinal and myelinated axons. Here we studied the growth and myelination of local and supraspinal axons and functional outcome following the combination of rolipram administration and neurotrophin-transduced SC implantation after SCI. Rolipram was administered subcutaneously for 4 weeks immediately after contusion at vertebral T8 (25.0-mm weight drop, MASCIS impactor). GFP or GFP-D15A-transduced SCs were injected into the injury epicenter 1 week after SCI. GFP-D15A SC grafts and GFP SC grafts with rolipram contained significantly more serotonergic fibers compared to GFP SCs. SC myelinated axons were increased significantly in GFP SC with rolipram-treated animals compared to animals receiving SCI alone. Rolipram administered with either GFP or GFP-D15A SCs significantly increased numbers of brain stem-derived axons below the lesion/implant area and improved hindlimb function. Compared to the single treatments, the combination led to the largest SC grafts, the highest numbers of serotonergic fibers in the grafts, and increased numbers of axons from the reticular formation below the lesion/implant area and provided the greatest improvement in hindlimb function. These findings demonstrate the therapeutic potential for a combination therapy involving the maintenance of cyclic AMP levels and neurotrophin-transduced SCs to repair the subacutely injured spinal cord.

  16. Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis

    Science.gov (United States)

    Zhang, Jinfang; Wan, Lixin; Dai, Xiangpeng; Sun, Yi; Wei, Wenyi

    2014-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that primarily governs cell cycle progression. APC/C is composed of at least 14 core subunits and recruits its substrates for ubiquitination via one of the two adaptor proteins, Cdc20 or Cdh1, in M or M/early G1 phase, respectively. Furthermore, recent studies have shed light on crucial functions for APC/C in maintaining genomic integrity, neuronal differentiation, cellular metabolism and tumorigenesis. To gain better insight into the in vivo physiological functions of APC/C in regulating various cellular processes, particularly development and tumorigenesis, a number of mouse models of APC/C core subunits, coactivators or inhibitors have been established and characterized. However, due to their essential role in cell cycle regulation, most of the germline knockout mice targeting the APC/C pathway are embryonic lethal, indicating the need for generating conditional knockout mouse models to assess the role in tumorigenesis for each APC/C signaling component in specific tissues. In this review, we will first provide a brief introduction of the ubiquitin-proteasome system (UPS) and the biochemical activities and cellular functions of the APC/C E3 ligase. We will then focus primarily on characterizing genetic mouse models used to understand the physiological roles of each APC/C signaling component in embryogenesis, cell proliferation, development and carcinogenesis. Finally, we discuss future research directions to further elucidate the physiological contributions of APC/C components during tumorigenesis and validate their potentials as a novel class of anti-cancer targets. PMID:24569229

  17. Analysis of Msx1 and Msx2 transactivation function in the context of the heat shock 70 (Hspa1b) gene promoter.

    Science.gov (United States)

    Zhuang, Fengfeng; Nguyen, Manuel P; Shuler, Charles; Liu, Yi-Hsin

    2009-04-03

    Previous studies have shown that Msx proteins control gene transcription predominantly through repression mechanisms. However, gene expression studies using either the gain-of-function or the loss-of-function mutants revealed many gene targets whose expression require functional Msx proteins. To date, investigations into the mechanisms of Msx-dependent transactivation have been hindered by the lack of a responsive promoter. Here, we demonstrated the usefulness of the mouse Hspa1b promoter in probing Msx-dependent mechanisms of gene activation. We showed that Msx protein activates Hspa1b promoter via its C-terminal domain. The activation absolutely depends on the HSEs and physical interactions between Msx proteins and heat shock factors may play a contributing role.

  18. Anyalysis of Msx1 and Msx2 Transactivation Function in the Context of the Heat Shock 70 (Hspa1b) Gene Promoter

    Science.gov (United States)

    Zhuang, Fengfeng; Nguyen, Manuel P.; Shuler, Charles; Liu, Yi-Hsin

    2009-01-01

    Previous studies have shown that Msx proteins control gene transcription predominantly through repression mechanisms. However, gene expression studies using either the gain-of-function or the loss-of-function mutants revealed many gene targets whose expression require functional Msx proteins. To date, investigations into the mechanisms of Msx-dependent trans-activation have been hindered by the lack of a responsive promoter. Here, we demonstrated the usefulness of the mouse Hspa1b promoter in probing Msx-dependent mechanisms of gene activation. We showed that Msx protein activates Hspa1b promoter via its C-terminal domain. The activation absolutely depends on the HSEs and physical interactions between Msx proteins and Heat shock factors may play a contributing role. PMID:19338779

  19. Lead effects on development and function of bone marrow-derived dendritic cells promote Th2 immune responses

    International Nuclear Information System (INIS)

    Gao Donghong; Mondal, Tapan K.; Lawrence, David A.

    2007-01-01

    Although lead (Pb) has significant effects on the development and function of macrophages, B cells, and T cells and has been suggested to promote allergic asthma in mice and humans, Pb modulation of bone marrow (BM)-derived dendritic cells (DCs) and the resultant DC effects on Th1 and Th2 development have not been examined. Accordingly, we cultured BM cells with murine granulocyte macrophage-colony stimulating factor (mGM-CSF) ± PbCl 2 . At day 10, culture supernatant (SN) and non-adherent cells were harvested for analysis. Additionally, day 10 non-adherent BM-DCs were harvested and recultured with mGM-CSF + LPS ± Pb for 2 days. The day 10 Pb exposure significantly inhibited BM-DC generation, based on CD11c expression. Although fewer DCs were generated with Pb, the existing Pb-exposed DCs had significantly greater MHC-II expression than did the non-Pb-exposed DCs. However, these differences diminished upon LPS stimulation. After LPS stimulation, CD80, CD86, CD40, CD54, and MHC-II were all up-regulated on both Pb-DCs and DCs, but Pb-DCs expressed significantly less CD80 than did DCs. The CD86:CD80 ratio suggests a Pb-DC potential for Th2 cell development. After LPS stimulation, IL-6, IL-10, IL-12 (p70), and TNF-α levels significantly increased with both Pb-DCs and DCs, but Pb-DCs produced significantly less cytokines than did DCs, except for IL-10, which further supports Pb-DC preferential skewing toward type-2 immunity. In vitro studies confirm that Pb-DCs have the ability to polarize antigen-specific T cells to Th2 cells. Pb-DCs also enhanced allogeneic and autologous T cell proliferation in vitro, and in vivo studies suggested that Pb-DCs inhibited Th1 effects on humoral and cell-mediated immunity. The Pb effect was mainly on DCs, rather than on T cells, and Pb's modification of DC function appears to be the main cause of Pb's promotion of type-2-related immunity, which may relate to Pb's enhanced activation of the Erk/MAP kinase pathway

  20. Mouse Mammary Tumor Virus Promoter-Containing Retroviral Promoter Conversion Vectors for Gene-Directed Enzyme Prodrug Therapy are Functional in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Reinhard Klein

    2008-01-01

    Full Text Available Gene directed-enzyme prodrug therapy (GDEPT is an approach for sensitization of tumor cells to an enzymatically activated, otherwise nontoxic, prodrug. Cytochrome P450 2B1 (CYP2B1 metabolizes the prodrugs cyclophosphamide (CPA and ifosfamide (IFA to produce the cytotoxic substances phosphoramide mustard and isophosphoramide mustard as well as the byproduct acrolein. We have constructed a retroviral promoter conversion (ProCon vector for breast cancer GDEPT. The vector allows expression of CYP2B1 from the mouse mammary tumor virus (MMTV promoter known to be active in the mammary glands of transgenic animals. It is anticipated to be used for the generation of encapsulated viral vector producing cells which, when placed inside or close to a tumor, will act as suppliers of the therapeutic CYP2B1 protein as well as of the therapeutic vector itself. The generated vector was effectively packaged by virus producing cells and allowed the production of high levels of enzymatically active CYP2B1 in infected cells which sensitized them to killing upon treatment with both IFA and CPA. Determination of the respective IC50 values demonstrated that the effective IFA dose was reduced by sixteen folds. Infection efficiencies in vivo were determined using a reporter gene-bearing vector in a mammary cancer cell-derived xenograft tumor mouse model.

  1. Methylprednisolone promotes recovery of neurological function after spinal cord injury: association with Wnt/β-catenin signaling pathway activation

    Science.gov (United States)

    Lu, Gong-biao; Niu, Fu-wen; Zhang, Ying-chun; Du, Lin; Liang, Zhi-yuan; Gao, Yuan; Yan, Ting-zhen; Nie, Zhi-kui; Gao, Kai

    2016-01-01

    Some studies have indicated that the Wnt/β-catenin signaling pathway is activated following spinal cord injury, and expression levels of specific proteins, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β, are significantly altered. We hypothesized that methylprednisolone treatment contributes to functional recovery after spinal cord injury by inhibiting apoptosis and activating the Wnt/β-catenin signaling pathway. In the current study, 30 mg/kg methylprednisolone was injected into rats with spinal cord injury immediately post-injury and at 1 and 2 days post-injury. Basso, Beattie, and Bresnahan scores showed that methylprednisolone treatment significantly promoted locomotor functional recovery between 2 and 6 weeks post-injury. The number of surviving motor neurons increased, whereas the lesion size significantly decreased following methylprednisolone treatment at 7 days post-injury. Additionally, caspase-3, caspase-9, and Bax protein expression levels and the number of apoptotic cells were reduced at 3 and 7 days post-injury, while Bcl-2 levels at 7 days post-injury were higher in methylprednisolone-treated rats compared with saline-treated rats. At 3 and 7 days post-injury, methylprednisolone up-regulated expression and activation of the Wnt/β-catenin signaling pathway, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β phosphorylation. These results indicate that methylprednisolone-induced neuroprotection may correlate with activation of the Wnt/β-catenin signaling pathway. PMID:28123427

  2. DPP4 inhibitors promote biological functions of human endothelial progenitor cells by targeting the SDF-1/CXCR4 signaling pathway

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2016-01-01

    Full Text Available Dipeptidyl peptidase 4 (DPP4 inhibitors(oral hypoglycemic agentshave beneficial effects during the early stages of diabetes. In this study, we evaluated the role of DPP4inhibitorsonthe biological functions of cultured human endothelial progenitor cells (EPCs. After treating EPCs with the DPP4 inhibitors sitagliptin and vildagliptin, we examined the mRNA expression of DPP4, vascular endothelial growth factor (VEGF,VEGF receptor 2 (VEGFR-2,endothelial nitric oxide synthase (eNOS, caspase-3,stromal cell-derived factor-1 (SDF-1, chemokine (C-X-C motif receptor 4 (CXCR4 were measured by RT-PCR. The protein expression of SDF-1 and CXCR4 was determined by Western blot; cell proliferation was tested by the MTT method, and DPP4 activity was determined by a DPP4 assay. Our results revealed that DPP4 expression and activity were inhibited following the treatment with various doses of DPP4 inhibitors. Cell proliferation and the expression of VEGF, VEGFR-2andeNOS were up regulated, while cell apoptosis was inhibited by DPP4 inhibitors in a dose-dependent manner. DPP4 inhibitors activated the SDF-1/CXCR4 signaling pathway, shown by the elevated expression of SDF-1/CXCR4. This further proved that after the SDF-1/CXCR4 signaling pathway was blocked by its inhibitor ADM3100, the effects of DPP4 inhibitors on the proliferation and apoptosis, and the expression of VEGF, VEGFR-2and eNOS of EPCs were significantly reduced. These findings suggest that DPP4 inhibitors promote the biological functions of human EPCs by up regulating the SDF-1/CXCR4 signaling pathway.

  3. Promoting physical activity for elders with compromised function: the lifestyle Interventions and Independence for elders (LIFE) study physical activity intervention

    Science.gov (United States)

    Rejeski, W Jack; Axtell, Robert; Fielding, Roger; Katula, Jeffrey; King, Abby C; Manini, Todd M; Marsh, Anthony P; Pahor, Marco; Rego, Alvito; Tudor-Locke, Catrine; Newman, Mark; Walkup, Michael P; Miller, Michael E

    2013-01-01

    The Lifestyle Interventions and Independence for Elders (LIFE) Study is a Phase III randomized controlled clinical trial (Clinicaltrials.gov identifier: NCT01072500) that will provide definitive evidence regarding the effect of physical activity (PA) on major mobility disability in older adults (70–89 years old) who have compromised physical function. This paper describes the methods employed in the delivery of the LIFE Study PA intervention, providing insight into how we promoted adherence and monitored the fidelity of treatment. Data are presented on participants’ motives and self-perceptions at the onset of the trial along with accelerometry data on patterns of PA during exercise training. Prior to the onset of training, 31.4% of participants noted slight conflict with being able to meet the demands of the program and 6.4% indicated that the degree of conflict would be moderate. Accelerometry data collected during PA training revealed that the average intensity – 1,555 counts/minute for men and 1,237 counts/minute for women – was well below the cutoff point used to classify exercise as being of moderate intensity or higher for adults. Also, a sizable subgroup required one or more rest stops. These data illustrate that it is not feasible to have a single exercise prescription for older adults with compromised function. Moreover, the concept of what constitutes “moderate” exercise or an appropriate volume of work is dictated by the physical capacities of each individual and the level of comfort/stability in actually executing a specific prescription. PMID:24049442

  4. C. elegans SIRT6/7 homolog SIR-2.4 promotes DAF-16 relocalization and function during stress.

    Science.gov (United States)

    Chiang, Wei-Chung; Tishkoff, Daniel X; Yang, Bo; Wilson-Grady, Joshua; Yu, Xiaokun; Mazer, Travis; Eckersdorff, Mark; Gygi, Steven P; Lombard, David B; Hsu, Ao-Lin

    2012-09-01

    FoxO transcription factors and sirtuin family deacetylases regulate diverse biological processes, including stress responses and longevity. Here we show that the Caenorhabditis elegans sirtuin SIR-2.4--homolog of mammalian SIRT6 and SIRT7 proteins--promotes DAF-16-dependent transcription and stress-induced DAF-16 nuclear localization. SIR-2.4 is required for resistance to multiple stressors: heat shock, oxidative insult, and proteotoxicity. By contrast, SIR-2.4 is largely dispensable for DAF-16 nuclear localization and function in response to reduced insulin/IGF-1-like signaling. Although acetylation is known to regulate localization and activity of mammalian FoxO proteins, this modification has not been previously described on DAF-16. We find that DAF-16 is hyperacetylated in sir-2.4 mutants. Conversely, DAF-16 is acetylated by the acetyltransferase CBP-1, and DAF-16 is hypoacetylated and constitutively nuclear in response to cbp-1 inhibition. Surprisingly, a SIR-2.4 catalytic mutant efficiently rescues the DAF-16 localization defect in sir-2.4 null animals. Acetylation of DAF-16 by CBP-1 in vitro is inhibited by either wild-type or mutant SIR-2.4, suggesting that SIR-2.4 regulates DAF-16 acetylation indirectly, by preventing CBP-1-mediated acetylation under stress conditions. Taken together, our results identify SIR-2.4 as a critical regulator of DAF-16 specifically in the context of stress responses. Furthermore, they reveal a novel role for acetylation, modulated by the antagonistic activities of CBP-1 and SIR-2.4, in modulating DAF-16 localization and function.

  5. Animal-assisted dyadic therapy: A therapy model promoting development of the reflective function in the parent-child bond.

    Science.gov (United States)

    Shani, Liat

    2017-01-01

    Animal-assisted psychotherapy (AAP) inherently incorporates standpoints, interventions, and ways of action promoting the development of the reflective function and mentalization, and thus has special value for parent-child psychotherapy. Two central tools in AAP contribute to this process. The first is the ethical stance of the therapist, who sees the animals as full partners in the therapy situation, respecting them as subjects with needs, desires, and thoughts of their own. The second tool combines nonverbal communication with animals together with the relating, in the here and now, to the understanding and decoding of body language of everyone in the setting. Nonverbal communication in AAP enables access to implicit communication patterns occurring between parent and child. This article provides a survey of theoretical development and research constituting a basis for the development of therapeutic approaches for the improvement of parent-children dynamics, followed by a description of a dyadic therapy model of a mentalization-based treatment originating from a psychoanalytic-relational orientation. Clinical examples are provided to illustrate AAP processes in parent-child psychotherapy (consent was received for examples that were not aggregated).

  6. CD4+ T Cell-derived IL-10 Promotes Brucella abortus Persistence via Modulation of Macrophage Function

    Science.gov (United States)

    Xavier, Mariana N.; Winter, Maria G.; Spees, Alanna M.; Nguyen, Kim; Atluri, Vidya L.; Silva, Teane M. A.; Bäumler, Andreas J.; Müller, Werner; Santos, Renato L.; Tsolis, Renée M.

    2013-01-01

    Evasion of host immune responses is a prerequisite for chronic bacterial diseases; however, the underlying mechanisms are not fully understood. Here, we show that the persistent intracellular pathogen Brucella abortus prevents immune activation of macrophages by inducing CD4+CD25+ T cells to produce the anti-inflammatory cytokine interleukin-10 (IL-10) early during infection. IL-10 receptor (IL-10R) blockage in macrophages resulted in significantly higher NF-kB activation as well as decreased bacterial intracellular survival associated with an inability of B. abortus to escape the late endosome compartment in vitro. Moreover, either a lack of IL-10 production by T cells or a lack of macrophage responsiveness to this cytokine resulted in an increased ability of mice to control B. abortus infection, while inducing elevated production of pro-inflammatory cytokines, which led to severe pathology in liver and spleen of infected mice. Collectively, our results suggest that early IL-10 production by CD25+CD4+ T cells modulates macrophage function and contributes to an initial balance between pro-inflammatory and anti-inflammatory cytokines that is beneficial to the pathogen, thereby promoting enhanced bacterial survival and persistent infection. PMID:23818855

  7. A novel ATM-dependent checkpoint defect distinct from loss of function mutation promotes genomic instability in melanoma.

    Science.gov (United States)

    Spoerri, Loredana; Brooks, Kelly; Chia, KeeMing; Grossman, Gavriel; Ellis, Jonathan J; Dahmer-Heath, Mareike; Škalamera, Dubravka; Pavey, Sandra; Burmeister, Bryan; Gabrielli, Brian

    2016-05-01

    Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM-dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM-dependent checkpoint arrest, and over-expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM-dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over-express PLK1, and a significant proportion of melanomas have high levels of PLK1 over-expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM-dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Structure and Function of a Novel ATPase that Interacts with Holliday Junction Resolvase Hjc and Promotes Branch Migration.

    Science.gov (United States)

    Zhai, Binyuan; DuPrez, Kevin; Doukov, Tzanko I; Li, Huan; Huang, Mengting; Shang, Guijun; Ni, Jinfeng; Gu, Lichuan; Shen, Yulong; Fan, Li

    2017-04-07

    Holliday junction (HJ) is a hallmark intermediate in DNA recombination and must be processed by dissolution (for double HJ) or resolution to ensure genome stability. Although HJ resolvases have been identified in all domains of life, there is a long-standing effort to search in prokaryotes and eukarya for proteins promoting HJ migration. Here, we report the structural and functional characterization of a novel ATPase, Sulfolobus islandicusPilT N-terminal-domain-containing ATPase (SisPINA), encoded by the gene adjacent to the resolvase Hjc coding gene. PINA is conserved in archaea and vital for S. islandicus viability. Purified SisPINA forms hexameric rings in the crystalline state and in solution, similar to the HJ migration helicase RuvB in Gram-negative bacteria. Structural analysis suggests that ATP binding and hydrolysis cause conformational changes in SisPINA to drive branch migration. Further studies reveal that SisPINA interacts with SisHjc and coordinates HJ migration and cleavage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Local injection of Lenti-Olig2 at lesion site promotes functional recovery of spinal cord injury in rats.

    Science.gov (United States)

    Tan, Bo-Tao; Jiang, Long; Liu, Li; Yin, Ying; Luo, Ze-Ru-Xin; Long, Zai-Yun; Li, Sen; Yu, Le-Hua; Wu, Ya-Min; Liu, Yuan

    2017-06-01

    Olig2 is one of the most critical factors during CNS development, which belongs to b-HLH transcription factor family. Previous reports have shown that Olig2 regulates the remyelination processes in CNS demyelination diseases models. However, the role of Olig2 in contusion spinal cord injury (SCI) and the possible therapeutic effects remain obscure. This study aims to investigate the effects of overexpression Olig2 by lentivirus on adult spinal cord injury rats. Lenti-Olig2 expression and control Lenti-eGFP vectors were prepared, and virus in a total of 5 μL (10 8 TU/mL) was locally injected into the injured spinal cord 1.5 mm rostral and caudal near the epicenter. Immunostaining, Western blot, electron microscopy, and CatWalk analyzes were employed to investigate the effects of Olig2 on spinal cord tissue repair and functional recovery. Injection of Lenti-Olig2 significantly increased the number of oligodendrocytes lineage cells and enhanced myelination after SCI. More importantly, the introduction of Olig2 greatly improved hindlimb locomotor performances. Other oligodendrocyte-related transcription factors, which were downregulated or upregulated after injury, were reversed by Olig2 induction. Our findings provided the evidence that overexpression Olig2 promotes myelination and locomotor recovery of contusion SCI, which gives us more understanding of Olig2 on spinal cord injury treatment. © 2017 John Wiley & Sons Ltd.

  10. Functional importance of the anaphase-promoting complex-Cdh1-mediated degradation of TMAP/CKAP2 in regulation of spindle function and cytokinesis.

    Science.gov (United States)

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-05-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G(1)/S and peaks at G(2)/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis.

  11. Functional Importance of the Anaphase-Promoting Complex-Cdh1-Mediated Degradation of TMAP/CKAP2 in Regulation of Spindle Function and Cytokinesis▿ †

    Science.gov (United States)

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-01-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G1/S and peaks at G2/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis. PMID:17339342

  12. Emerging importance of helicases in plant stress tolerance: characterization of Oryza sativa repair helicase XPB2 promoter and its functional validation in tobacco under multiple stresses

    Directory of Open Access Journals (Sweden)

    Shailendra eRaikwar

    2015-12-01

    Full Text Available Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. DNA hHelicases, the unique molecular motors, are emerged as potentialprospective molecules to engineer stress tolerance in plants and are involved in a variety of DNA nucleic acid metabolismc processes including DNA repair. The DNA repair helicase, OsXPB2 is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress The analysis of promoter sequence from plant genome is important in understanding the gene regulation. Hereconditions. Here, we report the in silico analysis of novel stress inducible promoter of rice Oryza sativa OsXPB2 (OsXPB2. gene is reported. The in vivo validation of functionality/activity of novel stress inducible promoter of rice OsXPB2 gene promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. Our resultsThe present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration or cold and hormone (Auxin, ABA or MeJA induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA or ABA responsive, respectively. Functional analysis was done by Agrobacterium-transient assays using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present

  13. Nestin predicts a favorable prognosis in early ampullary adenocarcinoma and functions as a promoter of metastasis in advanced cancer.

    Science.gov (United States)

    Shan, Yan-Shen; Chen, Yi-Ling; Lai, Ming-Derg; Hsu, Hui-Ping

    2015-01-01

    Nestin exhibits stemness characteristics and is overexpressed in several types of cancers. Downstream signaling of nestin [cyclin-dependent kinase 5 (CDK5) and Ras-related C3 botulinum toxin substrate 1 (Rac1)] functions in cancer to modulate cellular behaviors. We studied the function of nestin in ampullary adenocarcinoma. Immunohistochemistry (IHC), reverse transcription-polymerase chain reaction, and cDNA microarray of nestin in ampullary adenocarcinoma was compared with normal duodenum. CDK5 and Rac1 were assessed by western blotting. We hypothesized that nestin/CDK5/Rac1 signaling behaves different in early and advanced cancer. We found that the presence of nestin mRNA was increased in the early stages of cancer (T2N0 or T3N0) and advanced cancer with lymph node metastasis (T4N1). A total of 102 patients were enrolled in the IHC staining. Weak nestin expression was correlated with favorable characteristics of cancer, decreased incidence of local recurrence and lower risk of recurrence within 12 months after surgery. Patients with weak nestin expression had the most favorable recurrence‑free survival rates. Patients with mild to strong nestin expression exhibited an advanced behavior of cancer and increased possibility of cancer recurrence. The reciprocal expression of nestin and RAC1 were explored using a cDNA microarray analysis in the early stages of ampullary adenocarcinoma. Increased level of CDK5 with simultaneously decreased expression of Rac1 was detected by western blotting of ampullary adenocarcinoma in patients without cancer recurrence. The activation of multiple oncogenic pathways, combined with the stemness characteristics of nestin, formed a complex network in advanced ampullary adenocarcinoma. Our study demonstrated that nestin performs a dual role in ampullary adenocarcinoma. Appropriate amount of nestin enhances CDK5 function to suppress Rac1 and excessive nestin/CDK5 participates in multiple oncogenic pathways to promote cancer invasiveness

  14. Catalysis mechanism of Pd-promoted γ-alumina in the thermal decomposition of methane to hydrogen: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Salam, M. Abdus; Abdullah, Bawadi, E-mail: bawadi_abdullah@utp.edu.my

    2017-02-15

    Thermo-catalytic methane decomposition to elemental hydrogen mechanism in transitional metals (Pd, Ni & Mo) promoted Al{sub 2}O{sub 3} (001) catalyst have been studied using the density functional theory (DFT). Decomposition reactions are spontaneous and favourable above 775 K for all promoter. Pd-promoted Al{sub 2}O{sub 3} (001) catalyst demonstrates a breakthrough decomposition activity in hydrogen production as compared to Ni− and Mo-promoted Al{sub 2}O{sub 3} (001) catalysts. The activation energy (E{sub a}) range of the catalysis for Pd promoted Al{sub 2}O{sub 3} (001) catalysts is 0.003–0.34 eV. Whereas, Ni and Mo promoted Al{sub 2}O{sub 3} (001) catalysts display activation energy E{sub a} in the range of 0.63–1.15 eV and 0.04–5.98 eV, respectively. Pd-promoted catalyst also shows a higher adsorption energy (−0.68 eV) and reactivity than that of Ni and Mo promoted Al{sub 2}O{sub 3} (001) catalysts. The rates of successive decomposition of methane are found to be 16.15 × 10{sup 12}, 15.95 × 10{sup 12} and 16.09 × 10{sup 12} s{sup −1} for the promoter of Pd, Ni and Mo, respectively. Pd promoted Al{sub 2}O{sub 3} (001) catalyst reduces the methane decomposition temperature (775 K) and deactivation rate significantly. The catalytic conditions and catalyst is promising in producing hydrogen to support hydrogen economy. - Highlights: • Transition metals (Pd, Ni & Mo) promoted γ-alumina catalysts are designed successfully. • Pd-promoted catalyst showed breakthrough activity in methane decomposition to hydrogen. • DFT study explored the catalysis mechanism of methane decomposition at atomic level. • Pd-promoted catalyst reduced temperature and activation barrier of methane decomposition reaction significantly.

  15. Molecular and functional characterization of the promoter of ETS2, the human c-ets-2 gene

    International Nuclear Information System (INIS)

    Mavrothalassitis, G.J.; Watson, D.K.; Papas, T.S.

    1990-01-01

    The 5' end of the human c-ets-2 gene, ETS2, was cloned and characterized. The major transcription initiation start sites were identified, and the pertinent sequences surrounding the ETS2 promoter were determined. The promoter region of ETS2 does not possess typical TATA and CAAT elements. However, this promoter contains several repeat regions, as well as two consensus AP2 binding sites and three putative Sp1 sites. There is also a palindromic region similar to the serum response element of the c-fos gene, located 1,400 base pairs (bp) upstream from the first major transcription initiation site. A G+C-rich sequence (GC element) with dyad symmetry can be seen in the ETS2 promoter, immediately following an unusually long polypurine-polypyrimidine tract. A series of deletion fragments from the putative promoter region were ligated in front of the bacterial chloramphenicol acetyltransferase gene and tested for activity following transfection into HeLa cells. The 5' boundary of the region needed for maximum promoter activity was found to be 159 bp upstream of the major initiation site. The promoter of ETS2 (within the polypyrimidine tract) serves to illustrate an alternative structure that may be present in genes with TATA-less promoters

  16. The effect of Co-promotion on MoS2 catalysts for hydrodesulfurization of thiophene: A density functional study

    DEFF Research Database (Denmark)

    Moses, Poul Georg; Hinnemann, Berit; Topsøe, Henrik

    2009-01-01

    to proceed. We find that Co-promotion decreases the barrier of hydrogenation reactions and active site regeneration but increases the barrier of C–S-scission reactions. The net result of Co promotion is found to be an increase in the hydrogenation activity and also of the relative importance of the DDS...

  17. E1A FUNCTIONS AS A COACTIVATOR OF RETINOIC ACID-DEPENDENT RETINOIC ACID RECEPTOR-BETA-2 PROMOTER ACTIVATION

    NARCIS (Netherlands)

    KRUYT, FAE; FOLKERS, GE; WALHOUT, AJM; VANDERLEEDE, BM; VANDERSAAG, PT; Kruyt, Frank

    The retinoic acid (RA) receptor (RAR) beta2 promoter is strongly activated by RA in embryonal carcinoma (EC) cells. We examined this activation in the P19 EC-derived END-2 cell line and in E1A-expressing counterparts and found strong RA-dependent RARbeta2 promoter activation in the E1A-expressing

  18. Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Huang, Shichao; Mao, Jianxin; Ding, Kan; Zhou, Yue; Zeng, Xianglu; Yang, Wenjuan; Wang, Peipei; Zhao, Cun; Yao, Jian; Xia, Peng; Pei, Gang

    2017-01-10

    Promoting neurogenesis is a promising strategy for the treatment of cognition impairment associated with Alzheimer's disease (AD). Ganoderma lucidum is a revered medicinal mushroom for health-promoting benefits in the Orient. Here, we found that oral administration of the polysaccharides and water extract from G. lucidum promoted neural progenitor cell (NPC) proliferation to enhance neurogenesis and alleviated cognitive deficits in transgenic AD mice. G. lucidum polysaccharides (GLP) also promoted self-renewal of NPC in cell culture. Further mechanistic study revealed that GLP potentiated activation of fibroblast growth factor receptor 1 (FGFR1) and downstream extracellular signal-regulated kinase (ERK) and AKT cascades. Consistently, inhibition of FGFR1 effectively blocked the GLP-promoted NPC proliferation and activation of the downstream cascades. Our findings suggest that GLP could serve as a regenerative therapeutic agent for the treatment of cognitive decline associated with neurodegenerative diseases. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat

    NARCIS (Netherlands)

    Cao, Y.; Shumsky, J. S.; Sabol, M. A.; Kushner, R. A.; Strittmatter, S.; Hamers, F. P. T.; Lee, D. H. S.; Rabacchi, S. A.; Murray, M.

    2008-01-01

    Objective. The myelin protein Nogo inhibits axon regeneration by binding to its receptor (NgR) on axons. Intrathecal delivery of an NgR antagonist (NEP1-40) promotes growth of injured corticospinal axons and recovery of motor function following a dorsal hemisection. The authors used a similar design

  20. Studies of the structure and function of Mms6, a bacterial protein that promotes the formation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijun [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Here we report structural and functional studies of Mms6, a biomineralization protein that can promote the formation in vitro of magnetic nanoparticles with sizes and morphologies similar to the magnetites synthesized by magnetotactic bacteria. We found the binding pattern of Mms6 to ferric ion to be two-phase and multivalent. We quantatively determined that Mms6 binds one Fe3+ with a very high affinity (Kd = 1016 M). The second phase of iron binding is multivalent and cooperative with respect to iron with a Kd in the μM range and a stoichiometry of about 20 ferric ion per protein molecule. We found that Mms6 exists in large particles of two sizes, one consisting of 20-40 monomeric units and the other of 200 units. From proteolytic digestion, ultracentrifugation and liposome fusion studies, we found that Mms6 forms a large micellar quaternary structure with the N-terminal domain self-assembling into a uniformly sized micelle and the C-terminal domain on the surface. The two-phase iron-binding pattern may be relevant to iron crystal formation. We propose that the first high affinity phase may stabilize a new conformation of the C-terminal domain that allows interaction with other C-terminal domains leading to a structural change in the multimeric protein complex that enables the second low affinity iron binding phase to organize iron and initiate crystal formation. We also observed a dimeric apparent molecular mass of the Mms6 C-terminal peptide (C21Mms6). We speculate that the C-terminal domain may form higher order quaternary arrangements on the surface of the micelle or when anchored to a membrane by the N-terminal domain. The change in fluorescence quenching in the N-terminal domain with iron binding suggests a structural integrity between the C- and N-terminal domains. The slow change in trp fluorescence as a function of time after adding iron suggests a very slow conformational change in the protein that involves

  1. The promoter for intestinal cell kinase is head-to-head with F-Box 9 and contains functional sites for TCF7L2 and FOXA factors

    Directory of Open Access Journals (Sweden)

    Cohn Steven M

    2010-05-01

    Full Text Available Abstract Background Intestinal cell kinase (ICK; GeneID 22858 is a conserved MAPK and CDK-like kinase that is widely expressed in human tissues. Data from the Cancer Genome Anatomy Project indicated ICK mRNA is increased in cancer, and that its expression correlated with expression of mRNA for an uncharacterized F-box protein, FBX9 (GeneID: 26268. ICK and FBX9 genes are arranged head-to-head on opposite strands, with start sites for transcription separated by ~3.3 kb. We hypothesized ICK and FBX9 are potentially important genes in cancer controlled by a bidirectional promoter. Results We assessed promoter activity of the intergenic region in both orientations in cancer cell lines derived from breast (AU565, SKBR3, colon (HCT-15, KM12, and stomach (AGS cancers, as well as in embryonic human kidney (HEK293T cells. The intergenic segment was active in both orientations in all of these lines, and ICK promoter activity was greater than FBX9 promoter activity. Results from deletions and truncations defined a minimal promoter for ICK, and revealed that repressors and enhancers differentially regulate ICK versus FBX9 promoter activity. The ICK promoter contains consensus motifs for several FOX-family transcription factors that align when mouse and human are compared using EMBOSS. FOXA1 and FOXA2 increase luciferase activity of a minimal promoter 10-20 fold in HEK293T cells. Consensus sites for TCF7L2 (TCF4 (Gene Id: 6934 are also present in both mouse and human. The expression of β-catenin increased activity of the minimal promoter ~10 fold. ICK reference mRNAs (NM_014920.3, NM_016513 are expressed in low copy number and increased in some breast cancers, using a ten base tag 5'-TCAACCTTAT-3' specific for both ICK transcripts. Conclusion ICK and FBX9 are divergently transcribed from a bidirectional promoter that is GC-rich and contains a CpG island. A minimal promoter for ICK contains functional sites for β-cateinin/TCF7L2 and FOXA. These data are

  2. β-Secretase BACE1 Promotes Surface Expression and Function of Kv3.4 at Hippocampal Mossy Fiber Synapses.

    Science.gov (United States)

    Hartmann, Stephanie; Zheng, Fang; Kyncl, Michele C; Karch, Sandra; Voelkl, Kerstin; Zott, Benedikt; D'Avanzo, Carla; Lomoio, Selene; Tesco, Giuseppina; Kim, Doo Y; Alzheimer, Christian; Huth, Tobias

    2018-04-04

    being unveiled. Here, we extend previous work implicating BACE1 in the expression and function of voltage-gated Na + and K + channels. Specifically, we characterize voltage-gated K + channel 3.4 (Kv3.4), a presynaptic K + channel required for action potential repolarization, as a novel interaction partner of BACE1 at the mossy fiber (MF)-CA3 synapse of the hippocampus. BACE1 promotes surface expression of Kv3.4 at MF terminals, most likely by physically associating with the channel protein in a nonenzymatic fashion. We advance the BACE1-Kv3.4 interaction as a mechanism to strengthen the temporal control over transmitter release from MF terminals. Copyright © 2018 the authors 0270-6474/18/383481-15$15.00/0.

  3. Functional polymorphisms in the TERT promoter are associated with risk of serous epithelial ovarian and breast cancers.

    Directory of Open Access Journals (Sweden)

    Jonathan Beesley

    Full Text Available Genetic variation at the TERT-CLPTM1L locus at 5p15.33 is associated with susceptibility to several cancers, including epithelial ovarian cancer (EOC. We have carried out fine-mapping of this region in EOC which implicates an association with a single nucleotide polymorphism (SNP within the TERT promoter. We demonstrate that the minor alleles at rs2736109, and at an additional TERT promoter SNP, rs2736108, are associated with decreased breast cancer risk, and that the combination of both SNPs substantially reduces TERT promoter activity.

  4. Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element.

    Science.gov (United States)

    Weterings, K; Schrauwen, J; Wullems, G; Twell, D

    1995-07-01

    Regulatory elements within the promoter of the pollen-specific NTP303 gene from tobacco were analysed by transient and stable expression analyses. Analysis of precisely targeted mutations showed that the NTP303 promoter is not regulated by any of the previously described pollen-specific cis-regulatory elements. However, two adjacent regions from -103 to -86 bp and from -86 to -59 bp were shown to contain sequences which positively regulated the NTP303 promoter. Both of these regions were capable of driving pollen-specific expression from a heterologous promoter, independent of orientation and in an additive manner. The boundaries of the minimal, functional NTP303 promoter were determined to lie within the region -86 to -51 bp. The sequence AAATGA localized from -94 to -89 bp was identified as a novel cis-acting element, of which the TGA triplet was shown to comprise an active part. This element was shown to be completely conserved in the similarly regulated promoter of the Bp 10 gene from Brassica napus encoding a homologue of the NTP303 gene.

  5. Autoregulation of transcription of the hupA gene in Escherichia coli: evidence for steric hindrance of the functional promoter domains induced by HU.

    Science.gov (United States)

    Kohno, K; Yasuzawa, K; Hirose, M; Kano, Y; Goshima, N; Tanaka, H; Imamoto, F

    1994-06-01

    The molecular mechanism of autoregulation of expression of the hupA gene in Escherichia coli was examined. The promoter of the gene contains a palindromic sequence with the potential to form a cruciform DNA structure in which the -35 sequence lies at the base of the stem and the -10 sequence forms a single-stranded loop. An artificial promoter lacking the palindrome, which was constructed by replacing a 10 nucleotide repeat for the predicted cruciform arm by a sequence in the opposite orientation, was not subject to HU-repression. DNA relaxation induced by deleting HU proteins and/or inhibiting DNA gyrase in cells results in increased expression from the hupA promoter. We propose that initiation of transcription of the hupA gene is negatively regulated by steric hindrance of the functional promoter domains for formation of the cruciform configuration, which is facilitated at least in part by negative supercoiling of the hupA promoter DNA region. The promoter region of the hupB gene also contains a palindromic sequence that can assume a cruciform configuration. Negative regulation of this gene by HU proteins may occur by a mechanism similar to that operating for the hupA gene.

  6. Promoting physical activity for elders with compromised function: the Lifestyle Interventions and Independence for Elders (LIFE Study physical activity intervention

    Directory of Open Access Journals (Sweden)

    Rejeski WJ

    2013-09-01

    Full Text Available W Jack Rejeski,1 Robert Axtell,2 Roger Fielding,3 Jeffrey Katula,1 Abby C King,4 Todd M Manini,5 Anthony P Marsh,1 Marco Pahor,5 Alvito Rego,6 Catrine Tudor-Locke,7 Mark Newman,8 Michael P Walkup,9 Michael E Miller9  On behalf of the LIFE Study Investigator Group 1Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, 2Exercise Science Department, Southern Connecticut State University, New Haven, CT, 3Nutrtion, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 4Department of Health Research and Policy and Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, 5Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, 6Department of Internal Medicine, Northwestern School of Medicine, Chicago, IL, 7Pennington Biomedical Research Center, Baton Rouge, LA, 8Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, 9Department of Biostatistical Sciences, Division of Public Health Sciences, School of Medicine, Wake Forest University, Winston-Salem, NC, USA Abstract: The Lifestyle Interventions and Independence for Elders (LIFE Study is a Phase III randomized controlled clinical trial (Clinicaltrials.gov identifier: NCT01072500 that will provide definitive evidence regarding the effect of physical activity (PA on major mobility disability in older adults (70–89 years old who have compromised physical function. This paper describes the methods employed in the delivery of the LIFE Study PA intervention, providing insight into how we promoted adherence and monitored the fidelity of treatment. Data are presented on participants' motives and self-perceptions at the onset of the trial along with accelerometry data on patterns of PA during exercise training. Prior to the onset of training, 31.4% of

  7. Nerve crush but not displacement-induced stretch of the intra-arachnoidal facial nerve promotes facial palsy after cerebellopontine angle surgery.

    Science.gov (United States)

    Bendella, Habib; Brackmann, Derald E; Goldbrunner, Roland; Angelov, Doychin N

    2016-10-01

    Little is known about the reasons for occurrence of facial nerve palsy after removal of cerebellopontine angle tumors. Since the intra-arachnoidal portion of the facial nerve is considered to be so vulnerable that even the slightest tension or pinch may result in ruptured axons, we tested whether a graded stretch or controlled crush would affect the postoperative motor performance of the facial (vibrissal) muscle in rats. Thirty Wistar rats, divided into five groups (one with intact controls and four with facial nerve lesions), were used. Under inhalation anesthesia, the occipital squama was opened, the cerebellum gently retracted to the left, and the intra-arachnoidal segment of the right facial nerve exposed. A mechanical displacement of the brainstem with 1 or 3 mm toward the midline or an electromagnet-controlled crush of the facial nerve with a tweezers at a closure velocity of 50 and 100 mm/s was applied. On the next day, whisking motor performance was determined by video-based motion analysis. Even the larger (with 3 mm) mechanical displacement of the brainstem had no harmful effect: The amplitude of the vibrissal whisks was in the normal range of 50°-60°. On the other hand, even the light nerve crush (50 mm/s) injured the facial nerve and resulted in paralyzed vibrissal muscles (amplitude of 10°-15°). We conclude that, contrary to the generally acknowledged assumptions, it is the nerve crush but not the displacement-induced stretching of the intra-arachnoidal facial trunk that promotes facial palsy after cerebellopontine angle surgery in rats.

  8. Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in Gentiana lutea.

    Science.gov (United States)

    Zhu, Changfu; Yang, Qingjie; Ni, Xiuzhen; Bai, Chao; Sheng, Yanmin; Shi, Lianxuan; Capell, Teresa; Sandmann, Gerhard; Christou, Paul

    2014-04-01

    Over the last two decades, many carotenogenic genes have been cloned and used to generate metabolically engineered plants producing higher levels of carotenoids. However, comparatively little is known about the regulation of endogenous carotenogenic genes in higher plants, and this restricts our ability to predict how engineered plants will perform in terms of carotenoid content and composition. During petal development in the Great Yellow Gentian (Gentiana lutea), carotenoid accumulation, the formation of chromoplasts and the upregulation of several carotenogenic genes are temporally coordinated. We investigated the regulatory mechanisms responsible for this coordinated expression by isolating five G. lutea carotenogenic gene (GlPDS, GlZDS, GlLYCB, GlBCH and GlLYCE) promoters by inverse polymerase chain reaction (PCR). Each promoter was sufficient for developmentally regulated expression of the gusA reporter gene following transient expression in tomato (Solanum lycopersicum cv. Micro-Tom). Interestingly, the GlLYCB and GlBCH promoters drove high levels of gusA expression in chromoplast-containing mature green fruits, but low levels in chloroplast-containing immature green fruits, indicating a strict correlation between promoter activity, tomato fruit development and chromoplast differentiation. As well as core promoter elements such as TATA and CAAT boxes, all five promoters together with previously characterized GlZEP promoter contained three common cis-regulatory motifs involved in the response to methyl jasmonate (CGTCA) and ethylene (ATCTA), and required for endosperm expression (Skn-1_motif, GTCAT). These shared common cis-acting elements may represent binding sites for transcription factors responsible for co-regulation. Our data provide insight into the regulatory basis of the coordinated upregulation of carotenogenic gene expression during flower development in G. lutea. © 2013 Scandinavian Plant Physiology Society.

  9. Functional polymorphisms in the IL6 gene promoter and the risk of urinary bladder cancer in India.

    Science.gov (United States)

    Gautam, Kirti Amresh; Muktanand, Tripathi; Sankhwar, Satya Narayan; Goel, Apul; Sankhwar, Pushp Lata; Rajender, Singh

    2016-01-01

    Interleukin-6 is a multifunctional cytokine, which plays a key role in tumor proliferation and differentiation. Variations in its gene (IL6) sequence may affect the risk of developing various cancers, including urinary bladder cancer. The present study was done to find the association of functional polymorphisms in the IL6 promoter with urinary bladder cancer. Single nucleotide polymorphisms were genotyped in histologically confirmed 232 cases of urinary bladder cancer and 250 healthy controls. The controls subjects were matched to the cases by age, sex, and ethnicity. Genotyping of the polymorphisms (-174G>C; -572G>C, -596A>G) was undertaken by direct DNA sequencing. The level of association between the genotypes and urinary bladder cancer risk was estimated by odds ratios and 95% confidence intervals generated by applying the chi-square test. Linkage disequilibrium (LD) between SNPs and haplotype analysis were performed using Haploview software. Significantly higher number of smokers (p=0.047), tobacco chewers (p=C locus differed significantly between cases and controls and the variant genotypes GC+CC were significantly rarer in the cases (p=0.00073; OR=0.52 95% CI 0.35-0.75). Variant genotypes (GC+CC) were more common in grade I than grade III tumors (p=0.032), further suggesting a protective effect. No LD was found between the SNPs; however, the frequency of haplotype AGC was significantly lesser in the cases than controls (p=0.0103), suggesting a protective effect. Genotype distribution at the other two loci (-572G>C and -596A>G) did not show association with bladder cancer. IL6 (-174G>C) substitution confers significant protection against the risk of urinary bladder cancer in the study population, while other substitutions in this gene (-572G>C and -596A>G) do not affect the risk. In general, there is a lack of studies on the cytokine gene polymorphisms in urinary bladder cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function.

    Science.gov (United States)

    Noval Rivas, Magali; Burton, Oliver T; Oettgen, Hans C; Chatila, Talal

    2016-09-01

    Food allergy is a major health issue, but its pathogenesis remains obscure. Group 2 innate lymphoid cells (ILC2s) promote allergic inflammation. However their role in food allergy is largely unknown. We sought to investigate the role of ILC2s in food allergy. Food allergy-prone mice with a gain-of-function mutation in the IL-4 receptor α chain (Il4raF709) were orally sensitized with food allergens, and the ILC2 compartment was analyzed. The requirement for ILC2s in food allergy was investigated by using Il4raF709, IL-33 receptor-deficient (Il1rl1(-/-)), IL-13-deficient (Il13(-/-)), and IL-4-deficient (Il4(-/-)) mice and by adoptive transfer of in vitro-expanded ILC2s. Direct effects of ILC2s on regulatory T (Treg) cells and mast cells were analyzed in coculture experiments. Treg cell control of ILC2s was assessed in vitro and in vivo. Il4raF709 mice with food allergy exhibit increased numbers of ILC2s. IL-4 secretion by ILC2s contributes to the allergic response by reducing allergen-specific Treg cell and activating mast cell counts. IL-33 receptor deficiency in Il4raF709 Il1rl1(-/-) mice protects against allergen sensitization and anaphylaxis while reducing ILC2 induction. Adoptive transfer of wild-type and Il13(-/-) but not Il4(-/-) ILC2s restored sensitization in Il4raF709 Il1rl1(-/-) mice. Treg cells suppress ILC2s in vitro and in vivo. IL-4 production by IL-33-stimulated ILC2s blocks the generation of allergen-specific Treg cells and favors food allergy. Strategies to block ILC2 activation or the IL-33/IL-33 receptor pathway can lead to innovative therapies in the treatment of food allergy. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Functional Analysis of Promoter Region from Eel Cytochrome P450 1A1 Gene in Transgenic Medaka.

    Science.gov (United States)

    Ogino; Itakura; Kato; Aoki; Sato

    1999-07-01

    : Transcription of the CYP1A1 genes in mammals and fish is stimulated by polyaromatic hydrocarbons. DNA sequencing analysis revealed that CYP1A1 gene in eel (Anguilla japonica) contains two kinds of putative cis-acting regulatory elements, XRE (xenobiotic-responsive element) and ERE (estrogen-responsive element). XRE is known as the enhancer that is responsible for the inducibility of the genes of CYP1A1 and some other drug-metabolizing enzymes. In the eel CYP1A1 gene, XRE motifs are distributed as follows: five times in the region from -2136 to -1125 bp, XRE(-6) to (-2); once in the proximal basal promoter region, XRE(-1); and once in the first intron, XRE(+1). The region between XRE(-2) and XRE(-1) contains three ERE motifs. To investigate the function of the cis-acting regulatory elements in the eel CYP1A1 gene, recombinant plasmids prepared with its 5' upstream sequence and the structural gene for luciferase were microinjected into fertilized eggs of medaka at the one-cell stage. Hatched fry were treated with 3-methylcholanthrene, and the transcription efficiency was assayed using competitive polymerase chain reaction analysis. Deletion of the region containing the five XREs, XRE(-6) to XRE(-2), and the point mutation of XRE(-1) reduced the inducible expressions by 75% and 56%, respectively, showing apparent dependency of the drug induction on the XREs. Constitutive expression, however, was not significantly affected by deletion or disruption of the XREs. When the region between XRE(-2) and XRE(-1) containing no XREs but three ERE motifs was internally deleted, the inducible expression and the constitutive expression were reduced by 88% and 75%, respectively. Replacement of this region with a partial fragment of eel CYP1A1 complementary DNA, with slight alteration of the distance between the five XREs and XRE(-1), reduced the inducible expression and the constitutive expression by 91% and 60%, respectively. These results strongly suggest that not only XRE but

  12. APOE genotype-function relationship: evidence of -491 A/T promoter polymorphism modifying transcription control but not type 2 diabetes risk.

    Directory of Open Access Journals (Sweden)

    Hua Geng

    Full Text Available BACKGROUND: The apolipoprotein E gene (APOE coding polymorphism modifies the risks of Alzheimer's disease, type 2 diabetes, and coronary heart disease. Aside from the coding variants, single nucleotide polymorphism (SNP of the APOE promoter has also been shown to modify the risk of Alzheimer's disease. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigate the genotype-function relationship of APOE promoter polymorphism at molecular level and at physiological level: i.e., in transcription control of the gene and in the risk of type 2 diabetes. In molecular studies, the effect of the APOE -491A/T (rs449647 polymorphism on gene transcription was accessed by dual-luciferase reporter gene assays. The -491 A to T substitution decreased the activity (p<0.05 of the cloned APOE promoter (-1017 to +406. Using the -501 to -481 nucleotide sequence of the APOE promoter as a 'bait' to screen the human brain cDNA library by yeast one-hybrid system yielded ATF4, an endoplasmic reticulum stress response gene, as one of the interacting factors. Electrophoretic-mobility-shift assays (EMSA and chromatin immuno-precipitation (ChIP analyses further substantiated the physical interaction between ATF4 and the APOE promoter. Over-expression of ATF4 stimulated APOE expression whereas siRNA against ATF4 suppressed the expression of the gene. However, interaction between APOE promoter and ATF4 was not -491A/T-specific. At physiological level, the genotype-function relationship of APOE promoter polymorphism was studied in type 2 diabetes. In 630 cases and 595 controls, three APOE promoter SNPs -491A/T, -219G/T (rs405509, and +113G/C (rs440446 were genotyped and tested for association with type 2 diabetes in Hong Kong Chinese. No SNP or haplotype association with type 2 diabetes was detected. CONCLUSIONS/SIGNIFICANCE: At molecular level, polymorphism -491A/T and ATF4 elicit independent control of APOE gene expression. At physiological level, no genotype

  13. A mutation in a functional Sp1 binding site of the telomerase RNA gene (hTERC promoter in a patient with Paroxysmal Nocturnal Haemoglobinuria

    Directory of Open Access Journals (Sweden)

    Mason Philip J

    2004-06-01

    Full Text Available Abstract Background Mutations in the gene coding for the RNA component of telomerase, hTERC, have been found in autosomal dominant dyskeratosis congenita (DC and aplastic anemia. Paroxysmal nocturnal hemoglobinuria (PNH is a clonal blood disorder associated with aplastic anemia and characterized by the presence of one or more clones of blood cells lacking glycosylphosphatidylinositol (GPI anchored proteins due to a somatic mutation in the PIGA gene. Methods We searched for mutations in DNA extracted from PNH patients by amplification of the hTERC gene and denaturing high performance liquid chromatography (dHPLC. After a mutation was found in a potential transcription factor binding site in one patient electrophoretic mobility shift assays were used to detect binding of transcription factors to that site. The effect of the mutation on the function of the promoter was tested by transient transfection constructs in which the promoter is used to drive a reporter gene. Results Here we report the finding of a novel promoter mutation (-99C->G in the hTERC gene in a patient with PNH. The mutation disrupts an Sp1 binding site and destroys its ability to bind Sp1. Transient transfection assays show that mutations in this hTERC site including C-99G cause either up- or down-regulation of promoter activity and suggest that the site regulates core promoter activity in a context dependent manner in cancer cells. Conclusions These data are the first report of an hTERC promoter mutation from a patient sample which can modulate core promoter activity in vitro, raising the possibility that the mutation may affect the transcription of the gene in hematopoietic stem cells in vivo, and that dysregulation of telomerase may play a role in the development of bone marrow failure and the evolution of PNH clones.

  14. Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-beta1-promoted myofibroblast formation and function

    DEFF Research Database (Denmark)

    Mirastschijski, Ursula; Schnabel, Reinhild; Claes, Juliane

    2010-01-01

    applied topically to full-thickness skin excisional wounds in rats and its ability to inhibit the promotion of myofibroblast formation and function by the latent transforming-growth factor-beta1 (TGF-beta1). BB-94 delayed wound contraction, as well as all other associated aspects of wound healing examined......, including myofibroblast formation, stromal cell proliferation, blood vessel formation, and epithelial wound coverage. Interestingly, BB-94 dramatically increased the level of latent and active MMP-9. The increased levels of active MMP-9 may eventually overcome the ability of BB-94 to inhibit this MMP...... and may explain why wound contraction and other associated events of wound healing were only delayed and not completely inhibited. BB-94 was also found to inhibit the ability of latent TGF-beta1 to promote the formation and function of myofibroblasts. These results suggest that BB-94 could delay wound...

  15. PTSD and DNA Methylation in Select Immune Function Gene Promoter Regions: A Repeated Measures Case-control Study of U.S. Military Service Members

    Science.gov (United States)

    2013-06-24

    other relevant exposures which may influ- ence DNA methylation , such as dietary factors ( folate , vitamin B12 intake) (Fenech, 2001; Piyathilake and...ARTICLE published: 24 June 2013 doi: 10.3389/fpsyt.2013.00056 PTSD and DNA methylation in select immune function gene promoter regions: a repeated measures...largely unknown. Dis- tinct expression signatures for PTSD have been found, in particular for immune activation transcripts. DNA methylation may be

  16. The Use of Limericks to Engage Student Interest and Promote Active Learning in an Undergraduate Course in Functional Anatomy

    Science.gov (United States)

    Carnegie, Jacqueline A.

    2012-01-01

    The study of anatomy is a content-dense discipline with a challenging vocabulary. A mnemonic is a series of letters, a word, a phrase, or a rhyme that students can use when studying to facilitate recall. This project was designed to promote active learning in undergraduate students studying anatomy and physiology by asking them to create limericks…

  17. Ubiquitin-specific Protease-7 Inhibition Impairs Tip60-dependent Foxp3+ T-regulatory Cell Function and Promotes Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Liqing Wang

    2016-11-01

    Full Text Available Foxp3+ T-regulatory (Treg cells are known to suppress protective host immune responses to a wide variety of solid tumors, but their therapeutic targeting is largely restricted to their transient depletion or “secondary” modulation, e.g. using anti-CTLA-4 monoclonal antibody. Our ongoing studies of the post-translational modifications that regulate Foxp3 demonstrated that the histone/protein acetyltransferase, Tip60, plays a dominant role in promoting acetylation, dimerization and function in Treg cells. We now show that the ubiquitin-specific protease, Usp7, controls Treg function largely by stabilizing the expression and promoting the multimerization of Tip60 and Foxp3. Genetic or pharmacologic targeting of Usp7 impairs Foxp3+ Treg suppressive functions, while conventional T cell responses remain intact. As a result, pharmacologic inhibitors of Usp7 can limit tumor growth in immunocompetent mice, and promote the efficacy of antitumor vaccines and immune checkpoint therapy with anti-PD1 monoclonal antibody in murine models. Hence, pharmacologic therapy with Usp7 inhibitors may have an important role in future cancer immunotherapy.

  18. Omega-3 polyunsaturated fatty acids promote amyloid-β clearance from the brain through mediating the function of the glymphatic system.

    Science.gov (United States)

    Ren, Huixia; Luo, Chuanming; Feng, Yanqing; Yao, Xiaoli; Shi, Zhe; Liang, Fengyin; Kang, Jing X; Wan, Jian-Bo; Pei, Zhong; Su, Huanxing

    2017-01-01

    Impairment of amyloid-β (Aβ) clearance leads to Aβ accumulation in the brain during the development of Alzheimer's disease (AD). Strategies that can restore or improve the clearance function hold great promise in delaying or preventing the onset of AD. Here, we show that n-3 polyunsaturated fatty acids (PUFAs), by use of fat-1 transgenic mice and oral administration of fish oil, significantly promote interstitial Aβ clearance from the brain and resist Aβ injury. Such beneficial effects were abolished in Aqp4-knockout mice, suggesting that the AQP4-dependent glymphatic system is actively involved in the promoting the effects of n-3 PUFAs on the clearance of extracellular Aβ. Imaging on clarified brain tissues clearly displayed that n-3 PUFAs markedly inhibit the activation of astrocytes and protect the AQP4 polarization in the affected brain region after Aβ injection. The results of the present study prove a novel mechanism by which n-3 PUFAs exert protective roles in reducing Aβ accumulation via mediating the glymphatic system function.-Ren, H., Luo, C., Feng, Y., Yao, X., Shi, Z., Liang, F., Kang, J. X., Wan, J.-B., Pei, Z., Su, H. Omega-3 polyunsaturated fatty acids promote amyloid-β clearance from the brain through mediating the function of the glymphatic system. © FASEB.

  19. ANP promotes proliferation and inhibits apoptosis of ovarian granulosa cells by NPRA/PGRMC1/EGFR complex and improves ovary functions of PCOS rats.

    Science.gov (United States)

    Zheng, Qin; Li, Yulin; Zhang, Dandan; Cui, Xinyuan; Dai, Kuixing; Yang, Yu; Liu, Shuai; Tan, Jichun; Yan, Qiu

    2017-10-26

    Polycystic ovary syndrome (PCOS) is a complicated reproductive endocrine disease characterized by polycystic ovaries, hyperandrogenism and anovulation. It is one of the main causes of infertility. RU486 is an antagonist of progesterone receptor, and most commonly used as a contraceptive. However, whether RU486 is correlated with PCOS remains unclear. Atrial natriuretic peptide (ANP) is a small peptide with natriuretic and diuretic functions, and its availability to be used in PCOS treatment is unknown. Here, we showed that the serum ANP level was lower in PCOS patients than that in healthy women, and it was also decreased in the serum and ovarian tissues of RU486-induced PCOS rats compared with the control rats. We also found that RU486 inhibited the proliferation and promoted the apoptosis of human KGN ovarian granulosa cells by downregulating progesterone receptor membrane component 1 (PGRMC1). Meantime, ANP promoted the proliferation and inhibited the apoptosis of KGN cells through upregulating ANP receptor A (NPRA). The promotive effects of ANP on ovarian functions were mediated through the formation of an NPRA/PGRMC1/EGFR complex, which further activated MAPK/ERK signaling and transcription factor AP1. Moreover, ANP treatment reversed the PCOS symptoms, and improved the fertility of RU486-induced PCOS rats. Collectively, these findings highlight that RU486 is associated with the pathogenesis of PCOS, and ANP treatment may be a promising therapeutic option for PCOS.

  20. Bridging the gap between theory and practice: dynamic systems theory as a framework for understanding and promoting recovery of function in children and youth with acquired brain injuries.

    Science.gov (United States)

    Levac, Danielle; DeMatteo, Carol

    2009-11-01

    A theoretical framework can help physiotherapists understand and promote recovery of function in children and youth with acquired brain injuries (ABI). Physiotherapy interventions for this population have traditionally been based in hierarchical-maturational theories of motor development emphasizing the role of the central nervous system (CNS) in controlling motor behaviour. In contrast, Dynamic Systems Theory (DST) views movement as resulting from the interaction of many subsystems within the individual, features of the functional task to be accomplished, and the environmental context in which the movement takes place. DST is now a predominant theoretical framework in pediatric physiotherapy. The purpose of this article is to describe how DST can be used to understand and promote recovery of function after pediatric ABI. A DST-based approach for children and youth with ABI does not treat the impaired CNS in isolation but rather emphasizes the role of all subsystems, including the family and the environment, in influencing recovery. The emphasis is on exploration, problem solving, and practice of functional tasks. A case scenario provides practical recommendations for the use of DST to inform physiotherapy interventions and clinical decision making in the acute phase of recovery from ABI. Future research is required to evaluate the effectiveness of interventions based in this theoretical framework.

  1. Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication

    International Nuclear Information System (INIS)

    Wanitchang, Asawin; Wongthida, Phonphimon; Jongkaewwattana, Anan

    2016-01-01

    The M2 protein (AM2 and BM2) of influenza A and B viruses function as a proton channel essential for viral replication. They also carry a cytoplasmic tail whose functions are not fully delineated. It is currently unknown whether these proteins could be replaced functionally in a viral context. Here, we generated single-cycle influenza A viruses (scIAV-ΔHA) carrying various M2-2A-mCherry constructs in the segment 4 (HA) and evaluated their growth in complementing cells. Intriguingly, the scIAV-ΔHA carrying AM2 and that bearing BM2 grew comparably well in MDCK-HA cells. Furthermore, while the virus carrying chimeric B-AM2 in which the BM2 transmembrane fused with the AM2 cytoplasmic tail produced robust infection, the one bearing the AM2 transmembrane fused with the BM2 cytoplasmic tail (A-BM2) exhibited severely impaired growth. Altogether, we demonstrate that AM2 and BM2 are functionally interchangeable and underscore the role of compatibility between transmembrane and cytoplasmic tail of the M2 protein. -- Highlights: •Flu A M2 protein (AM2) can be functionally replaced by that of Flu B (BM2). •Both AM2 and BM2 with extended cytoplasmic tail are functional. •Compatibility between the ion channel and the cytoplasmic tail is critical for M2 function. •M2 with higher ion channel activity may augment influenza virus replication.

  2. Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Wanitchang, Asawin; Wongthida, Phonphimon; Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th

    2016-11-15

    The M2 protein (AM2 and BM2) of influenza A and B viruses function as a proton channel essential for viral replication. They also carry a cytoplasmic tail whose functions are not fully delineated. It is currently unknown whether these proteins could be replaced functionally in a viral context. Here, we generated single-cycle influenza A viruses (scIAV-ΔHA) carrying various M2-2A-mCherry constructs in the segment 4 (HA) and evaluated their growth in complementing cells. Intriguingly, the scIAV-ΔHA carrying AM2 and that bearing BM2 grew comparably well in MDCK-HA cells. Furthermore, while the virus carrying chimeric B-AM2 in which the BM2 transmembrane fused with the AM2 cytoplasmic tail produced robust infection, the one bearing the AM2 transmembrane fused with the BM2 cytoplasmic tail (A-BM2) exhibited severely impaired growth. Altogether, we demonstrate that AM2 and BM2 are functionally interchangeable and underscore the role of compatibility between transmembrane and cytoplasmic tail of the M2 protein. -- Highlights: •Flu A M2 protein (AM2) can be functionally replaced by that of Flu B (BM2). •Both AM2 and BM2 with extended cytoplasmic tail are functional. •Compatibility between the ion channel and the cytoplasmic tail is critical for M2 function. •M2 with higher ion channel activity may augment influenza virus replication.

  3. MFG-E8 Reprogramming of Macrophages Promotes Wound Healing by Increased bFGF Production and Fibroblast Functions.

    Science.gov (United States)

    Laplante, Patrick; Brillant-Marquis, Frédéric; Brissette, Marie-Joëlle; Joannette-Pilon, Benjamin; Cayrol, Romain; Kokta, Victor; Cailhier, Jean-François

    2017-09-01

    Macrophages are essential for tissue repair. They have a crucial role in cutaneous wound healing, participating actively in the inflammation phase of the process. Unregulated macrophage activation may, however, represent a source of excessive inflammation, leading to abnormal wound healing and hypertrophic scars. Our research group has shown that apoptotic endothelial and epithelial cells secrete MFG-E8, which has the ability to reprogram macrophages from an M1 (proinflammatory) to an M2 (anti-inflammatory, pro-repair) phenotype. Hence, we tested whether modulation of macrophage reprogramming would promote tissue repair. Using a mouse model of wound healing, we showed that the presence and/or addition of MFG-E8 favors wound closure associated with an increase in CD206-positive cells and basic fibroblast growth factor production in healing tissues. More importantly, adoptive transfer of ex vivo MFG-E8-treated macrophages promoted wound closure. We also observed that MFG-E8-treated macrophages produced basic fibroblast growth factor that is responsible for fibroblast migration and proliferation. Taken together, our results strongly suggest that MFG-E8 plays a key role in macrophage reprogramming in tissue healing through induction of an anti-inflammatory M2 phenotype and basic fibroblast growth factor production, leading to fibroblast migration and wound closure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. dMyc functions downstream of Yorkie to promote the supercompetitive behavior of hippo pathway mutant cells.

    Directory of Open Access Journals (Sweden)

    Marcello Ziosi

    2010-09-01

    Full Text Available Genetic analyses in Drosophila epithelia have suggested that the phenomenon of "cell competition" could participate in organ homeostasis. It has been speculated that competition between different cell populations within a growing organ might play a role as either tumor promoter or tumor suppressor, depending on the cellular context. The evolutionarily conserved Hippo (Hpo signaling pathway regulates organ size and prevents hyperplastic disease from flies to humans by restricting the activity of the transcriptional cofactor Yorkie (yki. Recent data indicate also that mutations in several Hpo pathway members provide cells with a competitive advantage by unknown mechanisms. Here we provide insight into the mechanism by which the Hpo pathway is linked to cell competition, by identifying dMyc as a target gene of the Hpo pathway, transcriptionally upregulated by the activity of Yki with different binding partners. We show that the cell-autonomous upregulation of dMyc is required for the supercompetitive behavior of Yki-expressing cells and Hpo pathway mutant cells, whereas the relative levels of dMyc between Hpo pathway mutant cells and wild-type neighboring cells are critical for determining whether cell competition promotes a tumor-suppressing or tumor-inducing behavior. All together, these data provide a paradigmatic example of cooperation between tumor suppressor genes and oncogenes in tumorigenesis and suggest a dual role for cell competition during tumor progression depending on the output of the genetic interactions occurring between confronted cells.

  5. Traditional values in the function of promotion of Šumadija and Pomoravlje as rural tourism destinations

    Directory of Open Access Journals (Sweden)

    Mandarić Marija

    2017-01-01

    Full Text Available Rural tourism and diversification of economic activities are now an integral part of sustainable development of rural areas and regions of Šumadija and Pomoravlje. Development of rural tourism improves the economic position and social activity of the population of rural areas. Šumadija and Pomoravlje region has significant natural and human resources for the development of rural tourism, which have not been adequately utilized. The preservation of authentic values of climate, especially of traditional crafts and gastronomy, can contribute to the development and recognition of the region as a new destination for rural tourism in Serbia. Traditional products due to their features, quality and heritage, can become a regional brand, and also promote the region as a unique destination of rural tourism. The aim of the paper is to explore the representation of traditional crafts, production of handicrafts and traditional cuisine in the region of Šumadija and Pomoravlje. The results of the research conducted point to a significant and under-utilized potential of traditional values in the development and promotion of the region as a rural tourism destination.

  6. Functional analysis of the promoter of the molt-inhibiting hormone (mih) gene in mud crab Scylla paramamosain.

    Science.gov (United States)

    Zhang, Xin; Huang, Danping; Jia, Xiwei; Zou, Zhihua; Wang, Yilei; Zhang, Ziping

    2018-04-01

    In this study, the 5'-flanking region of molt-inhibiting hormone (MIH) gene was cloned by Tail-PCR. It is 2024 bp starting from the translation initiation site, and 1818 bp starting from the predicted transcription start site. Forecast analysis results by the bioinformatics software showed that the transcription start site is located at 207 bp upstream of the start codon ATG, and TATA box is located at 240 bp upstream of the start codon ATG. Potential transcription factor binding sites include Sp1, NF-1, Oct-1, Sox-2, RAP1, and so on. There are two CpG islands, located at -25- +183 bp and -1451- -1316 bp respectively. The transfection results of luciferase reporter constructs showed that the core promoter region was located in the fragment -308 bp to -26 bp. NF-kappaB and RAP1 were essential for mih basal transcriptional activity. There are three kinds of polymorphism CA in the 5'-flanking sequence, and they can influence mih promoter activity. These findings provide a genetic foundation of the further research of mih transcription regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats

    Science.gov (United States)

    Ding, Ying; Yan, Qing; Ruan, Jing-Wen; Zhang, Yan-Qing; Li, Wen-Jie; Zhang, Yu-Jiao; Li, Yan; Dong, Hongxin; Zeng, Yuan-Shan

    2009-01-01

    Background Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation, axonal regeneration and finally, functional recovery in the transected spinal cord. Results The spinal cords of adult Sprague-Dawley (SD) rats were completely transected at T10, five experimental groups were performed: 1. sham operated control (Sham-control); 2. operated control (Op-control); 3. electro-acupuncture treatment (EA); 4. MSCs transplantation (MSCs); and 5. MSCs transplantation combined with electro-acupuncture (MSCs+EA). After 2-8 weeks of MSCs transplantation plus EA treatment, we found that the neurotrophin-3 (NT-3), cAMP level, the differentiation of MSCs, the 5-HT positive and CGRP positive nerve fibers in the lesion site and nearby tissue of injured spinal cord were significantly increased in the MSCs+EA group as compared to the group of the MSCs transplantation or the EA treated alone. Furthermore, behavioral test and spinal cord evoked potentials detection demonstrated a significantly functional recovery in the MSCs +EA group. Conclusion These results suggest that EA treatment may promote grafted MSCs survival and differentiation; MSCs transplantation combined with EA treatment could promote axonal regeneration and partial locomotor functional recovery in the transected spinal cord in rats and indicate a promising avenue of treatment of spinal cord injury. PMID:19374777

  8. Melatonin Promotes Cheliped Regeneration, Digestive Enzyme Function, and Immunity Following Autotomy in the Chinese Mitten Crab, Eriocheir sinensis

    Directory of Open Access Journals (Sweden)

    Cong Zhang

    2018-03-01

    Full Text Available In the pond culture of juvenile Eriocheir sinensis, a high limb-impairment rate seriously affects the culture success. Therefore, it is particularly important to artificially promote limb regeneration. This study evaluated the effects of melatonin on cheliped regeneration, digestive ability, and immunity, as well as its relationship with the eyestalk. It was found that the injection of melatonin significantly increased the limb regeneration rate compared with the saline group (P < 0.05. The qRT-PCR results of growth-related genes showed that the level of EcR-mRNA (ecdysteroid receptor and Chi-mRNA (chitinase expression was significantly increased following the melatonin injection, while the expression of MIH-mRNA (molt-inhibiting hormone was significantly decreased (P < 0.05. Melatonin significantly increased lipase activity (P < 0.05. We observed that the survival rates of limb-impaired and unilateral eyestalk-ablated crabs were substantially improved following melatonin treatment, whereas the survival of the unilateral eyestalk-ablated crabs was significantly decreased compared with the control group (P < 0.05. Furthermore, the results of serum immune and antioxidant capacity revealed that melatonin significantly increased the total hemocyte counts (THC, hemocyanin content, total antioxidant capacity (T-AOC, acid phosphatase (ACP, and glutathione peroxidase activity (GSH-Px, whereas the immune-related parameters were significantly decreased in eyestalk-ablated crabs (P < 0.05. Therefore, these findings indicate that melatonin exerts a protective effect on organism injury, which could promote limb regeneration by up-regulating the expression of growth-related genes, improve digestive enzyme activity, and strengthen the immune response, particularly antioxidant capacity.

  9. Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress.

    Science.gov (United States)

    Chen, Jianfei; Song, Minbao; Yu, Shiyong; Gao, Pan; Yu, Yang; Wang, Hong; Huang, Lan

    2010-02-01

    Endothelial progenitor cells (EPCs) play an important role in preventing atherosclerosis. The factors that regulate the function of EPCs are not completely clear. Increased formation of advanced glycation endproducts (AGEs) is generally regarded as one of the main mechanisms responsible for vascular damage in patients with diabetes and atherosclerosis. AGEs lead to the generation of reactive oxygen species (ROS) and part of the regenerative capacity of EPCs seems to be due to their low baseline ROS levels and reduced sensitivity to ROS-induced cell apoptosis. Therefore, we tested the hypothesis that AGEs can alter functions and promote apoptosis in EPCs through overpress cell oxidant stress. EPCs, isolated from bone marrow, were cultured in the absence or presence of AGEs (50, 100, and 200 microg/ml). A modified Boyden's chamber was used to assess the migration of EPCs and the number of recultured EPCs was counted to measure the adhesiveness function. MTT assay was used to determine the proliferation function. ROS were analyzed using the ROS assay kit. A spectrophotometer was used to assess superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity, and PCR was used to test mRNA expression of SOD and GSH-PX. SiRNA was used to block receptor for advanced glycation endproducts (RAGEs) expression. Apoptosis was evaluated by Annexin V immunostaining and TUNEL staining. Co-culturing with AGEs increases ROS production, decreases anti-oxidant defenses, overpresses oxidant stress, inhibits the proliferation, migration, and adhesion of EPCs, and induces EPCs apoptosis. In addition, these effects were attenuated during block RAGE protein expression by siRNA. AGEs may serve to impair EPCs functions through RAGE-mediate oxidant stress, and promote EPCs sensitivity toward oxidative-stress-mediated apoptosis, which indicates a new pathophysiological mechanism of disturbed vascular adaptation in atherosclerosis and suggests that lower levels of AGEs might improve the

  10. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras

    Science.gov (United States)

    Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos

    2015-01-01

    Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947

  11. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats

    International Nuclear Information System (INIS)

    Kaneko, Ai; Matsushita, Akira; Sankai, Yoshiyuki

    2015-01-01

    Central nervous system neurons in adult mammals display limited regeneration after injury, and functional recovery is poor following complete transection (>4 mm gap) of a rat spinal cord. A novel combination scaffold composed of 3D nanofibrous hydrogel PuraMatrix and a honeycomb collagen sponge was used to promote spinal repair and locomotor functional recovery following complete transection of the spinal cord in rats. We transplanted this scaffold into 5 mm spinal cord gaps and assessed spinal repair and functional recovery using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. The BBB score of the scaffold-transplanted group was significantly higher than that of the PBS-injected control group from 24 d to 4 months after the operation (P < 0.001–0.01), reaching 6.0  ±  0.75 (mean ± SEM) in the transplant and 0.70  ±  0.46 in the control groups. Neuronal regeneration and spinal repair were examined histologically using Pan Neuronal Marker, glial fibrillary acidic protein, growth-associated protein 43, and DAPI. The scaffolds were well integrated into the spinal cords, filling the 5 mm gaps with higher numbers of regenerated and migrated neurons, astrocytes, and other cells than in the control group. Mature and immature neurons and astrocytes in the scaffolds became colocalized and aligned longitudinally over >2 mm, suggesting their differentiation, maturation, and function. The spinal cord NF200 content of the transplant group, analyzed by western blot, was more than twice that of the control group, supporting the histological results. Transplantation of this novel scaffold promoted functional recovery, spinal repair, and neuronal regeneration. (paper)

  12. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    International Nuclear Information System (INIS)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin

    2013-01-01

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  13. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin, E-mail: chengleiyx@126.com

    2013-10-18

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  14. Wii-based movement therapy to promote improved upper extremity function post-stroke: a pilot study.

    Science.gov (United States)

    Mouawad, Marie R; Doust, Catherine G; Max, Madeleine D; McNulty, Penelope A

    2011-05-01

    Virtual-reality is increasingly used to improve rehabilitation outcomes. The Nintendo Wii offers an in-expensive alternative to more complex systems. To investigate the efficacy of Wii-based therapy for post-stroke rehabilitation. Seven patients (5 men, 2 women, aged 42-83 years; 1-38 months post-stroke, mean 15.3 months) and 5 healthy controls (3 men, 2 women, aged 41-71 years) undertook 1 h of therapy on 10 consecutive weekdays. Patients progressively increased home practice to 3 h per day. Functional ability improved for every patient. The mean performance time significantly decreased per Wolf Motor Function Test task, from 3.2 to 2.8 s, and Fugl-Meyer Assessment scores increased from 42.3 to 47.3. Upper extremity range-of-motion increased by 20.1º and 14.33º for passive and active movements, respectively. Mean Motor Activity Log (Quality of Movement scale) scores increased from 63.2 to 87.5, reflecting a transfer of functional recovery to everyday activities. Balance and dexterity did not improve significantly. No significant change was seen in any of these measures for healthy controls, despite improved skill levels for Wii games. An intensive 2-week protocol resulted in significant and clinically relevant improvements in functional motor ability post-stroke. These gains translated to improvement in activities of daily living.

  15. Incorporating Modeling and Simulations in Undergraduate Biophysical Chemistry Course to Promote Understanding of Structure-Dynamics-Function Relationships in Proteins

    Science.gov (United States)

    Hati, Sanchita; Bhattacharyya, Sudeep

    2016-01-01

    A project-based biophysical chemistry laboratory course, which is offered to the biochemistry and molecular biology majors in their senior year, is described. In this course, the classroom study of the structure-function of biomolecules is integrated with the discovery-guided laboratory study of these molecules using computer modeling and…

  16. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function

    NARCIS (Netherlands)

    Sander, L.E.; Sackett, S.D.; Dierssen, U.; Beraza, N.; Linke, R.; Müller, M.R.; Blander, J.M.; Tacke, F.; Trautwein, C.

    2010-01-01

    Acute-phase proteins (APPs) are an evolutionarily conserved family of proteins produced mainly in the liver in response to infection and inflammation. Despite vast pro- and antiinflammatory properties ascribed to individual APPs, their collective function during infections remains poorly defined.

  17. Hepatic acute phase proteins control innate immune responses during infection by promoting myeloid derived suppressor cell function

    NARCIS (Netherlands)

    Sander, Leif E.; Dutton Sackett, Sara; Dierssen, Uta; Beraza, Naiara; Linke, Reinhold P.; Muller, Michael; Magarian Blander, Julie; Tacke, Frank; Trautwein, Christian

    2010-01-01

    Acute phase proteins (APPs) are an evolutionarily conserved family of proteins produced mainly in the liver in response to infection and inflammation. Despite vast pro- and anti-inflammatory properties ascribed to individual APPs, their collective function during infections remains poorly defined.

  18. Human Blood CD1c+ Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4+ T Cells.

    Science.gov (United States)

    Leal Rojas, Ingrid M; Mok, Wai-Hong; Pearson, Frances E; Minoda, Yoshihito; Kenna, Tony J; Barnard, Ross T; Radford, Kristen J

    2017-01-01

    Dendritic cells (DC) initiate the differentiation of CD4 + helper T cells into effector cells including Th1 and Th17 responses that play an important role in inflammation and autoimmune disease pathogenesis. In mice, Th1 and Th17 responses are regulated by different conventional (c) DC subsets, with cDC1 being the main producers of IL-12p70 and inducers of Th1 responses, while cDC2 produce IL-23 to promote Th17 responses. The role that human DC subsets play in memory CD4 + T cell activation is not known. This study investigated production of Th1 promoting cytokine IL-12p70, and Th17 promoting cytokines, IL-1β, IL-6, and IL-23, by human blood monocytes, CD1c + DC, CD141 + DC, and plasmacytoid DC and examined their ability to induce Th1 and Th17 responses in memory CD4 + T cells. Human CD1c + DC produced IL-12p70, IL-1β, IL-6, and IL-23 in response to R848 combined with LPS or poly I:C. CD141 + DC were also capable of producing IL-12p70 and IL-23 but were not as proficient as CD1c + DC. Activated CD1c + DC were endowed with the capacity to promote both Th1 and Th17 effector function in memory CD4 + T cells, characterized by high production of interferon-γ, IL-17A, IL-17F, IL-21, and IL-22. These findings support a role for CD1c + DC in autoimmune inflammation where Th1/Th17 responses play an important role in disease pathogenesis.

  19. Functional Characterization of the Tau Class Glutathione-S-Transferases Gene (SbGSTU) Promoter of Salicornia brachiata under Salinity and Osmotic Stress.

    Science.gov (United States)

    Tiwari, Vivekanand; Patel, Manish Kumar; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5'-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering.

  20. CD28 controls the development of innate-like CD8+ T cells by promoting the functional maturation of NKT cells.

    Science.gov (United States)

    Yousefi, Mitra; Duplay, Pascale

    2013-11-01

    NK T cells(NKT cells) share functional characteristics and homing properties that are distinct from conventional T cells. In this study, we investigated the contribution of CD28 in the functional development of γδ NKT and αβ NKT cells in mice. We show that CD28 promotes the thymic maturation of promyelocytic leukemia zinc finger(+) IL-4(+) NKT cells and upregulation of LFA-1 expression on NKT cells. We demonstrate that the developmental defect of γδ NKT cells in CD28-deficient mice is cell autonomous. Moreover, we show in both wild-type C57BL/6 mice and in downstream of tyrosine kinase-1 transgenic mice, a mouse model with increased numbers of γδ NKT cells, that CD28-mediated regulation of thymic IL-4(+) NKT cells promotes the differentiation of eomesodermin(+) CD44(high) innate-like CD8(+) T cells. These findings reveal a previously unappreciated mechanism by which CD28 controls NKT-cell homeostasis and the size of the innate-like CD8(+) T-cell pool. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Innate Immune Receptor NLRX1 Functions as a Tumor Suppressor by Reducing Colon Tumorigenesis and Key Tumor-Promoting Signals

    Directory of Open Access Journals (Sweden)

    A. Alicia Koblansky

    2016-03-01

    Full Text Available NOD-like receptor (NLR proteins are intracellular innate immune sensors/receptors that regulate immunity. This work shows that NLRX1 serves as a tumor suppressor in colitis-associated cancer (CAC and sporadic colon cancer by keeping key tumor promoting pathways in check. Nlrx1−/− mice were highly susceptible to CAC, showing increases in key cancer-promoting pathways including nuclear factor κB (NF-κB, mitogen-activated protein kinase (MAPK, signal transducer and activator of transcription 3 (STAT3, and interleukin 6 (IL-6. The tumor-suppressive function of NLRX1 originated primarily from the non-hematopoietic compartment. This prompted an analysis of NLRX1 function in the Apcmin/+ genetic model of sporadic gastrointestinal cancer. NLRX1 attenuated Apcmin/+ colon tumorigenesis, cellular proliferation, NF-κB, MAPK, STAT3 activation, and IL-6 levels. Application of anti-interleukin 6 receptor (IL6R antibody therapy reduced tumor burden, increased survival, and reduced STAT3 activation in Nlrx1−/−Apcmin/+ mice. As an important clinical correlate, human colon cancer samples expressed lower levels of NLRX1 than healthy controls in multiple patient cohorts. These data implicate anti-IL6R as a potential personalized therapy for colon cancers with reduced NLRX1.

  2. Using functional theory to promote HIV testing: the impact of value-expressive messages, uncertainty, and fear.

    Science.gov (United States)

    Hullett, Craig R

    2006-01-01

    This study tests the utility of the functional theory of attitudes and arousal of fear in motivating college students to get tested for HIV. It is argued from the perspective of functional theory that value-expressive appeals to get tested for the purpose of taking care of one's own health could be effective if that goal is desired by message targets who are sexually active and unaware of their sexually transmitted disease status. As part of the process, the effectiveness of these appeals is increased by the arousal of uncertainty and fear. A model detailing the mediating processes is proposed and found to be consistent with the data. Overall, messages advocating testing for the self-interested reason of one's own health were more effective than messages advocating testing for the goal of protecting one's partners.

  3. DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rizzardi, Lindsay F; Dorn, Elizabeth S; Strahl, Brian D; Cook, Jeanette Gowen

    2012-10-01

    DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication.

  4. Chronic liver injury in mice promotes impairment of skin barrier function via tumor necrosis factor-alpha.

    Science.gov (United States)

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2016-09-01

    Alcohol is frequently used to induce chronic liver injury in laboratory animals. Alcohol causes oxidative stress in the liver and increases the expression of inflammatory mediators that cause hepatocellular damage. However, during chronic liver injury, it is unclear if/how these liver-derived factors affect distal tissues, such as the skin. The purpose of this study was to evaluate skin barrier function during chronic liver injury. Hairless mice were administered 5% or 10% ethanol for 8 weeks, and damages to the liver and skin were assessed using histological and protein-analysis methods, as well as by detecting inflammatory mediators in the plasma. After alcohol administration, the plasma concentration of the aspartate and alanine aminotransferases increased, while albumin levels decreased. In mice with alcohol-induced liver injury, transepidermal water loss was significantly increased, and skin hydration decreased concurrent with ceramide and type I collagen degradation. The plasma concentrations of [Formula: see text]/[Formula: see text] and tumor necrosis factor-alpha (TNF-α) were significantly increased in mice with induced liver injury. TNF receptor (TNFR) 2 expression was upregulated in the skin of alcohol-administered mice, while TNFR1 levels remained constant. Interestingly, the impairment of skin barrier function in mice administered with 10% ethanol was ameliorated by administering an anti-TNF-α antibody. We propose a novel mechanism whereby plasma TNF-α, via TNFR2 alone or with TNFR1, plays an important role in skin barrier function during chronic liver disease in these mouse models.

  5. Systemic down-regulation of delta-9 desaturase promotes muscle oxidative metabolism and accelerates muscle function recovery following nerve injury.

    Directory of Open Access Journals (Sweden)

    Ghulam Hussain

    Full Text Available The progressive deterioration of the neuromuscular axis is typically observed in degenerative conditions of the lower motor neurons, such as amyotrophic lateral sclerosis (ALS. Neurodegeneration in this disease is associated with systemic metabolic perturbations, including hypermetabolism and dyslipidemia. Our previous gene profiling studies on ALS muscle revealed down-regulation of delta-9 desaturase, or SCD1, which is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Interestingly, knocking out SCD1 gene is known to induce hypermetabolism and stimulate fatty acid beta-oxidation. Here we investigated whether SCD1 deficiency can affect muscle function and its restoration in response to injury. The genetic ablation of SCD1 was not detrimental per se to muscle function. On the contrary, muscles in SCD1 knockout mice shifted toward a more oxidative metabolism, and enhanced the expression of synaptic genes. Repressing SCD1 expression or reducing SCD-dependent enzymatic activity accelerated the recovery of muscle function after inducing sciatic nerve crush. Overall, these findings provide evidence for a new role of SCD1 in modulating the restorative potential of skeletal muscles.

  6. Functional Importance of the Anaphase-Promoting Complex-Cdh1-Mediated Degradation of TMAP/CKAP2 in Regulation of Spindle Function and Cytokinesis▿ †

    OpenAIRE

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-01-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G1/S and peaks at G2/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stabi...

  7. Far infrared radiation promotes rabbit renal proximal tubule cell proliferation and functional characteristics, and protects against cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Chiang, I-Ni; Pu, Yeong-Shiau; Huang, Chao-Yuan; Young, Tai-Horng

    2017-01-01

    Far infrared radiation, a subdivision of the electromagnetic spectrum, is beneficial for long-term tissue healing, anti-inflammatory effects, growth promotion, sleep modulation, acceleration of microcirculation, and pain relief. We investigated if far infrared radiation is beneficial for renal proximal tubule cell cultivation and renal tissue engineering. We observed the effects of far infrared radiation on renal proximal tubules cells, including its effects on cell proliferation, gene and protein expression, and viability. We also examined the protective effects of far infrared radiation against cisplatin, a nephrotoxic agent, using the human proximal tubule cell line HK-2. We found that daily exposure to far infrared radiation for 30 min significantly increased rabbit renal proximal tubule cell proliferation in vitro, as assessed by MTT assay. Far infrared radiation was not only beneficial to renal proximal tubule cell proliferation, it also increased the expression of ATPase Na+/K+ subunit alpha 1 and glucose transporter 1, as determined by western blotting. Using quantitative polymerase chain reaction, we found that far infrared radiation enhanced CDK5R1, GNAS, NPPB, and TEK expression. In the proximal tubule cell line HK-2, far infrared radiation protected against cisplatin-mediated nephrotoxicity by reducing apoptosis. Renal proximal tubule cell cultivation with far infrared radiation exposure resulted in better cell proliferation, significantly higher ATPase Na+/K+ subunit alpha 1 and glucose transporter 1 expression, and significantly enhanced expression of CDK5R1, GNAS, NPPB, and TEK. These results suggest that far infrared radiation improves cell proliferation and differentiation. In HK-2 cells, far infrared radiation mediated protective effects against cisplatin-induced nephrotoxicity by reducing apoptosis, as indicated by flow cytometry and caspase-3 assay.

  8. Identification of a second flagellin gene and functional characterization of a sigma70-like promoter upstream of a Leptospira borgpetersenii flaB gene.

    Science.gov (United States)

    Lin, Min; Dan, Hanhong; Li, Yijing

    2004-02-01

    Leptospira borgpetersenii, one of the causative agents of leptospirosis in both animals and humans, is a bacterial pathogen with characteristic motility that is mediated by the rotation of two periplasmic flagella (PF). The flaB gene coding for a core polypeptide subunit of PF was previously characterized by sequence analysis of its open reading frame (ORF) (M. Lin, J Biochem Mol Biol Biophys 2:181-187, 1999). The present study was undertaken to isolate and clone the uncharacterized sequence upstream of the flaB gene by using a PCR-based genome walking procedure. This has resulted in a 1470-bp genomic DNA sequence in which an 846-bp ORF coding for a 281-amino acid polypeptide (31.3 kDa) is identified 455 bp upstream from the flaB start codon. The encoded protein exhibits 72% amino acid identity to the deduced FlaB protein sequence of L. borgpetersenii and a high degree of sequence homology to the FlaB proteins of other spirochaetes. This has demonstrated for the first time that a second flaB gene homolog is present in a Leptospira species. The newly identified gene is designated flaB1, and the previously cloned flaB renamed flaB2. Within the intergenic sequence between flaB1 and flaB2, a potential stem-loop structure (12-bp inverted repeats) was identified 25 bp downstream of the flaB1 stop codon; this could serve as a transcription terminator for the flaB1 mRNA. Three E. coli-like promoter regions (I, II, and III) for binding Esigma(70), a regulatory sequence uncommonly found in flagellar genes, were predicted upstream of the flaB2 ORF. Only promoter region II contains a promoter that is functional in E. coli, as revealed at phenotypic and transcriptional levels by its capability of directing the expression of the chloramphenicol acetyltransferase (CAT) gene in the promoter probe vector pKK232-8. These observations may suggest that flaB1 and flaB2 are transcribed separately and do not form a transcriptional operon controlled by a single promoter.

  9. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile.

    Science.gov (United States)

    DeFuria, Jason; Belkina, Anna C; Jagannathan-Bogdan, Madhumita; Snyder-Cappione, Jennifer; Carr, Jordan David; Nersesova, Yanina R; Markham, Douglas; Strissel, Katherine J; Watkins, Amanda A; Zhu, Min; Allen, Jessica; Bouchard, Jacqueline; Toraldo, Gianluca; Jasuja, Ravi; Obin, Martin S; McDonnell, Marie E; Apovian, Caroline; Denis, Gerald V; Nikolajczyk, Barbara S

    2013-03-26

    Patients with type 2 diabetes (T2D) have disease-associated changes in B-cell function, but the role these changes play in disease pathogenesis is not well established. Data herein show B cells from obese mice produce a proinflammatory cytokine profile compared with B cells from lean mice. Complementary in vivo studies show that obese B cell-null mice have decreased systemic inflammation, inflammatory B- and T-cell cytokines, adipose tissue inflammation, and insulin resistance (IR) compared with obese WT mice. Reduced inflammation in obese/insulin resistant B cell-null mice associates with an increased percentage of anti-inflammatory regulatory T cells (Tregs). This increase contrasts with the sharply decreased percentage of Tregs in obese compared with lean WT mice and suggests that B cells may be critical regulators of T-cell functions previously shown to play important roles in IR. We demonstrate that B cells from T2D (but not non-T2D) subjects support proinflammatory T-cell function in obesity/T2D through contact-dependent mechanisms. In contrast, human monocytes increase proinflammatory T-cell cytokines in both T2D and non-T2D analyses. These data support the conclusion that B cells are critical regulators of inflammation in T2D due to their direct ability to promote proinflammatory T-cell function and secrete a proinflammatory cytokine profile. Thus, B cells are potential therapeutic targets for T2D.

  10. Loss-of-function of a ubiquitin-related modifier promotes the mobilization of the active MITE mPing.

    Science.gov (United States)

    Tsukiyama, Takuji; Teramoto, Shota; Yasuda, Kanako; Horibata, Akira; Mori, Nanako; Okumoto, Yutaka; Teraishi, Masayoshi; Saito, Hiroki; Onishi, Akiko; Tamura, Kanako; Tanisaka, Takatoshi

    2013-05-01

    Miniature inverted-repeat transposable elements (MITEs) are widespread in both prokaryotic and eukaryotic genomes, where their copy numbers can attain several thousands. Little is known, however, about the genetic factor(s) affecting their transpositions. Here, we show that disruption of a gene encoding ubiquitin-like protein markedly enhances the transposition activity of a MITE mPing in intact rice plants without any exogenous stresses. We found that the transposition activity of mPing is far higher in the lines harboring a non-functional allele at the Rurm1 (Rice ubiquitin-related modifier-1) locus than in the wild-type line. Although the alteration of cytosine methylation pattern triggers the activation of transposable elements under exogenous stress conditions, the methylation degrees in the whole genome, the mPing-body region, and the mPing-flanking regions of the non-functional Rurm1 line were unchanged. This study provides experimental evidence for one of the models of genome shock theory that genetic accidents within cells enhance the transposition activities of transposable elements.

  11. Selection shaped the evolution of mouse androgen-binding protein (ABP) function and promoted the duplication of Abp genes.

    Science.gov (United States)

    Karn, Robert C; Laukaitis, Christina M

    2014-08-01

    In the present article, we summarize two aspects of our work on mouse ABP (androgen-binding protein): (i) the sexual selection function producing incipient reinforcement on the European house mouse hybrid zone, and (ii) the mechanism behind the dramatic expansion of the Abp gene region in the mouse genome. Selection unifies these two components, although the ways in which selection has acted differ. At the functional level, strong positive selection has acted on key sites on the surface of one face of the ABP dimer, possibly to influence binding to a receptor. A different kind of selection has apparently driven the recent and rapid expansion of the gene region, probably by increasing the amount of Abp transcript, in one or both of two ways. We have shown previously that groups of Abp genes behave as LCRs (low-copy repeats), duplicating as relatively large blocks of genes by NAHR (non-allelic homologous recombination). The second type of selection involves the close link between the accumulation of L1 elements and the expansion of the Abp gene family by NAHR. It is probably predicated on an initial selection for increased transcription of existing Abp genes and/or an increase in Abp gene number providing more transcriptional sites. Either or both could increase initial transcript production, a quantitative change similar to increasing the volume of a radio transmission. In closing, we also provide a note on Abp gene nomenclature.

  12. Transplanted Peripheral Blood Stem Cells Mobilized by Granulocyte Colony-Stimulating Factor Promoted Hindlimb Functional Recovery After Spinal Cord Injury in Mice.

    Science.gov (United States)

    Takahashi, Hiroshi; Koda, Masao; Hashimoto, Masayuki; Furuya, Takeo; Sakuma, Tsuyoshi; Kato, Kei; Okawa, Akihiko; Inada, Taigo; Kamiya, Koshiro; Ota, Mitsutoshi; Maki, Satoshi; Takahashi, Kazuhisa; Yamazaki, Masashi; Mannoji, Chikato

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) mobilizes peripheral blood stem cells (PBSCs) derived from bone marrow. We hypothesized that intraspinal transplantation of PBSCs mobilized by G-CSF could promote functional recovery after spinal cord injury. Spinal cords of adult nonobese diabetes/severe immunodeficiency mice were injured using an Infinite Horizon impactor (60 kdyn). One week after the injury, 3.0 µl of G-CSF-mobilized human mononuclear cells (MNCs; 0.5 × 10(5)/µl), G-CSF-mobilized human CD34-positive PBSCs (CD34; 0.5 × 10(5)/µl), or normal saline was injected to the lesion epicenter. We performed immunohistochemistry. Locomotor recovery was assessed by Basso Mouse Scale. The number of transplanted human cells decreased according to the time course. The CD31-positive area was significantly larger in the MNC and CD34 groups compared with the vehicle group. The number of serotonin-positive fibers was significantly larger in the MNC and CD34 groups than in the vehicle group. Immunohistochemistry revealed that the number of apoptotic oligodendrocytes was significantly smaller in cell-transplanted groups, and the areas of demyelination in the MNC- and CD34-transplanted mice were smaller than that in the vehicle group, indicating that cell transplantation suppressed oligodendrocyte apoptosis and demyelination. Both the MNC and CD34 groups showed significantly better hindlimb functional recovery compared with the vehicle group. There was no significant difference between the two types of transplanted cells. Intraspinal transplantation of G-CSF-mobilized MNCs or CD34-positive cells promoted angiogenesis, serotonergic fiber regeneration/sparing, and preservation of myelin, resulting in improved hindlimb function after spinal cord injury in comparison with vehicle-treated control mice. Transplantation of G-CSF-mobilized PBSCs has advantages for treatment of spinal cord injury in the ethical and immunological viewpoints, although further exploration

  13. Promoting Sleep Oscillations and Their Functional Coupling by Transcranial Stimulation Enhances Memory Consolidation in Mild Cognitive Impairment.

    Science.gov (United States)

    Ladenbauer, Julia; Ladenbauer, Josef; Külzow, Nadine; de Boor, Rebecca; Avramova, Elena; Grittner, Ulrike; Flöel, Agnes

    2017-07-26

    Alzheimer's disease (AD) not only involves loss of memory functions, but also prominent deterioration of sleep physiology, which is already evident at the stage of mild cognitive impairment (MCI). Cortical slow oscillations (SO; 0.5-1 Hz) and thalamocortical spindle activity (12-15 Hz) during sleep, and their temporal coordination, are considered critical for memory formation. We investigated the potential of slow oscillatory transcranial direct current stimulation (so-tDCS), applied during a daytime nap in a sleep-state-dependent manner, to modulate these activity patterns and sleep-related memory consolidation in nine male and seven female human patients with MCI. Stimulation significantly increased overall SO and spindle power, amplified spindle power during SO up-phases, and led to stronger synchronization between SO and spindle power fluctuations in EEG recordings. Moreover, visual declarative memory was improved by so-tDCS compared with sham stimulation and was associated with stronger synchronization. These findings indicate a well-tolerated therapeutic approach for disordered sleep physiology and memory deficits in MCI patients and advance our understanding of offline memory consolidation. SIGNIFICANCE STATEMENT In the light of increasing evidence that sleep disruption is crucially involved in the progression of Alzheimer's disease (AD), sleep appears as a promising treatment target in this pathology, particularly to counteract memory decline. This study demonstrates the potential of a noninvasive brain stimulation method during sleep in patients with mild cognitive impairment (MCI), a precursor of AD, and advances our understanding of its mechanism. We provide first time evidence that slow oscillatory transcranial stimulation amplifies the functional cross-frequency coupling between memory-relevant brain oscillations and improves visual memory consolidation in patients with MCI. Copyright © 2017 the authors 0270-6474/17/377111-14$15.00/0.

  14. High-Intensity Interval Training After Stroke: An Opportunity to Promote Functional Recovery, Cardiovascular Health, and Neuroplasticity.

    Science.gov (United States)

    Crozier, Jennifer; Roig, Marc; Eng, Janice J; MacKay-Lyons, Marilyn; Fung, Joyce; Ploughman, Michelle; Bailey, Damian M; Sweet, Shane N; Giacomantonio, Nicholas; Thiel, Alexander; Trivino, Michael; Tang, Ada

    2018-04-01

    Stroke is the leading cause of adult disability. Individuals poststroke possess less than half of the cardiorespiratory fitness (CRF) as their nonstroke counterparts, leading to inactivity, deconditioning, and an increased risk of cardiovascular events. Preserving cardiovascular health is critical to lower stroke risk; however, stroke rehabilitation typically provides limited opportunity for cardiovascular exercise. Optimal cardiovascular training parameters to maximize recovery in stroke survivors also remains unknown. While stroke rehabilitation recommendations suggest the use of moderate-intensity continuous exercise (MICE) to improve CRF, neither is it routinely implemented in clinical practice, nor is the intensity always sufficient to elicit a training effect. High-intensity interval training (HIIT) has emerged as a potentially effective alternative that encompasses brief high-intensity bursts of exercise interspersed with bouts of recovery, aiming to maximize cardiovascular exercise intensity in a time-efficient manner. HIIT may provide an alternative exercise intervention and invoke more pronounced benefits poststroke. To provide an updated review of HIIT poststroke through ( a) synthesizing current evidence; ( b) proposing preliminary considerations of HIIT parameters to optimize benefit; ( c) discussing potential mechanisms underlying changes in function, cardiovascular health, and neuroplasticity following HIIT; and ( d) discussing clinical implications and directions for future research. Preliminary evidence from 10 studies report HIIT-associated improvements in functional, cardiovascular, and neuroplastic outcomes poststroke; however, optimal HIIT parameters remain unknown. Larger randomized controlled trials are necessary to establish ( a) effectiveness, safety, and optimal training parameters within more heterogeneous poststroke populations; (b) potential mechanisms of HIIT-associated improvements; and ( c) adherence and psychosocial outcomes.

  15. Promoting addiction medicine teaching through functional mentoring by co-training generalist chief residents with faculty mentors.

    Science.gov (United States)

    Alford, Daniel P; Carney, Brittany L; Jackson, Angela H; Brett, Belle; Bridden, Carly; Winter, Michael; Samet, Jeffrey H

    2018-02-16

    Generalist physicians should play a vital role in identifying and managing individuals with substance use but are inadequately trained to do so. This 5-year (2008-2012) controlled educational study assessed whether internal medicine and family medicine chief residents' (CRs) addiction medicine teaching increased by co-training with faculty mentors at a Chief Resident Immersion Training (CRIT) program in addiction medicine. All CRIT CR attendees identified a residency program faculty mentor to support addiction medicine teaching after CRIT through functional mentoring with a focus on developing and implementing an Addiction Medicine Teaching Project ("Teaching Project"). Approximately half of the CRs attended CRIT with their mentor (co-trained) and half without their mentor (solo-trained). Addiction medicine teaching outcomes were compared between groups using 6- and 11-month questionnaires and 4 bimonthly teaching logs. Of co-trained CRs, mentor characteristics that positively influenced addiction medicine teaching outcomes were identified. One hundred CRs from 74 residency programs attended CRIT from 2008 to 2012; 47 co-trained with their mentors and 53 solo-trained without their mentors. At 6-month follow-up, the co-trained CRs were more likely to meet at least monthly with their mentor (22.7% vs. 9.6%, P mentor as a facilitator for Teaching Project implementation (82.2% vs. 38.5%, P Mentors with more experience, including years of teaching, was associated with better CR Teaching Project outcomes. Co-training generalist chief residents with a faculty mentor appeared to facilitate functional mentoring-driven Teaching Project implementation but did not further increase already high levels of other addiction medicine teaching. Faculty mentors with more years of teaching experience were more effective in facilitating Teaching Project implementation.

  16. The flavonoid-rich fraction of Coreopsis tinctoria promotes glucose tolerance regain through pancreatic function recovery in streptozotocin-induced glucose-intolerant rats.

    Science.gov (United States)

    Dias, Teresa; Bronze, Maria Rosário; Houghton, Peter J; Mota-Filipe, Hélder; Paulo, Alexandra

    2010-11-11

    Infusions of Coreopsis tinctoria Nutt. flowering tops have been used traditionally in Portugal to control hyperglycaemia and a previous study revealed that daily administration of the infusion during a 3-week period promoted the recovery of glucose tolerance by a mechanism different from inhibition of glucose absorption and direct promotion of insulin secretion. We know report the study of the ethyl acetate fraction of Coreopsis tinctoria flowers infusion aiming to confirm flavonoids as bioactive metabolites. To give one step forward into the antihyperglycaemic mechanism of action of this traditionally used plant we also studied the activity of Coreopsis tinctoria flavonoids on the pancreatic function of glucose-intolerant rats. A standard antioxidant, Trolox, was also studied for comparative purposes as the antioxidant mechanism has been frequently purposed as one of the mechanisms mediating antihyperglycaemic effects of flavonoid-rich extracts. Thirteen compounds, mainly of flavanone and chalcone flavonoidal type, have been identified in this fraction by HPLC-DAD-ESI-MS/MS, and the major one (marein) quantified by HPLC-UV. The fraction (125 mg containing 20 mg of marein/kg b.w.) and Trolox (50 mg/kg b.w.) were administered daily by oral gavage to normal and STZ (40 mg/kg b.w.)-induced glucose-intolerant Wistar rats for 3 weeks. Blood glucose levels were measured weekly by Oral Glucose Tolerance Test. Pancreatic function was evaluated by plasma lipase of treated and non-treated glucose-tolerant and- intolerant rats after the 3-week treatment period. After 2 weeks oral treatment with Coreopsis tinctoria AcOEt fraction the animals were no longer glucose-intolerant, an effect maintained over the remaining experimental period. Additionally, plasma lipase values of glucose-intolerant animals treated with the AcOEt fraction (13.5 ± 0.84 U/L) showed a clear reduction when compared with the glucose-intolerant group (34.60 ± 1.76 U/L; P<0.001) and normoglycaemic control

  17. Genome-wide prediction and functional validation of promoter motifs regulating gene expression in spore and infection stages of Phytophthora infestans.

    Directory of Open Access Journals (Sweden)

    Sourav Roy

    2013-03-01

    Full Text Available Most eukaryotic pathogens have complex life cycles in which gene expression networks orchestrate the formation of cells specialized for dissemination or host colonization. In the oomycete Phytophthora infestans, the potato late blight pathogen, major shifts in mRNA profiles during developmental transitions were identified using microarrays. We used those data with search algorithms to discover about 100 motifs that are over-represented in promoters of genes up-regulated in hyphae, sporangia, sporangia undergoing zoosporogenesis, swimming zoospores, or germinated cysts forming appressoria (infection structures. Most of the putative stage-specific transcription factor binding sites (TFBSs thus identified had features typical of TFBSs such as position or orientation bias, palindromy, and conservation in related species. Each of six motifs tested in P. infestans transformants using the GUS reporter gene conferred the expected stage-specific expression pattern, and several were shown to bind nuclear proteins in gel-shift assays. Motifs linked to the appressoria-forming stage, including a functionally validated TFBS, were over-represented in promoters of genes encoding effectors and other pathogenesis-related proteins. To understand how promoter and genome architecture influence expression, we also mapped transcription patterns to the P. infestans genome assembly. Adjacent genes were not typically induced in the same stage, including genes transcribed in opposite directions from small intergenic regions, but co-regulated gene pairs occurred more than expected by random chance. These data help illuminate the processes regulating development and pathogenesis, and will enable future attempts to purify the cognate transcription factors.

  18. Isolation of the endosperm-specific LPAAT gene promoter from coconut (Cocos nucifera L.) and its functional analysis in transgenic rice plants.

    Science.gov (United States)

    Xu, Li; Ye, Rongjian; Zheng, Yusheng; Wang, Zhekui; Zhou, Peng; Lin, Yongjun; Li, Dongdong

    2010-09-01

    As one of the key tropical crops, coconut (Cocos nucifera L.) is a member of the monocotyledonous family Aracaceae (Palmaceae). In this study, we amplified the upstream region of an endosperm-specific expression gene, Lysophosphatidyl acyltransferase (LPAAT), from the coconut genomic DNA by chromosome walking. In this sequence, we found several types of promoter-related elements including TATA-box, CAAT-box and Skn1-motif. In order to further examine its function, three different 5'-deletion fragments were inserted into pBI101.3, a plant expression vector harboring the LPAAT upstream sequence, leading to pBI101.3-L1, pBI101.3-L2 and pBI101.3-L3, respectively. We obtained transgenic plants of rice by Agrobacterium-mediated callus transformation and plant regeneration and detected the expression of gus gene by histochemical staining and fluorometric determination. We found that gus gene driven by the three deletion fragments was specifically expressed in the endosperm of rice seeds, but not in the empty vector of pBI101.3 and other tissues. The highest expression level of GUS was at 15 DAF in pBI101.3-L3 and pBI101.3-L2 transgenic lines, while the same level was detected at 10 DAF in pBI101.3-L1. The expression driven by the whole fragment was up to 1.76- and 2.8-fold higher than those driven by the -817 bp and -453 bp upstream fragments, and 10.7-fold higher than that driven by the vector without the promoter. Taken together, our results strongly suggest that these promoter fragments from coconut have a significant potential in genetically improving endosperm in main crops.

  19. Three-dimensional nanoflower-like MnO2 functionalized graphene as catalytically promoted nanolabels for ultrasensitive electrochemiluminescence immunoassay

    International Nuclear Information System (INIS)

    Su, Min; Zhang, Yan; Song, Xianrang; Ge, Shenguang; Yan, Mei; Yu, Jinghua; Huang, Jiadong

    2013-01-01

    A novel electrochemiluminescence (ECL) immunosensor based on the peroxydisulfate solution for detection of prostate-specific antigen (PSA) has been developed. In this work, gold nanoparticles (AuNPs) were electrodeposited on the glassy carbon electrode surface, which could increase the surface area to capture a large amount of primary antibodies as well as to improve the electronic transmission rate. The as-prepared bionanolabels, three-dimensional (3D) nanoflower-like MnO 2 functionalized graphene (GN/MnO 2 ), with novel hybrid architecture were initially fabricated via electrostatic interaction. Then, to provide an effective matrix for antibody immobilization with good stability and bioactivity, the novel materials were modified by AuNPs with the aid of poly (diallyldimethylammonium chloride) via a simple sonication-induced assembly method. In this immunosensor, MnO 2 with the characteristics of well electrochemical behavior, low cost, and environmental-friendly, is used as a substitute for horseradish peroxidase to catalyze H 2 O 2 to produce O 2 , and its 3D nanoflower-like structure is beneficial for the unparallel surface-to-volume ratio. Furthermore, a simple, low-cost and portable home-made potential transformer was utilized in this system to take the place of conventional electrochemical workstation. With a sandwich-type immunoassay format, the amount of functionalized GN/MnO 2 labeled antibodies increased with the increment of antigens in the samples, which implied that the ECL signals enhanced with the increase of in situ generated O 2 due to the enhancive catalysis of MnO 2 to the H 2 O 2 . The immunosensor displayed excellent analytical performance for the detection of PSA in the range of 0.005–10 ng mL −1 with a detection limit of 2.5 pg mL −1 at 3σ. Moreover, the proposed method showed good precision, acceptable stability and reproducibility, and could be used for the detection of PSA in real samples. The proposed method provides a new

  20. Taurine promotes cognitive function in prenatally stressed juvenile rats via activating the Akt-CREB-PGC1α pathway.

    Science.gov (United States)

    Jia, Ning; Sun, Qinru; Su, Qian; Dang, Shaokang; Chen, Guomin

    2016-12-01

    Substantial evidence has shown that the oxidative damage to hippocampal neurons is associated with the cognitive impairment induced by adverse stimuli during gestation named prenatal stress (PS). Taurine, a conditionally essential amino acid, possesses multiple roles in the brain as a neuromodulator or antioxidant. In this study, to explore the roles of taurine in PS-induced learning and memory impairment, prenatal restraint stress was set up and Morris water maze (MWM) was employed for testing the cognitive function in the one-month-old rat offspring. The mitochondrial reactive oxygen species (ROS) level,mitochondrial membrane potential (MMP), ATP and cytochrome c oxidase (CcO) activity and apoptosis-related proteins in the hippocampus were detected. The activity of the Akt-cyclic AMP response element-binding protein (CREB)-peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) pathway in the hippocampus was measured. The results showed that high dosage of taurine administration in the early postnatal period attenuated impairment of spatial learning and memory induced by PS. Meanwhile, taurine administration diminished the increase in mitochondrial ROS, and recovered the reduction of MMP, ATP level and the activities of CcO, superoxide dismutase 2 (SOD2) and catalase induced by PS in the hippocampus. In addition, taurine administration recovered PS-suppressed SOD2 expression level. Taurine administration blocked PS-induced decrease in the ratio of Bcl-2/Bax and increase in the ratio of cleaved caspase-3/full-length caspase-3. Notably, taurine inhibited PS-decreased phosphorylation of Akt (pAkt) and phosphorylation of CREB (pCREB), which consequently enhanced the mRNA and protein levels of PGC1α. Taken together, these results suggest that high dosage of taurine administration during the early postnatal period can significantly improve the cognitive function in prenatally stressed juvenile rats via activating the Akt-CREB-PGC1α pathway. Therefore

  1. Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model

    Directory of Open Access Journals (Sweden)

    Fang-Hui Li

    2018-05-01

    Full Text Available The effects of high-intensity interval (HIIT and moderate-intensity continuous training (MICT on basal autophagy and mitochondrial function in cardiac and skeletal muscle and plasma metabolic phenotypes have not been clearly characterized. Here, we investigated how 10-weeks HIIT and MICT differentially modify basal autophagy and mitochondrial markers in cardiac and skeletal muscle and conducted an untargeted metabolomics study with proton nuclear magnetic resonance (1H NMR spectroscopy and multivariate statistical analysis of plasma metabolic phenotypes. Male Sprague–Dawley rats were separated into three groups: sedentary control (SED, MICT, and HIIT. Rats underwent evaluation of exercise performance, including exercise tolerance and grip strength, and blood lactate levels were measured immediately after an incremental exercise test. Plasma samples were analyzed by 1H NMR. The expression of autophagy and mitochondrial markers and autophagic flux (LC3II/LC3-I ratio in cardiac, rectus femoris, and soleus muscle were analyzed by western blotting. Time to exhaustion and grip strength increased significantly following HIIT compared with that in both SED and MICT groups. Compared with those in the SED group, blood lactate level, and the expression of SDH, COX-IV, and SIRT3 significantly increased in rectus femoris and soleus muscle of both HIIT and MICT groups. Meanwhile, SDH and COX-IV content of cardiac muscle and COX-IV and SIRT3 content of rectus femoris and soleus muscle increased significantly following HIIT compared with that following MICT. The expression of LC3-II, ATG-3, and Beclin-1 and LC3II/LC3-I ratio were significantly increased only in soleus and cardiac muscle following HIIT. These data indicate that HIIT was more effective for improving physical performance and facilitating cardiac and skeletal muscle adaptations that increase mitochondrial function and basal autophagic activities. Moreover, 1H NMR spectroscopy and multivariate

  2. Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model.

    Science.gov (United States)

    Li, Fang-Hui; Li, Tao; Ai, Jing-Yi; Sun, Lei; Min, Zhu; Duan, Rui; Zhu, Ling; Liu, Yan-Ying; Liu, Timon Cheng-Yi

    2018-01-01

    The effects of high-intensity interval (HIIT) and moderate-intensity continuous training (MICT) on basal autophagy and mitochondrial function in cardiac and skeletal muscle and plasma metabolic phenotypes have not been clearly characterized. Here, we investigated how 10-weeks HIIT and MICT differentially modify basal autophagy and mitochondrial markers in cardiac and skeletal muscle and conducted an untargeted metabolomics study with proton nuclear magnetic resonance ( 1 H NMR) spectroscopy and multivariate statistical analysis of plasma metabolic phenotypes. Male Sprague-Dawley rats were separated into three groups: sedentary control (SED), MICT, and HIIT. Rats underwent evaluation of exercise performance, including exercise tolerance and grip strength, and blood lactate levels were measured immediately after an incremental exercise test. Plasma samples were analyzed by 1 H NMR. The expression of autophagy and mitochondrial markers and autophagic flux (LC3II/LC3-I ratio) in cardiac, rectus femoris, and soleus muscle were analyzed by western blotting. Time to exhaustion and grip strength increased significantly following HIIT compared with that in both SED and MICT groups. Compared with those in the SED group, blood lactate level, and the expression of SDH, COX-IV, and SIRT3 significantly increased in rectus femoris and soleus muscle of both HIIT and MICT groups. Meanwhile, SDH and COX-IV content of cardiac muscle and COX-IV and SIRT3 content of rectus femoris and soleus muscle increased significantly following HIIT compared with that following MICT. The expression of LC3-II, ATG-3, and Beclin-1 and LC3II/LC3-I ratio were significantly increased only in soleus and cardiac muscle following HIIT. These data indicate that HIIT was more effective for improving physical performance and facilitating cardiac and skeletal muscle adaptations that increase mitochondrial function and basal autophagic activities. Moreover, 1 H NMR spectroscopy and multivariate statistical

  3. Taurine promotes cognitive function in prenatally stressed juvenile rats via activating the Akt-CREB-PGC1α pathway

    Directory of Open Access Journals (Sweden)

    Ning Jia

    2016-12-01

    Full Text Available Substantial evidence has shown that the oxidative damage to hippocampal neurons is associated with the cognitive impairment induced by adverse stimuli during gestation named prenatal stress (PS. Taurine, a conditionally essential amino acid, possesses multiple roles in the brain as a neuromodulator or antioxidant. In this study, to explore the roles of taurine in PS-induced learning and memory impairment, prenatal restraint stress was set up and Morris water maze (MWM was employed for testing the cognitive function in the one-month-old rat offspring. The mitochondrial reactive oxygen species (ROS level,mitochondrial membrane potential (MMP, ATP and cytochrome c oxidase (CcO activity and apoptosis-related proteins in the hippocampus were detected. The activity of the Akt-cyclic AMP response element-binding protein (CREB-peroxisome proliferator-activated receptor–γ coactivator-1α (PGC1α pathway in the hippocampus was measured. The results showed that high dosage of taurine administration in the early postnatal period attenuated impairment of spatial learning and memory induced by PS. Meanwhile, taurine administration diminished the increase in mitochondrial ROS, and recovered the reduction of MMP, ATP level and the activities of CcO, superoxide dismutase 2 (SOD2 and catalase induced by PS in the hippocampus. In addition, taurine administration recovered PS-suppressed SOD2 expression level. Taurine administration blocked PS-induced decrease in the ratio of Bcl-2/Bax and increase in the ratio of cleaved caspase-3/full-length caspase-3. Notably, taurine inhibited PS-decreased phosphorylation of Akt (pAkt and phosphorylation of CREB (pCREB, which consequently enhanced the mRNA and protein levels of PGC1α. Taken together, these results suggest that high dosage of taurine administration during the early postnatal period can significantly improve the cognitive function in prenatally stressed juvenile rats via activating the Akt-CREB-PGC1

  4. Comparative cost-effectiveness of two interventions to promote work functioning by targeting mental health complaints among nurses: pragmatic cluster randomised trial.

    Science.gov (United States)

    Noben, Cindy; Smit, Filip; Nieuwenhuijsen, Karen; Ketelaar, Sarah; Gärtner, Fania; Boon, Brigitte; Sluiter, Judith; Evers, Silvia

    2014-10-01

    The specific job demands of working in a hospital may place nurses at elevated risk for developing distress, anxiety and depression. Screening followed by referral to early interventions may reduce the incidence of these health problems and promote work functioning. To evaluate the comparative cost-effectiveness of two strategies to promote work functioning among nurses by reducing symptoms of mental health complaints. Three conditions were compared: the control condition consisted of online screening for mental health problems without feedback about the screening results. The occupational physician condition consisted of screening, feedback and referral to the occupational physician for screen-positive nurses. The third condition included screening, feedback, and referral to e-mental health. The study was designed as an economic evaluation alongside a pragmatic cluster randomised controlled trial with randomisation at hospital-ward level. The study included 617 nurses in one academic medical centre in the Netherlands. Treatment response was defined as an improvement on the Nurses Work Functioning Questionnaire of at least 40% between baseline and follow-up. Total per-participant costs encompassed intervention costs, direct medical and non-medical costs, and indirect costs stemming from lost productivity due to absenteeism and presenteeism. All costs were indexed for the year 2011. At 6 months follow-up, significant improvement in work functioning occurred in 20%, 24% and 16% of the participating nurses in the control condition, the occupational physician condition and the e-mental health condition, respectively. In these conditions the total average annualised costs were €1752, €1266 and €1375 per nurse. The median incremental cost-effectiveness ratio for the occupational physician condition versus the control condition was dominant, suggesting cost savings of €5049 per treatment responder. The incremental cost-effectiveness ratio for the e-mental health

  5. Functional and Promoter Analysis of ChiIV3, a Chitinase of Pepper Plant, in Response to Phytophthora capsici Infection.

    Science.gov (United States)

    Liu, Zhiqin; Shi, Lanping; Yang, Sheng; Lin, Youquan; Weng, Yahong; Li, Xia; Hussain, Ansar; Noman, Ali; He, Shuilin

    2017-08-01

    Despite the involvement of many members of the chitinase family in plant immunity, the precise functions of the majority of the members remain poorly understood. Herein, the gene ChiIV3 in Capsicum annuum encoding a chitinase protein containing a chitin binding domain and targeting to the plasma membrane was found to be induced by Phytophthora capsici inoculation (PCI) and applied chitin treatment. Besides its direct inhibitory effect on growth of Phytophthora capsici ( P. capsici ), ChiIV3 was also found by virus-induced gene silencing (VIGS) and transient overexpression (TOE) in pepper plants to act as a positive regulator of plant cell death and in triggering defense signaling and upregulation of PR (pathogenesis related) genes against PCI. A 5' deletion assay revealed that pChiIV3 -712 to -459 bp was found to be sufficient for ChiIV3' response to PCI. Furthermore, a mutation assay indicated that W-box -466 to -461 bp in pChiIV3 -712 to -459 bp was noted to be the PCI-responsible element. These results collectively suggest that ChiIV3 acts as a likely antifungal protein and as a receptor for unidentified chitin in planta to trigger cell death and defense signaling against PCI.

  6. Moderate Champagne consumption promotes an acute improvement in acute endothelial-independent vascular function in healthy human volunteers.

    Science.gov (United States)

    Vauzour, David; Houseman, Emily J; George, Trevor W; Corona, Giulia; Garnotel, Roselyne; Jackson, Kim G; Sellier, Christelle; Gillery, Philippe; Kennedy, Orla B; Lovegrove, Julie A; Spencer, Jeremy P E

    2010-04-01

    Epidemiological studies have suggested an inverse correlation between red wine consumption and the incidence of CVD. However, Champagne wine has not been fully investigated for its cardioprotective potential. In order to assess whether acute and moderate Champagne wine consumption is capable of modulating vascular function, we performed a randomised, placebo-controlled, cross-over intervention trial. We show that consumption of Champagne wine, but not a control matched for alcohol, carbohydrate and fruit-derived acid content, induced an acute change in endothelium-independent vasodilatation at 4 and 8 h post-consumption. Although both Champagne wine and the control also induced an increase in endothelium-dependent vascular reactivity at 4 h, there was no significant difference between the vascular effects induced by Champagne or the control at any time point. These effects were accompanied by an acute decrease in the concentration of matrix metalloproteinase (MMP-9), a significant decrease in plasma levels of oxidising species and an increase in urinary excretion of a number of phenolic metabolites. In particular, the mean total excretion of hippuric acid, protocatechuic acid and isoferulic acid were all significantly greater following the Champagne wine intervention compared with the control intervention. Our data suggest that a daily moderate consumption of Champagne wine may improve vascular performance via the delivery of phenolic constituents capable of improving NO bioavailability and reducing matrix metalloproteinase activity.

  7. How to improve the promotion of Korean beef barbecue, bulgogi, for international customers. An application of quality function deployment.

    Science.gov (United States)

    Park, So-Hyun; Ham, Sunny; Lee, Min-A

    2012-10-01

    Quality function deployment (QFD) is a product development technique that translates customer requirements into activities for the development of products and services. This study utilizes QFD to identify American customer's requirements for bulgogi, a popular Korean dish among international customers, and how to fulfill those requirements. A customer survey and an expert opinion survey were conducted for US customers. The top five customer requirements for bulgogi were identified as taste, freshness, flavor, tenderness, and juiciness; ease of purchase was included in the place of tenderness after calculating the weight requirements. Eighteen engineering characteristics were developed, and a 'localization of bulgogi menu' is strongly related to the other characteristics as well. The results from the calculation of relative importance of engineering characteristics identified that the 'control of marinating time', 'localization of bulgogi menu', 'improvement of cooking and serving process', 'development of recipe by parts of beef', and 'use of various seasonings' were the highest contributors to the overall improvement of bulgogi. The relative importance of engineering characteristics, correlation, and technical difficulties are ranked and integrated to develop the most effective strategy. The findings are discussed relative to industry implications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. 3D Printed Structures Filled with Carbon Fibers and Functionalized with Mesenchymal Stem Cell Conditioned Media as In Vitro Cell Niches for Promoting Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Josefa Predestinación García-Ruíz

    2017-12-01

    Full Text Available In this study, we present a novel approach towards the straightforward, rapid, and low-cost development of biomimetic composite scaffolds for tissue engineering strategies. The system is based on the additive manufacture of a computer-designed lattice structure or framework, into which carbon fibers are subsequently knitted or incorporated. The 3D-printed lattice structure acts as support and the knitted carbon fibers perform as driving elements for promoting cell colonization of the three-dimensional construct. A human mesenchymal stem cell (h-MSC conditioned medium (CM is also used for improving the scaffold’s response and promoting cell adhesion, proliferation, and viability. Cell culture results—in which scaffolds become buried in collagen type II—provide relevant information regarding the viability of the composite scaffolds used and the prospective applications of the proposed approach. In fact, the advanced composite scaffold developed, together with the conditioned medium functionalization, constitutes a biomimetic stem cell niche with clear potential, not just for tendon and ligament repair, but also for cartilage and endochondral bone formation and regeneration strategies.

  9. Tumor-promoting function and prognostic significance of the RNA-binding protein T-cell intracellular antigen-1 in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Hamada, Junichi; Shoda, Katsutoshi; Masuda, Kiyoshi; Fujita, Yuji; Naruto, Takuya; Kohmoto, Tomohiro; Miyakami, Yuko; Watanabe, Miki; Kudo, Yasusei; Fujiwara, Hitoshi; Ichikawa, Daisuke; Otsuji, Eigo; Imoto, Issei

    2016-03-29

    T-cell intracellular antigen-1 (TIA1) is an RNA-binding protein involved in many regulatory aspects of mRNA metabolism. Here, we report previously unknown tumor-promoting activity of TIA1, which seems to be associated with its isoform-specific molecular distribution and regulation of a set of cancer-related transcripts, in esophageal squamous cell carcinoma (ESCC). Immunohistochemical overexpression of TIA1 ectopically localized in the cytoplasm of tumor cells was an independent prognosticator for worse overall survival in a cohort of 143 ESCC patients. Knockdown of TIA1 inhibited proliferation of ESCC cells. By exogenously introducing each of two major isoforms, TIA1a and TIA1b, only TIA1a, which was localized to both the nucleus and cytoplasm, promoted anchorage-dependent and anchorage-independent ESCC cell proliferation. Ribonucleoprotein immunoprecipitation, followed by microarray analysis or massive-parallel sequencing, identified a set of TIA1-binding mRNAs, including SKP2 and CCNA2. TIA1 increased SKP2 and CCNA2 protein levels through the suppression of mRNA decay and translational induction, respectively. Our findings uncover a novel oncogenic function of TIA1 in esophageal tumorigenesis, and implicate its use as a marker for prognostic evaluation and as a therapeutic target in ESCC.

  10. Development of Novel Antisense Oligonucleotides for the Functional Regulation of RNA-Induced Silencing Complex (RISC) by Promoting the Release of microRNA from RISC.

    Science.gov (United States)

    Ariyoshi, Jumpei; Momokawa, Daiki; Eimori, Nao; Kobori, Akio; Murakami, Akira; Yamayoshi, Asako

    2015-12-16

    MicroRNAs (miRNAs) are known to be important post-transcription regulators of gene expression. Aberrant miRNA expression is associated with pathological disease processes, including carcinogenesis. Therefore, miRNAs are considered significant therapeutic targets for cancer therapy. MiRNAs do not act alone, but exhibit their functions by forming RNA-induced silencing complex (RISC). Thus, the regulation of RISC activity is a promising approach for cancer therapy. MiRNA is a core component of RISC and is an essential to RISC for recognizing target mRNA. Thereby, it is expected that development of the method to promote the release of miRNA from RISC would be an effective approach for inhibition of RISC activity. In this study, we synthesized novel peptide-conjugated oligonucleotides (RINDA-as) to promote the release of miRNA from RISC. RINDA-as showed a high rate of miRNA release from RISC and high level of inhibitory effect on RISC activity.

  11. Functionalizing Ascl1 with Novel Intracellular Protein Delivery Technology for Promoting Neuronal Differentiation of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Robinson, Meghan; Chapani, Parv; Styan, Tara; Vaidyanathan, Ranjani; Willerth, Stephanie Michelle

    2016-08-01

    Pluripotent stem cells can become any cell type found in the body. Accordingly, one of the major challenges when working with pluripotent stem cells is producing a highly homogenous population of differentiated cells, which can then be used for downstream applications such as cell therapies or drug screening. The transcription factor Ascl1 plays a key role in neural development and previous work has shown that Ascl1 overexpression using viral vectors can reprogram fibroblasts directly into neurons. Here we report on how a recombinant version of the Ascl1 protein functionalized with intracellular protein delivery technology (Ascl1-IPTD) can be used to rapidly differentiate human induced pluripotent stem cells (hiPSCs) into neurons. We first evaluated a range of Ascl1-IPTD concentrations to determine the most effective amount for generating neurons from hiPSCs cultured in serum free media. Next, we looked at the frequency of Ascl1-IPTD supplementation in the media on differentiation and found that one time supplementation is sufficient enough to trigger the neural differentiation process. Ascl1-IPTD was efficiently taken up by the hiPSCs and enabled rapid differentiation into TUJ1-positive and NeuN-positive populations with neuronal morphology after 8 days. After 12 days of culture, hiPSC-derived neurons produced by Ascl1-IPTD treatment exhibited greater neurite length and higher numbers of branch points compared to neurons derived using a standard neural progenitor differentiation protocol. This work validates Ascl1-IPTD as a powerful tool for engineering neural tissue from pluripotent stem cells.

  12. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.

    Science.gov (United States)

    Yahata, Kenichiro; Kanno, Haruo; Ozawa, Hiroshi; Yamaya, Seiji; Tateda, Satoshi; Ito, Kenta; Shimokawa, Hiroaki; Itoi, Eiji

    2016-12-01

    OBJECTIVE Extracorporeal shock wave therapy (ESWT) is widely used to treat various human diseases. Low-energy ESWT increases expression of vascular endothelial growth factor (VEGF) in cultured endothelial cells. The VEGF stimulates not only endothelial cells to promote angiogenesis but also neural cells to induce neuroprotective effects. A previous study by these authors demonstrated that low-energy ESWT promoted expression of VEGF in damaged neural tissue and improved locomotor function after spinal cord injury (SCI). However, the neuroprotective mechanisms in the injured spinal cord produced by low-energy ESWT are still unknown. In the present study, the authors investigated the cell specificity of VEGF expression in injured spinal cords and angiogenesis induced by low-energy ESWT. They also examined the neuroprotective effects of low-energy ESWT on cell death, axonal damage, and white matter sparing as well as the therapeutic effect for improvement of sensory function following SCI. METHODS Adult female Sprague-Dawley rats were divided into the SCI group (SCI only) and SCI-SW group (low-energy ESWT applied after SCI). Thoracic SCI was produced using a New York University Impactor. Low-energy ESWT was applied to the injured spinal cord 3 times a week for 3 weeks after SCI. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan open-field locomotor score for 42 days after SCI. Mechanical and thermal allodynia in the hindpaw were evaluated for 42 days. Double staining for VEGF and various cell-type markers (NeuN, GFAP, and Olig2) was performed at Day 7; TUNEL staining was also performed at Day 7. Immunohistochemical staining for CD31, α-SMA, and 5-HT was performed on spinal cord sections taken 42 days after SCI. Luxol fast blue staining was performed at Day 42. RESULTS Low-energy ESWT significantly improved not only locomotion but also mechanical and thermal allodynia following SCI. In the double staining, expression of VEGF was observed in Neu

  13. Galectin-3 and N-acetylglucosamine promote myogenesis and improve skeletal muscle function in the mdx model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Rancourt, Ann; Dufresne, Sébastien S; St-Pierre, Guillaume; Lévesque, Julie-Christine; Nakamura, Haruka; Kikuchi, Yodai; Satoh, Masahiko S; Frenette, Jérôme; Sato, Sachiko

    2018-06-12

    The muscle membrane, sarcolemma, must be firmly attached to the basal lamina. The failure of proper attachment results in muscle injury, which is the underlying cause of Duchenne muscular dystrophy (DMD), in which mutations in the dystrophin gene disrupts the firm adhesion. In patients with DMD, even moderate contraction causes damage, leading to progressive muscle degeneration. The damaged muscles are repaired through myogenesis. Consequently, myogenesis is highly active in patients with DMD, and the repeated activation of myogenesis leads to the exhaustion of the myogenic stem cells. Therefore, approaches to reducing the risk of the exhaustion are to develop a treatment that strengthens the interaction between the sarcolemma and the basal lamina and increases the efficiency of the myogenesis. Galectin-3 is an oligosaccharide-binding protein and is known to be involved in cell-cell interactions and cell-matrix interactions. Galectin-3 is expressed in myoblasts and skeletal muscle, although its function in muscle remains elusive. In this study, we found evidence that galectin-3 and the monosaccharide N-acetylglucosamine, which increases the synthesis of binding partners (oligosaccharides) of galectin-3, promote myogenesis in vitro. Moreover, in the mdx mouse model of DMD, treatment with N-acetylglucosamine increased muscle-force production. The results suggest that treatment with N-acetylglucosamine might mitigate the burden of DMD.-Rancourt, A., Dufresne, S. S., St-Pierre, G., Lévesque, J.-C., Nakamura, H., Kikuchi, Y., Satoh, M. S., Frenette, J., Sato, S. Galectin-3 and N-acetylglucosamine promote myogenesis and improve skeletal muscle function in the mdx model of Duchenne muscular dystrophy.

  14. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Yoshiomi Kobayashi

    Full Text Available Murine and human iPSC-NS/PCs (induced pluripotent stem cell-derived neural stem/progenitor cells promote functional recovery following transplantation into the injured spinal cord in rodents. However, for clinical applicability, it is critical to obtain proof of the concept regarding the efficacy of grafted human iPSC-NS/PCs (hiPSC-NS/PCs for the repair of spinal cord injury (SCI in a non-human primate model. This study used a pre-evaluated "safe" hiPSC-NS/PC clone and an adult common marmoset (Callithrix jacchus model of contusive SCI. SCI was induced at the fifth cervical level (C5, followed by transplantation of hiPSC-NS/PCs at 9 days after injury. Behavioral analyses were performed from the time of the initial injury until 12 weeks after SCI. Grafted hiPSC-NS/PCs survived and differentiated into all three neural lineages. Furthermore, transplantation of hiPSC-NS/PCs enhanced axonal sparing/regrowth and angiogenesis, and prevented the demyelination after SCI compared with that in vehicle control animals. Notably, no tumor formation occurred for at least 12 weeks after transplantation. Quantitative RT-PCR showed that mRNA expression levels of human neurotrophic factors were significantly higher in cultured hiPSC-NS/PCs than in human dermal fibroblasts (hDFs. Finally, behavioral tests showed that hiPSC-NS/PCs promoted functional recovery after SCI in the common marmoset. Taken together, these results indicate that pre-evaluated safe hiPSC-NS/PCs are a potential source of cells for the treatment of SCI in the clinic.

  15. Surface functionalization of zirconium dioxide nano-adsorbents with 3-aminopropyl triethoxysilane and promoted adsorption activity for bovine serum albumin

    International Nuclear Information System (INIS)

    Liu, Gen; Wu, Chaochao; Zhang, Xia; Liu, Yufeng; Meng, Hao; Xu, Junli; Han, Yide; Xu, Xinxin; Xu, Yan

    2016-01-01

    Surface functionalization of zirconium dioxide (ZrO_2) nano-adsorbents was carried out by using 3-aminopropyl triethoxysilane (APTES) as the modifier. The addition amount of APTES was varied to determine the optimum modification extent, and the bulk ZrO_2 microparticles were also modified by APTES for comparison. Some means, such as TEM, XRD, FT-IR, XPS and TG-DSC were used to character these ZrO_2 particles. The results showed that the APTES molecules were chemically immobilized on the surface of ZrO_2 nanoparticles via Zr−O−Si bonds, and the nano-ZrO_2 samples showed larger special surface area. In the adsorption of bovine serum albumin (BSA), nano-ZrO_2 samples exhibited enhanced adsorption activity, and APTES modified nano-ZrO_2 with proper APTES content presented the best adsorption property. Under the same adsorption conditions, the equilibrium adsorption capacity of BSA on APTES-ZrO_2-2 was almost 2.3 times as that on pristine nano-ZrO_2 and 3.0 times as on bulk ZrO_2 microparticles. The increased adsorption capacity of APTES-ZrO_2 nano-adsorbents can be attributed to the chemical interaction between amino and carboxyl groups at APTES-ZrO_2/BSA interface. The pH-dependent experiments showed that the optimum pH value for the adsorption and desorption was 5.0 and 9.0, respectively, which suggested that the adsorption and release of BSA could be controlled simply by adjusting the solution pH condition. - Highlights: • APTES chemically immobilized on ZrO_2 nanoparticles via Zr−O−Si bond. • Enhanced adsorption capacity of BSA was observed on APTES-ZrO_2. • Chemical adsorption character of BSA on APTES-ZrO_2. • Adsorption/release of BSA on APTES-ZrO_2 accomplished by adjusting pH value.

  16. Surface functionalization of zirconium dioxide nano-adsorbents with 3-aminopropyl triethoxysilane and promoted adsorption activity for bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gen; Wu, Chaochao [Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819 (China); Zhang, Xia, E-mail: xzhang@mail.neu.edu.cn [Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819 (China); Liu, Yufeng, E-mail: liuyufeng@bjmu.edu.cn [College of Pharmacy, Liaoning University, Shenyang 110036 (China); Meng, Hao; Xu, Junli; Han, Yide; Xu, Xinxin; Xu, Yan [Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819 (China)

    2016-06-15

    Surface functionalization of zirconium dioxide (ZrO{sub 2}) nano-adsorbents was carried out by using 3-aminopropyl triethoxysilane (APTES) as the modifier. The addition amount of APTES was varied to determine the optimum modification extent, and the bulk ZrO{sub 2} microparticles were also modified by APTES for comparison. Some means, such as TEM, XRD, FT-IR, XPS and TG-DSC were used to character these ZrO{sub 2} particles. The results showed that the APTES molecules were chemically immobilized on the surface of ZrO{sub 2} nanoparticles via Zr−O−Si bonds, and the nano-ZrO{sub 2} samples showed larger special surface area. In the adsorption of bovine serum albumin (BSA), nano-ZrO{sub 2} samples exhibited enhanced adsorption activity, and APTES modified nano-ZrO{sub 2} with proper APTES content presented the best adsorption property. Under the same adsorption conditions, the equilibrium adsorption capacity of BSA on APTES-ZrO{sub 2}-2 was almost 2.3 times as that on pristine nano-ZrO{sub 2} and 3.0 times as on bulk ZrO{sub 2} microparticles. The increased adsorption capacity of APTES-ZrO{sub 2} nano-adsorbents can be attributed to the chemical interaction between amino and carboxyl groups at APTES-ZrO{sub 2}/BSA interface. The pH-dependent experiments showed that the optimum pH value for the adsorption and desorption was 5.0 and 9.0, respectively, which suggested that the adsorption and release of BSA could be controlled simply by adjusting the solution pH condition. - Highlights: • APTES chemically immobilized on ZrO{sub 2} nanoparticles via Zr−O−Si bond. • Enhanced adsorption capacity of BSA was observed on APTES-ZrO{sub 2}. • Chemical adsorption character of BSA on APTES-ZrO{sub 2}. • Adsorption/release of BSA on APTES-ZrO{sub 2} accomplished by adjusting pH value.

  17. Active site-targeted covalent irreversible inhibitors of USP7 impair the functions of Foxp3+ T-regulatory cells by promoting ubiquitination of Tip60.

    Directory of Open Access Journals (Sweden)

    Feng Wang

    Full Text Available Accumulation of Foxp3+ T-regulatory (Treg cells in the tumor microenvironment is associated with tumor immune evasion and poor patient outcome in the case of many solid tumors. Current therapeutic strategies for blocking Treg functions are not Treg-specific, and display only modest and transient efficacy. Recent studies revealed that ubiquitin-specific protease 7 (USP7 is essential for Treg functions by stabilizing expression of Tip60 and Foxp3, which together are central to the development and maintenance of the Treg cell lineage. Pharmacological inhibition of USP7 is therefore a promising strategy for suppressing Treg functions and promoting anti-tumor immunity. Previously, we reported the P5091 series of small molecule USP7 inhibitors and demonstrated their direct anti-tumor activity in vivo using xenograft models. However, the precise mechanism of action of these compounds was not well defined. In this study, we report the development and characterization of P217564, a second-generation USP7 inhibitor with improved potency and selectivity. P217564 selectively targets the catalytic cleft of USP7 and modifies its active site cysteine (C223 by forming a covalent adduct. Irreversible inhibition of USP7 results in durable downstream biological responses in cells, including down-regulation of Tip60 and consequent impairment of Treg suppressive function. In addition, we demonstrate that both USP7 and various USP7 substrates are subjected to Lys48-mediated ubiquitin modification, consistent with increased proteasomal degradation of these proteins because of USP7 inhibition.

  18. Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function.

    Science.gov (United States)

    Wang, Yanyan; Huang, Gonghua; Vogel, Peter; Neale, Geoffrey; Reizis, Boris; Chi, Hongbo

    2012-02-07

    Homeostatic control of dendritic cell (DC) survival is crucial for adaptive immunity, but the molecular mechanism is not well defined. Moreover, how DCs influence immune homeostasis under steady state remains unclear. Combining DC-specific and -inducible deletion systems, we report that transforming growth factor beta-activated kinase 1 (TAK1) is an essential regulator of DC survival and immune system homeostasis and function. Deficiency of TAK1 in CD11c(+) cells induced markedly elevated apoptosis, leading to the depletion of DC populations, especially the CD8(+) and CD103(+) DC subsets in lymphoid and nonlymphoid tissues, respectively. TAK1 also contributed to DC development by promoting the generation of DC precursors. Prosurvival signals from Toll-like receptors, CD40 and receptor activator of nuclear factor-κB (RANK) are integrated by TAK1 in DCs, which in turn mediated activation of downstream NF-κB and AKT-Foxo pathways and established a gene-expression program. TAK1 deficiency in DCs caused a myeloid proliferative disorder characterized by expansion of neutrophils and inflammatory monocytes, disrupted T-cell homeostasis, and prevented effective T-cell priming and generation of regulatory T cells. Moreover, TAK1 signaling in DCs was required to prevent myeloid proliferation even in the absence of lymphocytes, indicating a previously unappreciated regulatory mechanism of DC-mediated control of myeloid cell-dependent inflammation. Therefore, TAK1 orchestrates a prosurvival checkpoint in DCs that affects the homeostasis and function of the immune system.

  19. IL-21 May Promote Granzyme B-Dependent NK/Plasmacytoid Dendritic Cell Functional Interaction in Cutaneous Lupus Erythematosus.

    Science.gov (United States)

    Salvi, Valentina; Vermi, William; Cavani, Andrea; Lonardi, Silvia; Carbone, Teresa; Facchetti, Fabio; Bosisio, Daniela; Sozzani, Silvano

    2017-07-01

    Autoimmune skin lesions are characterized by a complex cytokine milieu and by the accumulation of plasmacytoid dendritic cells (pDCs). Granzyme B (GrB) transcript is abundant in activated pDCs, though its mechanisms of regulation and biological role are largely unknown. Here we report that IL-21 was the only T helper 1/T helper 17 cytokine able to induce the expression and secretion of GrB by pDCs and that this action was counteracted by the autocrine production of type I IFNs. In lupus erythematosus skin lesions, the percentage of GrB + pDCs directly correlated with the IL-21/MxA ratio, indicating that the interplay between these two cytokines finely tunes the levels of pDC-dependent GrB also in vivo. In lupus erythematosus, pDCs colocalized with professional cytotoxic cells at sites of epithelial damage, suggesting a role in keratinocyte killing. Accordingly, we demonstrate that supernatants of IL-21-activated pDCs promoted autologous keratinocyte killing by natural killer cells and this action was dependent on GrB. These results propose a GrB-dependent functional interaction between pDCs and natural killer cells and highlight a negative feedback regulation by type I IFNs in vitro and in vivo that may function to limit excessive tissue damage. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Two ABREs, two redundant root-specific and one W-box cis-acting elements are functional in the sunflower HAHB4 promoter.

    Science.gov (United States)

    Manavella, Pablo A; Dezar, Carlos A; Ariel, Federico D; Chan, Raquel L

    2008-10-01

    HAHB4 is a sunflower gene encoding a homeodomain-leucine zipper (HD-Zip) transcription factor. It was previously demonstrated that this gene is regulated at the transcriptional level by several abiotic factors and hormones. A previous analysis in the PLACE database revealed the presence of four putative ABREs. In this work these four elements and also one W-box and two root-specific expression elements were characterized as functional. Site-directed mutagenesis on the promoter, stable transformation of Arabidopis plants as well as transient transformation of sunflower leaves, were performed. The analysis of the transformants was carried out by histochemistry and real time RT-PCR. The results indicate that just one ABRE out of the four is responsible for ABA, NaCl and drought regulation. However, NaCl induction occurs also by an additional ABA-independent way involving another two overlapped ABREs. On the other hand, it was determined that the W-box located 5' upstream is responsive to ethylene and only two root-specific expression elements, among the several detected, are functional but redundant. Conservation of molecular mechanisms between sunflower and Arabidopsis is strongly supported by this experimental work.

  1. Far infra-red therapy promotes ischemia-induced angiogenesis in diabetic mice and restores high glucose-suppressed endothelial progenitor cell functions

    Directory of Open Access Journals (Sweden)

    Huang Po-Hsun

    2012-08-01

    Full Text Available Abstract Background Far infra-red (IFR therapy was shown to exert beneficial effects in cardiovascular system, but effects of IFR on endothelial progenitor cell (EPC and EPC-related vasculogenesis remain unclear. We hypothesized that IFR radiation can restore blood flow recovery in ischemic hindlimb in diabetic mice by enhancement of EPCs functions and homing process. Materials and methods Starting at 4 weeks after the onset of diabetes, unilateral hindlimb ischemia was induced in streptozotocine (STZ-induced diabetic mice, which were divided into control and IFR therapy groups (n = 6 per group. The latter mice were placed in an IFR dry sauna at 34°C for 30 min once per day for 5 weeks. Results Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio in the thermal therapy group was significantly increased beyond that in controls, and significantly greater capillary density was seen in the IFR therapy group. Flow cytometry analysis showed impaired EPCs (Sca-1+/Flk-1+ mobilization after ischemia surgery in diabetic mice with or without IFR therapy (n = 6 per group. However, as compared to those in the control group, bone marrow-derived EPCs differentiated into endothelial cells defined as GFP+/CD31+ double-positive cells were significantly increased in ischemic tissue around the vessels in diabetic mice that received IFR radiation. In in-vitro studies, cultured EPCs treated with IFR radiation markedly augmented high glucose-impaired EPC functions, inhibited high glucose-induced EPC senescence and reduced H2O2 production. Nude mice received human EPCs treated with IFR in high glucose medium showed a significant improvement in blood flow recovery in ischemic limb compared to those without IFR therapy. IFR therapy promoted blood flow recovery and new vessel formation in STZ-induced diabetic mice. Conclusions Administration of IFR therapy promoted collateral flow recovery and new vessel formation in STZ

  2. [Human umbilical cord blood mononuclear cell transplantation promotes long-term neurobehavioral functional development of newborn SD rats with hypoxic ischemic brain injury].

    Science.gov (United States)

    Huang, Hui-zhi; Wen, Xiao-hong; Liu, Hui; Huang, Jin-hua; Liu, Shang-quan; Ren, Wei-hua; Fang, Wen-xiang; Qian, Yin-feng; Hou, Wei-zhu; Yan, Ming-jie; Yao, You-heng; Li, Wei-Zu; Li, Qian-Jin

    2013-06-01

    To explore the effect of human umbilical cord blood mononuclear cells (UCBMC) promoting nerve behavior function and brain tissue recovery of neonatal SD rat with hypoxic ischemic brain injury (HIBI). A modified newborn rat model that had a combined hypoxic and ischemic brain injury as described by Rice-Vannucci was used, early nervous reflex, the Morris water maze and walking track analysis were used to evaluate nervous behavioral function, and brain MRI, HE staining to evaluate brain damage recovery. Newborn rat Rice-Vannucci model showed significant brain atrophy, obvious hemiplegia of contralateral limbs,e.g right step length [(7.67 ± 0.46) cm vs. (8.22 ± 0.50) cm, F = 1.494] and toe distance [(0.93 ± 0.06) cm vs. (1.12 ± 0.55) cm, F = 0.186] were significantly reduced compared with left side, learning and memory ability was significantly impaired compared with normal control group (P vs.(14.22 ± 5.07) s, t = 4.618] and negative geotaxis reflex time [(7.26 ± 2.00) s vs. (11.76 ± 3.73) s, t = 4.755] on postnatal 14 days of HIBI+ transplantation group were significantly reduced compared with HIBI+NaCl group (P vs. (34.04 ± 12.95) s, t = 3.356] and swimming distance [ (9.12 ± 1.21) cm vs.(12.70 ± 1.53) cm, t = 17.095] of HIBI+transplantation group were significantly reduced compared with those of HIBI+NaCl group (P brain volume on postnatal 10 d [ (75.37 ± 4.53)% vs. (67.17 ± 4.08)%, t = -6.017] and 67 d [ (69.05 ± 3.58)% vs.(60.83 ± 3.69)%, t = -7.148]of HIBI+ transplantation group were significantly larger than those of HIBI+NaCl group (P left cortical edema significantly reduced and nerve cell necrosis of HIBI+ transplantation group is not obvious compared with HIBI+NaCl group. Human UCBMC intraperitoneal transplantation significantly promoted recovery of injured brain cells and neurobehavioral function development.

  3. What to Build for Middle-Agers to Come? Attractive and Necessary Functions of Exercise-Promotion Mobile Phone Apps: A Cross-Sectional Study.

    Science.gov (United States)

    Liao, Gen-Yih; Chien, Yu-Tai; Chen, Yu-Jen; Hsiung, Hsiao-Fang; Chen, Hsiao-Jung; Hsieh, Meng-Hua; Wu, Wen-Jie

    2017-05-25

    Physical activity is important for middle-agers to maintain health both in middle age and in old age. Although thousands of exercise-promotion mobile phone apps are available for download, current literature offers little understanding regarding which design features can enhance middle-aged adults' quality perception toward exercise-promotion apps and which factor may influence such perception. The aims of this study were to understand (1) which design features of exercise-promotion apps can enhance quality perception of middle-agers, (2) whether their needs are matched by current functions offered in app stores, and (3) whether physical activity (PA) and mobile phone self-efficacy (MPSE) influence quality perception. A total of 105 middle-agers participated and filled out three scales: the International Physical Activity Questionnaire (IPAQ), the MPSE scale, and the need for design features questionnaire. The design features were developed based on the Coventry, Aberdeen, and London-Refined (CALO-RE) taxonomy. Following the Kano quality model, the need for design features questionnaire asked participants to classify design features into five categories: attractive, one-dimensional, must-be, indifferent, and reverse. The quality categorization was conducted based on a voting approach and the categorization results were compared with the findings of a prevalence study to realize whether needs match current availability. In total, 52 multinomial logistic regression models were analyzed to evaluate the effects of PA level and MPSE on quality perception of design features. The Kano analysis on the total sample revealed that visual demonstration of exercise instructions is the only attractive design feature, whereas the other 51 design features were perceived with indifference. Although examining quality perception by PA level, 21 features are recommended to low level, 6 features to medium level, but none to high-level PA. In contrast, high-level MPSE is recommended

  4. Novel function of the chromosome 7 open reading frame 41 gene to promote leukemic megakaryocyte differentiation by modulating TPA-induced signaling.

    Science.gov (United States)

    Sun, X; Lu, B; Hu, B; Xiao, W; Li, W; Huang, Z

    2014-03-28

    12-O-tetradecanoylphorbol-13-acetate (TPA) activates multiple signaling pathways, alters gene expression and causes leukemic cell differentiation. How TPA-induced genes contribute to leukemic cell differentiation remains elusive. We noticed that chromosome 7 open reading frame 41 (C7ORF41) was a TPA-responsive gene and its upregulation concurred with human megakaryocyte differentiation. In K562 cells, ectopic expression of C7ORF41 significantly increased CD61 expression, enhanced ERK and JNK signaling, and upregulated RUNX1 and FLI1, whereas C7ORF41 knockdown caused an opposite phenotype. These observations suggest that C7ORF41 may promote megakaryocyte differentiation partially through modulating ERK and JNK signaling that leads to upregulation of RUNX1 and FLI1. In supporting this, C7ORF41 overexpression rescued megakaryocyte differentiation blocked by ERK inhibition while JNK inhibition abrogated the upregulation of FLI1 by C7ORF41. Furthermore, we found that Y34F mutant C7ORF41 inhibited megakaryocyte differentiation. nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was the major activator of C7ORF41 that in turn repressed NF-κB activity by inhibiting its phosphorylation at serine 536, while MAPK/ERK was the potent repressor of C7ORF41. Finally, we showed that C7ORF41 knockdown in mouse fetal liver cells impaired megakaryocyte differentiation. Taken together, we have identified the function of a novel gene C7ORF41 that forms interplaying regulatory network in TPA-induced signaling and promotes leukemic and normal megakaryocyte differentiation.

  5. Novel function of the chromosome 7 open reading frame 41 gene to promote leukemic megakaryocyte differentiation by modulating TPA-induced signaling

    International Nuclear Information System (INIS)

    Sun, X; Lu, B; Hu, B; Xiao, W; Li, W; Huang, Z

    2014-01-01

    12-O-tetradecanoylphorbol-13-acetate (TPA) activates multiple signaling pathways, alters gene expression and causes leukemic cell differentiation. How TPA-induced genes contribute to leukemic cell differentiation remains elusive. We noticed that chromosome 7 open reading frame 41 (C7ORF41) was a TPA-responsive gene and its upregulation concurred with human megakaryocyte differentiation. In K562 cells, ectopic expression of C7ORF41 significantly increased CD61 expression, enhanced ERK and JNK signaling, and upregulated RUNX1 and FLI1, whereas C7ORF41 knockdown caused an opposite phenotype. These observations suggest that C7ORF41 may promote megakaryocyte differentiation partially through modulating ERK and JNK signaling that leads to upregulation of RUNX1 and FLI1. In supporting this, C7ORF41 overexpression rescued megakaryocyte differentiation blocked by ERK inhibition while JNK inhibition abrogated the upregulation of FLI1 by C7ORF41. Furthermore, we found that Y34F mutant C7ORF41 inhibited megakaryocyte differentiation. nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was the major activator of C7ORF41 that in turn repressed NF-κB activity by inhibiting its phosphorylation at serine 536, while MAPK/ERK was the potent repressor of C7ORF41. Finally, we showed that C7ORF41 knockdown in mouse fetal liver cells impaired megakaryocyte differentiation. Taken together, we have identified the function of a novel gene C7ORF41 that forms interplaying regulatory network in TPA-induced signaling and promotes leukemic and normal megakaryocyte differentiation

  6. The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel.

    Science.gov (United States)

    Mishima, Eriko; Sato, Yoko; Nanatani, Kei; Hoshi, Naomi; Lee, Jong-Kook; Schiller, Nina; von Heijne, Gunnar; Sakaguchi, Masao; Uozumi, Nobuyuki

    2016-12-01

    Voltage-dependent K + (K V ) channels control K + permeability in response to shifts in the membrane potential. Voltage sensing in K V channels is mediated by the positively charged transmembrane domain S4. The best-characterized K V channel, KvAP, lacks the distinct hydrophilic region corresponding to the S3-S4 extracellular loop that is found in other K + channels. In the present study, we evaluated the topogenic properties of the transmembrane regions within the voltage-sensing domain in KvAP. S3 had low membrane insertion activity, whereas S4 possessed a unique type-I signal anchor (SA-I) function, which enabled it to insert into the membrane by itself. S4 was also found to function as a stop-transfer signal for retention in the membrane. The length and structural nature of the extracellular S3-S4 loop affected the membrane insertion of S3 and S4, suggesting that S3 membrane insertion was dependent on S4. Replacement of charged residues within the transmembrane regions with residues of opposite charge revealed that Asp 72 in S2 and Glu 93 in S3 contributed to membrane insertion of S3 and S4, and increased the stability of S4 in the membrane. These results indicate that the SA-I function of S4, unique among K + channels studied to date, promotes the insertion of S3 into the membrane, and that the charged residues essential for voltage sensing contribute to the membrane-insertion of the voltage sensor domain in KvAP. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  7. Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters.

    Science.gov (United States)

    Elmer, Stefan; Hänggi, Jürgen; Jäncke, Lutz

    2014-05-01

    Until now, considerable effort has been made to determine structural brain characteristics related to exceptional multilingual skills. However, at least one important question has not yet been satisfactorily addressed in the previous literature, namely whether and to which extent the processing demands upon cognitive, linguistic, and articulatory functions may promote grey matter plasticity in the adult multilingual brain. Based on the premise that simultaneous interpretation is a highly demanding linguistic task that places strong demands on executive and articulatory functions, here we compared grey matter volumes between professional simultaneous interpreters (SI) and multilingual control subjects. Thereby, we focused on a specific set of a-priori defined bilateral brain regions that have previously been shown to support neurocognitional aspects of language control and linguistic functions in the multilingual brain. These regions are the cingulate gyrus, caudate nucleus, frontal operculum (pars triangularis and opercularis), inferior parietal lobe (IPL) (supramarginal and angular gyrus), and the insula. As a main result, we found reduced grey matter volumes in professional SI, compared to multilingual controls, in the left middle-anterior cingulate gyrus, bilateral pars triangularis, left pars opercularis, bilateral middle part of the insula, and in the left supramarginal gyrus (SMG). Interestingly, grey matter volume in left pars triangularis, right pars opercularis, middle-anterior cingulate gyrus, and in the bilateral caudate nucleus was negatively correlated with the cumulative number of interpreting hours. Hence, we provide first evidence for an expertise-related grey matter architecture that may reflect a composite of brain characteristics that were still present before interpreting training and training-related changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Myxoma virus protein M029 is a dual function immunomodulator that inhibits PKR and also conscripts RHA/DHX9 to promote expanded host tropism and viral replication.

    Directory of Open Access Journals (Sweden)

    Masmudur M Rahman

    Full Text Available Myxoma virus (MYXV-encoded protein M029 is a member of the poxvirus E3 family of dsRNA-binding proteins that antagonize the cellular interferon signaling pathways. In order to investigate additional functions of M029, we have constructed a series of targeted M029-minus (vMyx-M029KO and vMyx-M029ID and V5-tagged M029 MYXV. We found that M029 plays a pivotal role in determining the cellular tropism of MYXV in all mammalian cells tested. The M029-minus viruses were able to replicate only in engineered cell lines that stably express a complementing protein, such as vaccinia E3, but underwent abortive or abated infection in all other tested mammalian cell lines. The M029-minus viruses were dramatically attenuated in susceptible host European rabbits and caused no observable signs of myxomatosis. Using V5-tagged M029 virus, we observed that M029 expressed as an early viral protein is localized in both the nuclear and cytosolic compartments in virus-infected cells, and is also incorporated into virions. Using proteomic approaches, we have identified Protein Kinase R (PKR and RNA helicase A (RHA/DHX9 as two cellular binding partners of M029 protein. In virus-infected cells, M029 interacts with PKR in a dsRNA-dependent manner, while binding with DHX9 was not dependent on dsRNA. Significantly, PKR knockdown in human cells rescued the replication defect of the M029-knockout viruses. Unexpectedly, this rescue of M029-minus virus replication by PKR depletion could then be reversed by RHA/DHX9 knockdown in human monocytic THP1 cells. This indicates that M029 not only inhibits generic PKR anti-viral pathways, but also binds and conscripts RHA/DHX9 as a pro-viral effector to promote virus replication in THP1 cells. Thus, M029 is a critical host range and virulence factor for MYXV that is required for replication in all mammalian cells by antagonizing PKR-mediated anti-viral functions, and also conscripts pro-viral RHA/DHX9 to promote viral replication

  9. Myxoma Virus Protein M029 Is a Dual Function Immunomodulator that Inhibits PKR and Also Conscripts RHA/DHX9 to Promote Expanded Host Tropism and Viral Replication

    Science.gov (United States)

    Rahman, Masmudur M.; Liu, Jia; Chan, Winnie M.; Rothenburg, Stefan; McFadden, Grant

    2013-01-01

    Myxoma virus (MYXV)-encoded protein M029 is a member of the poxvirus E3 family of dsRNA-binding proteins that antagonize the cellular interferon signaling pathways. In order to investigate additional functions of M029, we have constructed a series of targeted M029-minus (vMyx-M029KO and vMyx-M029ID) and V5-tagged M029 MYXV. We found that M029 plays a pivotal role in determining the cellular tropism of MYXV in all mammalian cells tested. The M029-minus viruses were able to replicate only in engineered cell lines that stably express a complementing protein, such as vaccinia E3, but underwent abortive or abated infection in all other tested mammalian cell lines. The M029-minus viruses were dramatically attenuated in susceptible host European rabbits and caused no observable signs of myxomatosis. Using V5-tagged M029 virus, we observed that M029 expressed as an early viral protein is localized in both the nuclear and cytosolic compartments in virus-infected cells, and is also incorporated into virions. Using proteomic approaches, we have identified Protein Kinase R (PKR) and RNA helicase A (RHA)/DHX9 as two cellular binding partners of M029 protein. In virus-infected cells, M029 interacts with PKR in a dsRNA-dependent manner, while binding with DHX9 was not dependent on dsRNA. Significantly, PKR knockdown in human cells rescued the replication defect of the M029-knockout viruses. Unexpectedly, this rescue of M029-minus virus replication by PKR depletion could then be reversed by RHA/DHX9 knockdown in human monocytic THP1 cells. This indicates that M029 not only inhibits generic PKR anti-viral pathways, but also binds and conscripts RHA/DHX9 as a pro-viral effector to promote virus replication in THP1 cells. Thus, M029 is a critical host range and virulence factor for MYXV that is required for replication in all mammalian cells by antagonizing PKR-mediated anti-viral functions, and also conscripts pro-viral RHA/DHX9 to promote viral replication specifically in myeloid

  10. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions.

    Science.gov (United States)

    Rezaei, Maryam; Cao, Jiahui; Friedrich, Katrin; Kemper, Björn; Brendel, Oliver; Grosser, Marianne; Adrian, Manuela; Baretton, Gustavo; Breier, Georg; Schnittler, Hans-Joachim

    2018-01-01

    The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.

  11. Sucrose preload reduces snacking after mild mental stress in healthy participants as a function of 5-hydroxytryptamine transporter gene promoter polymorphism.

    Science.gov (United States)

    Markus, C Rob; Jonkman, Lisa M; Capello, Aimee; Leinders, Sacha; Hüsch, Fabian

    2015-01-01

    Brain serotonin (5-hydroxytryptamine, 5-HT) dysfunction is considered to promote food intake and eating-related disturbances, especially under stress or negative mood. Vulnerability for 5-HT disturbances is considered to be genetically determined, including a short (S) allele polymorphism in the serotonin transporter gene (5-HTTLPR) that is associated with lower serotonin function. Since 5-HT function may be slightly increased by carbohydrate consumption, S-allele 5-HTTLPR carriers in particular may benefit from a sugar-preload due to their enhanced 5-HT vulnerability. The aim of the current study was to investigate whether a sugar-containing preload may reduce appetite and energy intake after exposure to stress to induce negative mood, depending on genetic 5-HT vulnerability. From a population of 771 healthy young male and female genotyped college students 31 S/S carriers (8 males, 23 females) and 26 long allele (L/L) carriers (9 males, 17 females) (mean ± S.D. 22 ± 1.6 years; body mass index, BMI, 18-33 kg/m(2)) were monitored for changes in appetite and snacking behavior after stress exposure. Results revealed an increased energy intake after mild mental stress (negative mood) mainly for high-fat sweet foods, which was significantly greater in S/S carriers, and only in these genotypes this intake was significantly reduced by a sucrose-containing preload. Although alternative explanations are possible, it is suggested that S/S participants may have enhanced brain (hypothalamic) 5-HT responsiveness to food that makes them more susceptible to the beneficial satiation effects of a sucrose-preload as well as to the negative effects of mild mental stress on weight gain.

  12. Transplantation of β-endorphin neurons into the hypothalamus promotes immune function and restricts the growth and metastasis of mammary carcinoma.

    Science.gov (United States)

    Sarkar, Dipak K; Zhang, Changqing; Murugan, Sengottuvelan; Dokur, Madhavi; Boyadjieva, Nadka I; Ortigüela, Maria; Reuhl, Kenneth R; Mojtehedzadeh, Sepide

    2011-10-01

    Neurobehavioral stress has been shown to promote tumor growth and progression and dampen the immune system. In this study, we investigated whether inhibiting stress hormone production could inhibit the development of mammary carcinoma and metastasis in a rat model of breast carcinogenesis. To enhance β-endorphin (BEP), the endogenous opioid polypeptide that boosts immune activity and decreases stress, we generated BEP neurons by in vitro differentiation from fetal neuronal stem cells and transplanted them into the hypothalami of rats subjected to breast carcinogenesis. BEP-transplanted rats displayed a reduction in mammary tumor incidence, growth, malignancy rate, and metastasis compared with cortical cells-transplanted rats. BEP neuron transplants also reduced inflammation and epithelial to mesenchymal transition in the tumor tissues. In addition, BEP neuron transplants increased peripheral natural killer (NK) cell and macrophage activities, elevated plasma levels of antiinflammatory cytokines, and reduced plasma levels of inflammatory cytokines. Antimetastatic effects along with stimulation of NK cells and macrophages could be reversed by treatment with the opiate antagonist naloxone, the β-receptor agonist metaproterenol, or the nicotine acetylcholine receptor antagonist methyllycaconitine. Together, our findings establish a protective role for BEP against the growth and metastasis of mammary tumor cells by altering autonomic nervous system activities that enhance innate immune function.

  13. Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation.

    Science.gov (United States)

    Emgård, Johanna; Kammoun, Hana; García-Cassani, Bethania; Chesné, Julie; Parigi, Sara M; Jacob, Jean-Marie; Cheng, Hung-Wei; Evren, Elza; Das, Srustidhar; Czarnewski, Paulo; Sleiers, Natalie; Melo-Gonzalez, Felipe; Kvedaraite, Egle; Svensson, Mattias; Scandella, Elke; Hepworth, Matthew R; Huber, Samuel; Ludewig, Burkhard; Peduto, Lucie; Villablanca, Eduardo J; Veiga-Fernandes, Henrique; Pereira, João P; Flavell, Richard A; Willinger, Tim

    2018-01-16

    Group 3 innate lymphoid cells (ILC3s) sense environmental signals and are critical for tissue integrity in the intestine. Yet, which signals are sensed and what receptors control ILC3 function remain poorly understood. Here, we show that ILC3s with a lymphoid-tissue-inducer (LTi) phenotype expressed G-protein-coupled receptor 183 (GPR183) and migrated to its oxysterol ligand 7α,25-hydroxycholesterol (7α,25-OHC). In mice lacking Gpr183 or 7α,25-OHC, ILC3s failed to localize to cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Gpr183 deficiency in ILC3s caused a defect in CP and ILF formation in the colon, but not in the small intestine. Localized oxysterol production by fibroblastic stromal cells provided an essential signal for colonic lymphoid tissue development, and inflammation-induced increased oxysterol production caused colitis through GPR183-mediated cell recruitment. Our findings show that GPR183 promotes lymphoid organ development and indicate that oxysterol-GPR183-dependent positioning within tissues controls ILC3 activity and intestinal homeostasis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Carbetocin is a Functional Selective Gq Agonist That Does Not Promote Oxytocin Receptor Recycling After Inducing β-Arrestin-Independent Internalisation.

    Science.gov (United States)

    Passoni, I; Leonzino, M; Gigliucci, V; Chini, B; Busnelli, M

    2016-04-01

    Carbetocin, a long-acting oxytocin analogue, has been reported to elicit interesting and peculiar behavioural effects. The present study investigated the molecular pharmacology of carbetocin, aiming to better understand the molecular basis of its action in the brain. Using bioluminescence resonance energy transfer biosensors, we characterised the effects of carbetocin on the three human oxytocin/vasopressin receptors expressed in the nervous system: the oxytocin receptor (OXTR) and the vasopressin V1a (V1aR) and V1b (V1bR) receptors. Our results indicate that (i) carbetocin activates the OXTR but not the V1aR and V1bR at which it may act as an antagonist; (ii) carbetocin selectively activates only the OXTR/Gq pathway displaying a strong functional selectivity; (iii) carbetocin is a partial agonist at the OXTR/Gq coupling; (iv) carbetocin promotes OXTR internalisation via a previously unreported β-arrestin-independent pathway; and (v) carbetocin does not induce OXTR recycling to the plasma membrane. Altogether, these molecular pharmacology features identify carbetocin as a substantially different analogue compared to the endogenous oxytocin and, consequently, carbetocin is not expected to mimic oxytocin in the brain. Whether these unique features of carbetocin could be exploited therapeutically remains to be established. © 2016 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.

  15. Tie2 signaling cooperates with TNF to promote the pro-inflammatory activation of human macrophages independently of macrophage functional phenotype.

    Science.gov (United States)

    García, Samuel; Krausz, Sarah; Ambarus, Carmen A; Fernández, Beatriz Malvar; Hartkamp, Linda M; van Es, Inge E; Hamann, Jörg; Baeten, Dominique L; Tak, Paul P; Reedquist, Kris A

    2014-01-01

    Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-γ and IL-10 -differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-γ and IL-10 -differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions.

  16. The relationship between perceived promotion of autonomy/dependence and pain-related disability in older adults with chronic pain: the mediating role of self-reported physical functioning.

    Science.gov (United States)

    Matos, Marta; Bernardes, Sónia F; Goubert, Liesbet

    2016-08-01

    Chronic pain is prevalent among older adults and is usually associated with high levels of functional disability. Social support for the promotion of functional autonomy and dependence has been associated with pain-related disability and self-reported physical functioning. Nevertheless, these relationships need further inquiry. Our aims were to investigate: (1) the relationship between perceived promotion of autonomy/dependence and pain-related disability and (2) the extent to which self-reported physical functioning mediated these relationships. 118 older adults (Mage = 81.0) with musculoskeletal chronic pain completed the Portuguese versions of the revised formal social support for Autonomy and Dependence in Pain Inventory, the pain severity and interference scales of the Brief Pain Inventory, and the physical functioning scale of the Medical Outcomes Study-Short-Form 36 v2. Higher levels of perceived promotion of autonomy were associated with lower pain-related disability; this relationship was partially mediated by self-reported physical functioning (B = -.767, p dependence was associated with higher pain-related disability; this effect was also partially accounted for by self-reported physical functioning (B = .889, p dependence for managing older adults' experience of chronic pain.

  17. Intergenic sequence between Arabidopsis caseinolytic protease B-cytoplasmic/heat shock protein100 and choline kinase genes functions as a heat-inducible bidirectional promoter.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Grover, Anil

    2014-11-01

    In Arabidopsis (Arabidopsis thaliana), the At1g74310 locus encodes for caseinolytic protease B-cytoplasmic (ClpB-C)/heat shock protein100 protein (AtClpB-C), which is critical for the acquisition of thermotolerance, and At1g74320 encodes for choline kinase (AtCK2) that catalyzes the first reaction in the Kennedy pathway for phosphatidylcholine biosynthesis. Previous work has established that the knockout mutants of these genes display heat-sensitive phenotypes. While analyzing the AtClpB-C promoter and upstream genomic regions in this study, we noted that AtClpB-C and AtCK2 genes are head-to-head oriented on chromosome 1 of the Arabidopsis genome. Expression analysis showed that transcripts of these genes are rapidly induced in response to heat stress treatment. In stably transformed Arabidopsis plants harboring this intergenic sequence between head-to-head oriented green fluorescent protein and β-glucuronidase reporter genes, both transcripts and proteins of the two reporters were up-regulated upon heat stress. Four heat shock elements were noted in the intergenic region by in silico analysis. In the homozygous transfer DNA insertion mutant Salk_014505, 4,393-bp transfer DNA is inserted at position -517 upstream of ATG of the AtClpB-C gene. As a result, AtCk2 loses proximity to three of the four heat shock elements in the mutant line. Heat-inducible expression of the AtCK2 transcript was completely lost, whereas the expression of AtClpB-C was not affected in the mutant plants. Our results suggest that the 1,329-bp intergenic fragment functions as a heat-inducible bidirectional promoter and the region governing the heat inducibility is possibly shared between the two genes. We propose a model in which AtClpB-C shares its regulatory region with heat-induced choline kinase, which has a possible role in heat signaling. © 2014 American Society of Plant Biologists. All Rights Reserved.

  18. A functional 12T-insertion polymorphism in the ATP1A1 promoter confers decreased susceptibility to hypertension in a male Sardinian population.

    Science.gov (United States)

    Herrera, Victoria L; Pasion, Khristine A; Moran, Ann Marie; Zaninello, Roberta; Ortu, Maria Francesca; Fresu, Giovanni; Piras, Daniela Antonella; Argiolas, Giuseppe; Troffa, Chiara; Glorioso, Valeria; Masala, Wanda; Glorioso, Nicola; Ruiz-Opazo, Nelson

    2015-01-01

    Identification of susceptibility genes for essential hypertension in humans has been a challenge due to its multifactorial pathogenesis complicated by gene-gene and gene-environment interactions, developmental programing and sex specific differences. These concurrent features make identification of causal hypertension susceptibility genes with a single approach difficult, thus requiring multiple lines of evidence involving genetic, biochemical and biological experimentation to establish causal functional mutations. Here we report experimental evidence encompassing genetic, biochemical and in vivo modeling that altogether support ATP1A1 as a hypertension susceptibility gene in males in Sardinia, Italy. ATP1A1 encodes the α1Na,K-ATPase isoform, the sole sodium pump in vascular endothelial and renal tubular epithelial cells. DNA-sequencing detected a 12-nucleotide long thymidine (12T) insertion(ins)/deletion(del) polymorphism within a poly-T sequence (38T vs 26T) in the ATP1A1 5'-regulatory region associated with hypertension in a male Sardinian population. The 12T-insertion allele confers decreased susceptibility to hypertension (P = 0.035; OR = 0.50 [0.28-0.93]) accounting for 12.1 mmHg decrease in systolic BP (P = 0.02) and 6.6 mmHg in diastolic BP (P = 0.046). The ATP1A1 promoter containing the 12T-insertion exhibited decreased transcriptional activity in in vitro reporter-assay systems, indicating decreased α1Na,K-ATPase expression with the 12T-insertion, compared with the 12T-deletion ATP1A1 promoter. To test the effects of decreased α1Na,K-ATPase expression on blood pressure, we measured blood pressure by radiotelemetry in three month-old, highly inbred heterozygous knockout ATP1A1+/- male mice with resultant 58% reduction in ATP1A1 protein levels. Male ATP1A1+/- mice showed significantly lower blood pressure (P < 0.03) than age-matched male wild-type littermate controls. Concordantly, lower ATP1A1 expression is expected to lower Na-reabsorption in the

  19. A functional 12T-insertion polymorphism in the ATP1A1 promoter confers decreased susceptibility to hypertension in a male Sardinian population.

    Directory of Open Access Journals (Sweden)

    Victoria L Herrera

    Full Text Available Identification of susceptibility genes for essential hypertension in humans has been a challenge due to its multifactorial pathogenesis complicated by gene-gene and gene-environment interactions, developmental programing and sex specific differences. These concurrent features make identification of causal hypertension susceptibility genes with a single approach difficult, thus requiring multiple lines of evidence involving genetic, biochemical and biological experimentation to establish causal functional mutations. Here we report experimental evidence encompassing genetic, biochemical and in vivo modeling that altogether support ATP1A1 as a hypertension susceptibility gene in males in Sardinia, Italy. ATP1A1 encodes the α1Na,K-ATPase isoform, the sole sodium pump in vascular endothelial and renal tubular epithelial cells. DNA-sequencing detected a 12-nucleotide long thymidine (12T insertion(ins/deletion(del polymorphism within a poly-T sequence (38T vs 26T in the ATP1A1 5'-regulatory region associated with hypertension in a male Sardinian population. The 12T-insertion allele confers decreased susceptibility to hypertension (P = 0.035; OR = 0.50 [0.28-0.93] accounting for 12.1 mmHg decrease in systolic BP (P = 0.02 and 6.6 mmHg in diastolic BP (P = 0.046. The ATP1A1 promoter containing the 12T-insertion exhibited decreased transcriptional activity in in vitro reporter-assay systems, indicating decreased α1Na,K-ATPase expression with the 12T-insertion, compared with the 12T-deletion ATP1A1 promoter. To test the effects of decreased α1Na,K-ATPase expression on blood pressure, we measured blood pressure by radiotelemetry in three month-old, highly inbred heterozygous knockout ATP1A1+/- male mice with resultant 58% reduction in ATP1A1 protein levels. Male ATP1A1+/- mice showed significantly lower blood pressure (P < 0.03 than age-matched male wild-type littermate controls. Concordantly, lower ATP1A1 expression is expected to lower Na

  20. Prevalence, distribution and functional significance of the -237C to T polymorphism in the IL-12Rβ2 promoter in Indian tuberculosis patients.

    Directory of Open Access Journals (Sweden)

    Vikas Kumar Verma

    Full Text Available Cytokine/cytokine receptor gene polymorphisms related to structure/expression could impact immune response. Hence, the -237 polymorphic site in the 5' promoter region of the IL-12Rβ2 (SNP ID: rs11810249 gene associated with the AP-4 transcription motif GAGCTG, was examined. Amplicons encompassing the polymorphism were generated from 46 pulmonary tuberculosis patients, 35 family contacts and 28 miscellaneous volunteers and sequenced. The C allele predominated among patients, (93.4%, 43/46, and in all volunteers and contacts screened, but the T allele was exclusively limited to patients, (6.5%, 3/46. The functional impact of this polymorphism on transcriptional activity was assessed by Luciferase-reporter and electrophoretic mobility shift assays (EMSA. Luciferase-reporter assays showed a significant reduction in transcriptional efficiency with T compared to C allele. The reduction in transcriptional efficiency with the T allele construct (pGIL-12Rb2-T, in U-87MG, THP-1 and Jurkat cell lines, were 53, 37.6, and 49.8% respectively, compared to the C allele construct (pGIL-12Rb2-C. Similarly, densitometric analysis of the EMSA assay showed reduced binding of the AP-4 transcription factor, to T compared to the C nucleotide probe. Reduced mRNA expression in all patients (3/3 harboring the T allele was seen, whereas individuals with the C allele exhibited high mRNA expression (17/25; 68%, p = 0.05. These observations were in agreement with the in vitro assessment of the promoter activity by Luciferase-reporter and EMSA assays. The reduced expression of IL-12Rβ2 transcripts in 8 patients despite having the C allele was attributed to the predominant over expression of the suppressors (IL-4 and GATA-3 and reduced expression of enhancers (IFN-α of IL-12Rβ2 transcripts. The 17 high IL-12Rβ2 mRNA expressers had significantly elevated IFN-α mRNA levels compared to low expressers and volunteers. Notwithstanding the presence of high levels of IL-12R

  1. Health Promotion

    DEFF Research Database (Denmark)

    Povlsen, Lene; Borup, I.

    2015-01-01

    and Adolescent Health Promotion', Salutogenesis - from theory to practice' and Health, Stress and Coping'. More than half of all doctoral theses undertaken at NHV during these years had health promotion as their theme. As a derivative, the Nordic Health Promotion Research Network (NHPRN) was established in 2007......In 1953 when the Nordic School of Public Health was founded, the aim of public health programmes was disease prevention more than health promotion. This was not unusual, since at this time health usually was seen as the opposite of disease and illness. However, with the Ottawa Charter of 1986......, the World Health Organization made a crucial change to view health not as a goal in itself but as the means to a full life. In this way, health promotion became a first priority and fundamental action for the modern society. This insight eventually reached NHV and in 2002 - 50 years after the foundation...

  2. Promoting Children's Social-Emotional Skills in Preschool Can Enhance Academic and Behavioral Functioning in Kindergarten: Findings from Head Start REDI.

    Science.gov (United States)

    Nix, Robert L; Bierman, Karen L; Domitrovich, Celene E; Gill, Sukhdeep

    2013-01-01

    Office of Special Education and Rehabilitation Services in the Department of Education). The projects funded through this partnership were designed to assess how integrative early interventions for at-risk children could promote learning and development across multiple domains of functioning. In addition, the projects were charged with examining processes of change and identifying mechanisms of action by which the early childhood interventions fostered later school adjustment and academic achievement. This study examined such processes of change, with the goal of documenting hypothesized cross-domain influences on kindergarten outcomes. In particular, this study tested whether gains in the proximal language/emergent literacy and social-emotional competencies targeted during Head Start would mediate the REDI intervention effects on kindergarten academic and behavioral outcomes. In addition, it tested the hypothesis that gains in social-emotional competencies during preschool would make unique contributions to intervention effects on both academic and behavioral outcomes, even after accounting for the effects of preschool gains in language and emergent literacy skills.

  3. The angiogenic related functions of bone marrow mesenchymal stem cells are promoted by CBDL rat serum via the Akt/Nrf2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Cheng-Cheng; Chen, Bing; Gu, Jian-Teng; Ning, Jiao-Lin; Chen, Lin; Zeng, Jing; Yi, Bin, E-mail: yibin1974@163.com; Lu, Kai-Zhi, E-mail: lukaizhi2010@163.com

    2016-05-15

    Hepatopulmonary syndrome (HPS) is a complication of severe liver disease. It is characterized by an arterial oxygenation defect. Recent studies have demonstrated that pulmonary angiogenesis contributes to the abnormal gas exchange found in HPS. Additionally, mesenchymal stem cells (MSCs) are considered the stable source of VEGF-producing cells and have the potential to differentiate into multiple cell types. However, it has not been determined whether bone marrow mesenchymal stem cells (BM-MSCs) are mobilized and involved in the pulmonary angiogenesis in HPS. In this study, a CFU-F assay showed that the number of peripheral blood MSCs was increased in common bile duct ligation (CBDL) rats; however, there was no significant difference found in the number of BM-MSCs. In vitro, CBDL rat serum induced the overexpression of CXCR4 and PCNA in BM-MSCs. Consistently, the directional migration as well as the proliferation ability of BM-MSCs were enhanced by CBDL rat serum, as determined by a transwell migration and MTT assays. Moreover, the secretion of VEGF by BM-MSCs increased after treatment with CBDL rat serum. We also found that the expression of phospho-Akt, phospho-ERK, and Nrf2 in BM-MSCs was significantly up-regulated by CBDL rat serum in a time dependent manner, and the blockage of the Akt/Nrf2 signalling pathway with an Akt Inhibitor or Nrf2 siRNA, instead of an ERK inhibitor, attenuated the migration, proliferation and paracrine capacity of BM-MSCs. In conclusion, these findings indicated that the number of MSCs increased in the peripheral blood of CBDL rats, and the Akt/Nrf2 pathway plays a vital role in promoting the angiogenic related functions of BM-MSCs, which could be a potent contributor to pulmonary angiogenesis in HPS. - Highlights: • Peripheral blood MSCs was increased in CBDL rats; however, the difference found for the number of BM-MSCs was not significant. • The directional migration, proliferation and ability to secrete VEGF of BM-MSCs were

  4. BDNF-hypersecreting human umbilical cord blood mesenchymal stem cells promote erectile function in a rat model of cavernous nerve electrocautery injury.

    Science.gov (United States)

    Song, Lujie; Zhu, Jianqiang; Zhang, Xiong; Cui, Zhiqiang; Fu, Qiang; Huang, Jianwen; Lu, Hongkai

    2016-01-01

    Erectile dysfunction (ED) continues to be a significant problem for men following radical prostatectomy. We hypothesize that intracavernous injection of BDNF-hypersecreting human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) can ameliorate ED in a rat model of cavernous nerve electrocautery injury (CNEI). Forty-two male Sprague-Dawley rats were randomly divided into four groups: sham + PBS (n = 6), CNEI + PBS (n = 12), CNEI + hUCB-MSCs (n = 12) and CNEI + BDNF-hUCB-MSCs (n = 12). At day 28 post-surgery, erectile function was examined and specimens were harvested for histology. Immunofluorescence staining, Masson's trichrome staining and transmission electron microscopy were performed to determine the structural changes in corpus cavernosum. Cells that are injected into penis were labeled by BrdU and tracked by immunofluorescence staining. Three days post-surgery, the concentration of BDNF protein in penile tissues was measured by Western blotting. Rats intracavernosally injected with BDNF-hUCB-MSCs showed the most significant improvement in the ratio of maximal ICP to MAP (ICP/MAP). Histological examinations showed moderate recovery of nNOS-positive nerve fibers, ratio of smooth muscle to collagen and smooth muscle content in the CNEI + hUCB-MSCs group and remarkable recovery in the CNEI + BDNF-hUCB-MSCs group compared to the CNEI + PBS group. By TEM examination, atrophy of myelinated and non-myelinated nerve fibers was noted in CNEI + PBS group and significant recovery was observed in two treated groups. There were more BrdU-positive cells in the BDNF-hUCB-MSCs group than in the hUCB-MSCs group both in the penis and in the MPG. Three days post-surgery, the concentration of BDNF protein in penile tissues in BDNF-hUCB-MSCs group was much higher than in other groups. Intracavernous injection of BDNF-hypersecreting hUCB-MSCs can enhance the recovery of erectile function, promote the CNs regeneration and inhibit corpus cavernosum fibrosis after CNEI in a rat

  5. Organizational requirements of the SaeR binding sites for a functional P1 promoter of the sae operon in Staphylococcus aureus.

    Science.gov (United States)

    Cho, Hoonsik; Jeong, Do-Won; Li, Chunling; Bae, Taeok

    2012-06-01

    In Staphylococcus aureus, the SaeRS two-component system controls the expression of multiple virulence factors. Of the two promoters in the sae operon, P1 is autoinduced and has two binding sites for the response regulator SaeR. In this study, we examined the organizational requirements of the SaeR binding sites in P1 for transcription activation. Mutational studies showed that both binding sites are essential for binding to phosphorylated SaeR (P-SaeR) and transcription activation. When the 21-bp distance between the centers of the two SaeR binding sites was altered to 26 bp, 31 bp, 36 bp, or 41 bp, only the 31-bp mutant retained approximately 40% of the original promoter activity. When the -1-bp spacing (i.e.,1-bp overlap) between the primary SaeR binding site and the -35 promoter region was altered, all mutant P1 promoters failed to initiate transcription; however, when the first nucleotide of the -35 region was changed from A to T, the mutants with 0-bp or 22-bp spacing showed detectable promoter activity. Although P-SaeR was essential for the binding of RNA polymerase to P1, it was not essential for the binding of the enzyme to the alpha-hemolysin promoter. When the nonoptimal spacing between promoter elements in P1 or the coagulase promoter was altered to the optimal spacing of 17 bp, both promoters failed to initiate transcription. These results suggest that SaeR binding sites are under rather strict organizational restrictions and provide clues for understanding the molecular mechanism of sae-mediated transcription activation.

  6. Functional Characterization of TaSnRK2.8 Promoter in Response to Abiotic Stresses by Deletion Analysis in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongying Zhang

    2017-07-01

    Full Text Available Drought, salinity, and cold are the major factors limiting wheat quality and productivity; it is thus highly desirable to characterize the abiotic-stress-inducible promoters suitable for the genetic improvement of plant resistance. The sucrose non-fermenting 1-related protein kinase 2 (SnRK2 family genes show distinct regulatory properties in response to abiotic stresses. The present study characterized the approximately 3000-bp upstream sequence (the 313 bp upstream of the ATG was the transcription start site of the Triticum aestivum TaSnRK2.8 promoter under abscisic acid (ABA and abiotic stresses. Four different-length 5′ deletion fragments of TaSnRK2.8 promoter were fused with the GUS reporter gene and transformed into Arabidopsis. Tissue expression analysis showed that the TaSnRK2.8 promoter region from position -1481 to -821 contained the stalk-specific elements, and the region from position -2631 to -1481 contained the leaf- and root-specific elements. In the ABA-treated seedlings, the deletion analysis showed that the TaSnRK2.8 promoter region from position -821 to -2631 contained ABA response elements. The abiotic stress responses of the TaSnRK2.8 promoter derivatives demonstrated that they harbored abiotic-stress response elements: the region from position -821 to -408 harbored the osmotic-stress response elements, whereas the region from position -2631 to -1481 contained the positive regulatory motifs and the region from position -1481 to -821 contained the leaf- and stalk-specific enhancers. Further deletion analysis of the promoter region from position -821 to -408 indicated that a 125-bp region from position -693 to -568 was required to induce an osmotic-stress response. These results contribute to a better understanding of the molecular mechanisms of TaSnRK2.8 in response to abiotic stresses, and the TaSnRK2.8 promoter seems to be a candidate for regulating the expression of abiotic stress response genes in transgenic plants.

  7. Expression of the neutral protease gene from a thermophilic Bacillus sp BT1 strain in Bacillus subtilis and its natural host : Identification of a functional promoter

    NARCIS (Netherlands)

    Vecerek, B; Venema, G

    The expression of the neutral protease gene (npr) from the thermophilic Bacillus sp. BT1 strain was studied in its natural host and in mesophilic Bacillus subtilis. In the thermophilic BT1 strain, the transcription of the protease gene is initiated from its own promoter, just 5' to the gene. In

  8. Health promotion.

    Science.gov (United States)

    Miyake, S; Lucas-Miyake, M

    1989-01-01

    This article will describe a marketing model for the development of a role for occupational therapy in the industrial market. Health promotion activities are used as a means to diversify existing revenue bases by establishing new referral sources in industry. The technique of need satisfaction -selling or marketing one's services to a customer based on needs expressed by the customer - is reviewed, and implementation of this approach is described from two settings, one in psychiatry and the other in rehabilitation.

  9. Nuclear envelope-distributed CD147 interacts with and inhibits the transcriptional function of RING1 and promotes melanoma cell motility.

    Directory of Open Access Journals (Sweden)

    Junchen Chen

    Full Text Available Melanoma accounts for nearly 80% of all deaths associated with skin cancer.CD147 plays a very important role in melanoma progression and the expression level may correlate with tumor malignancy. RING1 can bind DNA and act as a transcriptional repressor, play an important role in the aggressive phenotype in melanoma. The interactions between CD147 and RING1 were identified with a yeast two-hybrid and RING1 interacted with CD147 through the transmembrane domain. RING1 inhibits CD147's capability promoting melanoma cell migration. In conclusion, the study identified novel interactions between CD147 and RING1, recovered CD147 nuclear envelope distribution in melanoma cells, and suggested a new mechanism underlying how cytoplasmic CD147 promotes melanoma development.

  10. Nuclear envelope-distributed CD147 interacts with and inhibits the transcriptional function of RING1 and promotes melanoma cell motility.

    Science.gov (United States)

    Chen, Junchen; Peng, Cong; Lei, Li; Zhang, Jianglin; Zeng, Weiqi; Chen, Xiang

    2017-01-01

    Melanoma accounts for nearly 80% of all deaths associated with skin cancer.CD147 plays a very important role in melanoma progression and the expression level may correlate with tumor malignancy. RING1 can bind DNA and act as a transcriptional repressor, play an important role in the aggressive phenotype in melanoma. The interactions between CD147 and RING1 were identified with a yeast two-hybrid and RING1 interacted with CD147 through the transmembrane domain. RING1 inhibits CD147's capability promoting melanoma cell migration. In conclusion, the study identified novel interactions between CD147 and RING1, recovered CD147 nuclear envelope distribution in melanoma cells, and suggested a new mechanism underlying how cytoplasmic CD147 promotes melanoma development.

  11. Functional effects of polymorphisms on glucocorticoid receptor modulation of human anxiogenic substance-P gene promoter activity in primary amygdala neurones.

    Science.gov (United States)

    Hay, Colin W; Shanley, Lynne; Davidson, Scott; Cowie, Philip; Lear, Marissa; McGuffin, Peter; Riedel, Gernot; McEwan, Iain J; MacKenzie, Alasdair

    2014-09-01

    Expression or introduction of the neuropeptide substance-P (SP; encoded by the TAC1 gene in humans and Tac1 in rodents) in the amygdala induces anxiety related behaviour in rodents. In addition, pharmacological antagonism of the main receptor of SP in humans; NK1, is anxiolytic. In the current study, we show that the Tac1 locus is up-regulated in primary rat amygdala neurones in response to activation of the glucocorticoid receptor (GR); a classic component of the stress response. Using a combination of bioinformatics, electrophoretic mobility shift assays (EMSA) and reporter plasmid magnetofection into rat primary amygdala neurones we identified a highly conserved GR response sequence (2GR) in the human TAC1 promoter that binds GR in response to dexamethasone (Dex) or forskolin. We also identified a second GR binding site in the human promoter that was polymorphic and whose T-allele is only found in Japanese and Chinese populations. We present evidence that the T-allele of SNPGR increases the activity of the TAC1 promoter through de-sequestration or de-repression of 2GR. The identification of Dex/forskolin response elements in the TAC1 promoter in amygdala neurones suggests a possible link in the chain of molecular events connecting GR activation and anxiety. In addition, the discovery of a SNP which can alter this response may have implications for our understanding of the role of regulatory variation in susceptibility to stress in specific populations. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Promoting industrialisation

    International Nuclear Information System (INIS)

    Hayfield, F.

    1986-04-01

    When the first nuclear power programme is decided upon, automatically the country has to initiate in parallel a programme to modify or add to its current industrial structure and resources. The extent of this new industrialisation depends upon many factors which both, the Government and the Industries have to consider. The Government has a vital role which includes the setting up of the background against which the industrial promotion should take place and in many cases may have also to play an active role all along this programme. Equally, the existing industries have an important role so as to achieve the most efficient participation in the nuclear programme. Invariably the industrial promotional programme will incur a certain degree of transfer of technology, the extent depending on the policies adopted. For this technology transfer to take place efficiently, both the donor and the receiver have to recognise each other's legitimate ambitions and fears. The transfer of technology is a process having a high human content and both donor and receiver have to take this into account. This can be further complicated when there is a difference in culture between them. Technology transfer is carried out within a contractual and organisational framework which will identify the donor (licensor) and the receiver (licensee). This framework may take various forms from a simple cooperative agreement, through a joint-venture organisation right to a standard contract between two separate entities. Each arrangement has its advantages and drawbacks and requires investment of different degrees. One of the keys to a successful industrial promotion is having it carried out in a timely fashion which will be parallel with the nuclear power programme. Experience in some countries has shown the problems when the industrialisation is out of phase with the programme whilst in other cases this industrialisation was at a level and scale unjustified. (author)

  13. Isolation and functional characterization of a cotton ubiquitination-related promoter and 5'UTR that drives high levels of expression in root and flower tissues

    Directory of Open Access Journals (Sweden)

    Viana Antonio AB

    2011-11-01

    Full Text Available Abstract Background Cotton (Gossypium spp. is an important crop worldwide that provides raw material to 40% of the textile fiber industry. Important traits have been studied aiming the development of genetically modified crops including resistance to insect and diseases, and tolerance to drought, cold and herbicide. Therefore, the characterization of promoters and regulatory regions is also important to achieve high gene expression and/or a specific expression pattern. Commonly, genes involved in ubiquitination pathways are highly and differentially expressed. In this study, we analyzed the expression of a cotton ubiquitin-conjugating enzyme (E2 family member with no previous characterization. Results Nucleotide analysis revealed high identity with cotton E2 homologues. Multiple alignment showed a premature stop codon, which prevents the encoding of the conserved cysteine residue at the E2 active site, and an intron that is spliced in E2 homologues, but not in GhGDRP85. The GhGDRP85 gene is highly expressed in different organs of cotton plants, and has high transcript levels in roots. Its promoter (uceApro2 and the 5'UTR compose a regulatory region named uceA1.7, and were isolated from cotton and studied in Arabidopsis thaliana. uceA1.7 shows strong expression levels, equaling or surpassing the expression levels of CaMV35S. The uceA1.7 regulatory sequence drives GUS expression 7-fold higher in flowers, 2-fold in roots and at similar levels in leaves and stems. GUS expression levels are decreased 7- to 15-fold when its 5'UTR is absent in uceApro2. Conclusions uceA1.7 is a strong constitutive regulatory sequence composed of a promoter (uceApro2 and its 5'UTR that will be useful in genetic transformation of dicots, having high potential to drive high levels of transgene expression in crops, particularly for traits desirable in flower and root tissues.

  14. Isolation and functional characterization of a cotton ubiquitination-related promoter and 5'UTR that drives high levels of expression in root and flower tissues.

    Science.gov (United States)

    Viana, Antonio A B; Fragoso, Rodrigo R; Guimarães, Luciane M; Pontes, Naiara; Oliveira-Neto, Osmundo B; Artico, Sinara; Nardeli, Sarah M; Alves-Ferreira, Marcio; Batista, João A N; Silva, Maria C M; Grossi-de-Sa, Maria F

    2011-11-24

    Cotton (Gossypium spp.) is an important crop worldwide that provides raw material to 40% of the textile fiber industry. Important traits have been studied aiming the development of genetically modified crops including resistance to insect and diseases, and tolerance to drought, cold and herbicide. Therefore, the characterization of promoters and regulatory regions is also important to achieve high gene expression and/or a specific expression pattern. Commonly, genes involved in ubiquitination pathways are highly and differentially expressed. In this study, we analyzed the expression of a cotton ubiquitin-conjugating enzyme (E2) family member with no previous characterization. Nucleotide analysis revealed high identity with cotton E2 homologues. Multiple alignment showed a premature stop codon, which prevents the encoding of the conserved cysteine residue at the E2 active site, and an intron that is spliced in E2 homologues, but not in GhGDRP85. The GhGDRP85 gene is highly expressed in different organs of cotton plants, and has high transcript levels in roots. Its promoter (uceApro2) and the 5'UTR compose a regulatory region named uceA1.7, and were isolated from cotton and studied in Arabidopsis thaliana. uceA1.7 shows strong expression levels, equaling or surpassing the expression levels of CaMV35S. The uceA1.7 regulatory sequence drives GUS expression 7-fold higher in flowers, 2-fold in roots and at similar levels in leaves and stems. GUS expression levels are decreased 7- to 15-fold when its 5'UTR is absent in uceApro2. uceA1.7 is a strong constitutive regulatory sequence composed of a promoter (uceApro2) and its 5'UTR that will be useful in genetic transformation of dicots, having high potential to drive high levels of transgene expression in crops, particularly for traits desirable in flower and root tissues.

  15. Development of novel functional dyes for the effective detection of γ-ray. JAERI's nuclear research promotion program, H12-007. Contract research

    International Nuclear Information System (INIS)

    Tokita, Sumio; Yoshida, Masaru

    2004-03-01

    The academic field of ''Functional Dyes'' was proposed in Japan and has been widely applied to novel functional materials for electronic industry, however, its application to radiation chemistry is still scarce. We have found a certain photochromic dye, benzo[1,2,3-kl:4,5,6-k'l'] dixanthene endoperoxide, to give dramatic change of color in acid conditions. In this research project, we have developed this finding to realize novel dosimetry systems. The findings of this research are as follows: 1. Computer programs for the molecular design of functional materials using quantum chemical method such as PPP or INDO/S molecular orbital calculations were developed. 2. Novel functional materials for the detection of γ-ray were surveyed. Among these, the following series of compound were found to have practical importance. a. Color formers having phenoxazine moieties. b. Color formers having sulfur containing protective groups. 3. Novel sensor systems for γ radiation using functional materials were developed. (author)

  16. Two intestinal specific nuclear factors binding to the lactase-phlorizin hydrolase and sucrase-isomaltase promoters are functionally related oligomeric molecules

    DEFF Research Database (Denmark)

    Troelsen, J T; Mitchelmore, C; Sjöström, H

    1994-01-01

    Lactase-phlorizin hydrolase (LPH) and sucrase-isomaltase (SI) are enterocyte-specific gene products. The identification of regulatory cis-elements in the promoter of these two genes has enabled us to carry out comparative studies of the corresponding intestinal-specific nuclear factors (NF-LPH1...... and SIF1-BP). Electrophoretic mobility shift assays demonstrated that the two nuclear factors compete for binding on the same cis-elements. The molecular size of the DNA binding polypeptide is estimated to be approximately 50 kDa for both factors. In the native form the factors are found as 250 k......Da oligomeric complexes. Based on these results NF-LPH1 and SIF1-BP are suggested to be either identical or closely related molecules....

  17. A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex-Cdh1 and cyclin A-Cdk2 during cell cycle progression

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2001-01-01

    Periodic activity of the anaphase-promoting complex (APC) ubiquitin ligase determines progression through multiple cell cycle transitions by targeting cell cycle regulators for destruction. At the G(1)/S transition, phosphorylation-dependent dissociation of the Cdh1-activating subunit inhibits...... the APC, allowing stabilization of proteins required for subsequent cell cycle progression. Cyclin-dependent kinases (CDKs) that initiate and maintain Cdh1 phosphorylation have been identified. However, the issue of which cyclin-CDK complexes are involved has been a matter of debate, and the mechanism...... of how cyclin-CDKs interact with APC subunits remains unresolved. Here we substantiate the evidence that mammalian cyclin A-Cdk2 prevents unscheduled APC reactivation during S phase by demonstrating its periodic interaction with Cdh1 at the level of endogenous proteins. Moreover, we identified...

  18. Functional identification of the promoter of SLC4A5, a gene associated with cardiovascular and metabolic phenotypes in the HERITAGE Family Study.

    Science.gov (United States)

    Stütz, Adrian M; Teran-Garcia, Margarita; Rao, D C; Rice, Treva; Bouchard, Claude; Rankinen, Tuomo

    2009-11-01

    The sodium bicarbonate cotransporter gene SLC4A5, associated earlier with cardiovascular phenotypes, was tested for associations in the HERITAGE Family Study, and possible mechanisms were investigated. Twelve tag-single nucleotide polymorphisms (SNPs) covering the SLC4A5 gene were analyzed in 276 Black and 503 White healthy, sedentary subjects. Associations were tested using a variance components-based (QTDT) method with data adjusted for age, sex and body size. In Whites, rs6731545 and rs7571842 were significantly associated with resting and submaximal exercise pulse pressure (PP) (0.0004 HERITAGE Family Study are likely due to neither variation in the promoter nor known coding SNPs of SLC4A5.

  19. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.

    Science.gov (United States)

    Silva, Edmundo; Vasconcellos, Luana Marotta Reis de; Rodrigues, Bruno V M; Dos Santos, Danilo Martins; Campana-Filho, Sergio P; Marciano, Fernanda Roberta; Webster, Thomas J; Lobo, Anderson Oliveira

    2017-04-01

    Herein, we developed honeycomb-like scaffolds by combining poly (d, l-lactic acid) (PDLLA) with a high amount of graphene/multi-walled carbon nanotube oxides (MWCNTO-GO, 50% w/w). From pristine multi-walled carbon nanotubes (MWCNT) powders, we produced MWCNTO-GO via oxygen plasma etching (OPE), which promoted their exfoliation and oxidation. Initially, we evaluated PDLLA and PDLLA/MWCNTO-GO scaffolds for tensile strength tests, cell adhesion and cell viability (with osteoblast-like MG-63 cells), alkaline phosphatase (ALP, a marker of osteoblast differentiation) activity and mineralized nodule formation. In vivo tests were carried out using PDLLA and PDLLA/MWCNTO-GO scaffolds as fillers for critical defects in the tibia of rats. MWCNTO-GO loading was responsible for decreasing the tensile strength and elongation-at-break of PDLLA scaffolds, although the high mechanical performance observed (~600MPa) assures their application in bone tissue regeneration. In vitro results showed that the scaffolds were not cytotoxic and allowed for osteoblast-like cell interactions and the formation of mineralized matrix nodules. Furthermore, MG-63 cells grown on PDLLA/MWCNTO-GO significantly enhanced osteoblast ALP activity compared to controls (cells alone), while the PDLLA group showed similar ALP activity when compared to controls and PDLLA/MWCNTO-GO. Most impressively, in vivo tests suggested that compared to PDLLA scaffolds, PDLLA/MWCNTO-GO had a superior influence on bone cell activity, promoting greater new bone formation. In summary, the results of this study highlighted that this novel scaffold (MWCNTO-GO, 50% w/w) is a promising alternative for bone tissue regeneration and, thus, should be further studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Impact of Blood Type, Functional Polymorphism (T-1676C) of the COX-1 Gene Promoter and Clinical Factors on the Development of Peptic Ulcer during Cardiovascular Prophylaxis with Low-Dose Aspirin

    Science.gov (United States)

    Wang, Pin-Yao; Chen, Hsiu-Ping; Chen, Angela; Tsay, Feng-Woei; Kao, Sung-Shuo; Peng, Nan-Jing; Tseng, Hui-Hwa; Hsu, Ping-I

    2014-01-01

    Aims. To investigate the impact of blood type, functional polymorphism (T-1676C) of the COX-1 gene promoter, and clinical factors on the development of peptic ulcer during cardiovascular prophylaxis with low-dose aspirin. Methods. In a case-control study including 111 low-dose aspirin users with peptic ulcers and 109 controls (asymptomatic aspirin users), the polymorphism (T-1676C) of the COX-1 gene promoter was genotyped, and blood type, H pylori status, and clinical factors were assessed. Results. Univariate analysis showed no significant differences in genotype frequencies of the COX-1 gene at position -1676 between the peptic ulcer group and control group. Multivariate analysis revealed that blood type O, advanced age, history of peptic ulcer, and concomitant use of NSAID were the independent risk factors for the development of peptic ulcer with the odds ratios of the 2.1, 3.1, 27.6, and 2.9, respectively. Conclusion. The C-1676T polymorphism in the COX-1 gene promoter is not a risk factor for ulcer formation during treatment with low-dose aspirin. Blood type O, advanced age, history of peptic ulcer, and concomitant use of NSAID are of independent significance in predicting peptic ulcer development during treatment with low-dose aspirin. PMID:25243161

  1. The C. elegans Spalt-like protein SEM-4 functions through the SoxC transcription factor SEM-2 to promote a proliferative blast cell fate in the postembryonic mesoderm.

    Science.gov (United States)

    Shen, Qinfang; Shi, Herong; Tian, Chenxi; Ghai, Vikas; Liu, Jun

    2017-09-01

    Proper development of a multicellular organism relies on well-coordinated regulation of cell fate specification, cell proliferation and cell differentiation. The C. elegans postembryonic mesoderm provides a useful system for uncovering factors involved in these processes and for further dissecting their regulatory relationships. The single Spalt-like zinc finger containing protein SEM-4/SALL is known to be involved in specifying the proliferative sex myoblast (SM) fate. We have found that SEM-4/SALL is sufficient to promote the SM fate and that it does so in a cell autonomous manner. We further showed that SEM-4/SALL acts through the SoxC transcription factor SEM-2 to promote the SM fate. SEM-2 is known to promote the SM fate by inhibiting the expression of two BWM-specifying transcription factors. In light of recent findings in mammals showing that Sall4, one of the mammalian homologs of SEM-4, contributes to pluripotency regulation by inhibiting differentiation, our work suggests that the function of SEM-4/SALL proteins in regulating pluripotency versus differentiation appears to be evolutionarily conserved. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and β4 integrin function in MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Lee, W.-J.; Chen, W.-K.; Wang, C.-J.; Lin, W.-L.; Tseng, T.-H.

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor, Met, known to control invasive growth program have recently been shown to play crucial roles in the survival of breast cancer patients. The diet-derived flavonoids have been reported to possess anti-invasion properties; however, knowledge on the pharmacological and molecular mechanisms in suppressing HGF/Met-mediated tumor invasion and metastasis is poorly understood. In our preliminary study, we use HGF as an invasive inducer to investigate the effect of flavonoids including apigenin, naringenin, genistein and kaempferol on HGF-dependent invasive growth of MDA-MB-231 human breast cancer cells. Results show that apigenin presents the most potent anti-migration and anti-invasion properties by Boyden chamber assay. Furthermore, apigenin represses the HGF-induced cell motility and scattering and inhibits the HGF-promoted cell migration and invasion in a dose-dependent manner. The effect of apigenin on HGF-induced signaling activation involving invasive growth was evaluated by immunoblotting analysis, it shows that apigenin blocks the HGF-induced Akt phosphorylation but not Met, ERK, and JNK phosphorylation. In addition to MDA-MB-231 cells, apigenin exhibits inhibitory effect on HGF-induced Akt phosphorylation in hepatoma SK-Hep1 cells and lung carcinoma A549 cells. By indirect immunofluorescence microscopy assay, apigenin inhibits the HGF-induced clustering of β4 integrin at actin-rich adhesive site and lamellipodia through PI3K-dependent manner. Treatment of apigenin inhibited HGF-stimulated integrin β4 function including cell-matrix adhesion and cell-endothelial cells adhesion in MDA-MB-231 cells. By Akt-siRNA transfection analysis, it confirmed that apigenin inhibited HGF-promoted invasive growth involving blocking PI3K/Akt pathway. Finally, we evaluated the effect of apigenin on HGF-promoted metastasis by lung colonization of tumor cells in nude mice and organ metastasis of tumor cells in chick embryo. By

  3. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats

    Directory of Open Access Journals (Sweden)

    Bei Zhang

    2015-01-01

    Full Text Available Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of ′learned non-use′ and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model group, a CIMT + model (CIMT group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  4. Using Solution Strategies to Examine and Promote High-School Students' Understanding of Exponential Functions: One Teacher's Attempt

    Science.gov (United States)

    Brendefur, Jonathan

    2014-01-01

    Much research has been conducted on how elementary students develop mathematical understanding and subsequently how teachers might use this information. This article builds on this type of work by investigating how one high-school algebra teacher designs and conducts a lesson on exponential functions. Through a lesson study format she studies with…

  5. The Use of Peer-Mediated Interventions to Promote the Generalization of Social Competence for Adolescents with High-Functioning Autism and Asperger's Syndrome

    Science.gov (United States)

    Schmidt, Carla; Stichter, Janine P.

    2012-01-01

    Impairments in social competence are core deficits for individuals with high-functioning autism and Asperger's Syndrome (HFA/AS). As the incidence rate for these disorders continues to increase so does the urgency to identify evidence-based interventions that can remediate core deficits in order to provide these individuals with independence as…

  6. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    Science.gov (United States)

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.

  7. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. In Vitro and In Vivo Characterization of a Dual-Function Green Fluorescent Protein–HSV1-Thymidine Kinase Reporter Gene Driven by the Human Elongation Factor 1α Promoter

    Directory of Open Access Journals (Sweden)

    Gary D. Luker

    2002-04-01

    Full Text Available Toward the goal of monitoring activity of native mammalian promoters with molecular imaging techniques, we stably transfected DU145 prostate carcinoma cells with a fusion construct of enhanced green fluorescent protein (EGFP and wild-type herpes simplex virus-1 thymidine kinase (HSV1-TK as a reporter gene driven by the promoter for human elongation factor 1α (EF-1α-EGFP-TK. Using this model system, expression of EGFP was quantified by flow cytometry and fluorescence microscopy, while the HSV1-TK component of the reporter was quantified with 8-[3H]ganciclovir (8-[3H]GCV. As analyzed by flow cytometry, passage of EGFP-TK-DU145 transfected cells (ETK in vitro resulted in populations of cells with high and low expression of EGFP over time. High and low ETK cells retained 23-fold and 5-fold more GCV, respectively, than control. While differences in uptake and retention of GCV corresponded to relative expression of the reporter gene in each subpopulation of cells as determined by both flow cytometry (EGFP and quantitative RT-PCR, the correlation was not linear. Furthermore, in high ETK cells, net retention of various radiolabeled nucleoside analogues varied; the rank order was 8-[3H]GCV < 9-(4-fluoro-3-hydroxymethylbutylguanine ([18F]FHBG ≈ 8-[3H]penciclovir (8-[3H]PCV < 2′-fluoro-2′-deoxy-5-iodouracil-beta-d-arabinofuranoside (2-[14C]FIAU. Xenograft tumors of ETK cells in vivo accumulated 2.5-fold more 8-[3H]GCV per gram of tissue and showed greater fluorescence from EGFP than control DU145 cells, demonstrating that the reporter gene functioned in vivo. These data extend previous reports by showing that a human promoter can be detected in vitro and in vivo with a dual-function reporter exploiting optical and radiotracer techniques.

  9. Emerging Importance of Helicases in Plant Stress Tolerance: Characterization of Oryza sativa Repair Helicase XPB2 Promoter and Its Functional Validation in Tobacco under Multiple Stresses

    OpenAIRE

    Raikwar, Shailendra; Srivastava, Vineet K.; Gill, Sarvajeet S.; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. Helicases, the unique molecular motors, are emerged as prospective molecules to engineer stress tolerance in plants and are involved in nucleic acid metabolism including DNA repair. The repair helicase, XPB is an evolutionary conserved protein present in different organisms, including pl...

  10. Emerging importance of helicases in plant stress tolerance: characterization of Oryza sativa repair helicase XPB2 promoter and its functional validation in tobacco under multiple stresses

    OpenAIRE

    Shailendra eRaikwar; Vineet Kumar Shrivastava; Sarvajeet Singh Gill; Renu eTuteja; Narendra eTuteja; Narendra eTuteja

    2015-01-01

    Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. DNA hHelicases, the unique molecular motors, are emerged as potentialprospective molecules to engineer stress tolerance in plants and are involved in a variety of DNA nucleic acid metabolismc processes including DNA repair. The DNA repair helicase, OsXPB2 is an evolutionary conserved pr...

  11. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Zhongshan; Wu, Guangsheng; Feng, Zhihong; Bai, Shizhu; Dong, Yan; Wu, Guofeng; Zhao, Yimin

    2015-01-01

    Dental implants have been widely used for the replacement of missing teeth in the clinic, but further improvements are needed to meet the clinical demands for faster and tighter osseointegration. In this study, we fabricated safe and biocompatible chitosan (CS)/hyaluronic acid (HA) nanoparticles to deliver microRNA-21 (miR-21) and thereby accelerate osteogenesis in human bone marrow mesenchymal stem cells (hBMMSCs). The CS/HA/miR-21 nanoparticles were cross-linked with 0.2% gel solution onto microarc oxidation (MAO)-treated titanium (Ti) surfaces to fabricate the miR-21-functionalized MAO Ti surface, resulting in the development of a novel coating for reverse transfection. To characterize the CS/HA/miR-21 nanoparticles, their particle size, zeta potential, surface morphology, and gel retardation ability were sequentially investigated. Their biological effects, such as cell viability, cytotoxicity, and expression of osteogenic genes by hBMMSCs on the miR-21-functionalized MAO Ti surfaces, were evaluated. Finally, we explored appropriate CS/HA/miR-21 nanoparticles with a CS/HA ratio of 4:1 and N/P ratio 20:1 for transfection, which presented good spherical morphology, an average diameter of 160.4±10.75 nm, and a positive zeta potential. The miR-21-functionalized MAO Ti surfaces demonstrated cell viability, cytotoxicity, and cell spreading comparable to those exhibited by naked MAO Ti surfaces and led to significantly higher expression of osteogenic genes. This novel miR-21-functionalized Ti implant may be used in the clinic to allow more effective and robust osseointegration.

  12. The ENU-3 protein family members function in the Wnt pathway parallel to UNC-6/Netrin to promote motor neuron axon outgrowth in C. elegans.

    Science.gov (United States)

    Florica, Roxana Oriana; Hipolito, Victoria; Bautista, Stephen; Anvari, Homa; Rapp, Chloe; El-Rass, Suzan; Asgharian, Alimohammad; Antonescu, Costin N; Killeen, Marie T

    2017-10-01

    The axons of the DA and DB classes of motor neurons fail to reach the dorsal cord in the absence of the guidance cue UNC-6/Netrin or its receptor UNC-5 in C. elegans. However, the axonal processes usually exit their cell bodies in the ventral cord in the absence of both molecules. Strains lacking functional versions of UNC-6 or UNC-5 have a low level of DA and DB motor neuron axon outgrowth defects. We found that mutations in the genes for all six of the ENU-3 proteins function to enhance the outgrowth defects of the DA and DB axons in strains lacking either UNC-6 or UNC-5. A mutation in the gene for the MIG-14/Wntless protein also enhances defects in a strain lacking either UNC-5 or UNC-6, suggesting that the ENU-3 and Wnt pathways function parallel to the Netrin pathway in directing motor neuron axon outgrowth. Our evidence suggests that the ENU-3 proteins are novel members of the Wnt pathway in nematodes. Five of the six members of the ENU-3 family are predicted to be single-pass trans-membrane proteins. The expression pattern of ENU-3.1 was consistent with plasma membrane localization. One family member, ENU-3.6, lacks the predicted signal peptide and the membrane-spanning domain. In HeLa cells ENU-3.6 had a cytoplasmic localization and caused actin dependent processes to appear. We conclude that the ENU-3 family proteins function in a pathway parallel to the UNC-6/Netrin pathway for motor neuron axon outgrowth, most likely in the Wnt pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Promotion of a Functional Fibrosis in Skeletal Muscle with Volumetric Muscle Loss Injury Following the Transplantation of Muscle-ECM

    Science.gov (United States)

    2013-02-04

    Zou K, Boppart MD. Eccentric exercise facil- itates mesenchymal stem cell appearance in skeletal muscle. PLoS One 2012; 7:e29760. [40] Matziolis G...remaining muscle mass leading to additional improvements in functional capacity; how- ever, no study has explicitly studied these effects . The purpose of...muscles were isolated from donor Lewis rats. The tendon and fascia were removed and TA muscle decellularization was performed using an enzymatic and

  14. A health campaign for the elderly: developing a health promotion strategy for the elderly using functional assessments of community dwelling individuals

    Directory of Open Access Journals (Sweden)

    Thiago de Oliveira Monaco

    2007-03-01

    Full Text Available Objective: To develop a functional health screening strategy forcommunity-dwelling elderly individuals, including eventual referralto existing health services. We justified the study by considering thelimitations of the Brazilian health system. A second objective was totest whether this strategy would show benefits a year later. Methods:We conducted a prospective cohort study in an urban community inthe city of São Paulo. Subjects included community-dwelling men andwomen aged 60 years or more, capable of walking, recruited throughan announcement in a local newspaper. Patients were invited to aspecific place on a scheduled date to undergo functional screeningtests for elderly patients; we chose tests that are well established inliterature. The tests resulted in a health score showing the number ofchanges found. This database was subsequently used for registrationpurposes, counseling and referral to primary health care facilities inSão Paulo. After one year, each patient was recalled by mail for asecond assessment that used the same methodology. Results: Theinitial assessments included 187 subjects (mean age 68.8 years. Oneyear later 90 patients returned (48% of the total; mean age 69.7 years.This group presented 4.23 alterations in our score against 5.23 in thefirst assessment (p < 0.05. Conclusions: Results show that a tool toidentify functional changes may benefit large groups of elderly subjects.We raised the possibility of whether more functionally disabled peoplewould have a higher absence rate. In the first assessment, patientsthat did not return after one year had a score of 5.75, compared to 5.23for those returning after one year. This difference was not statisticallysignificant (p = 0.33.

  15. A Role for the Fifth G-Track in G-Quadruplex Forming Oncogene Promoter Sequences during Oxidative Stress: Do These "Spare Tires" Have an Evolved Function?

    Science.gov (United States)

    Fleming, Aaron M; Zhou, Jia; Wallace, Susan S; Burrows, Cynthia J

    2015-08-26

    Uncontrolled inflammation or oxidative stress generates electron-deficient species that oxidize the genome increasing its instability in cancer. The G-quadruplex (G4) sequences regulating the c-MYC , KRAS , VEGF , BCL-2 , HIF-1α , and RET oncogenes, as examples, are targets for oxidation at loop and 5'-core guanines (G) as showcased in this study by CO 3 •- oxidation of the VEGF G4. Products observed include 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), and 5-guanidinohydantoin (Gh). Our previous studies found that OG and Gh, when present in the four G-tracks of the solved structure for VEGF and c-MY C, were not substrates for the base excision repair (BER) DNA glycosylases in biologically relevant KCl solutions. We now hypothesize that a fifth G-track found a few nucleotides distant from the G4 tracks involved in folding can act as a "spare tire," facilitating extrusion of a damaged G-run into a large loop that then becomes a substrate for BER. Thermodynamic, spectroscopic, and DMS footprinting studies verified the fifth domain replacing a damaged G-track with OG or Gh at a loop or core position in the VEGF G4. These new "spare tire"-containing strands with Gh in loops are now found to be substrates for initiation of BER with the NEIL1, NEIL2, and NEIL3 DNA glycosylases. The results support a hypothesis in which regulatory G4s carry a "spare-tire" fifth G-track for aiding in the repair process when these sequences are damaged by radical oxygen species, a feature observed in a large number of these sequences. Furthermore, formation and repair of oxidized bases in promoter regions may constitute an additional example of epigenetic modification, in this case of guanine bases, to regulate gene expression in which the G4 sequences act as sensors of oxidative stress.

  16. Loss of Serglycin Promotes Primary Tumor Growth and Vessel Functionality in the RIP1-Tag2 Mouse Model for Spontaneous Insulinoma Formation.

    Directory of Open Access Journals (Sweden)

    Andrew Hamilton

    Full Text Available The serglycin proteoglycan is mainly expressed by hematopoietic cells where the major function is to retain the content of storage granules and vesicles. In recent years, expression of serglycin has also been found in different forms of human malignancies and a high serglycin expression level has been correlated with a more migratory and invasive phenotype in the case of breast cancer and nasopharyngeal carcinoma. Serglycin has also been implicated in the development of the tumor vasculature in multiple myeloma and hepatocellular carcinoma where reduced expression of serglycin was correlated with a less extensive vasculature. To further investigate the contribution of serglycin to tumor development, we have used the immunocompetent RIP1-Tag2 mouse model of spontaneous insulinoma formation crossed into serglycin deficient mice. For the first time we show that serglycin-deficiency affects orthotopic primary tumor growth and tumor vascular functionality of late stage carcinomas. RIP1-Tag2 mice that lack serglycin develop larger tumors with a higher proliferative activity but unaltered apoptosis compared to normal RIP1-Tag2 mice. The absence of serglycin also enhances the tumor vessel functionality, which is better perfused than in tumors from serglycin wild type mice. The presence of the pro-angiogenic modulators vascular endothelial growth factor and hepatocyte growth factor were decreased in the serglycin deficient mice which suggests a less pro-angiogenic environment in the tumors of these animals. Taken together, we conclude that serglycin affects multiple aspects of spontaneous tumor formation, which strengthens the theory that serglycin acts as an important mediator in the formation and progression of tumors.

  17. Evidence about chlorophyllin can function as an inhibitor or promoter of induced genetic damage by gamma radiation in Drosophila somatic cells

    International Nuclear Information System (INIS)

    Pimentel, A.E.; Cruces, M.P.; Zimmering, S.I.

    2000-01-01

    The irradiation of the individuals that had been feed during 24 hours with a chlorophyllin solution at 5 % was delayed from 0 until 4 days. The protector effect of chlorophyllin persisted by 3 days and it appears to coincide with the stage when stopping the mitotic divisions in the imagal disk. Within of the same cellular population, it was demonstrated that chlorophyllin can function as an inhibitor, in the case of simple stains mwh or a potentiator in the case of twin stains and the flr type stains. It was planned an explanation for these results. (Author)

  18. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wang Z

    2015-10-01

    Full Text Available Zhongshan Wang,1,* Guangsheng Wu,2,3,* Zhihong Feng,1 Shizhu Bai,1 Yan Dong,1 Guofeng Wu,1 Yimin Zhao1 1State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, 2State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China; 3Qingdao First Sanatorium, Jinan Military Region, Qingdao, Shandong Province, People’s Republic of China *These authors contributed equally to this work Abstract: Dental implants have been widely used for the replacement of missing teeth in the clinic, but further improvements are needed to meet the clinical demands for faster and tighter osseointegration. In this study, we fabricated safe and biocompatible chitosan (CS/hyaluronic acid (HA nanoparticles to deliver microRNA-21 (miR-21 and thereby accelerate osteogenesis in human bone marrow mesenchymal stem cells (hBMMSCs. The CS/HA/miR-21 nanoparticles were cross-linked with 0.2% gel solution onto microarc oxidation (MAO-treated titanium (Ti surfaces to fabricate the miR-21-functionalized MAO Ti surface, resulting in the development of a novel coating for reverse transfection. To characterize the CS/HA/miR-21 nanoparticles, their particle size, zeta potential, surface morphology, and gel retardation ability were sequentially investigated. Their biological effects, such as cell viability, cytotoxicity, and expression of osteogenic genes by hBMMSCs on the miR-21-functionalized MAO Ti surfaces, were evaluated. Finally, we explored appropriate CS/HA/miR-21 nanoparticles with a CS/HA ratio of 4:1 and N/P ratio 20:1 for transfection, which presented good spherical morphology, an average diameter of 160.4±10.75 nm, and a positive zeta potential. The miR-21-functionalized MAO Ti surfaces demonstrated cell viability, cytotoxicity, and cell spreading comparable to those exhibited by naked MAO Ti surfaces and led to significantly higher

  19. A novel function for the IκB inhibitor Cactus in promoting Dorsal nuclear localization and activity in the Drosophila embryo.

    Science.gov (United States)

    Cardoso, Maira Arruda; Fontenele, Marcio; Lim, Bomyi; Bisch, Paulo Mascarello; Shvartsman, Stanislav Y; Araujo, Helena Marcolla

    2017-08-15

    The evolutionarily conserved Toll signaling pathway controls innate immunity across phyla and embryonic patterning in insects. In the Drosophila embryo, Toll is required to establish gene expression domains along the dorsal-ventral axis. Pathway activation induces degradation of the IκB inhibitor Cactus, resulting in a ventral-to-dorsal nuclear gradient of the NFκB effector Dorsal. Here, we investigate how cactus modulates Toll signals through its effects on the Dorsal gradient and on Dorsal target genes. Quantitative analysis using a series of loss- and gain-of-function conditions shows that the ventral and lateral aspects of the Dorsal gradient can behave differently with respect to Cactus fluctuations. In lateral and dorsal embryo domains, loss of Cactus allows more Dorsal to translocate to the nucleus. Unexpectedly, cactus loss-of-function alleles decrease Dorsal nuclear localization ventrally, where Toll signals are high. Overexpression analysis suggests that this ability of Cactus to enhance Toll stems from the mobilization of a free Cactus pool induced by the Calpain A protease. These results indicate that Cactus acts to bolster Dorsal activation, in addition to its role as a NFκB inhibitor, ensuring a correct response to Toll signals. © 2017. Published by The Company of Biologists Ltd.

  20. Lessons Learned From a Randomized Controlled Trial of a Family-Based Intervention to Promote School Functioning for School-Age Children With Sickle Cell Disease.

    Science.gov (United States)

    Daniel, Lauren C; Li, Yimei; Smith, Kelsey; Tarazi, Reem; Robinson, M Renee; Patterson, Chavis A; Smith-Whitley, Kim; Stuart, Marie; Barakat, Lamia P

    2015-01-01

    Tested a family-based group problem-solving intervention, "Families Taking Control," (FTC) to improve school functioning and health-related quality of life (HRQL) for children with sickle cell disease. Children and caregivers completed questionnaires assessing HRQL and school functioning and children completed performance-based measures of IQ and achievement at baseline and 6 months later. Families were randomized to the intervention (FTC, n = 42) or delayed intervention control (DIC, n = 41) group. FTC involved a full-day workshop followed by 3 booster calls. There were no differences between FTC completers (n = 24) and noncompleters (n = 18). FTC group (n = 24) and DIC group (n = 38) did not differ significantly on primary outcomes at follow-up: number of formal academic and disease-related accommodations, individualized education plan/504 service plan, school absences, school HRQL, or academic skills. Although families found FTC to be acceptable, there were no intervention effects. Challenges of the trial and implications for future research are discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Deficient functional recovery after facial nerve crush in rats is associated with restricted rearrangements of synaptic terminals in the facial nucleus.

    Science.gov (United States)

    Hundeshagen, G; Szameit, K; Thieme, H; Finkensieper, M; Angelov, D N; Guntinas-Lichius, O; Irintchev, A

    2013-09-17

    Crush injuries of peripheral nerves typically lead to axonotmesis, axonal damage without disruption of connective tissue sheaths. Generally, human patients and experimental animals recover well after axonotmesis and the favorable outcome has been attributed to precise axonal reinnervation of the original peripheral targets. Here we assessed functionally and morphologically the long-term consequences of facial nerve axonotmesis in rats. Expectedly, we found that 5 months after crush or cryogenic nerve lesion, the numbers of motoneurons with regenerated axons and their projection pattern into the main branches of the facial nerve were similar to those in control animals suggesting precise target reinnervation. Unexpectedly, however, we found that functional recovery, estimated by vibrissal motion analysis, was incomplete at 2 months after injury and did not improve thereafter. The maximum amplitude of whisking remained substantially, by more than 30% lower than control values even 5 months after axonotmesis. Morphological analyses showed that the facial motoneurons ipsilateral to injury were innervated by lower numbers of glutamatergic terminals (-15%) and cholinergic perisomatic boutons (-26%) compared with the contralateral non-injured motoneurons. The structural deficits were correlated with functional performance of individual animals and associated with microgliosis in the facial nucleus but not with polyinnervation of muscle fibers. These results support the idea that restricted CNS plasticity and insufficient afferent inputs to motoneurons may substantially contribute to functional deficits after facial nerve injuries, possibly including pathologic conditions in humans like axonotmesis in idiopathic facial nerve (Bell's) palsy. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. A functional promoter variant of the human formimidoyltransferase cyclodeaminase (FTCD) gene is associated with working memory performance in young but not older adults.

    Science.gov (United States)

    Greenwood, Pamela M; Schmidt, Kevin; Lin, Ming-Kuan; Lipsky, Robert; Parasuraman, Raja; Jankord, Ryan

    2018-06-21

    The central role of working memory in IQ and the high heritability of working memory performance motivated interest in identifying the specific genes underlying this heritability. The FTCD (formimidoyltransferase cyclodeaminase) gene was identified as a candidate gene for allelic association with working memory in part from genetic mapping studies of mouse Morris water maze performance. The present study tested variants of this gene for effects on a delayed match-to-sample task of a large sample of younger and older participants. The rs914246 variant, but not the rs914245 variant, of the FTCD gene modulated accuracy in the task for younger, but not older, people under high working memory load. The interaction of haplotype × distance × load had a partial eta squared effect size of 0.015. Analysis of simple main effects had partial eta squared effect sizes ranging from 0.012 to 0.040. A reporter gene assay revealed that the C allele of the rs914246 genotype is functional and a main factor regulating FTCD gene expression. This study extends previous work on the genetics of working memory by revealing that a gene in the glutamatergic pathway modulates working memory in young people but not in older people. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Engineered Promoters for Potent Transient Overexpression.

    Directory of Open Access Journals (Sweden)

    Dan Y Even

    Full Text Available The core promoter, which is generally defined as the region to which RNA Polymerase II is recruited to initiate transcription, plays a pivotal role in the regulation of gene expression. The core promoter consists of different combinations of several short DNA sequences, termed core promoter elements or motifs, which confer specific functional properties to each promoter. Earlier studies that examined the ability to modulate gene expression levels via the core promoter, led to the design of strong synthetic core promoters, which combine different core elements into a single core promoter. Here, we designed a new core promoter, termed super core promoter 3 (SCP3, which combines four core promoter elements (the TATA box, Inr, MTE and DPE into a single promoter that drives prolonged and potent gene expression. We analyzed the effect of core promoter architecture on the temporal dynamics of reporter gene expression by engineering EGFP expression vectors that are driven by distinct core promoters. We used live cell imaging and flow cytometric analyses in different human cell lines to demonstrate that SCPs, particularly the novel SCP3, drive unusually strong long-term EGFP expression. Importantly, this is the first demonstration of long-term expression in transiently transfected mammalian cells, indicating that engineered core promoters can provide a novel non-viral strategy for biotechnological as well as gene-therapy-related applications that require potent expression for extended time periods.

  4. Loss of function mutations in PTPN6 promote STAT3 deregulation via JAK3 kinase in diffuse large B-cell lymphoma

    Science.gov (United States)

    Demosthenous, Christos; Han, Jing Jing; Hu, Guangzhen; Stenson, Mary; Gupta, Mamta

    2015-01-01

    PTPN6 (SHP1) is a tyrosine phosphatase that negatively controls the activity of multiple signaling pathways including STAT signaling, however role of mutated PTPN6 is not much known. Here we investigated whether PTPN6 might also be a potential target for diffuse large B cell lymphoma (DLBCL) and performed Sanger sequencing of the PTPN6 gene. We have identified missense mutations within PTPN6 (N225K and A550V) in 5% (2/38) of DLBCL tumors. Site directed mutagenesis was performed to mutate wild type (WT) PTPN6 and stable cell lines were generated by lentiviral transduction of PTPN6WT, PTPN6N225K and PTPN6A550V constructs, and effects of WT or mutated PTPN6 on STAT3 signaling were analyzed. WT PTPN6 dephosphorylated STAT3, but had no effect on STAT1, STAT5 or STAT6 phosphorylation. Both PTPN6 mutants were unable to inhibit constitutive, as well as cytokines induced STAT3 activation. Both PTPN6 mutants also demonstrated reduced tyrosine phosphatase activity and exhibited enhanced STAT3 transactivation activity. Intriguingly, a lack of direct binding between STAT3 and WT or mutated PTPN6 was observed. However, compared to WT PTPN6, cells expressing PTPN6 mutants exhibited increased binding between JAK3 and PTPN6 suggesting a more dynamic interaction of PTPN6 with upstream regulators of STAT3. Consistent with this notion, both the mutants demonstrated increased resistance to JAK3 inhibitor, WHIP-154 relative to WT PTPN6. Overall, this is the first study, which demonstrates that N225K and A550V PTPN6 mutations cause loss-of-function leading to JAK3 mediated deregulation of STAT3 pathway and uncovers a mechanism that tumor cells can use to control PTPN6 substrate specificity. PMID:26565811

  5. Bifidobacterium longum CCM 7952 Promotes Epithelial Barrier Function and Prevents Acute DSS-Induced Colitis in Strictly Strain-Specific Manner.

    Directory of Open Access Journals (Sweden)

    Dagmar Srutkova

    Full Text Available Reduced microbial diversity has been associated with inflammatory bowel disease (IBD and probiotic bacteria have been proposed for its prevention and/or treatment. Nevertheless, comparative studies of strains of the same subspecies for specific health benefits are scarce. Here we compared two Bifidobacterium longum ssp. longum strains for their capacity to prevent experimental colitis.Immunomodulatory properties of nine probiotic bifidobacteria were assessed by stimulation of murine splenocytes. The immune responses to B. longum ssp. longum CCM 7952 (Bl 7952 and CCDM 372 (Bl 372 were further characterized by stimulation of bone marrow-derived dendritic cell, HEK293/TLR2 or HEK293/NOD2 cells. A mouse model of dextran sulphate sodium (DSS-induced colitis was used to compare their beneficial effects in vivo.The nine bifidobacteria exhibited strain-specific abilities to induce cytokine production. Bl 372 induced higher levels of both pro- and anti-inflammatory cytokines in spleen and dendritic cell cultures compared to Bl 7952. Both strains engaged TLR2 and contain ligands for NOD2. In a mouse model of DSS-induced colitis, Bl 7952, but not Bl 372, reduced clinical symptoms and preserved expression of tight junction proteins. Importantly, Bl 7952 improved intestinal barrier function as demonstrated by reduced FITC-dextran levels in serum.We have shown that Bl 7952, but not Bl 372, protected mice from the development of experimental colitis. Our data suggest that although some immunomodulatory properties might be widespread among the genus Bifidobacterium, others may be rare and characteristic only for a specific strain. Therefore, careful selection might be crucial in providing beneficial outcome in clinical trials with probiotics in IBD.

  6. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury.

    Science.gov (United States)

    Figueroa, Johnny D; Cordero, Kathia; Llán, Miguel S; De Leon, Marino

    2013-05-15

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome.

  7. Meclozine promotes longitudinal skeletal growth in transgenic mice with achondroplasia carrying a gain-of-function mutation in the FGFR3 gene.

    Science.gov (United States)

    Matsushita, Masaki; Hasegawa, Satoru; Kitoh, Hiroshi; Mori, Kensaku; Ohkawara, Bisei; Yasoda, Akihiro; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2015-02-01

    Achondroplasia (ACH) is one of the most common skeletal dysplasias causing short stature owing to a gain-of-function mutation in the FGFR3 gene, which encodes the fibroblast growth factor receptor 3. We found that meclozine, an over-the-counter drug for motion sickness, inhibited elevated FGFR3 signaling in chondrocytic cells. To examine the feasibility of meclozine administration in clinical settings, we investigated the effects of meclozine on ACH model mice carrying the heterozygous Fgfr3(ach) transgene. We quantified the effect of meclozine in bone explant cultures employing limb rudiments isolated from developing embryonic tibiae from Fgfr3(ach) mice. We found that meclozine significantly increased the full-length and cartilaginous primordia of embryonic tibiae isolated from Fgfr3(ach) mice. We next analyzed the skeletal phenotypes of growing Fgfr3(ach) mice and wild-type mice with or without meclozine treatment. In Fgfr3(ach) mice, meclozine significantly increased the body length after 2 weeks of administration. At skeletal maturity, the bone lengths including the cranium, radius, ulna, femur, tibia, and vertebrae were significantly longer in meclozine-treated Fgfr3(ach) mice than in untreated Fgfr3(ach) mice. Interestingly, meclozine also increased bone growth in wild-type mice. The plasma concentration of meclozine during treatment was within the range that has been used in clinical settings for motion sickness. Increased longitudinal bone growth in Fgfr3(ach) mice by oral administration of meclozine in a growth period suggests potential clinical feasibility of meclozine for the improvement of short stature in ACH.

  8. Prenatal serotonin reuptake inhibitor (SRI antidepressant exposure and serotonin transporter promoter genotype (SLC6A4 influence executive functions at 6 years of age

    Directory of Open Access Journals (Sweden)

    Whitney eWeikum

    2013-10-01

    Full Text Available Prenatal exposure to serotonin reuptake inhibitor (SRI antidepressants and maternal depression may affect prefrontal cognitive skills (executive functions; EFs including self-control, working memory and cognitive flexibility. We examined long-term effects of prenatal SRI exposure on EFs to determine whether effects are moderated by maternal mood and/or genetic variations in SLC6A4 (a gene that codes for the serotonin transporter [5-HTT] central to the regulation of synaptic serotonin levels and behavior. Children who were exposed to SRIs prenatally (SRI-exposed N=26 and non-exposed (N=38 were studied at age 6 years (M=6.3 SD=0.5 using the Hearts & Flowers task (H&F to assess EFs. Maternal mood was measured during pregnancy (3rd trimester and when the child was age 6 years (Hamilton Depression Scale. Parent reports of child behavior were also obtained (MacArthur Health & Behavior Questionnaire. Parents of prenatally SRI-exposed children reported fewer child externalizing and inattentive (ADHD behaviors. Generalized estimate equation modeling showed a significant 3-way interaction between prenatal SRI exposure, SLC6A4 variant, and maternal mood at the 6-year time-point on H&F accuracy. For prenatally SRI-exposed children, regardless of maternal mood, the H&F accuracy of children with reduced 5HTT expression (a short [S] allele remained stable. Even with increasing maternal depressive symptoms (though all below clinical threshold, EFs of children with at least one short allele were comparable to children with the same genotype whose mothers reported few if any depressive symptoms – in this sense they showed resilience. Children with two long (L alleles were more sensitive to context. When their mothers had few depressive symptoms, LL children showed extremely good EF performance – better than any other group. When their mothers reported more depressive symptoms, LL children’s EF performance was worse than that of any other group.

  9. Dietary Omega-3 Polyunsaturated Fatty Acids Improve the Neurolipidome and Restore the DHA Status while Promoting Functional Recovery after Experimental Spinal Cord Injury

    Science.gov (United States)

    Figueroa, Johnny D.; Cordero, Kathia; llán, Miguel S.

    2013-01-01

    Abstract Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome. PMID:23294084

  10. Functional Promoter Variant rs2868371 of HSPB1 Is Associated With Risk of Radiation Pneumonitis After Chemoradiation for Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Qingsong [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center (United States); Department of Radiation Oncology and Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin (China); Wei, Qingyi [Department of Epidemiology, The University of Texas MD Anderson Cancer Center (United States); Xu, Ting [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center (United States); Yuan, Xianglin [Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan (China); Lopez Guerra, Jose Luis [Department of Medicine, Universitat Autònoma de Barcelona (Spain); Levy, Lawrence B. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center (United States); Liu, Zhensheng [Department of Epidemiology, The University of Texas MD Anderson Cancer Center (United States); Gomez, Daniel R. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center (United States); Zhuang, Yan [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center (United States); Wang, Li-E. [Department of Epidemiology, The University of Texas MD Anderson Cancer Center (United States); Mohan, Radhe [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center (United States); Komaki, Ritsuko [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center (United States); Liao, Zhongxing, E-mail: zliao@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center (United States)

    2013-04-01

    Purpose: To date, no biomarkers have been found to predict, before treatment, which patients will develop radiation pneumonitis (RP), a potentially fatal toxicity, after chemoradiation for lung cancer. We investigated potential associations between single nucleotide polymorphisms (SNPs) in HSPB1 and risk of RP after chemoradiation for non-small cell lung cancer (NSCLC). Methods and Materials: Subjects were patients with NSCLC treated with chemoradiation at 1 institution. The training data set comprised 146 patients treated from 1999 to July 2004; the validation data set was 125 patients treated from August 2004 to March 2010. We genotyped 2 functional SNPs of HSPB1 (rs2868370 and rs2868371) from all patients. We used Kaplan-Meier analysis to assess the risk of grade ≥2 or ≥3 RP in both data sets and a parametric log-logistic survival model to evaluate the association of HSPB1 genotypes with that risk. Results: Grade ≥3 RP was experienced by 13% of those with CG/GG and 29% of those with CC genotype of HSPB1 rs2868371 in the training data set (P=.028); corresponding rates in the validation data set were 2% CG/GG and 14% CC (P=.02). Univariate and multivariate analysis confirmed the association of CC of HSPB1 rs2868371 with higher risk of grade ≥3 RP than CG/GG after adjustment for sex, age, performance status, and lung mean dose. This association was validated both in the validation data set and with Harrell's C statistic. Conclusions: The CC genotype of HSPB1 rs2868371 was associated with severe RP after chemoradiation for NSCLC.

  11. A Functional Polymorphism (rs10817938 in the XPA Promoter Region Is Associated with Poor Prognosis of Oral Squamous Cell Carcinoma in a Chinese Han Population.

    Directory of Open Access Journals (Sweden)

    Chunhai Gao

    Full Text Available Single nucleotide polymorphisms of XPA gene have been studied in several cancers such as rs10817938, rs2808668. However, the role of XPA polymorphisms in patients with oral squamous cell carcinoma (OSCC remains unclear. Thus, we analyzed the association of XPA polymorphisms with OSCC risk, clinicopathological characteristics and prognosis in the present study. TaqMan genotyping was used to evaluate the frequency of rs10817938, rs2808668 polymorphisms in OSCC patients. The prognostic significance of these polymorphisms was evaluated using Kaplan-Meier curves, Log-Rank analyses, and the Cox proportional hazard model. Luciferase reporter assay, RT-PCR and western blot were used to determine whether rs10817938 could influence transcription activity and XPA expression. The results showed that individuals carrying TC and CC genotypes had significantly greater risk of developing OSCC (OR = 1.42, 95% CI 1.04-1.93; OR = 2.75, 95% CI 1.32-5.71, respectively when compared with wild-type TT genotype at rs10817938. OSCC patients with C allele at rs10817938 were more susceptible to lymph metastases, poor pathological differentiation and late TNM stage (OR = 1.67, 95% CI 1.17-2.37; OR = 1.64, 95% CI 1.18-2.28; OR = 1.54, 95% CI 1.11-2.14; respectively. A significant gene-environment interaction between smoking and CC genotype at rs10817938 was observed (COR = 3.60, 95% CI 1.20-10.9 and data also showed that OSCC patients with CC genotype and C allele had worse survival (p<0.001 for both. The T to C substitution at rs10817938 significantly decreased transcription activity of XPA gene, XPA mRNA and protein were also decreased in individuals with C allele at rs10817938. In addition, no significant association of rs2808668 polymorphism with OSCC risk, prognosis could be observed. In conclusion, the present study showed that XPA rs10817938 polymorphism is a functional SNP in vitro and in vivo and a biomarker for poor prognosis in OSCC patients.

  12. Bone Marrow Mesenchymal Stem-Cell Transplantation Promotes Functional Improvement Associated with CNTF-STAT3 Activation after Hemi-Sectioned Spinal Cord Injury in Tree Shrews

    Directory of Open Access Journals (Sweden)

    Liu-Lin Xiong

    2017-06-01

    Full Text Available Hemi-sectioned spinal cord injury (hSCI can lead to spastic paralysis on the injured side, as well as flaccid paralysis on the contralateral side, which can negatively affect a patient’s daily life. Stem-cell therapy may offer an effective treatment option for individuals with hSCI. To examine the role of bone marrow mesenchymal stem cells (BMSCs transplantation on hSCI and explore related mechanisms in the tree shrews, here, we created a model of hSCI by inducing injury at the tenth thoracic vertebra (T10. Hoechst 33342-labeled BMSCs derived from adult tree shrews were isolated, cultured, and implanted into the spinal cord around the injury site at 9 days after injury. The isolated BMSCs were able to survive, proliferate and release a variety of neurotrophic factors (NTFs both in vitro and in vivo. At 28 days after injury, compared with the sham group, the hSCI group displayed scar formation and dramatic elevations in the mean interleukin 1 beta (IL-1β density and cell apoptosis level, whereas the expression of signal transducer and activator of transcription 3 (STAT3 and ciliary neurotrophic factor (CNTF mRNA was reduced. Following BMSC transplantation, motoneurons extent of shrinkage were reduced and the animals’ Basso, Beattie, and Bresnahan (BBB locomotion scale scores were significantly higher at 21 and 28 days after injury when compared with the injured group. Moreover, the hSCI-induced elevations in scar formation, IL-1β, and cell apoptosis were reduced by BMSC transplantation to levels that were close to those of the sham group. Corresponding elevations in the expression of STAT3 and CNTF mRNA were observed in the hSCI + BMSCs group, and the levels were not significantly different from those observed in the sham group. Together, our results support that grafted BMSCs can significantly improve locomotor function in tree shrews subjected to hSCI and that this improvement is associated with the upregulation of CNTF and STAT3

  13. Xiao-Ai-Ping, a TCM Injection, Enhances the Antigrowth Effects of Cisplatin on Lewis Lung Cancer Cells through Promoting the Infiltration and Function of CD8+ T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Wanshuai Li

    2013-01-01

    Full Text Available Objectives. To investigate how Xiao-Ai-Ping injection, a traditional Chinese medicine and an ancillary drug in tumor treatment, enhances the antitumor effects of cisplatin on Lewis lung cancer (LLC cells. Methods. LLC-bearing mice were daily intraperitoneally injected with various doses of cisplatin, Xiao-Ai-Ping, or cisplatin plus Xiao-Ai-Ping, respectively. Body weight and tumor volumes were measured every three days. Results. Combination of Xiao-Ai-Ping and cisplatin yielded significantly better antigrowth and proapoptotic effects on LLC xenografts than sole drug treatment did. In addition, we found that Xiao-Ai-Ping triggered the infiltration of CD8+ T cells, a group of cytotoxic T cells, to LLC xenografts. Furthermore, the mRNA levels of interferon-γ (ifn-γ, perforin-1 (prf-1, and granzyme B (gzmb in CD8+ T cells were significantly increased after combination treatment of Xiao-Ai-Ping and cisplatin. In vitro studies showed that Xiao-Ai-Ping markedly upregulated the mRNA levels of ifn-γ, prf-1, and gzmb in CD8+ T cells in a concentration-dependent manner, suggesting that Xiao-Ai-Ping augments the function of CD8+ T cells. Conclusions. Xiao-Ai-Ping promotes the infiltration and function of CD8+ T cells and thus enhances the antigrowth effects of cisplatin on LLC xenografts, which provides new evidence for the combination of Xiao-Ai-Ping and cisplatin in clinic in China.

  14. What Is a Promotion?

    Science.gov (United States)

    Pergamit, Michael R.; Veum, Jonathan R.

    1999-01-01

    For a sample of young workers, "promotion" involved no change in position or duties; promotion was more likely for males than females and Whites than Blacks or Hispanics. Company training and prior promotions were important predictors. Promotion did not appear to have a direct impact on job satisfaction. (SK)

  15. Perceptions of health promoters about health promotion ...

    African Journals Online (AJOL)

    2013-02-11

    Feb 11, 2013 ... regarding a health promotion programme for families with ... to contribute to high rates of not going to school (ibid. ... sector in order, amongst other objectives, to prevent health ... exercise and mental health promotion must be incorporated ..... (2009:141) identified ignorance and misconception about the.

  16. A new method for promoting lily flowering

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... FT is thought to be the florigen in plants. In this research, a new method for promoting lily flowering was introduced. The function of FT gene cloned from Arabidopsis on promoting lily flowering was analyzed. pET-30a-FT vector was constructed to indicate the expression of FT:eGFP fuse protein in.

  17. Health Promotion Education

    DEFF Research Database (Denmark)

    Lehn-Christiansen, Sine

    The paper discusses the implications of health promotion in education. The paper is based on my PhD project entitled “Health promotion education seen through a power/knowledge and subjectification perspective” (in prep). The PhD project explores how professional health promotion skills are concei......The paper discusses the implications of health promotion in education. The paper is based on my PhD project entitled “Health promotion education seen through a power/knowledge and subjectification perspective” (in prep). The PhD project explores how professional health promotion skills...

  18. p53 mutations promote proteasomal activity.

    Science.gov (United States)

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  19. The role of promotion in alcoholism treatment marketing.

    Science.gov (United States)

    Jones, M A; Self, D R; Owens, C A; Kline, T A

    1988-01-01

    This article is an overview of the promotion function as a part of the ATM's marketing mix. It approaches various promotion decision areas from a managerial perspective, focusing upon some key components of promotion planning. Rather than provide specific operational or implementation details (how to write a brochure) it is more conceptual in nature and offers a framework for promotion planners. The article addresses promotion management, promotion objectives, analysis for promotion planning, the promotion mix, and addresses the benefits and limitations of some specific promotion tools available to the ATM manager. It treats ATMs as a service and reveals specific implications for promotion strategy dictated by services. The article also reports promotion tools employed by Alabama ATMs citing data from the Alabama study.

  20. Promoting preschool reading

    OpenAIRE

    Istenič, Vesna

    2013-01-01

    The thesis titled Promoting preschool reading consists of a theoretiral and an empirical part. In the theoretical part I wrote about reading, the importance of reading, types of reading, about reading motivation, promoting reading motivation, internal and external motivation, influence of reading motivation on the child's reading activity, reading and familial literacy, the role of adults in promotion reading literacy, reading to a child and promoting reading in pre-school years, where I ...

  1. What do health-promoting schools promote?

    DEFF Research Database (Denmark)

    Simovska, Venka

    2012-01-01

    -promotion interventions. Directly or indirectly the articles reiterate the idea that health promotion in schools needs to be linked with the core task of the school – education, and to the values inherent to education, such as inclusion, democracy, participation and influence, critical literacy and action competence......Purpose – The editorial aims to provide a brief overview of the individual contributions to the special issue, and a commentary positioning the contributions within research relating to the health-promoting schools initiative in Europe. Design/methodology/approach – The members of the Schools...... for Health in Europe Research Group were invited to submit their work addressing processes and outcomes in school health promotion to this special issue of Health Education. Additionally, an open call for papers was published on the Health Education web site. Following the traditional double blind peer...

  2. Comparative analyses of bidirectional promoters in vertebrates

    Directory of Open Access Journals (Sweden)

    Taylor James

    2008-05-01

    Full Text Available Abstract Background Orthologous genes with deep phylogenetic histories are likely to retain similar regulatory features. In this report we utilize orthology assignments for pairs of genes co-regulated by bidirectional promoters to map the ancestral history of the promoter regions. Results Our mapping of bidirectional promoters from humans to fish shows that many such promoters emerged after the divergence of chickens and fish. Furthermore, annotations of promoters in deep phylogenies enable detection of missing data or assembly problems present in higher vertebrates. The functional importance of bidirectional promoters is indicated by selective pressure to maintain the arrangement of genes regulated by the promoter over long evolutionary time spans. Characteristics unique to bidirectional promoters are further elucidated using a technique for unsupervised classification, known as ESPERR. Conclusion Results of these analyses will aid in our understanding of the evolution of bidirectional promoters, including whether the regulation of two genes evolved as a consequence of their proximity or if function dictated their co-regulation.

  3. Radiation promotive concept

    International Nuclear Information System (INIS)

    Shebaita, M.K.

    1975-01-01

    The concept of radiation promotion was proposed in this study. The proposal of this concept was dependent upon stimulation in growth weight of survived chicks when fertile eggs were exposed to 60 Co gamma radiation. It was found that female chick (Promotive Sex) responded to this proposal concept rather than the male. Moreover, the dose level of 640 rads was found to be the Promotive Dose. It is important before applying ionizing radiation as a growth promotive to take into consideration whether you want increasing egg or meat production, as meat promotion in layers breed is bound to decrease egg production. (orig.) [de

  4. SPORT PROMOTION STRATEGIES

    Directory of Open Access Journals (Sweden)

    Alexandru Lucian MIHAI

    2013-10-01

    Full Text Available In sport marketing, the word promotion covers a range of interrelated activities. All of these activities are designed to attract attention, stimulate the interest and awareness of consumers, and of course, encourage them to purchase a sport product. Promotion is about communicating with and educating consumers. The purpose of a sport promotional strategy is to build brand loyalty and product credibility, develop image, and position the brand. A promotional strategy is similar to a marketing strategy, but the promotional strategy seeks short-term objectives, both direct and indirect. Promotional objectives usually include increased sales, stimulate impulse buying, raise customer traffic, and present and reinforce image. It also provides information about products and services, publicizes new stores or websites, and creates and enhances customer satisfaction.

  5. Health promotion in globalization

    Directory of Open Access Journals (Sweden)

    Álvaro Franco-Giraldo

    2012-10-01

    Full Text Available Objective: to unravel some theoretical and factual elements required to implement more effective health promotion strategies and practices in the field of health services whilst following the great challenges that globalization has imposed on the health systems, which are inevitably expressed in the local context (glocalization. Methodology: a narrative review taking into account the concepts of globalization and health promotion in relation to health determinants. The authors approach some courses of action and strategies for health promotion based on the social principles and universal values that guide health promotion, health service reorientation and primary healthcare, empowerment, social participation, and inter-sectoral and social mobilization. Discussion: the discussion focuses on the redirection of health promotion services in relation to the wave of health reforms that has spread throughout the world under the neoliberal rule. The author also discusses health promotion, its ineffectiveness, and the quest for renewal. Likewise, the author sets priorities for health promotion<