WorldWideScience

Sample records for whey-derived peptide improves

  1. Improving surface functional properties of tofu whey-derived peptides by chemical modification with fatty acids.

    Science.gov (United States)

    Matemu, Athanasia Oswald; Katayama, Shigeru; Kayahara, Hisataka; Murasawa, Hisashi; Nakamura, Soichiro

    2012-04-01

    Effect of acylation with saturated fatty acids on surface functional properties of tofu whey-derived peptides was investigated. Tofu whey (TW) and soy proteins (7S, 11S, and acid-precipitated soy protein [APP]) were hydrolyzed by Protease M 'Amano' G, and resulting peptide mixtures were acylated with esterified fatty acids of different chain length (6C to 18C) to form a covalent linkage between the carboxyl group of fatty acid and the free amino groups of peptide. Acylation significantly (P properties of 7S, 11S, and APP peptides independent of fatty acid chain length. Acylation decreased water binding capacity although oil binding capacity of acylated tofu whey ultra filtered fraction (UFTW acids had shown significant higher surface hydrophobicity as in contrast with acylated UFTW acids can further affect functional properties of soy proteins. © 2012 Institute of Food Technologists®

  2. Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: a randomized, placebo controlled trial

    Directory of Open Access Journals (Sweden)

    Kupchak Brian R

    2009-07-01

    Full Text Available Abstract Background Whey protein is a potential source of bioactive peptides. Based on findings from in vitro experiments indicating a novel whey derived peptide (NOP-47 increased endothelial nitric oxide synthesis, we tested its effects on vascular function in humans. Methods A randomized, placebo-controlled, crossover study design was used. Healthy men (n = 10 and women (n = 10 (25 ± 5 y, BMI = 24.3 ± 2.3 kg/m2 participated in two vascular testing days each preceded by 2 wk of supplementation with a single dose of 5 g/day of a novel whey-derived peptide (NOP-47 or placebo. There was a 2 wk washout period between trials. After 2 wk of supplementation, vascular function in the forearm and circulating oxidative stress and inflammatory related biomarkers were measured serially for 2 h after ingestion of 5 g of NOP-47 or placebo. Macrovascular and microvascular function were assessed using brachial artery flow mediated dilation (FMD and venous occlusion strain gauge plethysmography. Results Baseline peak FMD was not different for Placebo (7.7% and NOP-47 (7.8%. Placebo had no effect on FMD at 30, 60, and 90 min post-ingestion (7.5%, 7.2%, and 7.6%, respectively whereas NOP-47 significantly improved FMD responses at these respective postprandial time points compared to baseline (8.9%, 9.9%, and 9.0%; P P = 0.008 for time × trial interaction. Plasma myeloperoxidase was increased transiently by both NOP-47 and placebo, but there were no changes in markers inflammation. Plasma total nitrites/nitrates significantly decreased over the 2 hr post-ingestion period and were lower at 120 min after placebo (-25% compared to NOP-47 (-18%. Conclusion These findings indicate that supplementation with a novel whey-derived peptide in healthy individuals improves vascular function.

  3. Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes.

    Science.gov (United States)

    Udechukwu, M Chinonye; Downey, Brianna; Udenigwe, Chibuike C

    2018-02-01

    Gastrointestinal stability of zinc-peptide complexes is essential for zinc delivery. As peptide surface charge can influence their metal complex stability, we evaluated the zinc-chelating capacity and stability of zinc complexes of whey protein hydrolysates (WPH), produced with Everlase (WPH-Ever; ζ-potential, -39mV) and papain (WPH-Pap; ζ-potential, -7mV), during simulated digestion. WPH-Ever had lower amount of zinc-binding amino acids but showed higher zinc-chelating capacity than WPH-Pap. This is attributable to the highly anionic surface charge of WPH-Ever for electrostatic interaction with zinc. Release of zinc during peptic digestion was lower for WPH-Ever-zinc, and over 50% of zinc remained bound in both peptide complexes after peptic-pancreatic digestion. Fourier transform infrared spectroscopy suggests the involvement of carboxylate ion, and sidechain carbon-oxygen of aspartate/glutamate and serine/threonine in zinc-peptide complexation. The findings indicate that strong zinc chelation can promote gastric stability and impede intestinal release, for peptides intended for use as dietary zinc carriers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Whey-derived valuable products obtained by microbial fermentation.

    Science.gov (United States)

    Pescuma, Micaela; de Valdez, Graciela Font; Mozzi, Fernanda

    2015-08-01

    Whey, the main by-product of the cheese industry, is considered as an important pollutant due to its high chemical and biological oxygen demand. Whey, often considered as waste, has high nutritional value and can be used to obtain value-added products, although some of them need expensive enzymatic synthesis. An economical alternative to transform whey into valuable products is through bacterial or yeast fermentations and by accumulation during algae growth. Fermentative processes can be applied either to produce individual compounds or to formulate new foods and beverages. In the first case, a considerable amount of research has been directed to obtain biofuels able to replace those derived from petrol. In addition, the possibility of replacing petrol-derived plastics by biodegradable polymers synthesized during bacterial fermentation of whey has been sought. Further, the ability of different organisms to produce metabolites commonly used in the food and pharmaceutical industries (i.e., lactic acid, lactobionic acid, polysaccharides, etc.) using whey as growth substrate has been studied. On the other hand, new low-cost functional whey-based foods and beverages leveraging the high nutritional quality of whey have been formulated, highlighting the health-promoting effects of fermented whey-derived products. This review aims to gather the multiple uses of whey as sustainable raw material for the production of individual compounds, foods, and beverages by microbial fermentation. This is the first work to give an overview on the microbial transformation of whey as raw material into a large repertoire of industrially relevant foods and products.

  5. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  6. Deep Learning Improves Antimicrobial Peptide Recognition.

    Science.gov (United States)

    Veltri, Daniel; Kamath, Uday; Shehu, Amarda

    2018-03-24

    Bacterial resistance to antibiotics is a growing concern. Antimicrobial peptides (AMPs), natural components of innate immunity, are popular targets for developing new drugs. Machine learning methods are now commonly adopted by wet-laboratory researchers to screen for promising candidates. In this work we utilize deep learning to recognize antimicrobial activity. We propose a neural network model with convolutional and recurrent layers that leverage primary sequence composition. Results show that the proposed model outperforms state-of-the-art classification models on a comprehensive data set. By utilizing the embedding weights, we also present a reduced-alphabet representation and show that reasonable AMP recognition can be maintained using nine amino-acid types. Models and data sets are made freely available through the Antimicrobial Peptide Scanner vr.2 web server at: www.ampscanner.com. amarda@gmu.edu for general inquiries and dan.veltri@gmail.com for web server information. Supplementary data are available at Bioinformatics online.

  7. Probabilistic consensus scoring improves tandem mass spectrometry peptide identification.

    Science.gov (United States)

    Nahnsen, Sven; Bertsch, Andreas; Rahnenführer, Jörg; Nordheim, Alfred; Kohlbacher, Oliver

    2011-08-05

    Database search is a standard technique for identifying peptides from their tandem mass spectra. To increase the number of correctly identified peptides, we suggest a probabilistic framework that allows the combination of scores from different search engines into a joint consensus score. Central to the approach is a novel method to estimate scores for peptides not found by an individual search engine. This approach allows the estimation of p-values for each candidate peptide and their combination across all search engines. The consensus approach works better than any single search engine across all different instrument types considered in this study. Improvements vary strongly from platform to platform and from search engine to search engine. Compared to the industry standard MASCOT, our approach can identify up to 60% more peptides. The software for consensus predictions is implemented in C++ as part of OpenMS, a software framework for mass spectrometry. The source code is available in the current development version of OpenMS and can easily be used as a command line application or via a graphical pipeline designer TOPPAS.

  8. Gene transfer strategies for improving radiolabeled peptide imaging and therapy

    International Nuclear Information System (INIS)

    Rogers, B.E.; Buchsbaum, D.J.; Zinn, K.R.

    2000-01-01

    Utilization of molecular biology techniques offers attractive options in nuclear medicine for improving cancer imaging and therapy with radiolabeled peptides. Two of these options include utilization of phage-panning to identify novel tumor specific peptides or single chain antibodies and gene transfer techniques to increase the antibodies and gene transfer techniques to increase the number of antigen/receptor sites expressed on malignant cells. The group has focused on the latter approach for improving radiolabeled peptide imaging and therapy. The most widely used gene transfer vectors in clinical gene therapy trials include retrovirus, cationic lipids and adenovirus. It has been utilized adenovirus vectors for gene transfer because of their ability to accomplish efficient in vivo gene transfer. Adenovirus vectors encoding the genes for a variety of antigens/receptors (carcinoembryonic antigen, gastrin-releasing peptide receptor, somatostatin receptor subtype 2 (SSTr2) have all shown that their expression is increased on cancer cells both in vitro and in vivo following adenovirus infection. Of particular interest has been the adenovirus encoding for SSTr2 (AdCMVSSTr2). Various radioisotopes have been attached to somatostatin analogues for imaging and therapy of SSTr2-positive tumors both clinically and in animal models. The use of these analogues in combination with AdCMVSSTr2 is a promising approach for improving the detection sensitivity and therapeutic efficacy of these radiolabeled peptides against solid tumors. In addition, it has been proposed the use of SSTr2 as a marker for imaging the expression of another cancer therapeutic transgene (e.g. cytosine deaminase, thymidine kinase) encoded within the same vector. This would allow for non-invasive monitoring of gene delivery to tumor sites

  9. Redesigned Spider Peptide with Improved Antimicrobial and Anticancer Properties.

    Science.gov (United States)

    Troeira Henriques, Sónia; Lawrence, Nicole; Chaousis, Stephanie; Ravipati, Anjaneya S; Cheneval, Olivier; Benfield, Aurélie H; Elliott, Alysha G; Kavanagh, Angela Maria; Cooper, Matthew A; Chan, Lai Yue; Huang, Yen-Hua; Craik, David J

    2017-09-15

    Gomesin, a disulfide-rich antimicrobial peptide produced by the Brazilian spider Acanthoscurria gomesiana, has been shown to be potent against Gram-negative bacteria and to possess selective anticancer properties against melanoma cells. In a recent study, a backbone cyclized analogue of gomesin was shown to be as active but more stable than its native form. In the current study, we were interested in improving the antimicrobial properties of the cyclic gomesin, understanding its selectivity toward melanoma cells and elucidating its antimicrobial and anticancer mode of action. Rationally designed analogues of cyclic gomesin were examined for their antimicrobial potency, selectivity toward cancer cells, membrane-binding affinity, and ability to disrupt cell and model membranes. We improved the activity of cyclic gomesin by ∼10-fold against tested Gram-negative and Gram-positive bacteria without increasing toxicity to human red blood cells. In addition, we showed that gomesin and its analogues are more toxic toward melanoma and leukemia cells than toward red blood cells and act by selectively targeting and disrupting cancer cell membranes. Preference toward some cancer types is likely dependent on their different cell membrane properties. Our findings highlight the potential of peptides as antimicrobial and anticancer leads and the importance of selectively targeting cancer cell membranes for drug development.

  10. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Shiraishi, Takehiko; Zachar, Vladimir

    2008-01-01

    Conjugation to cationic cell penetrating peptides (such as Tat, Penetratin, or oligo arginines) efficiently improves the cellular uptake of large hydrophilic molecules such as oligonucleotides and peptide nucleic acids, but the cellular uptake is predominantly via an unproductive endosomal pathway...... for future in vivo applications. We find that simply conjugating a lipid domain (fatty acid) to the cationic peptide (a CatLip conjugate) increases the biological effect of the corresponding PNA (CatLip) conjugates in a luciferase cellular antisense assay up to 2 orders of magnitude. The effect increases...... with increasing length of the fatty acid (C8-C16) but in parallel also results in increased cellular toxicity, with decanoic acid being optimal. Furthermore, the relative enhancement is significantly higher for Tat peptide compared to oligoarginine. Confocal microscopy and chloroquine enhancement indicates...

  11. Improving oral bioavailability of cyclic peptides by N-methylation.

    Science.gov (United States)

    Räder, Andreas F B; Reichart, Florian; Weinmüller, Michael; Kessler, Horst

    2018-06-01

    The renaissance of peptides in pharmaceutical industry results from their importance in many biological functions. However, low metabolic stability and the lack of oral availability of most peptides is a certain limitation. Whereas metabolic instability may be often overcome by development of small cyclic peptides containing d-amino acids, the very low oral availability of most peptides is a serious limitation for some medicinal applications. The situation is complicated because a twofold optimization - biological activity and oral availability - is required to overcome this problem. Moreover, most simple "rules" for achieving oral availability are not general and are applicable only to limited cases. Many structural modifications for increasing biological activities and metabolic stabilities of cyclic peptides have been described, of which N-alkylation is probably the most common. This mini-review focuses on the effects of N-methylation of cyclic peptides in strategies to optimize bioavailabilities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Improvement of autism spectrum disorder symptoms in three children by using gastrin‐releasing peptide

    Directory of Open Access Journals (Sweden)

    Michele Michelin Becker

    2016-05-01

    Conclusions: This study suggests that the gastrin‐releasing peptide is safe and may be effective in improving key symptoms of autism spectrum disorder, but its results should be interpreted with caution. Controlled clinical trials–randomized, double‐blinded, and with more children–are needed to better evaluate the possible therapeutic effects of gastrin‐releasing peptide in autism.

  13. Improving the representation of peptide-like inhibitor and antibiotic molecules in the Protein Data Bank.

    Science.gov (United States)

    Dutta, Shuchismita; Dimitropoulos, Dimitris; Feng, Zukang; Persikova, Irina; Sen, Sanchayita; Shao, Chenghua; Westbrook, John; Young, Jasmine; Zhuravleva, Marina A; Kleywegt, Gerard J; Berman, Helen M

    2014-06-01

    With the accumulation of a large number and variety of molecules in the Protein Data Bank (PDB) comes the need on occasion to review and improve their representation. The Worldwide PDB (wwPDB) partners have periodically updated various aspects of structural data representation to improve the integrity and consistency of the archive. The remediation effort described here was focused on improving the representation of peptide-like inhibitor and antibiotic molecules so that they can be easily identified and analyzed. Peptide-like inhibitors or antibiotics were identified in over 1000 PDB entries, systematically reviewed and represented either as peptides with polymer sequence or as single components. For the majority of the single-component molecules, their peptide-like composition was captured in a new representation, called the subcomponent sequence. A novel concept called "group" was developed for representing complex peptide-like antibiotics and inhibitors that are composed of multiple polymer and nonpolymer components. In addition, a reference dictionary was developed with detailed information about these peptide-like molecules to aid in their annotation, identification and analysis. Based on the experience gained in this remediation, guidelines, procedures, and tools were developed to annotate new depositions containing peptide-like inhibitors and antibiotics accurately and consistently. © 2013 The Authors Biopolymers Published by Wiley Periodicals, Inc.

  14. Improved quality of life in patients treated with Peptide radionuclides.

    Science.gov (United States)

    Traub-Weidinger, T; Raderer, M; Uffmann, M; Angelberger, P; Kurtaran, A; Leimer, M; Preitfellner, J; Dudczak, R; Virgolini, I

    2011-07-01

    Peptide receptor radionuclide therapy (PRRT) has recently been established as an important treatment modality for somatostatin receptor (SSTR)-positive tumors. The purpose of this study was to evaluate the clinical response, side-effects as well as the quality of life following (90)Y-DOTA-lanreotide (DOTALAN) and/or (90)Y-DOTA-Tyr (3)-DPhe(1)-octreotide (DOTATOC) therapy in patients with progressive metastatic disease during a 6-year follow-up period. Following dosimetric evaluation with (111)In-DOTALAN and (111)In-DOTATOC, 13 patients with estimated absorbed tumor doses of >5 Gy/GBq (carcinoid, n = 5; radioiodine-negative thyroid cancer, n = 4; gastrinoma, n = 1; insulinoma, n = 1; glucagonoma, n = 1; glomus jugularis tumor, n = 1) were assigned for PRRT. A dose of 925 MBq of (90)Y-DOTALAN (four patients) or 1.85-3.7 GBq of (90)Y-DOTATOC (10 patients) was administered intravenously and repeated every 4-8 weeks. Tumor dosimetry was performed prior to and under therapy, re-staging every 2-3 months. Pain intensity, Karnofsky score and general symptoms were evaluated in order to determine quality of life. Patients were followed until death. Altogether, 53 infusions of PRRT (1.85-14.1 GBq) were administered. After the first follow-up of 3 months of (90)Y-DOTALAN therapy, stable disease (SD) was observed in one patient and progressive disease (PD) in three patients. With (90)Y-DOTATOC therapy, SD was found in all 10 patients. During the re-evaluation period (4-27 months), one patient had to be shifted from (90)Y-DOTALAN to (90)Y-DOTATOC therapy due to reduced (111)In-DOTALAN uptake after 5.5 GBq. In the first 6 months after PRRT with DOTATOC, SD was found in nine of 10 patients and PD in one patient. Thereafter, SD was observed in two patients and PD in eight patients. Nine of 13 patients after PRRT with either DOTALAN or DOTATOC died. None of the patients had experienced severe acute hematological side-effects. Transient thrombocytopenia or lymphocytopenia was seen in

  15. Improved Quality of Life in Patients Treated with Peptide Radionuclides

    International Nuclear Information System (INIS)

    Traub-Weidinger, T; Raderer, M.; Uffmann, M.; Angelberger, P.; Kurtaran, A.; Leimer, M.; Preitfellner, J.; Dudczak, R.; Virgolini, I.

    2011-01-01

    Peptide receptor radionuclide therapy (PRRT) has recently been established as an important treatment modality for somatostatin receptor (SSTR)-positive tumors. The purpose of this study was to evaluate the clinical response, side-effects as well as the quality of life following 90 Y-DOTA-lanreotide (DOTALAN) and/or 90 Y-DOTA-Tyr 3 -DPhe 1 -octreotide (DOTATOC) therapy in patients with progressive metastatic disease during a 6-year follow-up period. Following dosimetric evaluation with 111 In-DOTALAN and 111 In-DOTATOC, 13 patients with estimated absorbed tumor doses of >5 Gy/GBq (carcinoid, n = 5; radioiodine-negative thyroid cancer, n = 4; gastrinoma, n = 1; insulinoma, n = 1; glucagonoma, n = 1; glomus jugularis tumor, n = 1) were assigned for PRRT. A dose of 925 MBq of 90 Y-DOTALAN (four patients) or 1.85–3.7 GBq of 90 Y-DOTATOC (10 patients) was administered intravenously and repeated every 4–8 weeks. Tumor dosimetry was performed prior to and under therapy, re-staging every 2–3 months. Pain intensity, Karnofsky score and general symptoms were evaluated in order to determine quality of life. Patients were followed until death. Altogether, 53 infusions of PRRT (1.85–14.1 GBq) were administered. After the first follow-up of 3 months of 90 Y-DOTALAN therapy, stable disease (SD) was observed in one patient and progressive disease (PD) in three patients. With 90 Y-DOTATOC therapy, SD was found in all 10 patients. During the re-evaluation period (4–27 months), one patient had to be shifted from 90 Y-DOTALAN to 90 Y-DOTATOC therapy due to reduced 111 In-DOTALAN uptake after 5.5 GBq. In the first 6 months after PRRT with DOTATOC, SD was found in nine of 10 patients and PD in one patient. Thereafter, SD was observed in two patients and PD in eight patients. Nine of 13 patients after PRRT with either DOTALAN or DOTATOC died. None of the patients had experienced severe acute hematological side-effects. Transient thrombocytopenia or lymphocytopenia was seen in 10

  16. Doping reversed-phase media for improved peptide purification.

    Science.gov (United States)

    Khalaf, Rushd; Forrer, Nicola; Buffolino, Gianluca; Gétaz, David; Bernardi, Susanna; Butté, Alessandro; Morbidelli, Massimo

    2015-06-05

    The purification of therapeutic peptides is most often performed using one or more reversed phase chromatography steps. This ensures high purities while keeping the costs of purification under control. In this paper, a doped reversed phase chromatographic material is tested and compared to traditional reversed phase materials. The doping consists of adding limited amounts of ion exchange ligands to the surface of the material to achieve orthogonal separation and increase the non-hydrophobic interactions with the surface. These ionic groups can either be attractive (opposite charge), or repulsive (same charge) to the peptide. The benefit of this new doped reversed phase material is shown through increases in selectivity in diluted conditions and yield and productivity in overloaded (i.e. industrial) conditions. It is the conjectured that all performance characteristics should increase using repulsive doping groups, whereas these characteristics should decrease when using attractive doping groups. This conjecture is shown to be true through several examples, including purifications of industrially relevant peptide crudes, in industrially relevant conditions. Moreover, the effect of ionic strength and organic modifier concentration was explored and shown to be in line with the expected behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage.

    Science.gov (United States)

    Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S

    2008-09-01

    The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.

  18. Improvement of autism spectrum disorder symptoms in three children by using gastrin-releasing peptide.

    Science.gov (United States)

    Becker, Michele Michelin; Bosa, Cleonice; Oliveira-Freitas, Vera Lorentz; Goldim, José Roberto; Ohlweiler, Lygia; Roesler, Rafael; Schwartsmann, Gilberto; Riesgo, Rudimar Dos Santos

    2016-01-01

    To evaluate the safety, tolerability and potential therapeutic effects of gastrin-releasing peptide in three children with autistic spectrum disorder. Case series study with the intravenous administration of gastrin-releasing peptide in the dose of 160pmol/kg for four consecutive days. To evaluate the results, parental impressions the Childhood Autism Rating Scale (CARS) and the Clinical Global Impression (CGI) Scale. Each child underwent a new peptide cycle after two weeks. The children were followed for four weeks after the end of the infusions. The gastrin-releasing peptide was well tolerated and no child had adverse effects. Two children had improved social interaction, with a slight improvement in joint attention and the interaction initiatives. Two showed reduction of stereotypes and improvement in verbal language. One child lost his compulsion to bathe, an effect that lasted two weeks after each infusion cycle. Average reduction in CARS score was 2.8 points. CGI was "minimally better" in two children and "much better" in one. This study suggests that the gastrin-releasing peptide is safe and may be effective in improving key symptoms of autism spectrum disorder, but its results should be interpreted with caution. Controlled clinical trials-randomized, double-blinded, and with more children-are needed to better evaluate the possible therapeutic effects of gastrin-releasing peptide in autism. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  19. Improvement of autism spectrum disorder symptoms in three children by using gastrin-releasing peptide,

    Directory of Open Access Journals (Sweden)

    Michele Michelin Becker

    2016-06-01

    Full Text Available Abstract Objective: To evaluate the safety, tolerability and potential therapeutic effects of gastrin-releasing peptide in three children with autistic spectrum disorder. Methods: Case series study with the intravenous administration of gastrin-releasing peptide in the dose of 160 pmol/kg for four consecutive days. To evaluate the results, parental impressions the Childhood Autism Rating Scale (CARS and the Clinical Global Impression (CGI Scale. Each child underwent a new peptide cycle after two weeks. The children were followed for four weeks after the end of the infusions. Results: The gastrin-releasing peptide was well tolerated and no child had adverse effects. Two children had improved social interaction, with a slight improvement in joint attention and the interaction initiatives. Two showed reduction of stereotypes and improvement in verbal language. One child lost his compulsion to bathe, an effect that lasted two weeks after each infusion cycle. Average reduction in CARS score was 2.8 points. CGI was "minimally better" in two children and "much better" in one. Conclusions: This study suggests that the gastrin-releasing peptide is safe and may be effective in improving key symptoms of autism spectrum disorder, but its results should be interpreted with caution. Controlled clinical trials-randomized, double-blinded, and with more children-are needed to better evaluate the possible therapeutic effects of gastrin-releasing peptide in autism.

  20. Improved surface bioactivity of stainless steel substrates using osteocalcin mimetic peptide

    International Nuclear Information System (INIS)

    Hosseini, Samaneh; Naderi-Manesh, Hossein; Vali, Hojatollah; Faghihi, Shahab

    2014-01-01

    Although stainless steel has a good biocompatibility for most clinical cases, the higher tissue response (bone bonding property) is required in orthopedic field. In this study, to improve bone-bonding ability of stainless steel substrates, a specific sequence of osteocalcin mimetic peptide is used as bioactive coating material to biochemically modify the surface of metallic samples. This sequence consists of thirteen amino acids present in the first helix of osteocalcin is synthesized in amidic form and physically adsorbed on the surface of 316LS (316 low carbon surgical grade) stainless steel substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to characterize the surface of peptide coated and uncoated substrates. The bioactivity and bone bonding ability of coated and uncoated substrates are assessed by level of hydroxyapatite formation, using transmission electron microscopy (TEM), energy-dispersive x-ray (EDS), and scanning electron microscopy (SEM). The pre-osteoblast cell attachment and proliferation are also evaluated by MTT assay. The results show that the surface of coated sample is homogenously covered by the peptide and display a rougher surface relative to uncoated sample. TEM images reveal the formation of plate-like hydroxyapatite crystals in the presence of the peptide and an amorphous calcium phosphate phase without the peptide. Pre-osteoblast cells proliferation is significantly higher on the surface of peptide coated substrate, while cell attachment remains unaffected by the peptide coatings. Pre-osteoblast cells also demonstrate a higher degree of spreading on the surface of coated sample. It is believed that osteocalcin mimetic peptide improve surface bioactivity and promote hydroxyapatite crystal formation may lead to increased mineralization and bone formation on the surface of metallic biomedical devices. - Graphical abstract: A peptide sequence located in the first helix of OC is selected based on its

  1. Improved surface bioactivity of stainless steel substrates using osteocalcin mimetic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samaneh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Vali, Hojatollah [Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7 (Canada); Faghihi, Shahab, E-mail: sfaghihi@nigeb.ac.ir [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of)

    2014-02-14

    Although stainless steel has a good biocompatibility for most clinical cases, the higher tissue response (bone bonding property) is required in orthopedic field. In this study, to improve bone-bonding ability of stainless steel substrates, a specific sequence of osteocalcin mimetic peptide is used as bioactive coating material to biochemically modify the surface of metallic samples. This sequence consists of thirteen amino acids present in the first helix of osteocalcin is synthesized in amidic form and physically adsorbed on the surface of 316LS (316 low carbon surgical grade) stainless steel substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to characterize the surface of peptide coated and uncoated substrates. The bioactivity and bone bonding ability of coated and uncoated substrates are assessed by level of hydroxyapatite formation, using transmission electron microscopy (TEM), energy-dispersive x-ray (EDS), and scanning electron microscopy (SEM). The pre-osteoblast cell attachment and proliferation are also evaluated by MTT assay. The results show that the surface of coated sample is homogenously covered by the peptide and display a rougher surface relative to uncoated sample. TEM images reveal the formation of plate-like hydroxyapatite crystals in the presence of the peptide and an amorphous calcium phosphate phase without the peptide. Pre-osteoblast cells proliferation is significantly higher on the surface of peptide coated substrate, while cell attachment remains unaffected by the peptide coatings. Pre-osteoblast cells also demonstrate a higher degree of spreading on the surface of coated sample. It is believed that osteocalcin mimetic peptide improve surface bioactivity and promote hydroxyapatite crystal formation may lead to increased mineralization and bone formation on the surface of metallic biomedical devices. - Graphical abstract: A peptide sequence located in the first helix of OC is selected based on its

  2. Treatment with grass allergen peptides improves symptoms of grass pollen-induced allergic rhinoconjunctivitis.

    Science.gov (United States)

    Ellis, Anne K; Frankish, Charles W; O'Hehir, Robyn E; Armstrong, Kristen; Steacy, Lisa; Larché, Mark; Hafner, Roderick P

    2017-08-01

    Synthetic peptide immunoregulatory epitopes are a new class of immunotherapy to treat allergic rhinoconjunctivitis (ARC). Grass allergen peptides, comprising 7 synthetic T-cell epitopes derived from Cyn d 1, Lol p 5, Dac g 5, Hol l 5, and Phl p 5, is investigated for treatment of grass pollen-induced ARC. We sought to evaluate the efficacy, safety, and tolerability of intradermally administered grass allergen peptides. A multicenter, randomized, double-blind, placebo-controlled study evaluated 3 regimens of grass allergen peptides versus placebo in patients with grass pollen-induced allergy (18-65 years). After a 4-day baseline challenge to rye grass in the environmental exposure unit (EEU), subjects were randomized to receive grass allergen peptides at 6 nmol at 2-week intervals for a total of 8 doses (8x6Q2W), grass allergen peptides at 12 nmol at 4-week intervals for a total of 4 doses (4x12Q4W), or grass allergen peptides at 12 nmol at 2-week intervals for a total of 8 doses (8x12Q2W) or placebo and treated before the grass pollen season. The primary efficacy end point was change from baseline in total rhinoconjunctivitis symptom score across days 2 to 4 of a 4-day posttreatment challenge (PTC) in the EEU after the grass pollen season. Secondary efficacy end points and safety were also assessed. Two hundred eighty-two subjects were randomized. Significantly greater improvement (reduction of total rhinoconjunctivitis symptom score from baseline to PTC) occurred across days 2 to 4 with grass allergen peptide 8x6Q2W versus placebo (-5.4 vs -3.8, respectively; P = .0346). Greater improvement at PTC also occurred for grass allergen peptide 8x6Q2W versus placebo (P = .0403) in patients with more symptomatic ARC. No safety signals were detected. Grass allergen peptide 8x6Q2W significantly improved ARC symptoms after rye grass allergen challenge in an EEU with an acceptable safety profile. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  3. Improved machine learning method for analysis of gas phase chemistry of peptides

    Directory of Open Access Journals (Sweden)

    Ahn Natalie

    2008-12-01

    Full Text Available Abstract Background Accurate peptide identification is important to high-throughput proteomics analyses that use mass spectrometry. Search programs compare fragmentation spectra (MS/MS of peptides from complex digests with theoretically derived spectra from a database of protein sequences. Improved discrimination is achieved with theoretical spectra that are based on simulating gas phase chemistry of the peptides, but the limited understanding of those processes affects the accuracy of predictions from theoretical spectra. Results We employed a robust data mining strategy using new feature annotation functions of MAE software, which revealed under-prediction of the frequency of occurrence in fragmentation of the second peptide bond. We applied methods of exploratory data analysis to pre-process the information in the MS/MS spectra, including data normalization and attribute selection, to reduce the attributes to a smaller, less correlated set for machine learning studies. We then compared our rule building machine learning program, DataSqueezer, with commonly used association rules and decision tree algorithms. All used machine learning algorithms produced similar results that were consistent with expected properties for a second gas phase mechanism at the second peptide bond. Conclusion The results provide compelling evidence that we have identified underlying chemical properties in the data that suggest the existence of an additional gas phase mechanism for the second peptide bond. Thus, the methods described in this study provide a valuable approach for analyses of this kind in the future.

  4. Charge State Coalescence During Electrospray Ionization Improves Peptide Identification by Tandem Mass Spectrometry

    Science.gov (United States)

    Meyer, Jesse G.; A. Komives, Elizabeth

    2012-08-01

    We report the effects of supercharging reagents dimethyl sulphoxide (DMSO) and m-nitrobenzyl alcohol ( m-NBA) applied to untargeted peptide identification, with special emphasis on non-tryptic peptides. Peptides generated from a mixture of five standard proteins digested with trypsin, elastase, or pepsin were separated with nanoflow liquid chromatography using mobile phases modified with either 5 % DMSO or 0.1 % m-NBA. Eluting peptides were ionized by online electrospray and sequenced by both CID and ETD using data-dependent MS/MS. Statistically significant improvements in peptide identifications were observed with DMSO co-solvent. In order to understand this observation, we assessed the effects of supercharging reagents on the chromatographic separation and the electrospray quality. The increase in identifications was not due to supercharging, which was greater for the 0.1 % m-NBA co-solvent and not observed for the 5.0 % DMSO co-solvent. The improved MS/MS efficiency using the DMSO modified mobile phase appeared to result from charge state coalescence.

  5. Improved Spectra for MALDI MSI of Peptides Using Ammonium Phosphate Monobasic in MALDI Matrix.

    Science.gov (United States)

    Ucal, Yasemin; Ozpinar, Aysel

    2018-05-10

    MALDI mass spectrometry imaging (MSI) enables analysis of peptides along with histology. However, there are several critical steps in MALDI MSI of peptides, one of which is spectral quality. Suppression of MALDI matrix clusters by the aid of ammonium salts in MALDI experiments is well-known. It is asserted that addition of ammonium salts dissociates potential matrix adducts and thereafter decreases matrix cluster formation. Consequently, MALDI MS sensitivity and mass accuracy increases. Up to our knowledge, a limited number of MALDI MSI studies used ammonium salts as matrix additives to suppress matrix clusters and enhance peptide signals. In this work, we investigated the effect of ammonium phosphate monobasic (AmP) as alpha-cyano-4-hydroxycinnamic acid (α-CHCA) matrix additive in MALDI MSI of peptides. Prior to MALDI MSI, the effect of varying concentrations of AmP in α-CHCA were assessed in bovine serum albumin (BSA) tryptic digests and compared with the control (α-CHCA without AmP). Based on our data, the addition of AmP as matrix additive decreased matrix cluster formation regardless of its concentration and, specifically 8 mM AmP and 10 mM AmP increased BSA peptide signal intensities. In MALDI MSI of peptides, both 8 mM, and 10 mM AmP in α-CHCA improved peptide signals especially in the mass range of m/z 2000 to 3000. In particular, 9 peptide signals were found to have differential intensities within the tissues deposited with AmP in α-CHCA (AUC>0.60). To the best of our knowledge, this is the first MALDI MSI of peptides work investigating different concentrations of AmP as α-CHCA matrix additive in order to enhance peptide signals in formalin fixed paraffin embedded (FFPE) tissues. Further, AmP as part of α-CHCA matrix could enhance protein identifications and support MALDI MSI based proteomic approaches. This article is protected by copyright. All rights reserved.

  6. Improved methods for predicting peptide binding affinity to MHC class II molecules.

    Science.gov (United States)

    Jensen, Kamilla Kjaergaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A; Yan, Zhen; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2018-01-06

    Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC-II-peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. © 2018 John Wiley & Sons Ltd.

  7. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.

    Science.gov (United States)

    Lin, Ran; Zhang, Pengcheng; Cheetham, Andrew G; Walston, Jeremy; Abadir, Peter; Cui, Honggang

    2015-01-21

    Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.

  8. Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity.

    Science.gov (United States)

    Almahboub, Sarah A; Narancic, Tanja; Devocelle, Marc; Kenny, Shane T; Palmer-Brown, William; Murphy, Cormac; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E

    2018-01-01

    Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric excess > 98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transaminase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited MIC values of 25 μg/ml for Escherichia coli, 50 μg/ml for Bacillus subtilis, 100 μg/ml for Salmonella typhimurium, 200 μg/ml for Pseudomonas aeruginosa and 400 μg/ml for Staphylococcus aureus. The C-terminally modified peptide was the only peptide tested that showed complete inhibition of growth of S. aureus.

  9. The Drosophila melanogaster PeptideAtlas facilitates the use of peptide data for improved fly proteomics and genome annotation

    Directory of Open Access Journals (Sweden)

    King Nichole L

    2009-02-01

    Full Text Available Abstract Background Crucial foundations of any quantitative systems biology experiment are correct genome and proteome annotations. Protein databases compiled from high quality empirical protein identifications that are in turn based on correct gene models increase the correctness, sensitivity, and quantitative accuracy of systems biology genome-scale experiments. Results In this manuscript, we present the Drosophila melanogaster PeptideAtlas, a fly proteomics and genomics resource of unsurpassed depth. Based on peptide mass spectrometry data collected in our laboratory the portal http://www.drosophila-peptideatlas.org allows querying fly protein data observed with respect to gene model confirmation and splice site verification as well as for the identification of proteotypic peptides suited for targeted proteomics studies. Additionally, the database provides consensus mass spectra for observed peptides along with qualitative and quantitative information about the number of observations of a particular peptide and the sample(s in which it was observed. Conclusion PeptideAtlas is an open access database for the Drosophila community that has several features and applications that support (1 reduction of the complexity inherently associated with performing targeted proteomic studies, (2 designing and accelerating shotgun proteomics experiments, (3 confirming or questioning gene models, and (4 adjusting gene models such that they are in line with observed Drosophila peptides. While the database consists of proteomic data it is not required that the user is a proteomics expert.

  10. Carboxylic Terminated Thermo-Responsive Copolymer Hydrogel and Improvement in Peptide Release Profile

    Directory of Open Access Journals (Sweden)

    Zi-Kun Rao

    2018-02-01

    Full Text Available To improve the release profile of peptide drugs, thermos-responsive triblock copolymer poly (ε-caprolactone-co-p-dioxanone-b-poly (ethylene glycol-b-poly (ε-caprolactone-co-p-dioxanone (PECP was prepared and end capped by succinic anhydride to give its carboxylic terminated derivative. Both PCEP block copolymer and its end group modified derivative showed temperature-dependent reversible sol-gel transition in water. The carboxylic end group could significantly decrease the sol-gel transition temperature by nearly 10 °C and strengthen the gel due to enhanced intermolecular force among triblock copolymer chains. Furthermore, compared with the original PECP triblock copolymer, HOOC–PECP–COOH copolymer displayed a retarded and sustained release profile for leuprorelin acetate over one month while effectively avoiding the initial burst. The controlled release was believed to be related to the formation of conjugated copolymer-peptide pair by ionic interaction and enhanced solubility of drug molecules into the hydrophobic domains of the hydrogel. Therefore, carboxyl terminated HOOC–PECP–COOH hydrogel was a promising and well-exhibited sustained release carrier for peptide drugs with the advantage of being able to develop injectable formulation by simple mixing.

  11. Toward Structure Prediction for Short Peptides Using the Improved SAAP Force Field Parameters

    Directory of Open Access Journals (Sweden)

    Kenichi Dedachi

    2013-01-01

    Full Text Available Based on the observation that Ramachandran-type potential energy surfaces of single amino acid units in water are in good agreement with statistical structures of the corresponding amino acid residues in proteins, we recently developed a new all-atom force field called SAAP, in which the total energy function for a polypeptide is expressed basically as a sum of single amino acid potentials and electrostatic and Lennard-Jones potentials between the amino acid units. In this study, the SAAP force field (SAAPFF parameters were improved, and classical canonical Monte Carlo (MC simulation was carried out for short peptide models, that is, Met-enkephalin and chignolin, at 300 K in an implicit water model. Diverse structures were reasonably obtained for Met-enkephalin, while three folded structures, one of which corresponds to a native-like structure with three native hydrogen bonds, were obtained for chignolin. The results suggested that the SAAP-MC method is useful for conformational sampling for the short peptides. A protocol of SAAP-MC simulation followed by structural clustering and examination of the obtained structures by ab initio calculation or simply by the number of the hydrogen bonds (or the hardness was demonstrated to be an effective strategy toward structure prediction for short peptide molecules.

  12. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    International Nuclear Information System (INIS)

    Park, Ji-Ae; Lee, Yong Jin; Ko, In Ok; Kim, Tae-Jeong; Chang, Yongmin; Lim, Sang Moo; Kim, Kyeong Min; Kim, Jung Young

    2014-01-01

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images

  13. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Ae, E-mail: jpark@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yong Jin; Ko, In Ok [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Tae-Jeong; Chang, Yongmin [Institute of Biomedical Engineering, Kyungpook National University, Daegu (Korea, Republic of); Lim, Sang Moo [Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kyeong Min [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jung Young, E-mail: jykim@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.

  14. Human Vitronectin-Derived Peptide Covalently Grafted onto Titanium Surface Improves Osteogenic Activity: A Pilot In Vivo Study on Rabbits.

    Science.gov (United States)

    Cacchioli, Antonio; Ravanetti, Francesca; Bagno, Andrea; Dettin, Monica; Gabbi, Carlo

    2009-10-01

    Peptide and protein exploitation for the biochemical functionalization of biomaterial surfaces allowed fabricating biomimetic devices able to evoke and promote specific and advantageous cell functions in vitro and in vivo. In particular, cell adhesion improvement to support the osseointegration of implantable devices has been thoroughly investigated. This study was aimed at checking the biological activity of the (351-359) human vitronectin precursor (HVP) sequence, mapped on the human vitronectin protein; the peptide was covalently linked to the surface of titanium cylinders, surgically inserted in the femurs of New Zealand white rabbits and analyzed at short experimental time points (4, 9, and 16 days after surgery). To assess the osteogenic activity of the peptide, three vital fluorochromic bone markers were used (calcein green, xylenol orange, and calcein blue) to stain the areas of newly grown bone. Static and dynamic histomorphometric parameters were measured at the bone-implant interface and at different distances from the surface. The biological role of the (351-359)HVP sequence was checked by comparing peptide-grafted samples and controls, analyzing how and how much its effects change with time across the bone regions surrounding the implant surface. The results obtained reveal a major activity of the investigated peptide 4 days after surgery, within the bone region closest to the implant surface, and larger bone to implant contact 9 and 16 days after surgery. Thus, improved primary fixation of endosseous devices can be foreseen, resulting in an increased osteointegration.

  15. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Po Jen; Lai, S. K., E-mail: sklai@coll.phy.ncu.edu.tw [Complex Liquids Laboratory, Department of Physics, National Central University, Chungli 320, Taiwan and Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (China); Rapallo, Arnaldo [Istituto per lo Studio delle Macromolecole (ISMAC) Consiglio Nazionale delle Ricerche (CNR), via E. Bassini 15, C.A.P 20133 Milano (Italy)

    2014-03-14

    Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible synthetic polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit

  16. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets

    International Nuclear Information System (INIS)

    Hsu, Po Jen; Lai, S. K.; Rapallo, Arnaldo

    2014-01-01

    Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible synthetic polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit

  17. Improving cell penetration of helical peptides stabilized by N-terminal crosslinked aspartic acids.

    Science.gov (United States)

    Zhao, Hui; Jiang, Yanhong; Tian, Yuan; Yang, Dan; Qin, Xuan; Li, Zigang

    2017-01-04

    Cell penetration and nucleus translocation efficiency are important for the cellular activities of peptide therapeutics. For helical peptides stabilized by N-terminal crosslinked aspartic acid, correlations between their penetration efficiency/nucleus translocation and physicochemical properties were studied. An increase in hydrophobicity and isoelectric point will promote cellular uptake and nucleus translocation of stabilized helices.

  18. Yield improvement of heterologous peptides expressed in yps1-disrupted Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Egel-Mitani; Andersen; Diers; Hach; Thim; Hastrup; Vad

    2000-06-01

    Heterologous protein expression levels in Saccharomyces cerevisiae fermentations are highly dependent on the susceptibility to endogenous yeast proteases. Small peptides, such as glucagon and glucagon-like-peptides (GLP-1 and GLP-2), featuring an open structure are particularly accessible for proteolytic degradation during fermentation. Therefore, homogeneous products cannot be obtained. The most sensitive residues are found at basic amino acid residues in the peptide sequence. These heterologous peptides are degraded mainly by the YPS1-encoded aspartic protease, yapsin1, when produced in the yeast. In this article, distinct degradation products were analyzed by HPLC and mass spectrometry, and high yield of the heterologous peptide production has been achieved by the disruption of the YPS1 gene (previously called YAP3). By this technique, high yield continuous fermentation of glucagon in S. cerevisiae is now possible.

  19. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    Science.gov (United States)

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. NetMHCpan 4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data

    OpenAIRE

    Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; Nielsen, Morten

    2017-01-01

    Cytotoxic T cells are of central importance in the immune systems response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC (major histocompatibility complex) class I molecules. Peptide binding to MHC molecules is the single most selective step in the antigen presentation pathway. On the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has therefore attracted large attention. In the past, predictors of peptide-...

  1. The TFPI-2 derived peptide EDC34 improves outcome of gram-negative sepsis.

    Science.gov (United States)

    Papareddy, Praveen; Kalle, Martina; Sørensen, Ole E; Malmsten, Martin; Mörgelin, Matthias; Schmidtchen, Artur

    2013-01-01

    Sepsis is characterized by a dysregulated host-pathogen response, leading to high cytokine levels, excessive coagulation and failure to eradicate invasive bacteria. Novel therapeutic strategies that address crucial pathogenetic steps during infection are urgently needed. Here, we describe novel bioactive roles and therapeutic anti-infective potential of the peptide EDC34, derived from the C-terminus of tissue factor pathway inhibitor-2 (TFPI-2). This peptide exerted direct bactericidal effects and boosted activation of the classical complement pathway including formation of antimicrobial C3a, but inhibited bacteria-induced activation of the contact system. Correspondingly, in mouse models of severe Escherichia coli and Pseudomonas aeruginosa infection, treatment with EDC34 reduced bacterial levels and lung damage. In combination with the antibiotic ceftazidime, the peptide significantly prolonged survival and reduced mortality in mice. The peptide's boosting effect on bacterial clearance paired with its inhibiting effect on excessive coagulation makes it a promising therapeutic candidate for invasive Gram-negative infections.

  2. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    based on a splicing correction of a mutated luciferase gene in HeLa pLuc705 cells by targeting antisense oligonucleotides to a cryptic splice site. Further improvement in the delivery of CatLip-PNA conjugates is achieved by using auxiliary agents/treatments (e.g., chloroquine, calcium ions......Unaided cellular uptake of RNA interference agents such as antisense oligonucleotides and siRNA is extremely poor, and in vivo bioavailability is also limited. Thus, effective delivery strategies for such potential drugs are in high demand. Recently, a novel approach using a class of short cationic....... We have found, however, that this low -bioavailability can be significantly improved by chemical conjugation to a lipid domain ("Lip," such as a fatty acid), thereby creating "CatLip"-conjugates. The cellular uptake of these conjugates is conveniently evaluated using a sensitive cellular assay system...

  3. Improved glucose control and reduced body weight in rodents with dual mechanism of action peptide hybrids.

    Directory of Open Access Journals (Sweden)

    James L Trevaskis

    Full Text Available Combination therapy is being increasingly used as a treatment paradigm for metabolic diseases such as diabetes and obesity. In the peptide therapeutics realm, recent work has highlighted the therapeutic potential of chimeric peptides that act on two distinct receptors, thereby harnessing parallel complementary mechanisms to induce additive or synergistic benefit compared to monotherapy. Here, we extend this hypothesis by linking a known anti-diabetic peptide with an anti-obesity peptide into a novel peptide hybrid, which we termed a phybrid. We report on the synthesis and biological activity of two such phybrids (AC164204 and AC164209, comprised of a glucagon-like peptide-1 receptor (GLP1-R agonist, and exenatide analog, AC3082, covalently linked to a second generation amylin analog, davalintide. Both molecules acted as full agonists at their cognate receptors in vitro, albeit with reduced potency at the calcitonin receptor indicating slightly perturbed amylin agonism. In obese diabetic Lep(ob/Lep (ob mice sustained infusion of AC164204 and AC164209 reduced glucose and glycated haemoglobin (HbA1c equivalently but induced greater weight loss relative to exenatide administration alone. Weight loss was similar to that induced by combined administration of exenatide and davalintide. In diet-induced obese rats, both phybrids dose-dependently reduced food intake and body weight to a greater extent than exenatide or davalintide alone, and equal to co-infusion of exenatide and davalintide. Phybrid-mediated and exenatide + davalintide-mediated weight loss was associated with reduced adiposity and preservation of lean mass. These data are the first to provide in vivo proof-of-concept for multi-pathway targeting in metabolic disease via a peptide hybrid, demonstrating that this approach is as effective as co-administration of individual peptides.

  4. Improving cardiac gap junction communication as a new antiarrhythmic mechanism: the action of antiarrhythmic peptides.

    Science.gov (United States)

    Dhein, Stefan; Hagen, Anja; Jozwiak, Joanna; Dietze, Anna; Garbade, Jens; Barten, Markus; Kostelka, Martin; Mohr, Friedrich-Wilhelm

    2010-03-01

    Co-ordinated electrical activation of the heart is maintained by intercellular coupling of cardiomyocytes via gap junctional channels located in the intercalated disks. These channels consist of two hexameric hemichannels, docked to each other, provided by either of the adjacent cells. Thus, a complete gap junction channel is made from 12 protein subunits, the connexins. While 21 isoforms of connexins are presently known, cardiomyocytes typically are coupled by Cx43 (most abundant), Cx40 or Cx45. Some years ago, antiarrhythmic peptides were discovered and synthesised, which were shown to increase macroscopic gap junction conductance (electrical coupling) and enhance dye transfer (metabolic coupling). The lead substance of these peptides is AAP10 (H-Gly-Ala-Gly-Hyp-Pro-Tyr-CONH(2)), a peptide with a horseshoe-like spatial structure as became evident from two-dimensional nuclear magnetic resonance studies. A stable D: -amino-acid derivative of AAP10, rotigaptide, as well as a non-peptide analogue, gap-134, has been developed in recent years. Antiarrhythmic peptides act on Cx43 and Cx45 gap junctions but not on Cx40 channels. AAP10 has been shown to enhance intercellular communication in rat, rabbit and human cardiomyocytes. Antiarrhythmic peptides are effective against ventricular tachyarrhythmias, such as late ischaemic (type IB) ventricular fibrillation, CaCl(2) or aconitine-induced arrhythmia. Interestingly, the effect of antiarrhythmic peptides is higher in partially uncoupled cells and was shown to be related to maintained Cx43 phosphorylation, while arrhythmogenic conditions like ischaemia result in Cx43 dephosphorylation and intercellular decoupling. It is still a matter of debate whether these drugs also act against atrial fibrillation. The present review outlines the development of this group of peptides and derivatives, their mode of action and molecular mechanisms, and discusses their possible therapeutic potential.

  5. Improved methods for predicting peptide binding affinity to MHC class II molecules

    DEFF Research Database (Denmark)

    Jensen, Kamilla Kjærgaard; Andreatta, Massimo; Marcatili, Paolo

    2018-01-01

    Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented b...... are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. This article is protected by copyright. All rights reserved....

  6. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity

    Science.gov (United States)

    Zhang, Liang; Navaratna, Tejas; Thurber, Greg M.

    2016-01-01

    Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (SC) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. The ease and efficiency of double-click helix stabilization chemistries is a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control SC absorption and clearance rates to customize plasma pharmacokinetics. PMID:27327034

  7. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data

    DEFF Research Database (Denmark)

    Jurtz, Vanessa Isabell; Paul, Sinu; Andreatta, Massimo

    2017-01-01

    by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging......Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway....... Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified...

  8. Antisense Oligonucleotides Internally Labeled with Peptides Show Improved Target Recognition and Stability to Enzymatic Degradation

    DEFF Research Database (Denmark)

    Taskova, Maria; Madsen, Charlotte S.; Jensen, Knud J.

    2017-01-01

    Specific target binding and stability in diverse biological media is of crucial importance for applications of synthetic oligonucleotides as diagnostic and therapeutic tools. So far, these issues have been addressed by chemical modification of oligonucleotides and by conjugation with a peptide, m...... and makes internally labeled POCs an exciting object of study, i.e., showing high target specificity and simultaneous stability in biological media.......Specific target binding and stability in diverse biological media is of crucial importance for applications of synthetic oligonucleotides as diagnostic and therapeutic tools. So far, these issues have been addressed by chemical modification of oligonucleotides and by conjugation with a peptide......, most often at the terminal position of the oligonucleotide. Herein, we for the first time systematically investigate the influence of internally attached short peptides on the properties of antisense oligonucleotides. We report the synthesis and internal double labeling of 21-mer oligonucleotides...

  9. Improvement of recovery and repeatability in liquid chromatography-mass spectrometry analysis of peptides

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Rieux, Laurent; Bischoff, Rainer; Verpoorte, Elisabeth; Niederlander, Harm A. G.

    2007-01-01

    Poor repeatability of peak areas is a problem frequently encountered in peptide analysis with nanoLiquid Chromatography coupled on-line with Mass Spectrometry (nanoLC-MS). As a result, quantitative analysis will be seriously hampered unless the observed variability can be corrected in some way.

  10. The TFPI-2 derived peptide EDC34 improves outcome of gram-negative sepsis.

    Directory of Open Access Journals (Sweden)

    Praveen Papareddy

    Full Text Available Sepsis is characterized by a dysregulated host-pathogen response, leading to high cytokine levels, excessive coagulation and failure to eradicate invasive bacteria. Novel therapeutic strategies that address crucial pathogenetic steps during infection are urgently needed. Here, we describe novel bioactive roles and therapeutic anti-infective potential of the peptide EDC34, derived from the C-terminus of tissue factor pathway inhibitor-2 (TFPI-2. This peptide exerted direct bactericidal effects and boosted activation of the classical complement pathway including formation of antimicrobial C3a, but inhibited bacteria-induced activation of the contact system. Correspondingly, in mouse models of severe Escherichia coli and Pseudomonas aeruginosa infection, treatment with EDC34 reduced bacterial levels and lung damage. In combination with the antibiotic ceftazidime, the peptide significantly prolonged survival and reduced mortality in mice. The peptide's boosting effect on bacterial clearance paired with its inhibiting effect on excessive coagulation makes it a promising therapeutic candidate for invasive Gram-negative infections.

  11. Glucagon-like peptide 2 treatment may improve intestinal adaptation during weaning

    DEFF Research Database (Denmark)

    Thymann, Thomas; Le Huërou-Luron, I; Petersen, Y M

    2014-01-01

    Transition from sow’s milk to solid feed is associated with intestinal atrophy and diarrhea. We hypothesized that the intestinotrophic hormone glucagon-like peptide 2 (GLP-2) would induce a dose- and health status-dependent effect on gut adaptation. In Exp. 1, weaned pigs (average BW at weaning 4...

  12. Improving pancreatic islet in vitro functionality and transplantation efficiency by using heparin mimetic peptide nanofiber gels.

    Science.gov (United States)

    Uzunalli, Gozde; Tumtas, Yasin; Delibasi, Tuncay; Yasa, Oncay; Mercan, Sercan; Guler, Mustafa O; Tekinay, Ayse B

    2015-08-01

    Pancreatic islet transplantation is a promising treatment for type 1 diabetes. However, viability and functionality of the islets after transplantation are limited due to loss of integrity and destruction of blood vessel networks. Thus, it is important to provide a proper mechanically and biologically supportive environment for enhancing both in vitro islet culture and transplantation efficiency. Here, we demonstrate that heparin mimetic peptide amphiphile (HM-PA) nanofibrous network is a promising platform for these purposes. The islets cultured with peptide nanofiber gel containing growth factors exhibited a similar glucose stimulation index as that of the freshly isolated islets even after 7 days. After transplantation of islets to STZ-induced diabetic rats, 28 day-long monitoring displayed that islets that were transplanted in HM-PA nanofiber gels maintained better blood glucose levels at normal levels compared to the only islet transplantation group. In addition, intraperitoneal glucose tolerance test revealed that animals that were transplanted with islets within peptide gels showed a similar pattern with the healthy control group. Histological assessment showed that islets transplanted within peptide nanofiber gels demonstrated better islet integrity due to increased blood vessel density. This work demonstrates that using the HM-PA nanofiber gel platform enhances the islets function and islet transplantation efficiency both in vitro and in vivo. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Cyclic peptide inhibitors of lysine-specific demethylase 1 with improved potency identified by alanine scanning mutagenesis.

    Science.gov (United States)

    Kumarasinghe, Isuru R; Woster, Patrick M

    2018-03-25

    Lysine-specific demethylase 1 (LSD1) is a chromatin-remodeling enzyme that plays an important role in cancer. Over-expression of LSD1 decreases methylation at histone 3 lysine 4, and aberrantly silences tumor suppressor genes. Inhibitors of LSD1 have been designed as chemical probes and potential antitumor agents. We recently reported the cyclic peptide 9, which potently and reversibly inhibits LSD1 (IC 50 2.1 μM; K i 385 nM). Systematic alanine mutagenesis of 9 revealed residues that are critical for LSD1 inhibition, and these mutated peptides were evaluated as LSD1 inhibitors. Alanine substitution at positions 2, 3, 4, 6 and 11-17 preserved inhibition, while substitution of alanine at positions 8 and 9 resulted in complete loss of activity. Cyclic mutant peptides 11 and 16 produced the greatest LSD1 inhibition, and 11, 16, 27 and 28 increased global H3K4me2 in K562 cells. In addition, 16, 27 and 28 promoted significant increases in H3K4me2 levels at the promoter sites of the genes IGFBP2 and FEZ1. Data from these LSD1 inhibitors will aid in the design of peptidomimetics with improved stability and pharmacokinetics. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data.

    Science.gov (United States)

    Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; Nielsen, Morten

    2017-11-01

    Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Improved proteolytic stability and potent activity against Leishmania infantum trypanothione reductase of α/β-peptide foldamers conjugated to cell-penetrating peptides.

    Science.gov (United States)

    de Lucio, Héctor; Gamo, Ana María; Ruiz-Santaquiteria, Marta; de Castro, Sonia; Sánchez-Murcia, Pedro A; Toro, Miguel A; Gutiérrez, Kilian Jesús; Gago, Federico; Jiménez-Ruiz, Antonio; Camarasa, María-José; Velázquez, Sonsoles

    2017-11-10

    The objective of the current study was to enhance the proteolytic stability of peptide-based inhibitors that target critical protein-protein interactions at the dimerization interface of Leishmania infantum trypanothione reductase (Li-TryR) using a backbone modification strategy. To achieve this goal we carried out the synthesis, proteolytic stability studies and biological evaluation of a small library of α/β 3 -peptide foldamers of different length (from 9-mers to 13-mers) and different α→β substitution patterns related to prototype linear α-peptides. We show that several 13-residue α/β 3 -peptide foldamers retain inhibitory potency against the enzyme (in both activity and dimerization assays) while they are far less susceptible to proteolytic degradation than an analogous α-peptide. The strong dependence of the binding affinities for Li-TryR on the length of the α,β-peptides is supported by theoretical calculations on conformational ensembles of the resulting complexes. The conjugation of the most proteolytically stable α/β-peptide with oligoarginines results in a molecule with potent activity against L. infantum promastigotes and amastigotes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Toward improved peptide feature detection in quantitative proteomics using stable isotope labeling.

    Science.gov (United States)

    Nilse, Lars; Sigloch, Florian Christoph; Biniossek, Martin L; Schilling, Oliver

    2015-08-01

    Reliable detection of peptides in LC-MS data is a key algorithmic step in the analysis of quantitative proteomics experiments. While highly abundant peptides can be detected reliably by most modern software tools, there is much less agreement on medium and low-intensity peptides in a sample. The choice of software tools can have a big impact on the quantification of proteins, especially for proteins that appear in lower concentrations. However, in many experiments, it is precisely this region of less abundant but substantially regulated proteins that holds the biggest potential for discoveries. This is particularly true for discovery proteomics in the pharmacological sector with a specific interest in key regulatory proteins. In this viewpoint article, we discuss how the development of novel software algorithms allows us to study this region of the proteome with increased confidence. Reliable results are one of many aspects to be considered when deciding on a bioinformatics software platform. Deployment into existing IT infrastructures, compatibility with other software packages, scalability, automation, flexibility, and support need to be considered and are briefly addressed in this viewpoint article. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis

    Science.gov (United States)

    Hage, Christoph; Falvo, Francesco; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is gaining increasing importance as an alternative method for studying protein conformation and for deciphering protein interaction networks. This study is part of our ongoing efforts to develop innovative cross-linking principles for a facile and efficient assignment of cross-linked products. We evaluate two homobifunctional, amine-reactive, and MS-cleavable cross-linkers regarding their potential for automated analysis of cross-linked products. We introduce the bromine phenylurea (BrPU) linker that possesses a unique structure yielding a distinctive fragmentation pattern on collisional activation. Moreover, BrPU delivers the characteristic bromine isotope pattern and mass defect for all cross-linker-decorated fragments. We compare the fragmentation behavior of the BrPU linker with that of our previously described MS-cleavable TEMPO-Bz linker (which consists of a 2,2,6,6-tetramethylpiperidine-1-oxy moiety connected to a benzyl group) that was developed to perform free-radical-initiated peptide sequencing. Comparative collisional activation experiments (collision-induced dissociation and higher-energy collision-induced dissociation) with both cross-linkers were conducted in negative electrospray ionization mode with an Orbitrap Fusion mass spectrometer using five model peptides. As hypothesized in a previous study, the presence of a cross-linked N-terminal aspartic acid residue seems to be the prerequisite for the loss of an intact peptide from the cross-linked products. As the BrPU linker combines a characteristic mass shift with an isotope signature, it presents a more favorable combination for automated assignment of cross-linked products compared with the TEMPO-Bz linker. [Figure not available: see fulltext.

  18. Synthetic protein scaffolds based on peptide motifs and cognate adaptor domains for improving metabolic productivity

    Directory of Open Access Journals (Sweden)

    Anselm H.C. Horn

    2015-11-01

    Full Text Available The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity.

  19. Improvement of C peptide zero BMI 24-34 diabetic patients after tailored one anastomosis gastric bypass (BAGUA).

    Science.gov (United States)

    Garciacaballero, M; Martínez-Moreno, J M; Toval, J A; Miralles, F; Mínguez, A; Osorio, D; Mata, J M; Reyes-Ortiz, A

    2013-03-01

    Although bariatric surgery proved to be a very effective method in the treatment of patients in whose pancreas still produce insulin (type 2 diabetes), the accompanied metabolic syndrome and their diabetes complications, there is no information on the effect of this type of surgery in BMI24-34 patients when pancreas do not produce insulin at all (type 1, LADA and long term evolution type 2 diabetes among others). We report preliminary data of a serie of 11 patients all with a C-peptide values below 0.0 ng/ml. They were followed for 6 to 60 months (mean 19 months) after surgery. We studied the changes in glycemic control, evolution of the metabolic syndrome and diabetes complications after one anastomosis gastric bypass (BAGUA). All values relative to glycemic control were improved HbA1c (from 8.9 ± 0.6 to 6.7 ± 0.2%), FPG (Fasting Plasma Glucose) [from 222.36 ± 16.87 to 94 ± 5 (mg/dl)] as well as the daily insulin requirement of rapid (from 40.6 ± 12.8 to 0 (U/d) and long-lasting insulin (from 41.27 ± 7.3 U/day to 15.2 ± 3.3 U/day). It resolved 100% of the metabolic syndrome diseases as well as severe hypoglycaemia episodes present before surgery and improved some serious complications from diabetes like retinopathy, nephropathy, neuropathy, peripheral vasculopathy and cardiopathy. Tailored one anastomosis gastric bypass in BMI 24-34 C peptide zero diabetic patients eliminated the use of rapid insulin, reduced to only one injection per day long-lasting insulin and improved the glycemic control. After surgery disappear metabolic syndrome and severe hypoglycaemia episodes and improves significantly retinopathy, neuropathy, nephropathy, peripheral vasculopathy and cardiopathy. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  20. Multiple and sequential data acquisition method: an improved method for fragmentation and detection of cross-linked peptides on a hybrid linear trap quadrupole Orbitrap Velos mass spectrometer.

    Science.gov (United States)

    Rudashevskaya, Elena L; Breitwieser, Florian P; Huber, Marie L; Colinge, Jacques; Müller, André C; Bennett, Keiryn L

    2013-02-05

    The identification and validation of cross-linked peptides by mass spectrometry remains a daunting challenge for protein-protein cross-linking approaches when investigating protein interactions. This includes the fragmentation of cross-linked peptides in the mass spectrometer per se and following database searching, the matching of the molecular masses of the fragment ions to the correct cross-linked peptides. The hybrid linear trap quadrupole (LTQ) Orbitrap Velos combines the speed of the tandem mass spectrometry (MS/MS) duty circle with high mass accuracy, and these features were utilized in the current study to substantially improve the confidence in the identification of cross-linked peptides. An MS/MS method termed multiple and sequential data acquisition method (MSDAM) was developed. Preliminary optimization of the MS/MS settings was performed with a synthetic peptide (TP1) cross-linked with bis[sulfosuccinimidyl] suberate (BS(3)). On the basis of these results, MSDAM was created and assessed on the BS(3)-cross-linked bovine serum albumin (BSA) homodimer. MSDAM applies a series of multiple sequential fragmentation events with a range of different normalized collision energies (NCE) to the same precursor ion. The combination of a series of NCE enabled a considerable improvement in the quality of the fragmentation spectra for cross-linked peptides, and ultimately aided in the identification of the sequences of the cross-linked peptides. Concurrently, MSDAM provides confirmatory evidence from the formation of reporter ions fragments, which reduces the false positive rate of incorrectly assigned cross-linked peptides.

  1. Improving Multi-Epitope Long Peptide Vaccine Potency by Using a Strategy that Enhances CD4+ T Help in BALB/c Mice.

    Directory of Open Access Journals (Sweden)

    Haniyeh Ghaffari-Nazari

    Full Text Available Peptide-based vaccines are attractive approaches for cancer immunotherapy; but the success of these vaccines in clinical trials have been limited. Our goal is to improve immune responses and anti-tumor effects against a synthetic, multi-epitope, long peptide from rat Her2/neu (rHer2/neu using the help of CD4+ T cells and appropriate adjuvant in a mouse tumor model. Female BALB/c mice were vaccinated with P5+435 multi-epitope long peptide that presents epitopes for cytotoxic T lymphocytes (CTL in combination with a universal Pan DR epitope (PADRE or CpG-oligodeoxynucleotides (CpG-ODNs as a Toll-like receptor agonist adjuvant. The results show that vaccination with the multi-epitope long peptide in combination with the PADRE peptide and CpG-ODN induced expansion of subpopulations of CD4+ and CD8+ cells producing IFN-γ, the average tumor size in the vaccinated mice was less than that of the other groups, and tumor growth was inhibited in 40% of the mice in the vaccinated group. The mean survival time was 82.6 ± 1.25 days in mice vaccinated with P5+435 + CpG+ PADRE. Our results demonstrate that inclusion of PADRE and CpG with the peptide vaccine enhanced significant tumor specific-immune responses in vaccinated mice.

  2. Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties.

    Science.gov (United States)

    Link, Reet; Veiksina, Santa; Rinken, Ago; Kopanchuk, Sergei

    2017-03-15

    Melanocortin 4 (MC 4 ) receptors are important drug targets as they regulate energy homeostasis, eating behaviour and sexual functions. The ligand binding process to these G protein-coupled receptors is subject to considerable complexity. Different steps in the complex dynamic regulation can be characterized by ligand binding kinetics. Optimization of these kinetic parameters in terms of on-rate and residence time can increase the rapid onset of drug action and reduce off-target effects. Fluorescence anisotropy (FA) is one of the homogeneous fluorescence-based assays that enable continuous online monitoring of ligand binding kinetics. FA has been implemented for the kinetic study of melanocortin MC 4 receptors expressed on budded baculoviruses. However, the slow dissociation of the fluorescently labelled peptide NDP-α-MSH does not enable reaching equilibrium nor enable more in-depth study of the binding mechanisms. To overcome this problem, two novel red-shifted fluorescent ligands were designed. These cyclized heptapeptide derivatives (UTBC101 and UTBC102) exhibited nanomolar affinity toward melanocortin MC 4 receptors but had relatively different kinetic properties. The dissociation half-lives of UTBC101 (τ 1/2 =160min) and UTBC102 (τ 1/2 =7min) were shorter compared to that what was previously reported for Cy3B-NDP-α-MSH (τ 1/2 =224min). The significantly shorter dissociation half-life of UTBC102 enables equilibrium in screening assays, whereas the higher affinity of UTBC101 helps to resolve a wider range of competitor potencies. These two ligands are suitable for further kinetic screening of novel melanocortin MC 4 receptor specific ligands and could complement each other in these studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Levosimendan reduces plasma B-type natriuretic peptide and interleukin 6, and improves central hemodynamics in severe heart failure patients.

    Science.gov (United States)

    Kyrzopoulos, Stamos; Adamopoulos, Stamatis; Parissis, John T; Rassias, John; Kostakis, George; Iliodromitis, Efstathios; Degiannis, Dimitrios; Kremastinos, Dimitrios Th

    2005-03-30

    Plasma B-type natriuretic peptide (BNP) and interleukin 6 (IL-6) levels have recently been demonstrated as significant neurohormonal markers associated with the progression of chronic heart failure (CHF). Additionally, clinical studies have shown that the calcium sensitizer, levosimendan, beneficially affects the central hemodynamics of CHF patients and improves their long-term prognosis. This study investigates whether levosimendan-induced hemodynamic improvement of CHF patients is related to the respective changes of NT-proBNP and IL-6 levels. Circulating levels of NT-pro BNP and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA) in 12 patients with decompensated advanced CHF at baseline, immediately after the end of a 24-h levosimendan infusion and 72 h after the initiation of treatment. Hemodynamic parameters of patients (pulmonary wedge and pulmonary artery pressure (PAP), systemic and pulmonary vascular resistance (PVR), stroke volume, and cardiac output and index) were also monitored during the same period. NT-proBNP and IL-6 levels were significantly reduced in severe CHF patients within 72 h after the initiation of levosimendan treatment (pNT-proBNP levels and the respective reduction of pulmonary wedge pressure (r(s)=0.65, pBNP and IL-6 levels may be useful biochemical markers related with the levosimendan-induced improvement in central hemodynamics and the clinical status of decompensated advanced CHF patients.

  4. Improved Anticancer Photothermal Therapy Using the Bystander Effect Enhanced by Antiarrhythmic Peptide Conjugated Dopamine-Modified Reduced Graphene Oxide Nanocomposite.

    Science.gov (United States)

    Yu, Jiantao; Lin, Yu-Hsin; Yang, Lingyan; Huang, Chih-Ching; Chen, Liliang; Wang, Wen-Cheng; Chen, Guan-Wen; Yan, Junyan; Sawettanun, Saranta; Lin, Chia-Hua

    2017-01-01

    Despite tremendous efforts toward developing novel near-infrared (NIR)-absorbing nanomaterials, improvement in therapeutic efficiency remains a formidable challenge in photothermal cancer therapy. This study aims to synthesize a specific peptide conjugated polydopamine-modified reduced graphene oxide (pDA/rGO) nanocomposite that promotes the bystander effect to facilitate cancer treatment using NIR-activated photothermal therapy. To prepare a nanoplatform capable of promoting the bystander effect in cancer cells, we immobilized antiarrhythmic peptide 10 (AAP10) on the surface of dopamine-modified rGO (AAP10-pDA/rGO). Our AAP10-pDA/rGO could promote the bystander effect by increasing the expression of connexin 43 protein in MCF-7 breast-cancer cells. Because of its tremendous ability to absorb NIR absorption, AAP10-pDA/rGO offers a high photothermal effect under NIR irradiation. This leads to a massive death of MCF-7 cells via the bystander effect. Using tumor-bearing mice as the model, it is found that NIR radiation effectively ablates breast tumor in the presence of AAP10-pDA/rGO and inhibits tumor growth by ≈100%. Therefore, this research integrates the bystander and photothermal effects into a single nanoplatform in order to facilitate an efficient photothermal therapy. Furthermore, our AAP10-pDA/rGO, which exhibits both hyperthermia and the bystander effect, can prevent breast-cancer recurrence and, therefore, has great potential for future clinical and research applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fusion Peptide Improves Stability and Bioactivity of Single Chain Antibody against Rabies Virus.

    Science.gov (United States)

    Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Shi, Linqing; Zhang, Renxia; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2017-04-28

    The combination of rabies immunoglobulin (RIG) with a vaccine is currently effective against rabies infections, but improvements are needed. Genetic engineering antibody technology is an attractive approach for developing novel antibodies to replace RIG. In our previous study, a single-chain variable fragment, scFv57R, against rabies virus glycoprotein was constructed. However, its inherent weak stability and short half-life compared with the parent RIG may limit its diagnostic and therapeutic application. Therefore, an acidic tail of synuclein (ATS) derived from the C-terminal acidic tail of human alpha-synuclein protein was fused to the C-terminus of scFv57R in order to help it resist adverse stress and improve the stability and halflife. The tail showed no apparent effect on the preparation procedure and affinity of the protein, nor did it change the neutralizing potency in vitro. In the ELISA test of molecular stability, the ATS fusion form of the protein, scFv57R-ATS, showed an increase in thermal stability and longer half-life in serum than scFv57R. The protection against fatal rabies virus challenge improved after fusing the tail to the scFv, which may be attributed to the improved stability. Thus, the ATS fusion approach presented here is easily implemented and can be used as a new strategy to improve the stability and half-life of engineered antibody proteins for practical applications.

  6. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets

    DEFF Research Database (Denmark)

    Nielsen, Morten; Andreatta, Massimo

    2016-01-01

    Background: Binding of peptides to MHC class I molecules (MHC-I) is essential for antigen presentation to cytotoxic T-cells.Results: Here, we demonstrate how a simple alignment step allowing insertions and deletions in a pan-specific MHC-I binding machine-learning model enables combining informat...... specificities and ligand length scales, and demonstrated how this approach significantly improves the accuracy for prediction of peptide binding and identification of MHC ligands. The method is available at www.cbs.dtu.dk/services/NetMHCpan-3.0....

  7. Improvement in psoriasis after treatment with the glucagon-like peptide-1 receptor agonist liraglutide

    DEFF Research Database (Denmark)

    Faurschou, A; Knop, F K; Thyssen, J P

    2011-01-01

    psoriasis immediately after the start of liraglutide treatment. Itching stopped within days, scaling was reduced and spots of normal skin emerged. After 3 months, psoriasis was still improving. Excellent glycaemic control and a weight loss of approximately 8 kg over 3 months were moreover obtained...

  8. Improved Reversed Phase Chromatography of Hydrophilic Peptides from Spatial and Temporal Changes in Column Temperature

    DEFF Research Database (Denmark)

    Young, Clifford; Podtelejnikov, Alexandre V; Nielsen, Michael Lund

    2017-01-01

    implementation requires additional equipment and method optimization. An apparatus that allows temperature manipulation in three areas of a two-column setup was evaluated for improvements in chromatography. Using commercially available standards, we demonstrate that a low column temperature (0 °C) during sample...

  9. Improved prediction of signal peptides: SignalP 3.0

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nielsen, Henrik; von Heijne, G.

    2004-01-01

    We describe improvements of the currently most popular method for prediction of classically secreted proteins, SignalP. SignalP consists of two different predictors based on neural network and hidden Markov model algorithms, where both components have been updated. Motivated by the idea that the ...

  10. N-Acylated and d Enantiomer Derivatives of a Nonamer Core Peptide of Lactoferricin B Showing Improved Antimicrobial Activity

    OpenAIRE

    Wakabayashi, Hiroyuki; Matsumoto, Hiroshi; Hashimoto, Koichi; Teraguchi, Susumu; Takase, Mitsunori; Hayasawa, Hirotoshi

    1999-01-01

    N-acylated or d enantiomer peptide derivatives based on the sequence RRWQWRMKK in lactoferricin B demonstrated antimicrobial activities greater than those of lactoferricin B against bacteria and fungi. The most potent peptide, conjugated with an 11-carbon-chain acyl group, showed two to eight times lower MIC than lactoferricin B.

  11. N-Acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity.

    Science.gov (United States)

    Wakabayashi, H; Matsumoto, H; Hashimoto, K; Teraguchi, S; Takase, M; Hayasawa, H

    1999-05-01

    N-acylated or D enantiomer peptide derivatives based on the sequence RRWQWRMKK in lactoferricin B demonstrated antimicrobial activities greater than those of lactoferricin B against bacteria and fungi. The most potent peptide, conjugated with an 11-carbon-chain acyl group, showed two to eight times lower MIC than lactoferricin B.

  12. Peptide (Lys-Leu) and amino acids (Lys and Leu) supplementations improve physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation.

    Science.gov (United States)

    Yang, Huirong; Zong, Xuyan; Cui, Chun; Mu, Lixia; Zhao, Haifeng

    2017-12-22

    Lys and Leu were generally considered as the key amino acids for brewer's yeast during beer brewing. In the present study, peptide Lys-Leu and a free amino acid (FAA) mixture of Lys and Leu (Lys + Leu) were supplemented in 24 °P wort to examine their effects on physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation. Results showed that although both peptide Lys-Leu and their FAA mixture supplementations could increase the growth and viability, intracellular trehalose and glycerol content, wort fermentability, and ethanol content for brewer's yeast during VHG wort fermentation, and peptide was better than their FAA mixture at promoting growth and fermentation for brewer's yeast when the same dose was kept. Moreover, peptide Lys-Leu supplementation significantly increased the assimilation of Asp, but decreased the assimilation of Gly, Ala, Val, (Cys)2, Ile, Leu, Tyr, Phe, Lys, Arg, and Pro. However, the FAA mixture supplementation only promoted the assimilation of Lys and Leu, while reduced the absorption of total amino acids to a greater extent. Thus, the peptide Lys-Leu was more effective than their FAA mixture on the improvement of physiological activity, fermentation performance, and nitrogen metabolism of brewer's yeast during VHG wort fermentation. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  13. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction

    Science.gov (United States)

    Davis, Michael E.; Hsieh, Patrick C. H.; Takahashi, Tomosaburo; Song, Qing; Zhang, Shuguang; Kamm, Roger D.; Grodzinsky, Alan J.; Anversa, Piero; Lee, Richard T.

    2006-05-01

    Strategies for cardiac repair include injection of cells, but these approaches have been hampered by poor cell engraftment, survival, and differentiation. To address these shortcomings for the purpose of improving cardiac function after injury, we designed self-assembling peptide nanofibers for prolonged delivery of insulin-like growth factor 1 (IGF-1), a cardiomyocyte growth and differentiation factor, to the myocardium, using a "biotin sandwich" approach. Biotinylated IGF-1 was complexed with tetravalent streptavidin and then bound to biotinylated self-assembling peptides. This biotin sandwich strategy allowed binding of IGF-1 but did not prevent self-assembly of the peptides into nanofibers within the myocardium. IGF-1 that was bound to peptide nanofibers activated Akt, decreased activation of caspase-3, and increased expression of cardiac troponin I in cardiomyocytes. After injection into rat myocardium, biotinylated nanofibers provided sustained IGF-1 delivery for 28 days, and targeted delivery of IGF-1 in vivo increased activation of Akt in the myocardium. When combined with transplanted cardiomyocytes, IGF-1 delivery by biotinylated nanofibers decreased caspase-3 cleavage by 28% and increased the myocyte cross-sectional area by 25% compared with cells embedded within nanofibers alone or with untethered IGF-1. Finally, cell therapy with IGF-1 delivery by biotinylated nanofibers improved systolic function after experimental myocardial infarction, demonstrating how engineering the local cellular microenvironment can improve cell therapy. engineering | maturation | scaffold

  14. Long-term rescue of dystrophin expression and improvement in muscle pathology and function in dystrophic mdx mice by peptide-conjugated morpholino.

    Science.gov (United States)

    Wu, Bo; Lu, Peijuan; Cloer, Caryn; Shaban, Mona; Grewal, Snimar; Milazi, Stephanie; Shah, Sapana N; Moulton, Hong M; Lu, Qi Long

    2012-08-01

    Exon skipping is capable of correcting frameshift and nonsense mutations in Duchenne muscular dystrophy. Phase 2 clinical trials in the United Kingdom and the Netherlands have reported induction of dystrophin expression in muscle of Duchenne muscular dystrophy patients by systemic administration of both phosphorodiamidate morpholino oligomers (PMO) and 2'-O-methyl phosphorothioate. Peptide-conjugated phosphorodiamidate morpholino offers significantly higher efficiency than phosphorodiamidate morpholino, with the ability to induce near-normal levels of dystrophin, and restores function in both skeletal and cardiac muscle. We examined 1-year systemic efficacy of peptide-conjugated phosphorodiamidate morpholino targeting exon 23 in dystrophic mdx mice. The LD(50) of peptide-conjugated phosphorodiamidate morpholino was determined to be approximately 85 mg/kg. The half-life of dystrophin expression was approximately 2 months in skeletal muscle, but shorter in cardiac muscle. Biweekly injection of 6 mg/kg peptide-conjugated phosphorodiamidate morpholino produced >20% dystrophin expression in all skeletal muscles and ≤5% in cardiac muscle, with improvement in muscle function and pathology and reduction in levels of serum creatine kinase. Monthly injections of 30 mg/kg peptide-conjugated phosphorodiamidate morpholino restored dystrophin to >50% normal levels in skeletal muscle, and 15% in cardiac muscle. This was associated with greatly reduced serum creatine kinase levels, near-normal histology, and functional improvement of skeletal muscle. Our results demonstrate for the first time that regular 1-year administration of peptide-conjugated phosphorodiamidate morpholino can be safely applied to achieve significant therapeutic effects in an animal model. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Improving density functional tight binding predictions of free energy surfaces for peptide condensation reactions in solution

    Science.gov (United States)

    Kroonblawd, Matthew; Goldman, Nir

    First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for chemistry that is fast relative to DFT simulation times (Contract DE-AC52-07NA27344.

  16. Improving N-terminal protein annotation of Plasmodium species based on signal peptide prediction of orthologous proteins

    Directory of Open Access Journals (Sweden)

    Neto Armando

    2012-11-01

    Full Text Available Abstract Background Signal peptide is one of the most important motifs involved in protein trafficking and it ultimately influences protein function. Considering the expected functional conservation among orthologs it was hypothesized that divergence in signal peptides within orthologous groups is mainly due to N-terminal protein sequence misannotation. Thus, discrepancies in signal peptide prediction of orthologous proteins were used to identify misannotated proteins in five Plasmodium species. Methods Signal peptide (SignalP and orthology (OrthoMCL were combined in an innovative strategy to identify orthologous groups showing discrepancies in signal peptide prediction among their protein members (Mixed groups. In a comparative analysis, multiple alignments for each of these groups and gene models were visually inspected in search of misannotated proteins and, whenever possible, alternative gene models were proposed. Thresholds for signal peptide prediction parameters were also modified to reduce their impact as a possible source of discrepancy among orthologs. Validation of new gene models was based on RT-PCR (few examples or on experimental evidence already published (ApiLoc. Results The rate of misannotated proteins was significantly higher in Mixed groups than in Positive or Negative groups, corroborating the proposed hypothesis. A total of 478 proteins were reannotated and change of signal peptide prediction from negative to positive was the most common. Reannotations triggered the conversion of almost 50% of all Mixed groups, which were further reduced by optimization of signal peptide prediction parameters. Conclusions The methodological novelty proposed here combining orthology and signal peptide prediction proved to be an effective strategy for the identification of proteins showing wrongly N-terminal annotated sequences, and it might have an important impact in the available data for genome-wide searching of potential vaccine and drug

  17. Collagen Peptides from Crucian Skin Improve Calcium Bioavailability and Structural Characterization by HPLC-ESI-MS/MS.

    Science.gov (United States)

    Hou, Tao; Liu, Yanshuang; Guo, Danjun; Li, Bo; He, Hui

    2017-10-11

    The effects of collagen peptides (CPs), which are derived from crucian skin, were investigated in a retinoic acid-induced bone loss model. The level of serum bone alkaline phosphatase (BALP) in the model group (117.65 ± 4.66 units/L) was significantly higher than those of the other three groups (P group. In addition, the bone mineral density in the 600 mg of CPs/kg group was significantly higher (femur, 0.37 ± 0.02 g/cm 2 ; tibia, 0.33 ± 0.02 g/cm 2 ) than in the model group (femur, 0.26 ± 0.01 g/cm 2 ; tibia, 0.23 ± 0.02 g/cm 2 ). The morphology results indicated bone structure improved after the treatment with CPs. Structural characterization demonstrated that Glu, Lys, and Arg play important roles in binding calcium and promoting calcium uptake. Our results indicated that CPs could promote calcium uptake and regulate bone formation.

  18. Growth Hormone-Releasing Peptide 6 Enhances the Healing Process and Improves the Esthetic Outcome of the Wounds

    Directory of Open Access Journals (Sweden)

    Yssel Mendoza Marí

    2016-01-01

    Full Text Available In addition to its cytoprotective effects, growth hormone-releasing peptide 6 (GHRP-6 proved to reduce liver fibrotic induration. CD36 as one of the GHRP-6 receptors appears abundantly represented in cutaneous wounds granulation tissue. The healing response in a scenario of CD36 agonistic stimulation had not been previously investigated. Excisional full-thickness wounds (6 mmØ were created in the dorsum of Wistar rats and topically treated twice a day for 5 days. The universal model of rabbit’s ears hypertrophic scars was implemented and the animals were treated daily for 30 days. Treatments for both species were based on a CMC jelly composition containing GHRP-6 400 μg/mL. Wounds response characterization included closure dynamic, RT-PCR transcriptional profile, histology, and histomorphometric procedures. The rats experiment indicated that GHRP-6 pharmacodynamics involves attenuation of immunoinflammatory mediators, their effector cells, and the reduction of the expression of fibrotic cytokines. Importantly, in the hypertrophic scars rabbit’s model, GHRP-6 intervention dramatically reduced the onset of exuberant scars by activating PPARγ and reducing the expression of fibrogenic cytokines. GHRP-6 showed no effect on the reversion of consolidated lesions. This evidence supports the notion that CD36 is an active and pharmacologically approachable receptor to attenuate wound inflammation and accelerate its closure so as to improve wound esthetic.

  19. Synthesis of E7 peptide-modified biodegradable polyester with the improving affinity to mesenchymal stem cells

    International Nuclear Information System (INIS)

    Li, Qian; Xing, Dongming; Ma, Lie; Gao, Changyou

    2017-01-01

    As the most promising stem cell, bone marrow-derived mesenchymal stem cells (BMSCs) has attracted many attentions and applied widely in regenerative medicine. A biodegradable polyester with tunable affinity to BMSCs plays critical role in determining the properties of the BMSCs-based constructs. In this study, maleimide functionalized biodegradable polyester (P(MTMC-LA)) was synthesized through ring-opening copolymerization between L-lactide (LA) and furan-maleimide functionalized trimethylene carbonate (FMTMC) and a subsequent retro Diels-Alder reaction. P(MTMC-LA) was modified by different amounts of BMSCs specific affinity peptide (EPLQLKM, E7) through click-chemistry to investigate the effect on BMSCs. The E7 peptide modified P(MTMC-LA) was casted into films on glass slides and BMSCs were seeded onto the films. In vitro study showed that E7 peptide modified P(MTMC-LA) films supported BMSCs adhesion and proliferation compared to unmodified P(MTMC-LA) film. Besides, the adhesion and proliferation were enhanced by the increasing peptide grafting ratio. These results indicated that the novel biodegradable polyester can serve as a biomaterial with great potential application in tissue engineering and regenerative medicine. - Highlights: • P(MTMC-LA) was synthesized through ring-opening copolymerization and retro Diels-Alder reaction. • P(MTMC-LA) was modified by dBMSCs specific affinity peptide (EPLQLKM, E7) through click-chemistry. • E7 peptide modified P(MTMC-LA) films supported BMSCs adhesion and proliferation.

  20. Synthesis of E7 peptide-modified biodegradable polyester with the improving affinity to mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qian; Xing, Dongming; Ma, Lie, E-mail: liema@zju.edu.cn; Gao, Changyou

    2017-04-01

    As the most promising stem cell, bone marrow-derived mesenchymal stem cells (BMSCs) has attracted many attentions and applied widely in regenerative medicine. A biodegradable polyester with tunable affinity to BMSCs plays critical role in determining the properties of the BMSCs-based constructs. In this study, maleimide functionalized biodegradable polyester (P(MTMC-LA)) was synthesized through ring-opening copolymerization between L-lactide (LA) and furan-maleimide functionalized trimethylene carbonate (FMTMC) and a subsequent retro Diels-Alder reaction. P(MTMC-LA) was modified by different amounts of BMSCs specific affinity peptide (EPLQLKM, E7) through click-chemistry to investigate the effect on BMSCs. The E7 peptide modified P(MTMC-LA) was casted into films on glass slides and BMSCs were seeded onto the films. In vitro study showed that E7 peptide modified P(MTMC-LA) films supported BMSCs adhesion and proliferation compared to unmodified P(MTMC-LA) film. Besides, the adhesion and proliferation were enhanced by the increasing peptide grafting ratio. These results indicated that the novel biodegradable polyester can serve as a biomaterial with great potential application in tissue engineering and regenerative medicine. - Highlights: • P(MTMC-LA) was synthesized through ring-opening copolymerization and retro Diels-Alder reaction. • P(MTMC-LA) was modified by dBMSCs specific affinity peptide (EPLQLKM, E7) through click-chemistry. • E7 peptide modified P(MTMC-LA) films supported BMSCs adhesion and proliferation.

  1. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid-polyethylene glycol nanoparticles improves ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Vasconcelos A

    2015-01-01

    Full Text Available Aimee Vasconcelos,1 Estefania Vega,2 Yolanda Pérez,3 María J Gómara,1 María Luisa García,2 Isabel Haro1 1Unit of Synthesis and Biomedical Applications of Peptides, Department of Biomedical Chemistry, Institute for Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC, 2Department of Physical Chemistry, Institute of Nanoscience and Nanotechnology, Faculty of Pharmacy, University of Barcelona, 3Nuclear Magnetic Resonance Unit, IQAC-CSIC, Barcelona, Spain Abstract: In this work, a peptide for ocular delivery (POD and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid (PGLA–polyethylene glycol (PEG-nanoparticles (NPs in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide; the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation

  2. Gastro-Resistant Insulin Receptor-Binding Peptide from Momordica charantia Improved the Glucose Tolerance in Streptozotocin-Induced Diabetic Mice via Insulin Receptor Signaling Pathway.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Chia-Cheng; Chen, Feng-Yuan; Chen, Jaw-Chyun; Hsiang, Chien-Yun; Ho, Tin-Yun

    2017-10-25

    Momordica charantia is a commonly used food and has been used for the management of diabetes. Our previous study has identified an insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia. Here we identified the gastro-resistant hypoglycemic bioactive peptides from protease-digested mcIRBP. By in vitro digestion and IR kinase activity assay, we found that a 9-amino-acid-residue peptide, mcIRBP-9, was a gastro-resistant peptide that enhanced IR kinase activities. mcIRBP-9 activated IR signaling transduction pathway, which resulted in the phosphorylation of IR, the translocation of glucose transporter 4, and the uptake of glucose in cells. Intraperitoneal and oral administration of mcIRBP-9 stimulated the glucose clearance by 30.91 ± 0.39% and 32.09 ± 0.38%, respectively, in streptozotocin-induced diabetic mice. Moreover, a pilot study showed that daily ingestion of mcIRBP-9 for 30 days decreased the fasting blood glucose levels and glycated hemoglobin (HbA1c) levels by 23.62 ± 6.14% and 24.06 ± 1.53%, respectively. In conclusion, mcIRBP-9 is a unique gastro-resistant bioactive peptide generated after the digestion of mcIRBP. Furthermore, oral administration of mcIRBP-9 improves both the glucose tolerance and the HbA1c levels in diabetic mice via targeting IR signaling transduction pathway.

  3. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788 ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  4. Killing of Mycobacterium avium by lactoferricin peptides: improved activity of arginine- and D-amino-acid-containing molecules.

    Science.gov (United States)

    Silva, Tânia; Magalhães, Bárbara; Maia, Sílvia; Gomes, Paula; Nazmi, Kamran; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé

    2014-06-01

    Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis.

    Science.gov (United States)

    Cai, Dongbo; Wang, Hao; He, Penghui; Zhu, Chengjun; Wang, Qin; Wei, Xuetuan; Nomura, Christopher T; Chen, Shouwen

    2017-04-24

    Signal peptide peptidases play an important role in the removal of remnant signal peptides in the cell membrane, a critical step for extracellular protein production. Although these proteins are likely a central component for extracellular protein production, there has been a lack of research on whether protein secretion could be enhanced via overexpression of signal peptide peptidases. In this study, both nattokinase and α-amylase were employed as prototypical secreted target proteins to evaluate the function of putative signal peptide peptidases (SppA and TepA) in Bacillus licheniformis. We observed dramatic decreases in the concentrations of both target proteins (45 and 49%, respectively) in a sppA deficient strain, while the extracellular protein yields of nattokinase and α-amylase were increased by 30 and 67% respectively in a strain overexpressing SppA. In addition, biomass, specific enzyme activities and the relative gene transcriptional levels were also enhanced due to the overexpression of sppA, while altering the expression levels of tepA had no effect on the concentrations of the secreted target proteins. Our results confirm that SppA, but not TepA, plays an important functional role for protein secretion in B. licheniformis. Our results indicate that the sppA overexpression strain, B. licheniformis BL10GS, could be used as a promising host strain for the industrial production of heterologous secreted proteins.

  6. Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon

    DEFF Research Database (Denmark)

    Jeppesen, P B; Hartmann, B; Thulesen, J

    2001-01-01

    Glucagon-like peptide 2 (GLP-2) is intestinotrophic, antisecretory, and transit-modulating in rodents, and it is mainly secreted from the intestinal mucosa of the terminal ileum and colon after food ingestion. We assessed the effect of GLP-2 on the gastrointestinal function in patients without a ...

  7. Rapid and Weight-Independent Improvement of Glucose Tolerance Induced by a Peptide Designed to Elicit Apoptosis in Adipose Tissue Endothelium

    Science.gov (United States)

    Kim, Dong-Hoon; Sartor, Maureen A.; Bain, James R.; Sandoval, Darleen; Stevens, Robert D.; Medvedovic, Mario; Newgard, Christopher B.; Woods, Stephen C.; Seeley, Randy J.

    2012-01-01

    A peptide designed to induce apoptosis of endothelium in white adipose tissue (WAT) decreases adiposity. The goal of this work is to determine whether targeting of WAT endothelium results in impaired glucose regulation as a result of impaired WAT function. Glucose tolerance tests were performed on days 2 and 3 of treatment with vehicle (HF-V) or proapoptotic peptide (HF-PP) and mice pair-fed to HF-PP (HF-PF) in obese mice on a high-fat diet (HFD). Serum metabolic variables, including lipid profile, adipokines, individual fatty acids, and acylcarnitines, were measured. Microarray analysis was performed in epididymal fat of lean or obese mice treated with vehicle or proapoptotic peptide (PP). PP rapidly and potently improved glucose tolerance of obese mice in a weight- and food intake–independent manner. Serum insulin and triglycerides were decreased in HF-PP relative to HF-V. Levels of fatty acids and acylcarnitines were distinctive in HF-PP compared with HF-V or HF-PF. Microarray analysis in AT revealed that pathways involved in mitochondrial dysfunction, oxidative phosphorylation, and branched-chain amino acid degradation were changed by exposure to HFD and were reversed by PP administration. These studies suggest a novel role of the AT vasculature in glucose homeostasis and lipid metabolism. PMID:22733798

  8. An improved method of 18F peptide labeling: hydrazone formation with HYNIC-conjugated c(RGDyK)

    International Nuclear Information System (INIS)

    Lee, Yun-Sang; Jeong, Jae Min; Kim, Hyung Woo; Chang, Young Soo; Kim, Young Joo; Hong, Mee Kyung; Rai, Ganesha B.; Chi, Dae Yoon; Kang, Won Jun; Kang, Joo Hyun; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul; Suh, Young-Ger

    2006-01-01

    Radiolabeled α v β 3 -integrin antagonists are increasingly investigated as a means of imaging angiogenesis. Several methods of labeling α v β 3 -integrin binding peptide with 18 F have been reported recently. In the present study, we devised a straightforward means for labeling Arg-Gly-Asp (RGD) peptide with 18 F via hydrazone formation between c(RGDyK)-hydrazinonicotinic acid (HYNIC) (3) and 4-[ 18 F]-fluorobenzaldehyde ([ 18 F]4). The resulting reaction mixture was purified by HPLC to give 4'-[ 18 F]-fluorobenzylidenehydrazone-6-nicotinamide-c(RGDyK) ([ 18 F]5). The conjugation efficiency of 3 and 4 to form [ 18 F]5 was 95.2%, and the radiochemical purity of [ 18 F]5 after purification was >99%. The specific activity of [ 18 F]5 estimated by radio-HPLC was 20.5 GBq/μmol (end of synthesis). Competitive binding assay of c(RGDyK) (1) and 5 was performed using [ 125 I]iodo-c(RGDyK) as a radioligand, and K i values were found to be 2.8 and 21.7 nM, respectively. For the biodistribution study, the angiogenic mouse model was established by inducing unilateral ischemia on the left hindlimbs of ICR mice after femoral artery ablation. Seven days after inducing ischemia, [ 18 F]5 was administered to the mice through the tail vein. Ischemic muscle uptake of [ 18 F]5 was significantly higher than that of normal muscle (P 18 F]5. Here, we successfully labeled RGD peptide with 18 F via hydrazone formation between 3 and 4, resulting to [ 18 F]5. [ 18 F]5 was found to have high affinity for α v β 3 -integrin and to accumulate specifically in ischemic hindlimb muscle of mice. We suggest that 18 F labeling via formation of hydrazone between HYNIC peptide and [ 18 F]4 is a useful method for labeling c(RGDyK), which can be applied for imaging angiogenesis

  9. “Specificity Determinants” Improve Therapeutic Indices of Two Antimicrobial Peptides Piscidin 1 and Dermaseptin S4 Against the Gram-negative Pathogens Acinetobacter baumannii and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Ziqing Jiang

    2014-03-01

    Full Text Available A new class of antimicrobial agents with lower rates of resistance and different targets is urgently needed because of the rapidly increasing resistance to classical antibiotics. Amphipathic cationic α-helical antimicrobial peptides (AMPs represent such a class of compounds. In our previous studies, using a 26-residue de novo designed antimicrobial peptide, we proposed the concept of “specificity determinant(s”: positively charged residue(s in the center of the non-polar face of AMPs that could decrease hemolytic activity/toxicity but increase or maintain the same level of antimicrobial activity to increase dramatically the therapeutic index. In the current study, we used d-enantiomers of two AMPs, Piscidin 1 isolated from fish and dermaseptin S4 isolated from frog. We substituted different positions in the center of the hydrophobic face with one or two lysine residue(s (one or two “specificity determinant(s”. This simple modification not only maintained or improved antimicrobial activity against Gram-negative pathogens Acinetobacter baumannii (11 strains and Pseudomonas aeruginosa (6 strains, but also dramatically decreased hemolytic activity of human red blood cells, as predicted. Therapeutic indices improved by 55-fold and 730-fold for piscidin 1 (I9K and dermaseptin S4 (L7K, A14K, respectively, against A. baumannii. Similarly, the therapeutic indices improved 32-fold and 980-fold for piscidin 1 (I9K and dermaseptin S4 (L7K, A14K, respectively, against P. aeruginosa.

  10. The Effects of Antimicrobial Peptide Nal-P-113 on Inhibiting Periodontal Pathogens and Improving Periodontal Status

    Directory of Open Access Journals (Sweden)

    Hongyan Wang

    2018-01-01

    Full Text Available Periodontal disease consists of chronic gingival inflammation characterized by both degradation of the periodontal connective tissue and alveolar bone loss. Drug therapy is used as an auxiliary treatment method in severe chronic periodontitis, aggressive periodontitis, and periodontitis-associated systemic disease. Nal-P-113, a modified antimicrobial peptide, specifically replaces the histidine residues of P-113 with the bulky amino acid β-naphthylalanine, and our previous studies have verified that this novel peptide is not toxic to the human body within a certain concentration range. The objective of the present study was to evaluate the effect of Nal-P-113 on periodontal pathogens and periodontal status in clinical studies. In a split-mouth clinical trial, the pocket depth and bleeding index values tended to decrease in the experimental group compared with those in the control group. SEM results verified that Nal-P-113 restrained the maturation of plaque. Based on real-time polymerase chain reaction, the levels of Fusobacterium nucleatum, Streptococcus gordonii, Treponema denticola, and Porphyromonas gingivalis in subgingival plaque were decreased when the subjects were given Nal-P-113. Bacterial growth curve analysis and a biofilm susceptibility assay verified that Nal-P-113 at a concentration of 20 μg/mL restrained the growth of S. gordonii, F. nucleatum, and P. gingivalis and biofilm formation. Therefore, Nal-P-113 effectively reduces periodontal pathogens and ameliorates periodontal status.

  11. Dansyl-peptides matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) and tandem mass spectrometric (MS/MS) features improve the liquid chromatography/MALDI-MS/MS analysis of the proteome.

    Science.gov (United States)

    Chiappetta, Giovanni; Ndiaye, Sega; Demey, Emmanuelle; Haddad, Iman; Marino, Gennaro; Amoresano, Angela; Vinh, Joëlle

    2010-10-30

    Peptide tagging is a useful tool to improve matrix-assisted laser desorption/ionization tandem mass spectrometric (MALDI-MS/MS) analysis. We present a new application of the use of the dansyl chloride (DNS-Cl). DNS-Cl is a specific primary amine reagent widely used in protein biochemistry. It adds a fluorescent dimethylaminonaphthalene moiety to the molecule. The evaluation of MALDI-MS and MS/MS analyses of dansylated peptides shows that dansylation raises the ionization efficiency of the most hydrophilic species compared with the most hydrophobic ones. Consequently, higher Mascot scores and protein sequence coverage are obtained by combining MS and MS/MS data of native and tagged samples. The N-terminal DNS-Cl sulfonation improves the peptide fragmentation and promotes the generation of b-fragments allowing better peptide sequencing. In addition, we set up a labeling protocol based on the microwave chemistry. Peptide dansylation proved to be a rapid and cheap method to improve the performance of liquid chromatography (LC)/MALDI-MS/MS analysis at the proteomic scale in terms of peptide detection and sequence coverage. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain, targeted at blunting Nuclear Factor κB (NF-κB signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. Methods To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. Results At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. Conclusions We conclude

  13. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  14. Peptides-Derived from Thai Rice Bran Improves Endothelial Function in 2K-1C Renovascular Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Orachorn Boonla

    2015-07-01

    Full Text Available In recent years, a number of studies have investigated complementary medical approaches to the treatment of hypertension using dietary supplements. Rice bran protein hydrolysates extracted from rice is a rich source of bioactive peptides. The present study aimed to investigate the vasorelaxation and antihypertensive effects of peptides-derived from rice bran protein hydrolysates (RBP in a rat model of two kidney-one clip (2K-1C renovascular hypertension. 2K-1C hypertension was induced in male Sprague-Dawley rats by placing a silver clip around the left renal artery, whereas sham-operated rats were served as controls. 2K-1C and sham-operated rats were intragastrically administered with RBP (50 mg kg−1 or 100 mg kg−1 or distilled water continuously for six weeks. We observed that RBP augmented endothelium-dependent vasorelaxation in all animals. Administration of RBP to 2K-1C rats significantly reduced blood pressure and decreased peripheral vascular resistance compared to the sham operated controls (p < 0.05. Restoration of normal endothelial function and blood pressure was associated with reduced plasma angiotensin converting enzyme (ACE, decreased superoxide formation, reduced plasma malondialdehyde and increased plasma nitrate/nitrite (p < 0.05. Up-regulation of eNOS protein and down-regulation of p47phox protein were found in 2K-1C hypertensive rats-treated with RBP. Our results suggest that RBP possesses antihypertensive properties which are mainly due to the inhibition of ACE, and its vasodilatory and antioxidant activity.

  15. A novel vascular-targeting peptide for gastric cancer delivers low-dose TNFα to normalize the blood vessels and improve the anti-cancer efficiency of 5-fluorouracil.

    Science.gov (United States)

    Lu, Lan; Li, Zhi Jie; Li, Long Fei; Shen, Jing; Zhang, Lin; Li, Ming Xing; Xiao, Zhan Gang; Wang, Jian Hao; Cho, Chi Hin

    2017-11-01

    Various vascular-targeted agents fused with tumor necrosis factor α (TNFα) have been shown to improve drug absorption into tumor tissues and enhance tumor vascular function. TCP-1 is a peptide selected through in vivo phage library biopanning against a mouse orthotopic colorectal cancer model and is a promising agent for drug delivery. This study further investigated the targeting ability of TCP-1 phage and peptide to blood vessels in an orthotopic gastric cancer model in mice and assessed the synergistic anti-cancer effect of 5-fluorouracil (5-FU) with subnanogram TNFα targeted delivered by TCP-1 peptide. In vivo phage targeting assay and in vivo colocalization analysis were carried out to test the targeting ability of TCP-1 phage/peptide. A targeted therapy for improvement of the therapeutic efficacy of 5-FU and vascular function was performed through administration of TCP-1/TNFα fusion protein in this model. TCP-1 phage exhibited strong homing ability to the orthotopic gastric cancer after phage injection. Immunohistochemical staining suggested that and TCP-1 phage/TCP-1 peptide could colocalize with tumor vascular endothelial cells. TCP-1/TNFα combined with 5-FU was found to synergistically inhibit tumor growth, induce apoptosis and reduce cell proliferation without evident toxicity. Simultaneously, subnanogram TCP-1/TNFα treatment normalized tumor blood vessels. Targeted delivery of low-dose TNFα by TCP-1 peptide can potentially modulate the vascular function of gastric cancer and increase the drug delivery of chemotherapeutic drugs. Copyright © 2017. Published by Elsevier Inc.

  16. Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers.

    Science.gov (United States)

    Russo, Francesco; Linsalata, Michele; Clemente, Caterina; Chiloiro, Marisa; Orlando, Antonella; Marconi, Emanuele; Chimienti, Guglielmina; Riezzo, Giuseppe

    2012-12-01

    Apart from the intestinal environment, inulin induces physiological effects, which includes a reduction in glucose and lipid concentrations and modulation of gastrointestinal motility through the release of different peptides. We hypothesized that inulin-enriched pasta may also improve small intestine permeability in relation to zonulin and glucagon-like peptide 2 (GLP-2) levels in healthy young subjects. Twenty healthy, young male volunteers completed a randomized, double-blind crossover study consisting of a 2-week run-in period and two 5-week study periods (11% inulin-enriched or control pasta), with an 8-week washout period in between. The intestinal barrier function was assessed by lactulose-mannitol excretion in urine. Zonulin values and GLP-2 release were evaluated by enzyme-linked immunosorbent assay. In the inulin group, the urinary lactulose recovery was significantly lower than the other 2 groups. There were no significant differences in urinary mannitol levels between groups. Accordingly, the lactulose-mannitol excretion ratio was significantly decreased in the inulin-enriched pasta group compared with the other 2 groups. The inulin-enriched pasta group had significantly lower zonulin serum values and significantly higher GLP-2 basal values when compared with the baseline and control pasta groups. The dietary use of inulin-enriched pasta preserves intestinal mucosal barrier functioning and modulates circulating levels of zonulin and GLP-2, suggesting that prebiotics could be used in the prevention of gastrointestinal diseases and metabolic disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Peptide-tagged proteins in aqueous two-phase systems

    OpenAIRE

    Nilsson, Anna

    2002-01-01

    This thesis deals with proteins containing peptide tags for improved partitioning in aqueous two-phase systems. Qualitatively the peptide-tagged protein partitioning could be predicted from peptide data, i.e. partitioning trends found for peptides were also found for the peptide-tagged proteins. However, full effect of the tag as expected from peptide partitioning was not found in the tagged protein. When alkyl-ethylene oxide surfactant was included in a two-polymer system, almost full effect...

  18. Topical Peptide Treatments with Effective Anti-Aging Results

    OpenAIRE

    Silke Karin Schagen

    2017-01-01

    In the last two decades, many new peptides have been developed, and new knowledge on how peptides improve the skin has been uncovered. The spectrum of peptides in the field of cosmetics is continuously growing. This review summarizes some of the effective data on cosmeceutical peptides that work against intrinsic and extrinsic aging. Some peptides have been proven in their efficacy through clinical skin trials. Well-known and documented peptides like copper tripeptide are still under research...

  19. Improved PET Imaging of uPAR expression using new Cu-64-labeled cross-bridged peptide ligands

    DEFF Research Database (Denmark)

    Persson, Morten; Hosseini, Masood; Madsen, Jacob

    2013-01-01

    The correlation between uPAR expression, cancer cell invasion and metastases is now well-established and has prompted the development of a number of uPAR PET imaging agents, which could potentially identify cancer patients with invasive and metastatic lesions. In the present study, we synthesized......, the more stable of the new uPAR PET tracers, (64)Cu-CB-TE2A-PA-AE105, exhibits a significantly reduced liver uptake compared to (64)Cu-DOTA-AE105 as well as (64)Cu-CB-TE2A-AE105, (p...... and characterized two new cross-bridged (64)Cu-labeled peptide conjugates for PET imaging of uPAR and performed a head-to-head comparison with the corresponding and more conventionally used DOTA conjugate. Based on in-source laser-induced reduction of chelated Cu(II) to Cu(I), we now demonstrate the following...... ranking with respect to the chemical inertness of their complexed Cu ions: DOTA-AE105 95%) were achieved in all cases by incubation at 95ºC. In vivo, they display identical tumor uptake after 1h, but differ significantly after 22 hrs, where the DOTA-AE105 uptake remains surprisingly high. Importantly...

  20. Improved positron emission tomography imaging of glioblastoma cancer using novel 68Ga-labeled peptides targeting the urokinase-type plasminogen activator receptor (uPAR)

    DEFF Research Database (Denmark)

    Loft, Mathias Dyrberg; Sun, Yao; Liu, Changhao

    2017-01-01

    for non-invasive positron emission tomography (PET) imaging of uPAR. Despite the optimal physical properties of68Ga for peptide-based PET imaging, low tumor uptakes have previously been reported using68Ga-labeled AE105-NH2-based tracers. In an attempt to optimize the tumor uptake, we developed three novel...... to the non-spacer version, NODAGA-AE105-NH2. Following radiolabeling with68Ga, we evaluated the in vitro and in vivo performance in mice bearing subcutaneous tumors derived from the uPAR-expressing human GBM cell line U87MG. In vivo PET/CT imaging showed that introduction of PEG spacers more than doubled...... confirmed the improved tumor uptakes of the PEG-modified tracers.68Ga-NODAGA-PEG8-AE105-NH2is thus a promising candidate for human translation for PET imaging of GBM....

  1. The Fibrin-Derived Peptide Bβ15-42 (FX06) Ameliorates Vascular Leakage and Improves Survival and Neurocognitive Recovery: Implications From Two Animal Models of Cardiopulmonary Resuscitation.

    Science.gov (United States)

    Bergt, Stefan; Gruenewald, Matthias; Beltschany, Claudia; Grub, Andrea; Neumann, Tobias; Albrecht, Martin; Vollmar, Brigitte; Zacharowski, Kai; Roesner, Jan P; Meybohm, Patrick

    2016-10-01

    The fibrin-derived peptide Bβ15-42 (FX06) has been proven to attenuate ischemia/reperfusion injury. We tested the hypothesis that Bβ15-42 improves survival rate and neurocognitive recovery after cardiopulmonary resuscitation. Pig and mouse model of cardiopulmonary resuscitation. Two university hospitals. Pigs and mice. Pigs (n = 16) were subjected to 8-minute cardiac arrest. Successful resuscitated pigs (n = 12) were randomized either to 3 mg/kg Bβ15-42 followed by a continuous infusion of 1 mg/kg/hr for 5 hours (pFX06; n = 6) or the control group (pCONTROL; n = 6). Cardiac damage, function, and hemodynamics were recorded up to 8 hours. Mice (n = 52) were subjected to 4-minute cardiac arrest followed by cardiopulmonary resuscitation, and randomized either to two boli of 2.4 mg/kg Bβ15-42 (mFX06; n = 26) or the control group (mCONTROL; n = 26). Fourteen-day survival rate, neurocognitive function, and endothelial integrity (additional experiment with n = 26 mice) were evaluated. Bβ15-42 reduced cumulative fluid intake (3,500 [2,600-4,200] vs 6,800 [5,700-7,400] mL; p = 0.004) within 8 hours in pigs. In mice, Bβ15-42 improved 14-day survival rate (mFX06 vs mCONTROL; 11/26 vs 6/26; p Water-Maze test (15/26 vs 9/26 mice with competence to perform test; p < 0.05). Bβ15-42-treated mice showed a significant higher length of intact pulmonary endothelium and reduced pulmonary leukocyte infiltration. This study confirms the new concept of an important role of fibrin derivatives in global ischemia/reperfusion injury, which can be attenuated by the fibrin-derived peptide Bβ15-42.

  2. Stimulation of the endogenous incretin glucose-dependent insulinotropic peptide by enteral dextrose improves glucose homeostasis and inflammation in murine endotoxemia.

    Science.gov (United States)

    Shah, Faraaz Ali; Singamsetty, Srikanth; Guo, Lanping; Chuan, Byron W; McDonald, Sherie; Cooper, Bryce A; O'Donnell, Brett J; Stefanovski, Darko; Wice, Burton; Zhang, Yingze; O'Donnell, Christopher P; McVerry, Bryan J

    2018-03-01

    Loss of glucose homeostasis during sepsis is associated with increased organ dysfunction and higher mortality. Novel therapeutic strategies to promote euglycemia in sepsis are needed. We have previously shown that early low-level intravenous (IV) dextrose suppresses pancreatic insulin secretion and induces insulin resistance in septic mice, resulting in profound hyperglycemia and worsened systemic inflammation. In this study, we hypothesized that administration of low-level dextrose via the enteral route would stimulate intestinal incretin hormone production, potentiate insulin secretion in a glucose-dependent manner, and thereby improve glycemic control in the acute phase of sepsis. We administered IV or enteral dextrose to 10-week-old male C57BL/6J mice exposed to bacterial endotoxin and measured incretin hormone release, glucose disposal, and proinflammatory cytokine production. Compared with IV administration, enteral dextrose increased circulating levels of the incretin hormone glucose-dependent insulinotropic peptide (GIP) associated with increased insulin release and insulin sensitivity, improved mean arterial pressure, and decreased proinflammatory cytokines in endotoxemic mice. Exogenous GIP rescued glucose metabolism, improved blood pressure, and increased insulin release in endotoxemic mice receiving IV dextrose, whereas pharmacologic inhibition of GIP signaling abrogated the beneficial effects of enteral dextrose. Thus, stimulation of endogenous GIP secretion by early enteral dextrose maintains glucose homeostasis and attenuates the systemic inflammatory response in endotoxemic mice and may provide a therapeutic target for improving glycemic control and clinical outcomes in patients with sepsis. Published by Elsevier Inc.

  3. Management of Chronic Heart Failure Guided by Individual N-Terminal Pro-B-Type Natriuretic Peptide Targets Results of the PRIMA (Can PRo-brain-natriuretic peptide guided therapy of chronic heart failure IMprove heart fAilure morbidity and mortality?) Study

    NARCIS (Netherlands)

    Eurlings, Luc W. M.; van Pol, Petra E. J.; Kok, Wouter E.; van Wijk, Sandra; Lodewijks-van der Bolt, Cara; Balk, Aggie H. M. M.; Lok, Dirk J. A.; Crijns, Harry J. G. M.; van Kraaij, Dave J. W.; de Jonge, Nicolaas; Meeder, Joan G.; Prins, Martin; Pinto, Yigal M.

    2010-01-01

    Objectives The purpose of this study was to assess whether management of heart failure (HF) guided by an individualized N-terminal pro-B-type natriuretic peptide (NT-proBNP) target would lead to improved outcome compared with HF management guided by clinical assessment alone. Background Natriuretic

  4. Glucagon-Like Peptide 1 Recruits Muscle Microvasculature and Improves Insulin’s Metabolic Action in the Presence of Insulin Resistance

    Science.gov (United States)

    Chai, Weidong; Zhang, Xingxing; Barrett, Eugene J.

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) acutely recruits muscle microvasculature, increases muscle delivery of insulin, and enhances muscle use of glucose, independent of its effect on insulin secretion. To examine whether GLP-1 modulates muscle microvascular and metabolic insulin responses in the setting of insulin resistance, we assessed muscle microvascular blood volume (MBV), flow velocity, and blood flow in control insulin-sensitive rats and rats made insulin-resistant acutely (systemic lipid infusion) or chronically (high-fat diet [HFD]) before and after a euglycemic-hyperinsulinemic clamp (3 mU/kg/min) with or without superimposed systemic GLP-1 infusion. Insulin significantly recruited muscle microvasculature and addition of GLP-1 further expanded muscle MBV and increased insulin-mediated glucose disposal. GLP-1 infusion potently recruited muscle microvasculature in the presence of either acute or chronic insulin resistance by increasing muscle MBV. This was associated with an increased muscle delivery of insulin and muscle interstitial oxygen saturation. Muscle insulin sensitivity was completely restored in the presence of systemic lipid infusion and significantly improved in rats fed an HFD. We conclude that GLP-1 infusion potently expands muscle microvascular surface area and improves insulin’s metabolic action in the insulin-resistant states. This may contribute to improved glycemic control seen in diabetic patients receiving incretin-based therapy. PMID:24658303

  5. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs.

    Science.gov (United States)

    Wang, Xue-Qing; Zhang, Qiang

    2012-10-01

    pH-sensitive polymeric nanoparticles are promising for oral drug delivery, especially for peptide/protein drugs and poorly water-soluble medicines. This review describes current status of pH-sensitive polymeric nanoparticles for oral drug delivery and introduces the mechanisms of drug release from them as well as possible reasons for absorption improvement, with emphasis on our contribution to this field. pH-sensitive polymeric nanoparticles are prepared mainly with polyanions, polycations, their mixtures or cross-linked polymers. The mechanisms of drug release are the result of carriers' dissolution, swelling or both of them at specific pH. The possible reasons for improvement of oral bioavailability include the following: improve drug stability, enhance mucoadhesion, prolong resident time in GI tract, ameliorate intestinal permeability and increase saturation solubility and dissolution rate for poorly water-soluble drugs. As for the advantages of pH-sensitive nanoparticles over conventional nanoparticles, we conclude that (1) most carriers used are enteric-coating materials and their safety has been approved. (2) The rapid dissolution or swelling of carriers at specific pH results in quick drug release and high drug concentration gradient, which is helpful for absorption. (3) At the specific pH carriers dissolve or swell, and the bioadhesion of carriers to mucosa becomes high because nanoparticles turn from solid to gel, which can facilitate drug absorption. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.

    1997-01-01

    Synthetic peptides have frequently been used to immunize animals. However, peptides less than about 20 to 30 amino acids long are poor immunogens. In general, to increase its immunogenicity, the presentation of the peptide should be improved, and molecular weight needs to be increased. Many...... or an amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  7. Inefficient exogenous loading of a tapasin-dependent peptide onto HLA-B*44:02 can be improved by acid treatment or fixation of target cells

    NARCIS (Netherlands)

    Stroobant, Vincent; Demotte, Nathalie; Luiten, Rosalie M.; Leonhardt, Ralf M.; Cresswell, Peter; Bonehill, Aude; Michaux, Alexandre; Ma, Wenbin; Mulder, Arend; van den Eynde, Benoît J.; van der Bruggen, Pierre; Vigneron, Nathalie

    2012-01-01

    Antitumor cytolytic T lymphocytes (CTLs) recognize peptides derived from cellular proteins and presented on MHC class I. One category of peptides recognized by these CTLs is derived from proteins encoded by cancer-germline genes, which are specifically expressed in tumors, and therefore represent

  8. Improved health-relevant functionality in dark germinated Mucuna pruriens sprouts by elicitation with peptide and phytochemical elicitors.

    Science.gov (United States)

    Randhir, Reena; Kwon, Young-In; Shetty, Kalidas

    2009-10-01

    The health-relevant functionality of Mucuna pruriens was improved by priming the seeds with elicitors of the pentose phosphate pathway (PPP) such as fish protein hydrolysates (FPHs), lactoferrin (LF) and oregano extract (OE) followed by dark germination. FPH elicited the highest phenolic content of 19 mg/g FW on day 1, which was 38% higher than control sprouts. OE enhanced Parkinson's disease-relevant L-DOPA content by 33% on day 1 compared to control sprouts. Anti-diabetes-relevant alpha-amylase inhibition percent (AIP) and alpha-glucosidase inhibition percent (GIP) were high in the cotyledons and decreased following elicitation and sprouting. For potential anti-diabetic applications, low AIP and high GIP with moderate L-DOPA content on day 4 of dark germination could be optimal. Improved L-DOPA concentrations in a soluble phenolic and antioxidant-rich M. pruriens background on day 1 sprouts have potential for Parkinson's disease management.

  9. Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes.

    Science.gov (United States)

    Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J

    2015-04-21

    A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary.

  10. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  11. Curcumin Improves Amyloid β-Peptide (1-42 Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    Full Text Available Curcumin, the most active component of turmeric, has various beneficial properties, such as antioxidant, anti-inflammatory, and antitumor effects. Previous studies have suggested that curcumin reduces the levels of amyloid and oxidized proteins and prevents memory deficits and thus is beneficial to patients with Alzheimer's disease (AD. However, the molecular mechanisms underlying curcumin's effect on cognitive functions are not well-understood. In the present study, we examined the working memory and spatial reference memory in rats that received a ventricular injection of amyloid-β1-42 (Aβ1-42, representing a rodent model of Alzheimer's disease (AD. The rats treated with Aβ1-42 exhibited obvious cognitive deficits in behavioral tasks. Chronic (seven consecutive days, once per day but not acute (once a day curcumin treatments (50, 100, and 200 mg/kg improved the cognitive functions in a dose-dependent manner. In addition, the beneficial effect of curcumin is accompanied by increased BDNF levels and elevated levels of phosphorylated ERK in the hippocampus. Furthermore, the cognition enhancement effect of curcumin could be mimicked by the overexpression of BDNF in the hippocampus and blocked by either bilateral hippocampal injections with lentiviruses that express BDNF shRNA or a microinjection of ERK inhibitor. These findings suggest that chronic curcumin ameliorates AD-related cognitive deficits and that upregulated BDNF-ERK signaling in the hippocampus may underlie the cognitive improvement produced by curcumin.

  12. Effects of Amyloid Precursor Protein 17 Peptide on the Protection of Diabetic Encephalopathy and Improvement of Glycol Metabolism in the Diabetic Rat

    Directory of Open Access Journals (Sweden)

    Heng Meng

    2013-01-01

    Full Text Available Researchers have proposed that amyloid precursor protein 17 peptide (APP17 peptide, an active fragment of amyloid precursor protein (APP in the nervous system, has therapeutic effects on neurodegeneration. Diabetic encephalopathy (DE is a neurological disease caused by diabetes. Here we use multiple experimental approaches to investigate the effect of APP17 peptide on changes in learning behavior and glycol metabolism in rats. It was found that rats with DE treated by APP17 peptide showed reversed behavioral alternation. The [18F]-FDG-PET images and other results all showed that the APP17 peptide could promote glucose metabolism in the brain of the DE rat model. Meanwhile, the insulin signaling was markedly increased as shown by increased phosphorylation of Akt and enhanced GLUT4 activation. Compared with the DE group, the activities of SOD, GSH-Px, and CAT in the rat hippocampal gyrus were increased, while MDA decreased markedly in the DE + APP17 peptide group. No amyloid plaques in the cortex and the hippocampus were detected in either group, indicating that the experimental animals in the current study were not suffering from Alzheimer’s disease. These results indicate that APP17 peptide could be used to treat DE effectively.

  13. Self-Assembling Peptide Nanofiber Scaffold Enhanced with RhoA Inhibitor CT04 Improves Axonal Regrowth in the Transected Spinal Cord

    Directory of Open Access Journals (Sweden)

    Weiwei Zhang

    2012-01-01

    Full Text Available The present study was designed to explore the therapeutic potential of self-assembling peptide nanofiber scaffold (SAPNS delivered RhoA inhibitor to ameliorate the hostile microenvironment of injured spinal cord for axonal regeneration. After a transection was applied to the thoracic spinal cord of mice, the combination of SAPNS and CT04 (a cell permeable RhoA inhibitor, single SAPNS with vehicle, or saline was transplanted into the lesion cavity. Results showed that SAPNS+CT04 implants achieved the best therapeutic outcomes among treatment groups. The novel combination not only reconstructed the injured nerve gap but also elicited significant axonal regeneration and motor functional recovery. Additionally, the combination also effectively reduced the apoptosis and infiltration of activated macrophages in the injured spinal cord. Collectively, the present study demonstrated that SAPNS-based delivery of RhoA inhibitor CT04 presented a highly potential therapeutic strategy for spinal cord injury with reknitting lesion gap, attenuating secondary injury, and improving axonal regrowth.

  14. Self-Assembling Peptide Nanofiber Scaffold Enhanced with RhoA Inhibitor CT04 Improves Axonal Regrowth in the Transected Spinal Cord

    International Nuclear Information System (INIS)

    Weiwei, Z.; Xiaoduo, Z.; Zhongying, L.

    2012-01-01

    The present study was designed to explore the therapeutic potential of self-assembling peptide nano fiber scaffold (SAPNS) delivered RhoA inhibitor to ameliorate the hostile microenvironment of injured spinal cord for axonal regeneration. After a transection was applied to the thoracic spinal cord of mice, the combination of SAPNS and CT04 (a cell permeable RhoA inhibitor), single SAPNS with vehicle, or saline was transplanted into the lesion cavity. Results showed that SAPNS+CT04 implants achieved the best therapeutic outcomes among treatment groups. The novel combination not only reconstructed the injured nerve gap but also elicited significant axonal regeneration and motor functional recovery. Additionally, the combination also effectively reduced the apoptosis and infiltration of activated macrophages in the injured spinal cord. Collectively, the present study demonstrated that SAPNS-based delivery of RhoA inhibitor CT04 presented a highly potential therapeutic strategy for spinal cord injury with reknitting lesion gap, attenuating secondary injury, and improving axonal regrowth.

  15. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  16. Improving quality of life in patients with pancreatic neuroendocrine tumor following peptide receptor radionuclide therapy assessed by EORTC QLQ-C30

    International Nuclear Information System (INIS)

    Marinova, Milka; Muecke, Martin; Mahlberg, Lukas; Essler, Markus; Ahmadzadehfar, Hojjat; Cuhls, Henning; Radbruch, Lukas; Conrad, Rupert

    2018-01-01

    Neuroendocrine tumors (NETs) have proven to be appropriate neoplasms for peptide receptor radionuclide therapy (PRRT), as the majority of these slow-growing malignancies overexpress somatostatin receptors. The aim of this study was to evaluate changes in quality of life (QoL) of patients with P-NET following PRRT. Sixty-eight patients with P-NET (31 female, mean age 61.4 y) underwent PRRT: 12 with NET of grade 1, 40 of grade 2, 8 of grade 3 (grade non-available n = 8). Prior to treatment, 39 patients showed ECOG 0, 26 patients ECOG 1, and three patients ECOG 2. Clinical assessment included evaluation of QoL and symptom changes using a standardized questionnaire (EORTC QLQ-C30) and was performed at baseline and every three months following each therapy cycle up to 12 months. Primary analysis compared QoL at baseline and after the fourth treatment cycle (N = 53). Up to four treatment cycles PRRT were performed for each patient. The median cumulative administered activity was 28.2 GBq. Primary analysis revealed that compared to baseline QoL was significantly improved revealing increased global health status (p = 0.008) and social functioning (p = 0.049) at the end of the study. Furthermore, fatigue and appetite loss showed a significant improvement after the last PRRT cycle (fatigue: p = 0.029, appetite loss p = 0.015). Sub-analyses showed that QoL was improved revealing increased global health status (3 months after first, second, and third treatment cycle p = 0.048, p = 0.002, and p < 0.001, respectively), emotional functioning (3 months after first-third cycle p = 0.003, p = 0.049, and p = 0.001, respectively) and social functioning (3 months after the first and second p < 0.001, and after the third cycle p = 0.015, respectively). Furthermore, some symptoms were significantly alleviated compared with baseline: fatigue (after first-third cycle p = 0.026, p = 0.050, and p = 0.008, respectively), nausea and vomiting (after first and second cycle p = 0.006 and p = 0

  17. Improving quality of life in patients with pancreatic neuroendocrine tumor following peptide receptor radionuclide therapy assessed by EORTC QLQ-C30

    Energy Technology Data Exchange (ETDEWEB)

    Marinova, Milka [University Hospital Bonn, Department of Radiology, Bonn (Germany); Muecke, Martin [University Hospital Bonn, Department of Palliative Medicine, Bonn (Germany); University Hospital Bonn, Department of General Practice and Family Medicine, Bonn (Germany); University Hospital of Bonn, Center for Rare Diseases Bonn (ZSEB), Bonn (Germany); Mahlberg, Lukas; Essler, Markus; Ahmadzadehfar, Hojjat [University Hospital Bonn, Department of Nuclear Medicine, Bonn (Germany); Cuhls, Henning; Radbruch, Lukas [University Hospital Bonn, Department of Palliative Medicine, Bonn (Germany); Conrad, Rupert [University Hospital of Bonn, Department of Psychosomatic Medicine and Psychotherapy, Bonn (Germany)

    2018-01-15

    Neuroendocrine tumors (NETs) have proven to be appropriate neoplasms for peptide receptor radionuclide therapy (PRRT), as the majority of these slow-growing malignancies overexpress somatostatin receptors. The aim of this study was to evaluate changes in quality of life (QoL) of patients with P-NET following PRRT. Sixty-eight patients with P-NET (31 female, mean age 61.4 y) underwent PRRT: 12 with NET of grade 1, 40 of grade 2, 8 of grade 3 (grade non-available n = 8). Prior to treatment, 39 patients showed ECOG 0, 26 patients ECOG 1, and three patients ECOG 2. Clinical assessment included evaluation of QoL and symptom changes using a standardized questionnaire (EORTC QLQ-C30) and was performed at baseline and every three months following each therapy cycle up to 12 months. Primary analysis compared QoL at baseline and after the fourth treatment cycle (N = 53). Up to four treatment cycles PRRT were performed for each patient. The median cumulative administered activity was 28.2 GBq. Primary analysis revealed that compared to baseline QoL was significantly improved revealing increased global health status (p = 0.008) and social functioning (p = 0.049) at the end of the study. Furthermore, fatigue and appetite loss showed a significant improvement after the last PRRT cycle (fatigue: p = 0.029, appetite loss p = 0.015). Sub-analyses showed that QoL was improved revealing increased global health status (3 months after first, second, and third treatment cycle p = 0.048, p = 0.002, and p < 0.001, respectively), emotional functioning (3 months after first-third cycle p = 0.003, p = 0.049, and p = 0.001, respectively) and social functioning (3 months after the first and second p < 0.001, and after the third cycle p = 0.015, respectively). Furthermore, some symptoms were significantly alleviated compared with baseline: fatigue (after first-third cycle p = 0.026, p = 0.050, and p = 0.008, respectively), nausea and vomiting (after first and second cycle p = 0.006 and p = 0

  18. Improvement of glycaemic control and elevation of C-peptide following a diet free of dairy products in an insulin-treated, patient with type 2 diabetes with ulcerative colitis.

    Science.gov (United States)

    Tandeter, Howard

    2009-01-01

    An insulin-treated patient with type 2 diabetes mellitus started a diet free of dairy products. Unexpectedly, she developed episodes of hypoglycaemia, without any change in her usual medication (insulin NPH at bedtime and Metformin). Laboratory tests showed an improvement of endogenous insulin secretion as demonstrated by the induction of hypoglycaemia and the elevation to normalisation of C-peptide levels. The patient was rechallenged with dairy products, leading to the lowering of the C-peptide levels back to abnormal levels, and an increase in HBA1C levels. The findings in our patient contrast with the insulinotropic effect of milk in healthy subjects described in the literature. The two main "milk debates" on the relation between milk (or its components) and diabetes are presented. Further observations will be needed to clarify the question of whether a diet free of dairy products can improve glycaemic control in other insulin-treated patients with type 2 diabetes.

  19. An improved 99mTc-HYNIC-(Ser)3-LTVSPWY peptide with EDDA/tricine as co-ligands for targeting and imaging of HER2 overexpression tumor.

    Science.gov (United States)

    Khodadust, Fatemeh; Ahmadpour, Sajjad; Aligholikhamseh, Nazan; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal

    2018-01-20

    Overexpression of human epidermal receptor 2 (HER2) has given the opportunity for targeting and delivering of imaging radiotracers. The aim of this study was to evaluate the 99m Tc-HYNIC-(EDDA/tricine)-(Ser) 3 -LTVSPWY peptide for tumor targeting and imaging of tumor with overexpression of HER2. The HYNIC-(Ser) 3 -LTVSPWY was labeled with 99m Tc in presence of EDDA/tricine mixture as co-ligands. The in vitro and in vivo studies of this radiolabeled peptide were performed for cellular specific binding and tumor targeting. The high radiochemical purity of 99m Tc-HYNIC (EDDA/tricine)-(Ser) 3 -LTVSPWY was obtained to be 99%. It exhibited high stability in normal saline and human serum. In HER2 binding affinity study, a significant reduction in uptake of radiolabeled peptide (7.7 fold) was observed by blocking SKOV-3 cells receptors with unlabeled peptide. The K D and B max values for this radiolabeled peptide were determined as 3.3 ± 1.0 nM and 2.9 ± 0.3 × 10 6 CPM/pMol, respectively. Biodistribution study revealed tumor to blood and tumor to muscle ratios about 6.9 and 4 respectively after 4 h. Tumor imaging by gamma camera demonstrated considerable high contrast tumor uptake. This developed 99m Tc-HYNIC-(Ser) 3 -LTVSPWY peptide selectively targeted on HER2 tumor and exhibited a high target uptake combined with acceptable low background activity for tumor imaging in mice. The results of this study and its comparison with another study showed that 99m Tc-HYNIC-(EDDA/tricine)-(Ser) 3 -LTVSPWY is much better than previously reported radiolabeled peptide as 99m Tc-CSSS-LTVSPWY for HER2 overexpression tumor targeting and imaging. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Crocin improved locomotor function and mechanical behavior in the rat model of contused spinal cord injury through decreasing calcitonin gene related peptide (CGRP).

    Science.gov (United States)

    Karami, Masoume; Bathaie, S Zahra; Tiraihi, Taqi; Habibi-Rezaei, Mehran; Arabkheradmand, Jalil; Faghihzadeh, Soghrat

    2013-12-15

    Various approaches have been offered to alleviate chronic pain resulting from spinal cord injuries (SCIs). Application of herbs and natural products, with potentially lower adverse effects, to cure diseases has been recommended in both traditional and modern medicines. Here, the effect of crocin on chronic pain induced by spinal cord contusion was investigated in an animal model. Female Wistar rats were randomly divided into five groups (5 rats in each); three groups were contused at the L1 level. One group was treated with crocin (150mg/kg) two weeks after spinal cord injury; the second group, control, was treated with vehicle only; and the third group was treated with ketoprofen. Two normal groups were also considered with or without crocin treatment. The mechanical behavioral test, the locomotor recovery test and the thermal behavioral test were applied weekly to evaluate the injury and recovery of rats. Significant improvements (plocomotor recovery tests were seen in the rats treated with crocin. Thermal behavioral test did not show any significant changes due to crocin treatment. Plasma concentration of calcitonin-gene related peptide (CGRP) changed from 780.2±2.3 to 1140.3±4.5pg/ml due to SCI and reached 789.1±2.7pg/ml after crocin treatment. These changes were significant at the level of p<0.05. The present study shows the beneficial effects of crocin treatment on chronic pain induced by SCI, through decreasing CGRP as an important mediator of inflammation and pain. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Prolonged survival and improved glycemia in BioBreeding diabetic rats after early sustained exposure to glucagon-like peptide 1.

    Science.gov (United States)

    Yanay, Ofer; Moralejo, Daniel; Kernan, Kelly; Brzezinski, Margaret; Fuller, Jessica M; Barton, Randall W; Lernmark, Ake; Osborne, William R

    2010-06-01

    Type 1 diabetes (T1D) in both humans and BioBreeding (BB) rats is an autoimmune disease that results in complete destruction of islets and insulin dependency for life. Glucagon-like peptide 1 (GLP-1) promotes beta cell proliferation and neogenesis and has a potent insulinotropic effect. We hypothesized that the expression of GLP-1 before disease onset would increase islet mass, delay diabetes and prolong survival of BB rats. Vascular smooth muscle cells retrovirally transduced to secrete GLP-1 were seeded into TheraCyte encapsulation devices, implanted subcutaneously, and rats were monitored for diabetes. In untreated control rats, plasma GLP-1 levels were 34.5-39.5 pmol/l, whereas, in treated rats, plasma levels were elevated, in the range 90-250.4 pmol/l. Hypoglycemia was not detected and this was anticipated from the glucose-regulated action of GLP-1. Diabetes onset (mean + or - SEM) in untreated rats occurred at 56.5 + or - 0.6 days (n = 6) and, in GLP-1-treated rats, was delayed until 76.4 + or - 3.3 days (n = 5) (p 650 mg/dl) and did not survive beyond 11 days. At 5 days after diabetes onset, insulin-secreting islets were absent in untreated rats. By contrast, treated rats maintained weight for up to 143 days of age and showed insulin-secreting beta cells. Sustained GLP-1 expression delivered by encapsulated cells before diabetes onset in BB rats showed an improved clinical outcome, suggesting the potential for treating patients using long lasting GLP-1 analogs.

  2. Echo and natriuretic peptide guided therapy improves outcome and reduces worsening renal function in systolic heart failure: An observational study of 1137 outpatients.

    Science.gov (United States)

    Simioniuc, Anca; Carluccio, Erberto; Ghio, Stefano; Rossi, Andrea; Biagioli, Paolo; Reboldi, Gianpaolo; Galeotti, Gian Giacomo; Lu, Fei; Zara, Cornelia; Whalley, Gillian; Temporelli, Pier Luigi; Dini, Frank Lloyd

    2016-12-01

    B-type natriuretic peptide (BNP) and echocardiography are potentially useful adjunct to guide management of patients with chronic heart failure (HF).Thus, the aim of this retrospective, multicenter study was to compare outcomes and renal function in outpatients with chronic HF with reduced ejection fraction (HFrEF) who underwent an echo and BNP guided or a clinically driven protocol for follow-up. In 1137 consecutive outpatients, management was guided according to echo-Doppler signs of elevated left ventricular filling pressure and BNP levels conforming to the protocol of the Network Labs Ultrasound (NEBULA) in HF Study Group in 570 (mean EF=30%), while management was clinically driven based on the institutional protocol of the HF Unit of the Cardiovascular and Thoracic Department in 567 (mean EF=33%). Propensity score, matching several confounding baseline variables, was used to match pairs based on treatment strategy. The median follow-up was 37.4months. After propensity matching, a lower incidence of death (HR 0.45, 95%CI: 0.30-0.67, p<0.0001), and death or worsening renal function (HR 0.49, 95%CI 0.36-0.67, p<0.0001) was apparent in echo-BNP-guided group compared to clinically-guided group. Worsening of renal function (≥0.3mg/dl increase in serum creatinine) was observed in 9.8% of echo-BNP-guided group and in 21.4% of clinical assessed group (p<0.0001). The daily dose of loop diuretics did not change in echo-BNP-guided group, while it increased in 65% of patients in clinically-guided group (p<0.0001). Echo and BNP guided management may improve the outcome and reduce worsening of renal function in outpatients with chronic HFrEF. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  4. Novel Formulations for Antimicrobial Peptides

    Science.gov (United States)

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  5. Improving Tumor Uptake and Pharmacokinetics of 64Cu-Labeled Cyclic RGD Peptide Dimers with Gly3 and PEG4 Linkers

    OpenAIRE

    Shi, Jiyun; Kim, Young-Seung; Zhai, Shizhen; Liu, Zhaofei; Chen, Xiaoyuan; Liu, Shuang

    2009-01-01

    Radiolabeled cyclic RGD (Arg-Gly-Asp) peptides represent a new class of radiotracers with potential for the early tumor detection and non-invasive monitoring of tumor metastasis and therapeutic response in cancer patients. This report describes the synthesis of two cyclic RGD peptide dimer conjugates, DOTA-PEG4-E[PEG4-c(RGDfK)]2 (DOTA-3PEG4-dimer: DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) and DOTA-G3-E[G3-c(RGDfK)]2 ...

  6. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  7. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  8. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    of novel peptide-based protease inhibitors, efforts were made towards improved methods for peptide synthesis. The coupling of Fmoc-amino acids onto N-methylated peptidyl resins was investigated. These couplings can be low yielding and the effect of the use of microwave heating combined with the coupling...

  9. Use of "one-pot, mix-and-read" peptide-MHC class I tetramers and predictive algorithms to improve detection of cytotoxic T lymphocyte responses in cattle

    DEFF Research Database (Denmark)

    Svitek, Nicholas; Hansen, Andreas Martin; Steinaa, Lucilla

    2014-01-01

    Peptide-major histocompatibility complex (p-MHC) class I tetramer complexes have facilitated the early detection and functional characterisation of epitope specific CD8(+) cytotoxic T lymphocytes (CTL). Here, we report on the generation of seven recombinant bovine leukocyte antigens (BoLA) and re...

  10. Synthetic peptides derived from salivary proteins and the control of surface charge densities of dental surfaces improve the inhibition of dental calculus formation.

    Science.gov (United States)

    Grohe, Bernd

    2017-08-01

    Peptides descended from the salivary proteins statherin and histatin were recently identified in saliva and the acquired enamel pellicle (AEP), a proteomic layer coated on enamel. In particular, the statherin phosphopeptide DpSpSEEKFLR (DSS) was found to adsorb to enamel-like hydroxyapatite and inhibit plaque-related crystal formation. To determine the mechanism of these processes, we studied peptide-crystal interactions based on the sequences DSS and RKFHEKHHSHRGYR (RKF). The latter is a basic histatin sequence showing antimicrobial effects. To initiate crystallization we used calcium oxalate monohydrate (COM), a rather secondary phase in the oral environment, however highly amenable to experimental analyses of nucleation and growth processes. Using electron microscopy we found that the peptides DSS, DSS-RKF and DSS-DSS all inhibit crystal formation; with DSS-DSS showing the strongest effects while RKF showed no effect. In addition, using either enamel-like or mica substrates, we found that the ratio of the substrate's surface charge densities was directly correlated with the ratio of COM nucleation rates on theses surfaces. The findings suggest that mineralization processes on enamel/AEP-films are controllable by the degree of peptide phosphorylation/acidity and the level of the enamel surface charge density. Both parameters can, when well adjusted, help to overcome periodontal disease and dental calculus formation. In addition, the presence of antimicrobial RKF will reduce the buildup of bacterial plaque. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [An improved method of preparing protein and peptide probes in mass spectrometry with ionization of division fragments by californium-252 (TOF-PDMS)].

    Science.gov (United States)

    Chivanov, V D; Zubarev, R A; Aksenov, S A; Bordunova, O G; Eremenko, V I; Kabanets, V M; Tatarinova, V I; Mishnev, A K; Kuraev, V V; Knysh, A N; Eremenko, I A

    1996-08-01

    The addition of organic acids (picric, oxalic, citric, or tartaric) to peptide and protein samples was found to significantly increase the yield of their quasi-molecular ions (QMI) in time-of-flight 252Cf plasma desorption mass spectrometry. The yield of the ions depended on the pKa of the acid added.

  12. Integrated automation for continuous high-throughput synthetic chromosome assembly and transformation to identify improved yeast strains for industrial production of peptide sweetener brazzein

    Science.gov (United States)

    Production and recycling of recombinant sweetener peptides in industrial biorefineries involves the evaluation of large numbers of genes and proteins. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly synthesize, clone, and express heterologous gene ope...

  13. Adding an Artificial Tail—Anchor to a Peptide-Based HIV-1 Fusion Inhibitor for Improvement of Its Potency and Resistance Profile

    Directory of Open Access Journals (Sweden)

    Shan Su

    2017-11-01

    Full Text Available Peptides derived from the C-terminal heptad repeat (CHR of human immunodeficiency virus type 1 (HIV-1 envelope protein transmembrane subunit gp41, such as T20 (enfuvirtide, can bind to the N-terminal heptad repeat (NHR of gp41 and block six-helix bundle (6-HB formation, thus inhibiting HIV-1 fusion with the target cell. However, clinical application of T20 is limited because of its low potency and genetic barrier to resistance. HP23, the shortest CHR peptide, exhibits better anti-HIV-1 activity than T20, but the HIV-1 strains with E49K mutations in gp41 will become resistant to it. Here, we modified HP23 by extending its C-terminal sequence using six amino acid residues (E6 and adding IDL (Ile-Asp-Leu to the C-terminus of E6, which is expected to bind to the shallow pocket in the gp41 NHR N-terminal region. The newly designed peptide, designated HP23-E6-IDL, was about 2- to 16-fold more potent than HP23 against a broad spectrum of HIV-1 strains and more than 12-fold more effective against HIV-1 mutants resistant to HP23. These findings suggest that addition of an anchor–tail to the C-terminus of a CHR peptide will allow binding with the pocket in the gp41 NHR that may increase the peptide’s antiviral efficacy and its genetic barrier to resistance.

  14. Inactivation of genes encoding extracellular proteases in bacillus halodurans BhFC01 and the impact on its modified flagellin type III secretion pathway towards improving peptide expression

    CSIR Research Space (South Africa)

    Berger, E

    2009-01-01

    Full Text Available The flagellin type III secretion pathway of Bacillus halodurans BhFC01 (-hag) was modified by the inactivation of fliD. An in-frame flagellin gene fusion polypeptide construct was expressed, and the heterologous peptides were secreted as flagellin...

  15. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency

    OpenAIRE

    HaiFang Yin; Prisca Boisguerin; Hong M Moulton; Corinne Betts; Yiqi Seow; Jordan Boutilier; Qingsong Wang; Anthony Walsh; Bernard Lebleu; Matthew JA Wood

    2013-01-01

    We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was ...

  16. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Højberg, P V; Vilsbøll, T; Rabøl, R

    2008-01-01

    of near-normalisation of the blood glucose level could improve insulin responses to GIP and GLP-1 in patients with type 2 diabetes. METHODS: Eight obese patients with type 2 diabetes with poor glycaemic control (HbA(1c) 8.6 +/- 1.3%), were investigated before and after 4 weeks of near......-normalisation of blood glucose (mean blood glucose 7.4 +/- 1.2 mmol/l) using insulin treatment. Before and after insulin treatment the participants underwent three hyperglycaemic clamps (15 mmol/l) with infusion of GLP-1, GIP or saline. Insulin responses were evaluated as the incremental area under the plasma C......-peptide curve. RESULTS: Before and after near-normalisation of blood glucose, the C-peptide responses did not differ during the early phase of insulin secretion (0-10 min). The late phase C-peptide response (10-120 min) increased during GIP infusion from 33.0 +/- 8.5 to 103.9 +/- 24.2 (nmol/l) x (110 min)(-1...

  17. A novel chimeric peptide with antimicrobial activity.

    Science.gov (United States)

    Alaybeyoglu, Begum; Akbulut, Berna Sariyar; Ozkirimli, Elif

    2015-04-01

    Beta-lactamase-mediated bacterial drug resistance exacerbates the prognosis of infectious diseases, which are sometimes treated with co-administration of beta-lactam type antibiotics and beta-lactamase inhibitors. Antimicrobial peptides are promising broad-spectrum alternatives to conventional antibiotics in this era of evolving bacterial resistance. Peptides based on the Ala46-Tyr51 beta-hairpin loop of beta-lactamase inhibitory protein (BLIP) have been previously shown to inhibit beta-lactamase. Here, our goal was to modify this peptide for improved beta-lactamase inhibition and cellular uptake. Motivated by the cell-penetrating pVEC sequence, which includes a hydrophobic stretch at its N-terminus, our approach involved the addition of LLIIL residues to the inhibitory peptide N-terminus to facilitate uptake. Activity measurements of the peptide based on the 45-53 loop of BLIP for enhanced inhibition verified that the peptide was a competitive beta-lactamase inhibitor with a K(i) value of 58 μM. Incubation of beta-lactam-resistant cells with peptide decreased the number of viable cells, while it had no effect on beta-lactamase-free cells, indicating that this peptide had antimicrobial activity via beta-lactamase inhibition. To elucidate the molecular mechanism by which this peptide moves across the membrane, steered molecular dynamics simulations were carried out. We propose that addition of hydrophobic residues to the N-terminus of the peptide affords a promising strategy in the design of novel antimicrobial peptides not only against beta-lactamase but also for other intracellular targets. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  18. A novel strategy to improve antigen presentation for active immunotherapy in cancer. Fusion of the human papillomavirus type 16 E7 antigen to a cell penetrating peptide

    International Nuclear Information System (INIS)

    Granadillo, Milaid; Torrens, Isis; Guerra, Maribel

    2012-01-01

    Facilitating the delivery of exogenous antigens to antigen-presenting cells, ensuing processing and presentation via the major histocompatibility complex class I and induction of an effective immune response are fundamental for an effective therapeutic cancer vaccine. In this regard, we propose the use of cell-penetrating peptides fused to a tumor antigen. To demonstrate this concept we designed a fusion protein comprising a novel cell-penetrating and immunostimulatory peptide corresponding to residues 32 to 51 of the Limulus anti-lipopolysaccharide factor protein (LALF 32-51 ) linked to human papillomavirus 16 E7 antigen (LALF 32-51 -E7). In this work, we demonstrated that the immunization with LALF 32-51 -E7 using the TC-1 mouse model induces a potent and long-lasting anti-tumor response supported on an effective E7-specific CD8 +T -cell response. The finding that therapeutic immunization with LALF 32-51 or E7 alone, or an admixture of LALF32-51 and E7, does not induce significant tumor reduction indicates that covalent linkage between LALF 32-51 and E7 is required for the anti-tumor effect. These results support the use of this novel cell-penetrating peptide as an efficient means for delivering therapeutic targets into cellular compartments with the induction of a cytotoxic CD8 +T lymphocyte immune response. This approach is promissory for the treatment of tumors associated with the human papillomavirus 16, which is responsible for the 50% of cervical cancer cases worldwide and other malignancies. Furthermore, protein-based vaccines can circumvent the major histocompatibility complex specificity limitation associated with peptide vaccines providing a greater extent in their application

  19. Improved intra-array and interarray normalization of peptide microarray phosphorylation for phosphorylome and kinome profiling by rational selection of relevant spots

    Science.gov (United States)

    Scholma, Jetse; Fuhler, Gwenny M.; Joore, Jos; Hulsman, Marc; Schivo, Stefano; List, Alan F.; Reinders, Marcel J. T.; Peppelenbosch, Maikel P.; Post, Janine N.

    2016-01-01

    Massive parallel analysis using array technology has become the mainstay for analysis of genomes and transcriptomes. Analogously, the predominance of phosphorylation as a regulator of cellular metabolism has fostered the development of peptide arrays of kinase consensus substrates that allow the charting of cellular phosphorylation events (often called kinome profiling). However, whereas the bioinformatical framework for expression array analysis is well-developed, no advanced analysis tools are yet available for kinome profiling. Especially intra-array and interarray normalization of peptide array phosphorylation remain problematic, due to the absence of “housekeeping” kinases and the obvious fallacy of the assumption that different experimental conditions should exhibit equal amounts of kinase activity. Here we describe the development of analysis tools that reliably quantify phosphorylation of peptide arrays and that allow normalization of the signals obtained. We provide a method for intraslide gradient correction and spot quality control. We describe a novel interarray normalization procedure, named repetitive signal enhancement, RSE, which provides a mathematical approach to limit the false negative results occuring with the use of other normalization procedures. Using in silico and biological experiments we show that employing such protocols yields superior insight into cellular physiology as compared to classical analysis tools for kinome profiling. PMID:27225531

  20. Improving serodiagnosis of human and canine leishmaniasis with recombinant Leishmania braziliensis cathepsin l-like protein and a synthetic peptide containing its linear B-cell epitope.

    Directory of Open Access Journals (Sweden)

    Daniel Menezes-Souza

    2015-01-01

    Full Text Available The early and correct diagnosis of human leishmaniasis is essential for disease treatment. Another important step in the control of visceral leishmaniasis is the identification of infected dogs, which are the main domestic reservoir of L. infantum. Recombinant proteins and synthetic peptides based on Leishmania genes have emerged as valuable targets for serodiagnosis due to their increased sensitivity, specificity and potential for standardization. Cathepsin L-like genes are surface antigens that are secreted by amastigotes and have little similarity to host proteins, factors that enable this protein as a good target for serodiagnosis of the leishmaniasis.We mapped a linear B-cell epitope within the Cathepsin L-like protein from L. braziliensis. A synthetic peptide containing the epitope and the recombinant protein was evaluated for serodiagnosis of human tegumentary and visceral leishmaniasis, as well as canine visceral leishmaniasis.The recombinant protein performed best for human tegumentary and canine visceral leishmaniasis, with 96.30% and 89.33% accuracy, respectively. The synthetic peptide was the best to discriminate human visceral leishmaniasis, with 97.14% specificity, 94.55% sensitivity and 96.00% accuracy. Comparison with T. cruzi-infected humans and dogs suggests that the identified epitope is specific to Leishmania parasites, which minimizes the likelihood of cross-reactions.

  1. The Pig PeptideAtlas

    DEFF Research Database (Denmark)

    Hesselager, Marianne Overgaard; Codrea, Marius; Sun, Zhi

    2016-01-01

    Biological research of Sus scrofa, the domestic pig, is of immediate relevance for food production sciences, and for developing pig as a model organism for human biomedical research. Publicly available data repositories play a fundamental role for all biological sciences, and protein data...... repositories are in particular essential for the successful development of new proteomic methods. Cumulative proteome data repositories, including the PeptideAtlas, provide the means for targeted proteomics, system-wide observations, and cross-species observational studies, but pigs have so far been...... underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within...

  2. Neoglycolipids for Prolonging the Effects of Peptides

    DEFF Research Database (Denmark)

    van Witteloostuijn, Søren Blok; Mannerstedt, Karin Margareta Sophia; Wismann, Pernille

    2017-01-01

    Novel principles for optimizing the properties of peptide-based drugs are needed in order to leverage their full pharmacological potential. We present the design, synthesis, and evaluation of a library of neoglycolipidated glucagon-like peptide 1 (GLP-1) analogues, which are valuable drug...... was maintained or even improved compared to native GLP-1. This translated into pronounced in vivo efficacy in terms of both decreased acute food intake and improved glucose homeostasis in mice. Thus, we propose neoglycolipidation as a novel, general method for modulating the properties of therapeutic peptides...

  3. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  4. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  5. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  6. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  7. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  8. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  9. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  10. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  11. Topical Peptide Treatments with Effective Anti-Aging Results

    Directory of Open Access Journals (Sweden)

    Silke Karin Schagen

    2017-05-01

    Full Text Available In the last two decades, many new peptides have been developed, and new knowledge on how peptides improve the skin has been uncovered. The spectrum of peptides in the field of cosmetics is continuously growing. This review summarizes some of the effective data on cosmeceutical peptides that work against intrinsic and extrinsic aging. Some peptides have been proven in their efficacy through clinical skin trials. Well-known and documented peptides like copper tripeptide are still under research to obtain more details on their effectiveness, and for the development of new treatments. Palmitoyl pentapeptide-4 and Carnosine are other well-researched cosmeceuticals. Additionally, there are many more peptides that are used in cosmetics. However, study results for some are sparse, or have not been published in scientific journals. This article summarizes topical peptides with proven efficacy in controlled in vivo studies.

  12. Valine Pyrrolidide Preserves Intact Glucose-Dependent Insulinotropic Peptide and Improves Abnormal Glucose Tolerance in Minipigs With Reduced β-Cell Mass

    OpenAIRE

    Larsen, Marianne Olholm; Rolin, Bidda; Ribel, Ulla; Wilken, Michael; Deacon, Carolyn F.; Svendsen, Ove; Gotfredsen, Carsten F.; Carr, Richard David

    2003-01-01

    The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are important in blood glucose regulation.However, both incretin hormones are rapidly degraded by the enzyme dipeptidyl peptidase IV (DPPIV). The concept of DPPIV inhibition as a treatment for type 2 diabetes was evaluated in a new large animal model of insulin-deficient diabetes and reduced β-cell mass, the nicotinamide (NIA) (67 mg/kg) and streptozotocin (STZ) (125 mg/kg)–treated min...

  13. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment

    DEFF Research Database (Denmark)

    Carrasco Pro, S.; Zimic, M.; Nielsen, Morten

    2014-01-01

    of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available...... of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train...

  14. Hyaluronic Acid-Based Nanogels Produced by Microfluidics-Facilitated Self-Assembly Improves the Safety Profile of the Cationic Host Defense Peptide Novicidin

    DEFF Research Database (Denmark)

    Water, Jorrit J; Kim, YongTae; Maltesen, Morten J

    2015-01-01

    have hampered their commercial development. To overcome these challenges a novel nanogel-based drug delivery system was designed. METHOD: The peptide novicidin was self-assembled with an octenyl succinic anhydride-modified analogue of hyaluronic acid, and this formulation was optimized using...... a microfluidics-based quality-by-design approach. RESULTS: By applying design-of-experiment it was demonstrated that the encapsulation efficiency of novicidin (15% to 71%) and the zeta potential (-24 to -57 mV) of the nanogels could be tailored by changing the preparation process parameters, with a maximum...

  15. Multiplexed data independent acquisition (MSX-DIA) applied by high resolution mass spectrometry improves quantification quality for the analysis of histone peptides.

    Science.gov (United States)

    Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A

    2016-08-01

    We present the MS-based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone PTMs. Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has, thus, gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform two-fold more MS/MS events than traditional DIA, it acquired on average ∼5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. [Plant signaling peptides. Cysteine-rich peptides].

    Science.gov (United States)

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation.

  17. The exaggerated glucagon-like peptide-1 response is important for the improved β-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Jørgensen, Nils B; Dirksen, Carsten; Bojsen-Møller, Kirstine N

    2013-01-01

    β-cell function is improved in patients with type 2 diabetes in response to an oral glucose stimulus after Roux-en-Y gastric bypass (RYGB) surgery. This has been linked to an exaggerated glucagon-like peptide 1 (GLP-1) secretion, but causality has not been established. The aim of this study...... consisted of two experimental days, allowing a meal test with infusion of saline or Ex-9 in random order. After RYGB, glucose tolerance improved, β-cell glucose sensitivity (β-GS) doubled, the GLP-1 response greatly increased and glucagon secretion was augmented. GLP-1R blockade did not affect β......-cell function and meal-induced glucagon release before the operation, but did impair glucose tolerance. After RYGB, β-GS decreased to preoperative levels, glucagon secretion increased and glucose tolerance was impaired by Ex-9 infusion. Thus, the exaggerated effect of GLP-1 after RYGB is of major importance...

  18. Synthesized Peptides from Yam Dioscorin Hydrolysis in Silico Exhibit Dipeptidyl Peptidase-IV Inhibitory Activities and Oral Glucose Tolerance Improvements in Normal Mice.

    Science.gov (United States)

    Lin, Yin-Shiou; Han, Chuan-Hsiao; Lin, Shyr-Yi; Hou, Wen-Chi

    2016-08-24

    RRDY, RL, and DPF were the top 3 of 21 peptides for inhibitions against dipeptidyl peptidase-IV (DPP-IV) from the pepsin hydrolysis of yam dioscorin in silico and were further investigated in a proof-of-concept study in normal ICR mice for regulating glucose metabolism by the oral glucose tolerance test (OGTT). The sample or sitagliptin (positive control) was orally administered by a feeding gauge; 30 min later, the glucose loads (2.5 g/kg) were performed. RRDY, yam dioscorin, or sitagliptin preload, but not DPF, lowered the area under the curve (AUC0-120) of blood glucose and DPP-IV activity and elevated the AUC0-120 of blood insulin, which showed significant differences compared to control (P dioscorin might be beneficial in glycemic control in normal mice and need further investigations in diabetic animal models.

  19. Strategy to improve the quantitative LC-MS analysis of molecular ions resistant to gas-phase collision induced dissociation: application to disulfide-rich cyclic peptides.

    Science.gov (United States)

    Ciccimaro, Eugene; Ranasinghe, Asoka; D'Arienzo, Celia; Xu, Carrie; Onorato, Joelle; Drexler, Dieter M; Josephs, Jonathan L; Poss, Michael; Olah, Timothy

    2014-12-02

    Due to observed collision induced dissociation (CID) fragmentation inefficiency, developing sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assays for CID resistant compounds is especially challenging. As an alternative to traditional LC-MS/MS, we present here a methodology that preserves the intact analyte ion for quantification by selectively filtering ions while reducing chemical noise. Utilizing a quadrupole-Orbitrap MS, the target ion is selectively isolated while interfering matrix components undergo MS/MS fragmentation by CID, allowing noise-free detection of the analyte's surviving molecular ion. In this manner, CID affords additional selectivity during high resolution accurate mass analysis by elimination of isobaric interferences, a fundamentally different concept than the traditional approach of monitoring a target analyte's unique fragment following CID. This survivor-selected ion monitoring (survivor-SIM) approach has allowed sensitive and specific detection of disulfide-rich cyclic peptides extracted from plasma.

  20. Valine pyrrolidide preserves intact glucose-dependent insulinotropic peptide and improves abnormal glucose tolerance in minipigs with reduced beta-cell mass

    DEFF Research Database (Denmark)

    Larsen, Marianne Olholm; Rolin, Bidda; Ribel, Ulla

    2003-01-01

    levels of intact GLP-1 but increased levels of intact GIP (from 4543 +/- 1880 to 9208 +/- 3267 pM x min; P glucose tolerance (area under the curve [AUC] for glucose reduced from 1904 +/- 480 to 1582 +/- 353 mM x min; P =.05). VP did not increase insulin levels during the oral......The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are important in blood glucose regulation. However, both incretin hormones are rapidly degraded by the enzyme dipeptidyl peptidase IV (DPPIV). The concept of DPPIV inhibition as a treatment...... glucose tolerance test (OGTT) but increased the insulinogenic index in normal animals (from 83 +/- 42 to 192 +/- 108; P

  1. Administração oral de peptídios e proteínas: I. Estratégias gerais para aumento da biodisponibilidade oral Oral delivery system for peptides and proteins: I. Approaches to improve oral bioavailability

    Directory of Open Access Journals (Sweden)

    Catarina Silva

    2002-06-01

    Full Text Available Existem, atualmente, centenas de peptídios e proteínas com ação terapêutica. Os obstáculos inerentes à sua administração oral têm impulsionado a investigação de estratégias capazes de os ultrapassar. Nesta revisão são abordados estes dois aspectos. A microencapsulação, pela sua versatilidade, sobressai entre as demais estratégias, afirmando-se como escolha potencial na administração oral de fármacos peptídicos.There are hundreds of peptides and proteins clinically relevant. The difficulties associated with their oral administration have been responsible for the major efforts in developing ways to improve oral bioavailability. Both these subjects are described in this review. The potentiality of microencapsulation presents this technique as a privileged approach for the oral delivery of peptide and protein drugs.

  2. Peptides in melanoma therapy.

    Science.gov (United States)

    Mocellin, Simone

    2012-01-01

    Peptides derived from tumor associated antigens can be utilized to elicit a therapeutically effective immune response against melanoma in experimental models. However, patient vaccination with peptides - although it is often followed by the induction of melanoma- specific T lymphocytes - is rarely associated with tumor response of clinical relevance. In this review I summarize the principles of peptide design as well as the results so far obtained in the clinical setting while treating cutaneous melanoma by means of this active immunotherapy strategy. I also discuss some immunological and methodological issues that might be helpful for the successful development of peptide-based vaccines.

  3. Antimicrobial Peptides in Reptiles

    Science.gov (United States)

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  4. Heterologous production of peptides in plants: fusion proteins and beyond.

    Science.gov (United States)

    Viana, Juliane Flávia Cançado; Dias, Simoni Campos; Franco, Octávio Luiz; Lacorte, Cristiano

    2013-11-01

    Recombinant DNA technology has allowed the ectopic production of proteins and peptides of different organisms leading to biopharmaceutical production in large cultures of bacterial, yeasts and mammalian cells. Otherwise, the expression of recombinant proteins and peptides in plants is an attractive alternative presenting several advantages over the commonly used expression systems including reduced production costs, easy scale-up and reduced risks of pathogen contamination. Different types of proteins and peptides have been expressed in plants, including antibodies, antigens, and proteins and peptides of medical, veterinary and industrial applications. However, apart from providing a proof of concept, the use of plants as platforms for heterologous protein and peptide production still depends on key steps towards optimization including the enhancement of expression levels, manipulation of post-transcriptional modifications and improvements in purification methods. In this review, strategies to increase heterologous protein and peptide stability and accumulation are discussed, focusing on the expression of peptides through the use of gene fusions.

  5. Designing Antibacterial Peptides with Enhanced Killing Kinetics

    Directory of Open Access Journals (Sweden)

    Faiza H. Waghu

    2018-02-01

    Full Text Available Antimicrobial peptides (AMPs are gaining attention as substitutes for antibiotics in order to combat the risk posed by multi-drug resistant pathogens. Several research groups are engaged in design of potent anti-infective agents using natural AMPs as templates. In this study, a library of peptides with high sequence similarity to Myeloid Antimicrobial Peptide (MAP family were screened using popular online prediction algorithms. These peptide variants were designed in a manner to retain the conserved residues within the MAP family. The prediction algorithms were found to effectively classify peptides based on their antimicrobial nature. In order to improve the activity of the identified peptides, molecular dynamics (MD simulations, using bilayer and micellar systems could be used to design and predict effect of residue substitution on membranes of microbial and mammalian cells. The inference from MD simulation studies well corroborated with the wet-lab observations indicating that MD-guided rational design could lead to discovery of potent AMPs. The effect of the residue substitution on membrane activity was studied in greater detail using killing kinetic analysis. Killing kinetics studies on Gram-positive, negative and human erythrocytes indicated that a single residue change has a drastic effect on the potency of AMPs. An interesting outcome was a switch from monophasic to biphasic death rate constant of Staphylococcus aureus due to a single residue mutation in the peptide.

  6. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  7. Anticancer activities of bovine and human lactoferricin-derived peptides.

    Science.gov (United States)

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  8. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles.

    Directory of Open Access Journals (Sweden)

    Dimitris Missirlis

    Full Text Available BACKGROUND: Peptide amphiphiles (PAs are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications. METHODOLOGY/PRINCIPAL FINDINGS: PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time. CONCLUSIONS/SIGNIFICANCE: Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.

  9. Peptide Vaccines for Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Rory C. F. De Brito

    2018-05-01

    Full Text Available Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  10. Peptide Vaccines for Leishmaniasis.

    Science.gov (United States)

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  11. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  12. Treating autoimmune disorders with venom-derived peptides.

    Science.gov (United States)

    Shen, Bingzheng; Cao, Zhijian; Li, Wenxin; Sabatier, Jean-Marc; Wu, Yingliang

    2017-09-01

    The effective treatment of autoimmune diseases remains a challenge. Voltage-gated potassium Kv1.3 channels, which are expressed in lymphocytes, are a new therapeutic target for treating autoimmune disease. Consequently, Kv1.3 channel-inhibiting venom-derived peptides are a prospective resource for new drug discovery and clinical application. Area covered: Preclinical and clinical studies have produced a wealth of information on Kv1.3 channel-inhibiting venom-derived peptides, especially from venomous scorpions and sea anemones. This review highlights the advances in screening and design of these peptides with diverse structures and potencies. It focuses on representative strategies for improving peptide selectivity and discusses the preclinical research on those venom-derived peptides as well as their clinical developmental status. Expert opinion: Encouraging results indicate that peptides isolated from the venom of venomous animals are a large resource for discovering immunomodulators that act on Kv1.3 channels. Since the structural diversity of venom-derived peptides determines the variety of their pharmacological activities, the design and optimization of venom-peptides for improved Kv1.3 channel-specificity has been advanced through some representative strategies, such as peptide chemical modification, amino acid residue truncation and binding interface modulation. These advances should further accelerate research, development and the future clinical application of venom-derived peptides selectively targeting Kv1.3 channels.

  13. Pulsed Radiofrequency Applied to the Sciatic Nerve Improves Neuropathic Pain by Down-regulating The Expression of Calcitonin Gene-related Peptide in the Dorsal Root Ganglion

    Science.gov (United States)

    Ren, Hao; Jin, Hailong; Jia, Zipu; Ji, Nan; Luo, Fang

    2018-01-01

    Background: Clinical studies have shown that applying pulsed radiofrequency (PRF) to the neural stem could relieve neuropathic pain (NP), albeit through an unclear analgesic mechanism. And animal experiments have indicated that calcitonin gene-related peptide (CGRP) expressed in the dorsal root ganglion (DRG) is involved in generating and maintaining NP. In this case, it is uncertain whether PRF plays an analgesic role by affecting CGRP expression in DRG. Methods: Rats were randomly divided into four groups: Groups A, B, C, and D. In Groups C and D, the right sciatic nerve was ligated to establish the CCI model, while in Groups A and B, the sciatic nerve was isolated without ligation. After 14 days, the right sciatic nerve in Groups B and D re-exposed and was treated with PRF on the ligation site. Thermal withdrawal latency (TWL) and hindpaw withdrawal threshold (HWT) were measured before PRF treatment (Day 0) as well as after 2, 4, 8, and 14 days of treatment. At the same time points of the behavioral tests, the right L4-L6 DRG was sampled and analyzed for CGRP expression using RT-qPCR and an enzyme-linked immunosorbent assay (ELISA). Results: Fourteen days after sciatic nerve ligation, rats in Groups C and D had a shortened TWL (P 0.05). On the 8th and 14th days, the mRNA levels in Group D were restored to those of Groups A and B. Meanwhile, the CGRP content of Group D gradually dropped over time, from 76.4 pg/mg (Day 0) to 57.5 pg/mg (Day 14). Conclusions: In this study, we found that, after sciatic nerve ligation, rats exhibited apparent hyperalgesia and allodynia, and CGRP mRNA and CGRP contents in the L4-L6 DRG increased significantly. Through lowering CGRP expression in the DRG, PRF treatment might relieve the pain behaviors of NP. PMID:29333099

  14. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1

    International Nuclear Information System (INIS)

    Dolenc, Jozica; Missimer, John H.; Steinmetz, Michel O.; Gunsteren, Wilfred F. van

    2010-01-01

    The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 φ torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular α-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured 3 J(H N -H Cα )-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and 3 J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and 3 J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.

  15. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1.

    Science.gov (United States)

    Dolenc, Jozica; Missimer, John H; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2010-07-01

    The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 phi torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular alpha-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured (3)J(H(N)-H(Calpha))-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and (3)J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and (3)J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.

  16. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1

    Energy Technology Data Exchange (ETDEWEB)

    Dolenc, Jozica [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland); Missimer, John H.; Steinmetz, Michel O. [Paul Scherrer Institut, Biomolecular Research (Switzerland); Gunsteren, Wilfred F. van, E-mail: wfvgn@igc.phys.chem.ethz.c [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland)

    2010-07-15

    The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 {phi} torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular {alpha}-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured {sup 3}J(H{sub N}-H{sub C{alpha}})-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and {sup 3}J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and {sup 3}J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.

  17. Taming C-terminal peptides of Staphylococcus aureus leukotoxin M for B-cell response: Implication in improved subclinical bovine mastitis diagnosis and protective efficacy in vitro.

    Science.gov (United States)

    Padmaja, Radhakrishnan Jayasree; Halami, Prakash Motiram

    2016-09-01

    Leukotoxin M/F'-PV (LukM/F'-PV) produced by bovine mastitis causing Staphylococcus aureus structurally comprises three domains, the β-sandwich, rim and stem domain. The rim and stem domains interacting with target cell membrane lipid rafts contributes to the virulent trait of the toxin. In the present study, two facts were hypothesized that neutralization of these domains will ebb LukM/F'-PV leukotoxicity. Secondly, the neutralizing antibodies can improve the leukotoxin detection sensitivity in bovine mastitis milk samples. The in silico mapping of S. aureus LukM C-termini comprising these domains predicted seven linear B-cell antigenic epitopes. The immune response of C-terminal truncated recombinant peptides rCtM19 (19 kDa; near carboxy-terminal) having four epitopes and rCtM15 (15 kDa; C-terminal) with three epitopes were evaluated for their diagnostic and neutralization potential. Anti-rCtM19 and anti-rCtM15 antibodies with enhanced immunogenicity had the most striking outcome in IgG-ELISA for detecting native determinants of leukotoxin. For the obtained ELISA values, ROC curve inferred a cut-off score of >0.102 OD405. The assay sensitivity in the range of 90-96% along with 100% specificity and AUC of 0.93-0.98 categorized subclinical and clinical from healthy bovine milk samples. As observed through in vitro neutralization and LDH assays, C-terminus specific antibodies (1:42 titer) deactivating leukotoxicity abolished LukM from interacting with lipid bilayer and LukF for forming pores on bovine neutrophil membrane. As a proof of concept, it was proved that peptide antibodies can be a more specific serodiagnostic and passive therapeutic molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Cyclic peptides as potential therapeutic agents for skin disorders.

    Science.gov (United States)

    Namjoshi, Sarika; Benson, Heather A E

    2010-01-01

    There is an increasing understanding of the role of peptides in normal skin function and skin disease. With this knowledge, there is significant interest in the application of peptides as therapeutics in skin disease or as cosmeceuticals to enhance skin appearance. In particular, antimicrobial peptides and those involved in inflammatory processes provide options for the development of new therapeutic directions in chronic skin conditions such as psoriasis and dermatitis. To exploit their potential, it is essential that these peptides are delivered to their site of action in active form and in sufficient quantity to provide the desired effect. Many polymers permeate the skin poorly and are vulnerable to enzymatic degradation. Synthesis of cyclic peptide derivatives can substantially alter the physicochemical characteristics of the peptide with the potential to improve its skin permeation. In addition, cyclization can stabilize the peptide structure and thereby increase its stability. This review describes the role of cyclic peptides in the skin, examples of current cyclic peptide therapeutic products, and the potential for cyclic peptides as dermatological therapeutics and cosmeceuticals.

  19. Designed graphene-peptide nanocomposites for biosensor applications: A review

    International Nuclear Information System (INIS)

    Wang, Li; Zhang, Yujie; Wu, Aiguo; Wei, Gang

    2017-01-01

    The modification of graphene with biomacromolecules like DNA, protein, peptide, and others extends the potential applications of graphene materials in various fields. The bound biomacromolecules could improve the biocompatibility and bio-recognition ability of graphene-based nanocomposites, therefore could greatly enhance their biosensing performances on both selectivity and sensitivity. In this review, we presented a comprehensive introduction and discussion on recent advance in the synthesis and biosensor applications of graphene-peptide nanocomposites. The biofunctionalization of graphene with specifically designed peptides, and the synthesis strategies of graphene-peptide (monomer, nanofibrils, and nanotubes) nanocomposites were demonstrated. On the other hand, the fabrication of graphene-peptide nanocomposite based biosensor architectures for electrochemical, fluorescent, electronic, and spectroscopic biosensing were further presented. This review includes nearly all the studies on the fabrication and applications of graphene-peptide based biosensors recently, which will promote the future developments of graphene-based biosensors in biomedical detection and environmental analysis. - Highlights: • A comprehensive review on the fabrication and application of graphene-peptide nanocomposites was presented. • The design of peptide sequences for biofunctionalization of various graphene materials was presented. • Multi-strategies on the fabrication of biosensors with graphene-peptide nanocomposites were discussed. • Designed graphene-peptide nanocomposites showed wide biosensor applications.

  20. Diversity-oriented peptide stapling

    DEFF Research Database (Denmark)

    Tran, Thu Phuong; Larsen, Christian Ørnbøl; Røndbjerg, Tobias

    2017-01-01

    as a powerful method for peptide stapling. However, to date CuAAC stapling has not provided a simple method for obtaining peptides that are easily diversified further. In the present study, we report a new diversity-oriented peptide stapling (DOPS) methodology based on CuAAC chemistry. Stapling of peptides...

  1. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  2. Divergent unprotected peptide macrocyclisation by palladium-mediated cysteine arylation.

    Science.gov (United States)

    Rojas, Anthony J; Zhang, Chi; Vinogradova, Ekaterina V; Buchwald, Nathan H; Reilly, John; Pentelute, Bradley L; Buchwald, Stephen L

    2017-06-01

    Macrocyclic peptides are important therapeutic candidates due to their improved physicochemical properties in comparison to their linear counterparts. Here we detail a method for a divergent macrocyclisation of unprotected peptides by crosslinking two cysteine residues with bis-palladium organometallic reagents. These synthetic intermediates are prepared in a single step from commercially available aryl bis-halides. Two bioactive linear peptides with cysteine residues at i , i + 4 and i , i + 7 positions, respectively, were cyclised to introduce a diverse array of aryl and bi-aryl linkers. These two series of macrocyclic peptides displayed similar linker-dependent lipophilicity, phospholipid affinity, and unique volume of distributions. Additionally, one of the bioactive peptides showed target binding affinity that was predominantly affected by the length of the linker. Collectively, this divergent strategy allowed rapid and convenient access to various aryl linkers, enabling the systematic evaluation of the effect of appending unit on the medicinal properties of macrocyclic peptides.

  3. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  4. Improvement of an enzyme-linked immunosorbent assay for equine herpesvirus type 4 by using a synthetic-peptide 24-mer repeat sequence of glycoprotein G as an antigen

    Science.gov (United States)

    BANNAI, Hiroshi; NEMOTO, Manabu; TSUJIMURA, Koji; YAMANAKA, Takashi; MAEDA, Ken; KONDO, Takashi

    2015-01-01

    To increase the sensitivity of an enzyme-linked immunosorbent assay (ELISA) for equine herpesvirus type 4 (EHV-4) that uses a 12-mer peptide of glycoprotein G (gG4-12-mer: MKNNPIYSEGSL) [4], we used a longer peptide consisting of a 24-mer repeat sequence (gG4-24-mer: MKNNPIYSEGSLMLNVQHDDSIHT) as an antigen. Sera of horses experimentally infected with EHV-4 reacted much more strongly to the gG4-24-mer peptide than to the gG4-12-mer peptide. We used peptide ELISAs to test paired sera from horses naturally infected with EHV-4 (n=40). gG4-24-mer ELISA detected 37 positive samples (92.5%), whereas gG4-12-mer ELISA detected only 28 (70.0%). gG4-24-mer ELISA was much more sensitive than gG4-12-mer ELISA. PMID:26424485

  5. Improvement of an enzyme-linked immunosorbent assay for equine herpesvirus type 4 by using a synthetic-peptide 24-mer repeat sequence of glycoprotein G as an antigen.

    Science.gov (United States)

    Bannai, Hiroshi; Nemoto, Manabu; Tsujimura, Koji; Yamanaka, Takashi; Maeda, Ken; Kondo, Takashi

    2016-02-01

    To increase the sensitivity of an enzyme-linked immunosorbent assay (ELISA) for equine herpesvirus type 4 (EHV-4) that uses a 12-mer peptide of glycoprotein G (gG4-12-mer: MKNNPIYSEGSL) [4], we used a longer peptide consisting of a 24-mer repeat sequence (gG4-24-mer: MKNNPIYSEGSLMLNVQHDDSIHT) as an antigen. Sera of horses experimentally infected with EHV-4 reacted much more strongly to the gG4-24-mer peptide than to the gG4-12-mer peptide. We used peptide ELISAs to test paired sera from horses naturally infected with EHV-4 (n=40). gG4-24-mer ELISA detected 37 positive samples (92.5%), whereas gG4-12-mer ELISA detected only 28 (70.0%). gG4-24-mer ELISA was much more sensitive than gG4-12-mer ELISA.

  6. Peptide aldehyde inhibitors of bacterial peptide deformylases.

    Science.gov (United States)

    Durand, D J; Gordon Green, B; O'Connell, J F; Grant, S K

    1999-07-15

    Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity. Copyright 1999 Academic Press.

  7. A new stable GIP-Oxyntomodulin hybrid peptide improved bone strength both at the organ and tissue levels in genetically-inherited type 2 diabetes mellitus.

    Science.gov (United States)

    Mansur, Sity Aishah; Mieczkowska, Aleksandra; Flatt, Peter R; Bouvard, Beatrice; Chappard, Daniel; Irwin, Nigel; Mabilleau, Guillaume

    2016-06-01

    Obesity and type 2 diabetes mellitus (T2DM) progress worldwide with detrimental effects on several physiological systems including bone tissue mainly by affecting bone quality. Several gut hormones analogues have been proven potent in ameliorating bone quality. In the present study, we used the leptin receptor-deficient db/db mice as a model of obesity and severe T2DM to assess the extent of bone quality alterations at the organ and tissue levels. We also examined the beneficial effects of gut hormone therapy in this model by using a new triple agonist ([d-Ala(2)]GIP-Oxm) active at the GIP, GLP-1 and glucagon receptors. As expected, db/db mice presented with dramatic alterations of bone strength at the organ level associated with deterioration of trabecular and cortical microarchitectures and an augmentation in osteoclast numbers. At the tissue level, these animals presented also with alterations of bone strength (reduced hardness, indentation modulus and dissipated energy) with modifications of tissue mineral distribution, collagen glycation and collagen maturity. The use of [d-Ala(2)]GIP-Oxm considerably improved bone strength at the organ level with modest effects on trabecular microarchitecture. At the tissue level, [d-Ala(2)]GIP-Oxm ameliorated bone strength reductions with positive effects on collagen glycation and collagen maturity. This study provides support for including gut hormone analogues as possible new therapeutic strategies for improving bone quality in bone complications associated to T2DM. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. “Living High-Training Low” improved weight loss and glucagon-like peptide-1 level in a 4-week weight loss program in adolescents with obesity

    Science.gov (United States)

    Yang, Qin; Huang, Guoyuan; Tian, Qianqian; Liu, Wei; Sun, Xiangdong; Li, Na; Sun, Shunli; Zhou, Tang; Wu, Nana; Wei, Yuqin; Chen, Peijie; Wang, Ru

    2018-01-01

    Abstract Background: “Living High-Training Low” (LHTL) is effective for the improvement of athletic ability; however, little is known about the effect of LHTL on obese individuals. The present study determined whether LHTL would have favorable influence on body composition, rebalance the appetite hormones, and explore the underlying mechanism. Methods: Adolescents with obesity [body mass index (BMI) >30 kg/m2] were randomly assigned to “Living Low-Training Low” (LLTL, n = 19) group that slept in a normobaric normoxia condition and the LHTL (n = 16) group slept in a normobaric hypoxia room (14.7% PO2 ∼2700 m). Both groups underwent the same aerobic exercise training program. Morphological, blood lipids, and appetite hormones were measured and assessed. Results: After the intervention, the body composition improved in both groups, whereas reductions in body weight (BW), BMI, and lean body mass increased significantly in the LHTL group (all, P weight loss safely and efficiently as compared to LLTL and increase the plasma GLP-1 levels that may be mediated by IL-6 to rebalance the appetite. Thus, an efficient method to treat obesity and prevent weight regain by appetite rebalance in hypoxia condition was established. PMID:29465583

  9. Peptide de novo sequencing of mixture tandem mass spectra

    DEFF Research Database (Denmark)

    Gorshkov, Vladimir; Hotta, Stéphanie Yuki Kolbeck; Braga, Thiago Verano

    2016-01-01

    they decrease the identification performance using database search engines. De novo sequencing approaches are expected to be even more sensitive to the reduction in mass spectrum quality resulting from peptide precursor co-isolation and thus prone to false identifications. The deconvolution approach matched...... complementary b-, y-ions to each precursor peptide mass, which allowed the creation of virtual spectra containing sequence specific fragment ions of each co-isolated peptide. Deconvolution processing resulted in equally efficient identification rates but increased the absolute number of correctly sequenced...... peptides. The improvement was in the range of 20–35% additional peptide identifications for a HeLa lysate sample. Some correct sequences were identified only using unprocessed spectra; however, the number of these was lower than those where improvement was obtained by mass spectral deconvolution. Tight...

  10. Recent developments in protein and peptide parenteral delivery approaches

    Science.gov (United States)

    Patel, Ashaben; Cholkar, Kishore; Mitra, Ashim K

    2014-01-01

    Discovery of insulin in the early 1900s initiated the research and development to improve the means of therapeutic protein delivery in patients. In the past decade, great emphasis has been placed on bringing protein and peptide therapeutics to market. Despite tremendous efforts, parenteral delivery still remains the major mode of administration for protein and peptide therapeutics. Other routes such as oral, nasal, pulmonary and buccal are considered more opportunistic rather than routine application. Improving biological half-life, stability and therapeutic efficacy is central to protein and peptide delivery. Several approaches have been tried in the past to improve protein and peptide in vitro/in vivo stability and performance. Approaches may be broadly categorized as chemical modification and colloidal delivery systems. In this review we have discussed various chemical approaches such as PEGylation, hyperglycosylation, mannosylation, and colloidal carriers including microparticles, nanoparticles, liposomes, carbon nanotubes and micelles for improving protein and peptide delivery. Recent developments on in situ thermosensitive gel-based protein and peptide delivery have also been described. This review summarizes recent developments on some currently existing approaches to improve stability, bioavailability and bioactivity of peptide and protein therapeutics following parenteral administration. PMID:24592957

  11. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  13. [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, small molecule synthetic peptide leptin mimetics, improve glycemic control in diet-induced obese (DIO) mice.

    Science.gov (United States)

    Wang, Anke; Anderson, Brian M; Novakovic, Zachary M; Grasso, Patricia

    2018-03-01

    We have previously shown that following oral delivery in dodecyl maltoside (DDM), [D-Leu-4]-OB3 and its myristic acid conjugate, MA-[D-Leu-4]-OB3, improved energy balance and glucose homeostasis in genetically obese/diabetic mouse models. More recently, we have provided immunohistochemical evidence indicating that these synthetic peptide leptin mimetics cross the blood-brain barrier and concentrate in the area of the arcuate nucleus of the hypothalamus in normal C57BL/6J and Swiss Webster mice, in genetically obese ob/ob mice, and in diet-induced obese (DIO) mice. In the present study, we describe the effects of oral delivery of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on glycemic control in diet-induced (DIO) mice, a non-genetic rodent model of obesity and its associated insulin resistance, which more closely recapitulates common obesity and diabetes in humans. Male C57BL/6J and DIO mice, 17, 20, and 28 weeks of age, were maintained on a low-fat or high-fat diet and given vehicle (DDM) alone or [D-Leu-4]-OB3 or MA-[D-Leu-4]-OB3 in DDM by oral gavage for 12 or 14 days. Body weight gain, food and water intake, fasting blood glucose, oral glucose tolerance, and serum insulin levels were measured. Our data indicate that (1) [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 restore glucose tolerance in male DIO mice maintained on a high-fat diet to levels comparable to those of non-obese C57BL/6J wild-type mice of the same age and sex maintained on a low-fat diet; and (2) the influence of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on glycemic control appears to be independent of their effects on energy balance. These results suggest that [D-Leu-4]-OB3 and/or MA-[D-Leu-4]-OB3 may have application to the management of the majority of cases of common obesity in humans, a state characterized at least in part, by leptin resistance resulting from a defect in leptin transport across the blood-brain barrier. They further suggest that these small molecule synthetic peptide leptin mimetics, through their

  14. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    ) , which promotes intestinal growth and is used to treat bowel disorders such as inflammatory bowel diseases and short bowel syndrome, and the 32 amino acid salmon calcitonin (sCT), which lowers blood calcium and is employed in the treatment of post-menopausal osteoporosis and hypercalcemia. The two...... peptides are similar in size and structure, but oppositely charged at physiological pH. Both peptides were acylated with linear acyl chains of systematically increasing length, where sCT was furthermore acylated at two different positions on the peptide backbone. For GLP-2, we found that increasing acyl...... remained optimal overall. The results indicate that rational acylation of GLP-2 can increase its in vitro intestinal absorption, alone or in combination with permeation enhancers, and are consistent with the initial project hypothesis. For sCT, an unpredicted effect of acylation largely superseded...

  15. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  16. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    of these are currently being used in quantitative structure--activity relationship (QSAR) studies for AMP optimization. Additionally, some key commercial computational tools are discussed, and both successful and less successful studies are referenced, illustrating some of the challenges facing AMP scientists. Through...... examples of different peptide QSAR studies, this review highlights some of the missing links and illuminates some of the questions that would be interesting to challenge in a more systematic fashion. Expert opinion: Computer-aided peptide QSAR using molecular descriptors may provide the necessary edge...

  17. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe

    International Nuclear Information System (INIS)

    Sugawara, Kazuharu; Shinohara, Hiroki; Kadoya, Toshihiko; Kuramitz, Hideki

    2016-01-01

    To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y_4). A peptide whereby Y_4C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH_2) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY_4C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye. - Highlights: • We constructed a multifunctional peptide probe for the electrochemical sensing of lymphoma cells. • The peptide probe consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. • The electrode response of the peptide probe changes due to selective uptake into the cells.

  18. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Kazuharu, E-mail: kzsuga@maebashi-it.ac.jp [Maebashi Institute of Technology, Gunma 371-0816 (Japan); Shinohara, Hiroki; Kadoya, Toshihiko [Maebashi Institute of Technology, Gunma 371-0816 (Japan); Kuramitz, Hideki [Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555 (Japan)

    2016-06-14

    To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y{sub 4}). A peptide whereby Y{sub 4}C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH{sub 2}) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY{sub 4}C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye. - Highlights: • We constructed a multifunctional peptide probe for the electrochemical sensing of lymphoma cells. • The peptide probe consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. • The electrode response of the peptide probe changes due to selective uptake into the cells.

  19. Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays.

    Science.gov (United States)

    Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki

    2016-11-19

    The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.

  20. Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays

    Directory of Open Access Journals (Sweden)

    Kei Kanie

    2016-11-01

    Full Text Available The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV, an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I, and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.

  1. Antimicrobial Peptides: An Introduction.

    Science.gov (United States)

    Haney, Evan F; Mansour, Sarah C; Hancock, Robert E W

    2017-01-01

    The "golden era" of antibiotic discovery has long passed, but the need for new antibiotics has never been greater due to the emerging threat of antibiotic resistance. This urgency to develop new antibiotics has motivated researchers to find new methods to combat pathogenic microorganisms resulting in a surge of research focused around antimicrobial peptides (AMPs; also termed host defense peptides) and their potential as therapeutics. During the past few decades, more than 2000 AMPs have been identified from a diverse range of organisms (animals, fungi, plants, and bacteria). While these AMPs share a number of common features and a limited number of structural motifs; their sequences, activities, and targets differ considerably. In addition to their antimicrobial effects, AMPs can also exhibit immunomodulatory, anti-biofilm, and anticancer activities. These diverse functions have spurred tremendous interest in research aimed at understanding the activity of AMPs, and various protocols have been described to assess different aspects of AMP function including screening and evaluating the activities of natural and synthetic AMPs, measuring interactions with membranes, optimizing peptide function, and scaling up peptide production. Here, we provide a general overview of AMPs and introduce some of the methodologies that have been used to advance AMP research.

  2. Template-Directed Ligation of Peptides to Oligonucleotides

    Science.gov (United States)

    Bruick, Richard K.; Dawson, Philip E.; Kent, Stephen BH; Usman, Nassim; Joyce, Gerald F.

    1996-01-01

    Synthetic oligonucleotides and peptides have enjoyed a wide range of applications in both biology and chemistry. As a consequence, oligonucleotide-peptide conjugates have received considerable attention, most notably in the development of antisense constructs with improved pharmacological properties. In addition, oligonucleotide-peptide conjugates have been used as molecular tags, in the assembly of supramolecular arrays and in the construction of encoded combinatorial libraries. To make these chimeric molecules more accessible for a broad range of investigations, we sought to develop a facile method for joining fully deprotected oligonucleotides and peptides through a stable amide bond linkage. Furthermore, we wished to make this ligation reaction addressable, enabling one to direct the ligation of specific oligonucleotide and peptide components.To confer specificity and accelerate the rate of the reaction, the ligation process was designed to be dependent on the presence of a complementary oligonucleotide template.

  3.  Pleiotropic action of proinsulin C-peptid

    Directory of Open Access Journals (Sweden)

    Michał Usarek

    2012-03-01

    Full Text Available  Proinsulin C-peptide, released in equimolar amounts with insulin by pancreatic β cells, since its discovery in 1967 has been thought to be devoid of biological functions apart from correct insulin processing and formation of disulfide bonds between A and B chains. However, in the last two decades research has brought a substantial amount of data indicating a crucial role of C-peptide in regulating various processes in different types of cells and organs. C-peptide acts presumably via either G-protein-coupled receptor or directly inside the cell, after being internalized. However, a receptor binding this peptide has not been identified yet. This peptide ameliorates pathological changes induced by type 1 diabetes mellitus, including glomerular hyperfiltration, vessel endothelium inflammation and neuron demyelinization. In diabetic patients and diabetic animal models, C-peptide substitution in physiological doses improves the functional and structural properties of peripheral neurons and protects against hyperglycemia-induced apoptosis, promoting neuronal development, regeneration and cell survival. Moreover, it affects glycogen synthesis in skeletal muscles. In vitro C-peptide promotes disaggregation of insulin oligomers, thus enhancing its bioavailability and effects on metabolism. There are controversies concerning the biological action of C-peptide, particularly with respect to its effect on Na /K -ATPase activity. Surprisingly, the excess of circulating peptide associated with diabetes type 2 contributes to atherosclerosis development. In view of these observations, long-term, large-scale clinical investigations using C-peptide physiological doses need to be conducted in order to determine safety and health outcomes of long-term administration of C-peptide to diabetic patients.

  4. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency.

    Science.gov (United States)

    Yin, Haifang; Boisguerin, Prisca; Moulton, Hong M; Betts, Corinne; Seow, Yiqi; Boutilier, Jordan; Wang, Qingsong; Walsh, Anthony; Lebleu, Bernard; Wood, Matthew Ja

    2013-09-24

    We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was investigated. Four additional chimeric peptide-PMO conjugates including newly identified peptide 9 (B-9-PMO and 9-B-PMO) and control peptide 3 (B-3-PMO and 3-B-PMO) were tested in mdx mice. Immunohistochemical staining, RT-PCR and western blot results indicated that B-9-PMO induced significantly higher level of exon skipping and dystrophin restoration than its counterpart (9-B-PMO), further corroborating the notion that the activity of chimeric peptide-PMO conjugates is dependent on relative position of the tissue-targeting peptide motif within the chimeric peptide with respect to PMOs. Subsequent mechanistic studies showed that enhanced cellular uptake of B-MSP-PMO into muscle cells leads to increased exon-skipping activity in comparison with MSP-B-PMO. Surprisingly, further evidence showed that the uptake of chimeric peptide-PMO conjugates of both orientations (B-MSP-PMO and MSP-B-PMO) was ATP- and temperature-dependent and also partially mediated by heparan sulfate proteoglycans (HSPG), indicating that endocytosis is likely the main uptake pathway for both chimeric peptide-PMO conjugates. Collectively, our data demonstrate that peptide orientation in chimeric peptides is an important parameter that determines cellular uptake and activity when conjugated directly to oligonucleotides. These observations provide insight into the design of improved cell targeting compounds for future therapeutics studies.Molecular Therapy-Nucleic Acids (2013) 2, e124; doi:10.1038/mtna.2013

  5. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency

    Directory of Open Access Journals (Sweden)

    HaiFang Yin

    2013-01-01

    Full Text Available We have recently reported that cell-penetrating peptides (CPPs and novel chimeric peptides containing CPP (referred as B peptide and muscle-targeting peptide (referred as MSP motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was investigated. Four additional chimeric peptide-PMO conjugates including newly identified peptide 9 (B-9-PMO and 9-B-PMO and control peptide 3 (B-3-PMO and 3-B-PMO were tested in mdx mice. Immunohistochemical staining, RT-PCR and western blot results indicated that B-9-PMO induced significantly higher level of exon skipping and dystrophin restoration than its counterpart (9-B-PMO, further corroborating the notion that the activity of chimeric peptide-PMO conjugates is dependent on relative position of the tissue-targeting peptide motif within the chimeric peptide with respect to PMOs. Subsequent mechanistic studies showed that enhanced cellular uptake of B-MSP-PMO into muscle cells leads to increased exon-skipping activity in comparison with MSP-B-PMO. Surprisingly, further evidence showed that the uptake of chimeric peptide-PMO conjugates of both orientations (B-MSP-PMO and MSP-B-PMO was ATP- and temperature-dependent and also partially mediated by heparan sulfate proteoglycans (HSPG, indicating that endocytosis is likely the main uptake pathway for both chimeric peptide-PMO conjugates. Collectively, our data demonstrate that peptide orientation in chimeric peptides is an important parameter that determines cellular uptake and activity when conjugated directly to oligonucleotides. These observations provide insight into the design of improved cell targeting compounds for future therapeutics studies.

  6. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  7. Sacubitril/valsartan: beyond natriuretic peptides.

    Science.gov (United States)

    Singh, Jagdeep S S; Burrell, Louise M; Cherif, Myriam; Squire, Iain B; Clark, Andrew L; Lang, Chim C

    2017-10-01

    Natriuretic peptides, especially B-type natriuretic peptide (BNP), have primarily been regarded as biomarkers in heart failure (HF). However, they are also possible therapeutic agents due to their potentially beneficial physiological effects. The angiotensin receptor-neprilysin inhibitor, sacubitril/valsartan, simultaneously augments the natriuretic peptide system (NPS) by inhibiting the enzyme neprilysin (NEP) and inhibits the renin-angiotensin-aldosterone system (RAAS) by blocking the angiotensin II receptor. It has been shown to improve mortality and hospitalisation outcomes in patients with HF due to left ventricular systolic dysfunction. The key advantage of sacubitril/valsartan has been perceived to be its ability to augment BNP, while its other effects have largely been overlooked. This review highlights the important effects of sacubitril/valsartan, beyond just the augmentation of BNP. First we discuss how NPS physiology differs between healthy individuals and those with HF by looking at mechanisms like the overwhelming effects of RAAS on the NPS, natriuretic peptide receptor desensitisation and absolute natriuretic deficiency. Second, this review explores other hormones that are augmented by sacubitril/valsartan such as bradykinin, substance P and adrenomedullin that may contribute to the efficacy of sacubitril/valsartan in HF. We also discuss concerns that sacubitril/valsartan may interfere with amyloid-β homeostasis with potential implications on Alzheimer's disease and macular degeneration. Finally, we explore the concept of 'autoinhibition' which is a recently described observation that humans have innate NEP inhibitory capability when natriuretic peptide levels rise above a threshold. There is speculation that autoinhibition may provide a surge of natriuretic and other vasoactive peptides to rapidly reverse decompensation. We contend that by pre-emptively inhibiting NEP, sacubitril/valsartan is inducing this surge earlier during decompensation

  8. Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Pankratova, Stanislava; Nielsen, Peter E

    2005-01-01

    Cell-penetrating peptides have been widely used to improve cellular delivery of a variety of proteins and antisense agents. However, recent studies indicate that such cationic peptides are predominantly entering cells via an endosomal pathway. We now show that the nuclear antisense effect in He......La cells of a variety of peptide nucleic acid (PNA) peptide conjugates is significantly enhanced by addition of 6 mM Ca(2+) (as well as by the lysosomotrophic agent chloroquine). In particular, the antisense activities of Tat(48-60) and heptaarginine-conjugated PNAs were increased 44-fold and 8.5-fold......, respectively. Evidence is presented that the mechanism involves endosomal release. The present results show that Ca(2+) can be used as an effective enhancer for in vitro cellular delivery of cationic peptide-conjugated PNA oligomers, and also emphasize the significance of the endosomal escape route...

  9. Ligand-regulated peptide aptamers.

    Science.gov (United States)

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  10. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... peptides has only been elucidated during the last decade. The cellular synthesis including amino acid modifications and proteolytic cleavages has proven considerably more complex than initially perceived. Consequently, the elimination phase of the peptide products in circulation is not yet well....... An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  11. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  12. Using Serum Advanced Glycation End Products-Peptides to Improve the Efficacy of World Health Organization Fasting Plasma Glucose Criterion in Screening for Diabetes in High-Risk Chinese Subjects.

    Directory of Open Access Journals (Sweden)

    Zilin Sun

    Full Text Available The efficacy of using fasting plasma glucose (FPG alone as a preferred screening test for diabetes has been questioned. This study was aimed to evaluate whether the use of serum advanced glycation end products-peptides (sAGEP would help to improve the efficacy of FPG in diabetes screening among high-risk Chinese subjects with FPG <7.0 mmol/L. FPG, 2-h plasma glucose (2h-PG, serum glycated haemoglobin A1c (HbA1c, and sAGEP were measured in 857 Chinese subjects with risk factors for diabetes. The areas under receiver operating characteristic (ROC curves generated by logistic regression models were assessed and compared to find the best model for diabetes screening in subjects with FPG <7.0 mmol/L. The optimal critical line was determined by maximizing the sum of sensitivity and specificity. Among the enrolled subjects, 730 of them had FPG <7.0 mmol/L, and only 41.7% new diabetes cases were identified using the 1999 World Health Organization FPG criterion (FPG ≥7.0 mmol/L. The area under ROC curves generated by the model on FPG-sAGEP was the largest compared with that on FPG-HbA1c, sAGEP, HbA1c or FPG in subjects with FPG <7.0 mmol/L. By maximizing the sum of sensitivity and specificity, the optimal critical line was determined as 0.69×FPG + 0.14×sAGEP = 7.03, giving a critical sensitivity of 91.2% in detecting 2h-PG ≥11.1 mmol/L, which was significantly higher than that of FPG-HbA1c or HbA1c. The model on FPG-sAGEP improves the efficacy of using FPG alone in detecting diabetes among high-risk Chinese subjects with FPG <7.0 mmol/L, and is worth being promoted for future diabetes screening.

  13. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  14. Optimization of antibacterial peptides by genetic algorithms and cheminformatics

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Jenssen, Håvard; Cheung, Warren A.

    2011-01-01

    Pathogens resistant to available drug therapies are a pressing global health problem. Short, cationic peptides represent a novel class of agents that have lower rates of drug resistance than derivatives of current antibiotics. Previously, we created a software system utilizing artificial neural...... 47 of the top rated 50 peptides chosen from an in silico library of nearly 100 000 sequences. Here, we report a method of generating candidate peptide sequences using the heuristic evolutionary programming method of genetic algorithms (GA), which provided a large (19-fold) improvement...

  15. Bioactive Mimetics of Conotoxins and other Venom Peptides

    Directory of Open Access Journals (Sweden)

    Peter J. Duggan

    2015-10-01

    Full Text Available Ziconotide (Prialt®, a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties.

  16. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides.

    Science.gov (United States)

    Raucher, Drazen; Moktan, Shama; Massodi, Iqbal; Bidwell, Gene L

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.

  17. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  18. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  19. Jumping Hurdles: Peptides Able To Overcome Biological Barriers.

    Science.gov (United States)

    Sánchez-Navarro, Macarena; Teixidó, Meritxell; Giralt, Ernest

    2017-08-15

    diketoperazines (DKPs), (N-MePhe) n , or (PhPro) n . On the other hand, we have investigated BBB-shuttles that utilize active transport mechanisms such as SGV, THRre, or MiniAp-4. For the development of both groups, we have explored several approaches, such as the use of peptide libraries, both chemical and phage display, or hit-to-lead optimization processes. In this Account, we describe, in chronologic order, our contribution to the development of peptides able to overcome various biological barriers and our efforts to understand the mechanisms that they display. In addition, the potential use of both CPPs and BBB-shuttles to improve the transport of promising therapeutic compounds is described.

  20. Development of bacterial display peptides for use in biosensing applications

    Science.gov (United States)

    Stratis-Cullum, Dimitra N.; Kogot, Joshua M.; Sellers, Michael S.; Hurley, Margaret M.; Sarkes, Deborah A.; Pennington, Joseph M.; Val-Addo, Irene; Adams, Bryn L.; Warner, Candice R.; Carney, James P.; Brown, Rebecca L.; Pellegrino, Paul M.

    2012-06-01

    Recent advances in synthetic library engineering continue to show promise for the rapid production of reagent technology in response to biological threats. A synthetic library of peptide mutants built off a bacterial host offers a convenient means to link the peptide sequence, (i.e., identity of individual library members) with the desired molecular recognition traits, but also allows for a relatively simple protocol, amenable to automation. An improved understanding of the mechanisms of recognition and control of synthetic reagent isolation and evolution remain critical to success. In this paper, we describe our approach to development of peptide affinity reagents based on peptide bacterial display technology with improved control of binding interactions for stringent evolution of reagent candidates, and tailored performance capabilities. There are four key elements to the peptide affinity reagent program including: (1) the diverse bacterial library technology, (2) advanced reagent screening amenable to laboratory automation and control, (3) iterative characterization and feedback on both affinity and specificity of the molecular interactions, and (3) integrated multiscale computational prescreening of candidate peptide ligands including in silico prediction of improved binding performance. Specific results on peptides binders to Protective Antigen (PA) protein of Bacillus anthracis and Staphylococcal Enterotoxin B (SEB) will be presented. Recent highlights of on cell vs. off-cell affinity behavior and correlation of the results with advanced docking simulations on the protein-peptide system(s) are included. The potential of this technology and approach to enable rapid development of a new affinity reagent with unprecedented speed (less than one week) would allow for rapid response to new and constantly emerging threats.

  1. Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials.

    Science.gov (United States)

    Mas-Moruno, Carlos; Fraioli, Roberta; Albericio, Fernando; Manero, José María; Gil, F Javier

    2014-05-14

    Biofunctionalization of metallic materials with cell adhesive molecules derived from the extracellular matrix is a feasible approach to improve cell-material interactions and enhance the biointegration of implant materials (e.g., osseointegration of bone implants). However, classical biomimetic strategies may prove insufficient to elicit complex and multiple biological signals required in the processes of tissue regeneration. Thus, newer strategies are focusing on installing multifunctionality on biomaterials. In this work, we introduce a novel peptide-based divalent platform with the capacity to simultaneously present distinct bioactive peptide motifs in a chemically controlled fashion. As a proof of concept, the integrin-binding sequences RGD and PHSRN were selected and introduced in the platform. The biofunctionalization of titanium with this platform showed a positive trend towards increased numbers of cell attachment, and statistically higher values of spreading and proliferation of osteoblast-like cells compared to control noncoated samples. Moreover, it displayed statistically comparable or improved cell responses compared to samples coated with the single peptides or with an equimolar mixture of the two motifs. Osteoblast-like cells produced higher levels of alkaline phosphatase on surfaces functionalized with the platform than on control titanium; however, these values were not statistically significant. This study demonstrates that these peptidic structures are versatile tools to convey multiple biofunctionality to biomaterials in a chemically defined manner.

  2. Transmembrane transport of peptide type compounds: prospects for oral delivery

    Science.gov (United States)

    Lipka, E.; Crison, J.; Amidon, G. L.

    1996-01-01

    Synthesis and delivery of potential therapeutic peptides and peptidomimetic compounds has been the focus of intense research over the last 10 years. While it is widely recognized that numerous limitations apply to oral delivery of peptides, some of the limiting factors have been addressed and their mechanisms elucidated, which has lead to promising strategies. This article will briefly summarize the challenges, results and current approaches of oral peptide delivery and give some insight on future strategies. The barriers determining peptide bioavailability after oral administration are intestinal membrane permability, size limitations, intestinal and hepatic metabolism and in some cases solubility limitations. Poor membrane permeabilities of hydrophilic peptides might be overcome by structurally modifying the compounds, thus increasing their membrane partition characteristics and/or their affinity to carrier proteins. Another approach is the site-specific delivery of the peptide to the most permeable parts of the intestine. The current view on size limitation for oral drug delivery has neglected partition considerations. Recent studies suggest that compounds with a molecular weight up to 4000 might be significantly absorbed, assuming appropriate partition behavior and stability. Metabolism, probably the most significant factor in the absorption fate of peptides, might be controlled by coadministration of competitive enzyme inhibitors, structural modifications and administration of the compound as a well absorbed prodrug that is converted into the therapeutically active agent after its absorption. For some peptides poor solubility might present a limitation to oral absorption, an issue that has been addressed by mechanistically defining and therefore improving formulation parameters. Effective oral peptide delivery requires further development in understanding these complex mechanisms in order to maximize the therapeutic potential of this class of compounds.

  3. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  4. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  5. Peptide radiopharmaceuticals in nuclear medicine

    International Nuclear Information System (INIS)

    Blok, D.; Vermeij, P.; Feitsma, R.I.J.; Pauwels, E.J.K.

    1999-01-01

    This article reviews the labelling of peptides that are recognised to be of interest for nuclear medicine or are the subject of ongoing nuclear medicine research. Applications and approaches to the labelling of peptide radiopharmaceuticals are discussed, and drawbacks in their development considered. (orig.)

  6. The Equine PeptideAtlas

    DEFF Research Database (Denmark)

    Bundgaard, Louise; Jacobsen, Stine; Sørensen, Mette Aamand

    2014-01-01

    Progress in MS-based methods for veterinary research and diagnostics is lagging behind compared to the human research, and proteome data of domestic animals is still not well represented in open source data repositories. This is particularly true for the equine species. Here we present a first...... Equine PeptideAtlas encompassing high-resolution tandem MS analyses of 51 samples representing a selection of equine tissues and body fluids from healthy and diseased animals. The raw data were processed through the Trans-Proteomic Pipeline to yield high quality identification of proteins and peptides....... The current release comprises 24 131 distinct peptides representing 2636 canonical proteins observed at false discovery rates of 0.2% at the peptide level and 1.4% at the protein level. Data from the Equine PeptideAtlas are available for experimental planning, validation of new datasets, and as a proteomic...

  7. Vascular targeting with peptide libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, R. [La Jolla Cancer Research Center The Burnham Inst., La Jolla CA (United States)

    1999-06-01

    The authors have developed an 'in vivo' selection system in which phage capable of selective homing to different tissues are recovered from a phage display peptide library following intravenous administration. Using this strategy, they have isolate several organ and tumor-homing peptides. They have shown that each of those peptides binds of different receptors that are selectively expressed on the vasculature of the target tissue. The tumor-homing peptides bind to receptors that are up regulated in tumor angiogenic vasculature. Targeted delivery of doxorubicin to angiogenic vasculature using these peptides in animals models decrease toxicity and increased the therapeutic efficacy of the drug. Vascular targeting may facilitate the development of other treatment strategies that rely on inhibition of angio genesis and lead to advances to extend the potential for targeting of drugs, genes and radionuclides in the context of many diseases.

  8. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...... in decompensated disease. In contrast, their biological effects on the cerebral hemodynamics are poorly understood. In this mini-review, we summarize the hemodynamic effects of the natriuretic peptides with a focus on the cerebral hemodynamics. In addition, we will discuss its potential implications in diseases...... where alteration of the cerebral hemodynamics plays a role such as migraine and acute brain injury including stroke. We conclude that a possible role of the peptides is feasible as evaluated from animal and in vitro studies, but more research is needed in humans to determine the precise response...

  9. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  10. Appetite-related peptides in childhood and adolescence: role of ghrelin, PYY, and GLP-1.

    Science.gov (United States)

    Horner, Katy; Lee, SoJung

    2015-11-01

    During childhood and adolescence, a number of factors, including age, puberty, sex, race, and body composition, may contribute to differences in satiety, food intake, and appetite-related peptides. These peptides include the orexigenic peptide ghrelin and anorexigenic gut peptides peptide YY (PYY) and glucagon-like peptide-1 (GLP-1). For example, lower fasting ghrelin levels, lower postprandial ghrelin suppression, and blunted PYY and GLP-1 responses to food intake could contribute to a dysregulation of appetite in already obese children and adolescents. Whereas, changes in these peptides observed during puberty could facilitate growth. A greater understanding of the major moderating factors of appetite-related peptides in the pediatric population is essential to improve interpretation of study findings and for effective tailoring of strategies targeting appetite control to individuals. While more studies are needed, there is some evidence to suggest that exercise-based lifestyle interventions could be a potential therapeutic strategy to improve appetite-peptide profiles in overweight and obese children and adolescents. The aim of this review is (i) to discuss the potential moderating factors of ghrelin, PYY, and GLP-1, including age and puberty, sex, race and body composition; and (ii) to examine the effects of exercise interventions on these appetite-related gut peptides in children and adolescents.

  11. Studies on lactoferricin-derived Escherichia coli membrane-active peptides reveal differences in the mechanism of N-acylated versus nonacylated peptides.

    Science.gov (United States)

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-06-17

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis.

  12. Studies on Lactoferricin-derived Escherichia coli Membrane-active Peptides Reveal Differences in the Mechanism of N-Acylated Versus Nonacylated Peptides*

    Science.gov (United States)

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E.; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-01-01

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of Gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis. PMID:21515687

  13. In silico panning for a non-competitive peptide inhibitor

    Directory of Open Access Journals (Sweden)

    Ikebukuro Kazunori

    2007-01-01

    Full Text Available Abstract Background Peptide ligands have tremendous therapeutic potential as efficacious drugs. Currently, more than 40 peptides are available in the market for a drug. However, since costly and time-consuming synthesis procedures represent a problem for high-throughput screening, novel procedures to reduce the time and labor involved in screening peptide ligands are required. We propose the novel approach of 'in silico panning' which consists of a two-stage screening, involving affinity selection by docking simulation and evolution of the peptide ligand using genetic algorithms (GAs. In silico panning was successfully applied to the selection of peptide inhibitor for water-soluble quinoprotein glucose dehydrogenase (PQQGDH. Results The evolution of peptide ligands for a target enzyme was achieved by combining a docking simulation with evolution of the peptide ligand using genetic algorithms (GAs, which mimic Darwinian evolution. Designation of the target area as next to the substrate-binding site of the enzyme in the docking simulation enabled the selection of a non-competitive inhibitor. In all, four rounds of selection were carried out on the computer; the distribution of the docking energy decreased gradually for each generation and improvements in the docking energy were observed over the four rounds of selection. One of the top three selected peptides with the lowest docking energy, 'SERG' showed an inhibitory effect with Ki value of 20 μM. PQQGDH activity, in terms of the Vmax value, was 3-fold lower than that of the wild-type enzyme in the presence of this peptide. The mechanism of the SERG blockage of the enzyme was identified as non-competitive inhibition. We confirmed the specific binding of the peptide, and its equilibrium dissociation constant (KD value was calculated as 60 μM by surface plasmon resonance (SPR analysis. Conclusion We demonstrate an effective methodology of in silico panning for the selection of a non

  14. Purification and use of E. coli peptide deformylase for peptide deprotection in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia; Sonke, Theo; Quaedflieg, Peter J.; Janssen, Dick B.

    Peptide deformylases (PDFs) catalyze the removal of the formyl group from the N-terminal methionine residue in nascent polypeptide chains in prokaryotes. Its deformylation activity makes PDF an attractive candidate for the biocatalytic deprotection of formylated peptides that are used in

  15. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  16. Enhancement of anti-tumor activity of hybrid peptide in conjugation with carboxymethyl dextran via disulfide linkers.

    Science.gov (United States)

    Gaowa, Arong; Horibe, Tomohisa; Kohno, Masayuki; Tabata, Yasuhiko; Harada, Hiroshi; Hiraoka, Masahiro; Kawakami, Koji

    2015-05-01

    To improve the anti-tumor activity of EGFR2R-lytic hybrid peptide, we prepared peptide-modified dextran conjugates with the disulfide bonds between thiolated carboxymethyl dextran (CMD-Cys) and cysteine-conjugated peptide (EGFR2R-lytic-Cys). In vitro release studies showed that the peptide was released from the CMD-s-s-peptide conjugate in a concentration-dependent manner in the presence of glutathione (GSH, 2μM-2mM). The CMD-s-s-peptide conjugate exhibited a similar cytotoxic activity with free peptide alone against human pancreatic cancer BxPC-3 cells in vitro. Furthermore, it was shown that the CMD-s-s-peptide conjugates were highly accumulated in tumor tissue in a mouse xenograft model using BxPC-3 cells, and the anti-tumor activity of the conjugate was more effective than that of the free peptide. In addition, the plasma concentrations of peptide were moderately increased and the elimination half-life of the peptide was prolonged after intravenous injection of CMD-s-s-peptide conjugates. These results demonstrated that the conjugate based on thiolated CMD polymer would be potentially useful carriers for the sustained release of the hybrid peptide in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Novel MtCEP1 peptides produced in vivo differentially regulate root development in Medicago truncatula.

    Science.gov (United States)

    Mohd-Radzman, Nadiatul A; Binos, Steve; Truong, Thy T; Imin, Nijat; Mariani, Michael; Djordjevic, Michael A

    2015-08-01

    Small, post-translationally modified and secreted peptides regulate diverse plant developmental processes. Due to low natural abundance, it is difficult to isolate and identify these peptides. Using an improved peptide isolation protocol and Orbitrap mass spectrometry, nine 15-amino-acid CEP peptides were identified that corresponded to the two domains encoded by Medicago truncatula CEP1 (MtCEP1). Novel arabinosylated and hydroxylated peptides were identified in root cultures overexpressing MtCEP1. The five most abundant CEP peptides were hydroxylated and these species were detected also in low amounts in vector control samples. Synthetic peptides with different hydroxylation patterns differentially affected root development. Notably, the domain 1 peptide hydroxylated at Pro4 and Pro11 (D1:HyP4,11) imparted the strongest inhibition of lateral root emergence when grown with 5mM KNO3 and stimulated the highest increase in nodule number when grown with 0mM KNO3. Inhibition of lateral root emergence by D1:HyP4,11 was not alleviated by removing peptide exposure. In contrast, the domain 2 peptide hydroxylated at Pro11 (D2:HyP11) increased stage III-IV lateral root primordium numbers by 6-fold (P emerge. Auxin addition at levels which stimulated lateral root formation in wild-type plants had little or no ameliorating effect on CEP peptide-mediated inhibition of lateral root formation or emergence. Both peptides increased and altered the root staining pattern of the auxin-responsive reporter GH3:GUS suggesting CEPs alter auxin sensitivity or distribution. The results showed that CEP primary sequence and post-translational modifications influence peptide activities and the improved isolation procedure effectively and reproducibly identifies and characterises CEPs. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Pharmacological screening technologies for venom peptide discovery.

    Science.gov (United States)

    Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina

    2017-12-01

    Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Solid-Binding Peptides in Biomedicine.

    Science.gov (United States)

    Care, Andrew; Bergquist, Peter L; Sunna, Anwar

    2017-01-01

    Some peptides are able to bind to inorganic materials such as silica and gold. Over the past decade, Solid-binding peptides (SBPs) have been used increasingly as molecular building blocks in nanobiotechnology. These peptides show selectivity and bind with high affinity to a diverse range of inorganic surfaces e.g. metals, metal oxides, metal compounds, magnetic materials, semiconductors, carbon materials, polymers and minerals. They can be used in applications such as protein purification and synthesis, assembly and the functionalization of nanomaterials. They offer simple and versatile bioconjugation methods that can increase biocompatibility and also direct the immobilization and orientation of nanoscale entities onto solid supports without impeding their functionality. SBPs have been employed in numerous nanobiotechnological applications such as the controlled synthesis of nanomaterials and nanostructures, formation of hybrid biomaterials, immobilization of functional proteins and improved nanomaterial biocompatibility. With advances in nanotechnology, a multitude of novel nanomaterials have been designed and synthesized for diagnostic and therapeutic applications. New approaches have been developed recently to exert a greater control over bioconjugation and eventually, over the optimal and functional display of biomolecules on the surfaces of many types of solid materials. In this chapter we describe SBPs and highlight some selected examples of their potential applications in biomedicine.

  20. New vasoactive peptides in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Goetze, Jens Peter; Bendtsen, Flemming

    2014-01-01

    BACKGROUND: Patients with cirrhosis have substantial circulatory imbalance between vasoconstrictive and vasodilating forces. The study of circulatory vasoactive peptides may provide important pathophysiological information. This study aimed to assess concentrations, organ extraction and relations...... to haemodynamic changes in the pro-peptides copeptin, proadrenomedullin and pro-atrial natriuretic peptide (proANP) in patients with cirrhosis. MATERIALS AND METHODS: Fifty-four cirrhotic patients and 15 controls were characterized haemodynamically during a liver vein catheterization. Copeptin, proadrenomedullin...... pressure (R=0·32, P0·31, Ppeptide is elevated in cirrhosis. Copeptin, proadrenomedullin and proANP are related to portal pressure and seem associated with systemic haemodynamics. These propeptides may...

  1. Thiomers: potential excipients for non-invasive peptide delivery systems.

    Science.gov (United States)

    Bernkop-Schnürch, Andreas; Krauland, Alexander H; Leitner, Verena M; Palmberger, Thomas

    2004-09-01

    In recent years thiolated polymers or so-called thiomers have appeared as a promising alternative in the arena of non-invasive peptide delivery. Thiomers are generated by the immobilisation of thiol-bearing ligands to mucoadhesive polymeric excipients. By formation of disulfide bonds with mucus glycoproteins, the mucoadhesive properties of these polymers are improved up to 130-fold. Due to formation of inter- and intramolecular disulfide bonds within the thiomer itself, dosage forms such as tablets or microparticles display strong cohesive properties resulting in comparatively higher stability, prolonged disintegration times and a more controlled release of the embedded peptide drug. The permeation of peptide drugs through mucosa can be improved by the use of thiolated polymers. Additionally some thiomers exhibit improved inhibitory properties towards peptidases. The efficacy of thiomers in non-invasive peptide delivery could be demonstrated by various in vivo studies. Tablets comprising a thiomer and pegylated insulin, for instance, resulted in a pharmacological efficacy of 7% after oral application to diabetic mice. Furthermore, a pharmacological efficacy of 1.3% was achieved in rats by oral administration of calcitonin tablets comprising a thiomer. Human growth hormone in a thiomer-gel was applied nasally to rats and led to a bioavailability of 2.75%. In all these studies, formulations comprising the corresponding unmodified polymer had only a marginal or no effect. According to these results drug carrier systems based on thiomers seem to be a promising tool for non-invasive peptide drug delivery.

  2. Optimization and high-throughput screening of antimicrobial peptides.

    Science.gov (United States)

    Blondelle, Sylvie E; Lohner, Karl

    2010-01-01

    While a well-established process for lead compound discovery in for-profit companies, high-throughput screening is becoming more popular in basic and applied research settings in academia. The development of combinatorial libraries combined with easy and less expensive access to new technologies have greatly contributed to the implementation of high-throughput screening in academic laboratories. While such techniques were earlier applied to simple assays involving single targets or based on binding affinity, they have now been extended to more complex systems such as whole cell-based assays. In particular, the urgent need for new antimicrobial compounds that would overcome the rapid rise of drug-resistant microorganisms, where multiple target assays or cell-based assays are often required, has forced scientists to focus onto high-throughput technologies. Based on their existence in natural host defense systems and their different mode of action relative to commercial antibiotics, antimicrobial peptides represent a new hope in discovering novel antibiotics against multi-resistant bacteria. The ease of generating peptide libraries in different formats has allowed a rapid adaptation of high-throughput assays to the search for novel antimicrobial peptides. Similarly, the availability nowadays of high-quantity and high-quality antimicrobial peptide data has permitted the development of predictive algorithms to facilitate the optimization process. This review summarizes the various library formats that lead to de novo antimicrobial peptide sequences as well as the latest structural knowledge and optimization processes aimed at improving the peptides selectivity.

  3. Bioinformatics approaches for identifying new therapeutic bioactive peptides in food

    Directory of Open Access Journals (Sweden)

    Nora Khaldi

    2012-10-01

    Full Text Available ABSTRACT:The traditional methods for mining foods for bioactive peptides are tedious and long. Similar to the drug industry, the length of time to identify and deliver a commercial health ingredient that reduces disease symptoms can take anything between 5 to 10 years. Reducing this time and effort is crucial in order to create new commercially viable products with clear and important health benefits. In the past few years, bioinformatics, the science that brings together fast computational biology, and efficient genome mining, is appearing as the long awaited solution to this problem. By quickly mining food genomes for characteristics of certain food therapeutic ingredients, researchers can potentially find new ones in a matter of a few weeks. Yet, surprisingly, very little success has been achieved so far using bioinformatics in mining for food bioactives.The absence of food specific bioinformatic mining tools, the slow integration of both experimental mining and bioinformatics, and the important difference between different experimental platforms are some of the reasons for the slow progress of bioinformatics in the field of functional food and more specifically in bioactive peptide discovery.In this paper I discuss some methods that could be easily translated, using a rational peptide bioinformatics design, to food bioactive peptide mining. I highlight the need for an integrated food peptide database. I also discuss how to better integrate experimental work with bioinformatics in order to improve the mining of food for bioactive peptides, therefore achieving a higher success rates.

  4. Microneedle Enhanced Delivery of Cosmeceutically Relevant Peptides in Human Skin

    Science.gov (United States)

    Mohammed, Yousuf H.; Yamada, Miko; Lin, Lynlee L.; Grice, Jeffrey E.; Roberts, Michael S.; Raphael, Anthony P.; Benson, Heather A. E.; Prow, Tarl W.

    2014-01-01

    Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length) on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides. PMID:25033398

  5. Microneedle enhanced delivery of cosmeceutically relevant peptides in human skin.

    Directory of Open Access Journals (Sweden)

    Yousuf H Mohammed

    Full Text Available Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides.

  6. A novel algorithm for validating peptide identification from a shotgun proteomics search engine.

    Science.gov (United States)

    Jian, Ling; Niu, Xinnan; Xia, Zhonghang; Samir, Parimal; Sumanasekera, Chiranthani; Mu, Zheng; Jennings, Jennifer L; Hoek, Kristen L; Allos, Tara; Howard, Leigh M; Edwards, Kathryn M; Weil, P Anthony; Link, Andrew J

    2013-03-01

    Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has revolutionized the proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem mass spectra from a LC-MS/MS experiment are assigned to a peptide by a search engine that compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein database. The peptide spectra matches are then used to infer a list of identified proteins in the original sample. However, the search engines often fail to distinguish between correct and incorrect peptides assignments. In this study, we designed and implemented a novel algorithm called De-Noise to reduce the number of incorrect peptide matches and maximize the number of correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the SEQUEST search engine. The novel algorithm uses a three-step process: data cleaning, data refining through a SVM-based decision function, and a final data refining step based on proteolytic peptide patterns. Using proteomics data generated on different types of mass spectrometers, we optimized the De-Noise algorithm on the basis of the resolution and mass accuracy of the mass spectrometer employed in the LC-MS/MS experiment. Our results demonstrate De-Noise improves peptide identification compared to other methods used to process the peptide sequence matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it can be easily implemented with other search engines.

  7. Immunogenicity of peptides of measles virus origin and influence of adjuvants.

    Science.gov (United States)

    Halassy, Beata; Mateljak, Sanja; Bouche, Fabienne B; Pütz, Mike M; Muller, Claude P; Frkanec, Ruza; Habjanec, Lidija; Tomasić, Jelka

    2006-01-12

    Epitope-based peptide antigens have been under development for protection against measles virus. The immunogenicity of five peptides composed of the same B cell epitope (BCE) (H236-250 of the measles virus hemagglutinin), and different T cell epitopes of measles virus fusion protein (F421-435, F256-270, F288-302) and nucleoprotein (NP335-345) was studied in mice (subcutaneous immunisation). The adjuvant effects of peptidoglycan monomer (PGM), Montanide ISA 720 and 206 were also investigated. Results showed basic differences in peptide immunogenicity that were consistent with already described structural differences. PGM elevated peptide-specific IgG when applied together with four of five tested peptides. A strong synergistic effect was observed after co-immunisation of mice with a mixture containing all five chimeric peptides in small and equal amounts. Results revealed for the first time that immunisation with several peptides having the common BCE generated significantly higher levels of both anti-peptide and anti-BCE IgG in comparison to those obtained after immunisation with a single peptide in much higher quantity. Further improvement of immune response was obtained after incorporation of such a peptide mixture into oil-based adjuvants.

  8. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI......-TOF-MS and LC-MS of synthetic peptides....

  9. Determination of conformation and orientation of immobilized peptides and proteins at buried interfaces

    Science.gov (United States)

    Shen, Lei; Ulrich, Nathan W.; Mello, Charlene M.; Chen, Zhan

    2015-01-01

    Surface immobilized peptides/proteins have important applications such as antimicrobial coating and biosensing. We report a study of such peptides/proteins using sum frequency generation vibrational spectroscopy and ATR-FTIR. Immobilization on surfaces via physical adsorption and chemical coupling revealed that structures of chemically immobilized peptides are determined by immobilization sites, chemical environments, and substrate surfaces. In addition, controlling enzyme orientation by engineering the surface immobilization site demonstrated that structures can be well-correlated to measured chemical activity. This research facilitates the development of immobilized peptides/proteins with improved activities by optimizing their surface orientation and structure.

  10. Marine Peptides: Bioactivities and Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-06-01

    Full Text Available Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant, immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.

  11. Cardioprotective peptides from marine sources.

    Science.gov (United States)

    Harnedy, Padraigín A; FitzGerald, Richard J

    2013-05-01

    Elevated blood pressure or hypertension is one of the fastest growing health problems worldwide. Although the etiology of essential hypertension has a genetic component, dietary factors play an important role. With the high costs and adverse side-effects associated with synthetic antihypertensive drugs and the awareness of the link between diet and health there has been increased focus on identification of food components that may contribute to cardiovascular health. In recent years special interest has been paid to the cardioprotective activity of peptides derived from food proteins including marine proteins. These peptides are latent within the sequence of the parent protein and only become active when released by proteolytic digestion during gastrointestinal digestion or through food processing. Current data on antihypertensive activity of marine-derived protein hydrolysates/peptides in animal and human studies is reviewed herein. Furthermore, products containing protein hydrolysates/peptides from marine origin with antihypertensive effects are discussed.

  12. Antimicrobial peptides from Capsicum sp.

    African Journals Online (AJOL)

    ajl yemi

    2011-12-30

    Dec 30, 2011 ... Key words: Antimicrobial peptides, Capsicum sp, Capsicum chinense, chili pepper, agronomical options, ..... of this human activity is resumed by the simple phrase: produce .... It will be interesting to scale the AMPs extraction.

  13. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies...... are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors......, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody...

  14. A readily applicable strategy to convert peptides to peptoid-based therapeutics.

    Directory of Open Access Journals (Sweden)

    Minyoung Park

    Full Text Available Incorporation of unnatural amino acids and peptidomimetic residues into therapeutic peptides is highly efficacious and commonly employed, but generally requires laborious trial-and-error approaches. Previously, we demonstrated that C20 peptide has the potential to be a potential antiviral agent. Herein we report our attempt to improve the biological properties of this peptide by introducing peptidomimetics. Through combined alanine, proline, and sarcosine scans coupled with a competitive fluorescence polarization assay developed for identifying antiviral peptides, we enabled to pinpoint peptoid-tolerant peptide residues within C20 peptide. The synergistic benefits of combining these (and other commonly employed methods could lead to a easily applicable strategy for designing and refining therapeutically-attractive peptidomimetics.

  15. Determination of Glucagon-Like Peptide-1, Glucagon and Oxyntomodulin in Plasma

    DEFF Research Database (Denmark)

    Bak, Monika Judyta

    Glucagon-like peptide-1, glucagon and oxyntomodulin are three peptide hormones which play a significant role in diabetes, however there is a major controversy regarding their exact roles due to difficulties in measuring of these peptides because of molecular heterogeneity, low circulating concent...... of the studies from the literature that have provided reliable measurements and thereby help resolve controversies regarding the metabolic roles of the peptides. The improved technology should also provide better reliability of future publications in the field......., the addition of aprotinin to plasma prior to glucagon sample analysis was investigated. Aprotinin addition has been recommended for many years to avoid peptide degradation during sampling and storage. To make sure that the analysed samples are handled correctly and that the peptides are not degraded, a study...

  16. A feedback framework for protein inference with peptides identified from tandem mass spectra

    Directory of Open Access Journals (Sweden)

    Shi Jinhong

    2012-11-01

    Full Text Available Abstract Background Protein inference is an important computational step in proteomics. There exists a natural nest relationship between protein inference and peptide identification, but these two steps are usually performed separately in existing methods. We believe that both peptide identification and protein inference can be improved by exploring such nest relationship. Results In this study, a feedback framework is proposed to process peptide identification reports from search engines, and an iterative method is implemented to exemplify the processing of Sequest peptide identification reports according to the framework. The iterative method is verified on two datasets with known validity of proteins and peptides, and compared with ProteinProphet and PeptideProphet. The results have shown that not only can the iterative method infer more true positive and less false positive proteins than ProteinProphet, but also identify more true positive and less false positive peptides than PeptideProphet. Conclusions The proposed iterative method implemented according to the feedback framework can unify and improve the results of peptide identification and protein inference.

  17. Multiple Factors Related to the Secretion of Glucagon-Like Peptide-1

    Directory of Open Access Journals (Sweden)

    XingChun Wang

    2015-01-01

    Full Text Available The glucagon-like peptide-1 is secreted by intestinal L cells in response to nutrient ingestion. It regulates the secretion and sensitivity of insulin while suppressing glucagon secretion and decreasing postprandial glucose levels. It also improves beta-cell proliferation and prevents beta-cell apoptosis induced by cytotoxic agents. Additionally, glucagon-like peptide-1 delays gastric emptying and suppresses appetite. The impaired secretion of glucagon-like peptide-1 has negative influence on diabetes, hyperlipidemia, and insulin resistance related diseases. Thus, glucagon-like peptide-1-based therapies (glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors are now well accepted in the management of type 2 diabetes. The levels of glucagon-like peptide-1 are influenced by multiple factors including a variety of nutrients. The component of a meal acts as potent stimulants of glucagon-like peptide-1 secretion. The levels of its secretion change with the intake of different nutrients. Some drugs also have influence on GLP-1 secretion. Bariatric surgery may improve metabolism through the action on GLP-1 levels. In recent years, there has been a great interest in developing effective methods to regulate glucagon-like peptide-1 secretion. This review summarizes the literature on glucagon-like peptide-1 and related factors affecting its levels.

  18. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  19. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model

    Directory of Open Access Journals (Sweden)

    Mittelmann Hans D

    2010-01-01

    Full Text Available Abstract Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/.

  20. Matrix-assisted peptide synthesis on nanoparticles.

    Science.gov (United States)

    Khandadash, Raz; Machtey, Victoria; Weiss, Aryeh; Byk, Gerardo

    2014-09-01

    We report a new method for multistep peptide synthesis on polymeric nanoparticles of differing sizes. Polymeric nanoparticles were functionalized via their temporary embedment into a magnetic inorganic matrix that allows multistep peptide synthesis. The matrix is removed at the end of the process for obtaining nanoparticles functionalized with peptides. The matrix-assisted synthesis on nanoparticles was proved by generating various biologically relevant peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  1. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  2. Flanking signal and mature peptide residues influence signal peptide cleavage

    Directory of Open Access Journals (Sweden)

    Ranganathan Shoba

    2008-12-01

    Full Text Available Abstract Background Signal peptides (SPs mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I, and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i eukaryotes (Euk (ii Gram-positive (Gram+ bacteria, and (iii Gram-negative (Gram- bacteria. Results In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups. Conclusion We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.

  3. Peptides and Anti-peptide Antibodies for Small and Medium Scale Peptide and Anti-peptide Affinity Microarrays: Antigenic Peptide Selection, Immobilization, and Processing.

    Science.gov (United States)

    Zhang, Fan; Briones, Andrea; Soloviev, Mikhail

    2016-01-01

    This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.

  4. What peptides these deltorphins be.

    Science.gov (United States)

    Lazarus, L H; Bryant, S D; Cooper, P S; Salvadori, S

    1999-02-01

    The deltorphins are a class of highly selective delta-opioid heptapeptides from the skin of the Amazonian frogs Phyllomedusa sauvagei and P. bicolor. The first of these fascinating peptides came to light in 1987 by cloning of the cDNA of from frog skins, while the other members of this family were identified either by cDNA or isolation of the peptides. The distinctive feature of deltorphins is the presence of a naturally occurring D-enantiomer at the second position in their common N-terminal sequence, Tyr-D-Xaa-Phe, comparable to dermorphin, which is the prototype of a group of mu-selective opioids from the same source. The D-amino acid and the anionic residues, either Glu or Asp, as well as their unique amino acid compositions are responsible for the remarkable biostability, high delta-receptor affinity, bioactivity and peptide conformation. This review summarizes a decade of research from many laboratories that defined which residues and substituents in the deltorphins interact with the delta-receptor and characterized pharmacological and physiological activities in vitro and in vivo. It begins with a historical description of the topic and presents general schema for the synthesis of peptide analogues of deltorphins A, B and C as a means to document the methods employed in producing a myriad of analogues. Structure activity studies of the peptides and their pharmacological activities in vitro are detailed in abundantly tabulated data. A brief compendium of the current level of knowledge of the delta-receptor assists the reader to appreciate the rationale for the design of these analogues. Discussion of the conformation of these peptides addresses how structure leads to further hypotheses regarding ligand receptor interaction. The review ends with a broad discussion of the potential applications of these peptides in clinical and therapeutic settings.

  5. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    Science.gov (United States)

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  6. Cyclic peptide therapeutics: past, present and future.

    Science.gov (United States)

    Zorzi, Alessandro; Deyle, Kaycie; Heinis, Christian

    2017-06-01

    Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for the development of therapeutics. Over 40 cyclic peptide drugs are currently in clinical use and around one new cyclic peptide drug enters the market every year on average. The vast majority of clinically approved cyclic peptides are derived from natural products, such as antimicrobials or human peptide hormones. New powerful techniques based on rational design and in vitro evolution have enabled the de novo development of cyclic peptide ligands to targets for which nature does not offer solutions. A look at the cyclic peptides currently under clinical evaluation shows that several have been developed using such techniques. This new source for cyclic peptide ligands introduces a freshness to the field, and it is likely that de novo developed cyclic peptides will be in clinical use in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Liposome-based synthetic long peptide vaccines for cancer immunotherapy

    NARCIS (Netherlands)

    Varypataki, E.M.

    2016-01-01

    Synthetic long peptides (SLP) derived from cancer-associated antigens hold great promise as well-defined antigens for cancer immunotherapy. Clinical studies showed that SLP vaccines have functional potency when applied to pre-malignant stage patients, but need to be improved for use as a therapeutic

  8. Chicken antimicrobial peptides: biological functions and possible applications

    NARCIS (Netherlands)

    Dijk, Albert van

    2007-01-01

    Farm animals often suffer from diseases of the gastro-intestinal tract. Modulation of natural defence mechanisms by dietary additives may be one way to improve intestinal health and food safety. In mammals, antimicrobial peptides (AMPs) play an important role in the host defence of skin and mucosal

  9. Urodilatin. A renal natriuretic peptide

    International Nuclear Information System (INIS)

    Carstens, Jan

    1998-01-01

    Development and validation of a radioimmunoassay for endogenous URO in urine and synthetic URO in plasma is described. The first obstacle to overcome was to produce an antibody specific for URO. A polyclonal URO antibody with a cross-reactivity with the structural highly homologous atrial natriuretic peptide (ANP) was developed by immunization of rabbits with the whole URO(95-126). Purification of the polyclonal URO antiserum with CNBr-activated Sepharose affinity chromatography was a simple way of producing a URO-specific antibody without cross-reactivity with ANP analogues. A reliable 125 I-labelled URO tracer was made with the Iodo-Gen method. Prior to the assay, the urine samples were prepared by ethanol with a recovery of unlabelled URO between 80 - 100% and the plasma samples were Sep-Pak C 18 extracted with a recovery of about 50%. The radioimmunoassay is performed in 3 days, using polyethylene glycol for separation. The sensitivity of the assay was improved by sample preparation and concentration, reducing the amount of tracer and late addition, reducing the amount of antibody and increasing the incubation time and lowering the temperature of incubation. The infusion rate of 20 ng URO kg -1 min -1 was most potential and well tolerated in healthy subjects. The short-term natriuretic and diuretic effects were closely associated with a significant diminished sodium reabsorption in the distal nephron. Further studies are needed to exploit the therapeutical potential of URO, for example in patients with sodium-water retaining disorders. The therapeutical dose range will probably be narrow due to the blood pressure lowering effect of URO with infusion rates higher than 20-30 ng kg -1 min -1 . (EHS)

  10. Peptide Vaccine: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Weidang Li

    2014-07-01

    Full Text Available Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.

  11. Software-aided approach to investigate peptide structure and metabolic susceptibility of amide bonds in peptide drugs based on high resolution mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Tatiana Radchenko

    Full Text Available Interest in using peptide molecules as therapeutic agents due to high selectivity and efficacy is increasing within the pharmaceutical industry. However, most peptide-derived drugs cannot be administered orally because of low bioavailability and instability in the gastrointestinal tract due to protease activity. Therefore, structural modifications peptides are required to improve their stability. For this purpose, several in-silico software tools have been developed such as PeptideCutter or PoPS, which aim to predict peptide cleavage sites for different proteases. Moreover, several databases exist where this information is collected and stored from public sources such as MEROPS and ExPASy ENZYME databases. These tools can help design a peptide drug with increased stability against proteolysis, though they are limited to natural amino acids or cannot process cyclic peptides, for example. We worked to develop a new methodology to analyze peptide structure and amide bond metabolic stability based on the peptide structure (linear/cyclic, natural/unnatural amino acids. This approach used liquid chromatography / high resolution, mass spectrometry to obtain the analytical data from in vitro incubations. We collected experimental data for a set (linear/cyclic, natural/unnatural amino acids of fourteen peptide drugs and four substrate peptides incubated with different proteolytic media: trypsin, chymotrypsin, pepsin, pancreatic elastase, dipeptidyl peptidase-4 and neprilysin. Mass spectrometry data was analyzed to find metabolites and determine their structures, then all the results were stored in a chemically aware manner, which allows us to compute the peptide bond susceptibility by using a frequency analysis of the metabolic-liable bonds. In total 132 metabolites were found from the various in vitro conditions tested resulting in 77 distinct cleavage sites. The most frequent observed cleavage sites agreed with those reported in the literature. The

  12. Propensity of a single-walled carbon nanotube-peptide to mimic a KK10 peptide in an HLA-TCR complex

    Science.gov (United States)

    Feng, Mei; Bell, David R.; Zhou, Ruhong

    2017-12-01

    The application of nanotechnology to improve disease diagnosis, treatment, monitoring, and prevention is the goal of nanomedicine. We report here a theoretical study of a functionalized single-walled carbon nanotube (CNT) mimic binding to a human leukocyte antigen-T cell receptor (HLA-TCR) immune complex as a first attempt of a potential nanomedicine for human immunodeficiency virus (HIV) vaccine development. The carbon nanotube was coated with three arginine residues to imitate the HIV type 1 immunodominant viral peptide KK10 (gag 263-272: KRWIILGLNK), named CNT-peptide hereafter. Through molecular dynamics simulations, we explore the CNT-peptide and KK10 binding to an important HLA-TCR complex. Our results suggest that the CNT-peptide and KK10 bind comparably to the HLA-TCR complex, but the CNT-peptide forms stronger interactions with the TCR. Desorption simulations highlight the innate flexibility of KK10 over the CNT-peptide, resulting in a slightly higher desorption energy required for KK10 over the CNT-peptide. Our findings indicate that the designed CNT-peptide mimic has favorable propensity to activate TCR pathways and should be further explored to understand therapeutic potential.

  13. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.

    Science.gov (United States)

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur

    2011-06-01

    Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.

  14. Molecular evolution of a peptide GPCR ligand driven by artificial neural networks.

    Directory of Open Access Journals (Sweden)

    Sebastian Bandholtz

    Full Text Available Peptide ligands of G protein-coupled receptors constitute valuable natural lead structures for the development of highly selective drugs and high-affinity tools to probe ligand-receptor interaction. Currently, pharmacological and metabolic modification of natural peptides involves either an iterative trial-and-error process based on structure-activity relationships or screening of peptide libraries that contain many structural variants of the native molecule. Here, we present a novel neural network architecture for the improvement of metabolic stability without loss of bioactivity. In this approach the peptide sequence determines the topology of the neural network and each cell corresponds one-to-one to a single amino acid of the peptide chain. Using a training set, the learning algorithm calculated weights for each cell. The resulting network calculated the fitness function in a genetic algorithm to explore the virtual space of all possible peptides. The network training was based on gradient descent techniques which rely on the efficient calculation of the gradient by back-propagation. After three consecutive cycles of sequence design by the neural network, peptide synthesis and bioassay this new approach yielded a ligand with 70fold higher metabolic stability compared to the wild type peptide without loss of the subnanomolar activity in the biological assay. Combining specialized neural networks with an exploration of the combinatorial amino acid sequence space by genetic algorithms represents a novel rational strategy for peptide design and optimization.

  15. Sub-nanometer-resolution imaging of peptide nanotubes in water using frequency modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, Tomoki; Hayashi, Itsuho; Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Kimura, Kenjiro, E-mail: kimura@gold.kobe-u.ac.jp [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Tamura, Atsuo [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan)

    2013-06-20

    Highlights: ► Peptide nanotubes were aligned on highly oriented pyrolytic graphite surface. ► We visualized sub-nanometer-scale structure on peptide nanotube surface in water. ► We observed hydration structure at a peptide nanotube/water interface. - Abstract: Peptide nanotubes are self-assembled fibrous materials composed of cyclic polypeptides. Recently, various aspects of peptide nanotubes have been studied, in particular the utility of different methods for making peptide nanotubes with diverse designed functions. In order to investigate the relationship between formation, function and stability, it is essential to analyze the precise structure of peptide nanotubes. Atomic-scale surface imaging in liquids was recently achieved using frequency modulation atomic force microscopy with improved force sensing. Here we provide a precise surface structural analysis of peptide nanotubes in water without crystallizing them obtained by imaging the nanotubes at the sub-nanometer scale in water. In addition, the local hydration structure around the peptide nanotubes was observed at the nanotube/water interface.

  16. Lumazine Peptides from the Marine-Derived Fungus Aspergillus terreus

    Directory of Open Access Journals (Sweden)

    Minjung You

    2015-03-01

    Full Text Available Terrelumamides A (1 and B (2, two new lumazine-containing peptides, were isolated from the culture broth of the marine-derived fungus Aspergillus terreus. From the results of combined spectroscopic and chemical analyses, the structures of these compounds were determined to be linear assemblies of 1-methyllumazine-6-carboxylic acid, an amino acid residue and anthranilic acid methyl ester connected by peptide bonds. These new compounds exhibited pharmacological activity by improving insulin sensitivity, which was evaluated in an adipogenesis model using human bone marrow mesenchymal stem cells. In addition, the compounds exhibited fluorescence changes upon binding to DNA, demonstrating their potential applications to DNA sequence recognition.

  17. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.......A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  18. Novel short antibacterial and antifungal peptides with low cytotoxicity: Efficacy and action mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaobao; Zhou, Chuncai; Li, Peng [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Xu, Weixin [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore (Singapore); Cao, Ye; Ling, Hua; Ning Chen, Wei; Ming Li, Chang; Xu, Rong [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Lamrani, Mouad [Menicon Co., Ltd. Immeuble Espace Cordeliers, 2, rue President Carnot, 69002 Lyon (France); Mu, Yuguang, E-mail: ygmu@ntu.edu.sg [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore (Singapore); Leong, Susanna Su Jan [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Wook Chang, Matthew, E-mail: matthewchang@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Chan-Park, Mary B., E-mail: mbechan@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore)

    2010-07-30

    Research highlights: {yields} Short antimicrobial peptides with nine and eleven residues were developed. {yields} These peptides show strong bactericidal activity against clinically important bacterial and fungal pathogens. {yields} These peptides exhibit high stability in the presence of salts, and low cytotoxicity. {yields} These peptides exert their action by disrupting membrane lipids. -- Abstract: Short antimicrobial peptides with nine and eleven residues were developed against several clinically important bacterial and fungal pathogens (specifically Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Fusarium solani). Twelve analogues of previously reported peptides BP76 (KKLFKKILKFL) and Pac-525 (KWRRWVRWI) were designed, synthesized, and tested for their antimicrobial activities. Two of our eleven amino acid peptides, P11-5 (GKLFKKILKIL) and P11-6 (KKLIKKILKIL), have very low MICs of 3.1-12.5 {mu}g ml{sup -1} against all five pathogens. The MICs of these two peptides against S. aureus, C. albicans and F. solani are four to ten times lower than the corresponding MICs of the reference peptide BP76. P9-4 (KWRRWIRWL), our newly designed nine-amino acid analogue, also has particularly low MICs of 3.1-6.2 {mu}g ml{sup -1} against four of the tested pathogens; these MICs are two to eight times lower than those reported for Pac-525 (6.2-50 {mu}g ml{sup -1}).These new peptides (P11-5, P11-6 and P9-4) also exhibit improved stability in the presence of salts, and have low cytotoxicity as shown by the hemolysis and MTT assays. From the results of field-emission scanning electron microscopy, membrane depolarization and dye-leakage assays, we propose that these peptides exert their action by disrupting membrane lipids. Molecular dynamics simulation studies confirm that P11-6 peptide maintains relatively stable helical structure and exerts more perturbation action on the order of acyl tail of lipid bilayer.

  19. Effect of sequence and stereochemistry reversal on p53 peptide mimicry.

    Directory of Open Access Journals (Sweden)

    Alessio Atzori

    Full Text Available Peptidomimetics effective in modulating protein-protein interactions and resistant to proteolysis have potential in therapeutic applications. An appealing yet underperforming peptidomimetic strategy is to employ D-amino acids and reversed sequences to mimic a lead peptide conformation, either separately or as the combined retro-inverso peptide. In this work, we examine the conformations of inverse, reverse and retro-inverso peptides of p53(15-29 using implicit solvent molecular dynamics simulation and circular dichroism spectroscopy. In order to obtain converged ensembles for the peptides, we find enhanced sampling is required via the replica exchange molecular dynamics method. From these replica exchange simulations, the D-peptide analogues of p53(15-29 result in a predominantly left-handed helical conformation. When the parent sequence is reversed sequence as either the L-peptide and D-peptide, these peptides display a greater helical propensity, feature reflected by NMR and CD studies in TFE/water solvent. The simulations also indicate that, while approximately similar orientations of the side-chains are possible by the peptide analogues, their ability to mimic the parent peptide is severely compromised by backbone orientation (for D-amino acids and side-chain orientation (for reversed sequences. A retro-inverso peptide is disadvantaged as a mimic in both aspects, and further chemical modification is required to enable this concept to be used fruitfully in peptidomimetic design. The replica exchange molecular simulation approach adopted here, with its ability to provide detailed conformational insights into modified peptides, has potential as a tool to guide structure-based design of new improved peptidomimetics.

  20. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptides...... can be modified to obtain desired properties or conformation, tagged for purification, isotopically labeled for protein quantitation or conjugated to immunogens for antibody production. The antibodies that bind to these peptides represent an invaluable tool for biological research and discovery....... To better understand the underlying mechanisms of antibody-antigen interaction here we present a pipeline developed by us to structurally classify immunoglobulin antigen binding sites and to infer key sequence residues and other variables that have a prominent role in each structural class....

  1. Self-assembling peptide semiconductors

    Science.gov (United States)

    Tao, Kai; Makam, Pandeeswar; Aizen, Ruth; Gazit, Ehud

    2017-01-01

    Semiconductors are central to the modern electronics and optics industries. Conventional semiconductive materials bear inherent limitations, especially in emerging fields such as interfacing with biological systems and bottom-up fabrication. A promising candidate for bioinspired and durable nanoscale semiconductors is the family of self-assembled nanostructures comprising short peptides. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems. PMID:29146781

  2. Antimicrobial Peptide Production and Purification.

    Science.gov (United States)

    Suda, Srinivas; Field, Des; Barron, Niall

    2017-01-01

    Antimicrobial peptides (AMPs) are natural defense compounds which are synthesized as ribosomal gene-encoded pre-peptides and produced by all living organisms. AMPs are small peptides, usually cationic and typically have hydrophobic residues which interact with cell membranes and have either a narrow or broad spectrum of biological activity. AMPs are isolated from the natural host or heterologously expressed in other hosts such as Escherichia coli. The proto-typical lantibiotic Nisin is a widely used AMP that is produced by the food-grade organism Lactococcus lactis. Although AMP production and purification procedures require optimization for individual AMPs, the Nisin production and purification protocol outlined in this chapter can be easily applied with minor modifications for the production and purification of other lantibiotics or AMPs. While Nisin is produced and secreted into the supernatant, steps to recover Nisin from both cell-free supernatant and cell pellet are outlined in detail.

  3. Delivery systems for antimicrobial peptides

    DEFF Research Database (Denmark)

    Nordström, Randi; Malmsten, Martin

    2017-01-01

    Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature...... on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems...... are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration...

  4. Radioactive labelling of peptidic hormones

    International Nuclear Information System (INIS)

    Fromageot, P.; Pradelles, P.; Morgat, J.L.; Levine, H.

    1976-01-01

    The labelling of peptidic hormones requires stability, specificity and sensitivity of the label. Introduction of a radioactive atome is one way to satisfy these criteria. Several processes have been described to prepare radioactive TRF: synthesis of the peptide with labelled aminoacids or introduction of the label into the hormone. In that approach, tritium can be substituted in the imidazole ring, via precursors activating the proper carbon. Monoiodo TRF leads essentially to tritium labelling of the 5 positions whereas monoazo TRF allows the preparation of 3 H TRF labelled in the 2 positions. Di-substituted TRF leads to labelling into the 2 and 5 carbons. Labelled analogs of TRF can be prepared with labelled iodine; further developments of peptide labelling, will be presented. In particular, the homolytic scission of the C-iodine, bond by photochemical activation. The nascent carbon radical can be stabilized by a tritiated scavenger. This approach eliminates the use of heavy metal catalysts

  5. Active immunizations with peptide-DC vaccines and passive transfer with antibodies protect neutropenic mice against disseminated candidiasis.

    Science.gov (United States)

    Xin, Hong

    2016-01-04

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Active Immunizations with Peptide-DC Vaccines and Passive Transfer with Antibodies Protect Neutropenic Mice against Disseminated Candidiasis

    Science.gov (United States)

    Xin, Hong

    2015-01-01

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. PMID:26620842

  7. Peptides derivatized with bicyclic quaternary ammonium ionization tags. Sequencing via tandem mass spectrometry.

    Science.gov (United States)

    Setner, Bartosz; Rudowska, Magdalena; Klem, Ewelina; Cebrat, Marek; Szewczuk, Zbigniew

    2014-10-01

    Improving the sensitivity of detection and fragmentation of peptides to provide reliable sequencing of peptides is an important goal of mass spectrometric analysis. Peptides derivatized by bicyclic quaternary ammonium ionization tags: 1-azabicyclo[2.2.2]octane (ABCO) or 1,4-diazabicyclo[2.2.2]octane (DABCO), are characterized by an increased detection sensitivity in electrospray ionization mass spectrometry (ESI-MS) and longer retention times on the reverse-phase (RP) chromatography columns. The improvement of the detection limit was observed even for peptides dissolved in 10 mM NaCl. Collision-induced dissociation tandem mass spectrometry of quaternary ammonium salts derivatives of peptides showed dominant a- and b-type ions, allowing facile sequencing of peptides. The bicyclic ionization tags are stable in collision-induced dissociation experiments, and the resulted fragmentation pattern is not significantly influenced by either acidic or basic amino acid residues in the peptide sequence. Obtained results indicate the general usefulness of the bicyclic quaternary ammonium ionization tags for ESI-MS/MS sequencing of peptides. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Maria Isabel, E-mail: maria.isabel.castellanos@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Mas-Moruno, Carlos, E-mail: carles.mas.moruno@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Grau, Anna, E-mail: agraugar@gmail.com [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Serra-Picamal, Xavier, E-mail: xserrapicamal@gmail.com [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Trepat, Xavier, E-mail: xtrepat@ub.edu [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Albericio, Fernando, E-mail: fernando.albericio@irbbarcelona.org [Department of Chemistry, University of Barcelona, CIBER-BBN, 08028 Barcelona (Spain); Joner, Michael, E-mail: michaeljoner@me.com [Department of Cardiology, Deutsches Herzzentrum München, 80636 Munich (Germany); CVPath Institute, Gaithersburg, MD 20878 (United States); and others

    2017-01-30

    Highlights: • We immobilized peptides on CoCr alloy through physisorption and covalent bonding. • Surface activation is an essential step prior to silanization to enhance peptide attachment. • Biofunctionalized surface characteristics were discussed. • RGDS, YIGSR and combination peptides display an improved HUVECs adhesion and proliferation. - Abstract: Biomimetic surface modification with peptides that have specific cell-binding moieties is a promising approach to improve endothelialization of metal-based stents. In this study, we functionalized CoCr surfaces with RGDS, REDV, YIGSR peptides and their combinations to promote endothelial cells (ECs) adhesion and proliferation. An extensive characterization of the functionalized surfaces was performed by XPS analysis, surface charge and quartz crystal microbalance with dissipation monitoring (QCM-D), which demonstrated the successful immobilization of the peptides to the surface. Cell studies demonstrated that the covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represents the most powerful strategy to enhance the early stages of ECs adhesion and proliferation, indicating a positive synergistic effect between the two peptide motifs. Although these peptide sequences slightly increased smooth muscle cells (SMCs) adhesion, these values were ten times lower than those observed for ECs. The combination of RGDS with the REDV sequence did not show synergistic effects in promoting the adhesion or proliferation of ECs. The strategy presented in this study holds great potential to overcome clinical limitations of current metal stents by enhancing their capacity to support surface endothelialization.

  9. Peptides and the new endocrinology

    Science.gov (United States)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  10. Risk stratification in stable coronary artery disease is possible at cardiac troponin levels below conventional detection and is improved by use of N-terminal pro-B-type natriuretic peptide

    DEFF Research Database (Denmark)

    Lyngbæk, Stig; Winkel, Per; Gøtze, Jens P

    2014-01-01

    AIMS: Low prevalence of detectable cardiac troponin in healthy people and low-risk patients previously curtailed its use. With a new high-sensitive cardiac troponin assay (hs-cTnT), concentrations below conventional detection may have prognostic value, notably in combination with N-terminal pro......-B-type natriuretic peptide (NT-pro-BNP). METHODS AND RESULTS: Biomarker concentrations were determined from serum obtained at enrolment in the CLARICOR trial involving 4197 patients with stable coronary artery disease (CAD) followed for 2.6 years. Serum hs-cTnT was detectable (above 3 ng/l) in 78% and above...... the conventional 99th percentile (13.5 ng/l) in 23%. Across all levels of hs-cTnT there was a graded increase in the risk of cardiovascular death after adjustment for known prognostic indicators: hazard ratio (HR) per unit increase in the natural logarithm of the hs-cTnT level, 1.49; 95% confidence interval (CI...

  11. Improvements of material hemo-compatibility in order to obtain: - antithrombotic surfaces by radio-grafting of sulphonamide groups on fluoro-polymers; - or endothelialisable surfaces by chemical grafting of peptides on a model surface: silica

    International Nuclear Information System (INIS)

    Durrieu-Porte, Marie-Christine

    1998-01-01

    This research thesis addresses the elaboration of hemo-compatible polymer materials for the preparation of new vascular substitutes, notably for an application in the treatment of cardio-vascular diseases. After having recalled and described how a thrombosis can appear at the interface between blood and the substitute under the influence of several mechanism, the author more particularly describes two possible strategies for the struggle against thrombosis by treating its origin rather than its effect. Several substrate materials are considered: PVDF and P(VDF-HFP). They are used as a basis for the formation of a substitute to blood vessels due to their high mechanical strength, their good resistance to radiations, and their good chemical inertia. The author reports the transformation of these materials into a heparin-like material by functionalization of radio-grafted polystyrene. She analyses the physical-chemical and morphological characteristics of both materials before and after different treatments, and then reports studies of hemo-compatibility and cyto-compatibility. In a next part, she reports the study of another treatment aimed at increasing the anti-thrombogenic characteristic of the material. This study has been performed on a model material, silica. The same kind of studies as in the first part are performed, but with applying grafting of peptides [fr

  12. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    International Nuclear Information System (INIS)

    Johns, Douglas G.; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-01-01

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [ 125 I]-ANP from NPR-C with pM-to-nM K i values. DNP displaced [ 125 I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K i > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure

  13. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of resistant pathogens.

  14. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  15. Streptavidin-binding peptides and uses thereof

    Science.gov (United States)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2006-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  16. Biomedical Applications of Self-Assembling Peptides

    NARCIS (Netherlands)

    Radmalekshahi, Mazda; Lempsink, Ludwijn; Amidi, Maryam; Hennink, Wim E.; Mastrobattista, Enrico

    2016-01-01

    Self-assembling peptides have gained increasing attention as versatile molecules to generate diverse supramolecular structures with tunable functionality. Because of the possibility to integrate a wide range of functional domains into self-assembling peptides including cell attachment sequences,

  17. Computer-Aided Design of Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Hancock, Robert E.W.; Jenssen, Håvard

    2010-01-01

    in antimicrobial activity. Consequently, the majority of peptides put into clinical trials have failed at some point, underlining the importance of a thorough peptide optimization. An important tool in peptide design and optimization is quantitative structure-activity relationship (QSAR) analysis, correlating...... chemical parameters with biological activities of the peptide, using statistical methods. In this review we will discuss two different in silico strategies of computer-aided antibacterial peptide design, a linear correlation model build as an extension of traditional principal component analysis (PCA......) and a non-linear artificial neural network model. Studies on structurally diverse peptides, have concluded that the PCA derived model are able to guide the antibacterial peptide design in a meaningful way, however requiring rather a high homology between the peptides in the test-set and the in silico...

  18. Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion.

    Science.gov (United States)

    Jin, Yan; Yu, Yang; Qi, Yanxia; Wang, Fangjun; Yan, Jiaze; Zou, Hanfa

    2016-06-01

    This study investigated the relationship between peptide profiles and the bioactivity character of yogurt in simulated gastrointestinal trials. A total of 250, 434 and 466 peptides were identified by LC-MS/MS analyses of yogurt, gastric digest and pancreatic digest. Forty peptides of yogurt survived in gastrointestinal digestion. κ-CN and β-CN contributed the diversity of peptides during the fermentation process and gastrointestinal digestion, respectively. The favorite of κ-CN by lactic acid bacteria complemented gut digestion by hydrolyzing κ-CN, the low abundance milk proteins. The potential bioactivities were evaluated by in vitro ACE and DPP-IV inhibition assays. The ACE inhibition rate of the pancreatic digests was ~4 - and ~2 - fold greater than that of yogurt and the gastric digests. The ACE inhibitory peptides generated during gastrointestinal digestion improved the ACE inhibitory activity of the gastric and pancreatic digests. The DPP-IV inhibition rate of the pancreatic digest was ~6 - and ~3 - fold greater than that of yogurt and the gastric digest. The numbers of potential DPP-IV inhibitory peptides were positively correlated to the DPP-IV inhibitory activity of the gastric and pancreatic digests. The present study describes the characters and bioactivities of peptides from yogurt in a simulated gastrointestinal digestion. The number of peptides identified from yogurt and gastrointestinal digests by LC-MS/MS increased in the simulated gastrointestinal trials. The in vitro ACE and DPP-IV inhibition bioactivities revealed that the bioactivity of yogurt was enhanced during gastrointestinal digestion. The correlation between peptides and bioactivity in vitro indicated that not only the peptides amount but also the proportion of peptides with high bioactivities contributed to increased bioactivity during gastrointestinal digestion. The study of peptides identified from yogurt and digests revealed that the number of released peptides was not determined

  19. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    Science.gov (United States)

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Characterization of cyclic peptides containing disulfide bonds

    OpenAIRE

    Johnson, Mindy; Liu, Mingtao; Struble, Elaine; Hettiarachchi, Kanthi

    2015-01-01

    Unlike linear peptides, analysis of cyclic peptides containing disulfide bonds is not straightforward and demands indirect methods to achieve a rigorous proof of structure. Three peptides that belong to this category, p-Cl-Phe-DPDPE, DPDPE, and CTOP, were analyzed and the results are presented in this paper. The great potential of two dimensional NMR and ESI tandem mass spectrometry was harnessed during the course of peptide characterizations. A new RP-HPLC method for the analysis of trifluor...

  1. Development and use of engineered peptide deformylase in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia

    2012-01-01

    Deze thesis beschrijft het onderzoek naar potentieel van het gebruik van het peptide deformylase (PDF) in chemo enzymatische peptide synthese. PDF is geschikt voor selective N terminale deformylatie van bepaalde N-formyl-peptides zonder gelijktijdige hydrolyse van de peptide binding. Door de

  2. Biopanning and characterization of peptides with Fe3O4 nanoparticles-binding capability via phage display random peptide library technique.

    Science.gov (United States)

    You, Fei; Yin, Guangfu; Pu, Ximing; Li, Yucan; Hu, Yang; Huang, Zhongbin; Liao, Xiaoming; Yao, Yadong; Chen, Xianchun

    2016-05-01

    Functionalization of inorganic nanoparticles (NPs) play an important role in biomedical applications. A proper functionalization of NPs can improve biocompatibility, avoid a loss of bioactivity, and further endow NPs with unique performances. Modification with vairous specific binding biomolecules from random biological libraries has been explored. In this work, two 7-mer peptides with sequences of HYIDFRW and TVNFKLY were selected from a phage display random peptide library by using ferromagnetic NPs as targets, and were verified to display strong binding affinity to Fe3O4 NPs. Fourier transform infrared spectrometry, fluorescence microscopy, thermal analysis and X-ray photoelectron spectroscopy confirmed the presence of peptides on the surface of Fe3O4 NPs. Sequence analyses revealed that the probable binding mechanism between the peptide and Fe3O4 NPs might be driven by Pearson hard acid-hard base specific interaction and hydrogen bonds, accompanied with hydrophilic interactions and non-specific electrostatic attractions. The cell viability assay indicated a good cytocompatibility of peptide-bound Fe3O4 NPs. Furthermore, TVNFKLY peptide and an ovarian tumor cell A2780 specific binding peptide (QQTNWSL) were conjugated to afford a liner 14-mer peptide (QQTNWSLTVNFKLY). The binding and targeting studies showed that 14-mer peptide was able to retain both the strong binding ability to Fe3O4 NPs and the specific binding ability to A2780 cells. The results suggested that the Fe3O4-binding peptides would be of great potential in the functionalization of Fe3O4 NPs for the tumor-targeted drug delivery and magnetic hyperthermia. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Oxidative Modification of Tryptophan-Containing Peptides

    DEFF Research Database (Denmark)

    Petersen, Jonas; Christensen, Pia Katrine; Nielsen, Mathias T

    2018-01-01

    We herein present a broadly useful method for the chemoselective modification of a wide range of tryptophan-containing peptides. Exposing a tryptophan-containing peptide to 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) resulted in a selective cyclodehydration between the peptide backbone...

  4. Synthetic Procedures for Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  5. Short term aerobic exercise training increases postprandial pancreatic polypeptide but not peptide YY concentrations in obese individuals

    OpenAIRE

    Kanaley, Jill A.; Heden, Timothy D.; Liu, Ying; Whaley-Connell, Adam T.; Chockalingam, Anand; Dellsperger, Kevin C.; Fairchild, Timothy J.

    2013-01-01

    Objective Short-term exercise training improves glycemic control, but the effect of short-term training on postprandial satiety peptide responses or perceived satiety remains unknown. We tested the hypothesis that short-term aerobic exercise training (15 days) would alter postprandial pancreatic and gut peptide [pancreatic polypeptide (PP) and peptide YY (PYY)] responses and perceived appetite and satiety in obese individuals. Subjects Thirteen healthy obese men and women (age: 42±2 y; BMI: 3...

  6. The use of chimeric vimentin citrullinated peptides for the diagnosis of rheumatoid arthritis.

    Science.gov (United States)

    Malakoutikhah, Morteza; Gómara, María J; Gómez-Puerta, José A; Sanmartí, Raimon; Haro, Isabel

    2011-11-10

    Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation and, in many cases, destruction of the joints. To prevent progressive and irreversible structural damage, early diagnosis of RA is of paramount importance. The present study addresses the search of new RA citrullinated antigens that could supplement or complement diagnostic/prognostic existing tests. With this aim, the epitope anticitrullinated vimentin antibody response was mapped using synthetic peptides. To improve the sensitivity/specificity balance, a vimentin peptide that was selected, and its cyclic analogue, were combined with fibrin- and filaggrin-related peptides to render chimeric peptides. Our findings highlight the putative application of these chimeric peptides for the design of RA diagnosis systems and imply that more than one serological test is required to classify RA patients based on the presence or absence of ACPAs. Each of the target molecules reported here (fibrin, vimentin, filaggrin) has a specific utility in the identification of a particular subset of RA patients.

  7. Novel anti-HIV peptides containing multiple copies of artificially designed heptad repeat motifs

    International Nuclear Information System (INIS)

    Shi Weiguo; Qi Zhi; Pan Chungen; Xue Na; Debnath, Asim K.; Qie Jiankun; Jiang Shibo; Liu Keliang

    2008-01-01

    The peptidic anti-HIV drug T20 (Fuzeon) and its analog C34 share a common heptad repeat (HR) sequence, but they have different functional domains, i.e., pocket- and lipid-binding domains (PBD and LBD, respectively). We hypothesize that novel anti-HIV peptides may be designed by using artificial sequences containing multiple copies of HR motifs plus zero, one or two functional domains. Surprisingly, we found that the peptides containing only the non-natural HR sequences could significantly inhibit HIV-1 infection, while addition of PBD and/or LBD to the peptides resulted in significant improvement of anti-HIV-1 activity. These results suggest that these artificial HR sequences, which may serve as structural domains, could be used as templates for the design of novel antiviral peptides against HIV and other viruses with class I fusion proteins

  8. Pregnancy-induced rise in serum C-peptide concentrations in women with type 1 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Lene Ringholm; Rehfeld, Jens F; Pedersen-Bjergaard, Ulrik

    2009-01-01

    OBJECTIVE: The purpose of this study was to investigate whether pregnancy induces increased insulin production as a marker of improved beta-cell function in women with long-term type 1 diabetes. RESEARCH DESIGN AND METHODS: This was a prospective study of 90 consecutive pregnant women with type 1.......85). Multivariate regression analysis revealed a positive association between the absolute increase in C-peptide concentrations during pregnancy and decreased A1C from 8 to 33 weeks (P = 0.003). CONCLUSIONS: A pregnancy-induced increase in C-peptide concentrations in women with long-term type 1 diabetes...... in 35 women. RESULTS: C-peptide concentrations gradually increased throughout pregnancy regardless of serum glucose concentrations in the 90 women with a median duration of diabetes of 17 years (range 1-36 years). Among 35 women with paired recordings of stimulated C-peptide, C-peptide production...

  9. Exploring the impact of the side-chain length on peptide/RNA binding events.

    Science.gov (United States)

    Sbicca, Lola; González, Alejandro López; Gresika, Alexandra; Di Giorgio, Audrey; Closa, Jordi Teixido; Tejedor, Roger Estrada; Andréola, Marie-Line; Azoulay, Stéphane; Patino, Nadia

    2017-07-19

    The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (K D ) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.

  10. Oral delivery of peptides and proteins using lipid-based drug delivery systems

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-01-01

    INTRODUCTION: In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism...... by which intestinal absorption of peptides and proteins is promoted. AREAS COVERED: The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two...... and proteins. EXPERT OPINION: Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve...

  11. Delivery of bioactive peptides and proteins across oral (buccal) mucosa.

    Science.gov (United States)

    Senel, S; Kremer, M; Nagy, K; Squier, C

    2001-06-01

    formulation and improve the contact with the mucosal surface to improve absorption of peptides and proteins. Addition of absorption promoters/permeabilizers in bioadhesive dosage forms will be essential for a successful peptide/protein delivery system.

  12. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins.

    Science.gov (United States)

    Nongonierma, Alice B; FitzGerald, Richard J

    2018-06-01

    Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.

  13. Insect Peptides - Perspectives in Human Diseases Treatment.

    Science.gov (United States)

    Chowanski, Szymon; Adamski, Zbigniew; Lubawy, Jan; Marciniak, Pawel; Pacholska-Bogalska, Joanna; Slocinska, Malgorzata; Spochacz, Marta; Szymczak, Monika; Urbanski, Arkadiusz; Walkowiak-Nowicka, Karolina; Rosinski, Grzegorz

    2017-01-01

    Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. A novel peptide nanomedicine for treatment of pancreatogenic diabetes.

    Science.gov (United States)

    Banerjee, Amrita; Onyuksel, Hayat

    2013-08-01

    Pancreatogenic diabetes (PD) is a potentially fatal disease that occurs secondary to pancreatic disorders. The current anti-diabetic therapy for PD is fraught with adverse effects that can increase morbidity. Here we investigated the efficacy of novel peptide nanomedicine: pancreatic polypeptide (PP) in sterically stabilized micelles (SSM) for management of PD. PP exhibits significant anti-diabetic efficacy but its short plasma half-life curtails its therapeutic application. To prolong and improve activity of PP in vivo, we evaluated the delivery of PP in SSM. PP-SSM administered to rats with PD, significantly improved glucose tolerance, insulin sensitivity and hepatic glycogen content compared to peptide in buffer. The studies established the importance of micellar nanocarriers in protecting enzyme-labile peptides in vivo and delivering them to target site, thereby enhancing their therapeutic efficacy. In summary, this study demonstrated that PP-SSM is a promising novel anti-diabetic nanomedicine and therefore should be further developed for management of PD. Pancreatic peptide was earlier demonstrated to address pancreatogenic diabetes, but its short half-life represented major difficulties in further development for therapeutic use. PP-SSM (pancreatic polypeptide in sterically stabilized micelles) is a promising novel anti-diabetic nanomedicine that enables prolonged half-life and increased bioactivity of PP, as shown in this novel study, paving the way toward clinical studies in the near future. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Peptides: Production, bioactivity, functionality, and applications

    DEFF Research Database (Denmark)

    Hajfathalian, Mona; Ghelichi, Sakhi; García Moreno, Pedro Jesús

    2017-01-01

    Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry...... by-products. The aim of this review is to introduce production methods of hydrolysates and peptides and provide a comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous, and gastrointestinal systems. Moreover, functional and antioxidant properties...... of hydrolysates and isolated peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their use in nutrition and production of pharmaceuticals and nutraceuticals are discussed....

  16. Development of second generation peptides modulating cellular adiponectin receptor responses

    Directory of Open Access Journals (Sweden)

    Laszlo eOtvos

    2014-10-01

    Full Text Available The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC. In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399. The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400 was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400 at similar concentrations will be an important target validation tool to study adiponectin functions.

  17. Development of second generation peptides modulating cellular adiponectin receptor responses

    Science.gov (United States)

    Otvos, Laszlo; Knappe, Daniel; Hoffmann, Ralf; Kovalszky, Ilona; Olah, Julia; Hewitson, Tim; Stawikowska, Roma; Stawikowski, Maciej; Cudic, Predrag; Lin, Feng; Wade, John; Surmacz, Eva; Lovas, Sandor

    2014-10-01

    The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC). In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML) cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399). The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400) was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400) at similar concentrations will be an important target validation tool to study adiponectin functions.

  18. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates.

    Science.gov (United States)

    Mudgil, Priti; Kamal, Hina; Yuen, Gan Chee; Maqsood, Sajid

    2018-09-01

    In-vitro inhibitory properties of peptides released from camel milk proteins against dipeptidyl peptidase-IV (DPP-IV), porcine pancreatic α-amylase (PPA), and porcine pancreatic lipase (PPL) were studied. Results revealed that upon hydrolysis by different enzymes, camel milk proteins displayed dramatic increase in inhibition of DPP-IV and PPL, but slight improvement in PPA inhibition was noticed. Peptide sequencing revealed a total of 20 and 3 peptides for A9 and B9 hydrolysates respectively, obtained the score of 0.8 or more on peptide ranker and were categorized as potential DPP-IV inhibitory peptides. KDLWDDFKGL in A9 and MPSKPPLL in B9 were identified as most potent PPA inhibitory peptide. For PPL inhibition only 7 and 2 peptides qualified as PPL inhibitory peptides from hydrolysates A9 and B9, respectively. The present study report for the first time PPA and PPL inhibitory and only second for DPP-IV inhibitory potential of protein hydrolysates from camel milk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Multivalent display of the antimicrobial peptides BP100 and BP143

    Directory of Open Access Journals (Sweden)

    Imma Güell

    2012-12-01

    Full Text Available Carbohydrates are considered as promising templates for the display of multiple copies of antimicrobial peptides. Herein, we describe the design and synthesis of chimeric structures containing two or four copies of the antimicrobial peptides KKLFKKILKYL-NH2 (BP100 and KKLfKKILKYL-NH2 (BP143 attached to the carbohydrate template cyclodithioerythritol (cDTE or α-D-galactopyranoside (Galp. The synthesis involved the preparation of the corresponding peptide aldehyde followed by coupling to an aminooxy-functionalized carbohydrate template. After purification, the multivalent display systems were obtained in high purities (90–98% and in good yields (42–64%. These compounds were tested against plant and human pathogenic bacteria and screened for their cytotoxicity on eukaryotic cells. They showed lower MIC values than the parent peptides against the bacteria analyzed. In particular, the carbopeptides derived from cDTE and Galp, which contained two or four copies of BP100, respectively, were 2- to 8-fold more active than the monomeric peptide against the phytopathogenic bacteria. These results suggest that preassembling antimicrobial peptides to multimeric structures is not always associated with a significant improvement of the activity. In contrast, the carbopeptides synthesized were active against human red blood cells pointing out that peptide preassembly is critical for the hemolytic activity. Notably, peptide preassembly resulted in an enhanced bactericidal effect.

  20. Investigation of the antibiofilm capacity of peptide-modified stainless steel.

    Science.gov (United States)

    Cao, Pan; Li, Wen-Wu; Morris, Andrew R; Horrocks, Paul D; Yuan, Cheng-Qing; Yang, Ying

    2018-03-01

    Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml -1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research.

  1. Halobacterium salinarum NRC-1 PeptideAtlas: strategies for targeted proteomics

    Science.gov (United States)

    Van, Phu T.; Schmid, Amy K.; King, Nichole L.; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T.; Goo, Young-Ah; Deutsch, Eric W.; Reiss, David J.; Mallick, Parag; Baliga, Nitin S.

    2009-01-01

    The relatively small numbers of proteins and fewer possible posttranslational modifications in microbes provides a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a Peptide Atlas (PA) for 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636,000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has helped highlight plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics. PMID:18652504

  2. Natriuretic peptides in cardiometabolic regulation and disease

    DEFF Research Database (Denmark)

    Zois, Nora E; Bartels, Emil D; Hunter, Ingrid

    2014-01-01

    decade. Dysregulation of the natriuretic peptide system has been associated with obesity, glucose intolerance, type 2 diabetes mellitus, and essential hypertension. Moreover, the natriuretic peptides have been implicated in the protection against atherosclerosis, thrombosis, and myocardial ischaemia. All...... these conditions can coexist and potentially lead to heart failure, a syndrome associated with a functional natriuretic peptide deficiency despite high circulating concentrations of immunoreactive peptides. Therefore, dysregulation of the natriuretic peptide system, a 'natriuretic handicap', might be an important...... factor in the initiation and progression of metabolic dysfunction and its accompanying cardiovascular complications. This Review provides a summary of the natriuretic peptide system and its involvement in these cardiometabolic conditions. We propose that these peptides might have an integrating role...

  3. Analysis of peptide uptake and location of root hair-promoting peptide accumulation in plant roots.

    Science.gov (United States)

    Matsumiya, Yoshiki; Taniguchi, Rikiya; Kubo, Motoki

    2012-03-01

    Peptide uptake by plant roots from degraded soybean-meal products was analyzed in Brassica rapa and Solanum lycopersicum. B. rapa absorbed about 40% of the initial water volume, whereas peptide concentration was decreased by 75% after 24 h. Analysis by reversed-phase HPLC showed that number of peptides was absorbed by the roots during soaking in degraded soybean-meal products for 24 h. Carboxyfluorescein-labeled root hair-promoting peptide was synthesized, and its localization, movement, and accumulation in roots were investigated. The peptide appeared to be absorbed by root hairs and then moved to trichoblasts. Furthermore, the peptide was moved from trichoblasts to atrichoblasts after 24 h. The peptide was accumulated in epidermal cells, suggesting that the peptide may have a function in both trichoblasts and atrichoblasts. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  4. Calcitonin gene-related peptide and pain

    DEFF Research Database (Denmark)

    Schou, Wendy Sophie; Ashina, Sait; Amin, Faisal Mohammad

    2017-01-01

    and cerebrospinal fluid in subjects with musculoskeletal pain. A randomized clinical trial on monoclonal antibody, which selectively binds to and inhibits the activity of CGRP (galcanezumab) in patients with osteoarthritis knee pain, failed to demonstrate improvement of pain compared with placebo. No studies......BACKGROUND: Calcitonin gene-related peptide (CGRP) is widely distributed in nociceptive pathways in human peripheral and central nervous system and its receptors are also expressed in pain pathways. CGRP is involved in migraine pathophysiology but its role in non-headache pain has not been...... clarified. METHODS: We performed a systematic literature search on PubMed, Embase and ClinicalTrials.gov for articles on CGRP and non-headache pain covering human studies including experimental studies and randomized clinical trials. RESULTS: The literature search identified 375 citations of which 50...

  5. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    Science.gov (United States)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Lactoferricin Peptides Increase Macrophages' Capacity To Kill Mycobacterium avium.

    Science.gov (United States)

    Silva, Tânia; Moreira, Ana C; Nazmi, Kamran; Moniz, Tânia; Vale, Nuno; Rangel, Maria; Gomes, Paula; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé

    2017-01-01

    show that peptides derived from bovine lactoferricin (LFcin) improve the antimicrobial activity of ethambutol against Mycobacterium avium growing inside macrophages. Moreover, the d-enantiomer of a short version of lactoferricin containing amino acids 17 to 30 (d-LFcin17-30) causes intramacrophagic death of M. avium by increasing the formation of lysosomes and autophagosomes. This work opens the way to the use of lactoferricin-derived peptides to treat infections caused by mycobacteria and highlights important modulatory effects of d-FLcin17-30 on macrophages, which may be useful under other conditions in which macrophage activation is needed.

  7. Radio peptide imaging and therapy

    International Nuclear Information System (INIS)

    Buscombe, Jonh

    1997-01-01

    Full text. The concept of the magic bullet retains its attraction to us. If only we could take a drug or radioisotope and inject this intravenously and then will attach to the target cancer. This may allow imaging if labelled with a radio pharmaceutical or possibly even effective therapy. Initially work was started using antibodies of mouse origin. These have shown some utility in targeting tumors but there are problems in that these are essentially non-human proteins, often derived from mice. This leads to the formation of antibodies against that antibody so that repeat administrations lead to reduced efficacy and possibly may carry a risk anaphylaxis for the patient. Two different methods have evolved to deal with this situation. Either make antibodies more human or use smaller fragments, so that they are less likely to cause allergic reactions. The second method is to try and use a synthetic peptide. This will contain a series of amino acids which recognize a certain cell receptor. For example the somatostatin analogue Octreotide is an 8 amino acid peptide which has the same biological actions as natural somatostatin but an increased plasma half life. To this is added a linker a good example being DTPA and then radioisotope for example In-111. There we can have the complex In-111-DTPA-Octreotide which can be used to image somatostatin receptors in vivo. The main advantage over antibodies is that the cost production is less and many different variation of peptides for a particular receptor can be manufactured and assessed to find which is the optimal agent tumour imaging at a fraction of the cost of antibody production. There are two main approaches. Firstly to take a natural peptide hormone such as insulin or VIP and label by a simple method such as iodination with I-123. A group in Vienna have done it and shown good uptake of I-123 Insulin in primary hepatomas and of I-123 VIP in pancreatic cancers. Many natural peptide hormones however have a short plasma half

  8. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity

    Science.gov (United States)

    Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel

    2016-02-01

    Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo.

  9. Peptide-targeted polymer cancerostatics

    Czech Academy of Sciences Publication Activity Database

    Böhmová, Eliška; Pola, Robert

    2016-01-01

    Roč. 65, Suppl. 2 (2016), S153-S164 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : HPMA copolymers * tumor targeting * peptides Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.461, year: 2016 http://www.biomed.cas.cz/physiolres/pdf/65%20Suppl%202/65_S153.pdf

  10. Photosystem Inspired Peptide Hybrid Catalysts

    Science.gov (United States)

    2017-06-07

    materials defined at the molecular level. We propose a novel way to make hybrid catalyst composed of inorganic nanomaterials and peptides. The...Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOA Arlington, Virginia 22203 Air Force Research Laboratory Air...ORGANIZATION NAME(S) AND ADDRESS(ES) SEOUL NATIONAL UNIVERSITY SNUR&DB FOUNDATION RESEARCH PARK CENTER SEOUL, 151742 KR 8. PERFORMING ORGANIZATION REPORT

  11. Peptide stabilized amphotericin B nanodisks

    Science.gov (United States)

    Tufteland, Megan; Pesavento, Joseph B.; Bermingham, Rachelle L.; Hoeprich, Paul D.; Ryan, Robert O.

    2007-01-01

    Nanometer scale apolipoprotein A-I stabilized phospholipid disk complexes (nanodisks; ND) have been formulated with the polyene antibiotic amphotericin B (AMB). The present studies were designed to evaluate if a peptide can substitute for the function of the apolipoprotein component of ND with respect to particle formation and stability. An 18-residue synthetic amphipathic α-helical peptide, termed 4F (Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2), solubilized vesicles comprised of egg phosphatidylcholine (egg PC), dipentadecanoyl PC or dimyristoylphosphatidylcholine (DMPC) at rates greater than or equal to solubilization rates observed with human apolipoprotein A-I (apoA-I; 243 amino acids). Characterization studies revealed that interaction with DMPC induced a near doubling of 4F tryptophan fluorescence emission quantum yield (excitation 280 nm) and a ~7 nm blue shift in emission wavelength maximum. Inclusion of AMB in the vesicle substrate resulted in formation of 4F AMB-ND. Spectra of AMB containing particles revealed the antibiotic is a highly effective quencher of 4F tryptophan fluorescence emission, giving rise to a Ksv = 7.7 × 104. Negative stain electron microscopy revealed that AMB-ND prepared with 4F possessed a disk shaped morphology similar to ND prepared without AMB or prepared with apoA-I. In yeast and pathogenic fungi growth inhibition assays, 4F AMB-ND was as effective as apoA-I AMB-ND. The data indicate that AMB-ND generated using an amphipathic peptide in lieu of apoA-I form a discrete population of particles that possess potent biological activity. Given their intrinsic versatility, peptides may be preferred for scale up and clinical application of AMB-ND. PMID:17293004

  12. Extracellular secretion of a recombinant therapeutic peptide by Bacillus halodurans utilizing a modified flagellin type III secretion system

    CSIR Research Space (South Africa)

    Berger, E

    2011-08-01

    Full Text Available further 3.5-fold increase in the secretion of recombinant peptide fusions. Conclusions: The type III flagellar secretion system of B. halodurans has been shown to successfully secrete a therapeutic peptide as a heterologous flagellin fusion. Improvements...

  13. Biopharmaceuticals: From peptide to drug

    Science.gov (United States)

    Hannappel, Margarete

    2017-08-01

    Biologics are therapeutic proteins or peptides that are produced by means of biological processes within living organisms and cells. They are highly specific molecules and play a crucial role as therapeutics for the treatment of severe and chronic diseases (e.g. cancer, rheumatoid arthritis, diabetes, autoimmune disorders). The development of new biologics and biologics-based drugs gains more and more importance in the fight against various diseases. A short overview on biotherapeutical drug development is given. Cone snails are a large group of poisonous, predatory sea snails with more than 700 species. They use a very powerful venom which rapidly inactivates and paralyzes their prey. Most bioactive venom components are small peptides (conotoxins, conopeptides) which are precisely directed towards a specific target (e.g. ion channel, receptors). Due to their small size, their precision and speed of action, naturally occurring cone snail venom peptides represent an attractive source for the identification and design of novel biological drug entities. The Jagna cone snail project is an encouraging initiative to map the ecological variety of cone snails around the island of Bohol (Philippines) and to conserve the biological information for potential future application.

  14. Coffee, hunger, and peptide YY.

    Science.gov (United States)

    Greenberg, James A; Geliebter, Allan

    2012-06-01

    There is evidence from several empirical studies suggesting that coffee may help people control body weight. Our objective was to assess the effects of caffeine, caffeinated coffee, and decaffeinated coffee, both alone and in combination with 75 g of glucose, on perceived hunger and satiety and related peptides. We conducted a placebo-controlled single-blinded randomized 4-way crossover trial. Eleven healthy male volunteers (mean age, 23.5 ± 5.7 years; mean BMI, 23.6 ± 4.2 kg/m(2)) ingested 1 of 3 test beverages (caffeine in water, caffeinated coffee, or decaffeinated coffee) or placebo (water), and 60 minutes later they ingested the glucose. Eight times during each laboratory visit, hunger and satiety were assessed by visual analog scales, and blood samples were drawn to measure 3 endogenous peptides associated with hunger and satiety: ghrelin, peptide YY (PYY), and leptin. Compared to placebo, decaffeinated coffee yielded significantly lower hunger during the whole 180-minute study period and higher plasma PYY for the first 90 minutes (p hunger or PYY. Caffeinated coffee showed a pattern between that of decaffeinated coffee and caffeine in water. These findings suggest that one or more noncaffeine ingredients in coffee may have the potential to decrease body weight. Glucose ingestion did not change the effects of the beverages. Our randomized human trial showed that decaffeinated coffee can acutely decrease hunger and increase the satiety hormone PYY.

  15. Statistical Characterization of the Charge State and Residue Dependence of Low-Energy CID Peptide Dissociation Patterns

    International Nuclear Information System (INIS)

    Huang, Yingying; Triscari, Joseph M.; Tseng, George C.; Pasa-Tolic, Ljiljana; Lipton, Mary S.; Smith, Richard D.; Wysocki, Vicki H.

    2005-01-01

    Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describing cleavages at all Xxx-Zzz residue combinations for b and y ions reveal that the difference in basicity between Arg and Lys results in different dissociation patterns for singly charged Arg- and Lys-ending tryptic peptides. While one dominant protonation form (proton localized) exists for Arg-ending peptides, a heterogeneous population of different protonated forms or more facile interconversion of protonated forms (proton partially mobile) exists for Lys-ending peptides. Cleavage C-terminal to acidic residues dominates spectra from peptides that have a localized proton and cleavage N-terminal to Pro dominates those that have a mobile or partially mobile proton. When Pro is absent from peptides that have a mobile or partially mobile proton, cleavage at each peptide bond becomes much more prominent. Whether the above patterns can be found in b ions, y ions, or both depends on the location of the proton holder(s). Enhanced cleavages C-terminal to branched aliphatic residues (Ile, Val, Leu) are observed in both b and y ions from peptides that have a mobile proton, as well as in y ions from peptides that have a partially mobile proton; enhanced cleavages N-terminal to these residues are observed in b ions from peptides that have a partially mobile proton. Statistical tools have been designed to visualize the fragmentation maps and measure the similarity between them. The pairwise cleavage patterns observed expand our knowledge of peptide gas-phase fragmentation behaviors and should be useful in algorithm development that employs improved models to predict fragment ion

  16. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  17. Chemical methods for peptide and protein production.

    Science.gov (United States)

    Chandrudu, Saranya; Simerska, Pavla; Toth, Istvan

    2013-04-12

    Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported α-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  18. Phase I vaccination trial of SYT-SSX junction peptide in patients with disseminated synovial sarcoma

    Directory of Open Access Journals (Sweden)

    Asanuma Hiroko

    2005-01-01

    Full Text Available Abstract Background Synovial sarcoma is a high-grade malignant tumor of soft tissue, characterized by the specific chromosomal translocation t(X;18, and its resultant SYT-SSX fusion gene. Despite intensive multimodality therapy, the majority of metastatic or relapsed diseases still remain incurable, thus suggesting a need for new therapeutic options. We previously demonstrated the antigenicity of SYT-SSX gene-derived peptides by in vitro analyses. The present study was designed to evaluate in vivo immunological property of a SYT-SSX junction peptide in selected patients with synovial sarcoma. Methods A 9-mer peptide (SYT-SSX B: GYDQIMPKK spanning the SYT-SSX fusion region was synthesized. Eligible patients were those (i who have histologically and genetically confirmed, unresectable synovial sarcoma (SYT-SSX1 or SYT-SSX2 positive, (ii HLA-A*2402 positive, (iii between 20 and 70 years old, (iv ECOG performance status between 0 and 3, and (v who gave informed consent. Vaccinations with SYT-SSX B peptide (0.1 mg or 1.0 mg were given subcutaneously six times at 14-day intervals. These patients were evaluated for DTH skin test, adverse events, tumor size, tetramer staining, and peptide-specific CTL induction. Results A total of 16 vaccinations were carried out in six patients. The results were (i no serious adverse effects or DTH reactions, (ii suppression of tumor progression in one patient, (iii increases in the frequency of peptide-specific CTLs in three patients and a decrease in one patient, and (iv successful induction of peptide-specific CTLs from four patients. Conclusions Our findings indicate the safety of the SYT-SSX junction peptide in the use of vaccination and also give support to the property of the peptide to evoke in vivo immunological responses. Modification of both the peptide itself and the related protocol is required to further improve the therapeutic efficacy.

  19. Identification of Four-Jointed Box 1 (FJX1-Specific Peptides for Immunotherapy of Nasopharyngeal Carcinoma.

    Directory of Open Access Journals (Sweden)

    San Jiun Chai

    Full Text Available Nasopharyngeal carcinoma (NPC is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1, a tumor antigen, is overexpressed in NPCs, we investigated if short 9-20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients.

  20. Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2013-05-01

    Full Text Available Antimicrobial peptides (AMPs, small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been registered into the antimicrobial peptide database (APD. The majority of these AMPs (>86% possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This article summarizes peptide discovery on the basis of the APD. The major methods are the linguistic model, database screening, de novo design, and template-based design. Using these methods, we identified various potent peptides against human immunodeficiency virus type 1 (HIV-1 or methicillin-resistant Staphylococcus aureus (MRSA. While the stepwise designed anti-HIV peptide is disulfide-linked and rich in arginines, the ab initio designed anti-MRSA peptide is linear and rich in leucines. Thus, there are different requirements for antiviral and antibacterial peptides, which could kill pathogens via different molecular targets. The biased amino acid composition in the database-designed peptides, or natural peptides such as θ-defensins, requires the use of the improved two-dimensional NMR method for structural determination to avoid the publication of misleading structure and dynamics. In the case of human cathelicidin LL-37, structural determination requires 3D NMR techniques. The high-quality structure of LL-37 provides a solid basis for understanding its interactions with membranes of bacteria and other pathogens. In conclusion, the APD database is a comprehensive platform for storing, classifying, searching, predicting, and designing potent peptides against pathogenic bacteria, viruses, fungi, parasites, and cancer cells.

  1. δ-Peptides from RuAAC-Derived 1,5-Disubstituted Triazole Units

    KAUST Repository

    Johansson, Johan R.

    2014-02-14

    Non-natural peptides with structures and functions similar to natural peptides have emerged lately in biomedical as well as nanotechnological contexts. They are interesting for pharmaceutical applications since they can adopt structures with new targeting potentials and because they are generally not prone to degradation by proteases. We report here a new set of peptidomimetics derived from δ-peptides, consisting of n units of a 1,5-disubstituted 1,2,3-triazole amino acid (5Tzl). The monomer was prepared using ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) chemistry using [RuCl2Cp]x as the catalyst, allowing for simpler purification and resulting in excellent yields. This achiral monomer was used to prepare peptide oligomers that are water soluble independent of peptide chain length. Conformational analysis and structural investigations of the oligomers were performed by 2D NOESY NMR experiments, and by quantum chemical calculations using the ωB97X-D functional. These data indicate that several conformations may co-exist with slight energetic differences. Together with their increased hydrophilicity, this feature of homo-5Tzl may prove essential for mimicking natural peptides composed of α-amino acids, where the various secondary structures are achieved by side chain effects and not by the rigidity of the peptide backbone. The improved synthetic method allows for facile variation of the 5Tzl amino acid side chains, further increasing the versatility of these compounds. A new set of non-natural peptides composed of 1,5-disubstituted 1,2,3-triazole amino acids is presented. These peptides benefit from: a) modular synthesis of the monomers, allowing variation of the side chains; b) increased solubility of the oligomers in water, irrespective of peptide length; c) flexibility of the backbone allowing these foldamers to adopt several conformations. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fine-tuning the physicochemical properties of peptide-based blood-brain barrier shuttles.

    Science.gov (United States)

    Ghasemy, Somaye; García-Pindado, Júlia; Aboutalebi, Fatemeh; Dormiani, Kianoush; Teixidó, Meritxell; Malakoutikhah, Morteza

    2018-05-01

    N-methylation is a powerful method to modify the physicochemical properties of peptides. We previously found that a fully N-methylated tetrapeptide, Ac-(N-MePhe) 4 -CONH 2 , was more lipophilic than its non-methylated analog Ac-(Phe) 4 -CONH 2 . In addition, the former crossed artificial and cell membranes while the latter did not. Here we sought to optimize the physicochemical properties of peptides and address how the number and position of N-methylated amino acids affect these properties. To this end, 15 analogs of Ac-(Phe) 4 -CONH 2 were designed and synthesized in solid-phase. The solubility of the peptides in water and their lipophilicity, as measured by ultra performance liquid chromatography (UPLC) retention times, were determined. To study the permeability of the peptides, the Parallel Artificial Membrane Permeability Assay (PAMPA) was used as an in vitro model of the blood-brain barrier (BBB). Contrary to the parent peptide, the 15 analogs crossed the artificial membrane, thereby showing that N-methylation improved permeability. We also found that N-methylation enhanced lipophilicity but decreased the water solubility of peptides. Our results showed that both the number and position of N-methylated residues are important factors governing the physicochemical properties of peptides. There was no correlation between the number of N-methylated amide bonds and any of the properties measured. However, for the peptides consecutively N-methylated from the N-terminus to the C-terminus (p1, p5, p11, p12 and p16), lipophilicity correlated well with the number of N-methylated amide bonds and the permeability of the peptides. Moreover, the peptides were non-toxic to HEK293T cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Identification of Four-Jointed Box 1 (FJX1)-Specific Peptides for Immunotherapy of Nasopharyngeal Carcinoma

    Science.gov (United States)

    Chai, San Jiun; Yap, Yoke Yeow; Foo, Yoke Ching; Yap, Lee Fah; Ponniah, Sathibalan; Teo, Soo Hwang; Cheong, Sok Ching; Patel, Vyomesh; Lim, Kue Peng

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1), a tumor antigen, is overexpressed in NPCs, we investigated if short 9–20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients. PMID:26536470

  4. Rapid discovery of peptide capture candidates with demonstrated specificity for structurally similar toxins

    Science.gov (United States)

    Sarkes, Deborah A.; Hurley, Margaret M.; Coppock, Matthew B.; Farrell, Mikella E.; Pellegrino, Paul M.; Stratis-Cullum, Dimitra N.

    2016-05-01

    Peptides have emerged as viable alternatives to antibodies for molecular-based sensing due to their similarity in recognition ability despite their relative structural simplicity. Various methods for peptide capture reagent discovery exist, including phage display, yeast display, and bacterial display. One of the primary advantages of peptide discovery by bacterial display technology is the speed to candidate peptide capture agent, due to both rapid growth of bacteria and direct utilization of the sorted cells displaying each individual peptide for the subsequent round of biopanning. We have previously isolated peptide affinity reagents towards protective antigen of Bacillus anthracis using a commercially available automated magnetic sorting platform with improved enrichment as compared to manual magnetic sorting. In this work, we focus on adapting our automated biopanning method to a more challenging sort, to demonstrate the specificity possible with peptide capture agents. This was achieved using non-toxic, recombinant variants of ricin and abrin, RiVax and abrax, respectively, which are structurally similar Type II ribosomal inactivating proteins with significant sequence homology. After only two rounds of biopanning, enrichment of peptide capture candidates binding abrax but not RiVax was achieved as demonstrated by Fluorescence Activated Cell Sorting (FACS) studies. Further sorting optimization included negative sorting against RiVax, proper selection of autoMACS programs for specific sorting rounds, and using freshly made buffer and freshly thawed protein target for each round of biopanning for continued enrichment over all four rounds. Most of the resulting candidates from biopanning for abrax binding peptides were able to bind abrax but not RiVax, demonstrating that short peptide sequences can be highly specific even at this early discovery stage.

  5. Phage display peptide libraries: deviations from randomness and correctives

    Science.gov (United States)

    Ryvkin, Arie; Ashkenazy, Haim; Weiss-Ottolenghi, Yael; Piller, Chen; Pupko, Tal; Gershoni, Jonathan M

    2018-01-01

    Abstract Peptide-expressing phage display libraries are widely used for the interrogation of antibodies. Affinity selected peptides are then analyzed to discover epitope mimetics, or are subjected to computational algorithms for epitope prediction. A critical assumption for these applications is the random representation of amino acids in the initial naïve peptide library. In a previous study, we implemented next generation sequencing to evaluate a naïve library and discovered severe deviations from randomness in UAG codon over-representation as well as in high G phosphoramidite abundance causing amino acid distribution biases. In this study, we demonstrate that the UAG over-representation can be attributed to the burden imposed on the phage upon the assembly of the recombinant Protein 8 subunits. This was corrected by constructing the libraries using supE44-containing bacteria which suppress the UAG driven abortive termination. We also demonstrate that the overabundance of G stems from variant synthesis-efficiency and can be corrected using compensating oligonucleotide-mixtures calibrated by mass spectroscopy. Construction of libraries implementing these correctives results in markedly improved libraries that display random distribution of amino acids, thus ensuring that enriched peptides obtained in biopanning represent a genuine selection event, a fundamental assumption for phage display applications. PMID:29420788

  6. Construction of hybrid peptide synthetases by module and domain fusions.

    Science.gov (United States)

    Mootz, H D; Schwarzer, D; Marahiel, M A

    2000-05-23

    Nonribosomal peptide synthetases are modular enzymes that assemble peptides of diverse structures and important biological activities. Their modular organization provides a great potential for the rational design of novel compounds by recombination of the biosynthetic genes. Here we describe the extension of a dimodular system to trimodular ones based on whole-module fusion. The recombinant hybrid enzymes were purified to monitor product assembly in vitro. We started from the first two modules of tyrocidine synthetase, which catalyze the formation of the dipeptide dPhe-Pro, to construct such hybrid systems. Fusion of the second, proline-specific module with the ninth and tenth modules of the tyrocidine synthetases, specific for ornithine and leucine, respectively, resulted in dimodular hybrid enzymes exhibiting the combined substrate specificities. The thioesterase domain was fused to the terminal module. Upon incubation of these dimodular enzymes with the first tyrocidine module, TycA, incorporating dPhe, the predicted tripeptides dPhe-Pro-Orn and dPhe-Pro-Leu were obtained at rates of 0.15 min(-1) and 2.1 min(-1). The internal thioesterase domain was necessary and sufficient to release the products from the hybrid enzymes and thereby facilitate a catalytic turnover. Our approach of whole-module fusion is based on an improved definition of the fusion sites and overcomes the recently discovered editing function of the intrinsic condensation domains. The stepwise construction of hybrid peptide synthetases from catalytic subunits reinforces the inherent potential for the synthesis of novel, designed peptides.

  7. Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides.

    Science.gov (United States)

    Parmar, Avanish S; Xu, Fei; Pike, Douglas H; Belure, Sandeep V; Hasan, Nida F; Drzewiecki, Kathryn E; Shreiber, David I; Nanda, Vikas

    2015-08-18

    We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo- and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal-specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix.

  8. A Peptide-Fc Opsonin with Pan-Amyloid Reactivity

    Directory of Open Access Journals (Sweden)

    James S. Foster

    2017-09-01

    Full Text Available There is a continuing need for therapeutic interventions for patients with the protein misfolding disorders that result in systemic amyloidosis. Recently, specific antibodies have been employed to treat AL amyloidosis by opsonizing tissue amyloid deposits thereby inducing cell-mediated dissolution and organ improvement. To develop a pan-amyloid therapeutic agent, we have produced an Fc-fusion product incorporating a peptide, p5, which binds many if not all forms of amyloid. This protein, designated Fcp5, expressed in mammalian cells, forms the desired bivalent dimer structure and retains pan-amyloid reactivity similar to the p5 peptide as measured by immunosorbent assays, immunohistochemistry, surface plasmon resonance, and pulldown assays using radioiodinated Fcp5. Additionally, Fcp5 was capable of opsonizing amyloid fibrils in vitro using a pH-sensitive fluorescence assay of phagocytosis. In mice,125 I-labeled Fcp5 exhibited an extended serum circulation time, relative to the p5 peptide. It specifically bound AA amyloid deposits in diseased mice, as evidenced by biodistribution and microautoradiographic methods, which coincided with an increase in active, Iba-1-positive macrophages in the liver at 48 h postinjection of Fcp5. In healthy mice, no specific tissue accumulation was observed. The data indicate that polybasic, pan-amyloid-targeting peptides, in the context of an Fc fusion, can yield amyloid reactive, opsonizing reagents that may serve as next-generation immunotherapeutics.

  9. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  10. Orally active-targeted drug delivery systems for proteins and peptides.

    Science.gov (United States)

    Li, Xiuying; Yu, Miaorong; Fan, Weiwei; Gan, Yong; Hovgaard, Lars; Yang, Mingshi

    2014-09-01

    In the past decade, extensive efforts have been devoted to designing 'active targeted' drug delivery systems (ATDDS) to improve oral absorption of proteins and peptides. Such ATDDS enhance cellular internalization and permeability of proteins and peptides via molecular recognition processes such as ligand-receptor or antigen-antibody interaction, and thus enhance drug absorption. This review focuses on recent advances with orally ATDDS, including ligand-protein conjugates, recombinant ligand-protein fusion proteins and ligand-modified carriers. In addition to traditional intestinal active transport systems of substrates and their corresponding receptors, transporters and carriers, new targets such as intercellular adhesion molecule-1 and β-integrin are also discussed. ATDDS can improve oral absorption of proteins and peptides. However, currently, no clinical studies on ATDDS for proteins and peptides are underway, perhaps due to the complexity and limited knowledge of transport mechanisms. Therefore, more research is warranted to optimize ATDDS efficiency.

  11. Conjugates of Cell Adhesion Peptides for Therapeutics and Diagnostics Against Cancer and Autoimmune Diseases.

    Science.gov (United States)

    Moral, Mario E G; Siahaan, Teruna J

    2017-01-01

    Overexpressed cell-surface receptors are hallmarks of many disease states and are often used as markers for targeting diseased cells over healthy counterparts. Cell adhesion peptides, which are often derived from interacting regions of these receptor-ligand proteins, mimic surfaces of intact proteins and, thus, have been studied as targeting agents for various payloads to certain cell targets for cancers and autoimmune diseases. Because many cytotoxic agents in the free form are often harmful to healthy cells, the use of cell adhesion peptides in targeting their delivery to diseased cells has been studied to potentially reduce required effective doses and associated harmful side-effects. In this review, multiple cell adhesion peptides from extracellular matrix and ICAM proteins were used to selectively direct drug payloads, signal-inhibitor peptides, and diagnostic molecules, to diseased cells over normal counterparts. RGD constructs have been used to improve the selectivity and efficacy of diagnostic and drug-peptide conjugates against cancer cells. From this precedent, novel conjugates of antigenic and cell adhesion peptides, called Bifunctional Peptide Inhibitors (BPIs), have been designed to selectively regulate immune cells and suppress harmful inflammatory responses in autoimmune diseases. Similar peptide conjugations with imaging agents have delivered promising diagnostic methods in animal models of rheumatoid arthritis. BPIs have also been shown to generate immune tolerance and suppress autoimmune diseases in animal models of type-1 diabetes, rheumatoid arthritis, and multiple sclerosis. Collectively, these studies show the potential of cell adhesion peptides in improving the delivery of drugs and diagnostic agents to diseased cells in clinical settings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Synthesis of peptide .alpha.-thioesters

    Science.gov (United States)

    Camarero, Julio A [Livermore, CA; Mitchell, Alexander R [Livermore, CA; De Yoreo, James J [Clayton, CA

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  13. Peptide YY receptors in the brain

    International Nuclear Information System (INIS)

    Inui, A.; Oya, M.; Okita, M.

    1988-01-01

    Radiolabelled ligand binding studies demonstrated that specific receptors for peptide YY are present in the porcine as well as the canine brains. Peptide YY was bound to brain tissue membranes via high-affinity (dissociation constant, 1.39 X 10(-10)M) and low-affinity (dissociation constant, 3.72 X 10(-8)M) components. The binding sites showed a high specificity for peptide YY and neuropeptide Y, but not for pancreatic polypeptide or structurally unrelated peptides. The specific activity of peptide YY binding was highest in the hippocampus, followed by the pituitary gland, the hypothalamus, and the amygdala of the porcine brain, this pattern being similarly observed in the canine brain. The results suggest that peptide YY and neuropeptide Y may regulate the function of these regions of the brain through interaction with a common receptor site

  14. The human endolymphatic sac expresses natriuretic peptides

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2017-01-01

    : Several natriuretic peptides were found expressed significantly in the ES, including uroguanylin and brain natriuretic peptide, but also peptides regulating vascular tone, including adrenomedullin 2. In addition, both neurophysin and oxytocin (OXT) were found significantly expressed. All peptides were...... verified by immunohistochemistry. CONCLUSION: The present data support the hypothesis that the human ES may have an endocrine/paracrine capacity through expression of several peptides with potent natriuretic activity. Furthermore, the ES may influence the hypothalamo-pituitary-adrenal axis and may regulate...... vasopressin receptors and aquaporin-2 channels in the inner ear via OXT expression. We hypothesize that the ES is likely to regulate inner ear endolymphatic homeostasis, possibly through secretion of several peptides, but it may also influence systemic and/or intracranial blood pressure through direct...

  15. Potent peptidic fusion inhibitors of influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Juraszek, Jarek; Brandenburg, Boerries; Buyck, Christophe; Schepens, Wim B. G.; Kesteleyn, Bart; Stoops, Bart; Vreeken, Rob J.; Vermond, Jan; Goutier, Wouter; Tang, Chan; Vogels, Ronald; Friesen, Robert H. E.; Goudsmit, Jaap; van Dongen, Maria J. P.; Wilson, Ian A.

    2017-09-28

    Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH–induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule– and peptide-based therapeutics against influenza virus.

  16. Designing anticancer peptides by constructive machine learning.

    Science.gov (United States)

    Grisoni, Francesca; Neuhaus, Claudia; Gabernet, Gisela; Müller, Alex; Hiss, Jan; Schneider, Gisbert

    2018-04-21

    Constructive machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a generative model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on alpha-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Use of galerina marginata genes and proteins for peptide production

    Science.gov (United States)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2018-04-03

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  18. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2017-03-21

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  19. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Thingholm, Tine E; Jensen, Ole N

    2005-01-01

    based on TiO2microcolumns and peptide loading in 2,5-dihydroxybenzoic acid (DHB). The effect of DHB was a very efficient reduction in the binding of nonphosphorylated peptides to TiO2 while retaining its high binding affinity for phosphorylated peptides. Thus, inclusion of DHB dramatically increased...... the selectivity of the enrichment of phosphorylated peptides by TiO2. We demonstrated that this new procedure was more selective for binding phosphorylated peptides than IMAC using MALDI mass spectrometry. In addition, we showed that LC-ESI-MSMS was biased toward monophosphorylated peptides, whereas MALDI MS...... was not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented....

  20. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans

    1990-01-01

    for antibody binding to the immunizing antigen. Antisera to C-peptide 2, stained islet beta-cells on mouse and rat, but not monkey pancreas sections in immunocytochemical analysis. Preabsorption to the synthetic C-peptide 2, but not the synthetic mouse and rat C-peptide 1 abolished staining. In conclusion we......Mice and rats have two functional non-allelic insulin genes. By using a synthetic peptide representing a common sequence in mouse and rat C-peptide 2 as antigen, we have produced rabbit antisera specific for an epitope which is not present in mouse or rat C-peptide 1. Long-term immunization did...... not seem to increase the end point titre as tested in direct ELISA. The specificity of the antiserum was determined by competitive ELISA and histochemistry on pancreas sections. Only the synthetic C-peptide 2, but not the homologous synthetic C-peptide 1 from mouse and rat competed efficiently in ELISA...

  1. Therapeutic peptides for cancer therapy. Part I - peptide inhibitors of signal transduction cascades.

    Science.gov (United States)

    Bidwell, Gene L; Raucher, Drazen

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that inhibit signal transduction cascades are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Given our current knowledge of protein sequences, structures and interaction interfaces, therapeutic peptides that inhibit interactions of interest are easily designed. These peptides are advantageous because they are highly specific for the interaction of interest, and they are much more easily developed than small molecule inhibitors of the same interactions. The main hurdle to application of peptides for cancer therapy is their poor pharmacokinetic and biodistribution parameters. Therefore, successful development of peptide delivery vectors could potentially make possible the use of this new and very promising class of anticancer agents.

  2. Antimicrobial Peptides, Infections and the Skin Barrier

    DEFF Research Database (Denmark)

    Clausen, Maja Lisa; Agner, Tove

    2016-01-01

    The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis and trans......The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis...

  3. Dual-purpose linker for alpha helix stabilization and imaging agent conjugation to glucagon-like peptide-1 receptor ligands.

    Science.gov (United States)

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M

    2015-02-18

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents.

  4. Antimicrobial Peptides in Biomedical Device Manufacturing

    Directory of Open Access Journals (Sweden)

    Martijn Riool

    2017-08-01

    Full Text Available Over the past decades the use of medical devices, such as catheters, artificial heart valves, prosthetic joints, and other implants, has grown significantly. Despite continuous improvements in device design, surgical procedures, and wound care, biomaterial-associated infections (BAI are still a major problem in modern medicine. Conventional antibiotic treatment often fails due to the low levels of antibiotic at the site of infection. The presence of biofilms on the biomaterial and/or the multidrug-resistant phenotype of the bacteria further impair the efficacy of antibiotic treatment. Removal of the biomaterial is then the last option to control the infection. Clearly, there is a pressing need for alternative strategies to prevent and treat BAI. Synthetic antimicrobial peptides (AMPs are considered promising candidates as they are active against a broad spectrum of (antibiotic-resistant planktonic bacteria and biofilms. Moreover, bacteria are less likely to develop resistance to these rapidly-acting peptides. In this review we highlight the four main strategies, three of which applying AMPs, in biomedical device manufacturing to prevent BAI. The first involves modification of the physicochemical characteristics of the surface of implants. Immobilization of AMPs on surfaces of medical devices with a variety of chemical techniques is essential in the second strategy. The main disadvantage of these two strategies relates to the limited antibacterial effect in the tissue surrounding the implant. This limitation is addressed by the third strategy that releases AMPs from a coating in a controlled fashion. Lastly, AMPs can be integrated in the design and manufacturing of additively manufactured/3D-printed implants, owing to the physicochemical characteristics of the implant material and the versatile manufacturing technologies compatible with antimicrobials incorporation. These novel technologies utilizing AMPs will contribute to development of novel

  5. Antimicrobial Peptides in Biomedical Device Manufacturing

    Science.gov (United States)

    Riool, Martijn; de Breij, Anna; Drijfhout, Jan W.; Nibbering, Peter H.; Zaat, Sebastian A. J.

    2017-08-01

    Over the past decades the use of medical devices, such as catheters, artificial heart valves, prosthetic joints and other implants, has grown significantly. Despite continuous improvements in device design, surgical procedures and wound care, biomaterial-associated infections (BAI) are still a major problem in modern medicine. Conventional antibiotic treatment often fails due to the low levels of antibiotic at the site of infection. The presence of biofilms on the biomaterial and/or the multidrug-resistant phenotype of the bacteria further impair the efficacy of antibiotic treatment. Removal of the biomaterial is then the last option to control the infection. Clearly, there is a pressing need for alternative strategies to prevent and treat BAI. Synthetic antimicrobial peptides (AMPs) are considered promising candidates as they are active against a broad spectrum of (antibiotic-resistant) planktonic bacteria and biofilms. Moreover, bacteria are less likely to develop resistance to these rapidly-acting peptides. In this review we highlight the four main strategies, three of which applying AMPs, in biomedical device manufacturing to prevent BAI. The first involves modification of the physicochemical characteristics of the surface of implants. Immobilization of AMPs on surfaces of medical devices with a variety of chemical techniques is essential in the second strategy. The main disadvantage of these two strategies relates to the limited antibacterial effect in the tissue surrounding the implant. This limitation is addressed by the third strategy that releases AMPs from a coating in a controlled fashion. Lastly, AMPs can be integrated in the design and manufacturing of additively manufactured / 3D-printed implants, owing to the physicochemical characteristics of the implant material and the versatile manufacturing technologies compatible with antimicrobials incorporation. These novel technologies utilizing AMPs will contribute to development of novel and safe

  6. "Living High-Training Low" improved weight loss and glucagon-like peptide-1 level in a 4-week weight loss program in adolescents with obesity: A pilot study.

    Science.gov (United States)

    Yang, Qin; Huang, Guoyuan; Tian, Qianqian; Liu, Wei; Sun, Xiangdong; Li, Na; Sun, Shunli; Zhou, Tang; Wu, Nana; Wei, Yuqin; Chen, Peijie; Wang, Ru

    2018-02-01

    "Living High-Training Low" (LHTL) is effective for the improvement of athletic ability; however, little is known about the effect of LHTL on obese individuals. The present study determined whether LHTL would have favorable influence on body composition, rebalance the appetite hormones, and explore the underlying mechanism. Adolescents with obesity [body mass index (BMI) >30 kg/m] were randomly assigned to "Living Low-Training Low" (LLTL, n = 19) group that slept in a normobaric normoxia condition and the LHTL (n = 16) group slept in a normobaric hypoxia room (14.7% PO2 ∼2700 m). Both groups underwent the same aerobic exercise training program. Morphological, blood lipids, and appetite hormones were measured and assessed. After the intervention, the body composition improved in both groups, whereas reductions in body weight (BW), BMI, and lean body mass increased significantly in the LHTL group (all, P weight loss safely and efficiently as compared to LLTL and increase the plasma GLP-1 levels that may be mediated by IL-6 to rebalance the appetite. Thus, an efficient method to treat obesity and prevent weight regain by appetite rebalance in hypoxia condition was established.

  7. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering.

    Science.gov (United States)

    Gao, Xiang; Zhang, Xiaohong; Song, Jinlin; Xu, Xiao; Xu, Anxiu; Wang, Mengke; Xie, Bingwu; Huang, Enyi; Deng, Feng; Wei, Shicheng

    2015-01-01

    The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL) nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA) was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface. Contact angle measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of pDA and peptides on PCL nanofiber surface. Our results demonstrated that surface modification with osteoinductive peptides could improve cytocompatibility of nanofibers in terms of cell adhesion, spreading, and proliferation. Most importantly, Alizarin Red S staining, quantitative real-time polymerase chain reaction, immunostaining, and Western blot revealed that human mesenchymal stem cells cultured on aligned nanofibers with osteoinductive peptides exhibited enhanced osteogenic differentiation potential than cells on randomly oriented nanofibers. Furthermore, the aligned nanofibers with osteoinductive peptides could direct osteogenic differentiation of human mesenchymal stem cells even in the absence of osteoinducting factors, suggesting superior osteogenic efficacy of biomimetic design that combines the advantages of osteoinductive peptide signal and highly ordered nanofibers on cell fate decision. The presented peptide-decorated bone-mimic nanofiber scaffolds hold a promising potential in the context of bone tissue engineering.

  8. Proteolytic signatures define unique thrombin-derived peptides present in human wound fluid in vivo.

    Science.gov (United States)

    Saravanan, Rathi; Adav, Sunil S; Choong, Yeu Khai; van der Plas, Mariena J A; Petrlova, Jitka; Kjellström, Sven; Sze, Siu Kwan; Schmidtchen, Artur

    2017-10-13

    The disease burden of failing skin repair and non-healing ulcers is extensive. There is an unmet need for new diagnostic approaches to better predict healing activity and wound infection. Uncontrolled and excessive protease activity, of endogenous or bacterial origin, has been described as a major contributor to wound healing impairments. Proteolytic peptide patterns could therefore correlate and "report" healing activity and infection. This work describes a proof of principle delineating a strategy by which peptides from a selected protein, human thrombin, are detected and attributed to proteolytic actions. With a particular focus on thrombin-derived C-terminal peptides (TCP), we show that distinct peptide patterns are generated in vitro by the human S1 peptidases human neutrophil elastase and cathepsin G, and the bacterial M4 peptidases Pseudomonas aeruginosa elastase and Staphylococcus aureus aureolysin, respectively. Corresponding peptide sequences were identified in wound fluids from acute and non-healing ulcers, and notably, one peptide, FYT21 (FYTHVFRLKKWIQKVIDQFGE), was only present in wound fluid from non-healing ulcers colonized by P. aeruginosa and S. aureus. Our result is a proof of principle pointing at the possibility of defining peptide biomarkers reporting distinct proteolytic activities, of potential implication for improved diagnosis of wound healing and infection.

  9. Micropattern printing of adhesion, spreading, and migration peptides on poly(tetrafluoroethylene) films to promote endothelialization.

    Science.gov (United States)

    Gauvreau, Virginie; Laroche, Gaétan

    2005-01-01

    We report here the development of an original multistep micropatterning technique for printing peptides on surfaces, based on the ink-jet printer technology. Contrary to most micropatterning methods used nowadays, this technique is advantageous because it allows displaying 2D-arrays of multiple biomolecules. Moreover, this low cost procedure allies the advantages of computer-aided design with high flexibility and reproducibility. A Hewlett-Packard printer was modified to print peptide solutions, and Adobe Illustrator was used as the graphic-editing software to design high-resolution checkerboard-like micropatterns. In a first step, PTFE films were treated with ammonia plasma to introduce amino groups on the surface. These chemical functionalities were reacted with heterobifunctional cross-linker sulfo-succinimidyl 4-(N-maleimidomethyl)cycloexane-1-carboxylate (S-SMCC) to allow the subsequent surface covalent conjugation of various cysteine-modified peptides to the polymer substrate. These peptidic molecules containing RGD and WQPPRARI sequences were selected for their adhesive, spreading, and migrational properties toward endothelial cells. On one hand, our data demonstrated that the initial cell adhesion does not depend on the chemical structure and combination of the peptides covalently bonded either through conventional conjugation or micropatterning. On the other hand, spreading and migration of endothelial cells is clearly enhanced while coconjugating the GRGDS peptide in conjunction with WQPPRARI. This behavior is further improved by micropatterning these peptides on specific areas of the polymer surface.

  10. Antimicrobial activity of the indolicidin-derived novel synthetic peptide In-58.

    Science.gov (United States)

    Vasilchenko, A S; Vasilchenko, A V; Pashkova, T M; Smirnova, M P; Kolodkin, N I; Manukhov, I V; Zavilgelsky, G B; Sizova, E A; Kartashova, O L; Simbirtsev, A S; Rogozhin, E A; Duskaev, G K; Sycheva, M V

    2017-12-01

    Natural peptides with antimicrobial activity are extremely diverse, and peptide synthesis technologies make it possible to significantly improve their properties for specific tasks. Here, we investigate the biological properties of the natural peptide indolicidin and the indolicidin-derived novel synthetic peptide In-58. In-58 was generated by replacing all tryptophan residues on phenylalanine in D-configuration; the α-amino group in the main chain also was modified by unsaturated fatty acid. Compared with indolicidin, In-58 is more bactericidal, more resistant to proteinase K, and less toxic to mammalian cells. Using molecular physics approaches, we characterized the action of In-58 on bacterial cells at the cellular level. Also, we have found that studied peptides damage bacterial membranes. Using the Escherichia coli luminescent biosensor strain MG1655 (pcolD'::lux), we investigated the action of indolicidin and In-58 at the subcellular level. At subinhibitory concentrations, indolicidin and In-58 induced an SOS response. Our data suggest that indolicidin damages the DNA, but bacterial membrane perturbation is its principal mode of action. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  11. Antioxidant activity of yoghurt peptides: Part 2 – Characterisationof peptide fractions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Baron, Caroline; Nielsen, Nina Skall

    2010-01-01

    the peptides identified contained at least one proline residue. Some of the identified peptides included the hydrophobic amino acid residues Val or Leu at the N-terminus and Pro, His or Tyr in the amino acid sequence, which is characteristic of antioxidant peptides. In addition, the yoghurt contained...

  12. Connecting peptide (c-peptide) and the duration of diabetes mellitus ...

    African Journals Online (AJOL)

    Objective: C-peptide is derived from proinsulin and it is secreted in equimolar concentration with insulin. Plasma C-peptide is more stable than insulin and it provides an indirect measure of insulin secretory reserve and beta cell function. To determine relationship between C-peptide and duration of diabetes mellitus, age, ...

  13. Radiometallating antibodies and autoantigenic peptides

    International Nuclear Information System (INIS)

    Mercer-Smith, J.A.; Lewis, D.; Cole, D.A.; Newmyer, S.L.; Schulte, L.D.; Mixon, P.L.; Schreyer, S.A.; Burns, T.P.; Roberts, J.C.; Figard, S.D.; McCormick, D.J.; Lennon, V.A.; Hayashi, M.; Lavallee, D.K.

    1991-01-01

    We have developed methods to radiolabel large molecules, using porphyrins as bifunctional chelating agents for radiometals. The porphyrins are substituted with an N- benzyl group to activate them for radiometallation under mild reaction conditions. Porphyrins that have one functional group for covalent attachment to other molecules cannot cause crosslinking. We have examined the labeling chemistry for antibodies and have developed methods to label smaller biologically active molecules, such as autoantigenic peptides (fragments of the acetylcholine receptor), which are pertinent to myasthenia gravis research. The methods of covalent attachment of these bifunctional chelating agents to large molecules, the radiometallation chemistry, and biological characterization of the radiolabeled compounds will be discussed

  14. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens Peter; Hansen, Lasse H; Terzic, Dijana

    2014-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  15. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens P; Holst Hansen, Lasse; Terzic, Dijana

    2015-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  16. Synthesis of radioiodinated labeled peptides

    International Nuclear Information System (INIS)

    Matloobi, M.; Rafii, H.; Beigi, D.; Khalaj, A.; Kamali-Dehghan, M.

    2003-01-01

    Optimization of radioiodination of peptides is covered by both a direct method in which a constituent tyrosine residue is labeled and indirect method by using an iodinated derivative (SIB) of N succinimidyl 3-(tri-n-butylstannyl) benzoate (ATE) as the intermediate. Radioiodination of IgG and FMLF were performed by direct method using Chloramine-T as an oxidant but since Formyl-Methyl-Leucyl-Phenylalanine, FMLF, does not lend itself for direct radioiodination we performed labeling of FMLF by indirect method via radioiodined SIB at different pH. (author)

  17. Isolation and identification of calcium-chelating peptides from Pacific cod skin gelatin and their binding properties with calcium.

    Science.gov (United States)

    Wu, Wenfei; Li, Bafang; Hou, Hu; Zhang, Hongwei; Zhao, Xue

    2017-12-13

    A calcium-chelating peptide is considered to have the ability to improve calcium absorption. In this study, Pacific cod skin gelatin hydrolysates treated with trypsin for 120 min exhibited higher calcium-chelating activity. Sequential chromatography, involving hydroxyapatite affinity chromatography and reversed phase high performance liquid chromatography, was used for the purification of calcium-chelating peptides. Two novel peptides with the typical characteristics of collagen were sequenced as GDKGESGEAGER and GEKGEGGHR based on LC-HRMS/MS, which showed a high affinity to calcium. Calcium-peptide complexation was further characterized by ESI-MS (MS and MS/MS) and FTIR spectroscopy. The results showed that the complexation of the two peptides with calcium was conducted mainly at the ratio of 1 : 1. The amino terminal group and the peptide bond of the peptide backbone as well as the amino group of the lysine side chain and the carboxylate of the glutamate side chain were the possible calcium binding sites for the two peptides. Meanwhile, several amino acid side chain groups, including the hydroxyl (Ser) and carboxylate (Asp) of GDKGESGEAGER and the imine (His) of GEKGEGGHR, were crucial in the complexation. The arginine residue in GEKGEGGHR also participated in the calcium coordination. Additionally, several active fragments with calcium-chelating activity were obtained using MS/MS spectra, including GDKGESGEAGE, GEAGER, GEK, EKG and KGE. This study suggests that gelatin-derived peptides have the potential to be used as a calcium-chelating ingredient to combat calcium deficiency.

  18. Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food.

    Science.gov (United States)

    Agyei, Dominic; Acquah, Caleb; Tan, Kei Xian; Hii, Hieng Kok; Rajendran, Subin R C K; Udenigwe, Chibuike C; Danquah, Michael K

    2018-01-01

    Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (K d ) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.

  19. High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery.

    Science.gov (United States)

    Turchetto, Jeremy; Sequeira, Ana Filipa; Ramond, Laurie; Peysson, Fanny; Brás, Joana L A; Saez, Natalie J; Duhoo, Yoan; Blémont, Marilyne; Guerreiro, Catarina I P D; Quinton, Loic; De Pauw, Edwin; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large

  20. Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide

    Directory of Open Access Journals (Sweden)

    Carmine Pasquale Cerrato

    2017-06-01

    Full Text Available Previously, we designed and synthesized a library of mitochondrial antioxidative cell-penetrating peptides (mtCPPs superior to the parent peptide, SS31, to protect mitochondria from oxidative damage. A library of antioxidative glutathione analogs called glutathione peptides (UPFs, exceptional in hydroxyl radical elimination compared with glutathione, were also designed and synthesized. Here, a follow-up study is described, investigating the effects of the most promising members from both libraries on reactive oxidative species scavenging ability. None of the peptides influenced cell viability at the concentrations used. Fluorescence microscopy studies showed that the fluorescein-mtCPP1-UPF25 (mtgCPP internalized into cells, and spectrofluorometric analysis determined the presence and extent of peptide into different cell compartments. mtgCPP has superior antioxidative activity compared with mtCPP1 and UPF25 against H2O2 insult, preventing ROS formation by 2- and 3-fold, respectively. Moreover, we neither observed effects on mitochondrial membrane potential nor production of ATP. These data indicate that mtgCPP is targeting mitochondria, protecting them from oxidative damage, while also being present in the cytosol. Our hypothesis is based on a synergistic effect resulting from the fused peptide. The mitochondrial peptide segment is targeting mitochondria, whereas the glutathione analog peptide segment is active in the cytosol, resulting in increased scavenging ability.

  1. peptide

    Indian Academy of Sciences (India)

    Prakash

    effects can be observed under certain conditions but these are not always .... of proteins with amyloid characteristics in muscle (Jayaraman et al. 2008) ... not enhance the growth of dangerous fibrils generated at pH. 7.4. ..... The lower chart shows Aβ(25-35) aggregation kinetics during the first 4 min of monitoring. Results are ...

  2. Peptide hormones and lung cancer.

    Science.gov (United States)

    Moody, T W

    2006-03-01

    Several peptide hormones have been identified which alter the proliferation of lung cancer. Small cell lung cancer (SCLC), which is a neuroendocrine cancer, produces and secretes gastrin releasing peptide (GRP), neurotensin (NT) and adrenomedullin (AM) as autocrine growth factors. GRP, NT and AM bind to G-protein coupled receptors causing phosphatidylinositol turnover or elevated cAMP in SCLC cells. Addition of GRP, NT or AM to SCLC cells causes altered expression of nuclear oncogenes, such as c-fos, and stimulation of growth. Antagonists have been developed for GRP, NT and AM receptors which function as cytostatic agents and inhibit SCLC growth. Growth factor antagonists, such as the NT1 receptor antagonist SR48692, facilitate the ability of chemotherapeutic drugs to kill lung cancer cells. It remains to be determined if GRP, NT and AM receptors will served as molecular targets, for development of new therapies for the treatment of SCLC patients. Non-small cell lung cancer (NSCLC) cells also have a high density of GRP, NT, AM and epidermal growth factor (EGF) receptors. Several NSCLC patients with EGF receptor mutations respond to gefitinib, a tyrosine kinase inhibitor. Gefitinib relieves NSCLC symptoms, maintaining stable disease in patients who are not eligible for systemic chemotherapy. It is important to develop new therapeutic approaches using translational research techniques for the treatment of lung cancer patients.

  3. Synthetic mimics of antimicrobial peptides.

    Science.gov (United States)

    Som, Abhigyan; Vemparala, Satyavani; Ivanov, Ivaylo; Tew, Gregory N

    2008-01-01

    Infectious diseases and antibiotic resistance are now considered the most imperative global healthcare problem. In the search for new treatments, host defense, or antimicrobial, peptides have attracted considerable attention due to their various unique properties; however, attempts to develop in vivo therapies have been severely limited. Efforts to develop synthetic mimics of antimicrobial peptides (SMAMPs) have increased significantly in the last decade, and this review will focus primarily on the structural evolution of SMAMPs and their membrane activity. This review will attempt to make a bridge between the design of SMAMPs and the fundamentals of SMAMP-membrane interactions. In discussions regarding the membrane interaction of SMAMPs, close attention will be paid to the lipid composition of the bilayer. Despite many years of study, the exact conformational aspects responsible for the high selectivity of these AMPs and SMAMPs toward bacterial cells over mammalian cells are still not fully understood. The ability to design SMAMPs that are potently antimicrobial, yet nontoxic to mammalian cells has been demonstrated with a variety of molecular scaffolds. Initial animal studies show very good tissue distribution along with more than a 4-log reduction in bacterial counts. The results on SMAMPs are not only extremely promising for novel antibiotics, but also provide an optimistic picture for the greater challenge of general proteomimetics.

  4. Driving engineering of novel antimicrobial peptides from simulations of peptide-micelle interactions

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Langham, Allison A; Kaznessis, Yiannis N

    2006-01-01

    Simulations of antimicrobial peptides in membrane mimics can provide the high resolution, atomistic picture that is necessary to decipher which sequence and structure components are responsible for activity and toxicity. With such detailed insight, engineering new sequences that are active but non...... peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural...... classes of peptides, helical and beta-sheet and demonstrate how simulations can assist in engineering of novel antimicrobials with therapeutic potential....

  5. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin.

    Science.gov (United States)

    Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2012-03-01

    Lactoferricin and lactoferrampin are two antimicrobial peptides found in the N-terminal lobe of bovine lactoferrin with broad spectrum antimicrobial activity against a range of Gram-positive and Gram-negative bacteria as well as Candida albicans. A heterodimer comprised of lactoferrampin joined to a fragment of lactoferricin was recently reported in which these two peptides were joined at their C-termini through the two amino groups of a single Lys residue (Bolscher et al., 2009, Biochimie 91(1):123-132). This hybrid peptide, termed LFchimera, has significantly higher antimicrobial activity compared to the individual peptides or an equimolar mixture of the two. In this work, the underlying mechanism behind the increased antibacterial activity of LFchimera was investigated. Differential scanning calorimetry studies demonstrated that all the peptides influenced the thermotropic phase behaviour of anionic phospholipid suspensions. Calcein leakage and vesicle fusion experiments with anionic liposomes revealed that LFchimera had enhanced membrane perturbing properties compared to the individual peptides. Peptide structures were evaluated using circular dichroism and NMR spectroscopy to gain insight into the structural features of LFchimera that contribute to the increased antimicrobial activity. The NMR solution structure, determined in a miscible co-solvent mixture of chloroform, methanol and water, revealed that the Lys linkage increased the helical content in LFchimera compared to the individual peptides, but it did not fix the relative orientations of lactoferricin and lactoferrampin with respect to each other. The structure of LFchimera provides insight into the conformation of this peptide in a membranous environment and improves our understanding of its antimicrobial mechanism of action. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A unified conformational selection and induced fit approach to protein-peptide docking.

    Directory of Open Access Journals (Sweden)

    Mikael Trellet

    Full Text Available Protein-peptide interactions are vital for the cell. They mediate, inhibit or serve as structural components in nearly 40% of all macromolecular interactions, and are often associated with diseases, making them interesting leads for protein drug design. In recent years, large-scale technologies have enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding domain families. Yet, the paucity of data regarding their molecular binding mechanisms together with their inherent flexibility makes the structural prediction of protein-peptide interactions very challenging. This leaves flexible docking as one of the few amenable computational techniques to model these complexes. We present here an ensemble, flexible protein-peptide docking protocol that combines conformational selection and induced fit mechanisms. Starting from an ensemble of three peptide conformations (extended, a-helix, polyproline-II, flexible docking with HADDOCK generates 79.4% of high quality models for bound/unbound and 69.4% for unbound/unbound docking when tested against the largest protein-peptide complexes benchmark dataset available to date. Conformational selection at the rigid-body docking stage successfully recovers the most relevant conformation for a given protein-peptide complex and the subsequent flexible refinement further improves the interface by up to 4.5 Å interface RMSD. Cluster-based scoring of the models results in a selection of near-native solutions in the top three for ∼75% of the successfully predicted cases. This unified conformational selection and induced fit approach to protein-peptide docking should open the route to the modeling of challenging systems such as disorder-order transitions taking place upon binding, significantly expanding the applicability limit of biomolecular interaction modeling by docking.

  7. Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hsiu-Ying, E-mail: hychung@mail.fcu.edu.tw; Li, Cheng Che

    2013-03-01

    A highly biocompatible peptide, triplet repeats of asparagine-serine-serine (3NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva for 24 h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3NSS peptide compared to samples without peptide treatment. - Highlights: Black-Right-Pointing-Pointer The degree of nanohardness recovery of enamel was 4 times greater with the aid of 3NSS peptide. Black-Right-Pointing-Pointer 3NSS peptide promoted the formation of hydroxyapatites with

  8. Microstructure and nanomechanical properties of enamel remineralized with asparagine–serine–serine peptide

    International Nuclear Information System (INIS)

    Chung, Hsiu-Ying; Li, Cheng Che

    2013-01-01

    A highly biocompatible peptide, triplet repeats of asparagine–serine–serine (3NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva for 24 h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3NSS peptide compared to samples without peptide treatment. - Highlights: ► The degree of nanohardness recovery of enamel was 4 times greater with the aid of 3NSS peptide. ► 3NSS peptide promoted the formation of hydroxyapatites with a smaller crystalline size (14 nm). ► 3NSS

  9. GuiTope: an application for mapping random-sequence peptides to protein sequences.

    Science.gov (United States)

    Halperin, Rebecca F; Stafford, Phillip; Emery, Jack S; Navalkar, Krupa Arun; Johnston, Stephen Albert

    2012-01-03

    Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.

  10. GuiTope: an application for mapping random-sequence peptides to protein sequences

    Directory of Open Access Journals (Sweden)

    Halperin Rebecca F

    2012-01-01

    Full Text Available Abstract Background Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. Results GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. Conclusions GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.

  11. Human Platelet-Rich Plasma- and Extracellular Matrix-Derived Peptides Promote Impaired Cutaneous Wound Healing In Vivo

    Science.gov (United States)

    Demidova-Rice, Tatiana N.; Wolf, Lindsey; Deckenback, Jeffry; Hamblin, Michael R.; Herman, Ira M.

    2012-01-01

    Previous work in our laboratory has described several pro-angiogenic short peptides derived from endothelial extracellular matrices degraded by bacterial collagenase. Here we tested whether these peptides could stimulate wound healing in vivo. Our experiments demonstrated that a peptide created as combination of fragments of tenascin X and fibrillin 1 (comb1) applied into cranial dermal wounds created in mice treated with cyclophosphamide to impair wound healing, can improve the rate of wound closure. Furthermore, we identify and characterize a novel peptide (UN3) created and modified from two naturally-occurring peptides, which are present in human platelet-rich plasma. In vitro testing of UN3 demonstrates that it causes a 50% increase in endothelial proliferation, 250% increase in angiogenic response and a tripling of epithelial cell migration in response to injury. Results of in vivo experiments where comb1 and UN3 peptides were added together to cranial wounds in cyclophosphamide-treated mice leads to improvement of wound vascularization as shown by an increase of the number of blood vessels present in the wound beds. Application of the peptides markedly promotes cellular responses to injury and essentially restores wound healing dynamics to those of normal, acute wounds in the absence of cyclophosphamide impairment. Our current work is aimed at understanding the mechanisms underlying the stimulatory effects of these peptides as well as identification of the cellular receptors mediating these effects. PMID:22384158

  12. Current trends in mass spectrometry of peptides and proteins: Application to veterinary and sports-doping control.

    Science.gov (United States)

    van den Broek, Irene; Blokland, Marco; Nessen, Merel A; Sterk, Saskia

    2015-01-01

    Detection of misuse of peptides and proteins as growth promoters is a major issue for sport and food regulatory agencies. The limitations of current analytical detection strategies for this class of compounds, in combination with their efficacy in growth-promoting effects, make peptide and protein drugs highly susceptible to abuse by either athletes or farmers who seek for products to illicitly enhance muscle growth. Mass spectrometry (MS) for qualitative analysis of peptides and proteins is well-established, particularly due to tremendous efforts in the proteomics community. Similarly, due to advancements in targeted proteomic strategies and the rapid growth of protein-based biopharmaceuticals, MS for quantitative analysis of peptides and proteins is becoming more widely accepted. These continuous advances in MS instrumentation and MS-based methodologies offer enormous opportunities for detection and confirmation of peptides and proteins. Therefore, MS seems to be the method of choice to improve the qualitative and quantitative analysis of peptide and proteins with growth-promoting properties. This review aims to address the opportunities of MS for peptide and protein analysis in veterinary control and sports-doping control with a particular focus on detection of illicit growth promotion. An overview of potential peptide and protein targets, including their amino acid sequence characteristics and current MS-based detection strategies is, therefore, provided. Furthermore, improvements of current and new detection strategies with state-of-the-art MS instrumentation are discussed for qualitative and quantitative approaches. © 2013 Wiley Periodicals, Inc.

  13. Novel DOTA-based prochelator for divalent peptide vectorization: synthesis of dimeric bombesin analogues for multimodality tumor imaging and therapy.

    Science.gov (United States)

    Abiraj, Keelara; Jaccard, Hugues; Kretzschmar, Martin; Helm, Lothar; Maecke, Helmut R

    2008-07-28

    Dimeric peptidic vectors, obtained by the divalent grafting of bombesin analogues on a newly synthesized DOTA-based prochelator, showed improved qualities as tumor targeted imaging probes in comparison to their monomeric analogues.

  14. Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans

    KAUST Repository

    Å mand, Helene L.; Rydberg, Hanna A.; Fornander, Louise H.; Lincoln, Per; Nordé n, Bengt; Esbjö rner, Elin K.

    2012-01-01

    Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved

  15. Prediction of twin-arginine signal peptides

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nielsen, Henrik; Widdick, D.

    2005-01-01

    expressions, whereas hydrophobicity discrimination of Tat- and Sec- signal peptides is carried out by an artificial neural network. A potential cleavage site of the predicted Tat signal peptide is also reported. The TatP prediction server is available as a public web server at http://www.cbs.dtu.dk/services/TatP/....

  16. Double quick, double click reversible peptide "stapling".

    Science.gov (United States)

    Grison, Claire M; Burslem, George M; Miles, Jennifer A; Pilsl, Ludwig K A; Yeo, David J; Imani, Zeynab; Warriner, Stuart L; Webb, Michael E; Wilson, Andrew J

    2017-07-01

    The development of constrained peptides for inhibition of protein-protein interactions is an emerging strategy in chemical biology and drug discovery. This manuscript introduces a versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation using BID and RNase S peptides as models. Dibromomaleimide is used to constrain BID and RNase S peptide sequence variants bearing cysteine (Cys) or homocysteine ( h Cys) amino acids spaced at i and i + 4 positions by double substitution. The constraint can be readily removed by displacement of the maleimide using excess thiol. This new constraining methodology results in enhanced α-helical conformation (BID and RNase S peptide) as demonstrated by circular dichroism and molecular dynamics simulations, resistance to proteolysis (BID) as demonstrated by trypsin proteolysis experiments and retained or enhanced potency of inhibition for Bcl-2 family protein-protein interactions (BID), or greater capability to restore the hydrolytic activity of the RNAse S protein (RNase S peptide). Finally, use of a dibromomaleimide functionalized with an alkyne permits further divergent functionalization through alkyne-azide cycloaddition chemistry on the constrained peptide with fluorescein, oligoethylene glycol or biotin groups to facilitate biophysical and cellular analyses. Hence this methodology may extend the scope and accessibility of peptide stapling.

  17. Protein identification by peptide mass fingerprinting

    DEFF Research Database (Denmark)

    Hjernø, Karin

    2007-01-01

      Peptide mass fingerprinting is an effective way of identifying, e.g., gel-separated proteins, by matching experimentally obtained peptide mass data against large databases. However, several factors are known to influence the quality of the resulting matches, such as proteins contaminating the s...

  18. Peptide Mass Fingerprinting of Egg White Proteins

    Science.gov (United States)

    Alty, Lisa T.; LaRiviere, Frederick J.

    2016-01-01

    Use of advanced mass spectrometry techniques in the undergraduate setting has burgeoned in the past decade. However, relatively few undergraduate experiments examine the proteomics tools of protein digestion, peptide accurate mass determination, and database searching, also known as peptide mass fingerprinting. In this experiment, biochemistry…

  19. Practical use of natriuretic peptide measurement

    DEFF Research Database (Denmark)

    Husby, Simon; Lind, Bent; Goetze, Jens P

    2012-01-01

    To elucidate the knowledge regarding B-type natriuretic peptide (BNP)/N-terminal proBNP (NT-proBNP) measurement among doctors using this biomarker.......To elucidate the knowledge regarding B-type natriuretic peptide (BNP)/N-terminal proBNP (NT-proBNP) measurement among doctors using this biomarker....

  20. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers

    Science.gov (United States)

    Chuah, Jo-Ann; Yoshizumi, Takeshi; Kodama, Yutaka; Numata, Keiji

    2015-01-01

    Available methods in plant genetic transformation are nuclear and plastid transformations because similar procedures have not yet been established for the mitochondria. The double membrane and small size of the organelle, in addition to its large population in cells, are major obstacles in mitochondrial transfection. Here we report the intracellular delivery of exogenous DNA localized to the mitochondria of Arabidopsis thaliana using a combination of mitochondria-targeting peptide and cell-penetrating peptide. Low concentrations of peptides were sufficient to deliver DNA into the mitochondria and expression of imported DNA reached detectable levels within a short incubation period (12 h). We found that electrostatic interaction with the cell membrane is not a critical factor for complex internalization, instead, improved intracellular penetration of mitochondria-targeted complexes significantly enhanced gene transfer efficiency. Our results delineate a simple and effective peptide-based method, as a starting point for the development of more sophisticated plant mitochondrial transfection strategies.

  1. Peptide-Based Selective Inhibitors of Matrix Metalloproteinase-Mediated Activities

    Directory of Open Access Journals (Sweden)

    Margaret W. Ndinguri

    2012-11-01

    Full Text Available The matrix metalloproteinases (MMPs exhibit a broad array of activities, some catalytic and some non-catalytic in nature. An overall lack of selectivity has rendered small molecule, active site targeted MMP inhibitors problematic in execution. Inhibitors that favor few or individual members of the MMP family often take advantage of interactions outside the enzyme active site. We presently focus on peptide-based MMP inhibitors and probes that do not incorporate conventional Zn2+ binding groups. In some cases, these inhibitors and probes function by binding only secondary binding sites (exosites, while others bind both exosites and the active site. A myriad of MMP mediated-activities beyond selective catalysis can be inhibited by peptides, particularly cell adhesion, proliferation, motility, and invasion. Selective MMP binding peptides comprise highly customizable, unique imaging agents. Areas of needed improvement for MMP targeting peptides include binding affinity and stability.

  2. Determination of Disulfide Bond Connectivity of Cysteine-rich Peptide IpTx{sub a}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Won; Kim, Jim Il [Chonnam National Univ., Gwangju (Korea, Republic of); Sato, Kazuki [Fukuoka Women' s Univ., Fukuoka (Japan)

    2013-06-15

    Cysteine-rich peptides stabilized by intramolecular disulfide bonds have often been isolated from venoms of microbes, animals and plants. These peptides typically have much higher stability and improved biopharmaceutical properties compared to their linear counterparts. Therefore the correct disulfide bond formation of small proteins and peptides has been extensively studied for a better understanding of their folding mechanism and achieving efficient generation of the naturally occurring biologically active product. Imperatoxin A (IpTx{sub a}), a peptide toxin containing 6 cysteine residues, was isolated from the venom of scorpion Pandinus imperator, selectively binds the ryanodine receptors and activates Ca{sup 2+} release from sarcoplasmic reticulum (SR). IpTx{sub a} increases the binding of ryanodine to ryanodine receptors (RyRs) and encourages reconstituted single channel to induce subconductance states.

  3. Biocompatible Electroactive Tetra(aniline)-Conjugated Peptide Nanofibers for Neural Differentiation.

    Science.gov (United States)

    Arioz, Idil; Erol, Ozlem; Bakan, Gokhan; Dikecoglu, F Begum; Topal, Ahmet E; Urel, Mustafa; Dana, Aykutlu; Tekinay, Ayse B; Guler, Mustafa O

    2018-01-10

    Peripheral nerve injuries cause devastating problems for the quality of patients' lives, and regeneration following damage to the peripheral nervous system is limited depending on the degree of the damage. Use of nanobiomaterials can provide therapeutic approaches for the treatment of peripheral nerve injuries. Electroactive biomaterials, in particular, can provide a promising cure for the regeneration of nerve defects. Here, a supramolecular electroactive nanosystem with tetra(aniline) (TA)-containing peptide nanofibers was developed and utilized for nerve regeneration. Self-assembled TA-conjugated peptide nanofibers demonstrated electroactive behavior. The electroactive self-assembled peptide nanofibers formed a well-defined three-dimensional nanofiber network mimicking the extracellular matrix of the neuronal cells. Neurite outgrowth was improved on the electroactive TA nanofiber gels. The neural differentiation of PC-12 cells was more advanced on electroactive peptide nanofiber gels, and these biomaterials are promising for further use in therapeutic neural regeneration applications.

  4. Sperm-attractant peptide influences the spermatozoa swimming behavior in internal fertilization in Octopus vulgaris.

    Science.gov (United States)

    De Lisa, Emilia; Salzano, Anna Maria; Moccia, Francesco; Scaloni, Andrea; Di Cosmo, Anna

    2013-06-15

    Marine invertebrates exhibit both chemokinesis and chemotaxis phenomena, induced in most cases by the release of water-borne peptides or pheromones. In mollusks, several peptides released during egg-laying improve both male attraction and mating. Unlike other cephalopods, Octopus vulgaris adopts an indirect internal fertilization strategy. We here report on the identification and characterization of a chemoattractant peptide isolated from mature eggs of octopus females. Using two-chamber and time-lapse microscopy assays, we demonstrate that this bioactive peptide is able to increase sperm motility and induce chemotaxis by changing the octopus spermatozoa swimming behavior in a dose-dependent manner. We also provide evidence that chemotaxis in the octopus requires the presence of extracellular calcium and membrane protein phophorylation at tyrosine. This study is the first report on a sperm-activating factor in a non-free-spawning marine animal.

  5. Recent advances in protein and Peptide drug delivery: a special emphasis on polymeric nanoparticles.

    Science.gov (United States)

    Patel, Ashaben; Patel, Mitesh; Yang, Xiaoyan; Mitra, Ashim K

    2014-01-01

    Proteins and peptides are widely indicated in many diseased states. Parenteral route is the most commonly em- ployed method of administration for therapeutic proteins and peptides. However, requirement of frequent injections due to short in vivo half-life results in poor patient compliance. Non-invasive drug delivery routes such as nasal, transdermal, pulmonary, and oral offer several advantages over parenteral administration. Intrinsic physicochemical properties and low permeability across biological membrane limit protein delivery via non-invasive routes. One of the strategies to improve protein and peptide absorption is by delivering through nanostructured delivery carriers. Among nanocarriers, polymeric nanoparticles (NPs) have demonstrated significant advantages over other delivery systems. This article summarizes the application of polymeric NPs for protein and peptide drug delivery following oral, nasal, pulmonary, parenteral, transder mal, and ocular administrations.

  6. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    Science.gov (United States)

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-07-30

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.

  7. Glucagon-like peptide-1 analogues: An overview

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2013-01-01

    Full Text Available Abnormalities of the incretin axis have been implicated in the pathogenesis of type 2 diabetes mellitus. Glucagon-like peptide-1 (GLP-1 and gastroinhibitory intestinal peptide constitutes >90% of all the incretin function. Augmentation of GLP-1 results in improvement of beta cell health in a glucose-dependant manner (post-prandial hyperglycemia and suppression of glucagon (fasting hyperglycemia, amongst other beneficial pleiotropic effects. Native GLP-1 has a very short plasma half-life and novel methods have been developed to augment its half life, such that its anti-hyperglycemic effects can be exploited. They can be broadly classified as exendin-based therapies (exenatide, exenatide once weekly, DPP-4-resistant analogues (lixisenatide, albiglutide, and analogues of human GLP-1 (liraglutide, taspoglutide. Currently, commercially available analogues are exenatide, exenatide once weekly, and liraglutide. This review aims to provide an overview of most GLP-1 analogues.

  8. Semi-automated microwave assisted solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren Ljungberg

    with microwaves for SPPS has gained in popularity as it for many syntheses has provided significant improvement in terms of speed, purity, and yields, maybe especially in the synthesis of long and "difficult" peptides. Thus, precise microwave heating has emerged as one new parameter for SPPS, in addition...... to coupling reagents, resins, solvents etc. We have previously reported on microwave heating to promote a range of solid-phase reactions in SPPS. Here we present a new, flexible semi-automated instrument for the application of precise microwave heating in solid-phase synthesis. It combines a slightly modified...... Biotage Initiator microwave instrument, which is available in many laboratories, with a modified semi-automated peptide synthesizer from MultiSynTech. A custom-made reaction vessel is placed permanently in the microwave oven, thus the reactor does not have to be moved between steps. Mixing is achieved...

  9. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry.

    Science.gov (United States)

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2010-11-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000-15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert's visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition.

  10. Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide.

    Science.gov (United States)

    Ye, Huijun; Wang, Libing; Huang, Renliang; Su, Rongxin; Liu, Boshi; Qi, Wei; He, Zhimin

    2015-10-14

    The aim of this study was to explore the influence of amphiphilic and zwitterionic structures on the resistance of protein adsorption to peptide self-assembled monolayers (SAMs) and gain insight into the associated antifouling mechanism. Two kinds of cysteine-terminated heptapeptides were studied. One peptide had alternating hydrophobic and hydrophilic residues with an amphiphilic sequence of CYSYSYS. The other peptide (CRERERE) was zwitterionic. Both peptides were covalently attached onto gold substrates via gold-thiol bond formation. Surface plasmon resonance analysis results showed that both peptide SAMs had ultralow or low protein adsorption amounts of 1.97-11.78 ng/cm2 in the presence of single proteins. The zwitterionic peptide showed relatively higher antifouling ability with single proteins and natural complex protein media. We performed molecular dynamics simulations to understand their respective antifouling behaviors. The results indicated that strong surface hydration of peptide SAMs contributes to fouling resistance by impeding interactions with proteins. Compared to the CYSYSYS peptide, more water molecules were predicted to form hydrogen-bonding interactions with the zwitterionic CRERERE peptide, which is in agreement with the antifouling test results. These findings reveal a clear relation between peptide structures and resistance to protein adsorption, facilitating the development of novel peptide-containing antifouling materials.

  11. Peptide ligands for targeting the extracellular domain of EGFR: Comparison between linear and cyclic peptides.

    Science.gov (United States)

    Williams, Tyrslai M; Sable, Rushikesh; Singh, Sitanshu; Vicente, Maria Graca H; Jois, Seetharama D

    2018-02-01

    Colorectal cancer (CRC) is the third most common solid internal malignancy among cancers. Early detection of cancer is key to increasing the survival rate of colorectal cancer patients. Overexpression of the EGFR protein is associated with CRC. We have designed a series of peptides that are highly specific for the extracellular domain of EGFR, based on our earlier studies on linear peptides. The previously reported linear peptide LARLLT, known to bind to EGFR, was modified with the goals of increasing its stability and its specificity toward EGFR. Peptide modifications, including D-amino acid substitution, cyclization, and chain reversal, were investigated. In addition, to facilitate labeling of the peptide with a fluorescent dye, an additional lysine residue was introduced onto the linear (KLARLLT) and cyclic peptides cyclo(KLARLLT) (Cyclo.L1). The lysine residue was also converted into an azide group in both a linear and reversed cyclic peptide sequences cyclo(K(N3)larllt) (Cyclo.L1.1) to allow for subsequent "click" conjugation. The cyclic peptides showed enhanced binding to EGFR by SPR. NMR and molecular modeling studies suggest that the peptides acquire a β-turn structure in solution. In vitro stability studies in human serum show that the cyclic peptide is more stable than the linear peptide. © 2017 John Wiley & Sons A/S.

  12. New dendrimer - Peptide host - Guest complexes: Towards dendrimers as peptide carriers

    DEFF Research Database (Denmark)

    Boas, Ulrik; Sontjens, S.H.M.; Jensen, Knud Jørgen

    2002-01-01

    Adamantyl urea and adamantyl thiourea modified poly(propylene imine) dendrimers act as hosts for N-terminal tert-butoxycarbonyl (Boc)-protected peptides and form chloroform-soluble complexes. investigations with NMR spectroscopy show that the peptide is bound to the dendrimer by ionic interactions...... between the dendrimer outer shell tertiary amines and the C-terminal carboxylic acid of the peptide, and also through host-urea to peptide-amide hydrogen bonding. The hydrogen-bonding nature of the peptide dendrimer interactions was further confirmed by using Fourier transform IR spectroscopy, for which...... the NH- and CO-stretch signals of the peptide amide moieties shift towards lower wave-numbers upon complexation with the dendrimer. Spatial analysis of the complexes with NOESY spectroscopy generally shows close proximity of the N-terminal Boc group of the peptide to the peripheral adamantyl groups...

  13. Tumor-targeting peptides from combinatorial libraries*

    Science.gov (United States)

    Liu, Ruiwu; Li, Xiaocen; Xiao, Wenwu; Lam, Kit S.

    2018-01-01

    Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges infighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors. PMID:27210583

  14. Development of novel ligands for peptide GPCRs.

    Science.gov (United States)

    Moran, Brian M; McKillop, Aine M; O'Harte, Finbarr Pm

    2016-12-01

    Incretin based glucagon-like peptide-1 receptor (GLP-1R) agonists which target a G-protein coupled receptor (GPCR) are currently used in the treatment of type 2 diabetes. This review focuses on GPCRs from pancreatic β-cells, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucagon, somatostatin, pancreatic polypeptide (PP), cholecystokinin (CCK), peptide YY (PYY), oxyntomodulin (OXM) and ghrelin receptors. In addition, fatty acids GPCRs are thought to have an increasing role in regulating peptide secretions namely short fatty acids GPCR (GPR41, GPR43), medium chain fatty acid GPCR (GPR84), long chain fatty acid GPCR (GPR40, GPR120) and cannabinoid-like GPCR (GPR55, GPR119). Several pre-clinical and clinical trials are currently ongoing in peptide GPCR based therapies, including dual and triple agonist peptides which activate two or more GPCRs simultaneously. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Circulating elastin peptides, role in vascular pathology.

    Science.gov (United States)

    Robert, L; Labat-Robert, J

    2014-12-01

    The atherosclerotic process starts with the degradation of elastic fibers. Their presence was demonstrated in the circulation as well as several of their biological properties elucidated. We described years ago a procedure to obtain large elastin peptides by organo-alkaline hydrolysis, κ-elastin. This method enabled also the preparation of specific antibodies used to determine elastin peptides, as well as anti-elastin antibodies in body fluids and tissue extracts. Elastin peptides were determined in a large number of human blood samples. Studies were carried out to explore their pharmacological properties. Similar recent studies by other laboratories confirmed our findings and arose new interest in circulating elastin peptides for their biological activities. This recent trend justified the publication of a review of the biological and pathological activities of elastin peptides demonstrated during our previous studies, subject of this article. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Interpreting peptide mass spectra by VEMS

    DEFF Research Database (Denmark)

    Mathiesen, Rune; Lundsgaard, M.; Welinder, Karen G.

    2003-01-01

    the calculated and the experimental mass spectrum of the called peptide. The program package includes four accessory programs. VEMStrans creates protein databases in FASTA format from EST or cDNA sequence files. VEMSdata creates a virtual peptide database from FASTA files. VEMSdist displays the distribution......Most existing Mass Spectra (MS) analysis programs are automatic and provide limited opportunity for editing during the interpretation. Furthermore, they rely entirely on publicly available databases for interpretation. VEMS (Virtual Expert Mass Spectrometrist) is a program for interactive analysis...... of peptide MS/MS spectra imported in text file format. Peaks are annotated, the monoisotopic peaks retained, and the b-and y-ion series identified in an interactive manner. The called peptide sequence is searched against a local protein database for sequence identity and peptide mass. The report compares...

  17. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  18. Radiolabeled peptides: experimental and clinical applications

    International Nuclear Information System (INIS)

    Thakur, M.L.; Pallela, V.R.

    1998-01-01

    Radiolabeled receptor specific biomolecules hold unlimited potential in nuclear medicine. During the past few years much attention has been drawn to the development radiolabeled peptides for a variety of diagnostic applications, as well as for therapy of malignant tumors. Although only one peptide, In-111-DTPA-(D)-Phe 1 -octreotide, is available commercially for oncologic imaging, many more have been examined in humans with hematological disorders, and the early results appear to be promising. Impetus generated by these results have prompted investigators to label peptides with such radionuclides as Tc-99m, I-123, F-18, Cu-64, and Y-90. This review is intended to highlight the qualities of peptides, summarize the clinical results, and address some important issues associated with radiolabeling of highly potent peptides. While doing so, various methods of radiolabeling have been described, and their strengths and weaknesses have also been discussed. (author)

  19. Chemical reactions directed Peptide self-assembly.

    Science.gov (United States)

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  20. Harnessing supramolecular peptide nanotechnology in biomedical applications.

    Science.gov (United States)

    Chan, Kiat Hwa; Lee, Wei Hao; Zhuo, Shuangmu; Ni, Ming

    2017-01-01

    The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how three distinct self-assembled peptide nanostructures possess different functions. We have 1) nanofibrils in biomaterials that can interact with cells, 2) nanoparticles that can traverse the bloodstream to deliver its payload and also be bioimaged, and 3) nanotubes that can serve as cross-membrane conduits and as a template for nanowire formation. Through this review, we aim to illustrate how various peptides, in their various self-assembled nanostructures, possess great promise in a wide range of biomedical applications and what more can be expected.

  1. Enhanced Intestinal Permeability of Bufalin by a Novel Bufalin-Peptide-Dendrimer Inclusion through Caco-2 Cell Monolayer

    OpenAIRE

    Chi-on Chan; Jing Jing; Wei Xiao; Zhexu Tan; Qiuyue Lv; Jingyu Yang; Sibao Chen

    2017-01-01

    Bufalin (BFL) has excellent physiological activities such as defending tumors, improving cardiac function, and so on. However, due to its poor water-solubility and bioavailability, the clinical application of BFL remains limited. In order to improve bioavailability of BFL, in our previous research, a novel peptide-dendrimer (PD) was synthesized and applied to encapsulate BFL. In the present study, we investigate the absorption property and mechanism of BFL in free form and BFL-peptide-dendrim...

  2. Endoprotease profiling with double-tagged peptide substrates: a new diagnostic approach in oncology.

    Science.gov (United States)

    Peccerella, Teresa; Lukan, Nadine; Hofheinz, Ralf; Schadendorf, Dirk; Kostrezewa, Markus; Neumaier, Michael; Findeisen, Peter

    2010-02-01

    The measurement of disease-related proteolytic activity in complex biological matrices like serum is of emerging interest to improve the diagnosis of malignant diseases. We developed a mass spectrometry (MS)-based functional proteomic profiling approach that tracks degradation of artificial endoprotease substrates in serum specimens. The synthetic reporter peptides that are cleaved by tumor-associated endopeptidases were systematically optimized with regard to flanking affinity tags, linkers, and stabilizing elements. Serum specimens were incubated with reporter peptides under standardized conditions and the peptides subsequently extracted with affinity chromatography before MS. In a pilot study an optimized reporter peptide with the cleavage motif WKPYDAADL was added to serum specimens from colorectal tumor patients (n = 50) and healthy controls (n = 50). This reporter peptide comprised a known cleavage site for the cysteine-endopeptidase "cancer procoagulant." Serial affinity chromatography using biotin- and 6xHis tags was superior to the single affinity enrichment using only 6xHis tags. Furthermore, protease-resistant stop elements ensured signal accumulation after prolonged incubation. In contrast, signals from reporter peptides without stop elements vanished completely after prolonged incubation owing to their total degradation. Reporter-peptide spiking showed good reproducibility, and the difference in proteolytic activity between serum specimens from cancer patients and controls was highly significant (P < 0.001). The introduction of a few structural key elements (affinity tags, linkers, d-amino acids) into synthetic reporter peptides increases the diagnostic sensitivity for MS-based protease profiling of serum specimens. This new approach might lead to functional MS-based protease profiling for improved disease classification.

  3. Gp96 Peptide Antagonist gp96-II Confers Therapeutic Effects in Murine Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Claudia A. Nold-Petry

    2017-12-01

    Full Text Available BackgroundThe expression of heat shock protein gp96 is strongly correlated with the degree of tissue inflammation in ulcerative colitis and Crohn’s disease, thereby leading us to the hypothesis that inhibition of expression via gp96-II peptide prevents intestinal inflammation.MethodsWe employed daily injections of gp96-II peptide in two murine models of intestinal inflammation, the first resulting from five daily injections of IL-12/IL-18, the second via a single intrarectal application of TNBS (2,4,6-trinitrobenzenesulfonic acid. We also assessed the effectiveness of gp96-II peptide in murine and human primary cell culture.ResultsIn the IL-12/IL-18 model, all gp96-II peptide-treated animals survived until day 5, whereas 80% of placebo-injected animals died. gp96-II peptide reduced IL-12/IL-18-induced plasma IFNγ by 89%, IL-1β by 63%, IL-6 by 43% and tumor necrosis factor (TNF by 70% compared to controls. The clinical assessment Disease Activity Index of intestinal inflammation severity was found to be significantly lower in the gp96-II-treated animals when compared to vehicle-injected mice. gp96-II peptide treatment in the TNBS model limited weight loss to 5% on day 7 compared with prednisolone treatment, whereas placebo-treated animals suffered a 20% weight loss. Histological disease severity was reduced equally by prednisolone (by 40% and gp96-II peptide (35%. Mice treated with either gp96-II peptide or prednisolone exhibited improved endoscopic scores compared with vehicle-treated control mice: vascularity, fibrin, granularity, and translucency scores were reduced by up to 49% by prednisolone and by up to 30% by gp96-II peptide. In vitro, gp96-II peptide reduced TLR2-, TLR4- and IL-12/IL-18-induced cytokine expression in murine splenocytes, with declines in constitutive IL-6 (54%, lipopolysaccharide-induced TNF (48%, IL-6 (81% and in Staphylococcus epidermidis-induced TNF (67% and IL-6 (81%, as well as IL-12/IL-18-induced IFNγ (75%. gp

  4. Radiolabeled Peptide Scaffolds for PET/SPECT - Optical in Vivo Imaging of Carbohydrate-Lectin Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Deutscher, Susan

    2014-09-30

    The objective of this research is to develop phage display-selected peptides into radio- and fluoresecently- labeled scaffolds for the multimodal imaging of carbohydrate-lectin interactions. While numerous protein and receptor systems are being explored for the development of targeted imaging agents, the targeting and analysis of carbohydrate-lectin complexes in vivo remains relatively unexplored. Antibodies, nanoparticles, and peptides are being developed that target carbohydrate-lectin complexes in living systems. However, antibodies and nanoparticles often suffer from slow clearance and toxicity problems. Peptides are attractive alternative vehicles for the specific delivery of radionuclides or fluorophores to sites of interest in vivo, although, because of their size, uptake and retention may be less than antibodies. We have selected high affinity peptides that bind a specific carbohydrate-lectin complex involved in cell-cell adhesion and cross-linking using bacteriophage (phage) display technologies (1,2). These peptides have allowed us to probe the role of these antigens in cell adhesion. Fluorescent versions of the peptides have been developed for optical imaging and radiolabeled versions have been used in single photon emission computed tomography (SPECT) and positron emission tomography (PET) in vivo imaging (3-6). A benefit in employing the radiolabeled peptides in SPECT and PET is that these imaging modalities are widely used in living systems and offer deep tissue sensitivity. Radiolabeled peptides, however, often exhibit poor stability and high kidney uptake in vivo. Conversely, optical imaging is sensitive and offers good spatial resolution, but is not useful for deep tissue penetration and is semi-quantitative. Thus, multimodality imaging that relies on the strengths of both radio- and optical- imaging is a current focus for development of new in vivo imaging agents. We propose a novel means to improve the efficacy of radiolabeled and fluorescently

  5. Optimization of synthesis and quality control procedures for the preparation of 18F-labelled peptides

    International Nuclear Information System (INIS)

    Amartey, J.K.

    2002-01-01

    human cancer cell line in a dose dependent manner as expected. The biodistribution showed that the [ 18 F]-RC-160 bound to tumour xenograft in nude mice. The main objective of the project was to optimize reaction conditions and quality control procedures for prosthetic labelling of peptides. Hence the aims of the project were to: improve fluorination of prosthetic group such as fluorobenzoate, synthesis and isolation of the succinimidyl activated ester of the prosthetic group and reaction conditions to couple the activated ester to a model chemotactic peptide, and to develop an isolation method for the peptide conjugate; perform in vitro and in vivo experiments to ascertain the biological activity of the conjugate; apply the methods and techniques developed to label another biologically active peptide and evaluate its potential application as a cancer detection agent. (author)

  6. Antimicrobial peptides interact with peptidoglycan

    Science.gov (United States)

    Neelay, Om P.; Peterson, Christian A.; Snavely, Mary E.; Brown, Taylor C.; TecleMariam, Ariam F.; Campbell, Jennifer A.; Blake, Allison M.; Schneider, Sydney C.; Cremeens, Matthew E.

    2017-10-01

    Traditional therapeutics are losing effectiveness as bacterial resistance increases, and antimicrobial peptides (AMPs) can serve as an alternative source for antimicrobial agents. Their mode of action is commonly hypothesized to involve pore formation in the lipid membrane, thereby leading to cell death. However, bacterial cell walls are much more complex than just the lipid membrane. A large portion of the wall is comprised of peptidoglycan, yet we did not find any report of AMP-peptidoglycan interactions. Consequently, this work evaluated AMP-peptidoglycan and AMP-phospholipid (multilamellar vesicles) interactions through tryptophan fluorescence. Given that peptidoglycan is insoluble and vesicles are large particles, we took advantage of the unique properties of Trp-fluorescence to use one technique for two very different systems. Interestingly, melittin and cecropin A interacted with peptidoglycan to a degree similar to vancomycin, a positive control. Whether these AMP-peptidoglycan interactions relate to a killing mode of action requires further study.

  7. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus......Multi-drug resistance to antibiotics represents a global health challenge that results in increased morbidity and mortality rates. The annual death-toll is >700.000 people world-wide, rising to ~10 million by 2050. New antibiotics are lacking, and few are under development as return on investment......, Klebsiella pneumoniae, Acinetobacter, Pseudomonas aeruginosa and Enterobacter). As a consequence of widespread multi-drug resistance, researchers have sought for alternative sources of antimicrobials. Antimicrobial peptides are produced by almost all living organisms as part of their defense or innate immune...

  8. The order of expression is a key factor in the production of active transglutaminase in Escherichia coli by co-expression with its pro-peptide

    Directory of Open Access Journals (Sweden)

    Liu Song

    2011-12-01

    Full Text Available Abstract Background Streptomyces transglutaminase (TGase is naturally synthesized as zymogen (pro-TGase, which is then processed to produce active enzyme by the removal of its N-terminal pro-peptide. This pro-peptide is found to be essential for overexpression of soluble TGase in E. coli. However, expression of pro-TGase by E. coli requires protease-mediated activation in vitro. In this study, we developed a novel co- expression method for the direct production of active TGase in E. coli. Results A TGase from S. hygroscopicus was expressed in E. coli only after fusing with the pelB signal peptide, but fusion with the signal peptide induced insoluble enzyme. Therefore, alternative protocol was designed by co-expressing the TGase and its pro-peptide as independent polypeptides under a single T7 promoter using vector pET-22b(+. Although the pro-peptide was co-expressed, the TGase fused without the signal peptide was undetectable in both soluble and insoluble fractions of the recombinant cells. Similarly, when both genes were expressed in the order of the TGase and the pro-peptide, the solubility of TGase fused with the signal peptide was not improved by the co-expression with its pro-peptide. Interestingly, active TGase was only produced by the cells in which the pro-peptide and the TGase were fused with the signal peptide and sequentially expressed. The purified recombinant and native TGase shared the similar catalytic properties. Conclusions Our results indicated that the pro-peptide can assist correct folding of the TGase inter-molecularly in E. coli, and expression of pro-peptide prior to that of TGase was essential for the production of active TGase. The co-expression strategy based on optimizing the order of gene expression could be useful for the expression of other functional proteins that are synthesized as a precursor.

  9. An Exploration of the Calcium-Binding Mode of Egg White Peptide, Asp-His-Thr-Lys-Glu, and In Vitro Calcium Absorption Studies of Peptide-Calcium Complex.

    Science.gov (United States)

    Sun, Na; Jin, Ziqi; Li, Dongmei; Yin, Hongjie; Lin, Songyi

    2017-11-08

    The binding mode between the pentapeptide (DHTKE) from egg white hydrolysates and calcium ions was elucidated upon its structural and thermodynamics characteristics. The present study demonstrated that the DHTKE peptide could spontaneously bind calcium with a 1:1 stoichiometry, and that the calcium-binding site corresponded to the carboxyl oxygen, amino nitrogen, and imidazole nitrogen atoms of the DHTKE peptide. Moreover, the effect of the DHTKE-calcium complex on improving the calcium absorption was investigated in vitro using Caco-2 cells. Results showed that the DHTKE-calcium complex could facilitate the calcium influx into the cytosol and further improve calcium absorption across Caco-2 cell monolayers by more than 7 times when compared to calcium-free control. This study facilitates the understanding about the binding mechanism between peptides and calcium ions as well as suggests a potential application of egg white peptides as nutraceuticals to improve calcium absorption.

  10. In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands.

    Directory of Open Access Journals (Sweden)

    Anna Russo

    Full Text Available Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical system for the study of protein ligand recognition. We used a Monte Carlo based protocol, to computationally evolve a set of octapeptides starting from a polialanine sequence. We screened in silico the candidate peptides and characterized their binding abilities by surface plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays. These experiments showed the designed binders to recognize their target with micromolar affinity. We finally discuss the obtained results in the light of further improvement in the ex-novo optimization of peptide based binders.

  11. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  12. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    International Nuclear Information System (INIS)

    Vegt, Erik; Eek, Annemarie; Oyen, Wim J.G.; Gotthardt, Martin; Boerman, Otto C.; Jong, Marion de

    2010-01-01

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of 111 In-albumin, 111 In-minigastrin, 111 In-exendin and 111 In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of 111 In-albumin, 111 In-exendin and 111 In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of 111 In-minigastrin, by 88%. Uptake of 111 In-exendin and 111 In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  13. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design.

    Science.gov (United States)

    Kato, Ryuji; Kaga, Chiaki; Kunimatsu, Mitoshi; Kobayashi, Takeshi; Honda, Hiroyuki

    2006-06-01

    Peptide array, the designable peptide library covalently synthesized on cellulose support, was applied to assay peptide-cell interaction, between solid-bound peptides and anchorage-dependant cells, to study objective peptide design. As a model case, cell-adhesive peptides that could enhance cell growth as tissue engineering scaffold material, was studied. On the peptide array, the relative cell-adhesion ratio of NIH/3T3 cells was 2.5-fold higher on the RGDS (Arg-Gly-Asp-Ser) peptide spot as compared to the spot with no peptide, thus indicating integrin-mediated peptide-cell interaction. Such strong cell adhesion mediated by the RGDS peptide was easily disrupted by single residue substitution on the peptide array, thus indicating that the sequence recognition accuracy of cells was strictly conserved in our optimized scheme. The observed cellular morphological extension with active actin stress-fiber on the RGD motif-containing peptide supported our strategy that peptide array-based interaction assay of solid-bound peptide and anchorage-dependant cells (PIASPAC) could provide quantitative data on biological peptide-cell interaction. The analysis of 180 peptides obtained from fibronectin type III domain (no. 1447-1629) yielded 18 novel cell-adhesive peptides without the RGD motif. Taken together with the novel candidates, representative rules of ineffective amino acid usage were obtained from non-effective candidate sequences for the effective designing of cell-adhesive peptides. On comparing the amino acid usage of the top 20 and last 20 peptides from the 180 peptides, the following four brief design rules were indicated: (i) Arg or Lys of positively charged amino acids (except His) could enhance cell adhesion, (ii) small hydrophilic amino acids are favored in cell-adhesion peptides, (iii) negatively charged amino acids and small amino acids (except Gly) could reduce cell adhesion, and (iv) Cys and Met could be excluded from the sequence combination since they have

  14. Feasibility and availability of 68Ga-labelled peptides

    International Nuclear Information System (INIS)

    Decristoforo, Clemens; Pickett, Roger D.; Verbruggen, Alfons

    2012-01-01

    68 Ga has attracted tremendous interest as a radionuclide for PET based on its suitable half-life of 68 min, high positron emission yield and ready availability from 68 Ge/ 68 Ga generators, making it independent of cyclotron production. 68 Ga-labelled DOTA-conjugated somatostatin analogues, including DOTA-TOC, DOTA-TATE and DOTA-NOC, have driven the development of technologies to provide such radiopharmaceuticals for clinical applications mainly in the diagnosis of somatostatin receptor-expressing tumours. We summarize the issues determining the feasibility and availability of 68 Ga-labelled peptides, including generator technology, 68 Ga generator eluate postprocessing methods, radiolabelling, automation and peptide developments, and also quality assurance and regulatory aspects. 68 Ge/ 68 Ga generators based on SnO 2 , TiO 2 or organic matrices are today routinely supplied to nuclear medicine departments, and a variety of automated systems for postprocessing and radiolabelling have been developed. New developments include improved chelators for 68 Ga that could open new ways to utilize this technology. Challenges and limitations in the on-site preparation and use of 68 Ga-labelled peptides outside the marketing authorization track are also discussed. (orig.)

  15. Automated genome mining of ribosomal peptide natural products

    Energy Technology Data Exchange (ETDEWEB)

    Mohimani, Hosein; Kersten, Roland; Liu, Wei; Wang, Mingxun; Purvine, Samuel O.; Wu, Si; Brewer, Heather M.; Pasa-Tolic, Ljiljana; Bandeira, Nuno; Moore, Bradley S.; Pevzner, Pavel A.; Dorrestein, Pieter C.

    2014-07-31

    Ribosomally synthesized and posttranslationally modified peptides (RiPPs), especially from microbial sources, are a large group of bioactive natural products that are a promising source of new (bio)chemistry and bioactivity (1). In light of exponentially increasing microbial genome databases and improved mass spectrometry (MS)-based metabolomic platforms, there is a need for computational tools that connect natural product genotypes predicted from microbial genome sequences with their corresponding chemotypes from metabolomic datasets. Here, we introduce RiPPquest, a tandem mass spectrometry database search tool for identification of microbial RiPPs and apply it for lanthipeptide discovery. RiPPquest uses genomics to limit search space to the vicinity of RiPP biosynthetic genes and proteomics to analyze extensive peptide modifications and compute p-values of peptide-spectrum matches (PSMs). We highlight RiPPquest by connection of multiple RiPPs from extracts of Streptomyces to their gene clusters and by the discovery of a new class III lanthipeptide, informatipeptin, from Streptomyces viridochromogenes DSM 40736 as the first natural product to be identified in an automated fashion by genome mining. The presented tool is available at cy-clo.ucsd.edu.

  16. Feasibility and availability of {sup 68}Ga-labelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Decristoforo, Clemens [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria); European Directorate of Quality of Medicines, Group 14, Radioactive Compounds, The European Pharmacopeia, Strasbourg (France); Pickett, Roger D. [GE Healthcare, Little Chalfont (United Kingdom); European Directorate of Quality of Medicines, Group 14, Radioactive Compounds, The European Pharmacopeia, Strasbourg (France); Verbruggen, Alfons [University of Leuven, Laboratory of Radiopharmacy, Department of Pharmaceutical Sciences, Leuven (Belgium); European Directorate of Quality of Medicines, Group 14, Radioactive Compounds, The European Pharmacopeia, Strasbourg (France)

    2012-02-15

    {sup 68}Ga has attracted tremendous interest as a radionuclide for PET based on its suitable half-life of 68 min, high positron emission yield and ready availability from {sup 68}Ge/{sup 68}Ga generators, making it independent of cyclotron production. {sup 68}Ga-labelled DOTA-conjugated somatostatin analogues, including DOTA-TOC, DOTA-TATE and DOTA-NOC, have driven the development of technologies to provide such radiopharmaceuticals for clinical applications mainly in the diagnosis of somatostatin receptor-expressing tumours. We summarize the issues determining the feasibility and availability of {sup 68}Ga-labelled peptides, including generator technology, {sup 68}Ga generator eluate postprocessing methods, radiolabelling, automation and peptide developments, and also quality assurance and regulatory aspects. {sup 68}Ge/{sup 68}Ga generators based on SnO{sub 2}, TiO{sub 2} or organic matrices are today routinely supplied to nuclear medicine departments, and a variety of automated systems for postprocessing and radiolabelling have been developed. New developments include improved chelators for {sup 68}Ga that could open new ways to utilize this technology. Challenges and limitations in the on-site preparation and use of {sup 68}Ga-labelled peptides outside the marketing authorization track are also discussed. (orig.)

  17. Feasibility and availability of ⁶⁸Ga-labelled peptides.

    Science.gov (United States)

    Decristoforo, Clemens; Pickett, Roger D; Verbruggen, Alfons

    2012-02-01

    (68)Ga has attracted tremendous interest as a radionuclide for PET based on its suitable half-life of 68 min, high positron emission yield and ready availability from (68)Ge/(68)Ga generators, making it independent of cyclotron production. (68)Ga-labelled DOTA-conjugated somatostatin analogues, including DOTA-TOC, DOTA-TATE and DOTA-NOC, have driven the development of technologies to provide such radiopharmaceuticals for clinical applications mainly in the diagnosis of somatostatin receptor-expressing tumours. We summarize the issues determining the feasibility and availability of (68)Ga-labelled peptides, including generator technology, (68)Ga generator eluate postprocessing methods, radiolabelling, automation and peptide developments, and also quality assurance and regulatory aspects. (68)Ge/(68)Ga generators based on SnO(2), TiO(2) or organic matrices are today routinely supplied to nuclear medicine departments, and a variety of automated systems for postprocessing and radiolabelling have been developed. New developments include improved chelators for (68)Ga that could open new ways to utilize this technology. Challenges and limitations in the on-site preparation and use of (68)Ga-labelled peptides outside the marketing authorization track are also discussed.

  18. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms.

    Science.gov (United States)

    Dos Santos-Pinto, José Roberto Aparecido; Perez-Riverol, Amilcar; Lasa, Alexis Musacchio; Palma, Mario Sergio

    2018-06-15

    Among venomous animals, Hymenoptera have been suggested as a rich source of natural toxins. Due to their broad ecological diversity, venom from Hymenoptera insects (bees, wasps and ants) have evolved differentially thus widening the types and biological functions of their components. To date, insect toxinology analysis have scarcely uncovered the complex composition of bee, wasp and ant venoms which include low molecular weight compounds, highly abundant peptides and proteins, including several allergens. In Hymenoptera, these complex mixtures of toxins represent a potent arsenal of biological weapons that are used for self-defense, to repel intruders and to capture prey. Consequently, Hymenoptera venom components have a broad range of pharmacological targets and have been extensively studied, as promising sources of new drugs and biopesticides. In addition, the identification and molecular characterization of Hymenoptera venom allergens have allowed for the rational design of component-resolved diagnosis of allergy, finally improving the outcome of venom immunotherapy (VIT). Until recently, a limited number of Hymenoptera venoms had been unveiled due to the technical limitations of the approaches used to date. Nevertheless, the application of novel techniques with high dynamic range has significantly increased the number of identified peptidic and proteinaceous toxins. Considering this, the present review summarizes the current knowledge about the most representative Hymenoptera venom peptides and proteins which are under study for a better understanding of the insect-caused envenoming process and the development of new drugs and biopesticides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Peptides in fermented Finnish milk products

    Directory of Open Access Journals (Sweden)

    Minna Kahala

    1993-09-01

    Full Text Available This study was conducted to investigate the rate of proteolysis and peptide profiles of different Finnish fermented milk products. The highest rate of proteolysis was observed in Biokefir, while the greatest change in the rate of proteolysis was observed in Gefilus®. Differences in starters and manufacturing processes reflected on the peptide profiles of the products. Most of the identified peptides originated from either the N- or C-terminal region of β-casein or from the N-terminal region of αs1-casein.

  20. Fourier transform infrared spectroscopy of peptides.

    Science.gov (United States)

    Bakshi, Kunal; Liyanage, Mangala R; Volkin, David B; Middaugh, C Russell

    2014-01-01

    Fourier transform infrared (FTIR) spectroscopy provides data that are widely used for secondary structure characterization of peptides. A wide array of available sampling methods permits structural analysis of peptides in diverse environments such as aqueous solution (including optically turbid media), powders, detergent micelles, and lipid bilayers. In some cases, side chain vibrations can also be resolved and used for tertiary structure and chemical analysis. Data from several low-resolution spectroscopic techniques, including FTIR, can be combined to generate an empirical phase diagram, an overall picture of peptide structure as a function of environmental conditions that can aid in the global interpretation of large amounts of spectroscopic data.

  1. How Nature Morphs Peptide Scaffolds into Antibiotics

    Science.gov (United States)

    Nolan, Elizabeth M.; Walsh, Christopher T.

    2010-01-01

    The conventional notion that peptides are poor candidates for orally available drugs because of protease-sensitive peptide bonds, intrinsic hydrophilicity, and ionic charges contrasts with the diversity of antibiotic natural products with peptide-based frameworks that are synthesized and utilized by Nature. Several of these antibiotics, including penicillin and vancomycin, are employed to treat bacterial infections in humans and have been best-selling therapeutics for decades. Others might provide new platforms for the design of novel therapeutics to combat emerging antibiotic-resistant bacterial pathogens. PMID:19058272

  2. Brain natriuretic peptide: Diagnostic potential in dogs

    Directory of Open Access Journals (Sweden)

    Spasojević-Kosić Ljubica

    2009-01-01

    Full Text Available The endocrine role of the heart is evident in the secretion of noradrenaline and natriuretic peptides. The secretion of natriuretic peptides presents a useful mechanism for different conditions of cardiac dysfunction. Brain natriuretic peptide (BNP has been accepted in human cardiology as a biomarker for cardiac insufficiency and coronary arterial disease. The specificity of the BNP structure is specie-specific, so that the testing of diagnostic and prognostic potential in dogs requires the existence of a test that is a homologue for that animal specie. The existence of an adequate method for measuring BNP concentration makes possible its implementation as a screening test in everyday clinical practice. .

  3. Recent updates of marine antimicrobial peptides.

    Science.gov (United States)

    Semreen, Mohammad H; El-Gamal, Mohammed I; Abdin, Shifaa; Alkhazraji, Hajar; Kamal, Leena; Hammad, Saba; El-Awady, Faten; Waleed, Dima; Kourbaj, Layal

    2018-03-01

    Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.

  4. Recent updates of marine antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Mohammad H. Semreen

    2018-03-01

    Full Text Available Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.

  5. Cysteine-containing peptides having antioxidant properties

    Science.gov (United States)

    Bielicki, John K [Castro Valley, CA

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  6. An approach to the construction of tailor-made amphiphilic peptides that strongly and selectively bind to hairpin RNA targets.

    Science.gov (United States)

    Lee, Su Jin; Hyun, Soonsil; Kieft, Jeffrey S; Yu, Jaehoon

    2009-02-18

    The hairpin RNA motif is one of the most frequently observed secondary structures and is often targeted by therapeutic agents. An amphiphilic peptide with seven lysine and eight leucine residues and its derivatives were designed for use as ligands against RNA hairpin motifs. We hypothesized that variations in both the hydrophobic leucine-rich and hydrophilic lysine-rich spheres of these amphiphilic peptides would create extra attractive interactions with hairpin RNA targets. A series of alanine-scanned peptides were probed to identify the most influential lysine residues in the hydrophilic sphere. The binding affinities of these modified peptides with several hairpins, such as RRE, TAR from HIV, a short hairpin from IRES of HCV, and a hairpin from the 16S A-site stem from rRNA, were determined. Since the hairpin from IRES of HCV was the most susceptible to the initial series of alanine-scanned peptides, studies investigating how further variations in the peptides effect binding employed the IRES hairpin. Next, the important Lys residues were substituted by shorter chain amines, such as ornithine, to place the peptide deeper into the hairpin groove. In a few cases, a 70-fold improved binding was observed for peptides that contained the specifically located shorter amine side chains. To further explore changes in binding affinities brought about by alterations in the hydrophobic sphere, tryptophan residues were introduced in place of leucine. A few peptides with tryptophan in specific positions also displayed 70-fold improved binding affinities. Finally, double mutant peptides incorporating both specifically located shorter amine side chains in the hydrophilic region and tryptophan residues in the hydrophobic region were synthesized. The binding affinities of peptides containing the simple double modification were observed to be 80 times lower, and their binding specificities were increased 40-fold. The results of this effort provide important information about

  7. Antimicrobial peptides: Possible anti-infective agents.

    Science.gov (United States)

    Lakshmaiah Narayana, Jayaram; Chen, Jyh-Yih

    2015-10-01

    Multidrug-resistant bacterial, fungal, viral, and parasitic infections are major health threats. The Infectious Diseases Society of America has expressed concern on the decrease of pharmaceutical companies working on antibiotic research and development. However, small companies, along with academic research institutes, are stepping forward to develop novel therapeutic methods to overcome the present healthcare situation. Among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly distributed in nature. AMPs exhibit broad-spectrum activity against a wide variety of bacteria, fungi, viruses, and parasites, and even cancerous cells. They also show potential immunomodulatory properties, and are highly responsive to infectious agents and innate immuno-stimulatory molecules. In recent years, many AMPs have undergone or are undergoing clinical development, and a few are commercially available for topical and other applications. In this review, we outline selected anion and cationic AMPs which are at various stages of development, from preliminary analysis to clinical drug development. Moreover, we also consider current production methods and delivery tools for AMPs, which must be improved for the effective use of these agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Degradation of milk-based bioactive peptides by yogurt fermentation bacteria.

    Science.gov (United States)

    Paul, M; Somkuti, G A

    2009-09-01

    To analyse the effect of cell-associated peptidases in yogurt starter culture strains Lactobacillus delbrueckii ssp. bulgaricus (LB) and Streptococcus thermophilus (ST) on milk-protein-based antimicrobial and hypotensive peptides in order to determine their survival in yogurt-type dairy foods. The 11mer antimicrobial and 12mer hypotensive milk-protein-derived peptides were incubated with mid-log cells of LB and ST, which are required for yogurt production. Incubations were performed at pH 4.5 and 7.0, and samples removed at various time points were analysed by reversed-phase high-performance liquid chromatography (RP-HPLC). The peptides remained mostly intact at pH 4.5 in the presence of ST strains and moderately digested by exposure to LB cells. Peptide loss occurred more rapidly and was more extensive after incubation at pH 7.0. The 11mer and 12mer bioactive peptides may be added at the end of the yogurt-making process when the pH level has dropped to 4.5, limiting the overall extent of proteolysis. The results show the feasibility of using milk-protein-based antimicrobial and hypotensive peptides as food supplements to improve the health-promoting qualities of liquid and semi-solid dairy foods prepared by the yogurt fermentation process.

  9. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    Science.gov (United States)

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-02

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.

  10. Peptides derived from tryptic hydrolysate of Bacillus subtilis culture suppress fungal spoilage of table grapes.

    Science.gov (United States)

    Zhang, Bo; Wang, Jingnan; Ning, Shuqing; Yuan, Quan; Chen, Xiangning; Zhang, Yanyan; Fan, Junfeng

    2018-01-15

    This study confirmed the anti-fungal effect of trypsin-treated Bacillus subtilis culture (BC) (tryptic hydrolysate, TH) on mold growth on Kyoho grapes. We examined the anti-fungal activity of TH by identifying TH peptides and performing a computational docking analysis. TH was more potent than untreated BC in suppressing fungal growth on grapes. Specifically, TH maintained grape freshness by inhibiting respiration and rachis browning, maintaining firmness, and preventing weight loss. Thirty-six inhibitory peptides against β-1,3-glucan synthase (GS) were screened from 126 TH peptides identified through proteomic analysis. Among them, 13 peptides bound tightly to GS active pockets with lower binding energies than that of GppNHp. The most potent peptides, LFEIDEELNEK and FATSDLNDLYR, were synthesized, and further experiments showed that these peptides had a highly suppressive effect on GS activity and Aspergillus niger and Penicillium chrysogenum growth. Our results confirm that tryptic treatment is effective for improving the anti-fungal activity of BC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Conformational Flexibility Determines Selectivity and Antibacterial, Antiplasmodial, and Anticancer Potency of Cationic α-Helical Peptides*

    Science.gov (United States)

    Vermeer, Louic S.; Lan, Yun; Abbate, Vincenzo; Ruh, Emrah; Bui, Tam T.; Wilkinson, Louise J.; Kanno, Tokuwa; Jumagulova, Elmira; Kozlowska, Justyna; Patel, Jayneil; McIntyre, Caitlin A.; Yam, W. C.; Siu, Gilman; Atkinson, R. Andrew; Lam, Jenny K. W.; Bansal, Sukhvinder S.; Drake, Alex F.; Mitchell, Graham H.; Mason, A. James

    2012-01-01

    We used a combination of fluorescence, circular dichroism (CD), and NMR spectroscopies in conjunction with size exclusion chromatography to help rationalize the relative antibacterial, antiplasmodial, and cytotoxic activities of a series of proline-free and proline-containing model antimicrobial peptides (AMPs) in terms of their structural properties. When compared with proline-free analogs, proline-containing peptides had greater activity against Gram-negative bacteria, two mammalian cancer cell lines, and intraerythrocytic Plasmodium falciparum, which they were capable of killing without causing hemolysis. In contrast, incorporation of proline did not have a consistent effect on peptide activity against Mycobacterium tuberculosis. In membrane-mimicking environments, structures with high α-helix content were adopted by both proline-free and proline-containing peptides. In solution, AMPs generally adopted disordered structures unless their sequences comprised more hydrophobic amino acids or until coordinating phosphate ions were added. Proline-containing peptides resisted ordering induced by either method. The roles of the angle subtended by positively charged amino acids and the positioning of the proline residues were also investigated. Careful positioning of proline residues in AMP sequences is required to enable the peptide to resist ordering and maintain optimal antibacterial activity, whereas varying the angle subtended by positively charged amino acids can attenuate hemolytic potential albeit with a modest reduction in potency. Maintaining conformational flexibility improves AMP potency and selectivity toward bacterial, plasmodial, and cancerous cells while enabling the targeting of intracellular pathogens. PMID:22869378

  12. Identification of ageing-associated naturally occurring peptides in human urine

    Science.gov (United States)

    Nkuipou-Kenfack, Esther; Bhat, Akshay; Klein, Julie; Jankowski, Vera; Mullen, William; Vlahou, Antonia; Dakna, Mohammed; Koeck, Thomas; Schanstra, Joost P.; Zürbig, Petra; Rudolph, Karl L.; Schumacher, Björn; Pich, Andreas; Mischak, Harald

    2015-01-01

    To assess normal and pathological peptidomic changes that may lead to an improved understanding of molecular mechanisms underlying ageing, urinary peptidomes of 1227 healthy and 10333 diseased individuals between 20 and 86 years of age were investigated. The diseases thereby comprised diabetes mellitus, renal and cardiovascular diseases. Using age as a continuous variable, 116 peptides were identified that significantly (p age in the healthy cohort. The same approach was applied to the diseased cohort. Upon comparison of the peptide patterns of the two cohorts 112 common age-correlated peptides were identified. These 112 peptides predominantly originated from collagen, uromodulin and fibrinogen. While most fibrillar and basement membrane collagen fragments showed a decreased age-related excretion, uromodulin, beta-2-microglobulin and fibrinogen fragments showed an increase. Peptide-based in silico protease analysis was performed and 32 proteases, including matrix metalloproteinases and cathepsins, were predicted to be involved in ageing. Identified peptides, predicted proteases and patient information were combined in a systems biology pathway analysis to identify molecular pathways associated with normal and/or pathological ageing. While perturbations in collagen homeostasis, trafficking of toll-like receptors and endosomal pathways were commonly identified, degradation of insulin-like growth factor-binding proteins was uniquely identified in pathological ageing. PMID:26431327

  13. In vitro production and antifungal activity of peptide ABP-dHC-cecropin A.

    Science.gov (United States)

    Zhang, Jiaxin; Movahedi, Ali; Xu, Junjie; Wang, Mengyang; Wu, Xiaolong; Xu, Chen; Yin, Tongming; Zhuge, Qiang

    2015-04-10

    The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, testing of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve expression of this peptide in E. coli, ABP-dHC-cecropin A was cloned into a pSUMO vector and transformed into E. coli, resulting in the production of a pSUMO-ABP-dHC-cecropin A fusion protein. The soluble form of this protein was then purified by Ni-IDA chromatography, yielding a total of 496-mg protein per liter of fermentation culture. The SUMO-ABP-dHC-cecropin A fusion protein was then cleaved using a SUMO protease and re-purified by Ni-IDA chromatography, yielding a total of 158-mg recombinant ABP-dHC-cecropin A per liter of fermentation culture at a purity of ≥94%, the highest yield reported to date. Antifungal activity assays performed using this purified recombinant peptide revealed strong antifungal activity against both Candida albicans and Neurospora crassa, as well as Rhizopus, Fusarium, Alternaria, and Mucor species. Combined with previous analyses demonstrating strong antibacterial activity against a number of important bacterial pathogens, these results confirm the use of ABP-dHC-cecropin A as a broad-spectrum antimicrobial peptide, with significant therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Characterizing Peptide Neutral Losses Induced by Negative Electron-Transfer Dissociation (NETD)

    Science.gov (United States)

    Rumachik, Neil G.; McAlister, Graeme C.; Russell, Jason D.; Bailey, Derek J.; Wenger, Craig D.; Coon, Joshua J.

    2012-01-01

    We implemented negative electron-transfer dissociation (NETD) on a hybrid ion trap/Orbitrap mass spectrometer to conduct ion/ion reactions using peptide anions and radical reagent cations. In addition to sequence-informative ladders of a•- and x-type fragment ions, NETD generated intense neutral loss peaks corresponding to the entire or partial side-chain cleavage from amino acids constituting a given peptide. Thus, a critical step towards the characterization of this recently introduced fragmentation technique is a systematic study of synthetic peptides to identify common neutral losses and preferential fragmentation pathways. Examining 46 synthetic peptides with high mass accuracy and high resolution analysis permitted facile determination of the chemical composition of each neutral loss. We identified 19 unique neutral losses from 14 amino acids and three modified amino acids, and assessed the specificity and sensitivity of each neutral loss using a database of 1542 confidently identified peptides generated from NETD shotgun experiments employing high-pH separations and negative electrospray ionization. As residue-specific neutral losses indicate the presence of certain amino acids, we determined that many neutral losses have potential diagnostic utility. We envision this catalogue of neutral losses being incorporated into database search algorithms to improve peptide identification specificity and to further advance characterization of the acidic proteome. PMID:22290482

  15. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.

    Science.gov (United States)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse; Yang, Mingshi; Nielsen, Hanne Mørck; Mu, Huiling

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use of biorelevant media when applicable can increase the knowledge about the quality of DDS for oral protein delivery. Hopefully, the knowledge provided in this review will aid the establishment of improved biorelevant models capable of forecasting the performance of particulate DDS for oral peptide/protein delivery.

  16. Oral delivery of peptides and proteins using lipid-based drug delivery systems.

    Science.gov (United States)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-10-01

    In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism by which intestinal absorption of peptides and proteins is promoted. The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides and proteins. Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve the design and development of lipid-based DDS with the desired bioavailability and therapeutic profile.

  17. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    Science.gov (United States)

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  18. Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues

    Energy Technology Data Exchange (ETDEWEB)

    Rolleman, Edgar J.; Melis, Marleen; Valkema, Roelf; Krenning, Eric P.; Jong, Marion de [Erasmus MC, Department of Nuclear Medicine, V 220, Rotterdam (Netherlands); Boerman, Otto C. [Radboud University Hospital, Department of Nuclear Medicine, Nijmegen (Netherlands)

    2010-05-15

    This review focuses on the present status of kidney protection during peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues. This treatment modality for somatostatin receptor-positive tumours is limited by renal reabsorption and retention of radiolabelled peptides resulting in dose-limiting high kidney radiation doses. Radiation nephropathy has been described in several patients. Studies on the mechanism and localization demonstrate that renal uptake of radiolabelled somatostatin analogues largely depends on the megalin/cubulin system in the proximal tubule cells. Thus methods are needed that interfere with this reabsorption pathway to achieve kidney protection. Such methods include coadministration of basic amino acids, the bovine gelatin-containing solution Gelofusine or albumin fragments. Amino acids are already commonly used in the clinical setting during PRRT. Other compounds that interfere with renal reabsorption capacity (maleic acid and colchicine) are not suitable for clinical use because of potential toxicity. The safe limit for the renal radiation dose during PRRT is not exactly known. Dosimetry studies applying the principle of the biological equivalent dose (correcting for the effect of dose fractionation) suggest that a dose of about 37 Gy is the threshold for development of kidney toxicity. This threshold is lower when risk factors for development of renal damage exist: age over 60 years, hypertension, diabetes mellitus and previous chemotherapy. A still experimental pathway for kidney protection is mitigation of radiation effects, possibly achievable by cotreatment with amifostine (Ethylol), a radiation protector, or with blockers of the renin-angiotensin-aldosterone system. Future perspectives on improving kidney protection during PRRT include combinations of agents to reduce renal retention of radiolabelled peptides, eventually together with mitigating medicines. Moreover, new somatostatin analogues with lower

  19. Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues

    International Nuclear Information System (INIS)

    Rolleman, Edgar J.; Melis, Marleen; Valkema, Roelf; Krenning, Eric P.; Jong, Marion de; Boerman, Otto C.

    2010-01-01

    This review focuses on the present status of kidney protection during peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues. This treatment modality for somatostatin receptor-positive tumours is limited by renal reabsorption and retention of radiolabelled peptides resulting in dose-limiting high kidney radiation doses. Radiation nephropathy has been described in several patients. Studies on the mechanism and localization demonstrate that renal uptake of radiolabelled somatostatin analogues largely depends on the megalin/cubulin system in the proximal tubule cells. Thus methods are needed that interfere with this reabsorption pathway to achieve kidney protection. Such methods include coadministration of basic amino acids, the bovine gelatin-containing solution Gelofusine or albumin fragments. Amino acids are already commonly used in the clinical setting during PRRT. Other compounds that interfere with renal reabsorption capacity (maleic acid and colchicine) are not suitable for clinical use because of potential toxicity. The safe limit for the renal radiation dose during PRRT is not exactly known. Dosimetry studies applying the principle of the biological equivalent dose (correcting for the effect of dose fractionation) suggest that a dose of about 37 Gy is the threshold for development of kidney toxicity. This threshold is lower when risk factors for development of renal damage exist: age over 60 years, hypertension, diabetes mellitus and previous chemotherapy. A still experimental pathway for kidney protection is mitigation of radiation effects, possibly achievable by cotreatment with amifostine (Ethylol), a radiation protector, or with blockers of the renin-angiotensin-aldosterone system. Future perspectives on improving kidney protection during PRRT include combinations of agents to reduce renal retention of radiolabelled peptides, eventually together with mitigating medicines. Moreover, new somatostatin analogues with lower

  20. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules.

    Science.gov (United States)

    Binkowski, Brock F; Miller, Russell A; Belshaw, Peter J

    2005-07-01

    We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.

  1. [New strategy for RNA vectorization in mammalian cells. Use of a peptide vector].

    Science.gov (United States)

    Vidal, P; Morris, M C; Chaloin, L; Heitz, F; Divita, G

    1997-04-01

    A major barrier for gene delivery is the low permeability of nucleic acids to cellular membranes. The development of antisenses and gene therapy has focused mainly on improving methods of oligonucleotide or gene delivery to the cell. In this report we described a new strategy for RNA cell delivery, based on a short single peptide. This peptide vector is derived from both the fusion domain of the gp41 protein of HIV and the nuclear localization sequence of the SV40 large T antigen. This peptide vector localizes rapidly to the cytoplasm then to the nucleus of human fibroblasts (HS-68) within a few minutes and exhibits a high affinity for a single-stranded mRNA encoding the p66 subunit of the HIV-1 reverse transcriptase (in a 100 nM range). The peptide/RNA complex formation involves mainly electrostatic interactions between the basic residues of the peptide and the charges on the phosphate group of the RNA. In the presence of the peptide-vector fluorescently-labelled mRNA is delivered into the cytoplasm of mammalian cells (HS68 human fibroblasts) in less than 1 h with a relatively high efficiency (80%). This new concept based on a peptide-derived vector offers several advantages compared to other compounds commonly used in gene delivery. This vector is highly soluble and exhibits no cytotoxicity at the concentrations used for optimal gene delivery. This result clearly supports the fact that this peptide vector is a powerful tool and that it can be used widely, as much for laboratory research as for new applications and development in gene and/or antisense therapy.

  2. Femtomolar Ln(III) affinity in peptide-based ligands containing unnatural chelating amino acids.

    Science.gov (United States)

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Delangle, Pascale

    2012-05-07

    The incorporation of unnatural chelating amino acids in short peptide sequences leads to lanthanide-binding peptides with a higher stability than sequences built exclusively from natural residues. In particular, the hexadentate peptide P(22), which incorporates two unnatural amino acids Ada(2) with aminodiacetate chelating arms, showed picomolar affinity for Tb(3+). To design peptides with higher denticity, expected to show higher affinity for Ln(3+), we synthesized the novel unnatural amino acid Ed3a(2) which carries an ethylenediamine triacetate side-chain and affords a pentadentate coordination site. The synthesis of the derivative Fmoc-Ed3a(2)(tBu)(3)-OH, with appropriate protecting groups for direct use in the solid phase peptide synthesis (Fmoc strategy), is described. The two high denticity peptides P(HD2) (Ac-Trp-Ed3a(2)-Pro-Gly-Ada(2)-Gly-NH(2)) and P(HD5) (Ac-Trp-Ada(2)-Pro-Gly-Ed3a(2)-Gly-NH(2)) led to octadentate Tb(3+) complexes with femtomolar stability in water. The position of the high denticity amino acid Ed3a(2) in the hexapeptide sequence appears to be critical for the control of the metal complex speciation. Whereas P(HD5) promotes the formation of polymetallic species in excess of Ln(3+), P(HD2) forms exclusively the mononuclear complex. The octadentate coordination of Tb(3+) by both P(HD) leads to total dehydration of the metal ion in the mononuclear complexes with long luminescence lifetimes (>2 ms). Hence, we demonstrated that unnatural amino acids carrying polyaminocarboxylate side-chains are interesting building blocks to design high affinity Ln-binding peptides. In particular the novel peptide P(HD2) forms a unique octadentate Tb(3+) complex with femtomolar stability in water and an improvement of the luminescence properties with respect to the trisaquo TbP(22) complex by a factor of 4.

  3. Amide I SFG Spectral Line Width Probes the Lipid-Peptide and Peptide-Peptide Interactions at Cell Membrane In Situ and in Real Time.

    Science.gov (United States)

    Zhang, Baixiong; Tan, Junjun; Li, Chuanzhao; Zhang, Jiahui; Ye, Shuji

    2018-06-13

    The balance of lipid-peptide and peptide-peptide interactions at cell membrane is essential to a large variety of cellular processes. In this study, we have experimentally demonstrated for the first time that sum frequency generation vibrational spectroscopy can be used to probe the peptide-peptide and lipid-peptide interactions in cell membrane in situ and in real time by determination of the line width of amide I band of protein backbone. Using a "benchmark" model of α-helical WALP23, it is found that the dominated lipid-peptide interaction causes a narrow line width of the amide I band, whereas the peptide-peptide interaction can markedly broaden the line width. When WALP23 molecules insert into the lipid bilayer, a quite narrow line width of the amide I band is observed because of the lipid-peptide interaction. In contrast, when the peptide lies down on the bilayer surface, the line width of amide I band becomes very broad owing to the peptide-peptide interaction. In terms of the real-time change in the line width, the transition from peptide-peptide interaction to lipid-peptide interaction is monitored during the insertion of WALP23 into 1,2-dipalmitoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DPPG) lipid bilayer. The dephasing time of a pure α-helical WALP23 in 1-palmitoyl-2-oleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) and DPPG bilayer is determined to be 2.2 and 0.64 ps, respectively. The peptide-peptide interaction can largely accelerate the dephasing time.

  4. Nanoparticle Delivered Human Biliverdin Reductase-Based Peptide Increases Glucose Uptake by Activating IRK/Akt/GSK3 Axis: The Peptide Is Effective in the Cell and Wild-Type and Diabetic Ob/Ob Mice

    Directory of Open Access Journals (Sweden)

    Peter E. M. Gibbs

    2016-01-01

    Full Text Available Insulin’s stimulation of glucose uptake by binding to the IRK extracellular domain is compromised in diabetes. We have recently described an unprecedented approach to stimulating glucose uptake. KYCCSRK (P2 peptide, corresponding to the C-terminal segment of hBVR, was effective in binding to and inducing conformational change in the IRK intracellular kinase domain. Although myristoylated P2, made of L-amino acids, was effective in cell culture, its use for animal studies was unsuitable. We developed a peptidase-resistant formulation of the peptide that was efficient in both mice and cell culture systems. The peptide was constructed of D-amino acids, in reverse order, and blocked at both termini. Delivery of the encapsulated peptide to HepG2 and HSKM cells was confirmed by its prolonged effect on stimulation of glucose uptake (>6 h. The peptide improved glucose clearance in both wild-type and Ob/Ob mice; it lowered blood glucose levels and suppressed glucose-stimulated insulin secretion. IRK activity was stimulated in the liver of treated mice and in cultured cells. The peptide potentiated function of IRK’s downstream effector, Akt-GSK3-(α,β axis. Thus, P2-based approach can be used for improving glucose uptake by cells. Also, it allows for screening peptides in vitro and in animal models for treatment of diabetes.

  5. Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity.

    Science.gov (United States)

    Wang, Xiao-Ping; Wang, Qiao-Xia; Lin, Huan-Ping; Xu, Bing; Zhao, Qian; Chen, Kun

    2016-11-01

    Alpha-fetoprotein (AFP) is a marker of hepatocellular carcinoma (HCC) and serves as a target for immunotherapy. However, current treatments targeting AFP are not reproducible and do not provide complete protection against cancer. This issue may be solved by developing novel therapeutic vaccines with enhanced immunogenicity that could effectively target AFP-expressing tumors. In this study, we report construction of a therapeutic peptide vaccine by linking heat shock protein 70 (HSP70) functional peptide to the AFP epitope to obtain HSP70-P/AFP-P. This novel peptide was administered into BALB/c mice to observe the effects. Quantification of AFP-specific CD8 + T cells that secrete IFN-γ in these mice via ELISPOT revealed the synergistic effects of HSP70-P/AFP-P with increased numbers of AFP-specific CD8 + T cells. Similarly, ELISA analysis showed increased granzyme B and perforin released by natural killer cells. Moreover, in vitro cytotoxic T-lymphocyte assays and in vivo tumor preventive experiments clearly showed the higher antitumor effects of HSP70-P/AFP-P against AFP-expressing tumors. These results show that treatment of BALB/c mice with HSP70-P/AFP-P induced stronger T-cells responses and improved protective immunity. Our data suggest that HSP70-P/AFP-P may be used as a therapeutic approach in the treatment of AFP-expressing cancers.

  6. AWRK6, A Synthetic Cationic Peptide Derived from Antimicrobial Peptide Dybowskin-2CDYa, Inhibits Lipopolysaccharide-Induced Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Qiuyu Wang

    2018-02-01

    Full Text Available Lipopolysaccharides (LPS are major outer membrane components of Gram-negative bacteria and produce strong inflammatory responses in animals. Most antibiotics have shown little clinical anti-endotoxin activity while some antimicrobial peptides have proved to be effective in blocking LPS. Here, the anti-LPS activity of the synthetic peptide AWRK6, which is derived from antimicrobial peptide dybowskin-2CDYa, has been investigated in vitro and in vivo. The positively charged α-helical AWRK6 was found to be effective in blocking the binding of LBP (LPS binding protein with LPS in vitro using ELISA. In a murine endotoxemia model, AWRK6 offered satisfactory protection efficiency against endotoxemia death, and the serum levels of LPS, IL-1β, IL-6, and TNF-α were found to be attenuated using ELISA. Further, histopathological analysis suggested that AWRK6 could improve the healing of liver and lung injury in endotoxemia mice. The results of real-time PCR and Western blotting showed that AWRK6 significantly reversed LPS-induced TLR4 overexpression and IκB depression, as well as the enhanced IκB phosphorylation. Additionally, AWRK6 did not produce any significant toxicity in vivo and in vitro. In summary, AWRK6 showed efficacious protection from LPS challenges in vivo and in vitro, by blocking LPS binding to LBP, without obvious toxicity, providing a promising strategy against LPS-induced inflammatory responses.

  7. Novel production method of innovative antiangiogenic and antitumor small peptides in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Setrerrahmane S

    2017-11-01

    increased antiangiogenic effect (>75% of the purified products compared with the single molecules. Meanwhile, MTT assay confirmed their enhanced antitumor activity against gastric cancer cell line MGC-803; however, no significant effect was observed on hepatoma HepG2 cells and no cytotoxicity on normal human lens epithelial cell SRA01/04 and human epithelial esophageal cells.Conclusion: Bifunctional molecules with antiangiogenic and antiproliferative effects were obtained by using this technique, which presents an alternative for small peptide production, instead of the conventional chemical method. The increased molecular weight facilitates the peptide expression with a simultaneous improvement in their stability and biological activity. Keywords: innovative drugs, bifunctional peptides, linkers, auto-induction, antiangiogenic, antitumor

  8. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending......, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity...

  9. Biologically Active and Antimicrobial Peptides from Plants

    Science.gov (United States)

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  10. Antimicrobial Peptides for Therapeutic Applications: A Review

    Directory of Open Access Journals (Sweden)

    Tsogbadrakh Mishig-Ochir

    2012-10-01

    Full Text Available Antimicrobial peptides (AMPs have been considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and different mechanisms of action compared to conventional antibiotics. Although AMPs possess considerable benefits as new generation antibiotics, their clinical and commercial development still have some limitations, such as potential toxicity, susceptibility to proteases, and high cost of peptide production. In order to overcome those obstacles, extensive efforts have been carried out. For instance, unusual amino acids or peptido-mimetics are introduced to avoid the proteolytic degradation and the design of short peptides retaining antimicrobial activities is proposed as a solution for the cost issue. In this review, we focus on small peptides, especially those with less than twelve amino acids, and provide an overview of the relationships between their three-dimensional structures and antimicrobial activities. The efforts to develop highly active AMPs with shorter sequences are also described.

  11. Charge Transport Phenomena in Peptide Molecular Junctions

    International Nuclear Information System (INIS)

    Luchini, A.; Petricoin, E.F.; Geho, D.H.; Liotta, L.A.; Long, D.P.; Vaisman, I.I.

    2008-01-01

    Inelastic electron tunneling spectroscopy (IETS) is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nano electronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  12. Diagnostic value of C-peptide determination

    International Nuclear Information System (INIS)

    Kober, G.; Rainer, O.H.

    1983-01-01

    C-peptide and insulin serum determinations were performed in 94 glucagon-stimulated diabetics and in 15 healthy persons. A minimal increase of 1.5 ng C-peptide/ml serum after glucagon injection (1 mg i.v.) was found to be a useful parameter for the differentiation of insulin dependent and non-insulin dependent diabetics. The maximal response to glucagon occurred during the first 10-minutes after the injection (blood was drawn at 2-minutes intervals). Serum insulin levels and basal C-peptide concentrations were of no value in predicting insulin-dependency. Basal C-peptide levels were significantly different from control in juvenile insulin dependent diabetics (decrease) only. (Author)

  13. Biologically Active and Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    Carlos E. Salas

    2015-01-01

    Full Text Available Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  14. Atrial natriuretic peptide (ANP)-granules: ultrastructure ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-12-29

    Dec 29, 2006 ... morphometry and function. Eliane Florencio ... granules is greatest in the right atrium followed by the left atrium and left auricle and right auricle, in this order. ... family: Atrial natriuretic peptide (ANP), Urodilatin, Brain natriuretic ...

  15. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions

    DEFF Research Database (Denmark)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco

    2016-01-01

    solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative......Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins...

  16. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli.

    Science.gov (United States)

    Kim, Ha-Kun; Chun, Dae-Sik; Kim, Joon-Sik; Yun, Cheol-Ho; Lee, Ju-Hoon; Hong, Soon-Kwang; Kang, Dae-Kyung

    2006-09-01

    Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide-lactoferricin fusion gene. The monomeric acidic peptide-lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-beta-D-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.

  17. Aggregation and toxicity of amyloid-beta peptide in relation to peptide sequence variation

    OpenAIRE

    Vandersteen, A.

    2012-01-01

    Generally, aggregation of the amyloid-ß peptide is considered the cause of neuronal death in Alzheimer disease. The heterogenous Aß peptide occurs in various lengths in vivo: Aß40 and Aß42 are the predominant forms while both shorter and longer peptides exist. Aß40 and shorter isoforms are less aggregation-prone and hence considered less dangerous than Aß42 and longer isoforms, which are more aggregation-prone. Up to now research mainly focussed on the predominant Aß peptides and their indivi...

  18. A distributive peptide cyclase processes multiple microviridin core peptides within a single polypeptide substrate.

    Science.gov (United States)

    Zhang, Yi; Li, Kunhua; Yang, Guang; McBride, Joshua L; Bruner, Steven D; Ding, Yousong

    2018-05-03

    Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an important family of natural products. Their biosynthesis follows a common scheme in which the leader peptide of a precursor peptide guides the modifications of a single core peptide. Here we describe biochemical studies of the processing of multiple core peptides within a precursor peptide, rare in RiPP biosynthesis. In a cyanobacterial microviridin pathway, an ATP-grasp ligase, AMdnC, installs up to two macrolactones on each of the three core peptides within AMdnA. The enzyme catalysis occurs in a distributive fashion and follows an unstrict N-to-C overall directionality, but a strict order in macrolactonizing each core peptide. Furthermore, AMdnC is catalytically versatile to process unnatural substrates carrying one to four core peptides, and kinetic studies provide insights into its catalytic properties. Collectively, our results reveal a distinct biosynthetic logic of RiPPs, opening up the possibility of modular production via synthetic biology approaches.

  19. The preparation and characterization of peptide's lung cancer imaging agent

    International Nuclear Information System (INIS)

    Liu Jianfeng; Chu Liping; Wang Yan; Wang Yueying; Liu Jinjian; Wu Hongying

    2010-01-01

    Objective: To screen in vivo lung cancer specific binding seven peptides by T7 phage display peptide library, so as to prepare peptide's lung cancer early diagnostic agent. Methods: Use phage display in vivo technology, the 7-peptide phage that binding the lung cancer specifically was obtained, then the DNA sequence was measured and the seven peptide was synthesized. After labeled by 125 I, the seven peptide was injected into mice via vein and the distribution was observed. Results: One peptide was obtained by four rounds screening, and the peptide can bind lung cancer tissue specifically. Two hours after injection get the best imaging of lung cancer, metabolism of peptide in mice is fast, the distribution in vivo is decrease six hours and almost disappear 20 hours after injection. Conclusion: The peptide can image and diagnose lung cancer better. (authors)

  20. 1-(3-aminopropyl)-3-butylimidazolium bromide for carboxyl group derivatization: potential applications in high sensitivity peptide identification by mass spectrometry.

    Science.gov (United States)

    Qiao, Xiaoqiang; Zhou, Yuan; Hou, Chunyan; Zhang, Xiaodan; Yang, Kaiguang; Zhang, Lihua; Zhang, Yukui

    2013-03-01

    The cationic reagent 1-(3-aminopropyl)-3-butylimidazolium bromide (BAPI) was exploited for the derivatization of carboxyl groups on peptides. Nearly 100% derivatization efficiency was achieved with the synthetic peptide RVYVHPI (RI-7). Furthermore, the peptide derivative was stable in a 0.1% TFA/water solution or a 0.1% (v/v) TFA/acetonitrile/water solution for at least one week. The effect of BAPI derivatization on the ionization of the peptide RI-7 was further investigated, and the detection sensitivity was improved >42-fold via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), thus outperforming the commercial piperazine derivatization approach. Moreover, the charge states of the peptide were largely increased via BAPI derivatization by electrospray ionization (ESI) MS. The results indicate the potential merits of BAPI derivatization for high sensitivity peptide analysis by MS.

  1. Kefir Peptides Prevent Hyperlipidemia and Obesity in High-Fat-Diet-Induced Obese Rats via Lipid Metabolism Modulation.

    Science.gov (United States)

    Tung, Yu-Tang; Chen, Hsiao-Ling; Wu, Hsin-Shan; Ho, Mei-Hsuan; Chong, Kowit-Yu; Chen, Chuan-Mu

    2018-02-01

    Obesity has reached epidemic proportions worldwide. Obesity is a complex metabolic disorder that is linked to numerous serious health complications with high morbidity. The present study evaluated the effects of kefir peptides on high fat diet (HFD)-induced obesity in rats. Kefir peptides markedly improved obesity, including body weight gain, inflammatory reactions and the formation of adipose tissue fat deposits around the epididymis and kidney, and adipocyte size. Treating high fat diet (HFD)-induced obese rats with kefir peptides significantly reduced the fatty acid synthase protein and increased the p-acetyl-CoA carboxylase protein to block lipogenesis in the livers. Kefir peptides also increased fatty acid oxidation by increasing the protein expressions of phosphorylated AMP-activated protein kinase, peroxisome proliferator-activated receptor-α, and hepatic carnitine palmitoyltransferase-1 in the livers. In addition, administration of kefir peptides significantly decreased the inflammatory response (TNF-α, IL-1β, and TGF-β) to modulate oxidative damage. These results demonstrate that kefir peptides treatment improves obesity via inhibition of lipogenesis, modulation of oxidative damage, and stimulation of lipid oxidation. Therefore, kefir peptides may act as an anti-obesity agent to prevent body fat accumulation and obesity-related metabolic diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development and validation of novel AAV2 random libraries displaying peptides of diverse lengths and at diverse capsid positions.

    Science.gov (United States)

    Naumer, Matthias; Ying, Ying; Michelfelder, Stefan; Reuter, Antje; Trepel, Martin; Müller, Oliver J; Kleinschmidt, Jürgen A

    2012-05-01

    Libraries based on the insertion of random peptide ligands into the capsid of adeno-associated virus type 2 (AAV2) have been widely used to improve the efficiency and selectivity of the AAV vector system. However, so far only libraries of 7-mer peptide ligands have been inserted at one well-characterized capsid position. Here, we expanded the combinatorial AAV2 display system to a panel of novel AAV libraries, displaying peptides of 5, 7, 12, 19, or 26 amino acids in length at capsid position 588 or displaying 7-mer peptides at position 453, the most prominently exposed region of the viral capsid. Library selections on two unrelated cell types-human coronary artery endothelial cells and rat cardiomyoblasts-revealed the isolation of cell type-characteristic peptides of different lengths mediating strongly improved target-cell transduction, except for the 26-mer peptide ligands. Characterization of vector selectivity by transduction of nontarget cells and comparative gene-transduction analysis using a panel of 44 human tumor cell lines revealed that insertion of different-length peptides allows targeting of distinct cellular receptors for cell entry with similar efficiency, but with different selectivity. The application of such novel AAV2 libraries broadens the spectrum of targetable receptors by capsid-modified AAV vectors and provides the opportunity to choose the best suited targeting ligand for a certain application from a number of different candidates.

  3. Discovery of peptidic anti-­myotoxins

    DEFF Research Database (Denmark)

    Bjärtun, Johanna; Laustsen, Andreas Hougaard; Munk, Andreas

    More than 2.5 millions envenomations and 125.000 death occur each year due to snakebite. Current antivenoms consist of immunoglobulinesderived from animals, and they are therefore associated with a high risk of adverse reactions in humans. The use of synthetic peptidic antitoxinsmay lead to safer...... and more effective antivenoms. This research reports the discovery of peptidic antitoxins against myotoxin II from B. asper....

  4. Preparation of peptide thioesters through fmoc-based solid-phase peptide synthesis by using amino thioesters

    DEFF Research Database (Denmark)

    Stuhr-Hansen, N.; Wilbek, T.S.; Strømgaard, K.

    2013-01-01

    protected peptide thioester, which was globally deprotected to afford the desired unprotected peptide thioester. The method is compatible with labile groups such as phosphoryl and glycosyl moieties. The synthesis of peptide alkyl thioesters by 9-fluorenylmethoxycarbonyl (Fmoc) solid-phase peptide synthesis...

  5. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, Dooli; Salazar Moya, Octavio Ruben; Nunes, Suzana Pereira

    2016-01-01

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  6. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, Dooli

    2016-06-07

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  7. Chimeric opioid peptides: tools for identifying opioid receptor types.

    OpenAIRE

    Xie, G X; Miyajima, A; Yokota, T; Arai, K; Goldstein, A

    1990-01-01

    We synthesized several chimeric peptides in which the N-terminal nine residues of dynorphin-32, a peptide selective for the kappa opioid receptor, were replaced by opioid peptides selective for other opioid receptor types. Each chimeric peptide retained the high affinity and type selectivity characteristic of its N-terminal sequence. The common C-terminal two-thirds of the chimeric peptides served as an epitope recognized by the same monoclonal antibody. When bound to receptors on a cell surf...

  8. Constraining cyclic peptides to mimic protein structure motifs

    DEFF Research Database (Denmark)

    Hill, Timothy A.; Shepherd, Nicholas E.; Diness, Frederik

    2014-01-01

    peptides can have protein-like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three-dimensional structures of strand, turn or helical segments of peptides...... and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic pepti-domimetics that refine peptide structure and confer biological properties....

  9. Confinement-Dependent Friction in Peptide Bundles

    Science.gov (United States)

    Erbaş, Aykut; Netz, Roland R.

    2013-01-01

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity. PMID:23528088

  10. Biomathematical Description of Synthetic Peptide Libraries

    Science.gov (United States)

    Trepel, Martin

    2015-01-01

    Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries. PMID:26042419

  11. Peptides as Therapeutic Agents for Dengue Virus.

    Science.gov (United States)

    Chew, Miaw-Fang; Poh, Keat-Seong; Poh, Chit-Laa

    2017-01-01

    Dengue is an important global threat caused by dengue virus (DENV) that records an estimated 390 million infections annually. Despite the availability of CYD-TDV as a commercial vaccine, its long-term efficacy against all four dengue virus serotypes remains unsatisfactory. There is therefore an urgent need for the development of antiviral drugs for the treatment of dengue. Peptide was once a neglected choice of medical treatment but it has lately regained interest from the pharmaceutical industry following pioneering advancements in technology. In this review, the design of peptide drugs, antiviral activities and mechanisms of peptides and peptidomimetics (modified peptides) action against dengue virus are discussed. The development of peptides as inhibitors for viral entry, replication and translation is also described, with a focus on the three main targets, namely, the host cell receptors, viral structural proteins and viral non-structural proteins. The antiviral peptides designed based on these approaches may lead to the discovery of novel anti-DENV therapeutics that can treat dengue patients.

  12. Peptide pheromone signaling in Streptococcus and Enterococcus

    Science.gov (United States)

    Cook, Laura C.; Federle, Michael J.

    2014-01-01

    Intercellular chemical signaling in bacteria, commonly referred to as quorum sensing (QS), relies on the production and detection of compounds known as pheromones to elicit coordinated responses among members of a community. Pheromones produced by Gram-positive bacteria are comprised of small peptides. Based on both peptide structure and sensory system architectures, Gram-positive bacterial signaling pathways may be classified into one of four groups with a defining hallmark: cyclical peptides of the Agr type, peptides that contain Gly-Gly processing motifs, sensory systems of the RNPP family, or the recently characterized Rgg-like regulatory family. The recent discovery that Rgg family members respond to peptide pheromones increases su