WorldWideScience

Sample records for whey powder modification

  1. Operation whey powder

    International Nuclear Information System (INIS)

    Brunner, E.

    1987-01-01

    The odyssey of the contaminated whey powder finally has come to an end, and the 5000 tonnes of whey now are designated for decontamination by means of an ion exchange technique. The article throws light upon the political and economic reasons that sent the whey powder off on a chaotic journey. It is worth mentioning in this context that the natural radioactivity of inorganic fertilizers is much higher than that of the whey powder in question. (HP) [de

  2. Operation whey powder. Anatomy of a German scandal

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, E

    1987-04-03

    The odyssey of the contaminated whey powder finally has come to an end, and the 5000 tonnes of whey now are designated for decontamination by means of an ion exchange technique. The article throws light upon the political and economic reasons that sent the whey powder off on a chaotic journey. It is worth mentioning in this context that the natural radioactivity of inorganic fertilizers is much higher than that of the whey powder in question.

  3. Whey powder sterilization by ionizing irradiation

    International Nuclear Information System (INIS)

    Todorovic, M.; Salatic, Z.; Markov, S.

    1988-01-01

    Whey powder was sterilized by gamma waves application. As a source of irridiation isotope 60Co was used in Institute of Nuclear sciences B oris Kidrich , Vincha-Belgrade (Yugoslavia). The applied doses were: a, b, c, d, and e Kgy. The dose d was radappertization. After whey powder irradiation no adverse changes of organoleptic properties were noticed

  4. Aroma compounds in sweet whey powder.

    Science.gov (United States)

    Mahajan, S S; Goddik, L; Qian, M C

    2004-12-01

    Aroma compounds in sweet whey powder were investigated in this study. Volatiles were isolated by solvent extraction followed by solvent-assisted flavor evaporation. Fractionation was used to separate acidic from nonacidic volatiles. Gas chromatography/mass spectrometry and gas chromatography/olfactometry were used for the identification of aroma compounds. Osme methodology was applied to assess the relative importance of each aroma compound. The most aroma-intense free fatty acids detected were acetic, propanoic, butanoic, hexanoic, heptanoic, octanoic, decanoic, dodecanoic, and 9-decenoic acids. The most aroma-intense nonacidic compounds detected were hexanal, heptanal, nonanal, phenylacetaldehyde, 1-octen-3-one, methional, 2,6-dimethylpyrazine, 2,5-dimethylpyrazine, 2,3-dimethylpyrazine, 2,3,5-trimethylpyrazine, furfuryl alcohol, p-cresol, 2-acetylpyrrole, maltol, furaneol, and several lactones. This study suggested that the aroma of whey powder could comprise compounds originating from milk, compounds generated by the starter culture during cheese making, and compounds formed during the manufacturing process of whey powder.

  5. Whey research

    Energy Technology Data Exchange (ETDEWEB)

    Evans, E W

    1980-01-01

    A brief discussion of the composition of whey and its nutritional potential is followed by consideration of the less well- known areas of research in whey technology. These include the utilization of whole whey and problems of whey taint; use of lactose, by modification to lactitol, in breadmaking or as a binder for powders such as iron oxide fines in the steel industry; food uses of whey proteins e.g. in cheese, breadmaking and 'prudent diet' foods; pharmaceutical uses of whey protein concentrates as a source of lactoperoxidase; and technological research on membrane processes and ion-exchange fractionation of whey proteins.

  6. Use of whey powder and skim milk powder for the production of fermented cream

    Directory of Open Access Journals (Sweden)

    Ceren AKAL

    2016-01-01

    Full Text Available Abstract This study is about the production of fermented cream samples having 18% fat by addition of starter cultures. In order to partialy increase non-fat solid content of fermented cream samples, skim milk powder and demineralized whey powder in two different rates (50% and 70% were used. Samples were analyzed for changes in their biochemical and physicochemical properties (total solid, ash, fat, titratable acidity, pH value, total nitrogen, viscosity, tyrosine, acid number, peroxide and diacetyl values during 29-day of storage period. Samples tested consisted of 7 different groups; control group (without adding any powder, skim milk powder, 50% demineralized whey powder and 70% demineralized whey powder samples were in two different addition rate (2% and 4%. Also samples were analyzed for sensory properties. According to the results obtained, the addition of milk powder products affected titratable acidity and tyrosine values of fermented cream samples. Although powder addition and/or storage period didn’t cause significant variations in total solid, ash, fat, pH value, viscosity, acid number, peroxide, tyrosine and diacetyl values; sensory properties of fermented cream samples were influenced by both powder addition and storage period. Fermented cream containing 2% skim milk powder gets the top score of sensory evaluation among the samples.

  7. Improving Baking Quality of Weak Gluten Semolina Using Ovine Whey Powder

    Directory of Open Access Journals (Sweden)

    Nicola Secchi

    2018-01-01

    Full Text Available The effect of the addition of ovine whey powder at 5%, 10%, and 15% on bread quality was studied. Two different types of semolina were used, one being a commercial blend with strong and tenacious gluten (48T and the other coming from one single cultivar, characterized for having weak and sticky gluten (4T. Two different types of typical Mediterranean bread were produced, pan bread and flat bread, and their quality characteristics were measured, together with their shelf life. The volume of 4T pan bread was improved by the addition of 5% ovine whey powder. In the case of 48T, the volume of bread was negatively affected by the addition of ovine whey powder. Moreover, flat bread made with 4T was more extensible after the addition of ovine whey powder and showed lower starch retrogradation over time than the same type of bread made with 48T. Among the different pan bread types, consumers preferred 4T with 5% of substitution, which also showed an improved cell size distribution in the crumb.

  8. Photoacoustic study of heated binary mixtures containing whey and skimmed-milk powders

    NARCIS (Netherlands)

    Doka, O.; Bicanic, D.; Frankhuizen, R.

    1999-01-01

    A novel methodology is proposed to determine the amount of whey powder in a binary mixture containing whey and skimmed-milk powders. This new approach is based on measurement of the amplitude of the photoacoustic (PA) signal obtained when the mixture is exposed to a controlled thermal treatment; the

  9. The Reasearch on the Anti-Fatigue Effect of Whey Protein Powder in Basketball Training.

    Science.gov (United States)

    Ronghui, Sun

    2015-01-01

    In order to observe the effects of whey protein powder on hematological indexes of players majoring in physical education in the basketball training, the authors divided the players randomly into a control group and a nutrition group. Athletes complete the 30 minutes quantitative exercise using cycle ergometer respectively before the trial and after one month trial. Then we exsanguinated immediately after exercise, extracted heparin and measured hemoglobin, red blood cell count, hematocrit and mean corpuscular volume and other hematological indices. The results showed that after taking whey protein powder, the HB, RBC, HCT of nutrition group was significantly higher that the control group. This suggests that in high-intensity training, taking whey protein powder can cause changes of HB, RBC and HCT in human body, meanwhile MCV essentially the same. So whey protein powder can improve exercise capacity, and has anti-fatigue effect.

  10. Nutritional Potential and Functionality of Whey Powder Influenced by Different Processing Temperature and Storage

    OpenAIRE

    Zarmina Gillani; Nuzhat Huma; Aysha Sameen; Mulazim Hussain Bukhari

    2017-01-01

    Whey is an excellent food ingredient owing to its high nutritive value and its functional properties. However, composition of whey varies depending on composition of milk, processing conditions, processing method, and its whey protein content. The aim of this study was to prepare a whey powder from raw whey and to determine the influence of different processing temperatures (160 and 180 °C) on the physicochemical, functional properties during storage of 180 days and on whey protein denaturati...

  11. Quality of whey powders stored under adverse conditions

    Science.gov (United States)

    Whey protein concentrate powder (WPC) is exported by the U.S. and is included in emergency aid foods, but the bags sent overseas are usually stored without refrigeration and under elevated temperature and relative humidity (RH). The shelf life of WPC under adverse conditions must be known to preven...

  12. Authentication of Whey Protein Powders by Portable Mid-Infrared Spectrometers Combined with Pattern Recognition Analysis.

    Science.gov (United States)

    Wang, Ting; Tan, Siow Ying; Mutilangi, William; Aykas, Didem P; Rodriguez-Saona, Luis E

    2015-10-01

    The objective of this study was to develop a simple and rapid method to differentiate whey protein types (WPC, WPI, and WPH) used for beverage manufacturing by combining the spectral signature collected from portable mid-infrared spectrometers and pattern recognition analysis. Whey protein powders from different suppliers are produced using a large number of processing and compositional variables, resulting in variation in composition, concentration, protein structure, and thus functionality. Whey protein powders including whey protein isolates, whey protein concentrates and whey protein hydrolysates were obtained from different suppliers and their spectra collected using portable mid-infrared spectrometers (single and triple reflection) by pressing the powder onto an Attenuated Total Reflectance (ATR) diamond crystal with a pressure clamp. Spectra were analyzed by soft independent modeling of class analogy (SIMCA) generating a classification model showing the ability to differentiate whey protein types by forming tight clusters with interclass distance values of >3, considered to be significantly different from each other. The major bands centered at 1640 and 1580 cm(-1) were responsible for separation and were associated with differences in amide I and amide II vibrations of proteins, respectively. Another important band in whey protein clustering was associated with carboxylate vibrations of acidic amino acids (∼1570 cm(-1)). The use of a portable mid-IR spectrometer combined with pattern recognition analysis showed potential for discriminating whey protein ingredients that can help to streamline the analytical procedure so that it is more applicable for field-based screening of ingredients. A rapid, simple and accurate method was developed to authenticate commercial whey protein products by using portable mid-infrared spectrometers combined with chemometrics, which could help ensure the functionality of whey protein ingredients in food applications. © 2015

  13. Structural markers of the evolution of whey protein isolate powder during aging and effects on foaming properties.

    Science.gov (United States)

    Norwood, E-A; Le Floch-Fouéré, C; Briard-Bion, V; Schuck, P; Croguennec, T; Jeantet, R

    2016-07-01

    The market for dairy powders, including high added-value products (e.g., infant formulas, protein isolates) has increased continuously over the past decade. However, the processing and storage of whey protein isolate (WPI) powders can result in changes in their structural and functional properties. It is therefore of great importance to understand the mechanisms and to identify the structural markers involved in the aging of WPI powders to control their end use properties. This study was performed to determine the effects of different storage conditions on protein lactosylations, protein denaturation in WPI, and in parallel on their foaming and interfacial properties. Six storage conditions involving different temperatures (θ) and water activities (aw) were studied for periods of up to 12mo. The results showed that for θ≤20°C, foaming properties of powders did not significantly differ from nonaged whey protein isolates (reference), regardless of the aw. On the other hand, powders presented significant levels of denaturation/aggregation and protein modification involving first protein lactosylation and then degradation of Maillard reaction products, resulting in a higher browning index compared with the reference, starting from the early stage of storage at 60°C. These changes resulted in a higher foam density and a slightly better foam stability (whisking) at 6mo. At 40°C, powders showed transitional evolution. The findings of this study will make it possible to define maximum storage durations and to recommend optimal storage conditions in accordance with WPI powder end-use properties. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. optimizing soybean flour., whey powder. and colostrum ratios for ...

    African Journals Online (AJOL)

    l4 days. If preserved colostrum could be supplemented with reconstituted soybean flour and whey powder, the period of colostrum feeding could be extended to 4 weeks. Various researchers reported the successful inclusion of soybean flour and/or soybean protein concentrate in milk replacers (Schmutz, Cravens, Soldner ...

  15. INAA of RM IAEA-155 whey powder

    International Nuclear Information System (INIS)

    Peng Lixin; Tian Weizhi

    1993-01-01

    An IAEA biological RM IAEA-155 whey powder was analysed for phosphorus, as well as other 24 elements by INAA. The Bremsstrahlung photons produced by 32 P is measured by a HpGe spectrometer. The interferences involved in P determination were comprehensively studied and this method was also applied to the determinations of P in several established biological NBS SRMs and proved to be reliable for a wide range of P contents in biological samples

  16. Impact of Ovine Whey Protein Concentrates and Clarification By-Products on the Yield and Quality of Whey Cheese

    Directory of Open Access Journals (Sweden)

    Carlos D. Pereira

    2007-01-01

    Full Text Available The effects of the addition of whey protein concentrates and clarification by-products obtained from ovine cheese whey and deproteinized whey (Sorelho on the yield and quality of the whey cheese (Requeijão have been evaluated. Whey protein concentrates were obtained by ultrafiltration of skimmed whey and Sorelho. The clarification by-products were obtained after the treatment of the skimmed whey and Sorelho by thermocalcic precipitation and microfiltration with two membranes (0.20 and 0.65 μm pore size. Next, the liophilization of the corresponding retentates was carried out. Each powder was added in three different mass ratios: 0.5, 1.0 and 1.5 %. The addition of the powders caused higher yields of the whey cheese – mainly the one with the additional whey powder – but it did not affect the strength of the products. The retention of water and other components of whey and milk in the whey cheese was influenced by the protein composition of the powders. In relation to colour parameters, the whey cheese manufactured with ultrafiltration and microfiltration retentate powders showed lower values of ligthness than the control whey cheese – mainly the whey cheese with 1.5 % of added powders. The microstructure constituted of small aggregates in the whey cheese manufactured with ultrafiltration and 0.20-μm microfiltration retentate powders and also by large, smooth structures in the other whey cheeses, especially in batches with added Sorelho powders.

  17. Rheological, functional and thermo-physical properties of ultrasound treated whey proteins with addition of sucrose or milk powder

    Directory of Open Access Journals (Sweden)

    Anet Režek Jambrak

    2011-03-01

    Full Text Available Ultrasound represents a non-thermal food processing technique and has great potential to be used in the food industry. The objective of this research was to observe ultrasound impact on physical properties of model systems prepared with whey protein isolates (WPI or whey protein concentrates (WPC with or without sucrose or milk powder addition. This kind of systems is often used in milk beverages and milk based products. Model systems with protein and milk powder or sucrose addition were treated with high power ultrasound (HPU probe of 30 kHz frequency for 5 and 10 minutes. After sonication several properties were determined and examined: solubility, emulsifying and foaming properties, rheological and thermophysical properties. Ultrasound treatment showed severe influence on all examined properties, caused by protein denaturation as a consequence of cavitation and microstreaming effects. Ultrasound treatment caused decrease in protein solubility for whey protein isolate and whey protein concentrates model systems, compared to untreated sample. There was statistically significant increase in foam volume of model systems, prepared with sucrose or milk powder and WPI after ultrasound treatment. Statistically significant decrease in emulsion activity and emulsion stability indices was observed for model systems prepared solely with isolates and concentrates. After treatment of whey protein model systems (with or without milk powder or sucrose with 30 kHz ultrasound, the changes in consistency coefficients (k were observed, but there were no significant changes in flow behaviour indices (n. After addition of milk powder or sucrose, statistically significant decrease in initial freezing and melting temperatures was observed due to the ultrasound treatment.

  18. The Effects of Ovine Whey Powders on Durum Wheat-Based Doughs

    Directory of Open Access Journals (Sweden)

    Nicola Secchi

    2018-01-01

    Full Text Available Two types of ovine whey powder, with different protein content, were added at increasing substitution rates to two types of semolina, one with strong and tenacious gluten and the other with weak and sticky gluten. For each dough the optimum mixing time and hydration level were calculated using the consistograph. The whey powder negatively affected the leavening volume of all doughs, at all percentages except the lowest one (5%, mainly because of its effects on the elastic component of gluten as measured with a stress relaxation test. Differences of the secondary structure of gluten proteins among samples were investigated by analyzing the amide I band in the Fourier transform infrared spectra of the dough. Weak and strong semolina showed a different relative percentage of α-helix, random coil, and β-sheet structures. The longer mixing times for dough formation when using semolina with strong gluten led to an increase in α-helices and random coils, which caused a worse leavening performance than the weak-gluten semolina.

  19. The use of whey or skimmed milk powder in fortified blended foods for vulnerable groups

    DEFF Research Database (Denmark)

    Hoppe, Camilla Francis; Andersen, Gregers Stig; Jacobsen, Anne Stine

    2008-01-01

    of antinutrients has not been examined. Different lines of evidence suggest that dairy proteins have beneficial effects on vulnerable groups. Here we review the evidence on the effects of adding whey or skimmed milk powder to FBF used for malnourished infants and young children or people living with HIV or AIDS....... Adding whey or skimmed milk powder to FBF improves the protein quality, allowing a reduction in total amount of protein, which could have potential metabolic advantages. It also allows for a reduced content of soy and cereal and thereby a reduction of potential antinutrients. It is possible that adding...... is important for acceptability in vulnerable groups. The most important disadvantage is a considerable increase in price. Adding 10-15% milk powder would double the price, which means that such a product should be used only in well-defined vulnerable groups with special needs. The potential beneficial effects...

  20. Effect of incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder on ACE inhibitory activity in fermented milk by L. plantarum LP69.

    Science.gov (United States)

    Shu, Guowei; Yang, Hui; Chen, He; Zhang, Qiuhong; Tian, Yue

    2015-01-01

    Angiotensin I converting enzyme (ACE) plays an important physiological role in regulating hypertension. Lactic acid bacteria are known to produce ACE inhibitory peptides which can lower hypertension during fermentation. The effect of incubation time (0~36 h), inoculum size (3, 4, 5, 6 and 7%, v/v), temperature (25, 30, 35, 40 and 45°C), sterilization time (5, 10, 15, 20 and 25 min), concentration of goat milk powder (8, 10, 12, 14 and 16%, w/v) and whey powder (0.5, 0.6, 0.7, 0.8 and 0.9%, w/v) on ACE inhibitory peptides fermented from goat milk by Lactobacillus plantarum LP69 was investigated using single factor experiment. The optimal incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder in fermented milk by L. plantarum LP69 was 14 h, 3.0%, 35°C, 20 min, 14% and 0.70% for ACE inhibitory activity and 22 h, 3.0%, 40°C, 25 min, 16% and 0.60% for viable cell counts, respectively. The incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder had a significant influence on ACE inhibitory activity in fermented milk by Lactobacillus plantarum LP69, the results are beneficial for further screening of main factors by using fractional factorial designs.

  1. Fermented probiotic beverages based on acid whey.

    Science.gov (United States)

    Skryplonek, Katarzyna; Jasińska, Małgorzata

    2015-01-01

    Production of fermented probiotic beverages can be a good method for acid whey usage. The obtained products combine a high nutritional value of whey with health benefits claimed for probiotic bacteria. The aim of the study was to define quality properties of beverages based on fresh acid whey and milk with addition of buttermilk powder or sweet whey powder. Samples were inoculated with two strains of commercial probiotic cultures: Lactobacillus acidophilus La-5 or Bifidobacterium animalis Bb-12. After fermentation, samples were stored at refrigerated conditions. After 1, 4, 7, 14 and 21 days sensory characteristics, hardness, acetaldehyde content, titratable acidity, pH acidity and count of bacteria cells were evaluated. Throughout all storage period, the number of bacteria was higher than 8 log cfu/ml in the all samples. Beverages with La-5 strain had higher hardness and acidity, whilst samples with Bb-12 contained more acetaldehyde. Samples with buttermilk powder had better sensory properties than with sweet whey powder. Obtained products made of acid whey combined with milk and fortified with buttermilk powder or sweet whey powder, are good medium for growth and survival of examined probiotic bacteria strains. The level of bacteria was sufficient to provide health benefits to consumers.

  2. Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by "Vitreoscilla hemoglobin expressing" Escherichia coli.

    Science.gov (United States)

    Akbas, Meltem Yesilcimen; Sar, Taner; Ozcelik, Busra

    2014-01-01

    This work investigated the improvement of ethanol production by engineered ethanologenic Escherichia coli to express the hemoglobin from the bacterium Vitreoscilla (VHb). Ethanologenic E. coli strain FBR5 and FBR5 transformed with the VHb gene in two constructs (strains TS3 and TS4) were grown in cheese whey (CW) medium at small and large scales, at both high and low aeration, or with whey powder (WP) or sugar beet molasses hydrolysate (SBMH) media at large scale and low aeration. Culture pH, cell growth, VHb levels, and ethanol production were evaluated after 48 h. VHb expression in TS3 and TS4 enhanced their ethanol production in CW (21-419%), in WP (17-362%), or in SBMH (48-118%) media. This work extends the findings that "VHb technology" may be useful for improving the production of ethanol from waste and byproducts of various sources.

  3. Whey: Characteristics, Applications and Health Aspects

    OpenAIRE

    Sima Khezri; Mir Mehdi Seyedsaleh; Nina Emami; Parvin Dehghan

    2016-01-01

    Cheese whey utilization is one of major concerns nowadays. Its high organic matter content (BOD and COD concentrations), in combination with the high volumes produced and limited treatment options make cheese whey a serious environmental problem. To overcome this issue, various technological approaches have been employed to convert whey into value-added products. It is now transformed into products such as whey powder, whey protein, whey permeate, bioethanol, biopolymers, hydrogen, methane...

  4. Health issues of whey proteins: 3. Gut health promotion

    NARCIS (Netherlands)

    Schaafsma, G.

    2007-01-01

    This paper reviews the potential of whey protein to promote gut health. The high digestibility and specific amino acid composition of whey protei, as present in whey powder, whey protein concentrate and whey protein isolate, explain why ingestion of whey protein will exert this beneficial effect.

  5. Health issues of whey proteins: 3. gut health promotion

    NARCIS (Netherlands)

    Gertjan Schaafsma

    2007-01-01

    This paper reviews the potential of whey protein to promote gut health. The high digestibility and specific amino acid composition of whey protein, as present in whey powder, whey protein concentrate and whey protein isolate, explain why ingestion of whey protein will exert this beneficial effect.

  6. Lactose reduced ice cream enriched with whey powder

    Directory of Open Access Journals (Sweden)

    Ana Claudia Tsuchiya

    2017-05-01

    Full Text Available Ice cream is a food product that pleases the palate of consumers worldwide. Whey powder (WP has various technological and functional properties. However, WP increases the lactose content of the final products in which it is incorporated and causes grittiness and intolerance in lactose-sensitive individuals. This study aimed to produce ice cream with milk powder (MP replaced by WP (MP/WP, decrease the lactose content by enzymatic hydrolysis and verify the physicochemical and microbiological parameters of the final product. Initially, the variables ?-galactosidase concentration and reaction time were studied for the response of the percentage of lactose hydrolysis in a milk ice cream base, using a full 22 factorial design(FFD.With the reaction conditions defined (0.5 g L-1 of ?-galactosidase at 37 C for 4 hthe sucrose concentration and MP/WP replacement variables were then studied in the ice cream formulation for the percentage of lactose hydrolysis and overrun responses using a 22 FFD. The lactose hydrolysis, which ranged between 86.59-97.97%, was not affected by the MP/WP replacement in the ice cream, whilst the overrun was increased by the MP/WP replacement. The physicochemical and microbiological parameters of the ice cream were either not influenced or positively influenced by lactose hydrolysis and MP/WP replacement.

  7. Report on the intercomparison run IAEA-154 radionuclides in whey powder

    International Nuclear Information System (INIS)

    Cooper, E.L.; LaBrecque, J.J.; Dekner, R.; Reichel, F.; Schelenz, R.

    1988-09-01

    The results of the intercomparison on whey powder (IAEA-154) for the determination of elevated levels of radioactivity are reported. The data for thirty-one laboratories from sixteen different countries have been considered and include the determination of the following radionuclides: 134 Cs, 137 Cs, 40 K, 90 Sr. According to a statistical evaluation sufficient data for recommended mean values and confidence intervals have been received for: 134 Cs: 1355 Bq/kg (1295-1417); 137 Cs: 3749 Bq/kg (3613-3887); 40 K: 1575 Bq/kg (1511-1644); 90 Sr: 6.9 Bq/kg (6.0-8.0). Reference date: 31 August 1987. 3 refs, figs and tabs

  8. The functional properties, modification and utilization of whey proteins

    Directory of Open Access Journals (Sweden)

    B. G. Venter

    1986-03-01

    Full Text Available Whey protein has an excellent nutritional value and exhibits a functional potential. In comparison with certain other food proteins, the whey protein content of essential amino acids is extremely favourable for human consumption. Depending on the heat-treatment history thereof, soluble whey proteins with utilizable functional properties, apart from high biological value, true digestibility, protein efficiency ratio and nett protein utilization, can be recovered. Various technological and chemical recovery processes have been designed. Chemically and enzymatically modified whey protein is manufactured to obtain technological and functional advantages. The important functional properties of whey proteins, namely hydration, gelation, emulsifying and foaming properties, are reviewed.

  9. Improving low fat meatball characteristics by adding whey powder.

    Science.gov (United States)

    Serdaroğlu, Meltem

    2006-01-01

    In this study whey powder (WP) at levels of 0%, 2% and 4% was added to beef meatballs formulated with 5%, 10% and 20% fat levels. Raw and cooked meatballs were analyzed for protein, fat, moisture, ash and pH. Meatballs were evaluated for cooking characteristics, juiciness, colour parameters (L*,a*,b*) and sensory properties. Addition of WP did not affect fat and protein contents of meatballs. Addition of 2% or 4% WP significantly increased cooking yield regardless of the fat level. Both fat level and WP level significantly affected fat retention values of meatballs. Incorporating WP had no effect on meatball juiciness. Addition of WP increased fat and moisture retention of meatballs. Twenty percent fat resulted in higher L* and lower a* values. Adding WP resulted in higher L* values but WP had no effect on a* and b* values. WP had no detrimental effect on sensory properties.

  10. Whey based beverages - new generation of dairy products

    Directory of Open Access Journals (Sweden)

    Irena Jeličić

    2008-08-01

    Full Text Available Whey is a by product in the process of cheese production. Composition and characteristics of whey are depending on the production technology, the end product and the quality of used milk. Liquid whey consists of approximately 93% water and contains almost 50% of total solids present in the milk of which lactose is main constituent. Lactose is the main constituent of whey while proteins represent less than 1% of total solids. Minerals and vitamins are present in fewer amounts also. Production of whey based beverages started in 1970's and until today a wide range of different whey based beverages has been developed. They can be produced from native sweet or acid whey, from deproteinised whey, from native whey which was diluted with water, from whey powder or by whey fermentation. Non alcoholic whey beverages include wide range of products obtained by mixing native sweet, diluted or acid whey with different additives like tropical fruits (but also other fruits like apples, pears, strawberries or cranberries, crops and their products (mainly bran, isolates of vegetable proteins, CO2, chocolate, cocoa, vanilla extracts and other aromatizing agents. Special attention is being paid to production of fermented whey beverages with probiotic bacteria where the most important step is the choice of suitable culture of bacteria in order to produce functional beverage with high nutritional value and acceptable sensory characteristics. Non alcoholic whey beverages also include dietetic beverages, drinks with hydrolyzed lactose, milk like drinks and powder drinks. Whey is a very good raw material for production of alcoholic beverages due to the fact that the main constituent of the solid content is lactose (about 70%. Alcoholic whey beverages include drinks with small amount of alcohol (up to 1,5%, whey beer and whey wine. Whey beverages are suitable for wide range of consumers – from children to the elderly ones. They have very high nutritional value and good

  11. Immunochromatographic Lateral-flow test strip for the rapid detection of added bovine rennet whey in milk and milk powder

    NARCIS (Netherlands)

    Martin-Hernandez, C.; Munoz, M.; Daury, C.; Weymuth, H.; Kemmers-Voncken, A.; Corbation, V.; Toribo, T.; Bremer, M.G.E.G.

    2009-01-01

    An immunochromatographic lateral-flow test dipstick test was developed for the fast detection of bovine rennet whey in liquid milk and milk powder. The test is based on the binding of casein glycomacropeptide (cGMP) by two specific anti-bovine ¿-casein monoclonal antibodies and has a visual

  12. Utilization of whey powder as substrate for low-cost preparation of β-galactosidase as main product, and ethanol as by-product, by a litre-scale integrated process.

    Science.gov (United States)

    You, Shengping; Chang, Hongxing; Yin, Qingdian; Qi, Wei; Wang, Mengfan; Su, Rongxin; He, Zhimin

    2017-12-01

    Whey powder, a by-product of dairy industry, is an attractive raw material for value-added products. In this study, utilization of whey powder as substrate for low-cost preparation of β-galactosidase as main product and ethanol as by-product were investigated by a litre-scale integrated strategy, encompassing fermentation, isolation, permeabilization and spray drying. Firstly, through development of low-cost industrial culture and fed-batch strategies by Kluyveromyces lactis, 119.30U/mL β-galactosidase activity and 16.96mg/mL by-product ethanol were achieved. Afterward, an up-dated mathematic model for the recycling permeabilization was established successfully and 30.4g cells sediment isolated from 5L fermentation broth were permeabilized completely by distilled ethanol from broth supernatant. Then β-galactosidase product with 5.15U/mg from protection of gum acacia by spray drying was obtained. Furthermore, by-product ethanol with 31.08% (v/v) was achieved after permeabilization. Therefore, the integrated strategy using whey powder as substrate is a feasible candidate for industrial-scale implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. KAJIAN PENGGUNAAN WHEY BUBUK SEBAGAI PENGGANTI SUSU SKIM BUBUK DALAM PENGOLAHAN SOFT FROZEN ES KRIM

    Directory of Open Access Journals (Sweden)

    M. E. Sawitri

    2010-04-01

    Full Text Available The objectives of this research were to determine effect of substitution level of skim milk powder with whey powder on the quality of soft frozen ice cream and as an information for practician and industry related the research product. The materials of the research were soft frozen ice cream, the treatment were substitution levels of skim milk powder with whey powder (w/w :W0 (0%, W1 (25%, W2 (50%, W3 (75% and W4 (100% from solid non fat. The research method was an experiment using Randomized Block Design, with three replication. The variables measured were the overrun, melting rate, and organoleptic quality of soft frozen ice cream. Data were analyzed by analysis of variance and followed by Duncan’s Multiple Ranger Test. The result of the research showed that substitution level of skim milk powder with whey powder gave a highly significant effect (P<0,01 on overrun, melting rate and organoleptic quality of soft frozen ice cream. The substitution of skim milk powder with whey powder 75% (w/w gave the best quality of soft frozen ice cream according to the SNI which had 10% fat, 13% of sugar and 36% of solid. (JIIPB 2010 Vol 20 No 1: 31-37. Keywords : whey powder, skim milk powder, soft frozen ice cream

  14. Flavor and Functional Characteristics of Whey Protein Isolates from Different Whey Sources.

    Science.gov (United States)

    Smith, T J; Foegeding, E A; Drake, M A

    2016-04-01

    This study evaluated flavor and functional characteristics of whey protein isolates (WPIs) from Cheddar, Mozzarella, Cottage cheese, and rennet casein whey. WPIs were manufactured in triplicate. Powders were rehydrated and evaluated in duplicate by descriptive sensory analysis. Volatile compounds were extracted by solid-phase microextraction followed by gas chromatography-mass spectrometry. Functional properties were evaluated by measurement of foam stability, heat stability, and protein solubility. WPI from Cheddar and Cottage cheese whey had the highest cardboard flavor, whereas sweet aromatic flavor was highest in Mozzarella WPI, and rennet casein WPI had the lowest overall flavor and aroma. Distinct sour taste and brothy/potato flavor were also noted in WPI from Cottage cheese whey. Consistent with sensory results, aldehyde concentrations were also highest in Cheddar and Cottage cheese WPI. Overrun, yield stress, and foam stability were not different (P > 0.05) among Cheddar, Mozzarella, and rennet casein WPI, but WPI foams from Cottage cheese whey had a lower overrun and air-phase fraction (P whey sources could be used in new applications due to distinct functional and flavor characteristics. © 2016 Institute of Food Technologists®

  15. Structure modification and functionality of whey proteins: quantitative structure-activity relationship approach.

    Science.gov (United States)

    Nakai, S; Li-Chan, E

    1985-10-01

    According to the original idea of quantitative structure-activity relationship, electric, hydrophobic, and structural parameters should be taken into consideration for elucidating functionality. Changes in these parameters are reflected in the property of protein solubility upon modification of whey proteins by heating. Although solubility is itself a functional property, it has been utilized to explain other functionalities of proteins. However, better correlations were obtained when hydrophobic parameters of the proteins were used in conjunction with solubility. Various treatments reported in the literature were applied to whey protein concentrate in an attempt to obtain whipping and gelling properties similar to those of egg white. Mapping simplex optimization was used to search for the best results. Improvement in whipping properties by pepsin hydrolysis may have been due to higher protein solubility, and good gelling properties resulting from polyphosphate treatment may have been due to an increase in exposable hydrophobicity. However, the results of angel food cake making were still unsatisfactory.

  16. Application of Atmospheric Dielectric Barrier Discharge Plasma for Polyethylene Powder Modification

    International Nuclear Information System (INIS)

    Pichal, J.; Aubrecht, L.; Pichal, J.; Hladik, J.; Spatenka, P.; Spatenka, P.

    2006-01-01

    Paper refers about a novel plasma reactor exploiting the dielectric barrier discharge (DBD) burning in air at atmospheric pressure by ambient temperature and its usability tests. Test modifications were performed with the high density polyethylene powder Borealis CB 9155-01. Modification effect was evaluated by means of dynamic capillarity rising measurements. Tests proved significant powder capillarity changes. The existence of powder surface changes was also confirmed by ESCA tests. Modification aging effect was remarkably small, hence modification effect is very time stable. In comparison with other in literature described apparatus used for this purpose the plasma reactor is of a simple construction and needs no vacuum equipment. Its operation costs are low. Described plasma modification method seems to be an appropriate method for plasma modification of polyethylene powder on the industrial scale

  17. The relative nutritive value of irradiated spray-dried blood powder and heat-sterilized blood meal as measured in combination with whey protein

    International Nuclear Information System (INIS)

    Downes, T.E.H.; Nourse, L.D.; Siebrits, F.K.; Hastings, J.W.

    1987-01-01

    A method of processing blood meal in which nutritive value of the protein is preserved is described, since appreciable losses occur in the nutritive value of the protein when prepared by heat sterilization with drying at atmospheric pressure in steam jacketed vessels. Blood was spray dried and irradiated at an intensity of 10 kGy. Collectively the heat of spray drying and irradiation was effective in killing both the virus plaque-forming units and the bacteria, thus producing a commercially acceptable sterile product of higher nutritive value. The relative nutritive values (RNV) of 50:50 protein were 0,56 for whey protein concentrate plus heat-sterilized blood meal and 0.90 for whey protein concentrate plus irradiated spray-dried blood powder. Whey protein concentrate used as a control has a RNV of 1,0

  18. Short communication: The influence of solids concentration and bleaching agent on bleaching efficacy and flavor of sweet whey powder.

    Science.gov (United States)

    Jervis, M G; Smith, T J; Drake, M A

    2015-04-01

    Recent studies have demonstrated the effect of bleaching conditions and bleaching agent on flavor and functional properties of whey protein ingredients. Solids concentration at bleaching significantly affected bleaching efficacy and flavor effects of different bleaching agents. It is not known if these parameters influence quality of sweet whey powder (SWP). The purpose of this study was to determine the effects of solids concentration and bleaching agent on the flavor and bleaching efficacy of SWP. Colored cheddar whey was manufactured, fat separated, and pasteurized. Subsequently, the whey (6.7% solids) was bleached, concentrated using reverse osmosis (RO) to 14% solids, and then spray dried, or whey was concentrated before bleaching and then spray dried. Bleaching treatments included a control (no bleaching, 50 °C, 60 min), hydrogen peroxide (HP; 250 mg/kg, 50 °C, 60 min), benzoyl peroxide (50 mg/kg, 50 °C, 60 min), lactoperoxidase (20 mg/kg of HP, 50 °C, 30 min), and external peroxidase (MaxiBright, DSM Food Specialties, Delft, the Netherlands; 2 dairy bleaching units/mL, 50 °C, 30 min). The experiment was repeated in triplicate. Sensory properties and volatile compounds of SWP were evaluated by a trained panel and gas chromatography-mass spectrometry, respectively. Bleaching efficacy (norbixin destruction) and benzoic acid were measured by HPLC. Differences in bleaching efficacy, sensory and volatile compound profiles, and benzoic acid were observed with different bleaching agents, consistent with previous studies. Solids concentration affected bleaching efficacy of HP, but not other bleaching agents. The SWP from whey bleached with HP or lactoperoxidase following RO had increased cardboard and fatty flavors and higher concentrations of lipid oxidation compounds compared with SWP from whey bleached before RO. The SWP bleached with benzoyl peroxide after RO contained less benzoic acid than SWP from whey bleached before RO. These results indicate that

  19. Efficient production of lactulose from whey powder by cellobiose 2-epimerase in an enzymatic membrane reactor.

    Science.gov (United States)

    Wu, Lingtian; Xu, Cen; Li, Sha; Liang, Jinfeng; Xu, Hong; Xu, Zheng

    2017-06-01

    In this study, the gene encoding cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) was successfully expressed in Bacillus subtilis WB800. After the fermentation medium optimization, the activity of recombinant strain was 4.5-fold higher than the original medium in a 7.5L fermentor. The optimal catalytic pH and temperature of crude CsCE were 7.0 and 80°C, respectively. An enzymatic synthesis of lactulose was developed using cheese-whey lactose as its substrate. The maximum conversion rate of whey powder obtained was 58.5% using 7.5 U/mL CsCE. The enzymatic membrane reactor system exhibited a great operational stability, confirmed with the higher lactose conversion (42.4%) after 10 batches. To our best knowledge, this is the first report of lactulose synthesis in food grade strain, which improve the food safety, and we not only realize the biological production of lactulose, but also make good use of industrial waste, which have positive impact on environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of hydrolyzed whey protein on surface morphology, water sorption, and glass transition temperature of a model infant formula.

    Science.gov (United States)

    Kelly, Grace M; O'Mahony, James A; Kelly, Alan L; O'Callaghan, Donal J

    2016-09-01

    Physical properties of spray-dried dairy powders depend on their composition and physical characteristics. This study investigated the effect of hydrolyzed whey protein on the microstructure and physical stability of dried model infant formula. Model infant formulas were produced containing either intact (DH 0) or hydrolyzed (DH 12) whey protein, where DH=degree of hydrolysis (%). Before spray drying, apparent viscosities of liquid feeds (at 55°C) at a shear rate of 500 s(-1) were 3.02 and 3.85 mPa·s for intact and hydrolyzed infant formulas, respectively. On reconstitution, powders with hydrolyzed whey protein had a significantly higher fat globule size and lower emulsion stability than intact whey protein powder. Lactose crystallization in powders occurred at higher relative humidity for hydrolyzed formula. The Guggenheim-Anderson-de Boer equation, fitted to sorption isotherms, showed increased monolayer moisture when intact protein was present. As expected, glass transition decreased significantly with increasing water content. Partial hydrolysis of whey protein in model infant formula resulted in altered powder particle surface morphology, lactose crystallization properties, and storage stability. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Membrane processes in production of functional whey components

    Directory of Open Access Journals (Sweden)

    Lutfiye Yilmaz-Ersan

    2009-12-01

    Full Text Available In recent years, whey has been recognised as a major source of nutritional and functional ingredients for the food industry. Commercial whey products include various powders, whey protein concentrates and isolates, and fractionated proteins, such as a-lactalbumin and b-lactoglobulin. The increased interest in separation and fractionation of whey proteins arises from the differences in their functional, biological and nutritional properties. In response to concerns about environmental aspects, research has been focused on membrane filtration technology, which provides exciting new opportunities for large-scale protein and lactose fractionation. Membrane separation is such technique in which particles are separated according to their molecular size. The types of membrane processing techniques are ultrafiltration, microfiltration, reverse osmosis, pervaporation, electrodialysis and nanofiltration. A higher purification of whey proteins is possible by combining membrane separation with ion-exchange. This paper provides an overview of types and applications of membrane separation techniques

  2. The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk.

    Science.gov (United States)

    Svanborg, Sigrid; Johansen, Anne-Grethe; Abrahamsen, Roger K; Skeie, Siv B

    2015-09-01

    The demand for whey protein is increasing in the food industry. Traditionally, whey protein concentrates (WPC) and isolates are produced from cheese whey. At present, microfiltration (MF) enables the utilization of whey from skim milk (SM) through milk protein fractionation. This study demonstrates that buttermilk (BM) can be a potential source for the production of a WPC with a comparable composition and functional properties to a WPC obtained by MF of SM. Through the production of WPC powder and a casein- and phospholipid (PL)-rich fraction by the MF of BM, sweet BM may be used in a more optimal and economical way. Sweet cream BM from industrial churning was skimmed before MF with 0.2-µm ceramic membranes at 55 to 58°C. The fractionations of BM and SM were performed under the same conditions using the same process, and the whey protein fractions from BM and SM were concentrated by ultrafiltration and diafiltration. The ultrafiltration and diafiltration was performed at 50°C using pasteurized tap water and a membrane with a 20-kDa cut-off to retain as little lactose as possible in the final WPC powders. The ultrafiltrates were subsequently spray dried, and their functional properties and chemical compositions were compared. The amounts of whey protein and PL in the WPC powder from BM (BMWPC) were comparable to the amounts found in the WPC from SM (SMWPC); however, the composition of the PL classes differed. The BMWPC contained less total protein, casein, and lactose compared with SMWPC, as well as higher contents of fat and citric acid. No difference in protein solubility was observed at pH values of 4.6 and 7.0, and the overrun was the same for BMWPC and SMWPC; however, the BMWPC made less stable foam than SMWPC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Magnetic modification of diamagnetic agglomerate forming powder materials

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Baldíková, Eva; Pospíšková, K.; Šafaříková, Miroslava

    2016-01-01

    Roč. 29, December (2016), s. 169-171 ISSN 1674-2001 Institutional support: RVO:60077344 Keywords : magnetic modification * magnetic separation * powdered material * magnetic iron oxide * microwave assisted synthesis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.621, year: 2016

  4. Tribomechanical micronization and activation of whey protein ...

    Indian Academy of Sciences (India)

    Tribomechanics is a part of physics that is concerned with the study of phenomena that appear during milling under dynamic conditions. Tribomechanical micronization and activation (TMA) of whey protein concentrates (WPC) and zeolites (type clinoptilolite) were carried out. Samples of powdered WPC and zeolite were ...

  5. Whey protein concentrate storage at elevated temperature and humidity

    Science.gov (United States)

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  6. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides.

    Science.gov (United States)

    Yadav, Jay Shankar Singh; Yan, Song; Pilli, Sridhar; Kumar, Lalit; Tyagi, R D; Surampalli, R Y

    2015-11-01

    The byproduct of cheese-producing industries, cheese whey, is considered as an environmental pollutant due to its high BOD and COD concentrations. The high organic load of whey arises from the presence of residual milk nutrients. As demand for milk-derived products is increasing, it leads to increased production of whey, which poses a serious management problem. To overcome this problem, various technological approaches have been employed to convert whey into value-added products. These technological advancements have enhanced whey utilization and about 50% of the total produced whey is now transformed into value-added products such as whey powder, whey protein, whey permeate, bioethanol, biopolymers, hydrogen, methane, electricity bioprotein (single cell protein) and probiotics. Among various value-added products, the transformation of whey into proteinaceous products is attractive and demanding. The main important factor which is attractive for transformation of whey into proteinaceous products is the generally recognized as safe (GRAS) regulatory status of whey. Whey and whey permeate are biotransformed into proteinaceous feed and food-grade bioprotein/single cell protein through fermentation. On the other hand, whey can be directly processed to obtain whey protein concentrate, whey protein isolate, and individual whey proteins. Further, whey proteins are also transformed into bioactive peptides via enzymatic or fermentation processes. The proteinaceous products have applications as functional, nutritional and therapeutic commodities. Whey characteristics, and its transformation processes for proteinaceous products such as bioproteins, functional/nutritional protein and bioactive peptides are covered in this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Review: elimination of bacteriophages in whey and whey products

    Directory of Open Access Journals (Sweden)

    Zeynep eAtamer

    2013-07-01

    Full Text Available As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages per mL. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV light irradiation and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favoured - rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent

  8. Review: elimination of bacteriophages in whey and whey products

    Science.gov (United States)

    Atamer, Zeynep; Samtlebe, Meike; Neve, Horst; J. Heller, Knut; Hinrichs, Joerg

    2013-01-01

    As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages mL-1. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV) light irradiation, and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favored – rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent phage accumulations

  9. Batch cultivation of kluyveromyces fragilis in cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Beausejour, D; Leduy, A; Ramalho, R S

    1981-01-01

    Kluyveromyces fragilis was cultivated batchwise in an open pond rectangular bioreactor at 30 degrees Celcius with aeration, under non-sterile conditions and uncontrolled pH. The culture medium contained 7% cheese whey powder, 0.25% KH2PO4, and 0.5% (NH4)2SO4 and was adjusted to an initial pH of 4.0 with H3PO4. The lactose was almost completely consumed after 16 hours and COD reduction attained 80% after 64 hours. The maximum suspended solids concentration obtained was 11.7 g/L. The cheese whey which had initially low protein and high lactose contents was converted by this system into a high protein and low lactose carbohydrate product.

  10. Comparison of SPME Methods for Determining Volatile Compounds in Milk, Cheese, and Whey Powder

    Directory of Open Access Journals (Sweden)

    Michael H. Tunick

    2013-11-01

    Full Text Available Solid phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but conditions have to be adjusted to maximize release while not generating new compounds that are absent in the original sample. Queso Fresco, a fresh non-melting cheese, may be heated at 60 °C for 30 min; in contrast, compounds are produced in milk when exposed to light and elevated temperatures, so milk samples are heated as little as possible. Products such as dehydrated whey protein are more stable and can be exposed to longer periods (60 min of warming at lower temperature (40 °C without decomposition, allowing for capture and analysis of many minor components. The techniques for determining the volatiles in dairy products by SPME and GC-MS have to be optimized to produce reliable results with minimal modifications and analysis times.

  11. Batch cultivation of kluyveromyces fragilis in cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Beausejour, D; Leduy, A; Ramalho, R S

    1981-08-01

    Kluyveromyces fragilis was cultivated batchwise in an open pond rectangular bioreactor at 30 degrees Centigrade, 2vvm of aeration, under non-sterile conditions and uncontrolled pH. The culture medium contained 7% cheese whey powder, 0.25% KH/sub 2/PO/sub 4/, 0.5% (NH/sub 4/)/sub 2/SO/sub 4/ and was adjusted to an initial pH of 4.0 with phosphoric acid. The lactose was almost completely consumed after 16 hours and COD reduction attained 80% after 64 hours. The maximum suspended solids concentration obtained was 11.7 g/L. The cheese whey which had initially low protein and high lactose contents was converted by this system into a high protein and low lactose carbohydrate product. (Refs. 26).

  12. Evaluation of whey, milk, and delactosed permeates as salt substitutes.

    Science.gov (United States)

    Smith, S T; Metzger, L; Drake, M A

    2016-11-01

    Whey and milk permeates are by-products of high-protein dairy powder manufacture. Previous work has shown that these permeates contribute to salty taste without contributing significantly to sodium content. The objective of this study was to explore the sensory characteristics and compositional analysis of permeates from different milk and whey streams and a low-sodium product application made from them. Skim milk, Cheddar, cottage, and Mozzarella cheese whey permeates were manufactured in triplicate, and delactosed whey permeate was obtained in triplicate. Composition (protein, fat, solids, minerals) was conducted on permeates. Organic acid composition was determined using HPLC. Volatile compounds were extracted from permeates by solid phase microextraction with gas chromatography-mass spectrometry. A trained sensory panel documented sensory attributes of permeates and cream of broccoli soups with and without salt or permeates followed by consumer acceptance testing (n=105) on the soups. Cottage cheese whey permeate contained a higher lactic acid content than other permeates, which has been shown to contribute to a higher salty taste. Cottage cheese whey permeate also contained potato or brothy and caramel flavors and sour and salty tastes, whereas delactosed whey permeate had high intensities of cardboard and beefy or brothy flavors and salty taste. Milk, Cheddar, and Mozzarella cheese whey permeates were characterized by sweet taste and cooked milky flavor. Permeates with higher cardboard flavor had higher levels of aldehydes. All permeates contributed to salty taste and to salty taste perception in soups; although the control soup with added salt was perceived as saltier and was preferred by consumers over permeate soups. Soup with permeate from cottage cheese was the least liked of all soups, likely due to its sour taste. All other permeate soups scored at parity for liking. These results demonstrate the potential for milk, whey, and delactosed permeates from

  13. KARAKTERISTIK FISIK, KIMIA, MIKROBIOLOGI WHEY KEFIR DAN AKTIVITASNYA TERHADAP PENGHAMBATAN ANGIOTENSIN CONVERTING ENZYME (ACE [Physical, Chemical and Microbiological Characteristics of Whey Kefir and Its Angiotensin Converting Enzyme (ACE Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Andi Febrisiantosa*

    2013-12-01

    Full Text Available This study was conducted to evaluate the characteristics of whey-based kefir products and their activity to inhibit the angiotensin converting enzyme (ACE. Kefir was produced by using many types of whey, namely SK: skim milk based kefir (control; WK: gouda cheese whey based kefir; and WKB: commercial whey powder based kefir. The experimental design was a completely randomized design. Each treatment was conducted in triplicates. Kefirs were evaluated for physical and chemical properties (pH, total titratable acidity, viscosity, protein, fat, lactose, and alcohol, microbiological (lactic acid bacteria and yeast population, peptide concentration, ACE inhibition, IC50 and Inhibition Efficiency Ratio (IER. The results showed that the types of whey used for kefir productions significantly affected the physical and chemical characteristics of the products (p0.05. The peptide concentration and ACE inhibitory activity of WK, 1.54±0.02 mg/mL and 73.07±0.91%, was significantly higher (p0.05 from the control (47.19±0.09% per mg/mL but was significantly higher (p<0.05 than that of WKB (45.75±0.18% per mg/mL. This research indicated that whey kefir is a potential source of bioactive peptide for antihypertention agent.

  14. The use of acid whey for the production of yogurt-type fermented beverages

    Directory of Open Access Journals (Sweden)

    Katarzyna Skryplonek

    2018-01-01

    Full Text Available Acid whey is a by-product of cheese-making industry, which, in comparison to rennet whey, has less favourable processing properties and thus it is more difficult to utilize. The aim of the study was to evaluate the quality of yogurt-type fermented beverages based on acid whey. In the beverages production yogurt bacteria cultures Streptococcus thermophilus and Lactobacillus delbruecki ssp. bulgaricus (YO-MIX, Danisco, Denmark were used. The production process included combining of pasteurized acid whey with UHT milk, unsweetened condensed milk or skimmed milk powder. Milk was incorporated to beverages in order to enrich casein content and obtain product with quality characteristics similar to fermented milk drinks. Moreover, the beverages were supplemented with oligofructose and whey protein concentrate WPC 35. The products were stored under refrigerated conditions (5±1°C for 21 days. During the storage, an assessment of physicochemical properties and sensory characteristics was carried out. In addition, the beverages were evaluated in consumer preference test. The study showed, that by combining of acid whey with milk it is possible to obtain a products similar to yogurt, although their characteristics were influenced by the composition and storage time. During storage period, the acidity increased and acetaldehyde content decreased. Moreover the deterioration of sensory properties was observed. Consumer preference test indicated, that the best sensory properties had beverages from whey and condensed milk.

  15. Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.

    Science.gov (United States)

    Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel

    2014-08-01

    The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology).

  16. Effect of Oyster Shell Calcium Powder on the Quality of Restructured Pork Ham

    OpenAIRE

    Choi, Jung-Seok; Lee, Hyun-Jin; Jin, Sang-Keun; Lee, Hyun-Joo; Choi, Yang-Il

    2014-01-01

    This study was conducted to evaluate the effects of oyster shell calcium powder (OSCP) as a substitute for phosphates in curing agent, on the quality of restructured pork ham. Restructured pork ham was processed under six treatment conditions: T1 (no additives), T2 (0.3% sodium tripolyphosphate), T3 (1.5% NaCl+0.5% whey protein), T4 (1.5% NaCl+0.5% whey protein+0.15% OSCP), T5 (1.5% NaCl+0.5% whey protein+0.3% OSCP), and T6 (1.5% NaCl+0.5% whey protein+0.5% OSCP). Addition of OSCP significant...

  17. Whey pretreatments before ultrafiltration

    Directory of Open Access Journals (Sweden)

    Tuomo Tupasela

    1994-09-01

    Full Text Available Whey is a by-product of cheesemaking. Whey dry matter contains mainly lactose, but also valuable whey proteins. The aim of this study was to develop improvements to whey protein membrane isolation processes. In our trials CaCl2 -added, pH-adjusted and heat-treated wheys were found to have MF (microfiltration permeate fluxes about 30% higher than in untreated MF whey. The total solids and protein content of the MF permeates decreased compared to the original wheys. UF (ultrafiltration trials were conducted using MF whey to compare it with centrifugally separated whey. The MF whey consistently maintained an UF flux about 1.5 to 2.5 times higher than that of the separated whey. Differently treated MF whey UF permeate fluxes also showed a difference. With CaCl2 addition, pH adjustment and heat treatment, the UF permeate fluxes were about 20 to 40% higher than when only MF was used. The total solids content decreased in each trial. The protein content of the UF concentrate also decreased compared to the MF permeate. The (β-lg (β-lactoglobulin and α-la (α-lactalbumin content was almost the same in UF concentrates as in MF permeates.

  18. Effects of dry whey powder and calcium butyrate supplementation of corn/soybean-based diets on productive performance, duodenal histological integrity, and Campylobacter colonization in broilers.

    Science.gov (United States)

    Ocejo, Medelin; Oporto, Beatriz; Juste, Ramón A; Hurtado, Ana

    2017-06-26

    Campylobacter is the main cause of gastroenteritis in humans in industrialized countries, and poultry is its principal reservoir and source of human infections. Dietary supplementation of broiler feed with additives could improve productive performance and elicit health benefits that might reduce Campylobacter contamination during primary production. The aim of this study was to assess the effect of dietary supplementation with whey (a prebiotic) and calcium butyrate (a salt of a short-chain fatty acid) on productive traits, duodenal histological integrity, and Campylobacter colonization and dissemination in broiler chickens during the 42-day rearing period. Six hundred one-day-old Ross-308 chickens were placed into 20 ground pens and assigned to one of 4 corn/soybean-based dietary treatments (5 replicates of 30 chicks per treatment) following a randomized complete block design: 1) basal diet with no supplementation as the control, 2) diet supplemented with 6% dry whey powder, 3) diet containing 0.1% coated calcium butyrate, and 4) diet containing 6% whey and 0.1% calcium butyrate. At age 15 days, 6 chickens per pen were experimentally inoculated with Campylobacter jejuni. The results showed that supplementation of the corn/soybean-based diet with 6% whey alone or, preferably, in combination with 0.1% coated calcium butyrate improved growth and feed efficiency, had a beneficial effect on duodenal villus integrity, and decreased mortality. These favourable effects were particularly significant during the starter period. Six days after oral challenge, Campylobacter was widespread in the flock, and the birds remained positive until the end of the rearing period. Although Campylobacter was not isolated from environmental samples, it was detected by real-time polymerase chain reaction (PCR) in dust, air filters, and drinkers while birds shed culturable C. jejuni cells. No differences (p > 0.050) in colonization or shedding levels that could be attributed to the diet

  19. Enhancement of the nutritional value of whey drink by supplementing with leaves of moringa oleifera

    International Nuclear Information System (INIS)

    Nadeem, M.; Hussain, I.; Abdullah, M.; Rehman, F.

    2013-01-01

    The effect of supplementing Moringa oleilera leaf powder (MOLP) on the nutritional and sensory characteristics of whey drink was investigated. Whey drink was supplemented with MOLP at four different concentrations i.e., 1% MOLP (TO, 2% MOLP (T.,), 3% MOLP (T,), 4% MOLP (1.4) and compared with a control (To). The addition of MOLP at any level did not have a negative effect on p11 and acidity of whey drink. Iron content of T, increased from 0.17 to 115 mg/100 mL, total phenolic content of MOLP was 7.4 g/100 g on dry weight basis (gallic acid). Vitamin C increased from 1.46 to 2.20 mg/100 g in -1.4. The overall acceptability score of T, was 6.9 out 9 (total score) which was more than 76%. These results suggest that nutritional value of whey can be increased by supplementing with 4% dry leaves of M. oleifera in the form of a whey based drink with acceptable sensory characteristics. (author)

  20. Improving surface functional properties of tofu whey-derived peptides by chemical modification with fatty acids.

    Science.gov (United States)

    Matemu, Athanasia Oswald; Katayama, Shigeru; Kayahara, Hisataka; Murasawa, Hisashi; Nakamura, Soichiro

    2012-04-01

    Effect of acylation with saturated fatty acids on surface functional properties of tofu whey-derived peptides was investigated. Tofu whey (TW) and soy proteins (7S, 11S, and acid-precipitated soy protein [APP]) were hydrolyzed by Protease M 'Amano' G, and resulting peptide mixtures were acylated with esterified fatty acids of different chain length (6C to 18C) to form a covalent linkage between the carboxyl group of fatty acid and the free amino groups of peptide. Acylation significantly (P properties of 7S, 11S, and APP peptides independent of fatty acid chain length. Acylation decreased water binding capacity although oil binding capacity of acylated tofu whey ultra filtered fraction (UFTW acids had shown significant higher surface hydrophobicity as in contrast with acylated UFTW acids can further affect functional properties of soy proteins. © 2012 Institute of Food Technologists®

  1. Cost effective disposal of whey

    Energy Technology Data Exchange (ETDEWEB)

    Zall, R R

    1980-01-01

    Means of reducing the problem of whey disposal are dealt with, covering inter alia the pre-treatment of cheese milk e.g., by ultrafiltration to lower the whey output, utilization of whey constituents, use of liquid whey for feeding, fermenting whey to produce methane and alcohol, and disposal of whey by irrigation of land or by purification in sewage treatment plants.

  2. Use of Whey and Whey Preparations in the Food Industry – A Review

    Directory of Open Access Journals (Sweden)

    Królczyk Jolanta B.

    2016-07-01

    Full Text Available The interest in whey and whey preparations has considerably increased in recent years. Whey and whey preparations are the so-called “forgotten treasure” and, because of their unique properties, they have been “rediscovered” and have been increasingly frequently and successfully used by various production plants in the food industry. They have also been eagerly purchased by consumers who are aware of the role of whey preparations in adequate human nutrition. For many years, there has been a tendency in the food processing industry to use substitutes of ingredients in recipes of many products. This situation can be observed in the case of foods with reduced fat and sugar, or products for lacto-ovo-vegetarians. Whey - and more specifically, its preparations - can also be used as a substitute. According to many literature sources, its use can have a positive impact not only on the consumers’ health but also on the finances of many companies, by reducing the costs of raw materials, and thus production costs. This review paper presents selected uses of whey and whey preparations in the food industry. The uses of whey discussed include: meat and meat products, reduced-fat products, yoghurts and ice creams, cheeses, bakery products, confectionery and pastry products, infant formulas, and whey drinks.

  3. Utilization of whey

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Compositions of wheys from cheesemaking and ultrafiltration are tabulated and some indications of the pollution potential and the cost of disposal of whey are given. The following treatments are described: ion exchange and electrodialysis for demineralization and deacidification; concentration by reverse osmosis, evaporation, spray drying, ''Hatmaker'' (roller) drying, and a drying technique using small Teflon balls; separation of proteins by ''Centri-Whey'' (Alfa-Laval) and ''Bel-Industrie'' heat/acid coagulation, ultrafiltration and other methods; purification and enzymic hydrolysis of lactose, and use of lactose as a substrate for protein biosynthesis by ''Bel'' (lactic acid yeast), ''Devos'' (Saccharomyces yeast) and ''Caliqua-Sireb'' (using fungi) processes. The use of whey for producing ethanol, lactic acid, vinegar, vitamins, antibiotics, enzymes and fats; and development of industrial whey processing in France are reviewed.

  4. Comparative Analysis of Whey N-Glycoproteins in Human Colostrum and Mature Milk Using Quantitative Glycoproteomics.

    Science.gov (United States)

    Cao, Xueyan; Song, Dahe; Yang, Mei; Yang, Ning; Ye, Qing; Tao, Dongbing; Liu, Biao; Wu, Rina; Yue, Xiqing

    2017-11-29

    Glycosylation is a ubiquitous post-translational protein modification that plays a substantial role in various processes. However, whey glycoproteins in human milk have not been completely profiled. Herein, we used quantitative glycoproteomics to quantify whey N-glycosylation sites and their alteration in human milk during lactation; 110 N-glycosylation sites on 63 proteins and 91 N-glycosylation sites on 53 proteins were quantified in colostrum and mature milk whey, respectively. Among these, 68 glycosylation sites on 38 proteins were differentially expressed in human colostrum and mature milk whey. These differentially expressed N-glycoproteins were highly enriched in "localization", "extracellular region part", and "modified amino acid binding" according to gene ontology annotation and mainly involved in complement and coagulation cascades pathway. These results shed light on the glycosylation sites, composition and biological functions of whey N-glycoproteins in human colostrum and mature milk, and provide substantial insight into the role of protein glycosylation during infant development.

  5. Isoenergic modification of whey protein structure by denaturation and crosslinking using transglutaminase

    DEFF Research Database (Denmark)

    Stender, Emil G. P.; Koutina, Glykeria; Almdal, Kristoffer

    2018-01-01

    Transglutaminase (TG) catalyzes formation of covalent bonds between lysine and glutamine side chains and has applications in manipulation of food structure. Physical properties of a whey protein mixture (SPC) denatured either at elevated pH or by heat-treatment and followed by TG catalyzed...

  6. Quantification of Whey Protein Content in Infant Formulas by Sodium Dodecyl Sulfate-Capillary Gel Electrophoresis (SDS-CGE): Single-Laboratory Validation, First Action 2016.15.

    Science.gov (United States)

    Feng, Ping; Fuerer, Christophe; McMahon, Adrienne

    2017-03-01

    Protein separation by sodium dodecyl sulfate-capillary gel electrophoresis, followed by UV absorption at 220 nm, allows for the quantification of major proteins in raw milk. In processed dairy samples such as skim milk powder (SMP) and infant formulas, signals from individual proteins are less resolved, but caseins still migrate as one family between two groups of whey proteins. In the first group, α-lactalbumin and β-lactoglobulin migrate as two distinct peaks. Lactosylated adducts show delayed migration times and interfere with peak separation, but both native and modified forms as well as other low-MW whey proteins still elute before the caseins. The second group contains high-MW whey proteins (including bovine serum albumin, lactoferrin, and immunoglobulins) and elutes after the caseins. Caseins and whey proteins can thus be considered two distinct nonoverlapping families whose ratio can be established based on integrated areas without the need for a calibration curve. Because mass-to-area response factors for whey proteins and caseins are different, an area correction factor was determined from experimental measurement using SMP. Method performance assessed on five infant formulas showed RSDs of 0.2-1.2% (within day) and 0.5-1.1% (multiple days), with average recoveries between 97.4 and 106.4% of added whey protein. Forty-three different infant formulas and milk powders were analyzed. Of the 41 samples with manufacturer claims, the measured whey protein content was in close agreement with declared values, falling within 5% of the declared value in 76% of samples and within 10% in 95% of samples.

  7. 21 CFR 184.1979 - Whey.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Whey. 184.1979 Section 184.1979 Food and Drugs FOOD... Substances Affirmed as GRAS § 184.1979 Whey. (a)(1) Whey. Whey is the liquid substance obtained by separating the coagulum from milk, cream, or skim milk in cheesemaking. Whey obtained from a procedure, in which...

  8. Whey Protein

    Science.gov (United States)

    ... reliable information about the safety of taking whey protein if you are pregnant or breast feeding. Stay on the safe side and avoid use. Milk allergy: If you are allergic to cow's milk, avoid using whey protein.

  9. Deproteinization: an integrated-solution approach to increase efficiency in β-galactosidase production using cheese whey powder (CWP solution

    Directory of Open Access Journals (Sweden)

    Leandro Freire dos Santos

    2017-08-01

    Full Text Available Whey is the liquid that results from the coagulation of milk during cheese manufacture. Cheese whey is also an important environmental pollution source. The present experiment sought to compare β-galactosidase (EC 3.2.1.23 production by Aspergillus oryzae from deproteinized and un-deproteinized CWP solutions. β-galactosidase was produced by submerged fermentation in deproteinized or un-deproteinized CWP solutions. To determine the activity of the enzyme, a reaction mixture containing cell-free extract and ortho Nitrophenyl β galactoside (ONPG was used. The results indicated that β-galactosidase induction was greater when using deproteinized CWP solution compared to the un deproteinized CWP solution. These results may enable an alternative management of cheese whey, thereby decreasing its impact on the environment and producing value-added biomacromolecules.

  10. Report on the intercomparison run IAEA-155 trace elements in whey powder

    International Nuclear Information System (INIS)

    Zeiller, E.; Strachnov, V.; Dekner, R.

    1990-11-01

    Analytical results need to be reliable, and analysts are well serviced to test their complete analytical systems, methods, instruments, personnel, data reduction, etc., on a frequent basis. Besides the use of standard reference materials, the intercomparison runs provide an excellent opportunity for the determination of accuracy. By comparing their results with results obtained by different methods of preparation and measurement, the participating laboratories have the opportunity to check their analytical performances. At the same time the IAEA's AQCS can establish the concentration of some elements for certification purposes. The participants were requested to determine as many elements as possible with emphasis on ''essential'' and ''toxic'' elements related to human health and environmental pollution in the intercomparison whey powder sample (IAEA-155) as well as in the control sample IAEA. It was expected that the results for IAEA would improve the evaluation of the intercomparison results of IAEA-155 as the concentrations of some inorganic constituents were well established in the IAEA sample. In total 69 laboratories from 24 different countries participated in this exercise. As a basis for the evaluation, 580 laboratory means were reported comprising 2699 individual results for 45 elements. For 3 additional elements information was supplied that the value was below the detection limits of the methods. Even though information and data on 48 elements were reported for IAEA-155 only 4 elements are assigned Class A and 13 elements Class B recommended values. The elements Mg, Mn, Na and P were assigned ''Class A''. But contrary to some former intercomparison exercises, this time sufficient results could be obtained to set ''Class B'' recommended values for some ''difficult to determine'' elements like Cd, Co, Cr, Hg, Ni, Pb, Se. Figs, 45 tabs

  11. 7 CFR 58.717 - Whey.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Whey. 58.717 Section 58.717 Agriculture Regulations of....717 Whey. Whey used in cheese products should meet the requirements equivalent to USDA Extra Grade except that the moisture requirement for dry whey may be waived. ...

  12. Utilization of whey

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Compositions of wheys from cheesemaking and ultrafiltration are tabulated and some indications of the pollution potential and the cost of disposal of whey are given. The following treatments are described: ion exchange and electrodialysis for demineralization and deacidification; concentration by reverse osmosis, evaporation, spray drying, ''Hatmaker'' (roller) drying, and a drying technique using small Teflon balls; separation of proteins by ''Centri-Whey'' (Alfa-Laval) and ''Bel-Industrie'' heat/acid coagulation, ultrafiltration and other methods; purification and enzymic hydrolysis of lactose, and use of lactose as a substrate for protein biosynthesis by ''Bel'' (lactic acid yeast), ''Devos'' (Saccharomyces yeast) and ''Caliqua-Sireb'' (using fungi) processes. The use of whey for producing ethanol, lactic acid, vinegar, vitamins, antibiotics, enzymes and fats; and development of industrial whey processing in France are reviewed.

  13. 7 CFR 58.808 - Whey.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Whey. 58.808 Section 58.808 Agriculture Regulations of....808 Whey. Whey for processing shall be fresh and originate from the processing of products made from... by the Food and Drug Administration may be added to the whey for processing, except when restricted...

  14. Impact of Ovine Whey Protein Concentrates and Clarification By-Products on the Yield and Quality of Whey Cheese

    OpenAIRE

    Carlos D. Pereira; Olga Díaz; Angel Cobos

    2007-01-01

    The effects of the addition of whey protein concentrates and clarification by-products obtained from ovine cheese whey and deproteinized whey (Sorelho) on the yield and quality of the whey cheese (Requeijão) have been evaluated. Whey protein concentrates were obtained by ultrafiltration of skimmed whey and Sorelho. The clarification by-products were obtained after the treatment of the skimmed whey and Sorelho by thermocalcic precipitation and microfiltration with two membranes (0.20 and 0.65 ...

  15. Continuous fermentation of whey into alcohol using an attached film expanded bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H C; Zall, R R

    1982-01-01

    Batch and continuous processes were studied using a lactose- fermenting yeast, Saccharomyces fragi. Batch methods were used to study the effects of temperature, pH, yeast extract, and ergosterol on ethanol and cell mass production. The optimal temperature ranged from 32 to 37 degrees C. No pH control appeared necessary for whey fermentation. Supplements of yeast extract and ergosterol appeared to have pronounced effect on cell mass and ethanol production. Overall, whey reconstituted from acid whey powder containing 10% lactose could be converted to 36.5 g/l of ethanol in 44 hours when the material was supplemented with 0.7% yeast extract, 10 mg/l ergosterol, and fermented at 32 degrees C using 2.67% aerobically grown inoculum containing approximately 110 x 10 to the power of 6 CFU/ml. Ethanol productivity as high as 6.9 g/lj/h was achieved in a continuous attached film expanded bed fermentor using cellulose acetate as support media. The retention time was 1.1 hour and effluent ethanol concentration was 7.6 g/l. (Refs. 27).

  16. Mechanically Strain-Induced Modification of Selenium Powders in the Amorphization Process

    International Nuclear Information System (INIS)

    Fuse, Makoto; Shirakawa, Yoshiyuki; Shimosaka, Atsuko; Hidaka, Jusuke

    2003-01-01

    For the fabrication of particles designed in the nanoscale structure, or the nanostructural modification of particles using mechanical grinding process, selenium powders ground by a planetary ball mill at various rotational speeds have been investigated. Structural analyses, such as particle size distributions, crystallite sizes, lattice strains and nearest neighbour distances were performed using X-ray diffraction, scanning electron microscopy and dynamical light scattering.By grinding powder particles became spherical composites consisting of nanocrystalline and amorphous phase, and had a distribution with the average size of 2.7 μm. Integral intensities of diffraction peaks of annealed crystal selenium decreased with increasing grinding time, and these peaks broadened due to lattice strains and reducing crystallite size during the grinding. The ground powder at 200 rpm did not have the lattice strain and showed amorphization for the present grinding periods. It indicates that the amorphization of Se by grinding accompanies the lattice strain, and the lattice strain arises from a larger energy concerning intermolecular interaction. In this process, the impact energy is spent on thermal and structural changes according to energy accumulation in macroscopic (the particle size distribution) and microscopic (the crystallite size and the lattice strain) range

  17. KEEPING QUALITY OF YOGHURT FORTIFIED WITH WHEY PROTEIN CONCENTRATE AND SKIM MILK POWDER BY USING GAMMA RADIATION

    International Nuclear Information System (INIS)

    ANWAR, M.M.; YOUSEF, E.T.; ABD-ELHADI, Y.A.

    2009-01-01

    Four batches of yoghurt were prepared to study the effect of gamma radiation doses on the quality of yoghurt. All samples were prepared by the addition of 1.5% whey proteins concentrate and 1.5% skim milk powder (from buffalo's milk). The four yoghurt batches were treated with gamma radiation at doses of 0, 1, 2 and 3 kGy, respectively. All treated yoghurt was kept in a refrigerator at 7 0C and samples were examined every three days for chemical, microbiological and sensory evaluation. Control yoghurt that was not exposed to gamma radiation exhibited the highest total bacterial counts and lactic acid bacterial counts after 6 day from storage while the irradiated samples counts were decreased and this decrease was proportional to the dose of gamma radiation used. Applying gamma radiation improved the keeping quality of yoghurt, which provide that control yoghurt was still accepted till the 12 th day while the samples irradiated with 1, 2 and 3 kGy were still accepted till the 15, 24 and 30 days, respectively. Coliform bacteria were not detected in all yoghurt treatment and there were non-significant differences among yoghurt treatments considering the chemical composition. Therefore, gamma irradiation could be recommended for both increasing the shelf-life of yoghurt and enhance its overall quality.

  18. Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey.

    Science.gov (United States)

    Athira, Syamala; Mann, Bimlesh; Saini, Prerna; Sharma, Rajan; Kumar, Rajesh; Singh, Ashish Kumar

    2015-11-01

    Cheese whey is a rich by-product in nutritional terms, possessing components with high biological value, excellent functional properties, and an inert flavour profile. In the present study, mozzarella cheese whey was ultra-filtrated to remove lactose and mineral. The retentate was hydrolysed with food-grade enzyme alcalase and the hydrolysis conditions (pH, temperature and time) were optimised for maximum antioxidant activity using response surface methodology. Whey protein hydrolysed for 8 h at pH 9 and 55 °C showed a maximum antioxidant activity of 1.18 ± 0.015 µmol Trolox mg(-1) protein. The antioxidant peptides were further enriched by ultra-filtration through a 3 kDa membrane. Seven peptides - β-Lg f(123-131), β-Lg f(122-131), β-Lg f(124-131), β-Lg f(123-134), β-Lg f(122-131), β-Lg f(96-100) and β-Lg f(94-100) - were identified by LC-MS/MS in the 3 kDa permeate of the hydrolysate. The incorporation of whey protein hydrolysate (WPH) in lemon whey drink (5-10 g L(-1)) increased the antioxidant activity from 76% to 90% as compared to control. Hydrolysis of ultra-filtrated retentate of whey can be an energy- and cost-effective method for the direct production of WPH from whey compared to the industrial production of WPH from whey protein concentrate. This study suggests that WPH with good nutritional and biological properties can be effectively used in health-promoting foods as a biofunctional ingredient. © 2014 Society of Chemical Industry.

  19. 7 CFR 58.813 - Dry whey.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dry whey. 58.813 Section 58.813 Agriculture... Products Bearing Usda Official Identification § 58.813 Dry whey. The quality requirements for dry whey shall be in accordance with the U.S. Standards for Dry Whey. Supplemental Specifications for Plants...

  20. Protein-peptide interactions in mixtures of whey peptides and whey proteins

    NARCIS (Netherlands)

    Creusot, N.; Gruppen, H.

    2007-01-01

    The effects of several conditions on the amounts and compositions of aggregates formed in mixtures of whey protein hydrolysate, made with Bacillus licheniformis protease, and whey protein isolate were investigated using response surface methodology. Next, the peptides present in the aggregates were

  1. Effect of Oyster Shell Calcium Powder on the Quality of Restructured Pork Ham.

    Science.gov (United States)

    Choi, Jung-Seok; Lee, Hyun-Jin; Jin, Sang-Keun; Lee, Hyun-Joo; Choi, Yang-Il

    2014-01-01

    This study was conducted to evaluate the effects of oyster shell calcium powder (OSCP) as a substitute for phosphates in curing agent, on the quality of restructured pork ham. Restructured pork ham was processed under six treatment conditions: T1 (no additives), T2 (0.3% sodium tripolyphosphate), T3 (1.5% NaCl+0.5% whey protein), T4 (1.5% NaCl+0.5% whey protein+0.15% OSCP), T5 (1.5% NaCl+0.5% whey protein+0.3% OSCP), and T6 (1.5% NaCl+0.5% whey protein+0.5% OSCP). Addition of OSCP significantly increased the ash content and pH of restructured pork ham (pham. Addition of OSCP had no effect on Hunter a and b surface color values of restructured pork ham, but did decrease the Hunter L surface color value (pham, compared with the addition of phosphates (pham.

  2. Bioconversion of Cheese Waste (Whey)

    International Nuclear Information System (INIS)

    Bohnert, G.W.

    1998-01-01

    The US dairy industry produces 67 billion pounds of cheese whey annually. A waste by-product of cheese production, whey consists of water, milk sugar (lactose), casein (protein), and salts amounting to about 7% total solids. Ultrafiltration is used to concentrate cheese whey into a protein-rich foodstuff; however, it too produces a waste stream, known as ''whey permeate,'' (rejected water, lactose, and salts from the membrane). Whey permeate contains about 4.5% lactose and requires treatment to reduce the high BOD (biological oxygen demand) before disposal. Ab Initio, a small business with strong chemistry and dairy processing background, desired help in developing methods for bioconversion of whey permeate lactose into lactic acid. Lactic acid is an organic acid primarily used as an acidulant in the food industry. More recently it has been used to produce polylactic acid, a biodegradable polymer and as a new method to treat meat carcasses to combat E. coli bacteria. Conversion of whey permeate to lactic acid is environmentally sound because it produces a valued product from an otherwise waste stream. FM and T has expertise in bioconversion processes and analytical techniques necessary to characterize biomass functions. The necessary engineering and analytical services for pilot biomass monitoring, process development, and purification of crude lactic acid were available at this facility

  3. Alcohol from whey

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    A process for ethanol production from whey is described. The lactose is fermented into alcohol via glucose and galactose of yeast. The whey must be pasteurized before fermentation in order to reduce the concentration of microorganisms in the protein fraction. The protein is separated by ultrafiltration. The whey, which is now rather free of bacteria, is introduced into the fermentation unit where yeast cultures are added to it. After fermentation, the yeast slurry is separated and processed into feeding yeast while the mash is passed on to the distillation unit. The alcohol thus produced is of very high quality and may be added to alcoholic beverages.

  4. Effect of Rosemary Transglutaminase on Yoghurt Fortified with Whey Protein Isolate

    Directory of Open Access Journals (Sweden)

    Ibrahim Osama

    2017-12-01

    Full Text Available Rosemary (Rosmarinus officinalis L. transglutaminase (RTGase was used to cross-link whey protein isolate (WPI and its ability to induce gelation was investigated. The rheological and textural properties of WPI were improved with RTGase treatment. Set-type yoghurts fortified with 1% WPI powder treated with RTGase at the level of 2.5 and 10 unit/g protein were studied. Chemical, rheological, textural and organoleptic properties of the yoghurt treated with RTGase were better than these of the control yoghurt.

  5. Shock-induced modification of inorganic powders

    International Nuclear Information System (INIS)

    Graham, R.A.; Morosin, B.; Venturini, E.L.; Beauchamp, E.K.; Hammetter, W.F.

    1984-01-01

    The results of studies performed to quantify the characteristics of TiO2, ZrO2 and Si3N4 powders exposed to explosive loading and post-shock analysis are reported. The shocks were produced with plane wave generators and explosive pads impinging on steel disks, a copper recovery fixture, and then the samples. Peak pressures of 13 and 17 GPa were attained, along with 40 GPz at the center of the powder cavity. Data are provided on the changes occurring during the explosive densification and X-ray and paramagnetic studies of the products. Only fractured disks were obtained in the trials. The shock-treated materials were more free flowing than the original powders, which were fluffy. Post-shock annealing was a significant feature of the treated powders

  6. Alcohol production from whey

    Energy Technology Data Exchange (ETDEWEB)

    Reesen, L

    1978-01-01

    The continuous production of ethanol from whey permeate, by fermentation of its lactose with Kluyveromyces fragilis, is described. From whey containing 4.4% lactose, production costs were very competitive with those for alcohol from molasses.

  7. Bioconversion of Cheese Waste (Whey)

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, G.W.

    1998-03-11

    The US dairy industry produces 67 billion pounds of cheese whey annually. A waste by-product of cheese production, whey consists of water, milk sugar (lactose), casein (protein), and salts amounting to about 7% total solids. Ultrafiltration is used to concentrate cheese whey into a protein-rich foodstuff; however, it too produces a waste stream, known as ''whey permeate,'' (rejected water, lactose, and salts from the membrane). Whey permeate contains about 4.5% lactose and requires treatment to reduce the high BOD (biological oxygen demand) before disposal. Ab Initio, a small business with strong chemistry and dairy processing background, desired help in developing methods for bioconversion of whey permeate lactose into lactic acid. Lactic acid is an organic acid primarily used as an acidulant in the food industry. More recently it has been used to produce polylactic acid, a biodegradable polymer and as a new method to treat meat carcasses to combat E. coli bacteria. Conversion of whey permeate to lactic acid is environmentally sound because it produces a valued product from an otherwise waste stream. FM&T has expertise in bioconversion processes and analytical techniques necessary to characterize biomass functions. The necessary engineering and analytical services for pilot biomass monitoring, process development, and purification of crude lactic acid were available at this facility.

  8. 7 CFR 58.443 - Whey handling.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Whey handling. 58.443 Section 58.443 Agriculture... Procedures § 58.443 Whey handling. (a) Adequate sanitary facilities shall be provided for the handling of whey. If outside, necessary precautions shall be taken to minimize flies, insects and development of...

  9. Whey cheese: membrane technology to increase yields.

    Science.gov (United States)

    Riera, Francisco; González, Pablo; Muro, Claudia

    2016-02-01

    Sweet cheese whey has been used to obtain whey cheese without the addition of milk. Pre-treated whey was concentrated by nanofiltration (NF) at different concentration ratios (2, 2.5 and 2.8) or by reverse osmosis (RO) (2-3 times). After the concentration, whey was acidified with lactic acid until a final pH of 4.6-4.8, and heated to temperatures between 85 and 90 °C. The coagulated fraction (supernatant) was collected and freely drained over 4 h. The cheese-whey yield and protein, fat, lactose and ash recoveries in the final product were calculated. The membrane pre-concentration step caused an increase in the whey-cheese yield. The final composition of products was compared with traditional cheese-whey manufacture products (without membrane concentration). Final cheese yields found were to be between 5 and 19.6%, which are higher than those achieved using the traditional 'Requesón' process.

  10. Prospects for ethanol production from whey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, K R

    1978-05-01

    Whey is a by-product of the manufacture of cheese and casein. Casein whey is not as fully utilized as cheese whey although in the last five years commercial processes have been developed to recover the whey proteins, either in denatured form as lactalbumin or in their soluble form as Solac. The removal of the whey proteins makes little difference to the polluting strength or volume of the whey and a crude lactose solution - serum or permeate - remains to be processed. Many processes have been evaluated for the use of this crude lactose solution; one is microbial transformation to produce products such as methane, ethanol, acetone and butanol and etc. The technologies for these processes are well known and it is the economic evaluation which ultimately determines the feasibility of the process being considered. For the purposes of this paper, the prospects for ethanol production have been evaluated. Unless there is a significant reduction in capital costs, it is concluded that ethanol production from whey is not a viable proposition as an energy source for New Zealand. Industrial ethanol (annual imports; 3.5 x 10/sup 6/ 1 CIF value 32 c/1) and potable ethanol production may be worth contemplating.

  11. Accelerated fermentation of cheese whey. Developing the system

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, R M; Claydon, T J

    1971-01-01

    A system for accelerated fermentation of cheese wheys requires a mixed yeast and lactose-fermenting bacterial culture. The air flow required (110 ml/min/1./1% of lactose) was proportional to the concentration of wheys in the media. Yeast cell-mass production by accelerated fermentation was equal to or greater than the whey concentration factor when compared with yeast production of single yeast strain production on unconcentrated wheys. Generally, on triple strength wheys, yeast production was approximately 1 lb/gallon of medium. Fermentation media formulas were developed with whey analysis, shake culture, and fermentor trials. The formula used with a specific whey must be adequate to supplement the mineral deficiencies in the whey and to provide trace elements and nutrients essential for maximum microbial growth. High-rate aeration was required for both respiration of the microbial culture and to purge the ferment of volatile metabolites, whose presence depressed microbial cell synthesis.

  12. Development of β-lactoglobulin-specific chimeric human IgEκ monoclonal antibodies for in vitro safety assessment of whey hydrolysates.

    Science.gov (United States)

    Knipping, Karen; Simons, Peter J; Buelens-Sleumer, Laura S; Cox, Linda; den Hartog, Marcel; de Jong, Niels; Teshima, Reiko; Garssen, Johan; Boon, Louis; Knippels, Léon M J

    2014-01-01

    Cow's milk-derived whey hydrolysates are nutritional substitutes for allergic infants. Safety or residual allergenicity assessment of these whey hydrolysates is crucial. Currently, rat basophilic leukemia RBL-2H3 cells expressing the human IgE receptor α-chain (huFcεRIα-RBL-2H3), sensitized with serum IgE from cow's milk allergic children, are being employed to assess in vitro residual allergenicity of these whey hydrolysates. However, limited availability and inter-lot variation of these allergic sera impede standardization of whey hydrolysate safety testing in degranulation assays. An oligoclonal pool of chimeric human (chu)IgE antibodies against bovine β-lactoglobulin (a major allergen in whey) was generated to increase sensitivity, specificity, and reproducibility of existing degranulation assays. Mice were immunized with bovine β-lactoglobulin, and subsequently the variable domains of dissimilar anti-β-lactoglobulin mouse IgG antibodies were cloned and sequenced. Six chimeric antibodies were generated comprising mouse variable domains and human constant IgE/κ domains. After sensitization with this pool of anti-β-lactoglobulin chuIgEs, huFcεRIα-expressing RBL-2H3 cells demonstrated degranulation upon cross-linking with whey, native 18 kDa β-lactoglobulin, and 5-10 kDa whey hydrolysates, whereas a 3 kDa whey hydrolysate and cow's milk powder (mainly casein) showed no degranulation. In parallel, allergic serum IgEs were less sensitive. In addition, our pool anti-β-lactoglobulin chuIgEs recognized multiple allergenic immunodominant regions on β-lactoglobulin, which were also recognized by serum IgEs from cow's milk allergic children. Usage of our 'unlimited' source and well-defined pool of β-lactoglobulin-specific recombinant chuIgEs to sensitize huFcεRIα on RBL-2H3 cells showed to be a relevant and sensitive alternative for serum IgEs from cow's milk allergic patients to assess safety of whey-based non-allergic hydrolyzed formula.

  13. Feasibility assessment of whey-based ethanol facilities

    Energy Technology Data Exchange (ETDEWEB)

    Walker, L P; Pellerin, R A; Rao, A M; Hang, Y D; Kalter, R J; Boisvert, R N; Gabler, E C

    1985-07-01

    In the U.S., corn has been the principal commodity considered for conversion to ethanol. One alternative to using corn and other food crops is to utilize organic wastes, such as food processing waste. Cheese whey is one such waste that holds potential for conversion to ethanol. To ascertain the feasibility of using whey as a feedstock a series of regional studies were conducted by the authors. Results from these studies indicate that the transport of condensed whey to a central processing plant for conversion to ethanol is economically feasible. The energy balance for the plants considered can yield a positive or negative balance depending on whether an energy penalty is assigned for condensing the whey. A net energy gain of 23833 to 26921 kJ/l of ethanol was obtained if energy for whey condensing was not included and a net energy loss ranging from -279 to -686 kJ/l was obtained if whey condensing was included in the energy balance. Plants utilizing continuous fermentation technology showed positive energy balance with or without a penalty for the condensing of the whey.

  14. Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties.

    Science.gov (United States)

    Darniadi, Sandi; Ho, Peter; Murray, Brent S

    2018-03-01

    Blueberry juice powder was developed via foam-mat freeze-drying (FMFD) and spray-drying (SD) via addition of maltodextrin (MD) and whey protein isolate (WPI) at weight ratios of MD/WPI = 0.4 to 3.2 (with a fixed solids content of 5 wt% for FMFD and 10 wt% for SD). Feed rates of 180 and 360 mL h -1 were tested in SD. The objective was to evaluate the effect of the drying methods and carrier agents on the physical properties of the corresponding blueberry powders and reconstituted products. Ratios of MD/WPI = 0.4, 1.0 and 1.6 produced highly stable foams most suitable for FMFD. FMFD gave high yields and low bulk density powders with flake-like particles of large size that were also dark purple with high red values. SD gave low powder recoveries. The powders had higher bulk density and faster rehydration times, consisting of smooth, spherical and smaller particles than in FMFD powders. The SD powders were bright purple but less red than FMFD powders. Solubility was greater than 95% for both FMFD and SD powders. The FMFD method is a feasible method of producing blueberry juice powder and gives products retaining more characteristics of the original juice than SD. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Nutritional and functional properties of whey proteins concentrate and isolate

    Directory of Open Access Journals (Sweden)

    Zoran Herceg

    2006-12-01

    Full Text Available Whey protein fractions represent 18 - 20 % of total milk nitrogen content. Nutritional value in addition to diverse physico - chemical and functional properties make whey proteins highly suitable for application in foodstuffs. In the most cases, whey proteins are used because of their functional properties. Whey proteins possess favourable functional characteristics such as gelling, water binding, emulsification and foaming ability. Due to application of new process techniques (membrane fractionation techniques, it is possible to produce various whey - protein based products. The most important products based on the whey proteins are whey protein concentrates (WPC and whey protein isolates (WPI. The aim of this paper was to give comprehensive review of nutritional and functional properties of the most common used whey proteins (whey protein concentrate - WPC and whey protein isolate - WPI in the food industry.

  16. Instrumental texture and sensory evaluation of fermented dairy beverages processed with reconstituted goat whey powder and a co-culture of Streptococcus thermophilus and Lactobacillus casei

    Directory of Open Access Journals (Sweden)

    Áurea Marcela de Souza Pereira

    2018-01-01

    Full Text Available The effects of Lactobacillus casei BGP93 used as adjunct culture on the physicochemical, textural and sensory characteristics of a dairy beverage processed with goat Coalho cheese whey powder and Streptococcus thermophilus TA-40 as starter (ST-LC beverage were investigated in comparison to a control product (ST beverage without L. casei. No significant differences were observed between the ST and ST-LC trials concerning the acidification pattern throughout the fermentation process (P>0.05. Post-acidification was also not observed for both trials since their pH values were maintained stable, without significant differences during 21 days at 4 ± 1 °C. This pH stability reinforced the maintenance of firmness, consistency, cohesiveness and viscosity index without significant differences between the sampling periods throughout the whole storage in both trials, and also that no significant difference was verified between the ST and ST-LC beverages in the sensory evaluation (P>0.05.

  17. 21 CFR 184.1979a - Reduced lactose whey.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Reduced lactose whey. 184.1979a Section 184.1979a... Listing of Specific Substances Affirmed as GRAS § 184.1979a Reduced lactose whey. (a) Reduced lactose whey is the substance obtained by the removal of lactose from whey. The lactose content of the finished...

  18. 21 CFR 184.1979b - Reduced minerals whey.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Reduced minerals whey. 184.1979b Section 184.1979b... Listing of Specific Substances Affirmed as GRAS § 184.1979b Reduced minerals whey. (a) Reduced minerals whey is the substance obtained by the removal of a portion of the minerals from whey. The dry product...

  19. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    Science.gov (United States)

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. Copyright © 2016. Published by Elsevier Ltd.

  20. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    Science.gov (United States)

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications. © 2015 Institute of Food Technologists®

  1. Effect of casein to whey protein ratios on the protein interactions and coagulation properties of low-fat yogurt.

    Science.gov (United States)

    Zhao, L L; Wang, X L; Tian, Q; Mao, X Y

    2016-10-01

    In this study, we investigated the effect of casein (CN) to whey protein (WP) ratios (4:1, 3:1, 2:1, and 1:1) on gelation properties and microstructure of low-fat yogurt made with reconstituted skim milk with or without addition of whey protein concentrate. The rheological properties (storage modulus, G'; yield stress; and yield strain) of the obtained low-fat yogurt were greatly enhanced, the fermentation period was shortened, and the microstructure became more compact with smaller pores as the CN:WP ratio decreased. When CN:WP was 2:1 or 1:1, the obtained yogurt coagulum showed higher G' and greater yield stress, with more compact crosslinking and smaller pores. In addition, the more of skim milk powder was replaced by whey protein concentrate, the more disulfide bonds were formed and the greater the occurrence of hydrophobic interactions during heat treatment, which can improve the rheological properties and microstructure of low-fat yogurt. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Influence of innovative technologies on rheological and thermophysical properties of whey proteins and guar gum model systems

    Directory of Open Access Journals (Sweden)

    Greta Krešić

    2011-03-01

    Full Text Available The aim of this study was to examine the effect of high-power ultrasound (US and highpressure processing (HP on model systems composed of whey protein concentrate (WPC and whey protein isolate (WPI with or without guar gum addition. This kind of systems can be found in food production industry so the aim was to use novel food processing technologies to be utilized as a method for products development. Aqueous suspensions (10 g kg-1 of powdered whey proteins were treated with either ultrasound or high pressure. The treatment conditions were as follows: US: frequency of 30 kHz, for 5 and 10 min; HP: pressure intensity 300-600 MPa, for 5 and 10 min. Rheological and thermophysical properties were analyzed after guar gum addition (0.5 g kg-1. Ultrasound treatment showed a significant influence on all examined properties through protein denaturation caused by cavitation and microstreaming effects. High pressure caused significant increase in viscosity and consistency coefficients of model systems with and without guar addition. Significant decrease of initial freezing and initial thawing temperature was observed in all samples. With this research the direct influence of ultrasound and high-pressure treatment on the rheological and thermophysical properties of whey protein isolate and concentrate model systems with or without guar gum was demonstrated.

  3. Functional Biomaterials: Solution Electrospinning and Gelation of Whey Protein and Pullulan

    Science.gov (United States)

    Sullivan, Stephanie Tolstedt

    soaking, and thereby making them potentially useful for tissue scaffolding applications. A fourth accomplishment was to utilize Near Infrared Reflectance (NIR) Spectroscopy and Chemometrics techniques to analyze commercial whey protein powder characteristics such as protein, fat and moisture content as well as pH. NIR has been utilized in the food and pharmaceutical industries for quality control as a valuable compliment to or replacement for more expensive testing such as High Performance Liquid Chromatography. Analysis resulted in the development of quantitative, linear regression models to correlate whey protein powder characteristics to NIR data. Whey protein's ability to form gels and pullulan's electrospinnability to form nanofibers is combined herein to form blends of both that can be changed with varying concentration, pH, temperature and supplementation with food-safe additives. The study correlates mechanical properties and microstructure of blend gels and nanofibers and provides a foundation for further study of swellable network for tissue application specifically in the use of pullulan-whey protein heat treated nanofiber mats.

  4. Stability of spray-dried beetroot extract using oligosaccharides and whey proteins.

    Science.gov (United States)

    Carmo, Eloá Lourenço do; Teodoro, Rhana Amanda Ribeiro; Félix, Pedro Henrique Campelo; Fernandes, Regiane Victória de Barros; Oliveira, Érica Resende de; Veiga, Taís Regina Lima Abreu; Borges, Soraia Vilela; Botrel, Diego Alvarenga

    2018-05-30

    The properties and stability of spray-dried beetroot extract using maltodextrin (MD), inulin (IN), and whey protein isolate (WPI) as carrier agents were evaluated. The values of moisture, betalains content, and retention were 3.33-4.24%, 348.79-385.47 mg/100 g (dry-basis), and 88.45-95.69%, respectively. Higher values of antioxidant activity were observed for the treatments using WPI. The treatment with inulin alone presented higher hygroscopicity in the moisture adsorption isotherms at 25 °C and lower thermal stability when evaluating the thermogravimetric curves. When stored at 60 °C, the use of WPI alone conferred lower stability to the beetroot extract powder. In general, the simultaneous use of IN and WPI as carrier agents resulted in good stability of the beetroot extract powder, representing an opportunity for innovation in food products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Whey-derived valuable products obtained by microbial fermentation.

    Science.gov (United States)

    Pescuma, Micaela; de Valdez, Graciela Font; Mozzi, Fernanda

    2015-08-01

    Whey, the main by-product of the cheese industry, is considered as an important pollutant due to its high chemical and biological oxygen demand. Whey, often considered as waste, has high nutritional value and can be used to obtain value-added products, although some of them need expensive enzymatic synthesis. An economical alternative to transform whey into valuable products is through bacterial or yeast fermentations and by accumulation during algae growth. Fermentative processes can be applied either to produce individual compounds or to formulate new foods and beverages. In the first case, a considerable amount of research has been directed to obtain biofuels able to replace those derived from petrol. In addition, the possibility of replacing petrol-derived plastics by biodegradable polymers synthesized during bacterial fermentation of whey has been sought. Further, the ability of different organisms to produce metabolites commonly used in the food and pharmaceutical industries (i.e., lactic acid, lactobionic acid, polysaccharides, etc.) using whey as growth substrate has been studied. On the other hand, new low-cost functional whey-based foods and beverages leveraging the high nutritional quality of whey have been formulated, highlighting the health-promoting effects of fermented whey-derived products. This review aims to gather the multiple uses of whey as sustainable raw material for the production of individual compounds, foods, and beverages by microbial fermentation. This is the first work to give an overview on the microbial transformation of whey as raw material into a large repertoire of industrially relevant foods and products.

  6. Sensory quality evaluation of whey-based beverages

    Directory of Open Access Journals (Sweden)

    Veronika Legarová

    2010-12-01

    Full Text Available Whey as a by-product of the cheese industry is a source of biological and functional valuable proteins. The aim of this research was to evaluate the commercial potential of whey-based dairy beverages containing a definite amount of semi-skimmed milk addition. The purpose of this paper was to improve the whey flavour via its fermentation by commercial yogurt starter cultures, and via 25 % and 50 % of milk addition. The course of fermentation was monitored by pH and titratable acidity changes. The sensory profile of non-fermented and fermented drinks was assessed using unstructured graphical scales. No significant differences in acidity were found between the samples which were fermented for 3 or 4 hours, but a significant difference was found between samples of whey drinks without milk and samples with milk addition. Fermentation by yoghurt culture did not bring statistically significant improvement of the whey drink organoleptic properties, while the addition of milk was the most important factor influencing not only the total sensory quality of the whey drinks but also their flavour, appearance, colour, viscosity and homogeneity.

  7. SORO DE LEITE: TECNOLOGIAS PARA O PROCESSAMENTO DE COPRODUTOS

    OpenAIRE

    Pinheiro Alves, Maura; de Oliveira Moreira, Renam; Henrique Rodrigues Júnior, Paulo; Carla de Freitas Martins, Mayra; Tuler Perrone, Ítalo; Fernandes de Carvalho, Antônio

    2014-01-01

    The aim of the present article was to present the principles of wheyprocessability. In order to reach these objectives, the article presents the whey proteins, the membrane filtration process and the spray drying technology. The main technologies for use whey are presented: whey protein beverages, whey powder, whey protein concentrate powder, whey protein isolate powder and powders of whey protein fractions. O objetivo do presente artigo foi apresentar os princípios da capacidade de proces...

  8. Dairy workers develop whey to sweeten profits

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-11

    Scientists at the Milk Marketing Board are reported to have developed an enzyme process that will convert whey into protein for animal feed and a liquid sweetener for the food industry. In the process whey wastes are forced under pressure through a column, about 0.5m wide, packed with ceramic beads which carry the enzyme Beta- galactosidase. The enzyme converts whey to a mixture of protein and liquid sweeteners, but is not itself consumed. At present, a pilot plant processes 10,000 liters of whey every day, but when working at full capacity the plant can double or treble that output.

  9. 40 CFR 405.110 - Applicability; description of the condensed whey subcategory.

    Science.gov (United States)

    2010-07-01

    ... condensed whey subcategory. 405.110 Section 405.110 Protection of Environment ENVIRONMENTAL PROTECTION... Condensed Whey Subcategory § 405.110 Applicability; description of the condensed whey subcategory. The... whey and condensed acid whey. ...

  10. Physicochemical and Sensory Properties of Whey Cheese with Pine Nuts

    Directory of Open Access Journals (Sweden)

    Cristina Anamaria Semeniuc

    2015-11-01

    Full Text Available This study aimed to develop a value-added whey cheese through addition of pine nuts. Therefore, different concentrations of pine nuts [2, 4, 6 and 8% (w/w] were added to whey cheese. The study was designed to evaluate the influence of pine nuts on physicochemical and sensory properties of whey cheese. The addition of pine nuts resulted in an increase in fat content and total solids and a decrease in moisture content. However, no statistically significant difference was found in pH values. Sensory analysis was performed using the 9-point hedonic scale, with selected assessors. The whey cheese sample with 4% pine nuts was the most appreciated (7.6 points, followed by the classic whey cheese, whey cheese with 6 and 8% pine nuts (7.4 points, and whey cheese with 2% pine nuts (7.3 points. Nevertheless, the sensory characteristics of whey cheese were not significantly influenced by the addition of pine nuts. Whey cheese sensory profiling was successful in differential characterization of whey cheese samples.

  11. Astringency reduction in red wine by whey proteins

    OpenAIRE

    Jauregi, Paula; Olatujoye, Jumoke B.; Cabezudo, Ignacio; Frazier, Richard A.; Gordon, Michael H.

    2016-01-01

    Whey is a by-product of cheese manufacturing and therefore investigating new applications of whey proteins will contribute towards the valorisation of whey and hence waste reduction. This study shows for the first time a detailed comparison of the effectiveness of gelatin and β-lactoglobulin (β-LG) as fining agents. Gelatin was more reactive than whey proteins to tannic acid as shown by both the astringency method (with ovalbumin as a precipitant) and the tannins determination method (with me...

  12. Energy production by anaerobic treatment of cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Peano, L.; Ciciarelli, R.; Comino, E.; Gard, P. A.

    2009-07-01

    Anaerobic treatment and methane generation potential of cheese whey, diluted with mud, were determined in the digester of an existing wastewater treatment plant in Switzerland. Lactose, main sugar in cheese whey, can be a useful indicator to evaluate serum anaerobic treatment. Conventional parameters of anaerobic digestion (Volatile Matter, Dry Matter, Fatty Volatile Acids, total Alkali metric Title) were measured after the introduction of different whey/sludge ratio demonstrating that, despite an overcharge of whey digester, its stability is never compromised. (Author)

  13. Energy production by anaerobic treatment of cheese whey

    International Nuclear Information System (INIS)

    Peano, L.; Ciciarelli, R.; Comino, E.; Gard, P. A.

    2009-01-01

    Anaerobic treatment and methane generation potential of cheese whey, diluted with mud, were determined in the digester of an existing wastewater treatment plant in Switzerland. Lactose, main sugar in cheese whey, can be a useful indicator to evaluate serum anaerobic treatment. Conventional parameters of anaerobic digestion (Volatile Matter, Dry Matter, Fatty Volatile Acids, total Alkali metric Title) were measured after the introduction of different whey/sludge ratio demonstrating that, despite an overcharge of whey digester, its stability is never compromised. (Author)

  14. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    Science.gov (United States)

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  15. Characteristics of whey proteinhydrolysates from cheese whey, favors onvarious food applications

    Directory of Open Access Journals (Sweden)

    Jeewanthi Chaturika Renda Kankanamge

    2014-01-01

    Full Text Available This study was conducted to investigate theproduction of whey protein hydrolysates,examiningthe physiochemical properties withfive enzyme types named Alcalase, Protease S,Protease M, Trypsin, and Pepsin. Whey protein concentratewas adjusted by ultrafiltration,increasing the whey content to 135% that of initial levels. The hydrolysates have been shown to improve the characteristics of a number of food products, and the type of enzyme has a considerable influence on the end result of hydrolysatesproduction. Bulk density, Solubility, NPN, foaming capacity, and the degree of hydrolysis were increased with hydrolysis time. Maximum Bulk density was shownby Protease S. Pepsinand Alcalase, whichgraduallyincreasedthe foaming capacity, resulting in acomparatively lower pH and a lower degree of hydrolysis. The highestdegree of hydrolysiswas shown by Protease M. The highest NPN value was provided by Pepsin, which was much greater than that of other enzymes. There wasno significant difference in NPN according to the enzyme typeapplied. Allhydrolysates in alkaline media were shown more than 50% solubility. HMFcontents were also shown anobviousdifference with the enzyme type.

  16. 21 CFR 573.450 - Fermented ammoniated condensed whey.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Fermented ammoniated condensed whey. 573.450... ANIMALS Food Additive Listing § 573.450 Fermented ammoniated condensed whey. (a) Identity. The product is produced by the Lactobacillus bulgaricus fermentation of whey with the addition of ammonia. (b...

  17. Physicochemical and Amino Acid Profiling of Cheddar, Mozzarella and Paneer Whey

    International Nuclear Information System (INIS)

    Ahmed, S.; Sharif, M.K.; Butt, M.S.; Nawaz, H.

    2015-01-01

    The present study characterised locally available whey samples of cheddar, mozzarella and paneer for physicochemical and nutritional attributes. The results revealed that the cheddar whey exhibited pH (5.41 ± 0.16), crude protein (0.83 ± 0.03 percentage), fat (0.25 ± 0.01 percentage), lactose (4.95 ± 0.21 percentage) and total solids (6.55 ± 0.27 percentage), slightly higher than those of mozzarella and paneer whey. On the other hand, the paneer whey showed acidity (0.30 ± 0.01) and ash content (0.56 ± 0.02), slightly higher than those of cheddar and mozzarella whey. Furthermore, the mozzarella whey revealed the total plate count values (3.17 ± 0.09 x 104 cfu/mL), slightly higher than those of cheddar and paneer whey samples. The paneer whey contained the amount of calcium (25.02 ± 1.34), magnesium (4.88 ± 0.23), sodium (32.11 ± 1.37) and potassium (97.55 ± 3.54) slightly higher, when compared to those of cheddar and mozzarella whey. The cheddar whey possessed the highest amount of essential and non-essential amino acid contents, followed by mozzarella and paneer whey. Thus, cheddar whey exhibited the best physicochemical and nutritional profile among all the whey samples, so it can be used to prepare high quality novel and nutritious sports drink for sportsman. (author)

  18. Antibacterial activity of different formulations of cheese and whey produced with kefir grains

    Directory of Open Access Journals (Sweden)

    Simone Weschenfelder

    Full Text Available ABSTRACT The development of different products that confer health benefits on the population is a challenge for those who work with food. The aim of this study was to elaborate two formulations of kefir cheese (C1 and C2 and whey (W1, W2, and to evaluate their in situ antibacterial activity against microorganisms of interest in food. Pasteurized milk, powdered milk and kefir grains were used in preparing the products and their percentage composition was determined. C1, C2, W1 and W2 were contaminated with five different logarithmic fractions (A = 8log to E = 4log CFU/ml of Staphylococcus aureus (ATCC 25923 and Escherichia coli (ATCC 11229, with antibacterial activity assessed over 0, 24, 48 and 72 hours of exposure. The results demonstrated the antibacterial activity of kefir cheese and whey, especially after 24 hours. Escherichia coli was the most sensitive of the bacteria, with maximum antibacterial activity seen in the cheese at population densities D and E, and in the whey at densities B, C, D and E after 48 and 72 h, showing that the in situ antibacterial activity of foods produced with kefir grains tends to be lower when compared with studies in vitro. The greater the nutrient content of the food, the lower the antibacterial activity seen, probably due to the protective action that the nutrients confer on the microorganisms against bacteriocins and the metabolites from fermentation.

  19. Fouling behavior of poly(ether)sulfone ultrafiltration membrane during concentration of whey proteins: Effect of hydrophilic modification using atmospheric pressure argon jet plasma.

    Science.gov (United States)

    Damar Huner, Irem; Gulec, Haci Ali

    2017-12-01

    The aim of the study was to investigate the effects of hydrophilic surface modification via atmospheric pressure jet plasma (ApJPls) on the fouling propensity of polyethersulfone (PES) ultrafiltration (UF) membranes during concentration of whey proteins. The distance from nozzle to substrate surface of 30mm and the exposure period of 5 times were determined as the most effective parameters enabling an increase in ΔG iwi value of the plain membrane from (-) 14.92±0.89mJ/m 2 to (+) 17.57±0.67mJ/m 2 . Maximum hydrophilicity and minimum surface roughness achieved by argon plasma action resulted in better antifouling behavior, while the hydraulic permeability and the initial permeate flux were decreased sharply due to the plasma-induced surface cross-linking. A quite steady state flux was obtained throughout the UF with the ApJPls modified PES membrane. The contribution of R frev to R t , which was 94% for the UF through the plain membrane, decreased to 43% after the plasma treatment. The overall results of this study highlighted the ApJPls modification decreased the fouling propensity of PES membrane without affecting the original protein rejection capability and improved the recovery of initial permeate flux after chemical cleaning. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Quality of fermented whey beverage with milk

    Directory of Open Access Journals (Sweden)

    Rakin Marica B.

    2016-01-01

    Full Text Available One of the most economical ways of whey processing is the production of beverages, that represents a single process that exploits all the potential of whey as a raw material. Functional and sensory characteristics of whey based beverages are a criterion that is crucial to the marketing of products and win over consumers. The aim of this study was to determine nutritional and functional characteristics of fermented whey beverage with milk and commercial ABY-6 culture. The results showed that the applied starter culture can be used for the production of fermented whey based beverage with satisfactory nutritional properties. Addition of milk was important not only in the nutritional quality of the resulting product, but also improved the taste, the homogeneity and stability. Analysis of the chemical composition of fermented whey based beverage and nutritional information about it indicates that the product is a good source of protein and calcium. Fermented beverage contained 8.07 log (CFU/mL, showed antioxidant activity of at least 38.1% and the titratable acidity of 28.2°SH corresponding to the acidity of the product in this category. [Projekat Ministarstva nauke Republike Srbije, br. TR 31017 i br. 451-03-00605/2012-16/85

  1. Moisture sorption isotherms of dehydrated whey proteins

    Directory of Open Access Journals (Sweden)

    Suzana Rimac Brnčić

    2010-03-01

    Full Text Available Moisture sorption isotherms describe the relation between the moisture content of the dry material (food and relative humidity of the surrounding environment. The data obtained are important in modelling of drying process conditions, packaging and shelf-life stability of food that will provide maximum retaining of aroma, colour and texture as well as nutritive and biological value. The objective of this research was to establish the equilibrium moisture content and water activity, as well as monolayer value of two commercial powdered whey protein isolates before and after tribomechanical micronisation and enzymatic hydrolysis, respectively. At the same time it was necessary to evaluate the best moisture sorption isotherm equation to fit the experimental data. The equilibrium moisture contents in investigated samples were determined using standard gravimetric method at 20 °C. The range of water activities was 0.11 to 0.75. The monolayer moisture content was estimated from sorption data using Brunauer-Emmett-Teller (BET and Guggenheim-Anderson-de Boer (GAB models. The results have shown that tribomechanically treated whey protein isolates as well as protein hydrolizates had lower monolayer moisture content values as well as higher corresponding water activity. Therefore, in spite of the fact that they have lower moisture content, they can be storage at higher relative humidity compared to untreated samples. BET model gave better fit to experimental sorption data for a water activity range from 0.11-0.54, while GAB model gave the closest fit for a water activity to 0.75.

  2. Intakes of whey protein hydrolysate and whole whey proteins are discriminated by LC-MS metabolomics

    DEFF Research Database (Denmark)

    Stanstrup, Jan; Rasmussen, Jakob Ewald; Ritz, Christian

    2014-01-01

    of four different whey protein fractions and establishes new hypotheses for the observed effects. Obese, non-diabetic subjects were included in the randomized, blinded, cross-over meal study. Subjects ingested a high-fat meal containing whey isolate (WI), whey concentrate hydrolysate (WH), α...... of the meals. Highly elevated plasma levels of a number of cyclic dipeptides and other AA metabolites were found following intake of the WH meal and these metabolites are primary candidates to explain the superior insulinotropic effect of WH. The manufacturing process of WH caused oxidization of methionine...... to methionine sulfoxide which in turn caused in vivo generation of N-phenylacetyl-methionine and N-phenylacetyl-methionine sulfoxide. These two compounds have not previously been described in biological systems....

  3. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  4. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Anna Dąbrowska

    2017-11-01

    Full Text Available The effect of whey protein hydrolysate (WPH addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP, WPH-SMP (ratio 1:1, WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  5. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage.

    Science.gov (United States)

    Dąbrowska, Anna; Babij, Konrad; Szołtysik, Marek; Chrzanowska, Józefa

    2017-11-22

    The effect of whey protein hydrolysate (WPH) addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP), WPH-SMP (ratio 1:1), WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  6. Processing of whey modulates proliferative and immune functions in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh; Sangild, Per Torp; Li, Yanqi

    2016-01-01

    Whey protein concentrate (WPC) is often subjected to heat treatment during industrial processing, resulting in protein denaturation and loss of protein bioactivity. We hypothesized that WPC samples subjected to different degrees of thermal processing are associated with different levels of bioact......Whey protein concentrate (WPC) is often subjected to heat treatment during industrial processing, resulting in protein denaturation and loss of protein bioactivity. We hypothesized that WPC samples subjected to different degrees of thermal processing are associated with different levels...... of whey, with the lowest level being found in WPC derived from acid whey. Following acid activation, WPC from acid whey enhanced IEC proliferation compared with WPC from sweet whey or nonactivated WPC. Low-heat-treated WPC from acid whey induced greater secretion of IL-8 in IEC than either standard WPC...... from acid whey or low-heat-treated WPC from sweet whey. Following acid activation (to activate growth factors), low-heat-treated WPC from sweet whey induced higher IL-8 levels in IEC compared with standard WPC from sweet whey. In conclusion, higher levels of bioactive proteins in low-heat-treated WPC...

  7. Effects of Hydrolysed Whey Proteins on the Techno-Functional Characteristics of Whey Protein-Based Films

    Directory of Open Access Journals (Sweden)

    Klaus Noller

    2013-03-01

    Full Text Available Pure whey protein isolate (WPI-based cast films are very brittle due to its strong formation of protein cross-linking of disulphide bonding, hydrogen bonding as well as hydrophobic and electrostatic interactions. However, this strong cross-linking is the reason for its final barrier performance. To overcome film brittleness of whey protein layers, plasticisers like glycerol are used. It reduces intermolecular interactions, increases the mobility of polymer chains and thus film flexibility can be achieved. The objective of this study was to investigate the influence of hydrolysed whey protein isolate (WPI in whey protein isolate-based cast films on their techno-functional properties. Due to the fact, that the addition of glycerol is necessary but at the same time increases the free volume in the film leading to higher oxygen and water vapour permeability, the glycerol concentration was kept constant. Cast films with different ratios of hydrolysed and not hydrolysed WPI were produced. They were characterised in order to determine the influence of the lower molecular weight caused by the addition of hydrolysed WPI on the techno-functional properties. This study showed that increasing hydrolysed WPI concentrations significantly change the mechanical properties while maintaining the oxygen and water vapour permeability. The tensile and elastic film properties decreased significantly by reducing the average molecular weight whereas the yellowish coloration and the surface tension considerably increased. This study provided new data which put researchers and material developers in a position to tailor the characteristics of whey protein based films according to their intended application and further processing.

  8. Application of Acid Whey in Orange Drink Production

    Directory of Open Access Journals (Sweden)

    Grażyna Jaworska

    2013-01-01

    Full Text Available The aim of this study is to compare qualitative changes in orange and orange beverages containing whey during 12 months of storage. The beverages contained 12 % extract, half of which was orange concentrate, the rest was sugar or sugar and whey extract. Acid whey was used in the production of beverages, added at a rate of 50 % of the used water. Orange beverages with whey contained more protein, ash, glucose, lactose and vitamin B2 than the orange beverages, but less sucrose, fructose and vitamin C, and also showed lower antioxidant activity against the DPPH radical. No significant differences between the two types of beverages were found in the polyphenolic content or activity against the ABTS cation radical. The type of beverage had a significant effect on the colour parameter values under the CIELAB system, although no significant differences were found between the beverages in the sensory evaluation of colour desirability. The overall sensory evaluation of orange beverages with whey was 2–10 % lower than of other orange beverages. The intensity of orange, sweet and refreshing taste was greater in orange beverages, while that of sour and whey taste was greater in orange beverages containing whey. There were significant decreases in sucrose, lactose, all indicators of antioxidant activity and sensory quality during storage. Levels of glucose and fructose rose with the storage period, while the intensity of sour, orange and refreshing taste decreased.

  9. Quantification of whey proteins by reversed phase-HPLC and effectiveness of mid-infrared spectroscopy for their rapid prediction in sweet whey.

    Science.gov (United States)

    Sturaro, Alba; De Marchi, Massimo; Masi, Antonio; Cassandro, Martino

    2016-01-01

    In the dairy industry, membrane filtration is used to reduce the amount of whey waste and, simultaneously, to recover whey proteins (WP). The composition of WP can strongly affect the filtration treatment of whey, and rapid determination of WP fractions would be of interest for dairy producers to monitor WP recovery. This study aimed to develop mid-infrared spectroscopy (MIRS) prediction models for the rapid quantification of protein in sweet whey, using a validated rapid reversed phase (RP)-HPLC as a reference method. Quantified WP included α-lactalbumin (α-LA), β-lactoglobulin (β-LG) A and B, bovine serum albumin, caseinomacropeptides, and proteose peptone. Validation of RP-HPLC was performed by calculating the relative standard deviation (RSD) in repeatability and reproducibility tests for WP retention time and peak areas. Samples of liquid whey (n=187) were analyzed by RP-HPLC and scanned through MIRS to collect spectral information (900 to 4,000 cm(-1)); statistical analysis was carried out through partial least squares regression and random cross-validation procedure. Retention times in RP-HPLC method were stable (RSD between 0.03 and 0.80%), whereas the RSD of peak area (from 0.25 to 8.48%) was affected by WP relative abundance. Higher coefficients of determination in validation for MIRS model were obtained for protein fractions present in whey in large amounts, such as β-LG (0.58), total identified WP (0.58), and α-LA (0.56). Results of this study suggest that MIRS is an easy method for rapid quantification of detail protein in sweet whey, even if better resolution was achieved with the method based on RP-HPLC. The prediction of WP in sweet whey by MIRS might be used for screening and for classifying sweet whey according to its total and individual WP contents. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Nutritional and functional properties of whey proteins concentrate and isolate

    OpenAIRE

    Zoran Herceg; Anet Režek

    2006-01-01

    Whey protein fractions represent 18 - 20 % of total milk nitrogen content. Nutritional value in addition to diverse physico - chemical and functional properties make whey proteins highly suitable for application in foodstuffs. In the most cases, whey proteins are used because of their functional properties. Whey proteins possess favourable functional characteristics such as gelling, water binding, emulsification and foaming ability. Due to application of new process techniques (membrane fract...

  11. Minimising generation of acid whey during Greek yoghurt manufacturing.

    Science.gov (United States)

    Uduwerella, Gangani; Chandrapala, Jayani; Vasiljevic, Todor

    2017-08-01

    Greek yoghurt, a popular dairy product, generates large amounts of acid whey as a by-product during manufacturing. Post-processing treatment of this stream presents one of the main concerns for the industry. The objective of this study was to manipulate initial milk total solids content (15, 20 or 23 g/100 g) by addition of milk protein concentrate, thus reducing whey expulsion. Such an adjustment was investigated from the technological standpoint including starter culture performance, chemical and physical properties of manufactured Greek yoghurt and generated acid whey. A comparison was made to commercially available products. Increasing protein content in regular yoghurt reduced the amount of acid whey during whey draining. This protein fortification also enhanced the Lb. bulgaricus growth rate and proteolytic activity. Best structural properties including higher gel strength and lower syneresis were observed in the Greek yoghurt produced with 20 g/100 g initial milk total solid compared to manufactured or commercially available products, while acid whey generation was lowered due to lower drainage requirement.

  12. Carbohydrates Alone or Mixing With Beef or Whey Protein Promote Similar Training Outcomes in Resistance Training Males: A Double-Blind, Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Naclerio, Fernando; Seijo-Bujia, Marco; Larumbe-Zabala, Eneko; Earnest, Conrad P

    2017-10-01

    Beef powder is a new high-quality protein source scarcely researched relative to exercise performance. The present study examined the impact of ingesting hydrolyzed beef protein, whey protein, and carbohydrate on strength performance (1RM), body composition (via plethysmography), limb circumferences and muscular thickness (via ultrasonography), following an 8-week resistance-training program. After being randomly assigned to one of the following groups: Beef, Whey, or Carbohydrate, twenty four recreationally physically active males (n = 8 per treatment) ingested 20 g of supplement, mixed with orange juice, once a day (immediately after workout or before breakfast). Post intervention changes were examined as percent change and 95% CIs. Beef (2.0%, CI, 0.2-2.38%) and Whey (1.4%, CI, 0.2-2.6%) but not Carbohydrate (0.0%, CI, -1.2-1.2%) increased fat-free mass. All groups increased vastus medialis thickness: Beef (11.1%, CI, 6.3-15.9%), Whey (12.1%, CI, 4.0, -20.2%), Carbohydrate (6.3%, CI, 1.9-10.6%). Beef (11.2%, CI, 5.9-16.5%) and Carbohydrate (4.5%, CI, 1.6-7.4%), but not Whey (1.1%, CI, -1.7-4.0%), increased biceps brachialis thickness, while only Beef increased arm (4.8%, CI, 2.3-7.3%) and thigh (11.2%, 95%CI 0.4-5.9%) circumferences. Although the three groups significantly improved 1RM Squat (Beef 21.6%, CI 5.5-37.7%; Whey 14.6%, CI, 5.9-23.3%; Carbohydrate 19.6%, CI, 2.2-37.1%), for the 1RM bench press the improvements were significant for Beef (15.8% CI 7.0-24.7%) and Whey (5.8%, CI, 1.7-9.8%) but not for carbohydrate (11.4%, CI, -0.9-23.6%). Protein-carbohydrate supplementation supports fat-free mass accretion and lower body hypertrophy. Hydrolyzed beef promotes upper body hypertrophy along with similar performance outcomes as observed when supplementing with whey isolate or maltodextrin.

  13. Functionality of extrusion--texturized whey proteins.

    Science.gov (United States)

    Onwulata, C I; Konstance, R P; Cooke, P H; Farrell, H M

    2003-11-01

    Whey, a byproduct of the cheesemaking process, is concentrated by processors to make whey protein concentrates (WPC) and isolates (WPI). Only 50% of whey proteins are used in foods. In order to increase their usage, texturizing WPC, WPI, and whey albumin is proposed to create ingredients with new functionality. Extrusion processing texturizes globular proteins by shearing and stretching them into aligned or entangled fibrous bundles. In this study, WPC, WPI, and whey albumin were extruded in a twin screw extruder at approximately 38% moisture content (15.2 ml/min, feed rate 25 g/min) and, at different extrusion cook temperatures, at the same temperature for the last four zones before the die (35, 50, 75, and 100 degrees C, respectively). Protein solubility, gelation, foaming, and digestibility were determined in extrudates. Degree of extrusion-induced insolubility (denaturation) or texturization, determined by lack of solubility at pH 7 for WPI, increased from 30 to 60, 85, and 95% for the four temperature conditions 35, 50, 75, and 100 degrees C, respectively. Gel strength of extruded isolates increased initially 115% (35 degrees C) and 145% (50 degrees C), but gel strength was lost at 75 and 100 degrees C. Denaturation at these melt temperatures had minimal effect on foaming and digestibility. Varying extrusion cook temperature allowed a new controlled rate of denaturation, indicating that a texturized ingredient with a predetermined functionality based on degree of denaturation can be created.

  14. Alcohol production by selected yeast strains in lactase-hydrolyzed acid whey

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, V S; Green, R; Sullivan, B C; Holsinger, V H

    1977-07-01

    Ethanol production by Kluyveromyces fragilis and Saccharomyces cerevisiae was studied using cottage cheese whey in which 80 to 90 percent of the lactose present had been prehydrolyzed to glucose and galactose. Complete fermentation of the sugar by K. fragilis required 120 hr at 30/sup 0/C in lactase-hydrolyzed whey compared to 72 hr in nonhydrolyzed whey. This effect was due to a diauxic fermentation pattern in lactase-hydrolyzed whey with glucose being fermented before galactose. Ethanol yields of about 2 percent were obtained in both types of whey when K. fragilis was the organism used for fermentation. Saccharomyces cerevisiae produced alcohol from glucose more rapidly than K. fragilis, but galactose was fermented only when S. cerevisiae was pregrown on galactose. Slightly lower alcohol yields were obtained with S. cerevisiae, owing to the presence of some lactose in the whey which was not fermented by this organism. Although prehydrolysis of lactose in whey and whey fractions is advantageous in that microbial species unable to ferment lactose may be utilized, diauxic and galactose utilization problems must be considered.

  15. Effect of whey protein and a free amino acid mixture simulating whey protein on measures of satiety in normal-weight women.

    Science.gov (United States)

    Chungchunlam, Sylvia M S; Henare, Sharon J; Ganesh, Siva; Moughan, Paul J

    2016-11-01

    Dietary protein is considered more satiating than carbohydrate, and whey protein is more satiating than other protein sources. The purported satiating effect of whey protein may be due to direct effects of the unique mixture of proteins in whey, due to the effects of peptides released upon digestion and/or its amino acid composition. The objective of the present study was to compare the satiating effects of intact whey protein isolate (WPI) or a free amino acid mixture (AAM) simulating the amino acid composition of the WPI. A single-blind completely randomised block design included twenty, healthy, adult women (age 24·2 (sem 0·8) years) of normal weight (BMI 22·7 (sem 0·4) kg/m2). Following consumption of isoenergetic (approximately 1800 kJ) preload meals enriched (52 g amino acid equivalent) with WPI or AAM, consumption of an ad libitum test meal 120 min later and subjective feelings of appetite using visual analogue scales (VAS) were determined. There were no significant differences (P=0·24) in the ad libitum test meal intakes between the WPI (268·5 (sem 27·3) g) and the AAM (238·4 (sem 22·7) g) preload meals. Subjective VAS ratings of appetite did not differ significantly between the WPI and the AAM preload meals (P>0·05). Intact whey protein and a free AAM simulating the whey protein showed similar effects on satiety. This suggests that the satiating effect of whey protein may be related to its specific amino acid composition.

  16. Astringency reduction in red wine by whey proteins.

    Science.gov (United States)

    Jauregi, Paula; Olatujoye, Jumoke B; Cabezudo, Ignacio; Frazier, Richard A; Gordon, Michael H

    2016-05-15

    Whey is a by-product of cheese manufacturing and therefore investigating new applications of whey proteins will contribute towards the valorisation of whey and hence waste reduction. This study shows for the first time a detailed comparison of the effectiveness of gelatin and β-lactoglobulin (β-LG) as fining agents. Gelatin was more reactive than whey proteins to tannic acid as shown by both the astringency method (with ovalbumin as a precipitant) and the tannins determination method (with methylcellulose as a precipitant). The two proteins showed similar selectivity for polyphenols but β-LG did not remove as much catechin. The fining agent was removed completely or to a trace level after centrifugation followed by filtration which minimises its potential allergenicity. In addition, improved understanding of protein-tannin interactions was obtained by fluorescence, size measurement and isothermal titration calorimetry (ITC). Overall this study demonstrates that whey proteins have the potential of reducing astringency in red wine and can find a place in enology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Enzyme-induced aggregation of whey proteins with Bacillus licheniformis protease

    NARCIS (Netherlands)

    Creusot, N.P.

    2006-01-01

    Whey proteins are commonly used as ingredient in food. In relation with the gelation properties of whey proteins, this thesis deals with understanding the mechanism of peptide-induced aggregation of whey protein hydrolysates made with Bacillus licheniformis protease (BLP). The results show that BLP

  18. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  19. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  20. Casein - whey protein interactions in heated milk

    NARCIS (Netherlands)

    Vasbinder, Astrid Jolanda

    2002-01-01

    Heating of milk is an essential step in the processing of various dairy products, like for example yoghurt. A major consequence of the heat treatment is the denaturation of whey proteins, which either associate with the casein micelle or form soluble whey protein aggregates. By combination of

  1. Application of a Pivot Profile Variant Using CATA Questions in the Development of a Whey-Based Fermented Beverage

    Directory of Open Access Journals (Sweden)

    Marcelo Miraballes

    2018-02-01

    Full Text Available During the development of a food product, the application of rapid descriptive sensory methodologies is very useful to determine the influence of different variables on the sensory characteristics of the product under development. The Pivot profile (PP and a variant of the technique that includes check-all-that-apply questions (PP + CATA were used for the development of a milk drink fermented from demineralised sweet whey. Starting from a base formula of partially demineralised sweet whey and gelatin, nine samples were elaborated, to which various concentrations of commercial sucrose, modified cassava starch, and whole milk powder were added. Differences in sucrose content affected the sample texture and flavour and the modified starch was able to decrease the fluidity and increase the texture of creaminess and firmness, of the samples. The two applied sensory methodologies achieved good discrimination between the samples and very similar results, although the data analysis was clearly simplified in relation to the difficulty and time consumed in the PP + CATA variant.

  2. Processing of whey modulates proliferative and immune functions in intestinal epithelial cells.

    Science.gov (United States)

    Nguyen, Duc Ninh; Sangild, Per T; Li, Yanqi; Bering, Stine B; Chatterton, Dereck E W

    2016-02-01

    Whey protein concentrate (WPC) is often subjected to heat treatment during industrial processing, resulting in protein denaturation and loss of protein bioactivity. We hypothesized that WPC samples subjected to different degrees of thermal processing are associated with different levels of bioactive proteins and effects on proliferation and immune response in intestinal epithelial cells (IEC). The results showed that low-heat-treated WPC had elevated levels of lactoferrin and transforming growth factor-β2 compared with that of standard WPC. The level of aggregates depended on the source of whey, with the lowest level being found in WPC derived from acid whey. Following acid activation, WPC from acid whey enhanced IEC proliferation compared with WPC from sweet whey or nonactivated WPC. Low-heat-treated WPC from acid whey induced greater secretion of IL-8 in IEC than either standard WPC from acid whey or low-heat-treated WPC from sweet whey. Following acid activation (to activate growth factors), low-heat-treated WPC from sweet whey induced higher IL-8 levels in IEC compared with standard WPC from sweet whey. In conclusion, higher levels of bioactive proteins in low-heat-treated WPC, especially from acid whey, may enhance proliferation and cytokine responses of IEC. These considerations could be important to maintain optimal bioactivity of infant formulas, including their maturational and immunological effects on the developing intestine. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.

    Science.gov (United States)

    Kondo, Keita; Ito, Natsuki; Niwa, Toshiyuki; Danjo, Kazumi

    2013-09-10

    We attempted to prepare sustained release fine particles using a two-step mechanical powder processing method; particle-shape modification and dry particle coating. First, particle shape of bulk drug was modified by mechanical treatment to yield drug crystals suitable for the coating process. Drug crystals became more rounded with increasing rotation speed, which demonstrates that powerful mechanical stress yields spherical drug crystals with narrow size distribution. This process is the result of destruction, granulation and refinement of drug crystals. Second, the modified drug particles and polymer coating powder were mechanically treated to prepare composite particles. Polymer nanoparticle agglomerate obtained by drying poly(meth)acrylate aqueous dispersion was used as a coating powder. The porous nanoparticle agglomerate has superior coating performance, because it is completely deagglomerated under mechanical stress to form fine fragments that act as guest particles. As a result, spherical drug crystals treated with porous agglomerate were effectively coated by poly(meth)acrylate powder, showing sustained release after curing. From these findings, particle-shape modification of drug crystals and dry particle coating with nanoparticle agglomerate using a mechanical powder processor is expected as an innovative technique for preparing controlled-release coated particles having high drug content and size smaller than 100 μm. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways.

    Science.gov (United States)

    Corrochano, Alberto R; Buckin, Vitaly; Kelly, Phil M; Giblin, Linda

    2018-03-28

    Oxidative stress contributes to cell injury and aggravates several chronic diseases. Dietary antioxidants help the body to fight against free radicals and, therefore, avoid or reduce oxidative stress. Recently, proteins from milk whey liquid have been described as antioxidants. This review summarizes the evidence that whey products exhibit radical scavenging activity and reducing power. It examines the processing and treatment attempts to increase the antioxidant bioactivity and identifies 1 enzyme, subtilisin, which consistently produces the most potent whey fractions. The review compares whey from different milk sources and puts whey proteins in the context of other known food antioxidants. However, for efficacy, the antioxidant activity of whey proteins must not only survive processing, but also upper gut transit and arrival in the bloodstream, if whey products are to promote antioxidant levels in target organs. Studies reveal that direct cell exposure to whey samples increases intracellular antioxidants such as glutathione. However, the physiological relevance of these in vitro assays is questionable, and evidence is conflicting from dietary intervention trials, with both rats and humans, that whey products can boost cellular antioxidant biomarkers. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. The effects of carbon sources and micronutrients in whey and fermented whey on the kinetics of phenanthrene biodegradation in diesel contaminated soil

    International Nuclear Information System (INIS)

    Jonsson, Anders P.; Ostberg, Tomas L.

    2011-01-01

    Highlights: · Whey and fermented whey significantly enhances phenanthrene biodegradation. · Mode of administration and amount of amendment is decisive. · Observed effects were increased linear growth, bioavailability and degradation. · The effects were attributed to lactate and vitamins. · Growth factors play a significant role in phenanthrene biodegradation. - Abstract: This paper demonstrates significant effects on phenanthrene degradation in diesel contaminated soil by the addition of organic amendments such as whey and fermented whey. Both amount of amendment added and mode of administration was shown to be decisive. There was a strong positive effect on the 14 C-mineralization of phenanthrene by multiple (bi-weekly) additions of fermented whey 210 mg dw kg -1 soil dw (FW multi) and also by single dose addition of 2100 mg dw sweet whey kg -1 soil dw (SW high). The most prominent effects on phenanthrene degradation kinetics were a five to fifteen fold increase in the linear growth term (k 2 ) and a 23-27% increase in bioavailability factor S 0 for SW high and FW multi respectively. Also, total mineralization at the end of the experiment increased from 46% in the control to 66 and 71% respectively and the lag time was reduced from 21 to 15 days by multiple addition of fermented whey. The most significant stimulating effects on phenanthrene degradation kinetics could be attributed to lactate and vitamins. This study demonstrates a more complex dependence of carbon sources and growth factors for an aromatic compound such as phenanthrene in comparison to hexadecane.

  6. The effects of carbon sources and micronutrients in whey and fermented whey on the kinetics of phenanthrene biodegradation in diesel contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Anders P., E-mail: anders.jonsson@miun.se [Department of Engineering, and Sustainable Development, Mid Sweden University, SE-83125 Ostersund (Sweden); Ostberg, Tomas L. [Jegrelius Institute for Applied Green Chemistry, Studiegangen 3, SE-831 40 Ostersund (Sweden)

    2011-09-15

    Highlights: {center_dot} Whey and fermented whey significantly enhances phenanthrene biodegradation. {center_dot} Mode of administration and amount of amendment is decisive. {center_dot} Observed effects were increased linear growth, bioavailability and degradation. {center_dot} The effects were attributed to lactate and vitamins. {center_dot} Growth factors play a significant role in phenanthrene biodegradation. - Abstract: This paper demonstrates significant effects on phenanthrene degradation in diesel contaminated soil by the addition of organic amendments such as whey and fermented whey. Both amount of amendment added and mode of administration was shown to be decisive. There was a strong positive effect on the {sup 14}C-mineralization of phenanthrene by multiple (bi-weekly) additions of fermented whey 210 mg dw kg{sup -1} soil dw (FW multi) and also by single dose addition of 2100 mg dw sweet whey kg{sup -1} soil dw (SW high). The most prominent effects on phenanthrene degradation kinetics were a five to fifteen fold increase in the linear growth term (k{sub 2}) and a 23-27% increase in bioavailability factor S{sub 0} for SW high and FW multi respectively. Also, total mineralization at the end of the experiment increased from 46% in the control to 66 and 71% respectively and the lag time was reduced from 21 to 15 days by multiple addition of fermented whey. The most significant stimulating effects on phenanthrene degradation kinetics could be attributed to lactate and vitamins. This study demonstrates a more complex dependence of carbon sources and growth factors for an aromatic compound such as phenanthrene in comparison to hexadecane.

  7. Native whey protein with high levels of leucine results in similar post-exercise muscular anabolic responses as regular whey protein: a randomized controlled trial.

    Science.gov (United States)

    Hamarsland, Håvard; Nordengen, Anne Lene; Nyvik Aas, Sigve; Holte, Kristin; Garthe, Ina; Paulsen, Gøran; Cotter, Matthew; Børsheim, Elisabet; Benestad, Haakon B; Raastad, Truls

    2017-01-01

    Protein intake is essential to maximally stimulate muscle protein synthesis, and the amino acid leucine seems to possess a superior effect on muscle protein synthesis compared to other amino acids. Native whey has higher leucine content and thus a potentially greater anabolic effect on muscle than regular whey (WPC-80). This study compared the acute anabolic effects of ingesting 2 × 20 g of native whey protein, WPC-80 or milk protein after a resistance exercise session. A total of 24 young resistance trained men and women took part in this double blind, randomized, partial crossover, controlled study. Participants received either WPC-80 and native whey ( n  = 10), in a crossover design, or milk ( n  = 12). Supplements were ingested immediately (20 g) and two hours after (20 g) a bout of heavy-load lower body resistance exercise. Blood samples and muscle biopsies were collected to measure plasma concentrations of amino acids by gas-chromatography mass spectrometry, muscle phosphorylation of p70S6K, 4E-BP1 and eEF-2 by immunoblotting, and mixed muscle protein synthesis by use of [ 2 H 5 ]phenylalanine-infusion, gas-chromatography mass spectrometry and isotope-ratio mass spectrometry. Being the main comparison, differences between native whey and WPC-80 were analysed by a one-way ANOVA and comparisons between the whey supplements and milk were analysed by a two-way ANOVA. Native whey increased blood leucine concentrations more than WPC-80 and milk ( P  whey ingestion induced a greater phosphorylation of p70S6K than milk 180 min after exercise ( P  = 0.03). Muscle protein synthesis rates increased 1-3 h hours after exercise with WPC-80 (0.119%), and 1-5 h after exercise with native whey (0.112%). Muscle protein synthesis rates were higher 1-5 h after exercise with native whey than with milk (0.112% vs. 0.064, P  = 0.023). Despite higher-magnitude increases in blood leucine concentrations with native whey, it was not superior to WPC-80

  8. 40 CFR 405.120 - Applicability; description of the dry whey subcategory.

    Science.gov (United States)

    2010-07-01

    ... whey subcategory. 405.120 Section 405.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Dry Whey Subcategory § 405.120 Applicability; description of the dry whey subcategory. The provisions of this subpart...

  9. Two-stage anaerobic digestion of cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A two-stage digestion of cheese whey was studied using two anaerobic rotating biological contact reactors. The second-stage reactor receiving partially treated effluent from the first-stage reactor could be operated at a hydraulic retention time of one day. The results indicated that two-stage digestion is a feasible alternative for treating whey. 6 references.

  10. Effect of whey storage on physicochemical properties, microstructure ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-23

    Nov 23, 2016 ... It is concluded that the production of ricotta with whey stored for up .... were allocated in a completely randomized design by Tukey test at 5% probability as ..... manufactured only with bovine whey and when milk is added, this ...

  11. Beverages formulated with whey protein and added lutein

    Directory of Open Access Journals (Sweden)

    Juliana de Cássia Gomes Rocha

    Full Text Available ABSTRACT: This study aimed to develop and characterize beverages formulated with whey protein and added lutein. Beverages formulated with 0.5 (F1, 2.0 (F2, 4.0 (F3 and 6.0% w/v (F4 whey protein were physicochemically and microbiologically characterized, and sensory evaluated. The physicochemical analyses indicated that the protein content significantly changed (P0.05 with increased protein content. The F2 formulation showed the highest sensory acceptance. Beverages offer a promising alternative to whey use and enhance the value of the product by the addition of lutein.

  12. Carboxymethyl cellulose (CMC whey product as protein source for growing pigs 

    Directory of Open Access Journals (Sweden)

    Matti Näsi

    1982-12-01

    Full Text Available A digestibility and balance trial was performed with three growing pigs to evaluate the nutritive value and protein utilization of a carboxymethyl cellulose(CMC whey product used to replace 50 % or 100 % of the dried skim supplement in a barley-based diet. The effect of CMC whey on clinical chemical blood parameters was also investigated. The CMC whey protein contained 39.6 % crude protein and 36.0 % true protein in DM. The proportion of CMC in the product was 18.3% of DM. CMC whey had high contents of lysine, cystine, methionine and threonine: 10.3, 2.9, 2.1 and 5.6 g/16 g N, respectively. NFE digestibility was lower on the CMC whey diet than on the skim milk diet (P < 0.05. Faecal excretion of CMC averaged 59.0 %. Protein utilization was effective on the CMC whey diet: 69.9 % of absorbed N was retained. Judging from the blood analyses, the CMC whey product did not have any detrimental effect on the metabolism or health of the pigs. The CMC whey product is well suited as a protein supplement in pig feeding because of its high contents of essential amino acids.

  13. CVD carbon powders modified by ball milling

    Directory of Open Access Journals (Sweden)

    Kazmierczak Tomasz

    2015-09-01

    Full Text Available Carbon powders produced using a plasma assisted chemical vapor deposition (CVD methods are an interesting subject of research. One of the most interesting methods of synthesizing these powders is using radio frequency plasma. This method, originally used in deposition of carbon films containing different sp2/sp3 ratios, also makes possible to produce carbon structures in the form of powder. Results of research related to the mechanical modification of these powders have been presented. The powders were modified using a planetary ball mill with varying parameters, such as milling speed, time, ball/powder mass ratio and additional liquids. Changes in morphology and particle sizes were measured using scanning electron microscopy and dynamic light scattering. Phase composition was analyzed using Raman spectroscopy. The influence of individual parameters on the modification outcome was estimated using statistical method. The research proved that the size of obtained powders is mostly influenced by the milling speed and the amount of balls. Powders tend to form conglomerates sized up to hundreds of micrometers. Additionally, it is possible to obtain nanopowders with the size around 100 nm. Furthermore, application of additional liquid, i.e. water in the process reduces the graphitization of the powder, which takes place during dry milling.

  14. Interactions between whey proteins and salivary proteins as related to astringency of whey protein beverages at low pH.

    Science.gov (United States)

    Ye, A; Streicher, C; Singh, H

    2011-12-01

    Whey protein beverages have been shown to be astringent at low pH. In the present study, the interactions between model whey proteins (β-lactoglobulin and lactoferrin) and human saliva in the pH range from 7 to 2 were investigated using particle size, turbidity, and ζ-potential measurements and sodium dodecyl sulfate-PAGE. The correlation between the sensory results of astringency and the physicochemical data was discussed. Strong interactions between β-lactoglobulin and salivary proteins led to an increase in the particle size and turbidity of mixtures of both unheated and heated β-lactoglobulin and human saliva at pH ∼3.4. However, the large particle size and high turbidity that occurred at pH 2.0 were the result of aggregation of human salivary proteins. The intense astringency in whey protein beverages may result from these increases in particle size and turbidity at these pH values and from the aggregation and precipitation of human salivary proteins alone at pH salivary proteins in the interaction is a key factor in the perception of astringency in whey protein beverages. At any pH, the increases in particle size and turbidity were much smaller in mixtures of lactoferrin and saliva, which suggests that aggregation and precipitation may not be the only mechanism linked to the perception of astringency in whey protein. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Biogas yield from Sicilian kitchen waste and cheese whey

    Directory of Open Access Journals (Sweden)

    Antonio Comparetti

    2013-09-01

    Full Text Available The aim of this study is to determine the chemical composition of kitchen waste and cheese whey, as well as the biogas yield obtained from the Anaerobic Digestion (AD tests of these two raw materials. Since the separated waste collection is performed in the town of Marineo (Palermo, a sample of kitchen waste, different from food industry one and included in the Organic Fraction of Municipal Solid Waste (OFMSW, was collected from the mass stored at the households of this town. Moreover, a sample of cheese whey was collected in a Sicilian mini dairy plant, where sheep milk is processed. This investigation was carried out inside laboratory digesters of Aleksandras Stulginskis University (Lithuania. Total Solids (TS resulted 15.6% in kitchen waste and 6% in cheese whey, while both the raw materials showed a high content of organic matter, 91.1% and 79.1%, respectively. The biogas yield resulted 104.6 l kg–1 from kitchen waste and 30.6 l kg–1 from cheese whey. The biogas yield from TS resulted 672.6 l kg–1 using kitchen waste and 384.7 l kg–1 using cheese whey. The biogas yield from Volatile Solids (VS resulted 738.9 l kg–1 using kitchen waste and 410.3 l kg–1 using cheese whey.

  16. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Knudsen, Inge Skovgaard

    2014-01-01

    well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso...... creatine kinase (CK) were evaluated as indices of recovery from muscle damage. In type II fiber-associated SCs, the whey group increased SCs/fiber from 0.05 [0.02; 0.07] to 0.09 [0.06; 0.12] (p ... the placebo group (p whey group increased SCs/myonuclei from 4 % [2; 5] to 10 % [4; 16] (p 

  17. Production of bioethanol from organic whey using Kluyveromyces marxianus

    DEFF Research Database (Denmark)

    Christensen, A.D.; Kádár, Zsófia; Oleskowicz-Popiel, Piotr

    2011-01-01

    Ethanol production by K. marxianus in whey from organic cheese production was examined in batch and continuous mode. The results showed that no pasteurization or freezing of the whey was necessary and that K. marxianus was able to compete with the lactic acid bacteria added during cheese production...... ethanol yield (~0.50 g ethanol/g lactose) at both 30°C and 40°C using low pH (4.5) or no pH control. Continuous fermentation of nonsterilized whey was performed using Ca-alginate-immobilized K. marxianus. High ethanol productivity (2.5-4.5 g/l/h) was achieved at dilution rate of 0.2/h......, and it was concluded that K. marxianus is very suitable for industrial ethanol production from whey. © 2010 Society for Industrial Microbiology....

  18. Optimization of fermentation conditions for ethanol production from whey

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F J; Izaguirre, M F; Michelena, V; Moreno, B

    1982-01-01

    Optimal conditions for ethanol production in 7% whey solutions by the yeast Candida pseudotropicalis ATCC 8619 included an initial pH of 4.57 and 30 degrees. Complete fermentation of the available lactose took place without supplementary nutrients; additions of N and P salts, yeast extract, or corn steep liquor resulted in increased yeast production and lower ethanol yields. A possible correlation was observed between increases in yeast inocula and lactose utilization and ethanol production rates; 8.35 g ethanol/L was obtained within 22 hours by using a yeast inoculum of 13.9 g/L. No differences in fermentation rates or ethanol yields were observed when whole or deproteinized whey solutions were used. Concentrated whey permeates, obtained after removal of the valuable proteins from whey, can be effectively fermented for ethanol production.

  19. Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents

    Science.gov (United States)

    2004-08-01

    fracturing using a chitin, sand, guar gum , and water slurry. This application is unique in that it uses a conventional engineering technique...Substrates Whey (fresh/ powdered ) 0.05 (fresh)/ 1.00 to 1.50 ( powdered ) Experimental (< 5) Powdered whey is water soluble and may be applied in...to quarterly 7 to 90 days Suthersan et al., 2002; Appendix E.3 Whey (fresh/ powdered ) Powdered form can be dissolved; fresh form can be injected as

  20. Production of Fungal Mycelial Protein in Submerged Culture of Soybean Whey

    Science.gov (United States)

    Falanghe, Helcio; Smith, A. K.; Rackis, J. J.

    1964-01-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content. PMID:14199023

  1. PRODUCTION OF FUNGAL MYCELIAL PROTEIN IN SUBMERGED CULTURE OF SOYBEAN WHEY.

    Science.gov (United States)

    FALANGHE, H; SMITH, A K; RACKIS, J J

    1964-07-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.

  2. Industrial alcohol production via whey and grain fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Friend, B A; Cunningham, M L; Shahani, K M

    1982-01-01

    Six strains of a trained lactose fermenting Kluyveromyces yeast were examined for their ability to utilise lactose in sweet-whey permeate. All strains of K. fragilis tested reduced the concentration of the 5.1% lactose, initially present in whey permeate, to 0.1-0.2% within 48h. Periodic adjustment to maintain the pH during fermentation did not alter the lactose utilisation. The fermentation efficiency of K. fragilis was then compared with that of a mixture of K. fragilis and the classical alcohol fermenter Saccharomyces cerevisiae to verify that no unfavourable interactions occurred in the mixed culture. There were no differences in lactose utilisation or ethanol production between the two groups; both produced approximately 2% ethanol within 24h. This represented approximately 80% of the alcohol which theoretically could be produced from the 5.1% lactose present in the permeate. Whey permeate was also incorporated into the classical grain fermentation by substitution for one-half the water normally added to produce the mash. Fermentation was nearly complete by 36h and alcohol levels ranged from 9.7% for the mixed culture to 9.4% for the K. fragilis and 9.3% for the S. cerevisiae. Since the whey provided significant levels of fermentable sugars, studies were also conducted in which undiluted whey permeate was substituted for all of the water in the mash and the amount of grain was reduced by 20%. At the end of 36h K. fragilis produced 10.9% alcohol and at 60 h of fermentation the level had reached 12.2%. When whole sweet-whey was used, similar levels of alcohol were produced. (Refs. 20).

  3. Ethanol, biomass and enzyme production for whey waste abatement

    Energy Technology Data Exchange (ETDEWEB)

    Maiorella, B L; Castillo, F J

    1984-08-01

    Methods of ethanol, biomass, and lactase production are evaluated for the treatment of whey waste. These processes can all reduce the whey BOD load of 35,000 ppm by at least 90%. Plant designs are evaluated at the scale of 25,000 l whey per day, corresponding to the output of a typical independent cheese factory. Ethanol production is the most practical of the alternatives evaluated and the waste treatment would add 7.3 US cents per kilogramme to the cost of cheese manufacture. 57 references.

  4. Restructured low-fat cooked ham containing liquid whey fortified with lactulose.

    Science.gov (United States)

    Oliveira, Cristiane A; Massingue, Armando A; Moura, Ana Paula R; Fontes, Paulo Rogério; Ramos, Alcinéia Ls; Ramos, Eduardo M

    2018-01-01

    Current health concerns have driven consumers to request products with nutritional and physiological advantages, which can be achieved by using prebiotic ingredients. Lactulose is a prebiotic with excellent functional properties and can be easily incorporated into meat products through the addition of liquid whey. This study investigated the technological and sensorial quality of restructured cooked ham elaborated without liquid whey added (control) and with liquid whey containing different contents (0, 30, 60 and 100 g kg -1 ) of lactulose. Liquid whey did not change any technological or sensorial characteristics of the product, but the general acceptability decreased due to addition of lactulose. Samples with higher lactulose concentrations had lower moisture content, pH and refreezing loss and increased carbohydrate content. Control and whey added samples had higher lightness and lower intense color than samples with lactulose. Liquid whey additions with higher lactulose content increased hardness and chewiness of the samples. Restructured cooked hams formulated with liquid whey and 30 g kg -1 of lactulose had minimal effects on the technological properties and sensory characteristics and, due to the possible benefits conferred by the prebiotic, is a potential alternative to provide meat products with prebiotic activity. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Including whey protein and whey permeate in ready-to-use supplementary food improves recovery rates in children with moderate acute malnutrition: a randomized, double-blind clinical trial.

    Science.gov (United States)

    Stobaugh, Heather C; Ryan, Kelsey N; Kennedy, Julie A; Grise, Jennifer B; Crocker, Audrey H; Thakwalakwa, Chrissie; Litkowski, Patricia E; Maleta, Kenneth M; Manary, Mark J; Trehan, Indi

    2016-03-01

    The utility of dairy ingredients in the supplementary foods used in the treatment of childhood moderate acute malnutrition (MAM) remains unsettled. We evaluated the effectiveness of a peanut-based ready-to-use supplementary food (RUSF) with soy protein compared with a novel RUSF containing dairy ingredients in the form of whey permeate and whey protein concentrate in the treatment of children with MAM. We conducted a randomized, double-blind clinical effectiveness trial involving rural Malawian and Mozambican children 6-59 mo of age with MAM treated with either soy RUSF or a novel whey RUSF treatment of ~75 kcal · kg(-1) · d(-1) for up to 12 wk. The proportion of children that recovered from MAM was significantly higher in the group that received whey RUSF (960 of 1144; 83.9%) than in the group that received soy RUSF (874 of 1086; 80.5%; P whey RUSF also demonstrated better growth markers, with a higher mean midupper arm circumference (MUAC) at the time of discharge (P whey RUSF resulted in higher recovery rates and improved growth than did soy RUSF, although the whey RUSF supplement provided less total protein and energy than the soy RUSF. This study was registered at clinicaltrials.gov as NCT01790048. © 2016 American Society for Nutrition.

  6. Development of newly enriched bread with quinoa flour and whey

    Science.gov (United States)

    Salazar, D. M.; Naranjo, M.; Pérez, L. V.; Valencia, A. F.; Acurio, L. P.; Gallegos, L. M.; Alvarez, F. C.; Amancha, P. I.; Valencia, M. P.; Rodriguez, C. A.; Arancibia, M. Y.

    2017-07-01

    Ecuador, Bolivia, and Peru are countries with the highest amount of quinoa production in the world due to the proximity to the Andes. Further, Ecuador has a high production of dairy products, particularly fresh cheese of which production gives a high volume of whey, without further use, with the consequent loss of their nutritional value. The present study was performed to develop a new fortified bread through the incorporation of quinoa flour and whey at three different concentrations. The use of quinoa and whey improved the texture, shelf life and sensory characteristics of bread, compared to those prepared with wheat flour. This study shows the potential of quinoa flour and whey as ingredients in the development of baked products.

  7. The role of whey in functional dairy food production

    Directory of Open Access Journals (Sweden)

    Ljubica Tratnik

    2003-10-01

    Full Text Available Modern life style also enhances a need for creation of better dairyproducts, in comparison with traditional ones, possessing functionalcharacteristics. Whey is consisted primarily of lactose, proteins of high nutritive value, important minerals and imunoactive compounds, as well as vitamins of B group. It can be used for fermented probiotic drinks and albumin cheese production. Using new methods of pressure membrane filtration and demineralisation the economic manufacture of whey, as a valuable source of nutrients, is enabled. The aim of this paper is to give an overview on the possibilities of sweet whey, especially whey protein concentrates, use in functional dairy products manufacture from cow’s and goat’s milk. The paper is based on the published scientific research performed in the Laboratory for Technology of Milk and Dairy Products of the Faculty of Food Technology and Biotechnology University of Zagreb.

  8. Influence of tribomechanical micronization and hydrocolloids addition on enthalpy and apparent specific heat of whey protein model solutions

    Directory of Open Access Journals (Sweden)

    Zoran Herceg

    2002-01-01

    Full Text Available Knowledge of thermophysical properties, especially the phase transitions temperature, specific heat and enthalpy, are essential in defining the freezing process parameters as well as storage conditions of frozen food. In this work thermophysical properties of 10% model solutions prepared with 60% whey protein concentrate (WPC with various hydrocolloids addition (HVEP, YO-EH, YO-L i YO-M were investigated. Powdered whey protein concentrate was treated in equipment for tribomechanical micronization and activation at 40000 rpm (Patent: PCT/1B99/00757 just before model solutions preparation. Particle size analysis was performed using Frich –laser particle sizer “analysette 22”. The phase transition temperatures were determined by differential thermal analysis (DTA, while specific heat and enthalpy were calculated according to several mathematical equations. The results have shown that, due to tribomechanical treatment, certain changes in thermophysical and energetic properties of materials occurred. Tribomechanical treatment affects changes in granulometrical composition of WPC which result in higher abilities of reactions with hydrocolloids in model solutions and significant changes in thermophysical properties of the mentioned models.

  9. Inhibition of intestinal radiocaesium absorption from Chernobyl contaminated whey by hexacyanoferrates(II) in pigs

    International Nuclear Information System (INIS)

    Dresow, B.; Asmus, J.; Fischer, R.; Nielsen, P.; Heinrich, H.C.

    1993-01-01

    The inhibition of radiocaesium transfer from Chernobyl contaminated whey powder to the pork and liver of fattening pigs using various dosages of different hexacyanoferrate (II) compounds (HCF) was studied under normal feeding conditions. Increasing amounts of all three hexacyanoferates tested resulted in a dose-dependent reduction in the 134+137 Cs activity concentration in all of the tissues sampled. KFe[Fe(CN) 6 ] and NE 4 Fe(CN) 6 ] were effective to the same extent while Fe 4 [Fe(CN) 6 ] 3 was less effective at dosages of 1-3 g d -1 HCF. Administration of 10 g d -1 HCF resulted in an almost complete inhibition (>99%) of intestinal radiocaesium absorption for all three compounds. (Author)

  10. The effect of natural whey proteins on mechanisms of blood pressure regulation

    Directory of Open Access Journals (Sweden)

    Halina Car

    2014-02-01

    Full Text Available Whey is a rich natural source of peptides and amino acids. It has been reported in numerous studies that biological active peptides isolated from cow’s milk whey may affect blood pressure regulation. Studies on animals and humans have shown that α-lactalbumin and β-lactoglobulin obtained from enzymatically hydrolysed whey inhibit angiotensin converting enzyme (ACE, while lactorphins lower blood pressure by normalizing endothelial function or by opioid receptors dependent mechanism. Whey proteins or their bioactive fragments decrease total cholesterol, LDL fraction and triglycerides, thus reducing the risk factors of cardiovascular diseases. The aim of this review is to discuss the effects of whey proteins on the mechanisms of blood pressure regulation.

  11. Pemberian Whey-Dangke dalam Air Minum Menekan Kadar Kolesterol, Trigliserida dan Lipoprotein Darah Ayam Broiler

    Directory of Open Access Journals (Sweden)

    Sulmiyati Sulmiyati

    2017-06-01

    Full Text Available Tujuan penelitian untuk mengetahui pengaruh penambahan whey dangke terhadap kadar kolesterol, trigliserida, LDL (low density lipoprotein, HDL (high density lipoprotein, VLDL (very low density lipoprotein darah ayam broiler dan mengukur konsentrasi pemberian whey dangke dalam air minum yang diberikan. Penelitian dilakukan dengan menggunakan Rancangan Acak Lengkap dengan enam perlakuan pemberian whey dangke dalam air minum dengan empat ulangan. Konsentrasi P0 adalah kelompok kontrol 0%; P1=pemberian whey dangke dengan konsentrasi 10%; P2 = pemberian whey dangke dengan konsentrasi 20%; P3 = pemberian whey dangke dengan konsentrasi 30%; P4 = pemberian whey dangke dengan konsentrasi 40%; dan P5 = pemberian whey dangke dengan konsentrasi 50%. Pemberian whey dangke pada ayam broiler strain cobb SR 707 dilakukan selama 15 hari (umur 20–35 hari. Parameter yang diamati adalah kadar kolesterol, trigliserida, LDL, HDL, dan VLDL darah ayam broiler. Data dianalisis dengan analisis sidik ragam, dan jika menunjukkan pengaruh nyata dilanjutkan dengan Uji Beda Nyata Terkecil (BNT. Hasil penelitian menunjukkan bahwa pemberian whey dangke dalam air minum tidak memberikan pengaruh yang nyata (P>0,05 terhadap parameter kolesterol, trigliserida, dan lipoprotein. Namun, terlihat kecenderungan penurunan kadar kolesterol seiring dengan peningkatan konsentrasi pemberian whey dangke. Hasil penelitian dapat disimpulkan bahwa hasil uji in vivo menunjukkan pemberian whey dangke dalam air minum pada ayam broiler pada konsentrasi 50% memperlihatkan penurunan kadar kolesterol hingga 15%. Abstract The purposes of research is to determine the effect of whey dangke against cholesterol levels, triglycerides, LDL, HDL, and VLDL broiler blood and measuring the concentration of whey dangke in water provided. The research was conducted using a completely randomized design with six treatments and four replications. P0 is the control group 0%; P1 = whey dangke added with a concentration

  12. Behavior of Heat-Denatured Whey: Buttermilk Protein Aggregates during the Yogurt-Making Process and Their Influence on Set-Type Yogurt Properties

    Directory of Open Access Journals (Sweden)

    Maxime Saffon

    2013-09-01

    Full Text Available The objective of this study was to assess the impact of using heat-denatured whey:buttermilk protein aggregate in acid-set type yogurt production. Whey and buttermilk (25:75 protein concentrate was adjusted to pH 4.6, heated at 90 °C for 5 min, homogenized and freeze-dried. Set-type yogurts were prepared from skim milk standardized to 15% (w/v total solids and 4.2% (w/v protein using different levels of powdered skim milk or freeze-dried protein aggregate. The use of the protein aggregate significantly modified yogurt texture, but did not affect the water-holding capacity of the gel. Confocal laser-scanning microscope images showed the presence of large particles in milk enriched with protein aggregate, which directly affected the homogeneity of the clusters within the protein matrix. Thiol groups were freed during heating of the protein aggregate suspended in water, suggesting that the aggregates could interact with milk proteins during heating.

  13. Whey as a raw material for the production of functional beverages

    Directory of Open Access Journals (Sweden)

    Bulatović Maja Lj.

    2012-01-01

    Full Text Available One of the least utilized by-products of food industry, despite the great potential that is described, is the whey, which is obtained as a by-product of the technological process production of cheese and casein. The excess whey, which occurs in this process in very high yields, with failure to processing is becoming a very big polluter, what is completely at odds with the potential that such materials possess. On the other hand, the modern tempo and way of life, and increasingly polluted environmental also, impose the need to produce food products that would help the human body in the fight against harmful agents which are exposed to daily. One of the more effective solution is the production of fermented functional beverages based on whey, which achieved this intention in the most natural and most comfortable way. Considering the rather untapped potential of whey as a raw material and growing food shortages in the world market, the aim of this study was to analyze the possibilities of production of functional beverages based on whey, with satisfactory sensory characteristics, in order to demonstrate the attractiveness of whey as raw material in the food industry. This paper presents an overview of the wide possibilities for the use of whey with a special emphasis on its attractiveness and the necessity of its utilizing.

  14. Whey protein: The “whey” forward for treatment of type 2 diabetes?

    Science.gov (United States)

    Mignone, Linda E; Wu, Tongzhi; Horowitz, Michael; Rayner, Christopher K

    2015-01-01

    A cost-effective nutritional approach to improve postprandial glycaemia is attractive considering the rising burden of diabetes throughout the world. Whey protein, a by-product of the cheese-making process, can be used to manipulate gut function in order to slow gastric emptying and stimulate incretin hormone secretion, thereby attenuating postprandial glycaemic excursions. The function of the gastrointestinal tract plays a pivotal role in glucose homeostasis, particularly during the postprandial period, and this review will discuss the mechanisms by which whey protein slows gastric emptying and stimulates release of gut peptides, including the incretins. Whey protein is also a rich source of amino acids, and these can directly stimulate beta cells to secrete insulin, which contributes to the reduction in postprandial glycaemia. Appetite is suppressed with consumption of whey, due to its effects on the gut-brain axis and the hypothalamus. These properties of whey protein suggest its potential in the management of type 2 diabetes. However, the optimal dose and timing of whey protein ingestion are yet to be defined, and studies are required to examine the long-term benefits of whey consumption for overall glycaemic control. PMID:26516411

  15. The foaming properties of camel and bovine whey: The impact of pH and heat treatment.

    Science.gov (United States)

    Lajnaf, Roua; Picart-Palmade, Laetitia; Cases, Eliane; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A

    2018-02-01

    The effect of heat treatment (70°C or 90°C for 30min) on the foaming and interfacial properties of acid and sweet whey obtained from bovine and camel fresh milk was examined. The maximum foamability and foam stability were observed for acid whey when compared to sweet whey for both milks, with higher values for the camel whey. This behavior for acid whey was explained by the proximity of the pI of whey protein (4.9-5.2), where proteins were found to carry the lowest negative charge as confirmed by the zeta potential measurements. Interfacial properties of acid camel whey and acid bovine whey were preserved at air water interface even after a heat treatment at 90°C. These results confirmed the pronounced foaming and interfacial properties of acid camel whey, even if acid and sweet bovine whey exhibited the highest viscoelastic modulus after heating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Behavior of whey protein concentrates under extreme storage conditions

    Science.gov (United States)

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  17. Whey protein stories - an experiment in writing a multidisciplinary biography

    DEFF Research Database (Denmark)

    Jensen, Tenna; Bechschøft, Rasmus L.; Giacalone, Davide

    2016-01-01

    This is an experimental, dual-purpose article about whey protein and how to conduct interdisciplinary analyses and writings. On the one hand, this article is a multidisciplinary commodity biography, which consists of five descriptions of whey protein written by the five different research groups...... contributes to the field of food studies with a multidisciplinary biography of whey protein - including its sensory qualities and challenges, insights into its cultural history, its nutritional value and effects on the human body and an analysis of how it is perceived by people who consume it. The biography...... thereby expands upon existing understandings of whey protein while discussing the usefulness of employing the commodity biography format in interdisciplinary writing. Moreover, the article contributes to the field of interdisciplinary research by providing a practical example of a joint publication...

  18. Whey protein reduces early life weight gain in mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Britt Tranberg

    Full Text Available An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001-0.05. Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001. Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01 and glucose clearance was improved after an oral glucose challenge (P<0.05. Plasma cholesterol was lowered by whey compared to casein (P<0.001. The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05 whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey.

  19. Exceptional heat stability of high protein content dispersions containing whey protein particles

    NARCIS (Netherlands)

    Saglam, D.; Venema, P.; Vries, de R.J.; Linden, van der E.

    2014-01-01

    Due to aggregation and/or gelation during thermal treatment, the amount of whey proteins that can be used in the formulation of high protein foods e.g. protein drinks, is limited. The aim of this study was to replace whey proteins with whey protein particles to increase the total protein content and

  20. Cheese whey management: a review.

    Science.gov (United States)

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier

    2012-11-15

    Cheese whey is simultaneously an effluent with nutritional value and a strong organic and saline content. Cheese whey management has been focused in the development of biological treatments without valorization; biological treatments with valorization; physicochemical treatments and direct land application. In the first case, aerobic digestion is reported. In the second case, six main processes are described in the literature: anaerobic digestion, lactose hydrolysis, fermentation to ethanol, hydrogen or lactic acid and direct production of electricity through microbial fuel cells. Thermal and isoelectric precipitation, thermocalcic precipitation, coagulation/flocculation, acid precipitation, electrochemical and membrane technologies have been considered as possible and attractive physicochemical processes to valorize or treat cheese whey. The direct land application is a common and longstanding practice, although some precautions are required. In this review, these different solutions are analyzed. The paper describes the main reactors used, the influence of the main operating variables, the microorganisms or reagents employed and the characterizations of the final effluent principally in terms of chemical oxygen demand. In addition, the experimental conditions and the main results reported in the literature are compiled. Finally, the comparison between the different treatment alternatives and the presentation of potential treatment lines are postulated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Sweet whey as a raw material for the dietary supplements obtaining with immunomodulatory effect

    Directory of Open Access Journals (Sweden)

    G. Didukh

    2017-06-01

    Full Text Available This article presents the results of the study of literary sources to prove the viability of the idea of using sweet whey to deep its fractionation, and to obtain biologically active proteins with immunomodulatory effect. We demonstrated methods for fractionation of milk whey (membrane and chromatographic, as well as the technological scheme of concentration of sweet whey. We introduced the composition of sweet whey and protein content of immunomodulatory action. Modern methods of processing whey, which include, basically, only the process of dehydration and concentration of whey and its use in the complete component composition, which limits its use for food purposes are shown. The necessity of processing of secondary resources in a catastrophic ecological situation on the planet and full use of the composite processing of raw materials for food purposes, and also shows properties of proteins immunomodulating actions which are part of the whey are grounded.

  2. Cheese from ultrafiltered milk : whey proteins and chymosin activity

    NARCIS (Netherlands)

    Buijsse, C.A.P.

    1999-01-01

    The manufacture of (semi-)hard cheese from ultrafiltered milk (UF-cheese) enables the partial incorporation of whey proteins in the cheese, thereby increasing its yield. The transfer of whey proteins in curd from (UF-)milk was studied in relation to the degree of ultrafiltration of the milk

  3. Distribution of Animal Drugs among Curd, Whey, and Milk Protein Fractions in Spiked Skim Milk and Whey.

    Science.gov (United States)

    Shappell, Nancy W; Shelver, Weilin L; Lupton, Sara J; Fanaselle, Wendy; Van Doren, Jane M; Hakk, Heldur

    2017-02-01

    It is important to understand the partitioning of drugs in processed milk and milk products, when drugs are present in raw milk, in order to estimate the potential consumer exposure. Radioisotopically labeled erythromycin, ivermectin, ketoprofen, oxytetracycline, penicillin G, sulfadimethoxine, and thiabendazole were used to evaluate the distribution of animal drugs among rennet curd, whey, and protein fractions from skim cow milk. Our previous work reported the distribution of these same drugs between skim and fat fractions of milk. Drug distribution between curd and whey was significantly correlated (R 2 = 0.70) to the drug's lipophilicity (log P), with improved correlation using log D (R 2 = 0.95). Distribution of drugs was concentration independent over the range tested (20-2000 nM). With the exception of thiabendazole and ivermectin, more drug was associated with whey protein than casein on a nmol/g protein basis (oxytetracycline experiment not performed). These results provide insights into the distribution of animal drug residues, if present in cow milk, among milk fractions, with possible extrapolation to milk products.

  4. Analysis and Application of Whey Protein Depleted Skim Milk Systems

    DEFF Research Database (Denmark)

    Sørensen, Hanne

    homogenisation (UHPH). The microfiltration will result in a milk fraction more or less depleted from whey protein, and could probably in combination with UHPH treatment contribute to milk fractions and cheeses with novel micro and macrostructures. These novel fractions could be used as new ingredients to improve......-destructive methods for this purpose. A significant changed structure was observed in skim milk depleted or partly depleted for whey protein, acidified and UHPH treated. Some of the properties of the UHPH treated skim milk depleted from whey protein observed in this study support the idea, that UHPH treatment has...... this. LF-NMR relaxation were utilised to obtain information about the water mobility (relaxation time), in diluted skim milk systems depleted from whey protein. Obtained results indicate that measuring relaxation times with LF-NMR could be difficult to utilize, since no clear relationship between...

  5. Antibacterial activity of papain hydrolysed camel whey and its fractions

    DEFF Research Database (Denmark)

    Abdel-Hamid, Mahmoud; Goda, Hanan A.; De Gobba, Cristian

    2016-01-01

    Camel whey (ON) was hydrolysed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial activity of the CW, camel whey hydrolysate (CWH) and the obtained SEC-fractions was assessed using the disc-diffusion method. The CWH exhibited significantly...

  6. Manufacture of a beverage from cheese whey using a "tea fungus" fermentation.

    Science.gov (United States)

    Belloso-Morales, Genette; Hernández-Sánchez, Humberto

    2003-01-01

    Kombucha is a sour beverage reported to have potential health effects prepared from the fermentation of black tea and sugar with a "tea fungus", a symbiotic culture of acetic acid bacteria and yeasts. Although black tea is the preferred substrate for Kombucha fermentation, other beverages have also been tested as substrates with fair results. Cheese whey is a by-product with a good amount of fermentable lactose that has been used before in the production of beverages, so the objective of this study was to test three types of whey (fresh sweet, fresh acid and reconstituted sweet) in the elaboration of a fermented beverage using a kombucha culture as inoculum. The isolation and identification of bacteria and yeasts from the fermented tea and wheys was done along with the study of the rates of change in sugar consumption, acid production and pH decrease. Several species of acetic acid bacteria (Acetobacter aceti subsp. aceti, Gluconobacter oxydans subsp. industrius, subsp. oxydans and Gluconoacetobacter xylinus) were isolated from the different kombuchas along with the yeasts Saccharomyces cerevisiae, Kluyveromyces marxianus, and Brettanomyces bruxelensis. The main metabolic products in the fermented wheys included ethanol, lactic and acetic acids. A good growth was obtained in both sweet wheys in which a pH of 3.3 and a total acid content (mainly lactic and acetic acids) of 0.07 mol/l was reached after 96 h. The sweet whey fermented beverages contained a relatively low lactose concentration (< 12 g/l). The final ethanol content was low (5 g/l) in all the fermented wheys. The whey products were strongly sour and salty non sparkling beverages.

  7. Cheese whey-induced high-cell-density production of recombinant proteins in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2003-04-01

    Full Text Available Abstract Background Use of lactose-rich concentrates from dairy processes for the induction of recombinant gene's expression has not received much attention although they are interesting low cost substrates for production of recombinant enzymes. Applicability of dairy waste for induction of recombinant genes in Escherichia coli was studied. Clones expressing Lactobacillus phage muramidase and Lactobacillus alcohol dehydrogenase were used for the experiments. Results Shake flask cultivations in mineral salt medium showed that cheese whey or deproteinised whey induced gene expression as efficiently as IPTG (isopropyl-β-D-thiogalactopyranoside or pure lactose. Addition of yeast extract or proteolytically degraded whey proteins did not improve the recombinant protein yield. In contrast, addition of yeast extract to the well-balanced mineral salt medium decreased the product yield. Feeding with glycerol provided sufficient amount of easily assimilable carbon source during the induction period without preventing lactose intake and induction by lactose. High-cell-density fed-batch cultivations showed that product yields comparable to IPTG-induction can be achieved by feeding bacteria with a mixture of glycerol and concentrated whey permeate during the induction. Conclusion Whey and concentrated whey permeate can be applied as an alternative inducer in recombinant high-cell-density fed-batch fermentations. The yield of the recombinant product was comparable to fermentations induced by IPTG. In low-cell-density shake flask experiments the yield was higher with whey or whey permeate than with IPTG.

  8. Whey Protein Reduces Early Life Weight Gain in Mice Fed a High-Fat Diet

    Science.gov (United States)

    Tranberg, Britt; Hellgren, Lars I.; Lykkesfeldt, Jens; Sejrsen, Kristen; Jeamet, Aymeric; Rune, Ida; Ellekilde, Merete; Nielsen, Dennis S.; Hansen, Axel Kornerup

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (Pwhey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, Pwhey group (Pwhey compared to casein (Pwhey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey. PMID:23940754

  9. At same leucine intake, a whey/plant protein blend is not as effective as whey to initiate a transient post prandial muscle anabolic response during a catabolic state in mini pigs.

    Directory of Open Access Journals (Sweden)

    Aurélia Revel

    Full Text Available Muscle atrophy has been explained by an anabolic resistance following food intake and an increase of dietary protein intake is recommended. To be optimal, a dietary protein has to be effective not only to initiate but also to prolong a muscle anabolic response in a catabolic state. To our knowledge, whether or not a dairy or a dairy/plant protein blend fulfills these criterions is unknown in a muscle wasting situation.Our aim was, in a control and a catabolic state, to measure continuously muscle anabolism in term of intensity and duration in response to a meal containing casein (CAS, whey (WHEY or a whey/ plant protein blend (BLEND and to evaluate the best protein source to elicit the best post prandial anabolism according to the physio-pathological state.Adult male Yucatan mini pigs were infused with U-13C-Phenylalanine and fed either CAS, WHEY or BLEND. A catabolic state was induced by a glucocorticoid treatment for 8 days (DEX. Muscle protein synthesis, proteolysis and balance were measured with the hind limb arterio-venous differences technique. Repeated time variance analysis were used to assess significant differences.In a catabolic situation, whey proteins were able to initiate muscle anabolism which remained transient in contrast to the stimulated muscle protein accretion with WHEY, CAS or BLEND in healthy conditions. Despite the same leucine intake compared to WHEY, BLEND did not restore a positive protein balance in DEX animals.Even with WHEY, the duration of the anabolic response was not optimal and has to be improved in a catabolic state. The use of BLEND remained of lower efficiency even at same leucine intake than whey.

  10. Clinical Potential of Hyperbaric Pressure-Treated Whey Protein

    Science.gov (United States)

    Piccolomini, André F.; Kubow, Stan; Lands, Larry C.

    2015-01-01

    Whey protein (WP) from cow’s milk is a rich source of essential and branched chain amino acids. Whey protein isolates (WPI) has been demonstrated to support muscle accretion, antioxidant activity, and immune modulation. However, whey is not readily digestible due to its tight conformational structure. Treatment of WPI with hyperbaric pressure results in protein unfolding. This enhances protein digestion, and results in an altered spectrum of released peptides, and greater release of essential and branched chain amino acids. Pressurized whey protein isolates (pWPI), through a series of cell culture, animal models and clinical studies, have been demonstrated to enhance muscle accretion, reduce inflammation, improve immunity, and decrease fatigue. It is also conceivable that pWPI would be more accessible to digestive enzymes, which would allow for a more rapid proteolysis of the proteins and an increased or altered release of small bioactive peptides. The altered profile of peptides released from WP digestion could thus play a role in the modulation of the immune response and tissue glutathione (GSH) concentrations. The research to date presents potentially interesting applications for the development of new functional foods based on hyperbaric treatment of WPI to produce products with more potent nutritional and nutraceutical properties. PMID:27417773

  11. Casein addition to a whey-based formula has limited effects on gut function in preterm pigs

    DEFF Research Database (Denmark)

    Thymann, T.; Støy, Ann Cathrine Findal; Bering, S. B.

    2012-01-01

    Preterm infants are susceptible to necrotizing enterocolitis (NEC). Using preterm pigs, we determined whether a whey–casein-based formula would be superior to a formula based on whey protein alone. Twenty cesarean-derived preterm pigs (92% gestation) were given total parenteral nutrition for 36 h...... followed by 30 h of enteral feeding with whey [protein fraction of milk formula based on whey (WHEY); n = 11] or casein and/or whey [protein fraction of milk formula based on a combination of casein and whey (CASEIN); n = 9]-based formulas. Sugar absorptive function was investigated at 6 and 30 h after...... studied in gut contents. Severity of NEC lesions was similar between diet groups but galactose absorption was markedly higher in CASEIN than in WHEY (P

  12. Degradation of whey in an anaerobic fixed bed (AnFB) reactor

    OpenAIRE

    Handajani, Marisa

    2004-01-01

    An Anaerobic Fixed Bed (AnFB) reactor was run as an upflow anaerobic reactor with an arrangement of supporting material for growth of a biofilm. The supporting material was made from Liapor-clay-polyethylene sinter lamellas (Herding Co., Amberg). The AnFB reactor was used for treating high concentrations of whey-containing wastewater. Optimal operating conditions for whey treatment at a concentration of COD in the influent of around 50 g whey·l-1 were found for a hydraulic retention ...

  13. FERMENTATION ACTIVITY OF LACTOSE-FERMENTATION YEAST IN WHEY-MALT WORT

    Directory of Open Access Journals (Sweden)

    E. V. Greek

    2013-04-01

    Full Text Available The main parameters of fermentation of whey-malt wort with the use of different strains of lactose-fermentation yeast was investigated experimentally. According to the findings of investigation of fermentive activity for different types of lactose-fermentation microorganisms in whey-malt wort it was found that the most active spirituous fermentation for all parameters was in wort fermented by microorganisms Zygosaccharomyces lactis 868-K and Saccharomyces lactis 95. High capacity for utilization of malt carbohydrates represented by easily metabolized carbohydrates of malt extract was determined. Also organoleptic analysis of fermented whey drinks derived from the renewed mixtures of dry whey and fermented malt and yeast Zygosaccharomyces lactis 868-K and Saccharomyces lactis 95 was carried out. It was found that the drink fermented with yeast Zygosaccharomyces lactis 868-K had intense refreshing flavor of rye bread with fruit tones. Intensity growth of aromatization for complex of sample with microorganisms Saccharomyces lactis 95, indicating high organoleptic indexes of the drink was observed.

  14. Production of ethanol and biomass starting to present lactose in the milk whey

    International Nuclear Information System (INIS)

    Angeles-Ramirez, K.; Arana-cuenca, A.; Tellez-Jurado, A.

    2009-01-01

    Milk whey is a by-product of the milk industry, a highly polluting waste due to the quantity of COD and BOD that it contains. The contamination caused by milk whey is mostly due to its lactose content. The fermentation of milk whey to ethanol is a possible road to reduce the polluting effect. (Author)

  15. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P

  16. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota...

  17. Acne located on the trunk, whey protein supplementation: Is there any association?

    Directory of Open Access Journals (Sweden)

    Fatma Pelin Cengiz

    2017-03-01

    Full Text Available Whey protein is a source of protein that was isolated from milk. Whey proteins are composed of higher levels of essential amino acids. The role of diet in acne etiology has been investigated for several years. It was established that milk and milk products can trigger acneiform lesions, and recent evidence supports the role of whey protein supplements in acne. Herein, we report 6 healthy male adolescent patients developing acne located only to the trunk after the consumption of whey protein supplements for faster bodybuilding. This is the first observation which specified the location of acneiform lesions among bodybuilders. In our opinion, a trendy and common health problem is beginning among adolescents in the gyms.

  18. Acne located on the trunk, whey protein supplementation: Is there any association?

    Science.gov (United States)

    Cengiz, Fatma Pelin; Cevirgen Cemil, Bengu; Emiroglu, Nazan; Gulsel Bahali, Anil; Onsun, Nahide

    2017-01-01

    Whey protein is a source of protein that was isolated from milk. Whey proteins are composed of higher levels of essential amino acids. The role of diet in acne etiology has been investigated for several years. It was established that milk and milk products can trigger acneiform lesions, and recent evidence supports the role of whey protein supplements in acne. Herein, we report 6 healthy male adolescent patients developing acne located only to the trunk after the consumption of whey protein supplements for faster bodybuilding. This is the first observation which specified the location of acneiform lesions among bodybuilders. In our opinion, a trendy and common health problem is beginning among adolescents in the gyms. PMID:28326292

  19. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, S K; Vendelbo, M H

    2014-01-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD) or a carbohy......In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD...... or contraction mode effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training – irrespective of contraction mode....

  20. Citric acid production from whey with sugars and additives by ...

    African Journals Online (AJOL)

    Citric acid (CA) production by Aspergillus niger ATCC9642 from whey with different concentrations of sucrose, glucose, fructose, galactose riboflavin, tricalcium phosphate and methanol in surface culture process was studied. It was found that whey with 15% (w/v) sucrose with or without 1% methanol was the most ...

  1. Effect of whey fermented by Enterococcus faeciumin consortium with Veilonella parvulaon ruminal bacteria in vitro

    Directory of Open Access Journals (Sweden)

    Higor Fábio Carvalho Bezerra

    2014-05-01

    Full Text Available The objective of this research was to evaluate the effect of whey fermented by Enterococus faecium in consortium with Veilonella parvula in vitro on ruminal microorganisms in different substrates, with or without monensin. The first experiment was carried out in a completely randomized design, in a 6 × 3 factorial arrangement (six substrates × three whey levels with two replicates. In experiment two, a 2 × 3 × 4 factorial arrangement (with and without monensin, three foods and four levels of fermented whey was used, in a randomized design with four replicates, totaling 24 treatments. There was no interaction among the wheys and the substrates in the variable for pectin, starch, and carboxymethyl cellulose. There was a greater growth of amylolytic and pectinolytic microorganisms and a lower growth of proteolytic and cellulolytic microorganisms. A significant effect of optical density was found in the media without substrate and that containing trypticase and glucose due to the addition of fermented whey. There was interaction for the pH at 24 hours among whey, food and monensin. For ammonia at 24 hours there was effect for food, whey and monensin, and interaction among factors. For microbial protein at 24 hours, there was effect for food, whey, monensin and no interaction among sources of variation. The use of whey fermented by bacteria Enterococcus faeciumand Veilonella parvula improves microbial protein synthesis by ruminal bacteria in media containing different energy sources. The combination of fermented whey and monensin shows variable results in relation to microbial growth.

  2. Enzymatic hydrolysis of lactose of whey permeate

    Directory of Open Access Journals (Sweden)

    Karina Nascimento de Almeida

    2015-09-01

    Full Text Available The whey permeate is the residual of the concentration process of the whey proteins by ultrafiltration method. It contains important nutrients such as lactose, minerals and some proteins and lipids. It is without an ending industrial waste that causes serious damage to the environment. For its full use the lactose must be hydrolyzed to enable its consumption by intolerant people. The enzymatic hydrolysis by lactase (β-galactosidase of Kluyveromyces lactis yeast is a safe method that does not compromise the integrity of other nutrients, enabling further use of the permeate as a raw material. This study aimed to perform tests of enzymatic hydrolysis of lactose in whey permeate formulations in a concentration of 0.2%, 0.7% and 1% at 30, 60 and 90 minutes with pH 6.3 medium and 37 °C. The reactions were monitored by high performance liquid chromatography which showed that the enzyme concentration of 0.7% at time 30 minutes formulations became safe for consumption by lactose intolerant people, according to minimum levels established by law.

  3. PRODUCTION AND RECOVERY OF POLY-Β-HYDROXYBUTYRATE FROM WHEY DEGRADATION BY AZOTOBACTER

    Directory of Open Access Journals (Sweden)

    A. Khanafari , A. Akhavan Sepahei, M. Mogharab

    2006-07-01

    Full Text Available Three strains of Azotobacter chroococcum were studied to produce poly-β hydroxybutyrate as a inclusion body by whey degradation. Optimum degradation whey results were obtained when using whey broth as a fermentation medium without extra salt, temperature at 35 °C and pH 7 (P<0.05. Lambda max for whey broth medium was determined probably about 400 nm. The effect of different nitrogenous rich compounds (NH4NO3, Bactopeptone, Casein, Yeast extract, Meat extract, Protease peptone and Tryptone on whey degradation showed that incorporation of nitrogenous compounds into the medium did not increase whey degradation by Azotobacter chroococcum 1723 (P<0.05. But poly-β hydroxyl-butyrate production was increased in presence Meat extract up to 75% of the cell dry weight after 48h. The addition of nitrogenous sourced (except ammonium nitrate had a positive effect on poly-β hydroxyl-butyrate production as it peaked in the presence of Meat extract and 4.43 g/L was accumulated in comparison to 0.5g at diazotrophically growing cells. Increasing the O2 values resulted by shaking at 122 rpm in decreased poly-β hydroxyl-butyrate yield form 4.43 to 0.04 g/L. The results show that this medium supports the growth of strain 1735 and also that this waste could be utilized as a carbon and nitrogen source. Production of poly-β hydroxyl-butyrate by using whey as a medium looks promising, since the use of inexpensive feed-stocks for poly-β hydroxyl-butyrate is essential if bioplastics are to become competitive products.

  4. Whey Protein Improves Marathon-Induced Injury and Exercise Performance in Elite Track Runners.

    Science.gov (United States)

    Huang, Wen-Ching; Chang, Yung-Cheng; Chen, Yi-Ming; Hsu, Yi-Ju; Huang, Chi-Chang; Kan, Nai-Wen; Chen, Sheng-Shih

    2017-01-01

    Whey protein has been widely applied to athletes and the fitness field for muscle growth and performance improvement. Limited studies focused on the beneficial effects of whey on aerobic exercise according to biochemical assessments. In the current study, 12 elite male track runners were randomly assigned to whey and maltodextrin groups for 5 weeks' supplementation. The aim of this study was to investigate the effect of whey protein on physiological adaptions and exercise performance. During this period, three time points (pre-, post-, and end-test) were used to evaluate related biochemical parameters, body composition, and performance. The post-test was set 1 day after a marathon for injury status evaluation and the end-test was also assessed after 1-week recovery from endurance test. The results showed that the whey group exhibited significantly lower aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and creatine kinase indicators after the marathon (post-test), as well as at the end-test ( p <0.016). The endurance performance in twelve-minute walk/run was also significantly elevated ( p <0.012) possibly due to an increase in the muscle mass and amelioration of exercise injuries. In the current study, we demonstrated that whey protein can also be used for aerobic exercise for better physiological adaptation, in addition to resistance training. Whey protein could be also a potential nutrient supplement with a variety of benefits for amateur runners.

  5. Selection of lactose-fermenting yeast for ethanol production from whey. [Candida pseudotropicalis ATCC 8619

    Energy Technology Data Exchange (ETDEWEB)

    Izaguirre, M E; Castillo, F J

    1982-01-01

    Candida pseudotropicalis ATCC 8619 was selected from among 9 strains of lactose-fermenting yeasts on the basis of its ability to ferment concentrated whey. In 28% deproteinized whey solutions it produced an average of 12.4% EtOH. This yeast could be used in a process for whey treatment.

  6. Metabolomics investigation of whey intake

    DEFF Research Database (Denmark)

    Stanstrup, Jan

    syndrome are complex disorders and are not caused by a high-calorie diet and low exercise level alone. The specific nature of the nutrients, independent of their caloric value, also play a role. The question is which. In the quest to answer this question the qualitative intake of protein is of special...... and prevention of the metabolic syndrome related to obesity and diabetes. In this thesis the effects of whey intake on the human metabolome was investigated using a metabolomics approach. We demonstrated that intake of whey causes a decreased rate of gastric emptying compared to other protein sources....... Therefore this thesis will also present and discuss state-of-the-art tools for computer-assisted compound identification, including: annotation of adducts and fragments, determination of the molecular ion, in silico fragmentation, retention time mapping between analytical systems and de novo retention time...

  7. In-Depth Characterization of Sheep (Ovis aries) Milk Whey Proteome and Comparison with Cow (Bos taurus)

    Science.gov (United States)

    Ha, Minh; Sabherwal, Manya; Duncan, Elizabeth; Stevens, Stewart; Stockwell, Peter; McConnell, Michelle; Bekhit, Alaa El-Din; Carne, Alan

    2015-01-01

    An in-depth proteomic study of sheep milk whey is reported and compared to the data available in the literature for the cow whey proteome. A combinatorial peptide ligand library kit (ProteoMiner) was used to normalize protein abundance in the sheep whey proteome followed by an in-gel digest of a 1D-PAGE display and an in-solution digestion followed by OFFGEL isoelectric focusing fractionation. The peptide fractions obtained were then analyzed by LC-MS/MS. This enabled identification of 669 proteins in sheep whey that, to our knowledge, is the largest inventory of sheep whey proteins identified to date. A comprehensive list of cow whey proteins currently available in the literature (783 proteins from unique genes) was assembled and compared to the sheep whey proteome data obtained in this study (606 proteins from unique genes). This comparison revealed that while the 233 proteins shared by the two species were significantly enriched for immune and inflammatory responses in gene ontology analysis, proteins only found in sheep whey in this study were identified that take part in both cellular development and immune responses, whereas proteins only found in cow whey in this study were identified to be associated with metabolism and cellular growth. PMID:26447763

  8. In-Depth Characterization of Sheep (Ovis aries Milk Whey Proteome and Comparison with Cow (Bos taurus.

    Directory of Open Access Journals (Sweden)

    Minh Ha

    Full Text Available An in-depth proteomic study of sheep milk whey is reported and compared to the data available in the literature for the cow whey proteome. A combinatorial peptide ligand library kit (ProteoMiner was used to normalize protein abundance in the sheep whey proteome followed by an in-gel digest of a 1D-PAGE display and an in-solution digestion followed by OFFGEL isoelectric focusing fractionation. The peptide fractions obtained were then analyzed by LC-MS/MS. This enabled identification of 669 proteins in sheep whey that, to our knowledge, is the largest inventory of sheep whey proteins identified to date. A comprehensive list of cow whey proteins currently available in the literature (783 proteins from unique genes was assembled and compared to the sheep whey proteome data obtained in this study (606 proteins from unique genes. This comparison revealed that while the 233 proteins shared by the two species were significantly enriched for immune and inflammatory responses in gene ontology analysis, proteins only found in sheep whey in this study were identified that take part in both cellular development and immune responses, whereas proteins only found in cow whey in this study were identified to be associated with metabolism and cellular growth.

  9. Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus.

    Science.gov (United States)

    Amado, Isabel R; Vázquez, José A; Pastrana, Lorenzo; Teixeira, José A

    2016-05-01

    This study focuses on the optimisation of cheese whey formulated media for the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Culture media containing whey (W; 2.1g/L) or whey hydrolysate (WH; 2.4 g/L) gave the highest HA productions. Both W and WH produced high yields on protein consumed, suggesting cheese whey is a good nitrogen source for S. zooepidemicus production of HA. Polysaccharide concentrations of 4.0 g/L and 3.2g/L were produced in W and WH in a further scale-up to 5L bioreactors, confirming the suitability of the low-cost nitrogen source. Cheese whey culture media provided high molecular weight (>3000 kDa) HA products. This study revealed replacing the commercial peptone by the low-cost alternative could reduce HA production costs by up to a 70% compared to synthetic media. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Biochemical studies on gamma irradiated male rats fed on whey protein concentrate

    International Nuclear Information System (INIS)

    Mohamed, N.E; Anwar, M.M.; El-bostany, N.A.

    2010-01-01

    This study carried out to investigate the possible role of whey protein protein concentrate in ameliorating some biochemical disorders induced in gamma irradiated male rats. Forty eight male albino rats were divided into four equal groups: Group 1 fed on normal diet during experimental period. Group 2 where the diet contain 15 % whey protein concentrate instead of soybean protein . Group 3 rats were exposed to whole body gamma radiation with single dose of 5 Gy and fed on the normal diet. Group 4 rate exposed to 5 Gy then fed on diet contain 15 % whey protein concentrate, the rats were decapitated after two and four weeks post irradiation. Exposure to whole body irradiation caused significant elevation of serum ALT, AST, glucose, urea, creatinine and total triiodothyronine with significant decrease in total protein, albumin and thyroxin. Irradiated rats fed on whey protein concentrate revealed significant improvement of some biochemical parameters. It could be conclude that whey protein concentrate may be considered as a useful protein source for reducing radiation injury via metabolic pathway.

  11. BIOACTIVE PEPTIDES OF THE COW MILK WHEY PROTEINS (Bos taurus

    Directory of Open Access Journals (Sweden)

    A. V. Iukalo

    2013-10-01

    Full Text Available Data on the biological functions of milk whey proteins, which are implemented at the level of their proteolytic degradation products — bioactive peptides have been reviewed. The main functions of these proteins is to provide the amino acid nutrition of mammals in the early stages of development, as well as the transport of fatty acids, retinol, involved in the synthesis of lactose, ions of calcium and iron, immune protection, antimicrobial action, etc. However, in recent years, it has been found that milk proteins like casein are precursors of biologically active peptides. Аngiotensin — converting enzyme, opioid peptides which are opiate receptor agonists, anti–microbial peptides, peptides with immunomodulatory and hypocholesterolemic action, and peptides affecting motility have been found among the products of proteolytic degradation of ?-lactoglobulin, ?-laktoalbumin, lactoferrin and milk whey albumin. Also data on the possible participation of peptides from milk whey proteins in the implementation of the biological functions of both the assimilation of calcium, antioxidant effect, the regulation of appetite, anticarcinogenic are provided. The authors assume that the phenomenon of bioactive peptides formation could be considered as an additional function of natural food proteins, which gives advantages to the mammals and has a positive effect on their development in the postnatal period. Ways of bioactive peptides formation, their resistance to action of proteolytic enzymes, the ability to cross into the bloodstream and have biological effects have been also discussed. Up to date, only a few products with bioactive peptides from milk whey proteins are obtained. Further studies of their structure, mechanism of action, ways of formation and methods of isolation are required for their wider use. Formation of functional products based on bioactive peptides from milk whey proteins will allow efficient use of milk whey, which is often a

  12. Fermented whey as poultry feed additive to prevent fungal contamination.

    Science.gov (United States)

    Londero, Alejandra; León Peláez, María A; Diosma, Gabriela; De Antoni, Graciela L; Abraham, Analía G; Garrote, Graciela L

    2014-12-01

    Fungal contamination of poultry feed causes economic losses to industry and represents a potential risk to animal health. The aim of the present study was to analyze the effectiveness of whey fermented with kefir grains as additive to reduce fungal incidence, thus improving feed safety. Whey fermented for 24 h at 20 °C with kefir grains (100 g L(-1) ) reduced conidial germination of Aspergillus flavus, Aspergillus parasiticus, Aspergillus terreus, Aspergillus fumigatus, Penicillium crustosum, Trichoderma longibrachiatum and Rhizopus sp. Poultry feed supplemented with fermented whey (1 L kg(-1) ) was two to four times more resistant to fungal contamination than control feed depending on the fungal species. Additionally, it contained kefir microorganisms at levels of 1 × 10(8) colony-forming units (CFU) kg(-1) of lactic acid bacteria and 6 × 10(7) CFU kg(-1) of yeasts even after 30 days of storage. Fermented whey added to poultry feed acted as a biopreservative, improving its resistance to fungal contamination and increasing its shelf life. © 2014 Society of Chemical Industry.

  13. Lactose Hydrolysis in Milk and Dairy Whey Using Microbial β-Galactosidases

    Directory of Open Access Journals (Sweden)

    Michele Dutra Rosolen

    2015-01-01

    Full Text Available This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial β-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C and Kluyveromyces lactis (at temperatures of 10 and 37°C β-galactosidases, both in 3, 6, and 9 U/mL concentrations. In the temperature of 10°C, the K. lactis β-galactosidase enzyme is more efficient in the milk, cheese whey, and whey permeate lactose hydrolysis when compared to A. oryzae. However, in the enzyme reaction time and concentration conditions evaluated, 100% lactose hydrolysis was not reached using the K. lactis β-galactosidase. The total lactose hydrolysis in whey and permeate was obtained with the A. oryzae enzyme, when using its optimum temperature (55°C, at the end of a 12 h reaction, regardless of the enzyme concentration used. For the lactose present in milk, this result occurred in the concentrations of 6 and 9 U/mL, with the same time and temperature conditions. The studied parameters in the lactose enzymatic hydrolysis are critical for enabling the application of β-galactosidases in the food industry.

  14. Mesophilic anaerobic digestion of a mixture of cheese whey and dairy manure

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.V.; Liao, P.H.; Chiu, C.

    1988-01-01

    Mesophilic anaerobic digestion of a mixture of cheese whey and dairy manure was investigated using an anaerobic rotating biological contact reactor operated over a range of hydraulic retention time at various organic loading rates. Dairy manure provided nutrients and acted as a buffer to the cheese whey. Rates of production of methane from the mixture were between those of cheese whey and screened dairy manure and in agreement with calculated theoretical methane production rates. Methane production rate showed a linear relationship with the organic loading rate. The highest methane production rate was 3.74 liter methane litre/sup -1/ day/sup -1/. Reduction in the chemical oxygen demand ranged from 46.3% to 67.5%. Anaerobic digestion of such mixtures could be used as an initial waste treatment for cheese whey.

  15. Effects of Ultrasound Treatment on Physiochemical Properties and Antimicrobial Activities of Whey Protein-Totarol Nanoparticles.

    Science.gov (United States)

    Ma, Shuang; Shi, Ce; Wang, Cuina; Guo, Mingruo

    2017-10-01

    Totarol is a natural antimicrobial compound extracted from the heartwood of Podocarpus totara, a conifer native to New Zealand. The effects of whey protein-totarol nanoparticles treated with ultrasound on the physiochemical properties and the growth of Staphylococcus aureus were investigated. The particle size of whey protein-totarol nanoparticles was reduced by ultrasound treatment from 31.24 ± 5.31 to 24.20 ± 4.02 nm, and the size distribution was also narrowed by the treatment. Viscosity and modulus data indicated that the flow behaviors of whey protein-totarol nanoparticles seemed to be Newtonian and exerted a typical viscoelastic fluid at protein content of 15% (w/v). Rheological properties were more insensitive to ultrasonic time. Time-killing assays, agar diffusion tests, the cell membrane damage analysis, and microstructure were exploited to study the antibacterial properties of whey protein-totarol nanoparticles. The MIC of whey protein-totarol nanoparticles after ultrasound treatment decreased from 4 to 2 μg/mL compared with that without ultrasound treatment. Whey protein-totarol nanoparticles treated with ultrasound resulted in a significant (P whey protein-totarol nanoparticles were 12 and 36 mm for untreated and treated with ultrasound, respectively. The cell membrane damages and the microstructure changes also proved that whey protein-totarol nanoparticles treated with ultrasound had strong antibacterial activities against S. aureus and that the antibacterial effectiveness enhanced with the increasing of ultrasonic time. These findings suggested that whey protein-totarol nanoparticles treated with ultrasound were more effective against S. aureus than untreated nanoparticles.

  16. Effects of combinative surface modification on the stability and conductivity of the copper particles

    International Nuclear Information System (INIS)

    Zeng, Yike; Li, Tongtong; Fu, Ming; Jiang, Shenglin; Zhang, Guangzu

    2014-01-01

    Highlights: • A combinative method is used to improve the performance of the copper powder. • The method integrates passivation, silver-coating, and coupling agent treatment. • The stability of the copper powder has been improved after the modification. • The sheet resistance of the conductive film is reduced to 15 mΩ. -- Abstract: The specific goal of the present study is to evaluate the surface performance of the copper particles and get excellent copper powder by surface modification. This paper proposes a combinative modification method integrating passivation, silver-coated, and coupling agent. As a result, after 600 h at room temperature the copper powder has the stabilization improved and is well combined with organic matters, and the sheet resistance of the film fabricated by the copper conductive filler is reduced to 15 mΩ. The performance of the copper powder has been greatly enhanced by the combinative modification, and the cost of the copper conductive filler is decreased significantly by this method. The results indicate that the combinative surface modification method can be used for practical electronic application

  17. The functional and biological properties of whey proteins: prospects for the development of functional foods

    Directory of Open Access Journals (Sweden)

    H. J. T. KORHONEN

    2008-12-01

    Full Text Available Advances in processing technologies and the accumulation of scientific data on the functional and biological properties of whey components have contributed to the growing commercial valuation of cheese whey over the last decade. New membrane separation and chromatographic techniques have made it possible to fractionate and enrich various components of whey more efficiently than before. The specific properties of these components can now be examined in greater detail and new applications developed accordingly. The utilisation of cheese whey is evolving into a new industry producing a multitude of purified ingredients for numerous purposes. The most significant areas of R&D related to whey proteins include functional foods, the rheological properties of foodstuffs, and biopharmaceuticals.

  18. Functionalization of whey proteins by reactive supercritical fluid extrusion

    Directory of Open Access Journals (Sweden)

    Khanitta Ruttarattanamongkol

    2012-09-01

    Full Text Available Whey protein, a by-product from cheese-making, is often used in a variety of food formulations due to its unsurpassednutritional quality and inherent functional properties. However, the possibilities for the improvement and upgrading of wheyprotein utilization still need to be explored. Reactive supercritical fluid extrusion (SCFX is a novel technique that has beenrecently reported to successfully functionalize commercially available whey proteins into a product with enhanced functionalproperties. The specific goal of this review is to provide fundamental understanding of the reinforcement mechanism andprocessing of protein functionalization by reactive SCFX process. The superimposed extrusion variables and their interactionmechanism affect the physico-chemical properties of whey proteins. By understanding the structure, functional properties andprocessing relationships of such materials, the rational design criteria for novel functionalized proteins could be developedand effectively utilized in food systems.

  19. Interaction of milk whey protein with common phenolic acids

    Science.gov (United States)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  20. Skim Milk, Whey, and Casein Increase Body Weight and Whey and Casein Increase the Plasma C-Peptide Concentration in Overweight Adolescents12

    DEFF Research Database (Denmark)

    Arnberg, Karina; Mølgaard, Christian; Michaelsen, Kim Fleischer

    2012-01-01

    insulin, and insulin secretion estimated as the plasma C-peptide concentration in overweight adolescents. Overweight adolescents (n = 203) aged 12–15 y with a BMI of 25.4 ± 2.3 kg/m2 (mean ± SD) were randomized to 1 L/d of skim milk, whey, casein, or water for 12 wk. All milk drinks contained 35 g protein....... Outcomes were BMI-for-age Z-scores (BAZs), waist circumference, plasma insulin, homeostatic model assessment, and plasma C-peptide. We found no change in BAZ in the pretest control and water groups, whereas it was greater at 12 wk in the skim milk, whey, and casein groups compared with baseline...... and with the water and pretest control groups. The plasma C-peptide concentration increased from baseline to wk 12 in the whey and casein groups and increments were greater than in the pretest control (P

  1. Alcoholic fermentation of whey

    Energy Technology Data Exchange (ETDEWEB)

    Beach, A S; Holland, J W

    1958-09-10

    The lactose of whey and other milk products is rapidly fermented to ethanol by means of Candida pseudotropicalis strain XI. The fermentation is complete in about 12 hours and yields about 45% ethanol based on the weight of lactose. Conditions favoring the fermentation and inhibiting lactic acid production include pH 4.5, 30/sup 0/, and continuous aeration.

  2. Effect of whey protein on the In Vivo Release of Aldehydes.

    NARCIS (Netherlands)

    Weel, K.G.C.; Boelrijk, A.E.M.; Burger, J.J.; Claassen, N.E.; Gruppen, H.; Voragen, A.G.J.

    2003-01-01

    Retention of aldehydes by whey proteins in solutions buffered at a range of pH values was studied under static and dynamic headspace conditions and in vivo in exhaled air. Static headspace measurements showed a clear increase in retention in the presence of whey proteins for aldehydes with longer

  3. Kinetics of anaerobic digestion of labaneh whey in a batch reactor

    African Journals Online (AJOL)

    SAM

    2014-04-16

    Apr 16, 2014 ... kinetic constants were determined for labaneh whey and for diluted whey .... reactor has a pH and temperature control system. ... Variable power electric heater was used to heat the reactor. ..... by gas chromatography, Annual book of ASTM Standard, Vol. ... Thesis, The University of Jordan, Amman, Jordan.

  4. Effect of Incubation Time and Sucrose Addition on the Characteristics of Cheese Whey Yoghurt

    Science.gov (United States)

    Nurhartadi, E.; Utami, R.; Nursiwi, A.; Sari, A. M.; Widowati, E.; Sanjaya, A. P.; Esnadewi, E. A.

    2017-04-01

    The effect of incubation time and concentration of sucrose addition on the characteristics of cheese whey yogurt (lactic acid content, pH, total lactic acid bacteria, antioxidant activity, viscosity) and sensory characteristics (color, odor, flavor, consistency, and overalls) were investigated. The cheese whey yogurt fermentation process was carried out for 24h and 36h with the addition of sucrose 8, 10, and 12% (w/w) of total solid, respectively. The results showed that the lactic acid content, total lactic acid bacteria, antioxidant activity, and viscosity of cheese whey yogurt were affected by the incubation time and sucrose addition. The level of pH of yogurt which was incubated at 24h and 36h were relatively in the same levels, which were 4.51 up to 4.63. Due the sensory characteristic of cheese whey yogurt the panellists gave the high score for the cheese whey yogurt which was incubated at 24h and sucrose addition 12% (w/w) of total solid. The cheese whey yogurt has 0.41% lactic acid content; pH 4.51; 7.09 log total lactic acid bacteria cells / ml; 5.78% antioxidant activity; and 5.97 cP viscosity. The best sensory and physico-chemical characteristic of cheese whey yogurt was achieved by 24h incubation time and 12% concentration of sucrose addition.

  5. Comparative studies of two methods for miRNA isolation from milk whey.

    Science.gov (United States)

    Jin, Xiao-lu; Wei, Zi-hai; Liu, Lan; Liu, Hong-yun; Liu, Jian-xin

    2015-06-01

    MicroRNAs (miRNAs) from milk whey have been considered for their potential as noninvasive biomarkers for milk quality control and disease diagnosis. However, standard protocols for miRNA isolation and quantification from milk whey are not well established. The objective of this study was to compare two methods for the isolation of miRNAs from milk whey. These two methods were modified phenol-based technique (Trizol LS(®) followed by phenol precipitation, the TP method) and combined phenol and column-based approach (Trizol LS(®) followed by cleanup using the miRNeasy kit, the TM method). Yield and quality of RNA were rigorously measured using a NanoDrop ND-1000 spectrophotometer and then the distribution of RNA was precisely detected in a Bioanalyzer 2100 instrument by microchip gel electrophoresis. Several endogenous miRNAs (bta-miR-141, bta-miR-146a, bta-miR-148a, bta-miR-200c, bta-miR-362, and bta-miR-375) and an exogenous spike-in synthetic control miRNA (cel-miR-39) were quantified by real-time polymerase chain reaction (PCR) to examine the apparent recovery efficiency of milk whey miRNAs. Both methods could successfully isolate sufficient small RNA (whey, and their yields were quite similar. However, the quantification results show that the total miRNA recovery efficiency by the TM method is superior to that by the TP method. The TM method performed better than the TP for recovery of milk whey miRNA due to its consistency and good repeatability in endogenous and spike-in miRNA recovery. Additionally, quantitative recovery analysis of a spike-in miRNA may be more accurate to reflect the milk whey miRNA recovery efficiency than using traditional RNA quality analysis instruments (NanoDrop or Bioanalyzer 2100).

  6. Comparative studies of two methods for miRNA isolation from milk whey*

    Science.gov (United States)

    Jin, Xiao-lu; Wei, Zi-hai; Liu, Lan; Liu, Hong-yun; Liu, Jian-xin

    2015-01-01

    MicroRNAs (miRNAs) from milk whey have been considered for their potential as noninvasive biomarkers for milk quality control and disease diagnosis. However, standard protocols for miRNA isolation and quantification from milk whey are not well established. The objective of this study was to compare two methods for the isolation of miRNAs from milk whey. These two methods were modified phenol-based technique (Trizol LS® followed by phenol precipitation, the TP method) and combined phenol and column-based approach (Trizol LS® followed by cleanup using the miRNeasy kit, the TM method). Yield and quality of RNA were rigorously measured using a NanoDrop ND-1000 spectrophotometer and then the distribution of RNA was precisely detected in a Bioanalyzer 2100 instrument by microchip gel electrophoresis. Several endogenous miRNAs (bta-miR-141, bta-miR-146a, bta-miR-148a, bta-miR-200c, bta-miR-362, and bta-miR-375) and an exogenous spike-in synthetic control miRNA (cel-miR-39) were quantified by real-time polymerase chain reaction (PCR) to examine the apparent recovery efficiency of milk whey miRNAs. Both methods could successfully isolate sufficient small RNA (whey, and their yields were quite similar. However, the quantification results show that the total miRNA recovery efficiency by the TM method is superior to that by the TP method. The TM method performed better than the TP for recovery of milk whey miRNA due to its consistency and good repeatability in endogenous and spike-in miRNA recovery. Additionally, quantitative recovery analysis of a spike-in miRNA may be more accurate to reflect the milk whey miRNA recovery efficiency than using traditional RNA quality analysis instruments (NanoDrop or Bioanalyzer 2100). PMID:26055915

  7. KARAKTERISTIK MINUMAN WHEY YANG DIFERMENTASIKAN DENGAN BAKTERI ASAM LAKTAT INDIGENUS ASAL DANGKE

    Directory of Open Access Journals (Sweden)

    Setiawan Putra Syah 1,2*

    2017-12-01

    Full Text Available Whey from the dangke processing center in Enrekang district, South Sulawesi, is the main by-product which can contribute to environmental pollution. On the other hand, the nutritional content of whey is highly potential to be developed into high value food products and provide functional benefits. Whey processing into a fermented drink is one of the easy and inexpensive alternatives with good prospect to be developed. The aim of this study was to investigate the microbial, physical, chemical and sensory characteristics of the whey drink fermented (FWD by probiotic lactic acid bacteria (LAB isolated from dangke. The LAB strain used were Lactobacillus fermentum strains B323K, C113L, A323L, C222L, and B111K. The results showed that the LAB strains grew well the whey medium and the viability met the standard of dairy fermented product. FWD have similar pH, % titratable acidity, and aW characteristics in all fermentation treatments with LAB strains from dangke, however to adjust the pH and acidity level of FWD to the yoghurt standard (pH 4.4 and %TAT 0.9–1.2%, the FWD fermentation must be stopped at the 20th hour. Changes in the level of moisture, ash, and carbohydrate contents of FWD occurred after the fermentation. The sensory quality tests showed that the FWD fermented by LAB strains from dangke was preferred by the panelists than the unfermented one (Whey + 8% sucrose.

  8. Whey - raw material for the production of baker starter-cultures

    Directory of Open Access Journals (Sweden)

    Jasna Mrvčić

    2008-05-01

    Full Text Available The possibility of production Lactic acid bacteria (LAB, which are suitable for breadmaking on whey was researched and compared to the results achieved in modified MRS medium. The growth and fermentation activities of Leuconostoc meseteroides L-3, Lactobacillus brevis L-62 and Lactobacillus plantarum L-73 were examined by monitoring lactic and acetic acid production in fermentation broth and in sourdough. Presented results show that deproteinized whey is suitable for LAB production. The best biomass yield (1,7 g/L and lactic acid production (9,15 mg/mL was achieved with L. plantarum L-73. Better flavour, elasticity and shelf life of bread made with whey-based starters compared to the classical yeast-monoculture based bread were determined by sensory analysis (DLG method.

  9. Making the most of whey

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D L

    1979-01-01

    The products available from cheese whey processing are surveyed and the preparation of protein products is particularly emphasized, using ultrafiltration. The permeate from this process is used for the production of a variety of lactose syrup products with wide uses in the food industry.

  10. Photochemical modification of diamond powder with sulfur functionalities and its behavior on gold surfaces

    International Nuclear Information System (INIS)

    Nakamura, T; Ohana, T; Hagiwara, Y; Tsubota, T

    2010-01-01

    A useful method of modifying the surface of diamond powders with sulfur-containing functionalities was developed by the use of the photolysis of elemental sulfur. The introduction of sulfur-containing functional groups on the diamond surfaces was confirmed by means of XPS, DRIFT and mass spectroscopy analyses. The sulfur-modified diamond powders exhibited surface-attachment behavior to gold surfaces through the sulfur-containing linkage. In brief, exposure of the modified diamond powders to gold colloids resulted in gold nanoparticles being attached to the diamond powders. Treatment of the modified diamond powders with gold thin film on Si substrate afforded alignment of surface-attached diamond powders through sulfur linkages by self-assembly.

  11. Comparison of the aggregation behavior of soy and bovine whey protein hydrolysates

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Alting, A.C.; Gruppen, H.

    2007-01-01

    Abstract Soy-derived proteins (soy protein isolate, glycinin, and ß-conglycinin) and bovine whey-derived proteins (whey protein isolate, ¿-lactalbumin, ß-lactoglobulin) were hydrolyzed using subtilisin Carlsberg, chymotrypsin, trypsin, bromelain, and papain. The (in)solubility of the hydrolysates

  12. Ca2+-Induced Cold Set Gelation of Whey Protein Isolate Fibrils

    NARCIS (Netherlands)

    Bolder, S.G.; Hendrickx, H.; Sagis, L.M.C.; Linden, van der E.

    2006-01-01

    In this paper we describe the rheological behaviour of Ca2+-induced cold-set gels of whey protein mixtures. Coldset gels are important applications for products with a low thermal stability. In previous work [1], we determined the state diagram for whey protein mixtures that were heated for 10 h at

  13. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200 ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 2.357, year: 2015

  14. Achocolatados: análise química Chocolate drink powders: chemical analysis

    Directory of Open Access Journals (Sweden)

    Mércia de Freitas Eduardo

    2004-09-01

    Full Text Available Neste trabalho avaliaram-se propriedades químicas de achocolatados do mercado brasileiro, sendo estas os teores de lipídios, proteínas, cinzas, umidade, pH, teobromina e alcalóides totais. Estas propriedades são influenciadas principalmente pelo conteúdo de cacau em pó e pelo conteúdo dos ingredientes lácteos, como o leite em pó e o soro de leite em pó. Foi feito um comparativo entre as marcas de achocolatados, dando ênfase às grandes diferenças, quando existentes, entre os achocolatados dietéticos (para dietas de restrição de sacarose, frutose e glicose (dextrose e "light" (com redução de açúcares e os tradicionais.Some chemical properties of chocolate drink powders from Brazilian market, such as lipid, protein, ashes, moisture, pH, theobromine and total alkaloids content of the samples were evaluated. These properties are mainly influenced by cocoa powder content and by dairy products, such as milk powder and whey. A comparison among the brands, emphasizing their strong differences, when existing, among diet (without sugars and light (low sugar and the standard brands was made.

  15. The effect of microfiltration on color, flavor, and functionality of 80% whey protein concentrate.

    Science.gov (United States)

    Qiu, Y; Smith, T J; Foegeding, E A; Drake, M A

    2015-09-01

    The residual annatto colorant in fluid Cheddar cheese whey is bleached to provide a neutral-colored final product. Currently, hydrogen peroxide (HP) and benzoyl peroxide are used for bleaching liquid whey. However, previous studies have shown that chemical bleaching causes off-flavor formation, mainly due to lipid oxidation and protein degradation. The objective of this study was to evaluate the efficacy of microfiltration (MF) on norbixin removal and to compare flavor and functionality of 80% whey protein concentrate (WPC80) from MF whey to WPC80 from whey bleached with HP or lactoperoxidase (LP). Cheddar cheese whey was manufactured from colored, pasteurized milk. The fluid whey was pasteurized and fat separated. Liquid whey was subjected to 4 different treatments: control (no bleaching; 50°C, 1 h), HP (250 mg of HP/kg; 50°C, 1 h), and LP (20 mg of HP/kg; 50°C, 1 h), or MF (microfiltration; 50°C, 1 h). The treated whey was then ultrafiltered, diafiltered, and spray-dried to 80% concentrate. The entire experiment was replicated 3 times. Proximate analyses, color, functionality, descriptive sensory and instrumental volatile analysis were conducted on WPC80. The MF and HP- and LP-bleached WPC80 displayed a 39.5, 40.9, and 92.8% norbixin decrease, respectively. The HP and LP WPC80 had higher cardboard flavors and distinct cabbage flavor compared with the unbleached and MF WPC80. Volatile compound results were consistent with sensory results. The HP and LP WPC80 were higher in lipid oxidation compounds (especially heptanal, hexanal, pentanal, 1-hexen-3-one, 2-pentylfuran, and octanal) compared with unbleached and MF WPC80. All WPC80 had >85% solubility across the pH range of 3 to 7. The microstructure of MF gels determined by confocal laser scanning showed an increased protein particle size in the gel network. MF WPC80 also had larger storage modulus values, indicating higher gel firmness. Based on bleaching efficacy comparable to chemical bleaching with HP

  16. Effect of Whey Beverage Fortified with Vitamin E on Quality of Life in Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    zahra sohrabi

    2017-06-01

    Full Text Available Background: Whey protein can improve quality of life and vitamin E can reduce oxidative stress. Due to the reduced quality of life in hemodialysis patients, this study was conducted to evaluate the effect of whey beverage fortified with vitamin E on quality of life in hemodialysis patients. Methods: Ninety two 17 to 65 years old patients who were on hemodialysis were randomly assigned to four groups of (i 1 receiving whey beverage fortified with vitamin E, (ii 2 receiving whey beverage, (iii 3 receiving vitamin E, and (iv 4 as the control group receiving no intervention. SF- 12 questionnaire was used for assessing quality of life in the participants. Results: Bodily pain score improved significantly in group 3 while, a significant decline was seen for bodily pain in control group. An improvement was seen in groups 1 and 2. Physical health showed a significant improvement in group 1. Considering social functioning scores, improvement in whey beverage and vitamin E groups was seen. An improvement of quality of life in whey beverage fortified with vitamin E was noticed. Conclusion: Whey protein and vitamin E were shown to reduce oxidative stress and their effect on neurotransmitters in brain such as serotonin and dopamine leads to improvement in quality of life in hemodialysis patients. Doing longer studies with questionnaires such as SF-36, may help precise investigation of whey protein and vitamin E effects on quality of life of hemodialysis patients.

  17. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

    Science.gov (United States)

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  18. Does whey protein supplementation affect blood pressure in hypoalbuminemic peritoneal dialysis patients?

    Directory of Open Access Journals (Sweden)

    Hassan K

    2017-08-01

    Full Text Available Kamal Hassan,1,2 Fadi Hassan3 1Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 2Department of Nephrology and Hypertension, Peritoneal Dialysis Unit, 3Department of Internal Medicine E, Galilee Medical Center, Nahariya, Israel Objective: Hypertension and hypoalbuminemia are common risk factors for cardiovascular complications in peritoneal dialysis (PD patients. Data are limited regarding the effects of whey protein consumption on blood pressure in this population. The aim of the present study was to examine if whey protein supplementation for 12 weeks to hypoalbuminemic PD patients affects their blood pressure.Patients and methods: This prospective randomized study included 36 stable PD patients with serum albumin levels <3.8 g/dL. During 12 weeks, 18 patients were instructed to consume 1.2 g/kg/day of protein and an additional whey protein supplement at a dose of 25% of the instructed daily protein (whey protein group. Eighteen patients were instructed to consume protein in the amount of 1.2 g/kg/day and an additional 25%, without whey protein supplementation (control group. Results: Compared to the control group, in the whey protein group, serum albumin levels, oncotic pressure, and dialysate ultrafiltration significantly increased (3.55±0.14 to 4.08±0.15 g/dL, P<0.001; 21.81±2.03 to 24.06±1.54 mmHg, P<0.001; 927.8±120.3 to 1,125.0±125.1 mL/day, P<0.001; respectively and were significantly higher after 12 weeks (4.08±0.15 vs 3.41±0.49 g/dL, P<0.001; 24.06±1.54 vs 22.71±1.77 mmHg, P=0.010; 1,125.0±125.1 vs 930.6±352.8 mL/day, P=0.017; respectively in the whey protein group compared to the control group. Fluid overload, the extracellular to intracellular ratio and mean arterial pressure (MAP significantly decreased (2.46±1.08 to 1.52±0.33, P<0.001; 1.080±0.142 to 0.954±0.124, P<0.001; 102.6±3.80 to 99.83±3.85, P=0.018; respectively and were significantly lower in the whey protein group after 12 weeks (1.52±0

  19. Application of infrared portable sensor technology for predicting perceived astringency of acidic whey protein beverages.

    Science.gov (United States)

    Wang, Ting; Tan, Siow-Ying; Mutilangi, William; Plans, Marcal; Rodriguez-Saona, Luis

    2016-12-01

    Formulating whey protein beverages at acidic pH provides better clarity but the beverages typically develop an unpleasant and astringent flavor. Our aim was to evaluate the application of infrared spectroscopy and chemometrics in predicting astringency of acidic whey protein beverages. Whey protein isolate (WPI), whey protein concentrate (WPC), and whey protein hydrolysate (WPH) from different manufacturers were used to formulate beverages at pH ranging from 2.2 to 3.9. Trained panelists using the spectrum method of descriptive analysis tested the beverages providing astringency scores. A portable Fourier transform infrared spectroscopy attenuated total reflectance spectrometer was used for spectra collection that was analyzed by multivariate regression analysis (partial least squares regression) to build calibration models with the sensory astringency scores. Beverage astringency scores fluctuated from 1.9 to 5.2 units and were explained by pH, protein type (WPC, WPI, or WPH), source (manufacturer), and their interactions, revealing the complexity of astringency development in acidic whey protein beverages. The WPC and WPH beverages showed an increase in astringency as the pH of the solution was lowered, but no relationship was found for WPI beverages. The partial least squares regression analysis showed strong relationship between the reference astringency scores and the infrared predicted values (correlation coefficient >0.94), giving standard error of cross-validation ranging from 0.08 to 0.12 units, depending on whey protein type. Major absorption bands explaining astringency scores were associated with carboxylic groups and amide regions of proteins. The portable infrared technique allowed rapid prediction of astringency of acidic whey protein beverages, providing the industry a novel tool for monitoring sensory characteristics of whey-containing beverages. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Rapid Screening of Bovine Milk Oligosaccharides in a Whey Permeate Product and Domestic Animal Milks by Accurate Mass Database and Tandem Mass Spectral Library

    Science.gov (United States)

    Lee, Hyeyoung; Cuthbertson, Daniel J.; Otter, Don E.; Barile, Daniela

    2018-01-01

    A bovine milk oligosaccharide (BMO) library, prepared from cow colostrum, with 34 structures was generated and used to rapidly screen oligosaccharides in domestic animal milks and a whey permeate powder. The novel library was entered into a custom Personal Compound Database and Library (PCDL) and included accurate mass, retention time, and tandem mass spectra. Oligosaccharides in minute-sized samples were separated using nanoliquid chromatography (nanoLC) coupled to a high resolution and sensitive quadrupole-Time of Flight (Q-ToF) MS system. Using the PCDL, 18 oligosaccharides were found in a BMO-enriched product obtained from whey permeate processing. The usefulness of the analytical system and BMO library was further validated using milks from domestic sheep and buffaloes. Through BMO PCDL searching, 15 and 13 oligosaccharides in the BMO library were assigned in sheep and buffalo milks, respectively, thus demonstrating significant overlap between oligosaccharides in bovine (cow and buffalo) and ovine (sheep) milks. This method was shown to be an efficient, reliable, and rapid tool to identify oligosaccharide structures using automated spectral matching. PMID:27428379

  1. Microparticulated whey proteins for improving dairy product texture

    DEFF Research Database (Denmark)

    Ipsen, Richard

    2017-01-01

    Use of microparticulated whey protein (MWP) was patented in 1988; since then much research has been conducted on use of MWP. This review provides an overview of the use and functionality of MWP in dairy applications and discusses how MWP interacts with other components in dairy matrices. For ferm......Use of microparticulated whey protein (MWP) was patented in 1988; since then much research has been conducted on use of MWP. This review provides an overview of the use and functionality of MWP in dairy applications and discusses how MWP interacts with other components in dairy matrices...

  2. Surface design of powder by precise modification; Kotai hyomen no seimitsuna kaishitsu seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Chikazawa, Masatoshi

    1999-01-01

    The progress of the recent technology is it in high performance, the one manufactured by development of the high function material. It is skillful, and the nature of this effective material is greatly influenced by the various materialities of the raw material powder and a function again. Therefore, the moment it diversifies all the more from now on, a demand for the raw material powder is thought to become more precise control than the thing of the materiality of the powder and the function. Precise quality function technology on the surface of the powder which should make the materiality of the purpose and a functional expression possible is very important to meet such a requirement. Quality silica powder is used as the sample, and you must investigate about the micro-mechanism of the water control by effective based quality of surface from such a position. (NEDO)

  3. Quantitative proteomic analysis of whey proteins in the colostrum and mature milk of yak (Bos grunniens).

    Science.gov (United States)

    Yang, Yongxin; Zhao, Xiaowei; Yu, Shumin; Cao, Suizhong

    2015-02-01

    Yak (Bos grunniens) is an important natural resource in mountainous regions. To date, few studies have addressed the differences in the protein profiles of yak colostrum and milk. We used quantitative proteomics to compare the protein profiles of whey from yak colostrum and milk. Milk samples were collected from 21 yaks after calving (1 and 28 d). Whey protein profiles were generated through isobaric tag for relative and absolute quantification (iTRAQ)-labelled proteomics. We identified 183 proteins in milk whey; of these, the expression levels of 86 proteins differed significantly between the whey from colostrum and milk. Haemoglobin expression showed the greatest change; its levels were significantly higher in the whey from colostrum than in mature milk whey. Functional analysis revealed that many of the differentially expressed proteins were associated with biological regulation and response to stimuli. Further, eight differentially expressed proteins involved in the complement and coagulation cascade pathway were enriched in milk whey. These findings add to the general understanding of the protein composition of yak milk, suggest potential functions of the differentially expressed proteins, and provide novel information on the role of colostral components in calf survival. © 2014 Society of Chemical Industry.

  4. Complete utilization of whey for alcohol and methane production

    Energy Technology Data Exchange (ETDEWEB)

    Reesen, L; Strube, R

    1978-01-01

    The quality of the rectified alcohol obtained by 2-stage fermentation of whey permeate with Kluyveromyces fragilis followed by distillation was similar to that of rectified alcohol from molasses, though composition in terms of fusel oils, aldehydes, and diacetyls was varied. A contact process of anaerobic biological treatment reduced the COD of the effluent from 7000 to 350 and 1000 mg/L in laboratory and full-scale plant experiments respectively. The gas drawn off from this process contained 63% CH/sub 4/ and was almost odorless because of the low S content in the whey permeate; it had an energy value of 1.8 kg fuel oil/m/sup 3/ permeate and was able to replace 17 to 20% of the fuel oil used at the plant. The alcohol yield was 80% of the theoretical yield, and corresponded to the use of 42 L of whey permeate containing 4.4% lactose for production of 1 L of 100% alcohol and the total energy gain was 30%.

  5. Effects of heat on physicochemical properties of whey protein-stabilised emulsions

    NARCIS (Netherlands)

    Sliwinski, E.L.; Zoet, F.D.; Boekel, van M.A.J.S.; Wouters, J.T.M.; Roubos-van den Hil, P.J.

    2003-01-01

    The effect of heating has been studied for whey protein-stabilised oil-in-water emulsions (25.0% (w/w) soybean oil, 3.0% (w/w) whey protein isolate, pH 7.0). These emulsions were heated between 55 and 95 degreesC as a function of time and the effect on particle size distribution, adsorbed protein

  6. Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation

    NARCIS (Netherlands)

    Bolder, S.G.; Vasbinder, A.; Sagis, L.M.C.; Linden, van der E.

    2007-01-01

    Fibril formation of individual pure whey proteins and whey protein isolate (WPI) was studied. The heat-induced conversion of WPI monomers into fibrils at pH 2 and low ionic strength increased with heating time and protein concentration. Previous studies, using a precipitation method, size-exclusion

  7. The Young's Modulus, Fracture Stress, and Fracture Strain of Gellan Hydrogels Filled with Whey Protein Microparticles.

    Science.gov (United States)

    Lam, Cherry Wing Yu; Ikeda, Shinya

    2017-05-01

    Texture modifying abilities of whey protein microparticles are expected to be dependent on pH during heat-induced aggregation of whey protein in the microparticulation process. Therefore, whey protein microparticles were prepared at either pH 5.5 or 6.8 and their effects on small and large deformation properties of gellan gels containing whey protein microparticles as fillers were investigated. The majority of whey protein microparticles had diameters around 2 μm. Atomic force microscopy images showed that whey protein microparticles prepared at pH 6.8 partially collapsed and flatted by air-drying, while those prepared at pH 5.5 did not. The Young's modulus of filled gels adjusted to pH 5.5 decreased by the addition of whey protein microparticles, while those of filled gels adjusted to pH 6.8 increased with increasing volume fraction of filler particles. These results suggest that filler particles were weakly bonded to gel matrices at pH 5.5 but strongly at pH 6.8. Whey protein microparticles prepared at pH 5.5 showed more enhanced increases in the Young's modulus than those prepared at pH 6.8 at volume fractions between 0.2 and 0.4, indicating that microparticles prepared at pH 5.5 were mechanically stronger. The fracture stress of filled gels showed trends somewhat similar to those of the Young's modulus, while their fracture strains decreased by the addition of whey protein microparticles in all examined conditions, indicating that the primary effect of these filler particles was to enhance the brittleness of filled gels. © 2017 Institute of Food Technologists®.

  8. Consumer perception of astringency in clear acidic whey protein beverages.

    Science.gov (United States)

    Childs, Jessica L; Drake, MaryAnne

    2010-01-01

    Acidic whey protein beverages are a growing component of the functional food and beverage market. These beverages are also astringent, but astringency is an expected and desirable attribute of many beverages (red wine, tea, coffee) and may not necessarily be a negative attribute of acidic whey protein beverages. The goal of this study was to define the consumer perception of astringency in clear acidic whey protein beverages. Six focus groups (n=49) were held to gain understanding of consumer knowledge of astringency. Consumers were presented with beverages and asked to map them based on astringent mouthfeel and liking. Orthonasal thresholds for whey protein isolate (WPI) in water and flavored model beverages were determined using a 7-series ascending forced choice method. Mouthfeel/basic taste thresholds were determined for WPI in water. Acceptance tests on model beverages were conducted using consumers (n=120) with and without wearing nose clips. Consumers in focus groups were able to identify astringency in beverages. Astringency intensity was not directly related to dislike. The orthonasal threshold for WPI in water was lower (P astringent mouthfeel and that both flavor and astringency should be the focus of ongoing studies to improve the palatability of these products. © 2010 Institute of Food Technologists®

  9. Citric acid production from whey by fermentation using Aspergillus spp.

    Directory of Open Access Journals (Sweden)

    Óscar Julián Sánchez Toro

    2004-01-01

    Full Text Available Whey has become the main dairy-industry waste product, despite continuous efforts aimed at finding a way to use it. The aim of this research was to investigate citric acid production by submerged fermentation using Aspergillus genus fungi, using whey as substrate to take economical advantage of it and to reduce the environmental impact caused by discharging this by-product into nearby streams. The following three strains were used: A. carbonarius NRRL 368, A. carbonarius NRRL 67 and A. niger NRRL 3. The best adaptation medium for inoculum propagation was selected. Proposed experimental design for evaluating citric acid biosynthesis from whey modified through different treatments showed that the two A. carbonarius strains did not present significant differences in acid production whereas A. niger NRRL 3 reached higher concentration when evaporated, deproteinised and p-galactosidase lactose-hydrolysed whey was used. However, A. carbonarius gave higher average citric acid titres than those found for A. niger. This suggests the need for carrying out further research on it as a potential producing strain. Cell growth, substrate consumption and acid production kinetics in a 3-L stirred-tank bioreactor with aeration were developed in the case of A. niger; kinetics were simulated through non-structured mathematical models. Key words: Aspergilluscarbonarius, Aspergillus niger, bioreactor, simulation, p-galactosidase.

  10. Use of immobilised biocatalysts in the processing of cheese whey.

    Science.gov (United States)

    Kosseva, Maria R; Panesar, Parmjit S; Kaur, Gurpreet; Kennedy, John F

    2009-12-01

    Food processing industry operations need to comply with increasingly more stringent environmental regulations related to the disposal or utilisation of by-products and wastes. These include growing restrictions on land spraying with agro-industrial wastes, and on disposal within landfill operations, and the requirements to produce end products that are stabilised and hygienic. Much of the material generated as wastes by the dairy processing industries contains components that could be utilised as substrates and nutrients in a variety of microbial/enzymatic processes, to give rise to added-value products. A good example of a waste that has received considerable attention as a source of added-value products is cheese whey. The carbohydrate reservoir of lactose (4-5%) in whey and the presence of other essential nutrients make it a good natural medium for the growth of microorganisms and a potential substrate for bioprocessing through microbial fermentation. Immobilised cell and enzyme technology has also been applied to whey bioconversion processes to improve the economics of such processes. This review focuses upon the elaboration of a range of immobilisation techniques that have been applied to produce valuable whey-based products. A comprehensive literature survey is also provided to illustrate numerous immobilisation procedures with particular emphasis upon lactose hydrolysis, and ethanol and lactic acid production using immobilised biocatalysts.

  11. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    Science.gov (United States)

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  12. Pasting and extrusion properties of mixed carbohydrates and whey protein isolate matrices

    Science.gov (United States)

    Mixed systems of whey protein isolate (WPI) or texturized WPI (tWPI) and different starches may form weak or strong gel pastes or rigid matrices depending on interactions. The paste viscoelasticity of starches from amioca, barley, corn starch, Hylon VII, plantain, and pea starch, mixed with whey pro...

  13. Radiotracer study of phosphate exchange between whey and casein micelles in cow's milk

    International Nuclear Information System (INIS)

    Kolar, Z.I.; Verburg, T.G.; Dijk, H.J.M. van

    1998-01-01

    Radiotracer method has been applied to study exchange of calcium ions between the whey calcium salts and micellar calcium phosphate (MCP). The present paper deals with a similar study pertaining to phosphate ions. 32 P-labelled Na 2 HPO 4 was used as the radiotracer for inorganic phosphates of milk. After addition of the radiotracer to skimmed-milk, samples were taken regularly for 700 hours. In the samples casein micelles were separated from whey by ultracentrifugation and finally the radiotracer quantity i.e. 32 P-concentration in the whey samples was measured using a Liquid Scintillation Counter. Compartmental analysis and modelling were used to evaluate the thus obtained time curves for radiotracer quantity in whey. This analysis revealed the presence of three phosphate compartments i.e. exchangeable phosphate entities; one being the whey phosphate. The other two are associated with the exchangeable phosphates of MCP. The mean residence times of phosphate in the latter two compartment differ considerably pointing at two distinctly different embeddings of phosphate groups in the structure of the micellar calcium phosphate of the cow's milk casein. The obtained results are in fair agreement with the mentioned model of MCP

  14. Surface modification of silicon carbide with silane coupling agent and hexadecyl iodiele

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Xujing, E-mail: shangxujing@tju.edu.cn; Zhu, Yumei, E-mail: zymtju@163.com; Li, Zhihong, E-mail: lzhtju@163.com

    2017-02-01

    Highlights: • A novel universal method was performed to enhance hydrophobicity of SiC powder. • The modification effects of KH550 and KH590 were compared and the optimum reaction parameters were established. • Hexadecyl iodiele was successfully grafted on the surface of SiC-KH590 powder. • Surface changes on SiC powder before and after modification were analyzed via FTIR, XPS, SEM. • The related reaction mechanisms were discussed. - Abstract: In this paper, two kinds of silane coupling agents, namely 3-aminopropyl triethoxysilane (KH550) and 3-mercaptopropyl trimethoxysilane (KH590), were adopted as preliminary modifiers to improve the hydrophobic surface properties of silicon carbide (SiC) powder for the first step. The factors that influence the modification effects were investigated by measuring the contact angle. The results showed that KH590 has a better effect than KH550 for the hydrophobic modification of SiC, and the contact angle improved most after SiC powder was reacted with 0.3 g KH590 at 75 °C in aqueous/alcohol solution for 4 h. On account of further enhancement of hydrophobicity, the study was focused on utilizing nucleophilic substitution between KH590 and hexadecyl iodiele to extend the length of alkyl chain. Compared with using KH590 alone, SiC powder modified by KH590 and hexadecyl iodiele showed better water resistance with an increase of contact angle from 106.8° to 127.5°. The Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectra (XPS) as well as X-ray diffraction (XRD) analysis results showed that KH550/KH590 and hexadecyl iodiele can be covalently bonded to the surface of SiC powder without altering its crystal configuration. This methodology may provide a new way of the modification of inorganic materials in further.

  15. MODIFICATION OF SURFACE KONDENSITSIONNYH AEROSOLS WELDING AND METALLURGICHESKIH PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    A. A. Ennan

    2016-04-01

    Full Text Available Chemical modification of surface kondensitsionnyh aerosols (KA which formation when heat treatment metals (process of weld, foundry processes with application chlorosilanes are suggested. Adsorbtion vapor of water on modification powders KA decreases and changes in varies from modifier and conditions modification are setted.

  16. Proteomics in quality control: Whey protein-based supplements.

    Science.gov (United States)

    Garrido, Bruno Carius; Souza, Gustavo H M F; Lourenço, Daniela C; Fasciotti, Maíra

    2016-09-16

    The growing consumption of nutritional supplements might represent a problem, given the concern about the quality of these supplements. One of the most used supplements is whey protein (WP); because of its popularity, it has been a target of adulteration with substitute products, such as cheaper proteins with lower biological value. To investigate this type of adulteration, this study used shotgun proteomics analyses by MS(E) (multiplexed, low- and high-collision energy, data-independent acquisition) of WP-based supplements. Seventeen WP-based supplement samples were evaluated. Chicken, maize, rice, potato, soybean, and wheat proteins were considered as probable sources of bovine whey adulteration. Collectively, 523 proteins were identified across all 16 samples and replicates, with 94% of peptides inside a normal distribution within 10ppm of maximum error. In 10 of the 16 samples analyzed, only proteins from bovine whey could be detected, while in the other samples several other protein sources were detected in high concentrations, especially soybean, wheat, and rice. These results point out a probable adulteration and/or sample contamination during manufacturing that could only be detected using this proteomic approach. The present work shows how shotgun proteomics can be used to provide reliable answers in quality control matters, especially focusing on Whey Protein nutritional supplements which are a very popular subject in food and nutrition. In order to achieve an appropriate methodology, careful evaluation was performed applying extremely rigorous quality criteria, established for the proteomic analysis. These criteria and the methodological approach used in this work might serve as a guide for other authors seeking to use proteomics in quality control. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Industrial powder metallurgy processing for production of high field Nb3Sn

    International Nuclear Information System (INIS)

    Hecker, A.; Gregory, E.; Wong, J.; Thieme, C.L.H.; Foner, S.

    1988-01-01

    Technology transfer is discussed for fabricating Nb 3 Sn(Ti) via powder metallurgy methods from laboratory scale production at MIT to industrial production at Supercon Inc. Industrial production techniques such as hydrostatic extrusion and drawing have produced superconducting wires with promising critical current densities in preliminary field measurements. Initial steps toward process modification and optimization to improve the commercial feasibility of the powder metallurgy process are evaluated. These modifications are aimed at reducing production time and increasing process flexibility

  18. Optimization PHAs production from dairy industry wastewater (cheese whey) by Azohydromonas lata DSMZ 1123

    OpenAIRE

    M. Sharifzadeh Baei; G.D. Najafpour; Z. Lasemi; F. Tabandeh; H. Younesi; H. Issazadeh; M. Khodabandeh

    2010-01-01

    In the present research, whey was used as useful substrate which retained from permeates of dairy industry. The obtained whey was hydrolyzed to cleave its main carbon source, lactose to glucose and galactose.The hydrolyzed products were chosen as carbon sources for the production of poly-3-hydroxybutyric acid (PHB) by Azohydromonas lata DSMZ 1123. The biosynthesis of PHA copolyesters containing 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) units from hydrolyzed whey permeate and valerat...

  19. Effect of acid whey-fortified breads on caecal fermentation processes and blood lipid profile in rats.

    Science.gov (United States)

    Wronkowska, Małgorzata; Soral-Śmietana, Maria; Zduńczyk, Zenon; Juśkiewicz, Jerzy; Jadacka, Monika; Majkowska, Anna; Dajnowiec, Fabian J

    2017-08-01

    Two types of diet - standard and atherogenic - were used to study the effect of wheat or wheat-rye breads supplemented with 20 % acid whey concentrate after ultrafiltration on the physiological response of growing rats. The acid whey concentrate after ultrafiltration used in rat diets caused reduced weight gain (for atherogenic diet with wheat bread); growth of caecum tissue and digesta weight; a decrease in the pH of caecum digesta (for atherogenic diet); reduced activity of bacterial glycolytic enzymes; and a significant increase in total SCFA for both types of diet with wheat-rye breads containing acid whey concentrate. For wheat bread with acid whey, in standard diet, a statistically significant increase was found in the population of bifidobacteria. The results showed that the acid whey concentrates could be used as a valuable food ingredient.

  20. Whey protein lowers blood pressure and improves endothelial function and lipid biomarkers in adults with prehypertension and mild hypertension: results from the chronic Whey2Go randomized controlled trial.

    Science.gov (United States)

    Fekete, Ágnes A; Giromini, Carlotta; Chatzidiakou, Yianna; Givens, D Ian; Lovegrove, Julie A

    2016-12-01

    Cardiovascular diseases (CVDs) are the greatest cause of death globally, and their reduction is a key public-health target. High blood pressure (BP) affects 1 in 3 people in the United Kingdom, and previous studies have shown that milk consumption is associated with lower BP. We investigated whether intact milk proteins lower 24-h ambulatory blood pressure (AMBP) and other risk markers of CVD. The trial was a double-blinded, randomized, 3-way-crossover, controlled intervention study. Forty-two participants were randomly assigned to consume 2 × 28 g whey protein/d, 2 × 28 g Ca caseinate/d, or 2 × 27 g maltodextrin (control)/d for 8 wk separated by a 4-wk washout. The effects of these interventions were examined with the use of a linear mixed-model ANOVA. Thirty-eight participants completed the study. Significant reductions in 24-h BP [for systolic blood pressure (SBP): -3.9 mm Hg; for diastolic blood pressure (DBP): -2.5 mm Hg; P = 0.050 for both)] were observed after whey-protein consumption compared with control intake. After whey-protein supplementation compared with control intake, peripheral and central systolic pressures [-5.7 mm Hg (P = 0.007) and -5.4 mm Hg (P = 0.012), respectively] and mean pressures [-3.7 mm Hg (P = 0.025) and -4.0 mm Hg (P = 0.019), respectively] were also lowered. Flow-mediated dilation (FMD) increased significantly after both whey-protein and calcium-caseinate intakes compared with control intake [1.31% (P whey protein and calcium caseinate significantly lowered total cholesterol [-0.26 mmol/L (P = 0.013) and -0.20 mmol/L (P = 0.042), respectively], only whey protein decreased triacylglycerol (-0.23 mmol/L; P = 0.025) compared with the effect of the control. Soluble intercellular adhesion molecule 1 and soluble vascular cell adhesion molecule 1 were reduced after whey protein consumption (P = 0.011) and after calcium-caseinate consumption (P = 0.039), respectively, compared with after control intake. The consumption of unhydrolyzed

  1. Development of a High Efficiency Dry Powder Inhaler: Effects of Capsule Chamber Design and Inhaler Surface Modifications

    Science.gov (United States)

    Behara, Srinivas R.B.; Farkas, Dale R.; Hindle, Michael; Longest, P. Worth

    2013-01-01

    Purpose The objective of this study was to explore the performance of a high efficiency dry powder inhaler (DPI) intended for excipient enhanced growth (EEG) aerosol delivery based on changes to the capsule orientation and surface modifications of the capsule and device. Methods DPIs were constructed by combining newly designed capsule chambers (CC) with a previously developed three-dimensional (3D) rod array for particle deagglomeration and a previously optimized EEG formulation. The new CCs oriented the capsule perpendicular to the incoming airflow and were analyzed for different air inlets at a constant pressure drop across the device. Modifications to the inhaler and capsule surfaces included use of metal dispersion rods and surface coatings. Aerosolization performance of the new DPIs was evaluated and compared with commercial devices. Results The proposed capsule orientation and motion pattern increased capsule vibrational frequency and reduced the aerosol MMAD compared with commercial/modified DPIs. The use of metal rods in the 3D array further improved inhaler performance. Coating the inhaler and capsule with PTFE significantly increased emitted dose (ED) from the optimized DPI. Conclusions High efficiency performance is achieved for EEG delivery with the optimized DPI device and formulation combination producing an aerosol with MMAD 90%, and ED > 80%. PMID:23949304

  2. Development of a high efficiency dry powder inhaler: effects of capsule chamber design and inhaler surface modifications.

    Science.gov (United States)

    Behara, Srinivas R B; Farkas, Dale R; Hindle, Michael; Longest, P Worth

    2014-02-01

    The objective of this study was to explore the performance of a high efficiency dry powder inhaler (DPI) intended for excipient enhanced growth (EEG) aerosol delivery based on changes to the capsule orientation and surface modifications of the capsule and device. DPIs were constructed by combining newly designed capsule chambers (CC) with a previously developed three-dimensional (3D) rod array for particle deagglomeration and a previously optimized EEG formulation. The new CCs oriented the capsule perpendicular to the incoming airflow and were analyzed for different air inlets at a constant pressure drop across the device. Modifications to the inhaler and capsule surfaces included use of metal dispersion rods and surface coatings. Aerosolization performance of the new DPIs was evaluated and compared with commercial devices. The proposed capsule orientation and motion pattern increased capsule vibrational frequency and reduced the aerosol MMAD compared with commercial/modified DPIs. The use of metal rods in the 3D array further improved inhaler performance. Coating the inhaler and capsule with PTFE significantly increased emitted dose (ED) from the optimized DPI. High efficiency performance is achieved for EEG delivery with the optimized DPI device and formulation combination producing an aerosol with MMAD  90%, and ED > 80%.

  3. Bio-ethanol production by fermentation of ricotta cheese whey as an effective alternative non-vegetable source

    Energy Technology Data Exchange (ETDEWEB)

    Sansonetti, Sascha; Curcio, Stefano; Calabro, Vincenza; Iorio, Gabriele [Department of Engineering Modeling, University of Calabria, Ponte P. Bucci, Cubo 42/A, 87036 Rende, Cosenza (Italy)

    2009-12-15

    The aim of the present paper is to investigate the feasibility of bio-ethanol production by batch fermentation of ricotta cheese whey (''Scotta''), a dairy industry waste characterized by lactose concentration ranging from 4.5% to 5.0% (w/w) and, with respect to traditional (raw) whey, by much lower protein content. Scotta, therefore, could represent an effective non-vegetable source for renewable energy production. The microrganism used to carry out the fermentation processes was the yeast Kluyveromyces marxianus. Preliminary experiments, performed in aerobic conditions on different volumes of scotta, have shown the actual growth of the yeast. The subsequent fermentation experiments were carried out, in anaerobic conditions, on three different substrates: scotta, raw cheese whey and deproteinized whey. The experimental data have demonstrated the process feasibility: scotta is an excellent substrate for fermentation and exhibits better performance with respect to both raw cheese whey and deproteinized whey. Complete lactose consumption, indeed, was observed in the shortest time (13 h) and with the highest ethanol yield (97% of the theoretical value). (author)

  4. Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey.

    Science.gov (United States)

    Jantzen, M; Göpel, A; Beermann, C

    2013-10-01

    Formulations of dietary probiotics have to be robust against process conditions and have to maintain a sufficient survival rate during gastric transit. To increase efficiency of the encapsulation process and the viability of applied bacteria, this study aimed at developing spray drying and encapsulation of Lactobacillus reuteri with whey directly from slurry fermentation. Lactobacillus reuteri was cultivated in watery 20% (w/v) whey solution with or without 0·5% (w/v) yeast extract supplementation in a submerged slurry fermentation. Growth enhancement with supplement was observed. Whey slurry containing c. 10(9)  CFU g(-1) bacteria was directly spray-dried. Cell counts in achieved products decreased by 2 log cycles after drying and 1 log cycle during 4 weeks of storage. Encapsulated bacteria were distinctively released in intestinal milieu. Survival rate of encapsulated bacteria was 32% higher compared with nonencapsulated ones exposed to artificial digestive juice. Probiotic L. reuteri proliferate in slurry fermentation with yeast-supplemented whey and enable a direct spray drying in whey. The resulting microcapsules remain stable during storage and reveal adequate survival in simulated gastric juices and a distinct release in intestinal juices. Exploiting whey as a bacterial substrate and encapsulation matrix within a coupled fermentation and spray-drying process offers an efficient option for industrial production of vital probiotics. © 2013 The Society for Applied Microbiology.

  5. Biochemical and clinical effects of Whey protein supplementation in Parkinson's disease: A pilot study.

    Science.gov (United States)

    Tosukhowong, Piyaratana; Boonla, Chanchai; Dissayabutra, Thasinas; Kaewwilai, Lalita; Muensri, Sasipa; Chotipanich, Chanisa; Joutsa, Juho; Rinne, Juha; Bhidayasiri, Roongroj

    2016-08-15

    Parkinson's disease (PD) is an oxidative stress-mediated degenerative disorder. Elevated plasma homocysteine (Hcy) is frequently found in the levodopa-treated PD patients, is associated with disease progression and is a marker of oxidative stress. Whey protein is a rich source of cysteine, and branched-chain amino acids (BCAA). It has been shown that supplementation with Whey protein increases glutathione synthesis and muscle strength. In this study, we conducted a placebo-controlled, double-blind study (NCT01662414) to investigate the effects of undenatured Whey protein isolate supplementation for 6months on plasma glutathione, plasma amino acids, and plasma Hcy in PD patients. Clinical outcome assessments included the unified Parkinson's disease rating scale (UPDRS) and striatal L-3,4-dihydroxy-6-(18)F-fluorophenylalanine (FDOPA) uptake were determined before and after supplementation. 15 patients received Whey protein, and 17 received Soy protein, served as a control group. Significant increases in plasma concentration of reduced glutathione and the ratio of reduced to oxidized glutathione were found in the Whey-supplemented patients but not in a control group. This was associated with a significant decrease of plasma levels of Hcy. The plasma levels of total glutathione were not significantly changed in either group. Plasma BCAA and essential amino acids (EAA) were significantly increased in the Whey-supplemented group only. The UPDRS and striatal FDOPA uptake in PD patients were not significantly ameliorated in either group. However, significant negative correlation was observed between the UPDRS and plasma BCAA and EAA in the pre-supplemented PD patients. This study is the first to report that Whey protein supplementation significantly increases plasma reduced glutathione, the reduced to oxidized glutathione ratio, BCAAs and EAAs in patients with PD, together with a concomitant significant reduction of plasma Hcy. However, there were no significant changes in

  6. Biotechnological Utilization with a Focus on Anaerobic Treatment of Cheese Whey: Current Status and Prospects

    Directory of Open Access Journals (Sweden)

    Aspasia A. Chatzipaschali

    2012-09-01

    Full Text Available Cheese whey utilization is of major concern nowadays. Its high organic matter content, in combination with the high volumes produced and limited treatment options make cheese whey a serious environmental problem. However, the potential production of biogas (methane, hydrogen or other marketable products with a simultaneous high COD reduction through appropriate treatment proves that cheese whey must be considered as an energy resource rather than a pollutant. The presence of biodegradable components in the cheese whey coupled with the advantages of anaerobic digestion processes over other treatment methods makes anaerobic digestion an attractive and suitable treatment option. This paper intends to review the most representative applications of anaerobic treatment of cheese whey currently being exploited and under research. Moreover, an effort has been made to categorize the common characteristics of the various research efforts and find a comparative basis, as far as their results are concerned. In addition, a number of dairy industries already using such anaerobic digestion systems are presented.

  7. Effects of combined β-hydroxy-β-methylbutyrate (HMB) and whey protein ingestion on symptoms of eccentric exercise-induced muscle damage.

    Science.gov (United States)

    Shirato, Minayuki; Tsuchiya, Yosuke; Sato, Teruyuki; Hamano, Saki; Gushiken, Takeshi; Kimura, Naoto; Ochi, Eisuke

    2016-01-01

    The purpose of this study was to examine the effects of combined β-hydroxy-β-methylbutyrate (HMB) and whey protein ingestion on muscle strength and damage following a single bout of eccentric exercise. Eighteen untrained male subjects were assigned to HMB and Whey protein (HMB + Whey; 3 g/day HMB and 36.6 g/day whey protein, n = 6), HMB (3 g/day, n = 6), or whey protein (36.6 g/day, n = 6) groups. Ingestion commenced 7 days before non-dominant elbow flexor eccentric exercise (30 deg/sec, 6 reps × 7 sets) and continued until 4 days post-exercise. The maximal isometric strength, muscle soreness, plasma creatine kinase (CK), lactate dehydrogenase (LDH) were assessed pre-exercise, and at 1, 2, 3, and 5 days after exercise. The change scores of maximal isometric strength significantly decreased at day 1, 2, and 5 in the whey protein group compared to pre value and that in HMB + Whey protein and HMB groups decreased at day 1 and 5. The muscle soreness significantly increased in the whey and HMB + Whey protein groups at day 3 compared to pre value (p HMB and whey protein does not have a role to inhibit muscle strength loss and soreness, and decrease in muscle damage markers after eccentric exercise in comparison with HMB and whey protein alone.

  8. Silane surface modification effects on the electromagnetic properties of phosphatized iron-based SMCs

    Science.gov (United States)

    Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing

    2018-03-01

    It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.

  9. Effect of multiple substrates in ethanol fermentations from cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C J; Jayanata, Y; Bajpai, R K

    1987-01-01

    Ethanol fermentations from cheese whey by Kluyveromyces marxianus CBS 397 were investigated. Cheese whey, which contains lactose as the major sugar, has been found to have small amounts of glucose and galactose, depending on the source and operating conditions. Fermentation performance was strongly influenced by the presence of glucose and galactose. However, lactose did not significantly affect the cell growth and product formation even at a high concentration. A logistical model was proposed to take into account the effect of lactose. (Refs. 6).

  10. Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying method.

    Science.gov (United States)

    Hundre, Swetank Y; Karthik, P; Anandharamakrishnan, C

    2015-05-01

    Vanillin flavour is highly volatile in nature and due to that application in food incorporation is limited; hence microencapsulation of vanillin is an ideal technique to increase its stability and functionality. In this study, vanillin was microencapsulated for the first time by non-thermal spray-freeze-drying (SFD) technique and its stability was compared with other conventional techniques such as spray drying (SD) and freeze-drying (FD). Different wall materials like β-cyclodextrin (β-cyd), whey protein isolate (WPI) and combinations of these wall materials (β-cyd + WPI) were used to encapsulate vanillin. SFD microencapsulated vanillin with WPI showed spherical shape with numerous fine pores on the surface, which in turn exhibited good rehydration ability. On the other hand, SD powder depicted spherical shape without pores and FD encapsulated powder yielded larger particle sizes with flaky structure. FTIR analysis confirmed that there was no interaction between vanillin and wall materials. Moreover, spray-freeze-dried vanillin + WPI sample exhibited better thermal stability than spray dried and freeze-dried microencapsulated samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effect of chitosan on the heat stability of whey protein solution as a function of pH.

    Science.gov (United States)

    Zhao, Zhengtao; Xiao, Qian

    2017-03-01

    Chitosan was reported to interact with proteins through electrostatic interactions. Their interaction was influenced by pH, which was not fully characterized. Further research on the interactions between protein and chitosan at different pH and their influence on the thermal denaturation of proteins is necessary. In this research, the effect of chitosan on the heat stability of whey protein solution at pH 4.0-6.0 was studied. At pH 4.0, a small amount chitosan was able to prevent the heat-induced denaturation and aggregation of whey protein molecules. At higher pH values (5.5 and 6.0), whey proteins complexed with chitosan through electrostatic attraction. The formation of chitosan-whey protein complexes at pH 5.5 improved the heat stability of dispersions and no precipitation could be detected up to 20 days. The dispersion with a medium amount of chitosan (chitosan:whey protein 1:5) produced the most stable particles, which had an average radius of 135 ± 14 nm and a zeta potential value of 36 ± 1 mV. In contrast, at pH 6.0 only the dispersion with a high amount of chitosan (chitosan:whey protein 1:2) showed good shelf stability up to 20 days. It was possible to produce heat-stable whey protein beverages by regulating the interaction between chitosan and whey protein molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Electrokinetic characterization of whey protein separation

    DEFF Research Database (Denmark)

    Keiding, Kristian; Stougård, Anders; Christensen, Morten Lykkegaard

    Cross flow filtration of whey protein has been performed on 3 different membranes. The rejections have been determined by HPLC analysis of the feed and permeate. The pure membranes as well as the fouled membranes have been characterized by measurements of the streaming potential along the membrane...

  13. Enrichment of extruded snack products with whey protein

    Directory of Open Access Journals (Sweden)

    Mladen Brnčić

    2008-08-01

    Full Text Available Highest share in products with whey proteins addition belongs to aromatised drinks, aromatised protein bars and various dietetic preparations. In the last few years, there is increased use of the extrusion process for production of food products. This process is, besides other things, used for obtaining directly expanded products, which are immediately packed and sent on market after mechanical and thermal treatment in extruder, or after drying for a short time. One of these food products is “snack” food. Snack food is made with twin corotating screw extruders, in which raw materials are submitted to high temperatures and short time, with intensive expansion and rapid pressure drop. For the production of this category of food products, basic ingredients like corn, wheat, rye and rice, with the maximum of 9 % of proteins, are used. With the development of extrusion technology, special attention is focused on the enrichment of extruded products with different types of proteins, including proteins. In this paper, review of the newest research and achievements in embedding various types of whey concentrates in snack food will be represented. This category of food products for direct consummation is constantly increasing, and addition of whey protein concentrate adds better nutritional value and increased functionality.

  14. Fibril assembly in whey protein mixtures

    NARCIS (Netherlands)

    Bolder, S.G.

    2007-01-01

    The objective of this thesis was to study fibril assembly in mixtures of whey proteins. The effect of the composition of the protein mixture on the structures and the resulting phase behaviour was investigated. The current work has shown that beta-lactoglobulin is responsible for the fibril assembly

  15. Effect of different media on production of lactic acid from whey by ...

    African Journals Online (AJOL)

    Whey containing 50 g.l -1 lactose was fermented to lactic acid in batch process by Lactobacillus bulgaricus. The impact of 5 different media with change in volume percent of whey and nutrient was investigated at 32 ± 0.5°C. Substrate consumption and lactic acid production were determined at 0, 12, 24, 36, 48, 60 and 72 h.

  16. Biotransformation of soy whey into soy alcoholic beverage by four commercial strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Chua, Jian-Yong; Lu, Yuyun; Liu, Shao-Quan

    2017-12-04

    Soy whey is a liquid waste stream generated from tofu and soy protein manufacturing, and is commonly disposed of into the drainage system in food industry. Instead of disposing of soy whey as a waste, it could be used to produce alcoholic beverages. This study investigated the feasibility of converting soy whey into soy alcoholic beverage using four commercial Saccharomyces cerevisiae strains as a zero-waste approach to tackle the soy whey disposal issue. The four Saccharomyces yeasts grew by approximately 2logCFU/mL and produced approximately 7-8% (v/v) of ethanol. Isoflavone glucosides were hydrolyzed and transformed into isoflavone aglycones, increasing the antioxidant capacity. New aroma-active volatiles, especially esters and higher alcohols, were produced and imparted fruity and floral notes to the soy alcoholic beverage. Therefore, alcoholic fermentation would serve as a solution toward zero-waste manufacturing by biotransforming soy whey into a world's first novel functional alcoholic beverage naturally enriched with free isoflavones. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Whey protein hydrolysate and branched-chain amino acids downregulate inflammation-related genes in vascular endothelial cells.

    Science.gov (United States)

    Da Silva, Marine S; Bigo, Cyril; Barbier, Olivier; Rudkowska, Iwona

    2017-02-01

    A recent review of clinical studies reports that dairy products may improve inflammation, a key etiologic cardiovascular disease risk factor. Yet the impact of dairy proteins on inflammatory markers is controversial and could be mediated by a differential impact of whey proteins and caseins. In this study, we hypothesized that whey proteins may have a greater anti-inflammatory effect than caseins. A model of human umbilical vein endothelial cells, with or without TNF-α stimulation, was used to investigate the effect of several dairy protein compounds on inflammation. Specifically, the impact of whey proteins either isolate or hydrolysate, caseins, and their amino acids on expression of TNF, VCAM-1, SOD2, and eNOS was examined. After a 24-hour incubation period, whey protein hydrolysate, leucine, isoleucine, and valine attenuated the TNF-α-induced endothelial inflammation by normalizing TNF and eNOS gene expression. This effect was not observed in unstimulated cells. Oppositely, caseins, a whey protein/casein mixture (1:4 w/w), and glutamine aggravated the TNF-α-induced TNF and SOD2 gene expression. Yet caseins and whey protein/casein mixture decreased VCAM-1 expression in both unstimulated and stimulated human umbilical vein endothelial cells. Measurement of TNF-α in cell supernatants by immunoassay substantiates gene expression data without reaching statistical significance. Taken together, this study showed that whey proteins and their major amino acids normalize TNF-α-induced proinflammatory gene expression in endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Physicochemical and microstructural characterization of gum tragacanth added whey protein based films.

    Science.gov (United States)

    Tonyali, Bade; Cikrikci, Sevil; Oztop, Mecit Halil

    2018-03-01

    Edible films of gum tragacanth (GT) with whey protein were fabricated to see how the incorporation of GT influenced whey protein based film properties. Whey protein isolate (WPI) was replaced with GT at different ratios as 0.5, 1, 1.5 and 2% of WPI. Optical, mechanical, permeability and microstructural properties, as well as moisture sorption and solubility behavior of films were measured. The findings indicated that combination of WPI and GT in film formulation led to less strength, more flexible, less soluble films with lower permeability to water and with higher opacity. The results suggested that the addition of GT to WPI could lead to obtain modified WPI based edible films with desirable properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Emerging trends in nutraceutical applications of whey protein and its derivatives

    OpenAIRE

    Patel, Seema

    2015-01-01

    The looming food insecurity demands the utilization of nutrient-rich residues from food industries as value-added products. Whey, a dairy industry waste has been characterized to be excellent nourishment with an array of bioactive components. Whey protein comprises 20 % of total milk protein and it is rich in branched and essential amino acids, functional peptides, antioxidants and immunoglobulins. It confers benefits against a wide range of metabolic diseases such as cardiovascular complicat...

  20. Factors affecting the electrostatic charge of ceramic powders

    International Nuclear Information System (INIS)

    Lorite, I.; Romero, J.; Fernandez, J. F.

    2011-01-01

    The phenomenon of electrostatic charge in ceramic powders takes place when the particle surfaces enter in contact between them or with the containers. The accumulation of electrostatic charge is of relevance in ceramic powders in view of their insulating character and the risk of explosions during the material handling. In this work the main factors that affect the appearance of intrinsic charge and tribo-charge in ceramic powder have been studied. In ceramic powders of alumina it has been verified that the smallest particle sizes present an increase of the electrostatic charge of negative polarity. A correlation has been observed between the nature of the OH -surface groups and the electrostatic charge. The intrinsic charge and the tribocharge in ceramic powders can be diminished by compensating the surface groups that support the charge. The dry dispersion of nanoparticles on microparticles allows surface charge compensation with a noticeable modification of the powder agglomeration. (Author) 19 refs.

  1. Whey utilization for single-cell protein production

    Energy Technology Data Exchange (ETDEWEB)

    Barraquio, V; Silverio, L G; Revilleza, R P; Fernadez, W L

    1980-01-01

    The production of single-cell protein by yeast assimilation of lactose in soft cheese whey was studied using Candida pseudotropicalis as a test organism. Under shake-flask cultivation conditions with deproteinized whey as the medium, lactose (initially 4.20%) was completely assimilated in 48h; cell mass was 5.56 mg/mL after 72h; and average protein content of the dried mass was approximately 11.8%. Batch cultivation using undeproteinized whey resulted in a faster lactose utilization rate from an initial 3.93% to a residual 0.56% in 12 h; cell mass was 8.41 mg/mL in 10 h; and average protein was approximately 37.7%. In a semicontinuous culture with 10 to the power of 7 viable cells/mL as initial cell concentration, 15.69 mg/mL cell mass with a mean protein content of approximately 21.4% could be produced and lactose could be considerably consumed (from an initial 4.75% to a residual 0.42%) within 13-14 h. Supplementation with (NH/sub 4/)/sub 2/S0/sub 4/ and KH/sub 2/P0/sub 4/ did not increase cell mass (12.47 mg/mL in 12 h) and hasten lactose assimulation (from initial 4.49% to residual 0.3% in 12 h). Average protein content was approximately 31%. Cell mass yield was established as 0.29 mg yeast cell/mg lactose consumed. Factors that might have affected protein content are also discussed.

  2. Why semicarbazide (SEM) is not an appropriate marker for the usage of nitrofurazone on agricultural animals.

    Science.gov (United States)

    Stadler, Richard H; Verzegnassi, Ludovica; Seefelder, Walburga; Racault, Lucie

    2015-01-01

    A comprehensive global database on semicarbazide (SEM) in foodstuffs and food ingredients is presented, with over 4000 data collected in foods such as seafood (crustaceans, fish powders), meat (beef, chicken powders), dairy products (e.g. raw milk, milk powders, whey, sweet buttermilk powder, caseinate, yoghurt, cheese), honey and other ingredients. The results provide evidence that the presence of SEM in certain dairy ingredients (whey, milk protein concentrates) is a by-product of chemical reactions taking place during the manufacturing process. Of the dairy ingredients tested (c. 2000 samples), 5.3% showed traces of SEM > 0.5 µg/kg. The highest incidence of SEM-positive samples in the dairy category were whey (powders, liquid) and milk protein concentrates (35% positive), with up to 13 µg/kg measured in a whey powder. Sweet buttermilk powder and caseinate followed, with 27% and 9.3% positives, respectively. SEM was not detected in raw milk, or in yoghurt or cheese. Of the crustacean products (shrimp and prawn powders) tested, 44% were positive for SEM, the highest value measured at 284 µg/kg. Fish powders revealed an unexpectedly high incidence of positive samples (25%); in this case, fraudulent addition of shellfish shells or carry-over during processing cannot be excluded. Overall, the data provide new insights into the occurrence of SEM (for dairy products and fish powders), substantially strengthening the arguments that SEM in certain food categories is not a conclusive marker of the use of the illegal antibiotic nitrofurazone.

  3. Process for teating whey by enzymic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nocquet, J L

    1980-01-01

    In the process lactose is converted into glucose and galactose, with demineralization to a level of at least 50%, before the hydrolysis. A bacteriologically stable hydrolysed whey is obtained and may be used in foods for human consumption.

  4. Milk whey protein modification by coffee-specific phenolics: effect on structural and functional properties.

    Science.gov (United States)

    Ali, Mostafa; Homann, Thomas; Khalil, Mahmoud; Kruse, Hans-Peter; Rawel, Harshadrai

    2013-07-17

    A suitable vehicle for integration of bioactive plant constituents is proposed. It involves modification of proteins using phenolics and applying these for protection of labile constituents. It dissects the noncovalent and covalent interactions of β-lactoglobulin with coffee-specific phenolics. Alkaline and polyphenol oxidase modulated covalent reactions were compared. Tryptic digestion combined with MALDI-TOF-MS provided tentative allocation of the modification type and site in the protein, and an in silico modeling of modified β-lactoglobulin is proposed. The modification delivers proteins with enhanced antioxidative properties. Changed structural properties and differences in solubility, surface hydrophobicity, and emulsification were observed. The polyphenol oxidase modulated reaction provides a modified β-lactoglobulin with a high antioxidative power, is thermally more stable, requires less energy to unfold, and, when emulsified with lutein esters, exhibits their higher stability against UV light. Thus, adaptation of this modification provides an innovative approach for functionalizing proteins and their uses in the food industry.

  5. Whey protein stories - An experiment in writing a multidisciplinary biography.

    Science.gov (United States)

    Jensen, Tenna; Bechshoeft, Rasmus L; Giacalone, Davide; Otto, Marie Haulund; Castro-Mejía, Josue; Bin Ahmad, Hajar Fauzan; Reitelseder, Søren; Jespersen, Astrid Pernille

    2016-12-01

    This is an experimental, dual-purpose article about whey protein and how to conduct interdisciplinary analyses and writings. On the one hand, this article is a multidisciplinary commodity biography, which consists of five descriptions of whey protein written by the five different research groups involved in the interdisciplinary research project CALM(Counteracting Age-related loss of Skeletal Muscle Mass). On the other hand, it is a meta-analysis, which aims to uncover and highlight examples of how the five descriptions contribute to each other with insights into the contextualisation of knowledge, contrasts between the descriptions and the new dimensions they bring to established fields of interest. The meta-analysis also contains a discussion of interdisciplinary study objects and the usefulness of the multidisciplinary commodity biography as a format for interdisciplinary publications. The article contributes to the field of food studies with a multidisciplinary biography of whey protein - including its sensory qualities and challenges, insights into its cultural history, its nutritional value and effects on the human body and an analysis of how it is perceived by people who consume it. The biography thereby expands upon existing understandings of whey protein while discussing the usefulness of employing the commodity biography format in interdisciplinary writing. Moreover, the article contributes to the field of interdisciplinary research by providing a practical example of a joint publication and reflections upon the existence, interaction and possibilities of monodisciplinary knowledge structures within interdisciplinary studies and publications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Dietary whey proteins shield murine cecal microbiota from extensive disarray caused by a high-fat diet.

    Science.gov (United States)

    Monteiro, Naice E S; Roquetto, Aline R; de Pace, Fernanda; Moura, Carolina S; Santos, Andrey Dos; Yamada, Aureo T; Saad, Mário José A; Amaya-Farfan, Jaime

    2016-07-01

    High-fat diets are used to induce adverse alterations in the intestinal microbiota, or dysbiosis, generalized inflammation and metabolic stress, which ultimately may lead to obesity. The influence of dietary whey proteins, whether intact or hydrolyzed, has been reported to improve glucose homeostasis and reduce stress. Therefore, the purpose of this work was to test if dietary milk-whey proteins, both in the intact form and hydrolyzed, could have an effect on the compositional changes of the cecal microbiota that can be induced in mice when receiving a high-fat diet in combination with the standard casein. Male C57BL/6 mice were fed a control casein diet (AIN 93-G); high-fat-casein (HFCAS); high-fat-whey protein concentrate (HFWPC) and high-fat whey-protein hydrolysate (HFWPH) for 9weeks. The intestinal microbiota composition was analyzed by 16S-rRNA of the invariant (V1-V3) gene, potentially endotoxemic lipopolysaccharide (LPS) release was determined colorimetrically, and liver fat infiltration assessed by light microscopy. The high-fat diet proved to induce dysbiosis in the animals by inverting the dominance of the phylum Firmicutes over Bacteroidetes, promoted the increase of LPS and resulted in liver fat infiltration. The whey proteins, whether intact or hydrolyzed, resisted the installation of dysbiosis, prevented the surge of circulating LPS and prevented fat infiltration in the liver. It is concluded that dietary whey proteins exert metabolic actions that tend to preserve the normal microbiota profile, while mitigating liver fat deposition in mice consuming a high-fat diet for nine weeks. Such beneficial effects were not seen when casein was the dietary protein. The hydrolyzed whey protein still differed from the normal whey protein by selectively protecting the Bacteroidetes phylum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Protein characterization of pasteurized milk, cheese whey and their mixtures by using the CEM SprintTM analyzer

    Directory of Open Access Journals (Sweden)

    Igor Moura Paiva

    2016-06-01

    Full Text Available In this work, the protein analyzer SprintTM was assessed regarding its capacity of predicting addition of whey in milk. This type of practice is relatively common in dairy plants, since whey, as it is a protein component, may be added with little loss of milk protein content. Besides,its incorrect elimination contributes to environmental pollution. Mixtures of milk and whey were prepared in different levels of addition and two methods of milk partition were tested. The results indicated that the concentration of trichloroacetic acid (TCA from the selected method was not suitable for the present purpose while the chosen method using glacial acetic acid (GAA has presented a satisfactory separation of the soluble and insoluble milk components. Even though the concentration of whey protein and casein are the essential parameters for determining whey addition in milk, the use of measurements from total protein was important in order to improve the linearity of the method due to the fact that the rates whey protein/total protein and casein/total protein presented the best results concerning fraud prediction capacity. Therefore, as the equipment is a rapid, safe and efficient platform, it can be used as an alternative to be implemented in laboratories of food quality control which perform or plan to perform assays to verify the whey addition in fluid milk.

  8. Effect of combined treatments on viscosity of whey dispersions

    International Nuclear Information System (INIS)

    Camillo, A.; Sabato, S.F.

    2004-01-01

    Whey proteins, enriched protein fractions from milk, are of great interest as ingredients due to nutritional value associated with its functional properties. These proteins could have their structural properties improved when some treatments are applied, such as thermal and gamma irradiation or when some compounds are added. The current work aimed to study the viscometer behavior of whey dispersions submitted to two different combined treatments: (1) thermal plus irradiation and (2) thermal plus vacuum and N 2 plus irradiation. Dispersions of whey protein in water (5% and 8% protein (w/v) base) and containing proteins and glycerol at ratios 1:1 and 2:1 (protein:glycerol) were submitted to both combined treatments. The irradiation doses were 0, 5, 15 and 25 kGy. The viscosity of the two combined treatments and for four levels of absorbed doses is presented and the combined effects are discussed. The thermal treatment combined with gamma irradiation contributed to increase the viscosity as irradiation doses increases for both (5% and 8%) concentrations of proteins (p<0.05). For protein and glycerol solutions, the irradiation dose seemed to result in a slightly increase. The vacuum applied before the irradiation showed a small contribution

  9. Effect of combined treatments on viscosity of whey dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Camillo, A.; Sabato, S.F. E-mail: sfsabato@ipen.br

    2004-10-01

    Whey proteins, enriched protein fractions from milk, are of great interest as ingredients due to nutritional value associated with its functional properties. These proteins could have their structural properties improved when some treatments are applied, such as thermal and gamma irradiation or when some compounds are added. The current work aimed to study the viscometer behavior of whey dispersions submitted to two different combined treatments: (1) thermal plus irradiation and (2) thermal plus vacuum and N{sub 2} plus irradiation. Dispersions of whey protein in water (5% and 8% protein (w/v) base) and containing proteins and glycerol at ratios 1:1 and 2:1 (protein:glycerol) were submitted to both combined treatments. The irradiation doses were 0, 5, 15 and 25 kGy. The viscosity of the two combined treatments and for four levels of absorbed doses is presented and the combined effects are discussed. The thermal treatment combined with gamma irradiation contributed to increase the viscosity as irradiation doses increases for both (5% and 8%) concentrations of proteins (p<0.05). For protein and glycerol solutions, the irradiation dose seemed to result in a slightly increase. The vacuum applied before the irradiation showed a small contribution.

  10. The effect of bleaching agents on the degradation of vitamins and carotenoids in spray-dried whey protein concentrate.

    Science.gov (United States)

    Stout, M A; Park, C W; Drake, M A

    2017-10-01

    Previous research has shown that bleaching affects flavor and functionality of whey proteins. The role of different bleaching agents on vitamin and carotenoid degradation is unknown. The objective of this study was to determine the effects of bleaching whey with traditional annatto (norbixin) by hydrogen peroxide (HP), benzoyl peroxide (BP), or native lactoperoxidase (LP) on vitamin and carotenoid degradation in spray-dried whey protein concentrate 80% protein (WPC80). An alternative colorant was also evaluated. Cheddar whey colored with annatto (15 mL/454 L of milk) was manufactured, pasteurized, and fat separated and then assigned to bleaching treatments of 250 mg/kg HP, 50 mg/kg BP, or 20 mg/kg HP (LP system) at 50°C for 1 h. In addition to a control (whey with norbixin, whey from cheese milk with an alternative colorant (AltC) was evaluated. The control and AltC wheys were also heated to 50°C for 1 h. Wheys were concentrated to 80% protein by ultrafiltration and spray dried. The experiment was replicated in triplicate. Samples were taken after initial milk pasteurization, initial whey formation, after fat separation, after whey pasteurization, after bleaching, and after spray drying for vitamin and carotenoid analyses. Concentrations of retinol, a-tocopherol, water-soluble vitamins, norbixin, and other carotenoids were determined by HPLC, and volatile compounds were measured by gas chromatography-mass spectrometry. Sensory attributes of the rehydrated WPC80 were documented by a trained panel. After chemical or enzymatic bleaching, WPC80 displayed 7.0 to 33.3% reductions in retinol, β-carotene, ascorbic acid, thiamin, α-carotene, and α-tocopherol. The WPC80 bleached with BP contained significantly less of these compounds than the HP- or LP-bleached WPC80. Riboflavin, pantothenic acid, pyridoxine, nicotinic acid, and cobalamin concentrations in fluid whey were not affected by bleaching. Fat-soluble vitamins were reduced in all wheys by more than 90

  11. The Effect of BCAA and ISO-WHEY Oral Nutritional Supplements on Dialysis Adequacy.

    Science.gov (United States)

    Afaghi, Effat; Tayebi, Ali; Ebadi, Abbas; Sobhani, Vahid; Einollahi, Behzad; Tayebi, Mehdi

    2016-11-01

    Protein-energy malnutrition is a common problem in hemodialysis patients and has different outcomes such as reduced quality of life, longer hospitalization time, lower dialysis adequacy, and higher mortality rate. Investigation of dialysis adequacy is an important method for assessing hemodialysis patients, and improving the dialysis adequacy is an important healthcare team goal. The present study aims to investigate and compare the effects of BCAA and ISO-WHEY oral nutritional supplements on dialysis adequacy. In a clinical trial study, 66 hemodialysis patients were randomly divided into three groups: Group A (n = 22), Group B (n = 22), and Group C or the control group (n = 22). In Groups A and B, as prescribed and controlled by nutritionists and nephrologists, respectively, ISO-WHEY and BCAA protein powder were used for 2 months on a daily basis. For all groups, before intervention and 1 and 2 months after intervention, the dialysis adequacy was measured using URR and Kt/V. Finally, the data were analyzed using IBM SPSS Statistics Base 21.0 software. Out of 66 patients, 61 (19 in Group A, 20 in Group B, and 22 in Group C) completed the study period, and before intervention, all groups were equal in terms of quality and quantity variables (P > 0.05). After intervention, there was a significant difference between the three groups with regard to the variables of dialysis adequacy based on Kt/V and URR to independent-t test and repeated measures ANOVA (P < 0.05). Results show that the intake of oral nutritional supplements leads to an improvement in the dialysis adequacy of hemodialysis patients. Therefore, the use of nutritional supplements along with patients' training and regular consultation will be helpful in improving the nutritional status, dialysis adequacy, and eventually the quality of life.

  12. Fractal Dimension Analysis of Texture Formation of Whey Protein-Based Foods

    Directory of Open Access Journals (Sweden)

    Robi Andoyo

    2018-01-01

    Full Text Available Whey protein in the form of isolate or concentrate is widely used in food industries due to its functionality to form gel under certain condition and its nutritive value. Controlling or manipulating the formation of gel aggregates is used often to evaluate food texture. Many researchers made use of fractal analysis that provides the quantitative data (i.e., fractal dimension for fundamentally and rationally analyzing and designing whey protein-based food texture. This quantitative analysis is also done to better understand how the texture of whey protein-based food is formed. Two methods for fractal analysis were discussed in this review: image analysis (microscopy and rheology. These methods, however, have several limitations which greatly affect the accuracy of both fractal dimension values and types of aggregation obtained. This review therefore also discussed problem encountered and ways to reduce the potential errors during fractal analysis of each method.

  13. Individual whey protein components influence lipid oxidation dependent on pH

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    In emulsions, lipid oxidation is expected to be initiated at the oil-water interface. The properties of the emulsifier used and the composition at the interface is therefore expected to be of great importance for the resulting oxidation. Previous studies have shown that individual whey protein...... by affecting the preferential adsorption of whey protein components at the interface. The aim of the study was to compare lipid oxidation in 10% fish oil-in-water emulsions prepared with 1% whey protein having either a high concentration of α-lactalbumin, a high concentration of β-lactoglobulin or equal...... amounts of the two. Emulsions were prepared at pH4 and pH7. Emulsions were characterized by their droplet sizes, viscosities, and contents of proteins in the water phase. Lipid oxidation was assessed by PV and secondary volatile oxidation products. Results showed that pH greatly influenced the oxidative...

  14. Obtention and characterization of dried gels prepared with whey proteins, honey and hydrocolloids mixture.

    Science.gov (United States)

    Rodriguez, Ana C; Torrez Irigoyen, Martín R; Navarro, Alba S; Yamul, Diego K

    2017-11-01

    Large amounts of honey and liquid whey derived from the dairy industry are produced in Argentina. Honey is exported in bulk and whey is transformed into whey protein concentrates and isolates. The objective of this work was to investigate the effect of pH, composition and storage time on the properties of dried gels with honey, whey proteins and hydrocolloids. Color properties varied according to pH and composition. The fracture stress of dried gels prepared with corn starch was higher than that of gels prepared with guar gum in all conditions assayed. Young's modulus was higher at pH 7 for both compositions and increased with storage time. Rubbery characteristics were found in dried gels with guar gum, while both corn starch and guar gum made the microstructure rougher. Multivariate analysis showed that samples could be grouped by pH. Panelists preferred pH 7 products over acidic ones, and no significant differences in sensory properties were found using either corn starch or guar gum in the formulation. The results demonstrated that it is possible to generate a new product, which may open new applications for honey and whey in food formulations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Comprehensive peptidomic and glycomic evaluation reveals that sweet whey permeate from colostrum is a source of milk protein-derived peptides and oligosaccharides

    NARCIS (Netherlands)

    Dallas, D.C.; Weinborn, V.; Moura Bell, de J.M.L.N.; Wang, M.; Parker, E.A.; Guerrero, A.; Hettinga, K.A.; Lebrilla, C.B.; German, J.B.; Barile, D.

    2014-01-01

    Whey permeate is a co-product obtained when cheese whey is passed through an ultrafiltration membrane to concentrate whey proteins. Whey proteins are retained by the membrane, whereas the low-molecular weight compounds such as lactose, salts, oligosaccharides and peptides pass through the membrane

  16. The efficacy of whey associated with dodder seed extract on moderate-to-severe atopic dermatitis in adults: A randomized, double-blind, placebo-controlled clinical trial.

    Science.gov (United States)

    Mehrbani, Mehrzad; Choopani, Rasool; Fekri, Alireza; Mehrabani, Mitra; Mosaddegh, Mahmoud; Mehrabani, Mehrnaz

    2015-08-22

    Atopic dermatitis is a common chronic inflammatory skin condition that is on the rise and adversely affects quality of life of the affected individual. Dry skin and pruritus, major characteristics of this disease, are associated with the dysfunction of the skin barrier. Though mild cases of the disease can be controlled with antihistamines and topical corticosteroids, moderate-to-severe cases often require treatment with immunomodulatory drugs, which have many side effects. It is now more common to use complementary and alternative medicines in the treatment of atopic dermatitis. In traditional Iranian medicine, the use of whey with the aqueous extract of field dodder (Cuscuta campestris Yunck.) seeds in severe and refractory cases of atopic dermatitis is common and has no side effects. The aim of this study was to assess the efficacy and safety of whey associated with dodder seed extract in the treatment of moderate-to-severe atopic dermatitis in adults. The study was a randomized, double-blind placebo control trial that was conducted on 52 patients with moderate-to-severe atopic dermatitis for 30 days. In this study patients received freeze dried whey powder with spray dried water extract of field dodder or the placebo for 15 days. At baseline (week zero), after the end of the 15 day treatment period (week three) and 15 days after stopping the drug or placebo (follow-up/week five), patients were evaluated in terms of skin moisture, elasticity, pigmentation, surface pH and sebum content on the forearm with Multi Skin Test Center® MC1000 (Courage & Khazaka, Germany) and the degree of pruritus and sleep disturbance in patients were also recorded. 42 patients completed 30 days of treatment with the medicine and the follow-up period. At the end of the follow-up period a significant increase in skin moisture and elasticity in the group receiving whey with dodder was observed compared with the placebo group (pwhey associated with dodder seed extract over time (pwhey

  17. Whey microbeads as a matrix for the encapsulation and immobilisation of riboflavin and peptides.

    Science.gov (United States)

    O'Neill, Graham J; Egan, Thelma; Jacquier, Jean Christophe; O'Sullivan, Michael; Dolores O'Riordan, E

    2014-10-01

    Whey microbeads manufactured using a cold-set gelation process, have been used to encapsulate bioactives. In this study whey microbeads were used to encapsulate riboflavin using 2 methods. Riboflavin was added to the microbead forming solution however diffusional losses of riboflavin occurred during the subsequent bead preparation. To overcome riboflavin loss, a second approach to 'load' whey microbeads by soaking in riboflavin was assessed. Significantly (p⩽0.05) higher concentrations of riboflavin were obtained in 'loaded' microbeads (361 mg/L) compared to riboflavin added to the microbead forming solution (48 mg/L). Riboflavin uptake by the microbeads was shown to be via a partition process. As partitioning is often driven by hydrophobic interactions the uptake of amino acids and peptides of varying hydrophobicities by the microbeads was examined. The % encapsulation increased with increasing molecule hydrophobicity with a maximum of 89% encapsulation. Whey microbeads are well suited to act as sorbents for encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Impact of enzymatic hydrolyzed lactose on fermentation and growth of probiotic bacteria in whey

    Directory of Open Access Journals (Sweden)

    Katarina Lisak

    2011-06-01

    Full Text Available Taking in consideration the long time for whey fermentation using probiotic bacteria, the aim of this research was to determine if prior enzymatic hydrolysis of lactose influences microbial activities of Lactobacillus acidophilus La-5 or Bifidobacterium animalis subsp. lactis BB-12 in reconstituted sweet whey. During fermentation (at 37 °C, pH-value and viable cell counts were monitored. The fermented samples were sensory profiled. Lactose hydrolysis shortened the fermentation time of Lactobacillus acidophilus La-5 by 2 h, and viable cell count at the end of fermentation time was greater in hydrolyzed whey sample (~9.45 log10 CFU/mL when compared with the control sample (~8.91 log10 CFU/mL. In contrast, lactose hydrolysis in whey did not enhance the activity of Bifidobacterium animalis subsp. lactis BB-12. Lactose hydrolysis had slightly influence on sensory score of fermented samples, probably due to sweetness that masked the acidic taste of the product.

  19. Monitoring of whey quality with NIR spectroscopy

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey; Lomborg, Carina

    2015-01-01

    The possibility of using near-infrared (NIR) spectroscopy for monitoring of liquid whey quality parameters during protein production process has been tested. The parameters included total solids, lactose, protein and fat content. The samples for the experiment were taken from real industrial...

  20. Whey Peptide-Based Formulas With ω-3 Fatty Acids Are Protective in Lipopolysaccharide-Mediated Sepsis.

    Science.gov (United States)

    Tsutsumi, Rie; Horikawa, Yousuke T; Kume, Katsuyoshi; Tanaka, Katsuya; Kasai, Asuka; Kadota, Takako; Tsutsumi, Yasuo M

    2015-07-01

    Sepsis and septic shock syndrome are among the leading causes of death in critically ill patients. Lipopolysaccharide (LPS) released by bacteria within the colon may translocate across a compromised epithelium, leading to oxidative stress, inflammation, sepsis, and eventually death. We examined the effects of a whey-based enteral formula high in cysteine (antioxidant precursor) and the addition of ω-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), against a mouse model of LPS-induced sepsis. Mice were fed either a whey-based diet with EPA-DHA (PAF), a whey-based diet without EPA-DHA (PSTD), or a casein-based control diet (CONT). Mice fed PAF or PSTD were protected against LPS-induced weight loss. Whey-based diets suppressed inflammatory cytokine release and oxidative stress damage. Furthermore, PAF and PSTD were able to inhibit autophagy, a mechanism in which the cell recycles damaged organelles. These anti-inflammatory and antioxidative effects of PSTD and PAF resulted in decreased liver inflammation and intestinal damage and promoted protective microbiota within the intestines. These data suggest a clinical role for whey peptide-based diets in promoting healing and recovery in critically ill patients. © 2014 American Society for Parenteral and Enteral Nutrition.

  1. Vitamin B/sub 12/ production from whey and simulation of optimal cultural conditions. [Propionibacterium shermanii 566

    Energy Technology Data Exchange (ETDEWEB)

    Marwaha, S S; Kennedy, J F; Sethi, R P

    1983-12-01

    The paper reports Propionibacterium shermanii 566 to be an efficient culture, among the three propionibacteria tested, for vitamin B/sub 12/ fermentation from whey. On the basis of the results observed and expected values calculated from simulated equations, 24 hours old inoculum, 5 mg/iron and 4% whey lactose concentration were selected as the optimal values for the fermentation. Carbon mixture of whey lactose and D-glucose (3.6% + 0.4%) and supplementation of whey with 0.5% (NH/sub 4/)/sub 2/HPO/sub 4/ further enhanced the yield of the metabolite. Under optimum cultural conditions, the organism metabolized 5.12 ..mu..g vitamin B/sub 12//ml culture, subsequently reducing the BOD by 90%, thereby reducing the pollution problems.

  2. The Influence of 8 Weeks of Whey-Protein and Leucine Supplementation on Physical and Cognitive Performance

    Science.gov (United States)

    2010-01-01

    Influence of 8 Weeks of Whey Protein and Leucine Supplementation on Physical and Cognitive Performance 5a. GONTRAGT NUMBER FA8650-04-D-6472 5b. GRANT NUMBER...investigate the ability of whey -protein and leucine supplementation to enhance physical and cognitive performance and body composition. Thirty moderately fit...composition before and after supplementing their daily diet for 8 wk with either 19.7 g of whey protein and 6.2 g leucine (WPL) or a calorie-equivalent placebo

  3. Effect of dairy powders fortification on yogurt textural and sensorial properties: a review.

    Science.gov (United States)

    Karam, Marie Celeste; Gaiani, Claire; Hosri, Chadi; Burgain, Jennifer; Scher, Joël

    2013-11-01

    Yogurts are important dairy products that have known a rapid market growth over the past few decades. Industrial yogurt manufacture involves different processing steps. Among them, protein fortification of the milk base is elemental. It greatly enhances yogurt nutritional and functional properties and prevents syneresis, an undesirable yogurt textural defect. Protein enrichment can be achieved by either concentration process (evaporation under vacuum and membrane processing: reverse osmosis and/or ultrafiltration) or by addition of dairy ingredients. Traditionally, skim milk powder (SMP) is used to enrich the milk base before fermentation. However, increased quality and availability of other dairy ingredients such as milk protein isolates (MPI), milk protein concentrates (MPC) whey protein isolates (WPI) and concentrates (WPC), micellar casein (MC) and caseinates have promoted their use as alternatives to SMP. Substituting different dry ingredients for skim milk powder in yogurt making affects the yogurt mix protein composition and subsequent textural and sensorial properties. This review focuses on various type of milk protein used for fortification purposes and their influence on these properties.

  4. Continuous lactic fermentation of deproteinized sweet whey

    Directory of Open Access Journals (Sweden)

    M. Trujillo

    1998-01-01

    Full Text Available Whey is a major water contaminant due to its high biochemical oxygen demand (BOD, stemming mainly from its lactose (milk sugar content. The objetive of this research was to investigate the conversion of whey into useful, value-added products. Several methods have been developed already, the most important being dehydration, production of drinks, and conversion of the sugar component into organic acids. Lactic acid including its sodium, calcium, iron and antimony salts, is a valuable product in the alimentary industry and is also a raw material in the chemical industry. To maximize lactic acid production we determined the optimal dilution rate (D carrying out eight fermentations, with D = 0.102 h-1, until the acid production was nil (D= 3.0 h-1. Working conditions were 45 ± 0.1 °C, pH 5.6 ± 0.2, and a cell concentration of 30 ± 4.0 g/L, using Lactobacillus bulgaricus, and deproteinized sweet whey as a substrate. Production of lactic acid and sodium lactate was between 0.5 and 24.37 g/L. Stability of production was reached in average after two retention times. Highest productivity was at D= 0.2 h-1 (2.5 g/Lh , where only 30% of the lactose was consumed from the substrate . Highest lactose consumption was found at D= 0.102 h-1 (53.4%, where productivity was nearly maximal (2.49g/Lh, but acid concentration (26.6% was considerably higher than at the corresponding dilution rate D= 0.2 h-1, which was 14.75 g/L.

  5. Sensory and Functionality Differences of Whey Protein Isolate Bleached by Hydrogen or Benzoyl Peroxide.

    Science.gov (United States)

    Smith, Tucker J; Foegeding, E Allen; Drake, MaryAnne

    2015-10-01

    Whey protein is a highly functional food ingredient used in a wide variety of applications. A large portion of fluid whey produced in the United States is derived from Cheddar cheese manufacture and contains annatto (norbixin), and therefore must be bleached. The objective of this study was to compare sensory and functionality differences between whey protein isolate (WPI) bleached by benzoyl peroxide (BP) or hydrogen peroxide (HP). HP and BP bleached WPI and unbleached controls were manufactured in triplicate. Descriptive sensory analysis and gas chromatography-mass spectrometry were conducted to determine flavor differences between treatments. Functionality differences were evaluated by measurement of foam stability, protein solubility, SDS-PAGE, and effect of NaCl concentration on gelation relative to an unbleached control. HP bleached WPI had higher concentrations of lipid oxidation and sulfur containing volatile compounds than both BP and unbleached WPI (P protein loss at pH 4.6 of WPI decreased by bleaching with either hydrogen peroxide or benzoyl peroxide (P whey with either BP or HP resulted in protein degradation, which likely contributed to functionality differences. These results demonstrate that bleaching has flavor effects as well as effects on many of the functionality characteristics of whey proteins. Whey protein isolate (WPI) is often used for its functional properties, but the effect of oxidative bleaching chemicals on the functional properties of WPI is not known. This study identifies the effects of hydrogen peroxide and benzoyl peroxide on functional and flavor characteristics of WPI bleached by hydrogen and benzoyl peroxide and provides insights for the product applications which may benefit from bleaching. © 2015 Institute of Food Technologists®

  6. Advances in extrusion for texturized whey proteins

    Science.gov (United States)

    Dairy proteins like whey proteins play an important role in human nutrition because of their characteristic structure and associated numerous benefits such as ease of digestion, in- vivo assimilation, creating new or maintaining the muscle mass and the unique ability of boosting immune functions. W...

  7. Effect of Whey Supplementation on Circulating C-Reactive Protein: A Meta-Analysis of Randomized Controlled Trials

    Science.gov (United States)

    Zhou, Ling-Mei; Xu, Jia-Ying; Rao, Chun-Ping; Han, Shufen; Wan, Zhongxiao; Qin, Li-Qiang

    2015-01-01

    Whey supplementation is beneficial for human health, possibly by reducing the circulating C-reactive protein (CRP) level, a sensitive marker of inflammation. Thus, a meta-analysis of randomized controlled trials was conducted to evaluate their relationship. A systematic literature search was conducted in July, 2014, to identify eligible studies. Either a fixed-effects model or a random-effects model was used to calculate pooled effects. The meta-analysis results of nine trials showed a slight, but no significant, reduction of 0.42 mg/L (95% CI −0.96, 0.13) in CRP level with the supplementation of whey protein and its derivates. Relatively high heterogeneity across studies was observed. Subgroup analyses showed that whey significantly lowered CRP by 0.72 mg/L (95% CI −0.97, −0.47) among trials with a daily whey dose ≥20 g/day and by 0.67 mg/L (95% CI −1.21, −0.14) among trials with baseline CRP ≥3 mg/L. Meta-regression analysis revealed that the baseline CRP level was a potential effect modifier of whey supplementation in reducing CRP. In conclusion, our meta-analysis did not find sufficient evidence that whey and its derivates elicited a beneficial effect in reducing circulating CRP. However, they may significantly reduce CRP among participants with highly supplemental doses or increased baseline CRP levels. PMID:25671415

  8. Whey proteins have beneficial effects on intestinal enteroendocrine cells stimulating cell growth and increasing the production and secretion of incretin hormones.

    Science.gov (United States)

    Gillespie, Anna L; Calderwood, Danielle; Hobson, Laura; Green, Brian D

    2015-12-15

    Whey protein has been indicated to curb diet-induced obesity, glucose intolerance and delay the onset of type 2 diabetes mellitus. Here the effects of intact crude whey, intact individual whey proteins and beta-lactoglobulin hydrolysates on an enteroendocrine (EE) cell model were examined. STC-1 pGIP/neo cells were incubated with several concentrations of yogurt whey (YW), cheese whey (CW), beta-lactoglobulin (BLG), alpha-lactalbumin (ALA) and bovine serum albumin (BSA). The findings demonstrate that BLG stimulates EE cell proliferation, and also GLP-1 secretion (an effect which is lost following hydrolysis with chymotrypsin or trypsin). ALA is a highly potent GLP-1 secretagogue which also increases the intracellular levels of GLP-1. Conversely, whey proteins and hydrolysates had little impact on GIP secretion. This appears to be the first investigation of the effects of the three major proteins of YW and CW on EE cells. The anti-diabetic potential of whey proteins should be further investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Rheology and microstructure of binary mixed gel of rice bran protein-whey: effect of heating rate and whey addition.

    Science.gov (United States)

    Rafe, Ali; Vahedi, Elnaz; Hasan-Sarei, Azadeh Ghorbani

    2016-08-01

    Rice bran protein (RBP) is a valuable plant protein which has unique nutritional and hypoallergenic properties. Whey proteins have wide applications in the food industry, such as in dairy, meat and bakery products. Whey protein concentrate (WPC), RBP and their mixtures at different ratios (1:1, 1:2, 1:5 and 1:10 w/w) were heated from 20 to 90 °C at different heating rates (0.5, 1, 5 and 10 °C min(-1) ). The storage modulus (G') and gelling point (Tgel ) of WPC were higher than those of RBP, indicating the good ability of WPC to develop stiffer networks. By increasing the proportion of WPC in mixed systems, G' was increased and Tgel was reduced. Nevertheless, the elasticity of all binary mixtures was lower than that of WPC alone. Tgel and the final G' of RBP-WPC blends were increased by raising the heating rate. The RBP-WPC mixtures developed more elastic gels than RBP alone at different heating rates. RBP had a fibrillar and lentil-like structure whose fibril assembly had smaller structures than those of WPC. The gelling structure of the mixed gel of WPC-RBP was improved by adding WPC. Indeed, by adding WPC, gels tended to show syneresis and had lower water-holding capacity. Furthermore, the gel structure was produced by adding WPC to the non-gelling RBP, which is compatible with whey and can be applied as a functional food for infants and/or adults. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Time resolved fluorescence of cow and goat milk powder

    Science.gov (United States)

    Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.

    2017-01-01

    Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.

  11. Time-Dependent Expression Profiles of microRNAs and mRNAs in Rat Milk Whey

    Science.gov (United States)

    Izumi, Hirohisa; Kosaka, Nobuyoshi; Shimizu, Takashi; Sekine, Kazunori; Ochiya, Takahiro; Takase, Mitsunori

    2014-01-01

    Functional RNAs, such as microRNA (miRNA) and mRNA, are present in milk, but their roles are unknown. To clarify the roles of milk RNAs, further studies using experimental animals such as rats are needed. However, it is unclear whether rat milk also contains functional RNAs and what their time dependent expression profiles are. Thus, we prepared total RNA from whey isolated from rat milk collected on days 2, 9, and 16 postpartum and analyzed using microarrays and quantitative PCR. The concentration of RNA in colostrum whey (day 2) was markedly higher than that in mature milk whey (days 9 and 16). Microarray analysis detected 161 miRNAs and 10,948 mRNA transcripts. Most of the miRNAs and mRNA transcripts were common to all tested milks. Finally, we selected some immune- and development-related miRNAs and mRNAs, and analysed them by quantitative PCR (in equal sample volumes) to determine their time-dependent changes in expression in detail. Some were significantly more highly expressed in colostrum whey than in mature milk whey, but some were expressed equally. And mRNA expression levels of some cytokines and hormones did not reflect the protein levels. It is still unknown whether RNAs in milk play biological roles in neonates. However, our data will help guide future in vivo studies using experimental animals such as rats. PMID:24533154

  12. Effect of whey protein on plasma amino acids in diabetic mice

    OpenAIRE

    HAN, TING; CAI, DONGLIAN; GENG, SHANSHAN; WANG, YING; ZHEN, HUI; WU, PEIYING

    2013-01-01

    The aim of this study was to investigate the effect of whey protein on plasma amino acid levels in a mouse model of type II diabetes, using high-performance liquid chromatography (HPLC). The composition and content of amino acids in the whey proteins were analyzed using HPLC. Type I and type II diabetic mouse models were prepared using streptozotocin (STZ) and normal mice were used as a control. The ICR mice in each group were then randomly divided into four subgroups, to which 0, 10, 20 and ...

  13. Short communication: Effect of whey protein addition and transglutaminase treatment on the physical and sensory properties of reduced-fat ice cream.

    Science.gov (United States)

    Danesh, Erfan; Goudarzi, Mostafa; Jooyandeh, Hossein

    2017-07-01

    The effects of whey protein addition and transglutaminase treatment, alone and in combination, on the physical and sensory properties of reduced-fat ice cream were investigated. Adding whey protein with or without enzyme treatment decreased melting rate, overrun, and hardness of the reduced-fat ice cream; however, the enzyme-treated sample had a higher melting rate and overrun and softer texture. Whey protein-fortified samples showed higher melting resistance, but lower overrun and firmer texture compared with the enzyme-treated sample without added whey protein. Whey protein addition with or without transglutaminase treatment caused an increase in apparent viscosity and a decrease in flow index of the reduced-fat ice cream; nevertheless, the flow behavior of full-fat sample was most similar to the enzyme-treated reduced-fat sample with no added whey protein. Descriptive sensory analyses showed that neither whey protein addition nor transglutaminase treatment significantly influenced the flavor and odor of reduced-fat ice cream, but they both noticeably improved the color and texture of the final product. The results of this study suggest that whey protein addition with transglutaminase treatment improves the physical and sensory properties of reduced-fat ice cream more favorably than does whey protein addition or transglutaminase treatment alone. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Whey protein potentiates the intestinotrophic action of glucagon-like peptide-2 in parenterally fed rats

    DEFF Research Database (Denmark)

    Liu, Xiaowen; Murali, Sangita G; Holst, Jens J

    2009-01-01

    protein component, casein, soy, or whey protein, potentiates the intestinal growth response to GLP-2 in rats with PN-induced mucosal hypoplasia. Rats received PN and continuous intravenous infusion of GLP-2 (100 microg/kg/day) for 7 days. Six EN groups received PN+GLP-2 for days 1-3 and partial PN+GLP-2...... plus EN for days 4-7. EN was provided by ad libitum intake of a semielemental liquid diet with different protein sources: casein, hydrolyzed soy, whey protein concentrate (WPC), and hydrolyzed WPC+casein. Controls received PN+GLP-2 alone. EN induced significantly greater jejunal sucrase activity...... whey protein, and not casein or soy, potentiated the ability of GLP-2 to reverse PN-induced mucosal hypoplasia and further increase ileal villus height, crypt depth, and mucosa cellularity compared with PN+GLP-2 alone, P whey protein to induce greater mucosal surface area...

  15. Soy versus whey protein bars: Effects on exercise training impact on lean body mass and antioxidant status

    Directory of Open Access Journals (Sweden)

    Babaknia Ari

    2004-12-01

    Full Text Available Abstract Background Although soy protein may have many health benefits derived from its associated antioxidants, many male exercisers avoid soy protein. This is due partly to a popular, but untested notion that in males, soy is inferior to whey in promoting muscle weight gain. This study provided a direct comparison between a soy product and a whey product. Methods Lean body mass gain was examined in males from a university weight training class given daily servings of micronutrient-fortified protein bars containing soy or whey protein (33 g protein/day, 9 weeks, n = 9 for each protein treatment group. Training used workouts with fairly low repetition numbers per set. A control group from the class (N = 9 did the training, but did not consume either type protein bar. Results Both the soy and whey treatment groups showed a gain in lean body mass, but the training-only group did not. The whey and training only groups, but not the soy group, showed a potentially deleterious post-training effect on two antioxidant-related related parameters. Conclusions Soy and whey protein bar products both promoted exercise training-induced lean body mass gain, but the soy had the added benefit of preserving two aspects of antioxidant function.

  16. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    Science.gov (United States)

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after

  17. Fractionation of whey protein isolate with supercritical carbon dioxide – process modeling and cost estimation

    Science.gov (United States)

    An economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (sCO2) as an acid to produce enriched fractions of alpha-lactalbumin (alpha-La) and beta-lactoglobulin (beta-Lg) from a commercial whey protein isolate (WPI) containing 55% ...

  18. Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects.

    Science.gov (United States)

    Frid, Anders H; Nilsson, Mikael; Holst, Jens Juul; Björck, Inger M E

    2005-07-01

    Whey proteins have insulinotropic effects and reduce the postprandial glycemia in healthy subjects. The mechanism is not known, but insulinogenic amino acids and the incretin hormones seem to be involved. The aim was to evaluate whether supplementation of meals with a high glycemic index (GI) with whey proteins may increase insulin secretion and improve blood glucose control in type 2 diabetic subjects. Fourteen diet-treated subjects with type 2 diabetes were served a high-GI breakfast (white bread) and subsequent high-GI lunch (mashed potatoes with meatballs). The breakfast and lunch meals were supplemented with whey on one day; whey was exchanged for lean ham and lactose on another day. Venous blood samples were drawn before and during 4 h after breakfast and 3 h after lunch for the measurement of blood glucose, serum insulin, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide 1 (GLP-1). The insulin responses were higher after both breakfast (31%) and lunch (57%) when whey was included in the meal than when whey was not included. After lunch, the blood glucose response was significantly reduced [-21%; 120 min area under the curve (AUC)] after whey ingestion. Postprandial GIP responses were higher after whey ingestion, whereas no differences were found in GLP-1 between the reference and test meals. It can be concluded that the addition of whey to meals with rapidly digested and absorbed carbohydrates stimulates insulin release and reduces postprandial blood glucose excursion after a lunch meal consisting of mashed potatoes and meatballs in type 2 diabetic subjects.

  19. Impact of whey proteins on the systemic and local intestinal level of mice with diet induced obesity.

    Science.gov (United States)

    Swiątecka, D; Złotkowska, D; Markiewicz, L H; Szyc, A M; Wróblewska, B

    2017-04-19

    Obesity is a serious public health problem and being multifactorial is difficult to tackle. Since the intestinal ecosystem's homeostasis is, at least partially, diet-dependent, its modulation may be triggered by food components that are designed to exert a modulatory action leading to a health-promoting effect. Milk whey proteins, are considered as such promising factors since they influence satiation as well as body weight and constitute the source of biologically active peptides which may modulate health status locally and systemically. This way, whey proteins are associated with obesity. Therefore, this paper is aimed at the estimation of the impact of whey proteins using a commercially available whey protein isolate on the physiological response of mice with diet-induced obesity. The physiological response was evaluated on the local-intestinal level, scrutinizing intestinal microbiota as one of the important factors in obesity and on the systemic level, analyzing the response of the organism. Whey proteins brought about the decrease of the fat mass with a simultaneous increase of the lean mass of animals with diet induced obesity, which is a promising, health-promoting effect. Whey proteins also proved to act beneficially helping restore the number of beneficial bifidobacteria in obese animals and decreasing the calorie intake and fat mass as well as the LDL level. Overall, supplementation of the high fat diet with whey proteins acted locally by restoration of the intestinal ecosystem, thus preventing dysbiosis and its effects and also acted systemically by strengthening the organism increasing the lean mass and thus hindering obesity-related detrimental effects.

  20. Polymer powder adhesion to metallic surface improvement with plasma

    International Nuclear Information System (INIS)

    Hladik, J.; Pichal, J.; Spatenka, P.; Pichal, J.; Spatenka, P.

    2008-01-01

    Useful method for corrosion prevention is coating of a base material with a suitable substance. It performs a barrier between the base material and its environment. Great attractions in this field have found polymers, among them polyethylenes (PE). Due to the low adhesion grade of unmodified polymer powder or granules the application of any modification process increasing the adhesion grade is crucial. At present there is no universal approach to polymer adhesion improvement and there have been employed various quite different techniques. Our research employed the PE adhesion improvement by plasma modification. There were used two plasma reactors - the microwave low pressure reactor and the atmospheric reactor employing dielectric barrier discharge (DBD). The adhesion of the powder was determined by measurement of strength force demanded for displacement of the PE-metal joint

  1. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.

    Science.gov (United States)

    Wong, Douglas; Vasanthan, Thava; Ozimek, Lech

    2013-12-15

    This paper investigated the enhancement of thermal gelation properties when salt-soluble pea proteins were co-gelated with whey proteins in NaCl solutions, using different blend ratios, total protein concentrations, pH, and salt concentrations. Results showed that the thermal co-gelation of pea/whey proteins blended in ratio of 2:8 in NaCl solutions showed synergistic enhancement in storage modulus, gel hardness, paste viscosity and minimum gelation concentrations. The highest synergistic enhancement was observed at pH 6.0 as compared with pH 4.0 and 8.0, and at the lower total protein concentration of 10% as compared with 16% and 22% (w/v), as well as in lower NaCl concentrations of 0.5% and 1.0% as compared with 1.5%, 2.0%, 2.5%, and 3.0% (w/v). The least gelation concentrations were also lower in the different pea/whey protein blend ratios than in pure pea or whey proteins, when dissolved in 1.0% or 2.5% (w/v) NaCl aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men.

    Science.gov (United States)

    Mitchell, Cameron J; McGregor, Robin A; D'Souza, Randall F; Thorstensen, Eric B; Markworth, James F; Fanning, Aaron C; Poppitt, Sally D; Cameron-Smith, David

    2015-10-21

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring (13)C₆ phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h(-1) in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein.

  3. INTERACTION OF NIZKOMETILIROVANNYJ PECTINS WITH A CONCENTRATE OF PROTEINS OF WHEY

    Directory of Open Access Journals (Sweden)

    H. I. Teshaev

    2012-01-01

    Full Text Available Potentiometric titration method was used to study quality complex formation between low methylated pectin and proteins concentrated from whey. It’s shown that at рН>IEP of the lactoglobulin the interaction occurs between negatively charged chains of LM-pectin and positively charged patches of polypeptide chains. The biopolymers ratio had no significant effect on the initial pH of soluble complex formation (pHc; addition of sodium chloride decreased pHc and pK0 of complexes, which linked to electrostatic nature of complex formation between LM-pectin and whey proteins.

  4. Dynamics of yeast immobilized-cell fluidized-bed bioreactors systems in ethanol fermentation from lactose-hydrolyzed whey and whey permeate.

    Science.gov (United States)

    Gabardo, Sabrina; Pereira, Gabriela Feix; Klein, Manuela P; Rech, Rosane; Hertz, Plinho F; Ayub, Marco Antônio Záchia

    2016-01-01

    We studied the dynamics of ethanol production on lactose-hydrolyzed whey (LHW) and lactose-hydrolyzed whey permeate (LHWP) in batch fluidized-bed bioreactors using single and co-cultures of immobilized cells of industrial strains of Saccharomyces cerevisiae and non-industrial strains of Kluyveromyces marxianus. Although the co-culture of S. cerevisiae CAT-1 and K. marxianus CCT 4086 produced two- to fourfold the ethanol productivity of single cultures of S. cerevisiae, the single cultures of the K. marxianus CCT 4086 produced the best results in both media (Y EtOH/S = 0.47-0.49 g g(-1) and Q P = 1.39-1.68 g L(-1) h(-1), in LHW and LHWP, respectively). Ethanol production on concentrated LHWP (180 g L(-1)) reached 79.1 g L(-1), with yields of 0.46 g g(-1) for K. marxianus CCT 4086 cultures. Repeated batches of fluidized-bed bioreactor on concentrated LHWP led to increased ethanol productivity, reaching 2.8 g L(-1) h(-1).

  5. Sustainable alternative for the food industry: converting whey and orange juice into a micro-filtered beverage

    Directory of Open Access Journals (Sweden)

    Rafael Fagnani

    Full Text Available ABSTRACT: Enhancing industrial sustainability by converting whey into alternative high value-added products is a scientific trend in food science and technology. However, without other ingredients, rennet, or sour, whey has an unappetizing flavor. This sensory challenge can be overcome by blending it with citrus flavor from orange juice. This study assessed a micro-filtered beverage from whey and orange juice without enzymatic treatment. Four formulations (27:10, 8.6:10, 2.4:10 and 1:10 v/v whey:juice ratio were processed through a 1.4 μm microfiltration system with four different transmembrane pressures (1, 2, 3, and 4.15 bar and then stored at 5 °C for 28 days. The micro-filtered beverage was analyzed for physicochemical, sensorial and microbial changes. It was possible overcome the technological challenges of orange juice microfiltration without enzymatic treatment with high transmembrane pressures. The whey:orange juice ratio was also decisive for permeation. A clear beverage with lower viscosity, turbidity, and protein levels was obtained, without altering mineral concentrations thus showing that the product has good capacity for hydration. The beverage presented good microbiological quality and remained stable for 28 days at 5 °C. Sensory evaluation data indicate that the beverage can be directed to young people and women, regardless of their physical activity. The combination of whey and orange juice can be explored industrially as a micro-filtered beverage, with satisfactory results of physicochemical, microbiological and sensory acceptance.

  6. Comparative Analysis of the miRNome of Bovine Milk Fat, Whey and Cells.

    Science.gov (United States)

    Li, Ran; Dudemaine, Pier-Luc; Zhao, Xin; Lei, Chuzhao; Ibeagha-Awemu, Eveline Mengwi

    2016-01-01

    Abundant miRNAs have been identified in milk and mammary gland tissues of different species. Typically, RNA in milk can be extracted from different fractions including fat, whey and cells and the mRNA transcriptome of milk could serve as an indicator of the transcriptome of mammary gland tissue. However, it has not been adequately validated if the miRNA transcriptome of any milk fraction could be representative of that of mammary gland tissue. The objectives of this study were to (1) characterize the miRNA expression spectra from three milk fractions- fat, whey and cells; (2) compare miRNome profiles of milk fractions (fat, whey and cells) with mammary gland tissue miRNome, and (3) determine which milk fraction miRNome profile could be a better representative of the miRNome profile of mammary gland tissue. Milk from four healthy Canadian Holstein cows in mid lactation was collected and fractionated. Total RNA extracted from each fraction was used for library preparation followed by small RNA sequencing. In addition, miRNA transcripts of mammary gland tissues from twelve Holstein cows in our previous study were used to compare our data. We identified 210, 200 and 249 known miRNAs from milk fat, whey and cells, respectively, with 188 universally expressed in the three fractions. In addition, 33, 31 and 36 novel miRNAs from milk fat, whey and cells were identified, with 28 common in the three fractions. Among 20 most highly expressed miRNAs in each fraction, 14 were expressed in common and 11 were further shared with mammary gland tissue. The three milk fractions demonstrated a clear separation from each other using a hierarchical cluster analysis with milk fat and whey being most closely related. The miRNome correlation between milk fat and mammary gland tissue (rmean = 0.866) was significantly higher than the other two pairs (p whey/mammary gland tissue (rmean = 0.755) and milk cell/mammary gland tissue (rmean = 0.75), suggesting that milk fat could be an

  7. Rheology and microstructure of kefiran and whey protein mixed gels.

    Science.gov (United States)

    Kazazi, Hosayn; Khodaiyan, Faramarz; Rezaei, Karamatollah; Pishvaei, Malihe; Mohammadifar, Mohammad Amin; Moieni, Sohrab

    2017-04-01

    The effect of kefiran on cold-set gelation of whey protein isolate (WPI) at 25 °C was studied using rheological measurements and environmental scanning electron microscopy (ESEM). The gelation of samples was induced by the addition of glucono-δ-lactone to the dispersions. WPI concentration was maintained at 8% (w/v) and the concentration of kefiran varied from 0 to 0.08% (w/v). According to rheological measurements, the addition of kefiran into WPI dispersions resulted in a significant increase in the gel strength, the yield stress, and the shear stress values at the flowing point. The gelling point and gelation pH of samples decreased significantly with an increase in kefiran concentration. ESEM micrographs showed that the presence of kefiran played an important role in the microstructure formation of gels. The microstructure of kefiran-WPI mixed gels was more compact and dense, compared to the WPI gel. Depletion interactions between kefiran and whey protein aggregates can be regarded as the chief factor which was responsible for these effects. The present work demonstrated that rheological and microstructural properties of acid-induced whey protein gels were improved by the addition of kefiran.

  8. Whey protein concentration by ultrafiltration and study of functional properties

    Directory of Open Access Journals (Sweden)

    Sidiane Iltchenco

    2018-06-01

    Full Text Available ABSTRACT: This paper aim to evaluate the ultrafiltration (UF process for constituents recovery from whey. Sequences of factorial designs were performed by varying temperature (5 to 40°C and pressure (1 to 3 bar, to maximize the proteins concentration using membrane of 100kDa in dead end system. Based on the best result new experiments were performed with membrane of 50kDa and 10kDa. With the membrane of 50 the protein retention was about 3 times higher than the membrane of 100kDa. The concentrated obtained by UF membrane of 10kDa, 10°C and 2 bar in laboratory scale showed a mean protein retention of 80 %, greater protein solubility, emulsion stability and the identification of β-lactoglobulins (18.3 kDa and α-lactalbumin fractions (14.2kDa. Therefore, the use of membrane of 100 and 50kDa are became a industrially recommendable alternatives to concentration of whey proteins, and/or as a previous step to the fractionation of whey constituents using membrane ≤10kDa, aiming at future applications in different areas (food, pharmaceutical, chemical, etc..

  9. Effects of hydrolysed casein, intact casein and intact whey protein on energy expenditure and appetite regulation

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist; Lorenzen, Janne Kunchel; Gomes, Sisse

    2014-01-01

    Casein and whey differ in amino acid composition and in the rate of absorption; however, the absorption rate of casein can be increased to mimic that of whey by exogenous hydrolysis. The objective of the present study was to compare the effects of hydrolysed casein (HC), intact casein (IC......) and intact whey (IW) on energy expenditure (EE) and appetite regulation, and thereby to investigate the influence of amino acid composition and the rate of absorption. In the present randomised cross-over study, twenty-four overweight and moderately obese young men and women consumed three isoenergetic...

  10. Digestion of cheese whey with anaerobic rotating biological contact reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A laboratory-scale anaerobic rotating biological contact reactor receiving full strength cheese whey was studied over a range of hydraulic retention times from 11 to 5 days at 35 degrees C. Methane production rates ranging from 1.68 to 3.26 litres CH/sub 4//litre/day and a 76 to 93% reduction in chemical oxygen demand were achieved. At hydraulic retention times shorter than 5 days, steady-state operation could not be maintained for reactors receiving either full strength or diluted whey. A two-stage fermentation system was also studied; the results indicated that stable operation and treatment efficiency (89.5% COD removal) could be achieved.

  11. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; Boekel, van Tiny; Fogliano, Vincenzo; Stieger, Markus

    2016-01-01

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were

  12. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates.

    Science.gov (United States)

    Song, J J; Wang, Q; Du, M; Ji, X M; Mao, X Y

    2017-09-01

    Inhibition of dipeptidyl peptidase-IV (DPP-IV) activity is a promising strategy for treatment of type 2 diabetes. In the current study, DPP-IV inhibitory peptides were identified from mare whey protein hydrolysates obtained by papain. The results showed that all the mare whey protein hydrolysates obtained at various hydrolysis durations possessed more potent DPP-IV inhibitory activity compared with intact whey protein. The 4-h hydrolysates showed the greatest DPP-IV inhibitory activity with half-maximal inhibitory concentration of 0.18 mg/mL. The 2 novel peptides from 4-h hydrolysate fractions separated by successive chromatographic steps were characterized by liquid chromatography-electrospray ionization tandem mass spectrometry. The novel peptides Asn-Leu-Glu-Ile-Ile-Leu-Arg and Thr-Gln-Met-Val-Asp-Glu-Glu-Ile-Met-Glu-Lys-Phe-Arg, which corresponded to β-lactoglobulin 1 f(71-77) and β-lactoglobulin 1 f(143-155), demonstrated DPP-IV inhibitory activity with half-maximal inhibitory concentrations of 86.34 and 69.84 μM, respectively. The DPP-IV inhibitory activity of the 2 peptides was retained or even improved after simulated gastrointestinal digestion in vitro. Our findings indicate that mare whey protein-derived peptides may possess potential as functional food ingredients in the management of type 2 diabetes. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. LEU fuel powder technology at Babcock and Wilcox (USA)

    International Nuclear Information System (INIS)

    Bogacik, K.E.

    1984-01-01

    This paper traces BandW involvement in HEU fuel manufacturing to the current work directed at LEU reactor technology. Past work at BandW in areas such as alloying, fuel handling and core manufacturing has been of significant benefit to the current LEU fuel processing requirements. Recent investigations and process developments for production of LEU aluminide and silicide fuels are discussed. Techniques for alloying by vacuum are melting, followed by comminution methods after alloying, are presented for both the LEU aluminide and silicide fuel powders. Powder processing discussions include compacting techniques used by BandW for these alloys. This overview of BandW's LEU i nvolvement provides details of specific modifications and process developments in powdered fuels. Product attributes such as powder chemistry, size, and other physical properties of each LEU fuel are presented. (author)

  14. Studies on the sintering behaviour of uranium dioxide powder compacts

    International Nuclear Information System (INIS)

    Das, P.; Chowdhury, R.

    1988-01-01

    Uranium dioxide fuel pellets are normally made from their precursor ammonium diuranate, followed by calcination, subsequent reduction to sinterable grade powders and a post operation treatment of pressing and sintering. The low temperature calcined powders, usually exhibiting non-crystalline behaviour (under X-ray diffraction studies) progressively transforms into a crystalline variety on subsequent heat treatment at higher temperature. It is observed however that powders calcined between 800 to 900 0 C exhibit enhanced densification behaviour when sintered at higher temperatures. The isothermal shrinkage versus time plot of the sintered compacts are well described by a hyperbolic relationship which takes care of the observed shrinkage (λ) as caused due to a cumulative effect from the initial sintering of the powder compacts at zero time (α) and that caused due to the structural transformation from a non-crystalline modification with increased thermal treatment (β). The derived equation is a modification of the sintering mechanism of the viscous flow type proposed by Frenkel, involving sintering of an amorphous phase, the viscosity of the latter is presumed to increase with increasing thermal treatment to assume the final modified form as λ=t/(α+βt), where t = time, λ = shrinkage and α and β are the unknown parameters. (orig.)

  15. Short communication: Potential of Fresco-style cheese whey as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme inhibitory activities.

    Science.gov (United States)

    Tarango-Hernández, S; Alarcón-Rojo, A D; Robles-Sánchez, M; Gutiérrez-Méndez, N; Rodríguez-Figueroa, J C

    2015-11-01

    Recently, traditional Mexican Fresco-style cheese production has been increasing, and the volume of cheese whey generated represents a problem. In this study, we investigated the chemical composition of Fresco-style cheese wheys and their potential as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme (ACE)-inhibitory activities. Three samples from Fresco, Panela, and Ranchero cheeses whey were physicochemically characterized. Water-soluble extracts were fractionated to obtain whey fractions with different molecular weights: 10-5, 5-3, 3-1 and wheys. All whey fractions had antioxidant and ACE-inhibitory activities. The 10-5 kDa whey fraction of Ranchero cheese had the highest Trolox equivalent antioxidant capacity (0.62 ± 0.00 mM), and the 3-1 kDa Panela and Fresco cheese whey fractions showed the highest ACE-inhibitory activity (0.57 ± 0.02 and 0.59 ± 0.04 μg/mL 50%-inhibitory concentration values, respectively). These results suggest that Fresco-style cheese wheys may be a source of protein fractions with bioactivity, and thus could be useful ingredients in the manufacture of functional foods with increased nutritional value. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. d-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate.

    Science.gov (United States)

    Jayamuthunagai, J; Srisowmeya, G; Chakravarthy, M; Gautam, P

    2017-07-01

    The aim of the work is to produce d-Tagatose by direct addition of alginate immobilized Lactobacillus plantarum cells to lactose hydrolysed whey permeate. The cells were untreated and immobilized (UIC), permeabilized and immobilized (PIC) and the relative activities were compared with purified l-arabinose isomerase (l-AI) for d-galactose isomerization. Successive lactose hydrolysis by β-galactosidase from Escherichia coli and d-galactose isomerization using l-AI from Lactobacillus plantarum was performed to investigate the in vivo production of d-tagatose in whey permeate. In whey permeate, maximum conversion of 38% and 33% (w/w) d-galactose isomerization by PIC and UIC has been obtained. 162mg/g and 141mg/g of d-tagatose production was recorded in a 48h reaction time at 50°C, pH 7.0 with 5mM Mn 2+ ion concentration in the initial substrate mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii.

    Science.gov (United States)

    Duongthingoc, Diep; George, Paul; Katopo, Lita; Gorczyca, Elizabeth; Kasapis, Stefan

    2013-12-01

    This work investigates the effect of whey protein agglomeration on the survivability of Saccharomyces boulardii within spray dried microcapsules. It attempts to go beyond phenomenological observations by establishing a relationship between physicochemical characteristics of the polymeric matrix and its effect on probiotic endurance upon spray drying. It is well known that this type of thermal shock has lethal consequences on the yeast cells. To avoid such undesirable outcome, we take advantage of the early agglomeration phenomenon observed for whey protein by adjusting the pH value of preparations close to isoelectric point (pH 4-5). During the subsequent process of spray drying, development of whey protein agglomerates induces formation of an early crust, and the protein in this molten globular state creates a cohesive network encapsulating the yeast cells. It appears that the early crust formation at a given sample pH and temperature regime during spray drying benefits the survivability of S. boulardii within microcapsules. Copyright © 2013. Published by Elsevier Ltd.

  18. Supplemental protein in support of muscle mass and health: advantage whey.

    Science.gov (United States)

    Devries, Michaela C; Phillips, Stuart M

    2015-03-01

    Skeletal muscle is an integral body tissue playing key roles in strength, performance, physical function, and metabolic regulation. It is essential for athletes to ensure that they have optimal amounts of muscle mass to ensure peak performance in their given sport. However, the role of maintaining muscle mass during weight loss and as we age is an emerging concept, having implications in chronic disease prevention, functional capacity, and quality of life. Higher-protein diets have been shown to: (1) promote gains in muscle mass, especially when paired with resistance training; (2) spare muscle mass loss during caloric restriction; and (3) attenuate the natural loss of muscle mass that accompanies aging. Protein quality is important to the gain and maintenance of muscle mass. Protein quality is a function of protein digestibility, amino acid content, and the resulting amino acid availability to support metabolic function. Whey protein is one of the highest-quality proteins given its amino acid content (high essential, branched-chain, and leucine amino acid content) and rapid digestibility. Consumption of whey protein has a robust ability to stimulate muscle protein synthesis. In fact, whey protein has been found to stimulate muscle protein synthesis to a greater degree than other proteins such as casein and soy. This review examines the existing data supporting the role for protein consumption, with an emphasis on whey protein, in the regulation of muscle mass and body composition in response to resistance training, caloric restriction, and aging. © 2015 Institute of Food Technologists®

  19. Modelling formulae of strawberry whey drinks of prophylactic application

    Directory of Open Access Journals (Sweden)

    N. Tkachenko

    2017-04-01

    Full Text Available Expediency of the development of formulae and innovative technologies for production of prophylactic application drinks possessing antioxidant, probiotic and hepatoprotective properties with the use of the secondary dairy product – whey, as well as the domestic vegetable raw materials having a high content of bioactive substances has been substantiated.Formulation composition of the prophylactic drinks based on cheese whey, extract of Tagetes patula flowers and the berry filler “Strawberry” with the use of the response surface method has been developed. Bioactivity of the drinks and the complex quality indicator which accounts for the total influence of the bioactivity, organoleptic assessment and weight coefficients of the specified unit indicators were taken as the optimization criteria; as the independent factors that were varied in the course of the experiment, the mass fractions of the marigold flowers extract and the strawberries filler were selected. It is recommended that the mass fractions of the berry filler “Strawberry” and the extract of Tagetes patula flowers in the prophylactic drinks are set as 7 and 20 % of the finished product, accordingly. The practical mass fraction of the citric acid of 0.2 % was determined as it ensures high organoleptic characteristics of the finished drinks. Recommendations are given concerning development of innovative technologies of unfermented and fermented strawberry whey drinks of prophylactic application enriched with the extract of Tagetes patula flowers.

  20. Whey-reduced weight gain is associated with a temporary growth reduction in young mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Madsen, Andreas N.; Hansen, Axel K.

    2015-01-01

    Whey protein consumption reportedly alleviates parameters of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in young mice fed a high-fat diet. We hypothesized that whey as the sole protein source reduced early weight gain associated with retarded growth...... and decreased concentration of insulin-like growth factor-1. Moreover, we hypothesized that these changes were explained by increased nitrogen loss via elevated urea production and/or increased energy expenditure. Male 5-week-old C57BL/6 mice were fed high-fat diets with the protein source being either whey......, casein or a combination of both for 5 weeks. After 1, 3 or 5 weeks, respectively, the mice were subjected to a meal challenge with measurements of blood and urinary urea before and 1 and 3 h after eating a weighed meal of their respective diets. In a subset of mice, energy expenditure was measured...

  1. Microbial ecophysiology of whey biomethanation

    International Nuclear Information System (INIS)

    Chartrain, M.M.

    1986-01-01

    The biodegradation of lactose into methane was investigated in a chemostat ecosystem under steady state conditions in order to understand the intermediary metabolism and the responsible bacterial species; and, to model the anaerobic digestion of whey in a continuous contact process. Radioactive carbon tracer studies showed that lactose biomethanation occurred in three distinct but simultaneous metabolic steps with lactate, acetate and hydrogen/carbon dioxide as the major intermediary metabolites. Mixed culture studies on the ecosystem composition demonstrated that multiple species of well described anaerobic bacteria were participating in each of three trophic groups: hydrolytic, acetogenic, and methanogenic. Biomethanation performance studies analyzed the dynamics of bacterial species composition and competition in relation to dilution rate. These results demonstrated that the hydrolytic and acetogenic bacteria were coupled to the methanogenic bacteria by interspecies hydrogen transfer; that species competition and dominance for a given carbon metabolite or for hydrogen was related to specific substrate transformation kinetic properties; and that the data was useful for describing biomethanation with a mechanistic model. Starter cultures were developed by employing freeze drying techniques to preserve either a defined culture comprised of four prevalent digestor species or an adapted chemostat sludge. Both of these starter cultures were shown to effectively degrade lactose using either a defined medium or raw whey as biomethanation starting substrate

  2. Contribution to the production of lactulose-rich whey by in situ electro-isomerization of lactose and effect on whey proteins after electro-activation as confirmed by matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Kareb, Ourdia; Champagne, Claude P; Aïder, Mohammed

    2016-04-01

    Cheese-whey, a major co-product of the dairy industry, has recently been the subject of many technological applications. We studied the bioconversion of whey into valuable bio-products such as a potential lactulose prebiotic and compounds with antioxidant properties. This paper examines efficiency, safety, and economics of electro-activation as an eco-friendly technology for a maximum valorization of whey. Thus, a bottom-up approach was therefore addressed. The effect of 4 experimental parameters--low working temperatures (0, 10, and 25 °C), current intensities (400, 600, and 800 mA), volume conditions (100, 200, and 300 mL), and feed concentrations [7, 14, and 28% (wt/vol)]--on lactose-whey isomerization to lactulose under electro-activation process were studied. Structural characteristics of whey proteins and antioxidant functionality were also investigated. The results showed a compromise to be reached between both parameters. Therefore, the maximum yield of 35% of lactulose was achieved after 40 min of reaction at the working temperature of 10 °C under 400 mA electric current field and 100-mL volume conditions with using feed solution at 7% (wt/vol). The isomerization of lactose to lactulose is accomplished by subsequent degradation to galactose, but only at a very small amount. Additionally, whey electro-activation showed significantly elevated antioxidant capacity compared with the untreated samples. The enhancement of antioxidant functionality of whey electro-activation resulted from the synergistic effect of its partial hydrolysis and the formation of antioxidant components that were able to scavenge free radicals. In conclusion, the findings of this study reveal that the whey treated by the safety electro-activation technology has both lactulose-prebiotic and antioxidant properties and could have a substantial application in the manufacture of pharmaceutical and functional foods. Copyright © 2016 American Dairy Science Association. Published by Elsevier

  3. Efficient lactulose production from cheese whey using sodium carbonate.

    Science.gov (United States)

    Seo, Yeong Hwan; Park, Gwon Woo; Han, Jong-In

    2015-04-15

    An economical method of lactulose production from cheese whey was developed using sodium carbonate (Na2CO3). Three parameters such as temperature, reaction time, and Na2CO3 concentration were identified as experimental factors, and yield was selected as a response parameter. The experimental factors were optimised employing Response Surface Methodology (RSM). Maximum yield of 29.6% was obtained at reaction time of 20.41 min, Na2CO3 of 0.51% at 90 °C. To overcome this limited lactulose yield, due to the conversion of lactulose to galactose, fed batch system was applied using dried cheese whey as lactose source. By this system, limit was broken, and 15.8 g/L of lactulose is produced in hour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Ingestion of soy-whey blended protein augments sports performance and ameliorates exercise-induced fatigue in a rat exercise model.

    Science.gov (United States)

    Ren, Guangxu; Yi, Suqing; Zhang, Hongru; Wang, Jing

    2017-02-22

    This study sought to determine the effects of soy-whey blended protein supplementation on sports performance and related biochemical parameters after long-term training. After a week of adaptation, eighteen 6-week-old male Wistar rats were randomly assigned to 3 groups: the standard chow diet plus whey protein (Whey) group, the standard chow diet plus soy-whey blended protein (BP) group and the standard chow diet only (control) group. Each group included 6 rats for the seven-week experiment. Before the experiment, the baseline values of body weight, grasping force and time to exhaustion due to the loaded-swimming test were recorded for each group. During the experimental period, all rats performed the loaded-swimming test until exhaustion five days each week. The results showed that the mean maximum grasping force of the BP group significantly increased between the 5 th and the 7 th week (p protein for 7 weeks significantly increased the mean time to exhaustion due to swimming by 1.5-fold and 1.2-fold compared with the control and Whey groups, respectively. The plasma levels of leucine, isoleucine and valine were significantly higher at 60 min after the blended protein intervention compared with the Whey and control interventions (p protein enhanced the activities of lactate dehydrogenase and superoxide dismutase and decreased the levels of malondialdehyde in serum. These results collectively suggest that soy-whey blended protein ingestion with resistance exercise can improve sports performance and ameliorate exercise-induced fatigue in rats.

  5. Hydrolyzed whey protein prevents the development of food allergy to β-lactoglobulin in sensitized mice.

    Science.gov (United States)

    Gomes-Santos, Ana Cristina; Fonseca, Roberta Cristelli; Lemos, Luisa; Reis, Daniela Silva; Moreira, Thaís Garcias; Souza, Adna Luciana; Silva, Mauro Ramalho; Silvestre, Marialice Pinto Coelho; Cara, Denise Carmona; Faria, Ana Maria Caetano

    2015-01-01

    Food allergy is an adverse immune response to dietary proteins. Hydrolysates are frequently used for children with milk allergy. However, hydrolysates effects afterwards are poorly studied. The aim of this study was to investigate the immunological consequences of hydrolyzed whey protein in allergic mice. For that, we developed a novel model of food allergy in BALB/c mice sensitized with alum-adsorbed β-lactoglobulin. These mice were orally challenged with either whey protein or whey hydrolysate. Whey-challenged mice had elevated levels of specific IgE and lost weight. They also presented gut inflammation, enhanced levels of SIgA and IL-5 as well as decreased production of IL-4 and IL-10 in the intestinal mucosa. Conversely, mice challenged with hydrolyzate maintained normal levels of IgE, IL-4 and IL-5 and showed no sign of gut inflammation probably due to increased IL-12 production in the gut. Thus, consumption of hydrolysate prevented the development of clinical signs of food allergy in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Influence of lactose hydrolysis and solids concentration on alcohol production by yeast in acid whey ultrafiltrate

    Energy Technology Data Exchange (ETDEWEB)

    O' leary, V S; Sutton, C; Bencivengo, M; Sullivan, B; Holsinger, V H

    1977-11-01

    Alcohol yields of 6.5 percent were obtained with Saccharomyces cerevisiae in lactase-hydrolyzed acid whey permeate containing 30 to 35 percent total solids. Maximum alcohol yields obtained with Kluyveromyces fragilis were 4.5 percent in lactase-hydrolyzed acid whey permeate at a solids concentration of 20 percent and 3.7 percent in normal permeate at a solids concentration of 10 percent. Saccharomyces cerevisiae efficiently converted the glucose present in lactase-hydrolyzed whey permeates containing 5 to 30 percent total solids (2 to 13 percent glucose) to alcohol. However, the galactose, which comprised about half the available carbohydrate in lactase-hydrolyzed whey, was not utilized by S. cerevisiae, so that even though alcohol yields were higher when this organism was used, the process was wasteful in that a substantial proportion of the substrate was not fermented. For the process to become commercially feasible, an efficient means of rapidly converting both the galactose and glucose to alcohol must be found.

  7. Ethanol Production from Whey by Kluyveromyces marxianus in Batch Fermentation System: Kinetics Parameters Estimation

    Directory of Open Access Journals (Sweden)

    Dessy Ariyanti

    2013-03-01

    Full Text Available Whey is the liquid remaining after milk has been curdled and strained. It is a by-product of the manufacture of cheese or casein and has several commercial uses. In environmental point of view, whey is kind of waste which has high pollution level due to it’s contain high organic compound with BOD and COD value 50 and 80 g/L respectively. On the other side, whey also contain an amount of lactose (4.5%-5%; lactose can be used as carbon source and raw material for producing ethanol via fermentation using yeast strain Kluyveromyces marxianus. The objective of this research is to investigate the ethanol production kinetics from crude whey through fermentation using Kluyveromyces marxianus and to predict the model kinetics parameter. The yeast was able to metabolize most of the lactose within 16 h to give 8.64 g/L ethanol, 4.43 g/L biomass, and remain the 3.122 g/L residual lactose. From the results presented it also can be concluded that common kinetic model for microbial growth, substrate consumption, and product formation is a good alternative to describe an experimental batch fermentation of Kluyveromyces marxianus grown on a medium composed of whey. The model was found to be capable of reflecting all batch culture phases to a certain degree of accuracy, giving the parameter value: μmax, Ks, YX/S, α, β : 0.32, 10.52, 0.095, 1.52, and 0.11 respectively. © 2013 BCREC UNDIP. All rights reserved(Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 27th September 2012; Revised: 29th November 2012; Accepted: 7th December 2012[How to Cite: D. Ariyanti, H. Hadiyanto, (2013. Ethanol Production from Whey by Kluyveromyces marxianus in Batch Fermentation System: Kinetics Parameters Estimation. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 179-184. (doi:10.9767/bcrec.7.3.4044.179-184][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4044.179-184 ] View in  |

  8. Short-Term Effects of Lupin vs. Whey Supplementation on Glucose and Insulin Responses to a Standardized Meal in a Randomized Cross-Over Trial.

    Science.gov (United States)

    Schopen, Kathrin; Ewald, Ann C; Johannes, Bernd W; Bloch, Wilhelm; Rittweger, Jörn; Frings-Meuthen, Petra

    2017-01-01

    Background: Whey protein is known to reduce postprandial glycaemia in people with type 2 diabetes mellitus. Lupin as a vegetable source of protein could be considered as an alternative, as the percentage of vegetarian and vegan consumers is raising. The present study compares the acute glycemic effects of whey and lupin in healthy volunteers following a carbohydrate-rich reference meal. Methods In cross-over design, three standardized meals (reference meal; reference meal + whey; reference meal + lupin) were provided to 12 healthy male and female volunteers, aged between 23 and 33, in a balanced, randomized order. Volunteers' blood glucose and insulin concentrations were analyzed at baseline and at seven time points following the ingestion of the meals. Results: The supplementation of whey or lupin significantly blunted the postprandial increase in blood glucose concentrations compared to the reference meal ( p AUC whey-lupin = 8%, 0-60 min area under the curve (0-60 min AUC), p = 0.937], with a blunting effect of -46% by whey ( p = 0.005, 0-60 min AUC) and of -54% by lupin ( p AUC). When comparing whey and lupin data only, the insulin increase was found to be more pronounced for whey protein than for lupin supplementation (Δ AUC whey-lupin = 39%, 0-60 min AUC, p = 0.022). However, when comparing the insulin response of each supplementation to the one of the reference meal, no differences could be detected (whey p = 0.259, 0-60 min AUC; lupin p = 0.275, 0-60 min AUC). Conclusions: Results suggest that lupin and whey can both lower the increase of postprandial blood glucose concentrations to a comparable extent, implying the usability of lupin to reduce postprandial glycaemia. However, the insulin response following the supplementations to a carbohydrate-rich meal seems to differ for these two protein sources.

  9. Effect of filler loading and silane modification on the biodegradability of SBR composites reinforced with peanut shell powder

    Science.gov (United States)

    Shaniba, V.; Balan, Aparna K.; Sreejith, M. P.; Jinitha, T. V.; Subair, N.; Purushothaman, E.

    2017-06-01

    The development of biocomposites and their applications are important in material science due to environmental and sustainability issues. The extent of degradation depends on the nature of reinforcing filler, particle size and their modification. In this article, we tried to focus on the biodegradation of composites of Styrene Butadiene Rubber (SBR) reinforced with Peanut Shell Powder (PSP) by soil burial test. The composites of SBR with untreated PSP (UPSP) and silane modified PSP (SPSP) of 10 parts per hundred rubber (phr) and 20 phr filler loading in two particle size were buried in the garden soil for six months. The microbial degradation were assessed through the measurement of weight loss, tensile strength and hardness at definite period. The study shows that degradation increases with increase in filler loading and particle size. The chemical treatment of filler has been found to resist the degradation. The analysis of morphological properties by the SEM also confirmed biodegradation process by the microorganism in the soil.

  10. Effect of modified cassava starch on the rheological and quality properties of a dairy beverage prepared with sweet whey

    Directory of Open Access Journals (Sweden)

    Paola Catalina IMBACHÍ-NARVÁEZ

    2018-03-01

    Full Text Available Abstract The effect of sweet whey and octenyl succinic anhydride (OSA-modified cassava starch on the quality and rheological properties of fermented dairy beverages was evaluated. Sweet whey (45-65% and OSA-modified cassava starch (0.8-1.2% were added to determine an optimal fermented dairy beverage with the highest viscosity and the lowest syneresis possible. The optimal fermented dairy beverage corresponded to the addition of 40.9% sweet whey and 1.13% OSA-modified cassava starch with respect to the milk and sweet whey mixture. Moreover, the rheological and quality properties of the optimal fermented dairy beverage were compared to a commercial beverage (control during 22 days of storage. No significant differences were found in soluble solids, acidity, pH and consistency index during the time evaluated, while the syneresis of both products showed an increase during storage. OSA-modified cassava starch can be used as a stabiliser in sweet whey fermented dairy beverages because it helps improve its quality properties.

  11. Kinetics of immobilisation and release of tryptophan, riboflavin and peptides from whey protein microbeads.

    Science.gov (United States)

    O'Neill, Graham J; Egan, Thelma; Jacquier, Jean Christophe; O'Sullivan, Michael; Dolores O'Riordan, E

    2015-08-01

    This study investigated the kinetics of immobilisation and release of riboflavin, amino acids and peptides from whey microbeads. Blank whey microbeads were placed in solutions of the compounds. As the volume of microbeads added to the solution was increased, the uptake of the compounds increased, to a maximum of 95% for the pentapeptide and 56%, 57% and 45% for the dipeptide, riboflavin and tryptophan respectively, however, the rate of uptake remained constant. The rate of uptake increased with increasing molecule hydrophobicity. The opposite was observed in the release studies, the more hydrophobic compounds had lower release rate constants (kr). When whey microbeads are used as sorbents, they show excellent potential to immobilise small hydrophobic molecules and minimise subsequent diffusion, even in high moisture environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Calcium, vitamin D, casein and whey protein intakes and periodontitis among Danish adults

    DEFF Research Database (Denmark)

    Adegboye, Amanda Ra; Boucher, Barbara J; Kongstad, Johanne

    2016-01-01

    , smoking, sucrose intake, alcohol consumption, number of teeth, daily brushing, regular visits to the dentist and chronic illness, irrespective of vitamin D intake levels. Intake of vitamin D alone was not associated severe with periodontitis. CONCLUSIONS: Intakes of Ca, casein and whey protein were......OBJECTIVE: To investigate whether intakes of Ca, vitamin D, casein and whey are associated with periodontitis and to investigate the possibility of interactions between them. DESIGN: Cross-sectional study. An Internet-based, 267-item FFQ was used to assess dietary intake. Intakes of casein (32.0 g....../d), whey proteins (9.6 g/d) and vitamin D (5.8 μg/d) were classified as within v. above the 50th percentile. Ca intake was classified as within v. below age-specific recommendations. Severe periodontitis was defined as having ≥2 inter-proximal sites with clinical attachment loss ≥6 mm (not on the same...

  13. Recovery of Whey Proteins and Enzymatic Hydrolysis of Lactose Derived from Casein Whey Using a Tangential Flow Ultrafiltration Module

    Science.gov (United States)

    Das, Bipasha; Bhattacharjee, Sangita; Bhattacharjee, Chiranjib

    2013-09-01

    In this study, ultrafiltration (UF) of pretreated casein whey was carried out in a cross-flow module fitted with 5 kDa molecular weight cut-off polyethersulfone membrane to recover whey proteins in the retentate and lactose in the permeate. Effects of processing conditions, like transmembrane pressure and pH on permeate flux and rejection were investigated and reported. The polarised layer resistance was found to increase with time during UF even in this high shear device. The lactose concentration in the permeate was measured using dinitro salicylic acid method. Enzymatic kinetic study for lactose hydrolysis was carried out at three different temperatures ranging from 30 to 50 °C using β-galactosidase enzyme. The glucose formed during lactose hydrolysis was analyzed using glucose oxidase-peroxidase method. Kinetics of enzymatic hydrolysis of lactose solution was found to follow Michaelis-Menten model and the model parameters were estimated by Lineweaver-Burk plot. The hydrolysis rate was found to be maximum (with Vmax = 5.5091 mmol/L/min) at 30 °C.

  14. Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate.

    Science.gov (United States)

    Martin, M; Kopaliani, I; Jannasch, A; Mund, C; Todorov, V; Henle, T; Deussen, A

    2015-12-01

    Angiotensin-converting enzyme inhibitors are treatment of choice in hypertensive patients. Clinically used inhibitors exhibit a structural similarity to naturally occurring peptides. This study evaluated antihypertensive and cardioprotective effects of ACE-inhibiting peptides derived from food proteins in spontaneously hypertensive rats. Isoleucine-tryptophan (in vitro IC50 for ACE = 0.7 μm), a whey protein hydrolysate containing an augmented fraction of isoleucine-tryptophan, or captopril was given to spontaneously hypertensive rats (n = 60) over 14 weeks. Two further groups, receiving either no supplement (Placebo) or intact whey protein, served as controls. Systolic blood pressure age-dependently increased in the Placebo group, whereas the blood pressure rise was effectively blunted by isoleucine-tryptophan, whey protein hydrolysate and captopril (-42 ± 3, -38 ± 5, -55 ± 4 mm Hg vs. Placebo). At study end, myocardial mass was lower in isoleucine-tryptophan and captopril groups but only partially in the hydrolysate group. Coronary flow reserve (1 μm adenosine) was improved in isoleucine-tryptophan and captopril groups. Plasma ACE activity was significantly decreased in isoleucine-tryptophan, hydrolysate and captopril groups, but in aortic tissue only after isoleucine-tryptophan or captopril treatment. This was associated with lowered expression and activity of matrix metalloproteinase-2. Following isoleucine-tryptophan and captopril treatments, gene expression of renin was significantly increased indicating an active feedback within renin-angiotensin system. Whey protein hydrolysate and isoleucine-tryptophan powerfully inhibit plasma ACE resulting in antihypertensive effects. Moreover, isoleucine-tryptophan blunts tissue ACE activity, reduces matrix metalloproteinase-2 activity and improves coronary flow reserve. Thus, whey protein hydrolysate and particularly isoleucine-tryptophan may serve as innovative food additives with the goal of attenuating

  15. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition.

    Science.gov (United States)

    Noello, C; Carvalho, A G S; Silva, V M; Hubinger, M D

    2016-11-01

    Chia seed oil has a high content of α-linolenic acid (60%) and linoleic acid (20%). Use of this oil in different products is limited due to its liquid state, and the presence of insaturation is a trigger for oxidation. In this context, to facilitate the incorporation of chia oil in food products and increase its protection against oxidation, the aim of this work was to produce chia oil microparticles by spray drying using emulsions stabilized by whey protein concentrate (ζ-potential +13.4 at pH3.8) and pectin (ζ-potential -40.4 at pH3.8) through the electrostatic layer-by-layer deposition technique and emulsions prepared with only whey protein concentrate. Emulsions stabilized by whey protein concentrate and stabilized by whey protein concentrate-pectin were prepared using maltodextrin (10 DE) and modified starch (Hi-Cap® 100). They were characterized in relation to stability, droplet size, ζ-Potential and optical microscopy. The microparticles were characterized in relation to moisture content, water activity, particle size, microstructure and oxidative stability by the Rancimat method. Emulsions stabilized by whey protein concentrate-pectin with added maltodextrin 10 DE and emulsions stabilized by whey protein concentrate with added modified starch (Hi-Cap® 100) were stable after 24h. Emulsions stabilized by whey protein concentrate and by whey protein concentrate-pectin showed droplets with mean diameter ranging from 0.80 to 1.31μm, respectively and ζ-potential varying from -6.9 to -27.43mV, respectively. After spray drying, the microparticles showed an mean diameter ranging from 7.00 to 9.00μm. All samples presented high encapsulation efficiency values, above 99%. Microparticles produced with modified starch showed a smoother spherical surface than particles with maltodextrin 10 DE, which presented a wrinkled surface. All microparticles exhibited higher oxidative stability than chia oil in pure form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS.

    Science.gov (United States)

    Yang, Mei; Cao, Xueyan; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing; Wu, Junrui

    2017-09-01

    Whey, an essential source of dietary nutrients, is widely used in dairy foods for infants. A total of 584 whey proteins in human and bovine colostrum and mature milk were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) proteomic method. The 424 differentially expressed whey proteins were identified and analyzed according to gene ontology (GO) annotation, Kyoto encyclopedia of genes and genomes (KEGG) pathway, and multivariate statistical analysis. Biological processes principally involved biological regulation and response to stimulus. Major cellular components were extracellular region part and extracellular space. The most prevalent molecular function was protein binding. Twenty immune-related proteins and 13 proteins related to enzyme regulatory activity were differentially expressed in human and bovine milk. Differentially expressed whey proteins participated in many KEGG pathways, including major complement and coagulation cascades and in phagosomes. Whey proteins show obvious differences in expression in human and bovine colostrum and mature milk, with consequences for biological function. The results here increase our understanding of different whey proteomes, which could provide useful information for the development and manufacture of dairy products and nutrient food for infants. The advanced iTRAQ proteomic approach was used to analyze differentially expressed whey proteins in human and bovine colostrum and mature milk.

  17. Incorporation of radiolabeled whey proteins into casein micelles by heat processing

    International Nuclear Information System (INIS)

    Noh, B.; Richardson, T.

    1989-01-01

    Skim milk was heated at .70, 95, and 140 degree C to simulate the processes of pasteurization, forewarming, and UHT sterilization, and the specific interactions between α-lactalbumin or β-lactoglobulin and the caseins studied using tracer amounts of added 14 C-labeled whey protein. Radioactivities of the whey and of the washed casein pellets from renneted skim milk were measured and the extent of the interaction estimated. Upon heating skim milk at 70 degree C for 45 s, less than 2% β-lactoglobulin and less than .3% α-lactalbumin were incorporated into the curd. Heating at 95 degree C for .5 to 20 min resulted in 58 to 85% of the β-lactoglobulin and 8 to 55% of the α-lactalbumin becoming associated with the curd. Heating at 140 degree C for 2 and 4 s caused 43 and 54% of the β-lactoglobulin and 9 and 12% of the α-lactalbumin, respectively, to be bound to the curd fraction. The radiolabeling technique is very sensitive and useful for tracing low levels of interaction between whey proteins and casein in heated milk systems

  18. Influence Of Whey Protein For Abrogating Liver Injury In Female Rats

    International Nuclear Information System (INIS)

    ANWAR, M.M.; MOHAMED, N.E.

    2009-01-01

    The objective of this study was to determine the possible benefits of whey protein concentrate (44% protein, 5% fat and 4.6% ash in dry weight) against liver injury induced by CCl 4 . It was carried out by evaluating the effect of the daily feeding of female rats on diet containing 15% whey protein instead of soybean protein for four weeks on some biochemical and histological changes in liver of female rats.The data showed that injection with CCl 4 (1 ml /kg body weight 3 times / week) caused significant decrease in body weight with disturbances in liver functions as significant increase in serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transferase and bilirubin and significant decrease in serum albumin, FT3 and an increase in AFP levels. A marked significant decrease in glutathione content and significant increase in lipid peroxidation was also observed in hepatic tissues. The histological examination revealed that CCl 4 treatment showed marked degenerative changes in liver hepatocytes and sinusoids.The results also showed that feeding on diet containing whey protein for two or four weeks during CCl 4 treatment minimized the disturbance of the liver functions and liver histology.

  19. Influence of whey protein concentrate addition on textural properties of corn flour extrudates

    Directory of Open Access Journals (Sweden)

    Mladen Brnčić

    2008-05-01

    Full Text Available Texture is an important propertiy of extruded snack products, and depended on extrusion process conditions, raw material properties and various ingredients properties as well. The main purpose of this research was, using twin-screw extrusion, to manufacture a direct expanded extrudate based on mixtures of corn flour and whey protein concentrate with acceptable textural properties. Mixtures were made of corn flour and three different concentrations of whey protein concentrate (7,5 %, 15 %, 22,5 %. Materials were processed in co-rotating twin-screw extruder APV Baker, MPF 50.15 under input conditions: water intake was 10,08 L/h, 12,18 L/h, 14,28 L/h, screw speed was 300 rpm; expansion temperature was 130 °C; feed rate was 70 kg/h. Textural properties: breaking strength index and expansion ratio were determined. Breaking strength index had largest value for the sample with 22,5 % of whey protein concentrate and water intake of 14,28 L/h. Sample with 7,5 % of whey protein concentrate and 10,08 L/h had largest expansion ratio. Calculated textural properties confirmed validity of samples. This results suggest that enrichment of extrudates with wpc addition up to 22,5 % to improve their nutritional value as well as their textural characteristics can be accomplished. Validation of direct expanded extrudates in dependence of its textural properties have shown validity and justification of this research.

  20. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry.

    Science.gov (United States)

    Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C

    2016-03-01

    This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane.

    Science.gov (United States)

    Vasileva, Nastya; Ivanov, Yavor; Damyanova, Stanka; Kostova, Iliana; Godjevargova, Tzonka

    2016-01-01

    The β-galactosidase was covalently immobilized onto a modified polypropylene membrane, using glutaraldehyde. The optimal conditions for hydrolysis of lactose (4.7%) by immobilized β-galactosidase in a batch process were determined 13.6 U enzyme activity, 40°C, pH 6.8 and 10h. The obtained degree of hydrolysis was compared with results received by a free enzyme. It was found, that the lactose hydrolysis by an immobilized enzyme was 1.6 times more effective than the lactose hydrolysis by a free enzyme. It was determined that the stability of the immobilized enzyme was 2 times higher in comparison with the stability of free enzyme. The obtained immobilized system β-galactosidase/polypropylene membrane was applied to produce glucose-galactose syrup from waste whey. The whey characteristics and the different preliminary treatments of the whey were investigated. Then the whey lactose hydrolysis in a bioreactor by an immobilized enzyme on a spirally wound membrane was performed. The optimal membrane surface and the optimal flow rate of the whey through the membrane module were determined, respectively 100 cm(2) and 1.0 mL min(-1). After 10h, the degree of lactose hydrolysis was increased to 91%. The operation stability was studied. After 20th cycle the yield of bioreactor was 69.7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The Study of Alginate and Whey Protein Hydrolyzed Suplementation Utilization for Cell Release and Microencapsulated Lactobacillus Acidophilus Viability in Probiotic Ice Cream

    Directory of Open Access Journals (Sweden)

    Purwadi Purwadi

    2013-10-01

    Full Text Available The objectives of this research were to increase viability and activity of L. acidophilus encapsulated with alginate and whey protein hydrolyzed for cell release and microencapsulated Lactobacillus acidophilus viability in probiotic ice cream. The methods used were factorial experiment using Completely Randomized Design. Data was analysed with Variance Analysis. The results showed that the interaction between alginate and whey protein hydrolyzed supplemented could be increased the function of CaCl2 and also encapsulated L. acidophilus viability. The used alginate of 1% and whey protein hydrolyzed supplemented of 0,5% produced encapsulated L. acidophilus viability higher than before, but however, the utilization of alginate of 1% and whey protein hydrolyzed supplemented of 0% could release a few cell. Therefore, the utilization of alginate 1% and whey protein hydrolyzed supplemented 0,5% in ice cream produced L. acidophilus highest than other.   Keywords :   Lactobacillus acidophilus, microencapsulation, alginate, whey protein hydrolyzed, cell release, ice cream

  3. Effects of sodium chloride salting and substitution with potassium chloride on whey expulsion of Cheddar cheese.

    Science.gov (United States)

    Lu, Y; McMahon, D J

    2015-01-01

    A challenge in manufacturing reduced-sodium cheese is that whey expulsion after salting decreases when less salt is applied. Our objectives were (1) to determine whether changing the salting method would increase whey syneresis when making a lower sodium cheese and (2) to better understand factors contributing to salt-induced curd syneresis. Unsalted milled Cheddar curds were salted using different salting intervals (5 or 10 min), different salting levels (20, 25, or 30g/kg), different numbers of applications when using only 20g/kg salt (1, 2, or 3 applications), and salting with the equivalent of 30g/kg NaCl using a 2:1 molar ratio of NaCl and KCl. Whey from these curds was collected every 5 or 10 min until 30 or 40 min after the start of salting, and curds were subsequently pressed for 3h. Additional trials were conducted in which salted milled Cheddar cheese curd was immersed at 22°C for 6h in various solutions to determine how milled curd pieces respond to different levels of salt and Ca. The use of 10-min intervals delayed whey syneresis without influencing total whey expulsion or cheese composition after pressing. Lowering the salt level reduced whey expulsion, resulting in cheeses with higher moisture and slightly lower pH. Adding salt faster did not increase whey expulsion in reduced-salt cheese. Partial substitution with KCl restored the extent of whey expulsion. When salted milled curd was immersed in a 30g/L salt solution, there was a net influx of salt solution into the curd and curd weight increased. When curd was immersed in 60g/L salt solution, a contraction of curd occurred. Curd shrinkage was more pronounced as the salt solution concentration was increased to 90 and 120g/L. Increasing the Ca concentration in test solutions (such that both serum and total Ca in the curd increased) also promoted curd contraction, resulting in lower curd moisture and pH and less weight gain by the curd. The proportion of Ca in the curd that was bound to the para

  4. Integrative approach for utilization of olive mill wastewater and lebna's whey for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, M A; Hayek, B O; Al-Hmoud, N; Al-Gogazeh, L

    2009-09-15

    The industry of olive oil extraction in Jordan involves an intensive consumption of water and generates large quantities of olive mill wastewater (OMW). This wastewater has a high pollution risk with biological oxygen demand (BOD). The organic fraction of OMW includes sugars, tannins, polyphenols, polyalcohols, pectins and lipids. The presence of remarkable amounts of aromatic compounds in OMW is responsible for its phytotoxic and antimicrobial effects. The environmental problems and potential hazards caused by OMW had led olive oil producing countries to limit their discharge and to propose and develop new technologies for OMW treatments, such as physicochemical and biological treatments. In the present investigation lebna's whey a local byproduct of widely consumed local yogurt was used with OMW for ethanol production. The obtained results showed that the proteins of lebna's whey can remove substantial amounts of aromatic compounds present in OMW. This was reflected on the reduction of the intensity of black color of OMW and removal of 37% polyphenols. Moreover, the production of ethanol was ascertained in fermentation media composed of whey and in presence of various concentrations of OMW up to 20% OMW. The obtained results showed the possibility to develop a process for improvement and enhancement of ethanol production from whey and olive oil waste in mixed yeast cultures. (au)

  5. Phase behaviour and in vitro hydrolysis of wheat starch in mixture with whey protein.

    Science.gov (United States)

    Yang, Natasha; Liu, Yingting; Ashton, John; Gorczyca, Elisabeth; Kasapis, Stefan

    2013-04-15

    Network formation of whey protein isolate (WPI) with increasing concentrations of native wheat starch (WS) has been examined. Small deformation dynamic oscillation in shear and modulated temperature differential scanning calorimetry enabled analysis of binary mixtures at the macro- and micromolecular level. Following heat induced gelation, textural hardness was measured by undertaking compression tests. Environmental scanning electron microscopy provided tangible information on network morphology of polymeric constituents. Experiments involving in vitro starch digestion also allowed for indirect assessment of phase topology in the binary mixture. The biochemical component of this work constitutes an attempt to utilise whey protein as a retardant to the enzymatic hydrolysis of starch in a model system with α-amylase enzyme. During heating, rheological profiles of binary mixtures exhibited dramatic increases in G' at temperatures more closely related to those observed for single whey protein rather than pure starch. Results from this multidisciplinary approach of analysis, utilising rheology, calorimetry and microscopy, argue for the occurrence of phase separation phenomena in the gelled systems. There is also evidence of whey protein forming the continuous phase with wheat starch being the discontinuous filler, an outcome that is explored in the in vitro study of the enzymatic hydrolysis of starch. Copyright © 2012. Published by Elsevier Ltd.

  6. Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food.

    Science.gov (United States)

    Ramos, Oscar L; Pereira, Ricardo N; Martins, Artur; Rodrigues, Rui; Fuciños, Clara; Teixeira, José A; Pastrana, Lorenzo; Malcata, F Xavier; Vicente, António A

    2017-05-03

    Whey proteins are widely used as nutritional and functional ingredients in formulated foods because they are relatively inexpensive, generally recognized as safe (GRAS) ingredient, and possess important biological, physical, and chemical functionalities. Denaturation and aggregation behavior of these proteins is of particular relevance toward manufacture of novel nanostructures with a number of potential uses. When these processes are properly engineered and controlled, whey proteins may be formed into nanohydrogels, nanofibrils, or nanotubes and be used as carrier of bioactive compounds. This review intends to discuss the latest understandings of nanoscale phenomena of whey protein denaturation and aggregation that may contribute for the design of protein nanostructures. Whey protein aggregation and gelation pathways under different processing and environmental conditions such as microwave heating, high voltage, and moderate electrical fields, high pressure, temperature, pH, and ionic strength were critically assessed. Moreover, several potential applications of nanohydrogels, nanofibrils, and nanotubes for controlled release of nutraceutical compounds (e.g. probiotics, vitamins, antioxidants, and peptides) were also included. Controlling the size of protein networks at nanoscale through application of different processing and environmental conditions can open perspectives for development of nanostructures with new or improved functionalities for incorporation and release of nutraceuticals in food matrices.

  7. Preparation and Properties of Epoxy Resin-Coated Micro-Sized Ferrosilicon Powder

    OpenAIRE

    Ku,Jiangang; Chen,Huihuang; He,Kui; Yan,Quanxiang

    2016-01-01

    Ferrosilicon powder surface coated with a dense epoxy resin membrane was prepared via coating precipitation methods using silane coupling agents as the modifier and epoxy resin as the coating agent. FTIR, FESEM, MPMS-XL, and TG-DSC were used to analyze the morphology, surface composition, magnetic property and thermostability of ferrosilicon powder before and after the modification and coating. The experimental results indicate that epoxy resin membranes of a certain thickness were successful...

  8. Methane production from cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J Q; Liao, P H; Lo, K V

    1988-01-01

    Cheese whey was treated in a 17.5-litre laboratory-scale up-flow anaerobic sludge blanket reactor operated over a range of hydraulic retention times and organic loading rates. The reactor performance was determined in terms of methane production, volatile fatty acids conversion and chemical oxygen demand (COD) reduction. At a constant influent strength, the methane production rate decreased with decreasing hydraulic retention time. At constant hydraulic retention time the methane production rate increased as the influent strength was increased up to a concentration of 28.8 g COD litre/sup -1/. The methane production rate was similar for two influent concentrations studied at hydraulic retention times longer than 10 days. The effect of short hydraulic retention times on methane production rate was more pronounced for the higher influent concentration than for the lower influent concentration. The highest methane production rate of 9.57 litres CH/sub 4/ litre/sup -1/ feed day/sup -1/ was obtained at a loading rate of 5.96 g/sup -1/ COD litre/sup -1/ and an influent concentration of 28.8 g COD litre/sup -1/. A high treatment efficiency in terms of chemical oxygen demand reduction was obtained. In general, over 98% removal of chemical oxygen demand was achieved. The results indicated that anaerobic digestion of cheese whey using an upflow sludge blanket reactor could reduce pollution strength and produce energy for a cheese plant.

  9. Colostral whey concentrate supplement increases complement activity in the sera of neonatal calves.

    Science.gov (United States)

    Rokka, S; Korhonen, B H; Nousiainen, J; Marnila, P

    2001-08-01

    We evaluated the effect of a commercial bovine colostral whey on the complement-mediated immune responses of calves. Two groups of neonatal calves were fed, in addition to whole milk (WM) and pooled colostrum (PC), different amounts of a commercial immunoglobulin concentrate made from pooled colostral whey (Ig-C) for the first two feedings post natum. The control group was fed WM and PC only. Serum samples were obtained at the ages of 2, 7, 14 and 30 d. Bacteriolytic activity against complement-sensitive Escherichia coli JM103 and opsonic activity against complement-lysis-resistant E. coli IH3080 strains were studied, as well as the levels of C3 complement component and E. coli JM103 specific antibodies in the sera. Groups fed Ig-C had 2-3 times higher bacteriolytic activity than the control group of both the classic (P complement activities of serum can be increased substantially by feeding colostral whey concentrate to calves during their first days of life.

  10. The effect of chitosan and whey proteins-chitosan films on the growth of Penicillium expansum in apples.

    Science.gov (United States)

    Simonaitiene, Dovile; Brink, Ieva; Sipailiene, Ausra; Leskauskaite, Daiva

    2015-05-01

    Penicillium expansum causes a major post-harvest disease of apples. The aim of this study was to investigate the inhibition effect of chitosan and whey proteins-chitosan films containing different amounts of quince and cranberry juice against P. expansum on the simulation medium and on apples. The mechanical properties of films were also evaluated. The presence of cranberry and quince juice in the composition of chitosan and whey proteins-chitosan films caused a significant (P ≤ 0.05) increase in elasticity and decrease in tensile strength of films. Chitosan and whey proteins-chitosan films with quince and cranberry juice demonstrated a significant (P ≤ 0.05) inhibition effect against P. expansum growth on the simulated medium and apples. The presence of cranberry juice in the composition of chitosan and whey proteins-chitosan films resulted in a longer lag phase and a lower P. expansum growth rate on the simulation medium in comparison with films made with the addition of quince juice. These differences were not evident when experiment was conducted with apples. Addition of quince and cranberry juice to the chitosan and whey proteins-chitosan films as natural antifungal agents has some potential for prolonging the shelf life of apples. © 2014 Society of Chemical Industry.

  11. Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling.

    Science.gov (United States)

    Oosthuyse, T; Carstens, M; Millen, A M E

    2015-07-01

    The protein type most suitable for ingestion during endurance exercise is undefined. This study compared co-ingestion of either 15 g/h whey or casein hydrolysate with 63 g/h fructose: maltodextrin (0.8:1) on exogenous carbohydrate oxidation, exercise metabolism and performance. 2 h postprandial, 8 male cyclists ingested either: carbohydrate-only, carbohydrate-whey hydrolysate, carbohydrate-casein hydrolysate or placebo-water in a crossover, double-blind design during 2 h of exercise at 60%W max followed by a 16-km time trial. Data were evaluated by magnitude-based inferential statistics. Exogenous carbohydrate oxidation, measured from (13)CO2 breath enrichment, was not substantially influenced by co-ingestion of either protein hydrolysate. However, only co-ingestion of carbohydrate-casein hydrolysate substantially decreased (98% very likely decrease) total carbohydrate oxidation (mean±SD, 242±44; 258±47; 277±33 g for carbohydrate-casein, carbohydrate-whey and carbohydrate-only, respectively) and substantially increased (93% likely increase) total fat oxidation (92±14; 83±27; 73±19 g) compared with carbohydrate-only. Furthermore, only carbohydrate-casein hydrolysate ingestion resulted in a faster time trial (-3.6%; 90% CI: ±3.2%) compared with placebo-water (95% likely benefit). However, neither protein hydrolysate enhanced time trial performance when compared with carbohydrate-only. Under the conditions of this study, ingesting carbohydrate-casein, but not carbohydrate-whey hydrolysate, favourably alters metabolism during prolonged moderate-strenuous cycling without substantially altering cycling performance compared with carbohydrate-only. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Qualitative improvement of rabbit burgers using Zingiber officinale Roscoe powder

    Directory of Open Access Journals (Sweden)

    S. Mancini

    2017-12-01

    Full Text Available The object of this study was to evaluate the effect of Zingiber officinale powder on physical-chemical traits, microbiological growth and sensory properties of rabbit burger. Raw burgers (only meat and meat added with 1 and 2% w/w ginger powder were stored at 4°C for 1, 4 and 7 d and then cooked. Ginger modified the colour of both raw and cooked burgers, leading to more yellow hue and reducing lightness. Aspect of burgers were affected by ginger powder addition, leading to a noticeable difference between the samples. During storage time, the highest modifications were recorded for control samples, followed by burgers with added ginger. Sensory evaluation highlighted that ginger enhanced the juiciness of the burgers; moreover, burgers with ginger powder presented a significant delay in microbial growth. Ginger powder might be considered as a potential ingredient in rabbit meat products to increase their quality and extend their shelf-life.

  13. Improvement of microwave-assisted digestion of milk powder with diluted nitric acid using oxygen as auxiliary reagent

    Energy Technology Data Exchange (ETDEWEB)

    Bizzi, Cezar A. [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia de Bioanalitica, Campinas, SP (Brazil); Barin, Juliano S. [Departamento de Tecnologia e Ciencia dos Alimentos, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Garcia, Edivaldo E. [Departamento de Quimica, Universidade Estadual de Maringa, 87100-900, Maringa, PR (Brazil); Nobrega, Joaquim A. [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905, Sao Carlos, SP (Brazil); Dressler, Valderi L. [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia de Bioanalitica, Campinas, SP (Brazil); Flores, Erico M.M., E-mail: ericommf@gmail.com [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia de Bioanalitica, Campinas, SP (Brazil)

    2011-05-15

    The feasibility of using diluted HNO{sub 3} solutions under oxygen pressure for decomposition of whole and non-fat milk powders and whey powder samples has been evaluated. Digestion efficiency was evaluated by determining the carbon content in solution (digests) and the determination of Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, Na, Pb and Zn was performed by inductively coupled plasma optical emission spectrometry and Hg by chemical vapor generation coupled to inductively coupled plasma mass spectrometry. Samples (up to 500 mg) were digested using HNO{sub 3} solutions (1 to 14 mol L{sup -1}) and the effect of oxygen pressure was evaluated between 2.5 and 20 bar. It was possible to perform the digestion of 500 mg of milk powder using 2 mol L{sup -1} HNO{sub 3} with oxygen pressure ranging from 7.5 to 20 bar with resultant carbon content in digests lower than 1700 mg L{sup -1}. Using optimized conditions, less than 0.86 mL of concentrated nitric acid (14 mol L{sup -1}) was enough to digest 500 mg of sample. The accuracy was evaluated by determination of metal concentrations in certified reference materials, which presented an agreement better than 95% (Student's t test, P < 0.05) for all the analytes.

  14. Electro-activation of sweet defatted whey: Impact on the induced Maillard reaction products and bioactive peptides.

    Science.gov (United States)

    Kareb, Ourdia; Gomaa, Ahmed; Champagne, Claude P; Jean, Julie; Aïder, Mohammed

    2017-04-15

    Electro-activation was used to add value to sweet defatted whey. This study aimed to investigate and to characterize the bioactive compounds formed under different electro-activation conditions by molecular and proteomic approaches. The effects of electric current intensity (400, 500 or 600mA) and whey concentration (7, 14 or 21% (w/v)) as a function of the electro-activation time (0, 15, 30 or 45min) were evaluated. The targeted dependent variables were the formation of Maillard reaction products (MRPs), protein hydrolysates and glycated compounds. It was shown that the MRPs derived from electro-activated whey at a concentration of 14% had the highest potential of biological activity. SDS-PAGE analyses indicated the formation of hydrolysates and glycated compounds with different molecular weight distributions. FTIR indicated the predominance of intermediate MRPs, such as the Schiff base compounds. LC-MS/MS and proteomics analysis showed the production of multi-functional bioactive peptides due to the hydrolysis of whey proteins. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate.

    Science.gov (United States)

    Ye, Aiqian

    2008-10-15

    The interfacial composition and the stability of oil-in-water emulsion droplets (30% soya oil, pH 7.0) made with mixtures of sodium caseinate and whey protein concentrate (WPC) (1:1 by protein weight) at various total protein concentrations were examined. The average volume-surface diameter (d32) and the total surface protein concentration of emulsion droplets were similar to those of emulsions made with both sodium caseinate alone and WPC alone. Whey proteins were adsorbed in preference to caseins at low protein concentrations (caseins were adsorbed in preference to whey proteins at high protein concentrations. The creaming stability of the emulsions decreased markedly as the total protein concentration of the system was increased above 2% (sodium caseinate >1%). This was attributed to depletion flocculation caused by the sodium caseinate in these emulsions. Whey proteins did not retard this instability in the emulsions made with mixtures of sodium caseinate and WPC. Copyright © 2008 Elsevier Ltd. All rights reserved.

  16. Effects of intramammary infection on whey proteinograms of sheep during lactation

    Directory of Open Access Journals (Sweden)

    Vânia F. Lemos

    2015-03-01

    Full Text Available The study aimed to identify potential biomarkers of mammary gland infection in Santa Inês sheep. Commercial flocks of sheep provided the same hygiene, sanitary, and nutritional management under semi-intensive production systems were monitored during the lactation stage-and assessed 15, 30, 60, and 90 days after delivery (through the end of lactation and weaning. The California Mastitis Test (CMT was performed on the mammary glands. Milk was collected for bacterial examination and protein analysis. Bacterial culture and biochemical characterization of the samples were performed. Forty-two milk samples from healthy glands (negative CMT and bacterial testing and 43 milk samples from infected glands (positive CMT and bacterial testing taken at the predefined time points were assessed. A rennin solution was used to obtain the whey. The proteins analysis was performed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, which allowed for the quantification of nine whey proteins produced in healthy glands: serum albumin, lactoferrin, IgA, IgG heavy-chain (IgG HC, IgG light-chain (IgG LC, total IgG (IgG HC + IgG LC, α-lactalbumin, β-lactoglobulin, protein with MW 15.000 Da, protein with MW 29.000 Da and eleven whey proteins secreted by infected glands, including haptoglobin and α-1-acid glycoprotein. A comparison of whey proteins between healthy and infected glands showed increases (P<0.05 in the secreted and total contents of all proteins, except for IgG LC and α-lactoalbumin. The most significant changes were observed in α-1-acid glycoprotein, lactoferrin and haptoglobin, which showed three-, five-, and seven-fold increases in secretion, respectively. This study showed that haptoglobin, α-1-acid glycoprotein, lactoferrin, albumin, and the IgA and IgG immunoglobulins may serve as potential biomarkers for mammary gland infection in sheep.

  17. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer (TM) disposable high-dose dry powder inhaler

    NARCIS (Netherlands)

    de Boer, Anne H.; Hagedoorn, Paul; Woolhouse, Robert; Wynn, Ed

    Objectives To use computational fluid dynamics (CFD) for evaluating and understanding the performance of the high-dose disposable Twincer (TM) dry powder inhaler, as well as to learn the effect of design modifications on dose entrainment, powder dispersion and retention behaviour. Methods Comparison

  18. New generation biofuel from whey: Successive acidogenesis and alcoholic fermentation using immobilized cultures on γ-alumina

    International Nuclear Information System (INIS)

    Boura, Konstantina; Kandylis, Panagiotis; Bekatorou, Argyro; Kolliopoulos, Dionysios; Vasileiou, Dimitrios; Panas, Panayiotis; Kanellaki, Maria; Koutinas, Athanasios A.

    2017-01-01

    Highlights: • Successive continuous alcoholic fermentation and acidogenesis of whey. • UASB culture (acidogenesis) and kefir (alcoholic fermentation) fixed on γ-alumina. • Alcoholic fermentation-acidogenesis process led to 10-fold higher ethanol content. • Organic acids production was increased by 2.5-fold. • The process is promising for new generation ester-based biofuels from whey. - Abstract: Cheese whey exploitation in a biorefinery manner is proposed involving anaerobic acidogenesis by a UASB mixed anaerobic culture and alcoholic fermentation by kefir. Both cultures were immobilized on γ-alumina. The produced organic acids (OAs) and ethanol could be esterified to obtain a novel ester-based biofuel similar to biodiesel. During acidogenesis, lactic acid-type fermentation occurred leading to 12 g L"−"1 total OAs and 0.2 g L"−"1 ethanol. The fermented substrate was subsequently supplied to a second bioreactor with immobilized kefir, which increased the OAs content (15 g L"−"1), especially lactic acid, and slightly the ethanol concentration (0.3–0.4 g L"−"1). To further increase ethanol concentration, a second experiment was conducted supplying whey firstly to the immobilized kefir bioreactor and then pumping the effluent into the acidogenesis bioreactor, resulting in 40% increase of OAs and 10-fold higher ethanol content. The residual sugar was ∼50% of the initial whey lactose; consequently, future research could result to further increase of ethanol and OAs.

  19. Neodymium conversion layers formed on zinc powder for improving electrochemical properties of zinc electrodes

    International Nuclear Information System (INIS)

    Zhu Liqun; Zhang Hui; Li Weiping; Liu Huicong

    2008-01-01

    Zinc powder, as active material of secondary alkaline zinc electrode, can greatly limit the performance of zinc electrode due to corrosion and dendritic growth of zinc resulting in great capacity-loss and short cycle life of the electrode. This work is devoted to modification study of zinc powder with neodymium conversion films coated directly onto it using ultrasonic immersion method for properties improvement of zinc electrodes. Scanning electron microscopy and other characterization techniques are applied to prove that neodymium conversion layers are distributing on the surface of modified zinc powder. The electrochemical performance of zinc electrodes made of such modified zinc powder is investigated through potentiodynamic polarization, potentiostatic polarization and cyclic voltammetry. The neodymium conversion films are found to have a significant effect on inhibition corrosion capability of zinc electrode in a beneficial way. It is also confirmed that the neodymium conversion coatings can obviously suppress dendritic growth of zinc electrode, which is attributed to the amelioration of deposition state of zinc. Moreover, the results of cyclic voltammetry reveal that surface modification of zinc powder enhances the cycle performance of the electrode mainly because the neodymium conversion films decrease the amounts of ZnO or Zn(OH) 2 dissolved in the electrolyte

  20. Direct Quantitative Detection and Identification of Lactococcal Bacteriophages from Milk and Whey by Real-Time PCR: Application for the Detection of Lactococcal Bacteriophages in Goat's Raw Milk Whey in France

    Directory of Open Access Journals (Sweden)

    Mai Huong Ly-Chatain

    2011-01-01

    Full Text Available The presence of Lactococcus bacteriophages in milk can partly or completely inhibit milk fermentation. To prevent the problems associated with the bacteriophages, the real-time PCR was developed in this study for direct detection from whey and milk of three main groups of Lactococcus bacteriophages, c2, 936, and P335. The optimization of DNA extraction protocol from complex matrices such as whey and milk was optimized allowed the amplification of PCR without any matrix and nontarget contaminant interference. The real-time PCR program was specific and with the detection limit of 102 PFU/mL. The curve slopes were −3.49, −3.69, and −3.45 with the amplification efficiency estimated at 94%, 94%, and 98% and the correlation coefficient (2 of 0.999, 0.999, and 0.998 for c2, 936 and P335 group, respectively. This method was then used to detect the bacteriophages in whey and goat's raw milk coming from three farms located in the Rhône-Alpes region (France.

  1. COST-BENEFIT ANALYSIS OF BIOCONVERSION NEUFCHATEL WHEY INTO RECTIFIED ETHANOL AND ORGANIC LIQUID FERTILIZER IN SEMI PILOT SCALE

    Directory of Open Access Journals (Sweden)

    Gemilang Lara UTAMA

    2015-10-01

    Full Text Available Aims of the study was to determine the cost-benefit analysis in neufchatel whey bioconversion into rectified ethanol and organic liquid fertilizer. Bioconversion whey into rectified ethanol and organic liquid fertilizer has shown great potential as a way to reduce the pollution resulting from cheese-making process. Semi pilot scale experiment was done to ferment 5 L neufchatel whey using 5% K. lactis at 33°C for 24 h in semi anaerobic plastic container without agitation and then distilled into 96.2% purity. Data collected and analyzed descriptively related to benefit cost ratio/BCR, net present value/NPV and internal rate returns/IRR. The result showed that semi pilot scale bioconversion of neufchatel whey resulting in 106.42 ml rectified ethanol and 4404.22 ml distillery residue. Economic benefit could achieved by the support of distillery residue sales as organic liquid fertilizer.

  2. Preparation and properties of thermal insulation coatings with a sodium stearate-modified shell powder as a filler

    Science.gov (United States)

    Tang, Qiang; Zhang, Ya-mei; Zhang, Pei-gen; Shi, Jin-jie; Tian, Wu-bian; Sun, Zheng-ming

    2017-10-01

    Waste shell stacking with odor and toxicity is a serious hazard to our living environment. To make effective use of the natural resources, the shell powder was applied as a filler of outdoor thermal insulation coatings. Sodium stearate (SS) was used to modify the properties of shell powder to reduce its agglomeration and to increase its compatibility with the emulsion. The oil absorption rate and the spectrum reflectance of the shell powder show that the optimized content of SS as a modifier is 1.5wt%. The total spectrum reflectance of the coating made with the shell powder that is modified at this optimum SS content is 9.33% higher than that without any modification. At the optimum SS content of 1.5wt%, the thermal insulation of the coatings is improved by 1.0°C for the cement mortar board and 1.6°C for the steel plate, respectively. The scouring resistance of the coating with the 1.5wt% SS-modified shell powder is three times that of the coating without modification.

  3. [Powder modification technology used for the preparation of the hydrophilic decoction pieces of indigo naturalis and the modification principle].

    Science.gov (United States)

    Zhang, Ding-Kun; Lin, Jun-Zhi; Liu, Jian-Yun; Qin, Chun-Feng; Guo, Zhi-Ping; Han, Li; Yang, Ming

    2013-07-01

    The hydrophilicity of the normal decoction pieces (NDP) of Indigo Naturalis is not good, therefore, it is not suit for decoctions. In this paper, powder modification technology is used and some NDP and alcohol are ground together in the vibromill to prepare the hydrophilic decoction pieces (HDP) of Indigo Naturalis. Initially, the properties of NDP, ultrafine decoction pieces (UDP) and HDP are compared, the hydrophilicity of UDP was promoted slightly, that of HDP is promoted dramatically. Then, three batches of Indigo Naturalis are prepared to HDP separately, but there is no obvious difference in the contact angle. Furthermore, the size distribution, surface area and micro-shape of HDP are bigger than that of UDP and smaller than NDP. The contents of indigo and indirubin in three decoction pieces are the same, as well as the species of inorganic substance, although there is a little difference in the proportion of five inorganic substances. The fact suggests the change of physical state and the qualitative and quantitative change of organism and inorganic substances are not the main factors to influence the hydrophilicity. In addition, hydroxyl, methylene and methyl can be identified at the wavenumber of 3 356 cm(-1) and 1 461 cm(-1) in infrared spectrum; the content of alcohol in HDP is 0.67% measured by gas chromatogram. The stability of HDP in the heating condition is studied, the fact suggests the hydrophilic effect of HDP at 40 degrees C is relatively stable. All above research suggests that the alcohol is the main factor to influence the hydrophilicity and maybe the intermolecular force which fixed alcohol molecule on the surface of Indigo Naturalis is the basic principle to produce the hydrophilicity.

  4. Enrichment and purification of casein glycomacropeptide from whey protein isolate using supercritical carbon dioxide processing and membrane filtration

    Science.gov (United States)

    Whey protein concentrates (WPC) and isolates (WPI), which are dried, concentrated forms of cheese whey, are comprised mainly of beta–lactoglobulin (beta-LG), a–lactalbumin (a-LA), and glycomacropeptide (GLY), and are added to foods to boost their nutritional and functional properties. In previous st...

  5. Physiochemical, texture properties, and the microstructure of set yogurt using whey protein-sodium tripolyphosphate aggregates as thickening agents.

    Science.gov (United States)

    Cheng, Jianjun; Xie, Siyu; Yin, Yuan; Feng, Xianmin; Wang, Shuai; Guo, Mingruo; Ni, Chunlei

    2017-07-01

    Polymerized whey protein-sodium tripolyphosphate can be induced to gel in an acidic environment provided during fermentation. The variety of thickening agent has an influence on texture that is an essential aspect of yogurt quality affecting consumer preference. Similar to polysaccharide stabilizers, the cold gelation properties of whey proteins can improve the body texture of yogurt products. Polymerized whey protein-sodium tripolyphosphate could be a favorable and interesting thickening agent for making set yogurt. The effects of whey protein isolate (WPI), heat-treated whey protein-sodium tripolyphosphate (WPI-STPP), heat-treated WPI and pectin on the storage properties and microstructure of yogurt were investigated. All samples were analyzed for syneresis, pH, titratable acidity, viscosity, texture profile and microstructure during storage. The results showed that incorporating heat-treated WPI-STPP had a significant impact on syneresis (32.22 ± 0.60), viscosity (10 956.67 ± 962.1) and hardness (209.24 ± 12.48) (p Yogurt fermented with modified WPI-STPP had higher levels of protein and better hardness compared with yogurt using pectin. The microstructure was observed to be a uniform and denser, complicated network. Heat-treated WPI-STPP may be useful for improving yogurt texture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Performance of microbial fuel cell double chamber using mozzarella cheese whey substrate

    Science.gov (United States)

    Darmawan, M. D.; Hawa, L. C.; Argo, B. D.

    2018-03-01

    Nowadays the availability of electric energy is decreasing, hence there is a need for innovation of electric energy producer alternative; one of them is microbial fuel cell (MFC). MFC is a bioelectrochemical system generated by bacterial metabolism that utilizes organic substrate. One of the substrates that can be used is whey, a waste generated from cheese production. Therefore, this study aimed to determine the power of potential current and voltage generated from the use of whey cheese as a substrate for bacterial metabolism. In this research, double chamber system was used in microbial fuel cell reactor by using cheese whey as substrate at anode and potassium permanganate as cathode and utilizing membrane nafion 212 as membrane of proton exchange. The variable of experiment was bacteria type. The types of bacteria used in this study were Lactobacillus bulgaricus, Streptococcus thermophillus and Lactobacillus casei. While the operating time used was 100 hours. The highest current produced was 74.6 μA and the highest voltage was 529.3 mV produced by Lactobacillus bulgaricus bacteria. In this study, it was also found that the death phase of the three bacteria was at 70-80 hours.

  7. Effects of whey protein and its two major protein components on satiety and food intake in normal-weight women.

    Science.gov (United States)

    Chungchunlam, Sylvia M S; Henare, Sharon J; Ganesh, Siva; Moughan, Paul J

    2017-06-01

    Protein is the most satiating macronutrient and is source dependent, with whey protein thought to be particularly satiating. The purported satiating effect of whey protein may be due to the unique mixture of proteins in whey or to the major constituent individual proteins (β-lactoglobulin and α-lactalbumin). The objective of the study was to compare the effects of isoenergetic (~2100kJ, ~500kcal) preload meals enriched (~50g protein) with either whey protein isolate (WP), β-lactoglobulin (BL) isolate or α-lactalbumin (AL) isolate, on food intake at an ad libitum test meal 120min later and subjective ratings of appetite (hunger, desire to eat, prospective food consumption and fullness) using visual analogue scales (VAS). Twenty adult normal-weight women (mean age 24.2±0.8years; mean BMI 22.7±0.4kg/m 2 ) participated in the study which used a single-blind completely randomised block design, where each subject consumed each of the three preload meals. Energy intake at the ad libitum test meal and total energy intakes (preload+test meal) did not differ between the three preload meals (p>0.05). There were no significant differences observed for the VAS scores and net incremental area under the curve (net iAUC) during the 120min following consumption of the three preload meals for subjective ratings of appetite (p>0.05). The findings show that the satiating effect of whey protein was similar to that of BL or AL individually and suggest that the major whey protein components BL and AL do not mediate the satiating effect of whey protein. The present human trial was registered with the Australian New Zealand Clinical Trials Registry (www.anzctr.org.au) as ACTRN12615000344594. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Characterization and evaluation of whey protein-based biofilms as substrates for in vitro cell cultures.

    Science.gov (United States)

    Gilbert, Vanessa; Rouabhia, Mahmoud; Wang, Hongxum; Arnould, Anne-Lise; Remondetto, Gabriel; Subirade, Muriel

    2005-12-01

    Whey proteins-based biofilms were prepared using different plasticizers in order to obtain a biomaterial for the human keratinocytes and fibroblasts in vitro culture. The film properties were evaluated by Fourier Transform Infrared Spectroscopy (FTIR) technique and mechanical tests. A relationship was found between the decrease of intermolecular hydrogen bond strength and film mechanical behavior changes, expressed by a breaking stress and Young modulus values diminishing. These results allow stating that the film molecular configuration could induce dissimilarities in its mechanical properties. The films toxicity was assessed by evaluating the cutaneous cells adherence, growth, proliferation and structural stratification. Microscopic observation demonstrated that both keratinocytes and fibroblasts adhered to the biofilms. The trypan blue exclusion test showed that keratinocytes grew at a significantly high rate on all the biofilms. Structural analysis demonstrated that keratinocytes stratified when cultured on the whey protein-based biofilms and gave rise to multi-layered epidermal structures. The most organized epidermis was obtained with whey protein isolate/DEG biofilm. This structure had a well-organized basal layer under supra-basal and corneous layers. This study demonstrated that whey proteins, an inexpensive renewable resource which can be obtained readily, were non-toxic to cutaneous cells and thus they could be useful substrates for a variety of biomedical applications, including tissue engineering.

  9. A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters.

    Science.gov (United States)

    Rossetti, Lia; Carminati, Domenico; Zago, Miriam; Giraffa, Giorgio

    2009-03-15

    A Qualified Presumption of Safety (QPS) approach was applied to dominant lactic acid bacteria (LAB) associated with Grana Padano cheese whey starters. Thirty-two strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum, and representing the overall genotypic LAB diversity associated with 24 previously collected whey starters [Rossetti, L., Fornasari, M.E., Gatti, M., Lazzi, C., Neviani, E., Giraffa, G., 2008. Grana Padano cheese whey starters: microbial composition and strain distribution. International Journal of Food Microbiology 127, 168-171], were analyzed. All L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus isolates were susceptible to four (i.e. vancomycin, gentamicin, tetracycline, and erythromycin) of the clinically most relevant antibiotics. One L. fermentum strain displayed phenotypic resistance to tetracycline (Tet(R)), with MIC of 32 microg/ml, and gentamycin (Gm(R)), with MIC of 32 microg/ml. PCR was applied to this strain to test the presence of genes tet(L), tet(M), tet(S), and aac(6')-aph(2')-Ia, which are involved in horizontal transfer of Tet(R) and Gm(R), respectively but no detectable amplification products were observed. According to QPS criteria, we conclude that Grana cheese whey starters do not present particular safety concerns.

  10. Urinary Loss of Tricarboxylic Acid Cycle Intermediates As Revealed by Metabolomics Studies: An Underlying Mechanism to Reduce Lipid Accretion by Whey Protein Ingestion?

    Science.gov (United States)

    2015-01-01

    Whey protein intake is associated with the modulation of energy metabolism and altered body composition both in human subjects and in animals, but the underlying mechanisms are not yet elucidated. We fed obesity-prone C57BL/6J mice high-fat diets with either casein (HF casein) or whey (HF whey) for 6 weeks. At equal energy intake and apparent fat and nitrogen digestibility, mice fed HF whey stored less energy as lipids, evident both as lower white adipose tissue mass and as reduced liver lipids, compared with HF-casein-fed mice. Explorative analyses of 48 h urine, both by 1H NMR and LC–MS metabolomic platforms, demonstrated higher urinary excretion of tricarboxylic acid (TCA) cycle intermediates citric acid and succinic acid (identified by both platforms), and cis-aconitic acid and isocitric acid (identified by LC–MS platform) in the HF whey, relative to in the HF-casein-fed mice. Targeted LC–MS analyses revealed higher citric acid and cis-aconitic acid concentrations in fed state plasma, but not in liver of HF-whey-fed mice. We propose that enhanced urinary loss of TCA cycle metabolites drain available substrates for anabolic processes, such as lipogenesis, thereby leading to reduced lipid accretion in HF-whey-fed compared to HF-casein-fed mice. PMID:24702026

  11. Modification of TiO{sub 2} powder via atmospheric dielectric barrier discharge treatment for high performance lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Shang-I; Yang, Hao; Chen, Hsien-Wei; Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw

    2015-12-01

    The main objective of this study is to improve the electrochemical performances of TiO{sub 2} Li-ion anode material by introducing plasma treatment on TiO{sub 2} powder. A specially designed atmospheric dielectric barrier discharge plasma generator feasible to modify powders is proposed. The rate capacity of 20 min plasma-treated TiO{sub 2} anode revealed nearly 20% increment as compared to that of pristine TiO{sub 2} at the rates of 0.5, 1, 2, 5, 10 C. As-treated TiO{sub 2} was first analyzed by the X-ray diffractometer and high resolution transmission electron microscope confirmed that there was no noticeable surface morphology and microstructure change from plasma treatment. In addition, plasma-treated TiO{sub 2} was reduced with increasing treatment duration. Significant amount of excited argon (Ar{sup ∗}) and excitation of a nitrogen second positive system (N{sub 2}{sup ∗}) were discovered using optical emission spectroscopy (OES). It was believed that Ar{sup ∗} and N{sub 2}{sup ∗} contributed to TiO{sub 2} surface reduction as companied by formation of oxygen vacancy. A higher amount of oxygen vacancy increases the chance of allowing excited nitrogen to dope onto surface of TiO{sub 2} particle. Electrochemical properties of TiO{sub 2} were raised due to the production of oxygen vacancy and nitrogen doping. These findings enhance the understanding of the atmospheric plasma treatment on the potential application of TiO{sub 2} anode material in Li-ion battery. - Highlights: • A plasma generator was developed and proposed for modifying TiO{sub 2} powder in enhancing its electrochemical property. • The plasma treated TiO{sub 2} revealed 20% increment in capacity under different C-rates. • Plasma diagnosis was performed providing an insight of how plasma treatment is effective in TiO{sub 2} surface modification.

  12. Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles

    NARCIS (Netherlands)

    Martin, A.H.; Jong, G.A.H. de

    2012-01-01

    This paper investigates the possibility for iron fortification of food using protein gel particles in which iron is entrapped using cold-set gelation. The aim is to optimize the iron encapsulation efficiency of whey protein by giving the whey protein different heat treatment prior to gelation with

  13. Dynamic modeling of ultrafiltration membranes for whey separation processes

    NARCIS (Netherlands)

    Saltik, M.B.; Ozkan, L.; Jacobs, M.; van der Padt, A.

    2017-01-01

    In this paper, we present a control relevant rigorous dynamic model for an ultrafiltration membrane unit in a whey separation process. The model consists of a set of differential algebraic equations and is developed for online model based applications such as model based control and process

  14. In-vitro starch hydrolysis of chitosan incorporating whey protein and wheat starch composite gels

    Directory of Open Access Journals (Sweden)

    Natasha Yang

    2017-10-01

    Full Text Available The study examined the influence of chitosan, incorporated into whey protein and wheat starch thermo gels, on the in-vitro hydrolysis of the polysaccharide. Gels were subjected to the following external conditions containing α-amylase at constant incubation temperature of 37 °C: In the first procedure, they were immersed in phosphate buffer (0.05 M and maintained at pH 6.9 throughout the entire digestion. In the second instance, they were introduced into a salt solution, with pH and total volume adjusted at times in sync with the human gastrointestinal tract. Results indicate that low and medium molecular weight chitosan, in combination with whey protein, were effective at enhancing the protective barrier against starch degradation. Less maltose was liberated from gels containing medium molecular weight chitosan, as opposed to the low molecular weight counterpart, and results compare favorably with the outcome of the in-vitro digestion of binary whey protein and wheat starch composites. Keywords: Food science

  15. Effects of different fractions of whey protein on postprandial lipid and hormone responses in type 2 diabetes

    DEFF Research Database (Denmark)

    Mortensen, L.S.; Holmer-Jensen, Jens; Hartvigsen, Merete

    2012-01-01

    Background/Objectives:Exacerbated postprandial lipid responses are associated with an increased cardiovascular risk. Dietary proteins influence postprandial lipemia differently, and whey protein has a preferential lipid-lowering effect. We compared the effects of different whey protein fractions .......European Journal of Clinical Nutrition advance online publication, 16 May 2012; doi:10.1038/ejcn.2012.48....

  16. Chemical composition and viability of goat milk whey for the production of lactic acid with Lactobacillus helveticus.

    Directory of Open Access Journals (Sweden)

    Alejandra Plata Pinzón

    2012-10-01

    Full Text Available Goat milk whey is a byproduct of low economic value, and is perceived within Colombia as industrial waste with a negative environmental impact on ecosystems (BOD and COD of 60,000 ppm and 80,000 ppm respectively. Therefore this paper seeks to characterize this whey, and evaluate the effectiveness of the Lactobacillus Helveticus (LH strain from 0 to 0.91 for the production of lactic acid from whey goat milk enriched with three nutrients. The variables studied follow a Greco-Latin model. To this effect, 16 kinetics were conducted in an intermittent bio-fermenter containing 250 milliliters of goat milk whey wherein the highest production of lactic acid, 17.72 grams per liter, is achieved after 50 hours for a medium containing 2.5% yeast, 0.6% riboflavin, 0.45% ammonium sulfate, and the bio-fermenter operating at 42 ° C. The study concludes that apart from producing lactic acid, LH is an alternative towards avoiding contamination of ecosystems in as much as it would generate an added value to the cheese industry

  17. Whey protein-based films incorporated with oregano essential oil

    Directory of Open Access Journals (Sweden)

    Sandra Prestes Lessa Fernandes Oliveira

    Full Text Available Abstract This study aimed to prepare whey protein-based films incorporated with oregano essential oil at different concentrations, and evaluate their properties and antimicrobial activity. Films were more flexible with increasing the concentration of oregano oil and water vapor permeability was higher in the films with oregano oil. Increasing the concentration of essential oil decreased the water solubility. The solubility of control film and film with 1.5% oregano oil was 20.2 and 14.0%, respectively. The addition of 1% of oregano oil improved the resistance of the films. The tensile strength for the control film was 66.0 MPa, while for the film with 1% of oregano oil was 108.7 MPa. Films containing 1.5% oregano oil showed higher antimicrobial activity. The zone of inhibition ranged from 0 to 1.7 cm. The results showed that the whey protein-based films incorporated with oregano essential oil has potential application as active packaging.

  18. Gastric Emptying and Gastrointestinal Transit Compared among Native and Hydrolyzed Whey and Casein Milk Proteins in an Aged Rat Model.

    Science.gov (United States)

    Dalziel, Julie E; Young, Wayne; McKenzie, Catherine M; Haggarty, Neill W; Roy, Nicole C

    2017-12-13

    Little is known about how milk proteins affect gastrointestinal (GI) transit, particularly for the elderly, in whom digestion has been observed to be slowed. We tested the hypothesis that GI transit is faster for whey than for casein and that this effect is accentuated with hydrolysates, similar to soy. Adult male rats (18 months old) were fed native whey or casein, hydrolyzed whey (WPH) or casein (CPH), hydrolyzed blend (HB; 60% whey:40% casein), or hydrolyzed soy for 14 days then treated with loperamide, prucalopride, or vehicle-control for 7 days. X-ray imaging tracked bead-transit for: gastric emptying (GE; 4 h), small intestine (SI) transit (9 h), and large intestine (LI) transit (12 h). GE for whey was 33 ± 12% faster than that for either casein or CPH. SI transit was decreased by 37 ± 9% for casein and 24 ± 6% for whey compared with hydrolyzed soy, and persisted for casein at 12 h. Although CPH and WPH did not alter transit compared with their respective intact counterparts, fecal output was increased by WPH. Slowed transit by casein was reversed by prucalopride (9-h), but not loperamide. However, rapid GE and slower SI transit for the HB compared with intact forms were inhibited by loperamide. The expected slower GI transit for casein relative to soy provided a comparative benchmark, and opioid receptor involvement was corroborated. Our findings provide new evidence that whey slowed SI transit compared with soy, independent of GE. Increased GI transit from stomach to colon for the HB compared with casein suggests that including hydrolyzed milk proteins in foods may benefit those with slowed intestinal transit.

  19. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents

    Directory of Open Access Journals (Sweden)

    Patrizia Cinelli

    2016-06-01

    Full Text Available Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET/polyethylene (PE multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at

  20. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents

    Science.gov (United States)

    Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea

    2016-01-01

    Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and

  1. Barrier, mechanical and optical properties of whey protein concentrate films

    Directory of Open Access Journals (Sweden)

    Viviane Machado Azevedo

    2014-08-01

    Full Text Available Whey is recognized as a valuable source of high quality protein and, when processed as protein concentrate, may be used in the production of biodegradable films. The objective of the study was to develop films of whey protein concentrate 80% (WPC at concentrations of 6, 8, 10 and 12% and evaluate the influence of this factor in the barrier, mechanical and optical properties of the films. Treatments showed moisture content with a mean value of 22.10% ± 0.76and high solubility values between 56.67 to 62.42%. Thus, there is little or no influence of varying the concentration of WPC in these properties and high hydrophilicity of the films. With increasing concentration of WPC, increases the water vapor permeability of the films (7.42 x 10-13 to 3.49 x 10-12 g.m-1.s-1.Pa-1. The treatment at the concentration of 6% of WPC showed a higher modulus of elasticity (287.90 ± 41.79 MPa. Thegreater rigidity in films with higher concentrations is possibly due to the greater number of bonds between molecules of the polymeric matrix. The films have the same puncture resistance. The increased concentration of WPC promotes resistance to the action of a localized force. In general, films of whey protein concentrate in the tested concentrations exhibited slightly yellowish color and transparency, and can be used in food packaging that requiring intermediate permeability to water vapor, to keep moisture and texture desired.

  2. Whey Proteins Are More Efficient than Casein in the Recovery of Muscle Functional Properties following a Casting Induced Muscle Atrophy

    Science.gov (United States)

    Martin, Vincent; Ratel, Sébastien; Siracusa, Julien; Le Ruyet, Pascale; Savary-Auzeloux, Isabelle; Combaret, Lydie; Guillet, Christelle; Dardevet, Dominique

    2013-01-01

    The purpose of this study was to investigate the effect of whey supplementation, as compared to the standard casein diet, on the recovery of muscle functional properties after a casting-induced immobilization period. After an initial (I0) evaluation of the contractile properties of the plantarflexors (isometric torque-frequency relationship, concentric power-velocity relationship and a fatigability test), the ankle of 20 male adult rats was immobilized by casting for 8 days. During this period, rats were fed a standard diet with 13% of casein (CAS). After cast removal, rats received either the same diet or a diet with 13% of whey proteins (WHEY). A control group (n = 10), non-immobilized but pair-fed to the two other experimental groups, was also studied and fed with the CAS diet. During the recovery period, contractile properties were evaluated 7 (R7), 21 (R21) and 42 days (R42) after cast removal. The immobilization procedure induced a homogeneous depression of average isometric force at R7 (CAS: − 19.0±8.2%; WHEY: − 21.7±8.4%; P<0.001) and concentric power (CAS: − 26.8±16.4%, P<0.001; WHEY: − 13.5±21.8%, P<0.05) as compared to I0. Conversely, no significant alteration of fatigability was observed. At R21, isometric force had fully recovered in WHEY, especially for frequencies above 50 Hz, whereas it was still significantly depressed in CAS, where complete recovery occurred only at R42. Similarly, recovery of concentric power was faster at R21 in the 500−700°/s range in the WHEY group. These results suggest that recovery kinetics varied between diets, the diet with the whey proteins promoting a faster recovery of isometric force and concentric power output as compared to the casein diet. These effects were more specifically observed at force level and movement velocities that are relevant for functional abilities, and thus natural locomotion. PMID:24069411

  3. New insight on the formation of whey protein microbeads by a microfluidic system

    Science.gov (United States)

    Andoyo, Robi; Guyomarc'h, Fanny; Tabuteau, Hervé; Famelart, Marie-Hélène

    2018-02-01

    The current paper describes the formation of whey protein microbeads (WPM) having a spherical shape and a monodispersed size distribution. A microfluidic flow-focusing geometry was used to control the production of whey protein microdroplets in a hydrophobic phase. The microfluidic system consists of two inlet channels where the WPI solution and the lipophilic phase were separately injected towards the flow-focusing (FF) junction where they eventually meet, then co-flow. A whey protein isolate (WPI) solution of 150 g/kg protein and two types of hydrophobic phases, i.e. sunflower oil and n-dodecane, were tested as the continuous phase. The formation of WPM was observed microscopically. The aim of the present study was to describe the production of stable monodisperse WPM in suspension in milk ultrafiltrate using a microfluidic system. Hints to perform the control of the running parameters, i.e. choice of the hydrophobic phase or fluids flowrates, are provided. The results showed that in the sunflower oil, microdroplets had a large polydisperse size distribution, while in n-dodecane, microdroplets with narrow size distribution were obtained. Stabilization of the whey protein microdroplets through heat-gelation at 75 °C for 20 min in n-dodecane produced WPM and no change in shape nor size is observed. Meanwhile replacing the n-dodecane by MUF using centrifugation and washing caused the swelling of the WPM, but dispersity remained low. From this study, microfluidic system seemed to be a suitable method to be used for producing small quantities of monodisperse WPM.

  4. Skeletal effect of casein and whey protein intake during catch-up growth in young male Sprague-Dawley rats.

    Science.gov (United States)

    Masarwi, Majdi; Gabet, Yankel; Dolkart, Oleg; Brosh, Tamar; Shamir, Raanan; Phillip, Moshe; Gat-Yablonski, Galia

    2016-07-01

    The aim of the present study was to determine whether the type of protein ingested influences the efficiency of catch-up (CU) growth and bone quality in fast-growing male rats. Young male Sprague-Dawley rats were either fed ad libitum (controls) or subjected to 36 d of 40 % food restriction followed by 24 or 40 d of re-feeding with either standard rat chow or iso-energetic, iso-protein diets containing milk proteins - casein or whey. In terms of body weight, CU growth was incomplete in all study groups. Despite their similar food consumption, casein-re-fed rats had a significantly higher body weight and longer humerus than whey-re-fed rats in the long term. The height of the epiphyseal growth plate (EGP) in both casein and whey groups was greater than that of rats re-fed normal chow. Microcomputed tomography yielded significant differences in bone microstructure between the casein and whey groups, with the casein-re-fed animals having greater cortical thickness in both the short and long term in addition to a higher trabecular bone fraction in the short term, although this difference disappeared in the long term. Mechanical testing confirmed the greater bone strength in rats re-fed casein. Bone quality during CU growth significantly depends on the type of protein ingested. The higher EGP in the casein- and whey-re-fed rats suggests a better growth potential with milk-based diets. These results suggest that whey may lead to slower bone growth with reduced weight gain and, as such, may serve to circumvent long-term complications of CU growth.

  5. Distribution of Spiked Drugs between Milk Fat, Skim Milk, Whey, Curd, and Milk Protein Fractions: Expansion of Partitioning Models.

    Science.gov (United States)

    Lupton, Sara J; Shappell, Nancy W; Shelver, Weilin L; Hakk, Heldur

    2018-01-10

    The distributions of eight drugs (acetaminophen, acetylsalicylic acid/salicylic acid, ciprofloxacin, clarithromycin, flunixin, phenylbutazone, praziquantel, and thiamphenicol) were determined in milk products (skim milk, milk fat, curd, whey, and whey protein) and used to expand a previous model (from 7 drugs to 15 drugs) for predicting drug distribution. Phenylbutazone and praziquantel were found to distribute with the lipid and curd phases (≥50%). Flunixin distribution was lower but similar in direction (12% in milk fat, 39% in curd). Acetaminophen, ciprofloxacin, and praziquantel preferentially associated with casein proteins, whereas thiamphenicol and clarithromycin associated preferentially to whey proteins. Regression analyses for log [milk fat]/[skim milk] and log [curd]/[whey] had r 2 values of 0.63 and 0.67, respectively, with p of <0.001 for 15 drugs (7 previously tested and 8 currently tested). The robustness of the distribution model was enhanced by doubling the number of drugs originally tested.

  6. Synthesis and thermal behaviour of pauflerite, β-VOSO4, and its α-modification

    International Nuclear Information System (INIS)

    Paufler, Peter; Filatov, Stanislav K.; Krzhizhanovskaya, Maria G.; Bubnova, Rimma S.; Russian Academy of Sciences, St. Peterburg

    2014-01-01

    Powder α-VOSO 4 was prepared by dehydration of VOSO 4 . 3H 2 O. β-VOSO 4 was synthesized by boiling of V 2 O 5 in H 2 SO 4 . Thermal behaviour of VOSO 4 . 3H 2 O, α- and β-VOSO 4 modifications is studied by high-temperature powder X-ray diffraction and thermal analysis, including two-step dehydration of VOSO 4 . 3H 2 O, formation of α-VOSO 4 , thermal expansion and decomposition of both modifications into V 2 O 5 . Higher anisotropy of thermal expansion of the tetragonal α-modification α c = 39(2) . 10 -6 K -1 along the vanadyl ion and α a = 2.4(6) . 10 -6 K -1 in the perpendicular direction comparing to the orthorhombic β-modification (α a = 20.2(7), α b = 2.8(8), α c = 17.8(4) . 10 -6 K -1 ) is explained from a crystal chemical point of view.

  7. A model of proteolysis and amino acid biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in whey.

    Science.gov (United States)

    Liu, Enuo; Zheng, Huajun; Hao, Pei; Konno, Tomonobu; Yu, Yao; Kume, Hisae; Oda, Munehiro; Ji, Zai-Si

    2012-12-01

    Lactobacillus delbrueckii subsp. bulgaricus 2038 (L. bulgaricus 2038) is a bacterium that is used as a starter for dairy products by Meiji Co., Ltd of Japan. Culturing L. bulgaricus 2038 with whey as the sole nitrogen source results in a shorter lag phase than other milk proteins under the same conditions (carbon source, minerals, and vitamins). Microarray results of gene expression revealed characteristics of amino acid anabolism with whey as the nitrogen source and established a model of proteolysis and amino acid biosynthesis for L. bulgaricus. Whey peptides and free amino acids are readily metabolized, enabling rapid entry into the logarithmic growth phase. The oligopeptide transport system is the primary pathway for obtaining amino acids. Amino acid biosynthesis maintains the balance between amino acids required for cell growth and the amount obtained from environment. The interconversion of amino acids is also important for L. bulgaricus 2038 growth.

  8. LS-SVM: uma nova ferramenta quimiométrica para regressão multivariada. Comparação de modelos de regressão LS-SVM e PLS na quantificação de adulterantes em leite em pó empregando NIR LS-SVM: a new chemometric tool for multivariate regression. Comparison of LS-SVM and pls regression for determination of common adulterants in powdered milk by nir spectroscopy

    Directory of Open Access Journals (Sweden)

    Marco F. Ferrão

    2007-08-01

    Full Text Available Least-squares support vector machines (LS-SVM were used as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants found in powdered milk samples, using near-infrared spectroscopy. Excellent models were built using LS-SVM for determining R², RMSECV and RMSEP values. LS-SVMs show superior performance for quantifying starch, whey and sucrose in powdered milk samples in relation to PLSR. This study shows that it is possible to determine precisely the amount of one and two common adulterants simultaneously in powdered milk samples using LS-SVM and NIR spectra.

  9. Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched alpha-lactalbumin and beta-lactoglobulin food ingredients

    Science.gov (United States)

    A potentially economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (SCO2) as an acid to produce enriched fractions of alpha-lactalbumin (a-LA) and beta-lactoglobulin (b-LG) from whey protein isolate. To prepare the fractions, so...

  10. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    Science.gov (United States)

    Medina, Fransisco

    AM. Alternative powders can be made by blending or re-spheroidizing HDH and CPTi powders. Machine modifications were performed to allow the testing and manufacturing with these low cost alternative powders. A comparison was made between alternative powders and gas atomized powders. Powders were compared in terms of morphology and at the microstructural level. Flowability of different powder blends was also measured. Finally, a comparison of parts fabricated from the multiple powder blends and gas atomized powder was made. It has been demonstrated that powder blending can produce fully dense parts in the Arcam system by utilizing the double melt technique or HIPing the built pars. The double melt technique increased the density of the sample part and modified the microstructure into finer martensitic grains. The HIP process can make a part fully dense regardless of what percentage of HDH powder blending is used. The HIP process yielded the same microstructure, regardless of the grain structure it started with. This research allows for the reduction of costs using titanium powders in the EBM system, but can also be implemented with more costly elements and alloys using other metal AM technologies. This includes niobium, tantalum, and nickel-based superalloys for use in various industries.

  11. Proliferative effect of whey from cow's milk obtained at two different stages of pregnancy measured in MCF-7 cells

    DEFF Research Database (Denmark)

    Nielsen, Tina S; Andersen, Charlotte; Sejrsen, Kristen

    2012-01-01

    Dietary estrogens may play a role in the etiology of hormone-dependent cancers like breast cancer. Cow's milk contains various endogenous estrogens and feed derived phytoestrogens that potentially contribute to an estrogenic effect of milk in consumers, and therefore we evaluated the effect of milk...... (whey) in a proliferation assay with estrogen-sensitive MCF-7 human breast cancer cells. Milk samples were obtained from 22 cows representing different stages of pregnancy (first and second half) and whey was produced from the milk. 0·1, 0·25 or 0·5% whey was included in the cell culture medium...

  12. Powder metallurgy of turbine disc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ingesten, N.G. (Dep. of Engineering Metals)

    1981-03-01

    The first part embraced a study of carbide precipitated in IN 100 and astrology powders. The powder was heat treated at temperatures between 950/sup 0/C and 1150/sup 0/C. After aging at 950-1100/sup 0/C the MC-carbides formed during atomization were replaced by M/sub 23/C/sub 6/-carbides. After 1150/sup 0/C treatments the MC carbides were present again. Precipitation comparable with that obtained in HIP:ed specimens was not observed at free particle surfaces. However, powder particles which had agglomerated during atomization often exhibited considerable precipitation at contiguous surfaces. Obviously, contact between the particles must occur if coarse precipitation at particle surfaces is to develop. Reduced PPB-precipitation was obtained by pre-heat- treatment of powder before compaction. It is suggested that the carbon otherwise available for PPB-precipitation forms carbides in the interior of the powder particles. The aim of the second part was to ..gamma..-strengthen a Co-based super-alloy (Co-15Cr-3Mo-5Ti). Here the Ti-addition gives a coherent and ordered ..gamma..-phase Co/sub 3/Ti. However, upon ageing the alloy is unstable in order to increase the stability modifications of the alloy were prepared by: leaving out the Mo-content, adding 10 % Ni and by decreasing the Ti-content to 4.2 %. In addition, the effect of enhanced grain size and of deformation was investigated. Significant reduction of the transformation rate was only obtained by decresing the Ti-content while deformation of the alloy greatly increased the transformation rate.(author).

  13. Endocrine responses and acute mTOR pathway phosphorylation to resistance exercise with leucine and whey

    Directory of Open Access Journals (Sweden)

    MT Lane

    2017-02-01

    Full Text Available Leucine ingestion reportedly activates the mTOR pathway in skeletal muscle, contributing to a hypertrophy response. The purpose of the study was to compare the post-resistance exercise effects of leucine and whey protein supplementation on endocrine responses and muscle mTOR pathway phosphorylation. On visit 1, subjects (X±SD; n=20; age=27.8±2.8yrs provided baseline blood samples for analysis of cortisol, glucose and insulin; a muscle biopsy of the vastus lateralis muscle to assess mTOR signaling pathway phosphorylation; and were tested for maximum strength on the leg press and leg extension exercises. For visits 2 and 3, subjects were randomized in a double-blind crossover design to ingest either leucine and whey protein (10g+10g; supplement or a non-caloric placebo. During these visits, 5 sets of 10 repetitions were performed on both exercises, immediately followed by ingestion of the supplement or placebo. Blood was sampled 30 min post-, and a muscle biopsy 45 min post-exercise. Western blots quantified total and phosphorylated proteins. Insulin increased (α<.05 with supplementation with no change in glucose compared to placebo. Relative phosphorylation of AKT and rpS6 were greater with leucine and whey supplementation compared to placebo. Supplementation of leucine and whey protein immediately after heavy resistance exercise increases anabolic signaling in human skeletal muscle.

  14. Deposition of heated whey proteins on a chromium oxide surface.

    NARCIS (Netherlands)

    Jeurnink, Th.; Verheul, M.; Cohen Stuart, M.A.; Kruif, de C.G.

    1996-01-01

    Whey protein solutions were given different heat treatments after which their deposition on a chromium oxide surface (the outer layer of stainless steel) was measured by reflectometry. The deposition was studied under controlled flow conditions by using a stagnation point flow configuration. The

  15. The effects of pressed sugar beet pulp silage (PBPS and dairy whey on heavy pig production

    Directory of Open Access Journals (Sweden)

    Luca Sardi

    2010-01-01

    Full Text Available The effects of pressed beet pulp silage (PBPS replacing barley for 10% and 20% (DM basis were studied on heavy pigs fed dairy whey-diluted diets. 60 Hypor pigs (average initial weight of 28 kg, 30 barrows and 30 gilts, were homogeneously allocated to three exper- imental groups: T1 (control in which pigs were fed a traditional sweet whey- diluted diet (the ratio between whey and dry matter was 4.5/1; T2 in which PBPS replaced barley for 10% (DM basis during a first period (from the beginning to the 133rd day of trial and thereafter for 20% (DM basis; T3 in which PBPS replaced barley for 20% (DM basis throughout the experimental period. In diets T2 and T3 feed was dairy whey-diluted as in group T1. No significant (P>0.05 differences were observed concerning growth parameters (ADG and FCR. Pigs on diets contain- ing PBPS showed significantly higher (P<0.05 percentages of lean cuts and lower percentages of fat cuts. On the whole, ham weight losses during seasoning were moderate but significantly (P<0.05 more marked for PBPS-fed pigs as a prob- able consequence of their lower adiposity degree. Fatty acid composition of ham fat was unaffected by diets. With regard to m. Semimembranosus colour, pigs receiving PBPS showed lower (P<0.05 “L”, “a” and “Chroma” values. From an economical point of view it can be concluded that the use of PBPS (partially replacing barley and dairy whey in heavy pig production could be of particular interest in areas where both these by products are readily available.

  16. Stability of cardamom (Elettaria cardamomum) essential oil in microcapsules made of whey protein isolate, guar gum, and carrageenan.

    Science.gov (United States)

    Mehyar, Ghadeer F; Al-Ismail, Khalid M; Al-Isamil, Khalid M; Al-Ghizzawi, Hana'a M; Holley, Richard A

    2014-10-01

    The effects of microencapsulating cardamom essential oil (CEO) in whey protein isolate (WPI) alone and combined with guar gum (GG) and carrageen (CG) on microencapsulation efficiency, oil chemical stability, and microcapsule structure were investigated. Freeze-dried microcapsules were prepared from emulsions containing (w/w): 15% and 30% WPI; 0.1% GG, and 0.2% CG as wall materials with CEO (at 10% of polymer concentration) as core material, and physical properties and chemical stability were compared. Bulk density of microcapsules was highest in WPI without GG or CG and in 30% WPI + GG microcapsules, and was more affected by moisture content (r = -0.6) than by mean particle diameter (d43 ; r = -0.2) and span (r = 0.1). Microcapsules containing only WPI had the highest entrapped oil (7.5%) and microencapsulation efficiency (98.5%). The concentrations of 1,8-cineole and d-limonene were used as indicators for microcapsule chemical stability since they were the main components of CEO. Microcapsules retained higher (P ≤ 0.05) concentrations of both components than non-microencapsulated CEO during 16 wk storage at 20 ºC, but higher loss of both components was noted at 35 ºC. Microencapsulated d-limonene was reduced faster than 1,8-cineole regardless of temperature. The 30% WPI and 30% WPI + GG microcapsules retained CEO best throughout storage at both storage temperatures. Scanning electron micrographs revealed that WPI microcapsules had smooth surfaces, were relatively homogenous and regular in shape, whereas GG and CG addition increased visual surface porosity and reduced shape regularity. It was concluded that the best formulation for encapsulating CEO was 30% WPI. Encapsulating cardamom essential oil in whey protein isolate alone or combined with guar gum produced dried powders that effectively retained and chemically stabilized CEO, and therefore enhanced its handling and storability. © 2014 Institute of Food Technologists®

  17. Shock-induced modification of the structure of yttria stabilised zirconia powder

    International Nuclear Information System (INIS)

    Frazer, B.G.; Killen, P.D.; Page, N.W.; Charleson, S.W.

    1999-01-01

    Full text: Powder samples of 3 mol% yttria stabilised zirconia were shock compacted in Russia using the explosive flyer plate compaction technique in which a flyer plate is driven by an explosive charge to impact on the surface of a target fixture containing the powder. In these experiments the impact velocity of the flyer plate was approximately 2130 m.s -1 . Initial precompaction densities of 30% and 60% of solid phase densities were used in the shock compaction process. The precompaction densities were responsible for the different values of the shock strength transmitted to the sample. These pressures were 5 GPa and 16 GPa (for the 30% and 60% dense samples respectively). Fragments of all shock compacted samples were obtained for analysis with the only exception being one of the 5 GPa samples which remained intact and was encased in a resin. X-Ray diffraction scans of the recovered samples were analysed using the Rietveld refinement program GSAS. Results show significant changes in crystallite size and strain and an alteration to the shape of the monoclinic lattice as well as the pressure induced phase change from cubic to tetragonal described in another paper. Copyright (1999) Australian X-ray Analytical Association Inc

  18. Production of fermented cheese whey-based beverage using kefir grains as starter culture: evaluation of morphological and microbial variations.

    Science.gov (United States)

    Magalhães, Karina Teixeira; Pereira, Maria Alcina; Nicolau, Ana; Dragone, Giuliano; Domingues, Lucília; Teixeira, José António; de Almeida Silva, João Batista; Schwan, Rosane Freitas

    2010-11-01

    Whey valorization concerns have led to recent interest on the production of whey beverage simulating kefir. In this study, the structure and microbiota of Brazilian kefir grains and beverages obtained from milk and whole/deproteinised whey was characterized using microscopy and molecular techniques. The aim was to evaluate its stability and possible shift of probiotic bacteria to the beverages. Fluorescence staining in combination with Confocal Laser Scanning Microscopy showed distribution of yeasts in macro-clusters among the grain's matrix essentially composed of polysaccharides (kefiran) and bacteria. Denaturing gradient gel electrophoresis displayed communities included yeast affiliated to Kluyveromyces marxianus, Saccharomyces cerevisiae, Kazachatania unispora, bacteria affiliated to Lactobacillus kefiranofaciens subsp. Kefirgranum, Lactobacillus kefiranofaciens subsp. Kefiranofaciens and an uncultured bacterium also related to the genus Lactobacillus. A steady structure and dominant microbiota, including probiotic bacteria, was detected in the analyzed kefir beverages and grains. This robustness is determinant for future implementation of whey-based kefir beverages.

  19. Processing cereal grains, thin stillage, and cheese whey to fuel ethanol in a farm-scale plant

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, W R; Westby, C A

    1988-01-01

    Hydrous fuel ethanol (95%) and distiller's wet grain (DWG) were produced in a farm-scale plant from corn, wheat, and grain sorghum particles of various sizes, from corn combined with thin stillage-whey, and from various other cereal grains. These variations were made in a search to find the best set of conditions for maximizing the energy balance and minimizing the cost of ethanol production. We found that the optimum hammermill screen size for corn, wheat, and grain sorghum was 1.59 - 2.38 mm. In tests with thin stillage and whey a higher energy balance (2.91) occurred when one part whey was mixed with three parts stillage, rather than the reverse (2.69). However, the reverse (three parts whey and one part stillage) gave a lower ethanol cost ($0.45 liter/sup -1/) than the original ($0.47 liter/sup -1/). Tests with various cereal grains (corn, oats, wheat, barley, rye, and grain sorghum) gave identical energy balance values (2.26) when 10% (v/v) ethanol beers were produced. However, rye ($0.50 liter/sup -1/), grain sorghum ($0.46 liter/sup -1/), and corn ($0.51 liter/sup -1/) yielded ethanol at the lowest net cost. Recommendations for farm-scale plants are also provided.

  20. Physicochemical Properties of Whey-Protein-Stabilized Astaxanthin Nanodispersion and Its Transport via a Caco-2 Monolayer.

    Science.gov (United States)

    Shen, Xue; Zhao, Changhui; Lu, Jing; Guo, Mingruo

    2018-02-14

    Astaxanthin nanodispersion was prepared using whey protein isolate (WPI) and polymerized whey protein (PWP) through an emulsification-evaporation technique. The physicochemical properties of the astaxanthin nanodispersion were evaluated, and the transport of astaxanthin was assessed using a Caco-2 cell monolayer model. The astaxanthin nanodispersions stabilized by WPI and PWP (2.5%, w/w) had a small particle size (121 ± 4.9 and 80.4 ± 5.9 nm, respectively), negative ζ potential (-19.3 ± 1.5 and -35.0 ± 2.2 mV, respectively), and high encapsulation efficiency (92.1 ± 2.9 and 93.5 ± 2.4%, respectively). Differential scanning calorimetry curves indicated that amorphous astaxanthin existed in both astaxanthin nanodispersions. Whey-protein-stabilized astaxanthin nanodispersion showed resistance to pepsin digestion but readily released astaxanthin after trypsin digestion. The nanodispersions showed no cytotoxicity to Caco-2 cells at a protein concentration below 10 mg/mL. WPI- and PWP-stabilized nanodispersions improved the apparent permeability coefficient (P app ) of Caco-2 cells to astaxanthin by 10.3- and 16.1-fold, respectively. The results indicated that whey-protein-stabilized nanodispersion is a good vehicle to deliver lipophilic bioactive compounds, such as astaxanthin, and to improve their bioavailability.

  1. Whey protein supplementation preserves postprandial myofibrillar protein synthesis during short-term energy restriction in overweight and obese adults.

    Science.gov (United States)

    Hector, Amy J; Marcotte, George R; Churchward-Venne, Tyler A; Murphy, Caoileann H; Breen, Leigh; von Allmen, Mark; Baker, Steven K; Phillips, Stuart M

    2015-02-01

    Higher dietary energy as protein during weight loss results in a greater loss of fat mass and retention of muscle mass; however, the impact of protein quality on the rates of myofibrillar protein synthesis (MPS) and lipolysis, processes that are important in the maintenance of muscle and loss of fat, respectively, are unknown. We aimed to determine how the consumption of different sources of proteins (soy or whey) during a controlled short-term (14-d) hypoenergetic diet affected MPS and lipolysis. Men (n = 19) and women (n = 21) (age 35-65 y; body mass index 28-50 kg/m(2)) completed a 14-d controlled hypoenergetic diet (-750 kcal/d). Participants were randomly assigned, double blind, to receive twice-daily supplements of isolated whey (27 g/supplement) or soy (26 g/supplement), providing a total protein intake of 1.3 ± 0.1 g/(kg · d), or isoenergetic carbohydrate (25 g maltodextrin/supplement) resulting in a total protein intake of 0.7 ± 0.1 g/(kg · d). Before and after the dietary intervention, primed continuous infusions of L-[ring-(13)C6] phenylalanine and [(2)H5]-glycerol were used to measure postabsorptive and postprandial rates of MPS and lipolysis. Preintervention, MPS was stimulated more (P whey than with soy or carbohydrate. Postintervention, postabsorptive MPS decreased similarly in all groups (all P whey group, which was less (P whey. We conclude that whey protein supplementation attenuated the decline in postprandial rates of MPS after weight loss, which may be of importance in the preservation of lean mass during longer-term weight loss interventions. This trial was registered at clinicaltrials.gov as NCT01530646. © 2015 American Society for Nutrition.

  2. The suitability of different probiotic strains for the production of fruit-whey beverages.

    Science.gov (United States)

    Sady, Marek; Najgebauer-Lejko, Dorota; Domagała, Jacek

    2017-01-01

    When designing new probiotic products, one of the most important aspects is the selection of bacterial strains with high survival rates in the matrix of the product concerned. The aim of the present research was to evaluate the potential of selected strains of probiotic bacteria for the production of fruit-whey beverages. Orange, apple and blackcurrant whey beverages were produced, and each was inoculated with one of the following probiotic strains: Bifidobacterium lactis HN019TM; Lactobacillus aci- dophilus NCFM®; Lactobacillus paracasei Lpc-37TM; Lactobacillus rhamnosus HN001TM. The count of probiotic bacteria as well as pH and total acidity were evaluated at the 1st, 7th, 14th, 21st and 28th day of storage. Beverages containing L. paracasei Lpc-37TM or L. rhamnosus HN001TM were characterized by a sig- nificantly higher average number of viable cells (7.02 or 7.05 log cfu/g, respectively) than products with lactis HN019TM or L. acidophilus NCFM® (6.43 or 6.37 log cfu/g, respectively). The use of L. paracasei Lpc-37 and L. rhamnosus HN001 strains in orange and apple drinks allows the recommended count for probiotic products, 106 cfu/g for 28 days of storage, to be exceeded. Survival of the B. lactis HN019 strain fulfills the above requirements only in the orange drink. The L. acidophilus NCFM® strain was found to be the least suitable for the production of beverages, as it did not reach 6 log cfu/g in any products after 28 days of stor- age. The highest average number of bacteria was found in the orange beverages (7.14 log cfu/g). In terms of bacteria viability, blackcurrant juice was the least suitable for the production of whey probiotic drinks, due to its high acidity. The results of the present study indicate that careful selection of the fruit juice component, especially in terms of its acidity, is key to designing successful probiotic fruit-whey beverages. Other factors which should be taken into account to ensure a sufficient number of live probiotic

  3. Cysteine-rich whey protein isolate (Immunocal®) ameliorates deficits in the GFAP.HMOX1 mouse model of schizophrenia.

    Science.gov (United States)

    Song, Wei; Tavitian, Ayda; Cressatti, Marisa; Galindez, Carmela; Liberman, Adrienne; Schipper, Hyman M

    2017-09-01

    Schizophrenia is a neuropsychiatric disorder that features neural oxidative stress and glutathione (GSH) deficits. Oxidative stress is augmented in brain tissue of GFAP.HMOX1 transgenic mice which exhibit schizophrenia-relevant characteristics. The whey protein isolate, Immunocal® serves as a GSH precursor upon oral administration. In this study, we treated GFAP.HMOX1 transgenic mice daily with either Immunocal (33mg/ml drinking water) or equivalent concentrations of casein (control) between the ages of 5 and 6.5 months. Immunocal attenuated many of the behavioral, neurochemical and redox abnormalities observed in GFAP.HMOX1 mice. In addition to restoring GSH homeostasis in the CNS of the transgenic mice, the whey protein isolate augmented GSH reserves in the brains of wild-type animals. These results demonstrate that consumption of whey protein isolate augments GSH stores and antioxidant defenses in the healthy and diseased mammalian brain. Whey protein isolate supplementation (Immunocal) may constitute a safe and effective modality for the management of schizophrenia, an unmet clinical imperative. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Role and importance of the awareness for whey in dairy sector at an international level

    Directory of Open Access Journals (Sweden)

    M. Yılmaz

    2017-12-01

    Full Text Available Abstract. The WHY-WHEY? is a training project supported by the EU with regard to the Erasmus+ program aiming at promoting awareness for it. In this study, the surveys carried out with the participants of a total of 4 workshops in Turkey, Italy, Poland and Hungary were evaluated. Whey is the main dairy by-product, rather than a waste, which is obtained during the coagulation of milk casein in cheese making and which is considered as a residual aqueous solution of lactose containing protein and minerals. Survey results indicated that whey is a significant source and it could facilitate the production of some different alternative products. However, there is a great lack in the knowledge and the awareness in this sense. For this reason, it could be said that more detailed surveys and result analyses could offer a solid base to develop a training course and didactic materials in a way that could completely meet the needs of the sector.

  5. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    Science.gov (United States)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  6. Techologie výroby syrovátkových sýrů

    OpenAIRE

    Škopíková, Miroslava

    2014-01-01

    This thesis on production technology of whey cheeses, deals with whey as a by-product that results in the production of cheese and curd. Widely applies in both the food production and the other industries. Content of this work is basic chemical composition of whey, whey production, basic technological operations in the modification of whey and the incurred products, a brief list of the use of whey and finally there are listed the most famous whey cheeses and a brief description of their produ...

  7. Degradation of vitamin C in a product made from mango (Mangifera indica L. and whey protein

    Directory of Open Access Journals (Sweden)

    Fernando Alonso Mendoza-Corvis

    2017-01-01

    Full Text Available This study aimed to determine the kinetics of vitamin C degradation in a product made from mango pulp (Mangifera indica L. and whey protein powder, in order to determine the effect of temperature on its conservation and further evaluate the behavior of the L*, a*, b* and the total color difference (ΔE in the powder product. Vitamin C was determined by the aoac 967.21/90 method using 2,6-dichlorophenol indophenol, and the color was quantified with a HunterLab Color Flex EZ colorimeter. Vitamin C showed greater stability in the powder product ResumoEsta pesquisa procurou determinar a cinética de degradação da vitamina C em um produto em pó elaborado a base de polpa de manga (Mangifera indica L. var. Hilacha e lactisoro, com o fim de conhecer o efeito da temperatura na sua conservação e ademais avaliar o comportamento dos parâmetros L*, a*, b* e a diferença total da cor (ΔE no produto. A vitamina C determinou-se mediante o método aoac 967.21/90, com 2,6-diclorofenol indofe-nol; enquanto que a cor se quantificou com um colorímetro cor Flex EZ marca HunterLab. A vitamina C exibiu maior estabilidade no produto em pó armazenado a uma temperatura de 4 °C, stored at 4 °C with a concentration at the end of the eighth sampling week of 13.94 ± 1.2 mg/10 0 g-1 sample and showing a first order degradation kinetics with k1 values of 0.014 and 0.041 mg/100 g/week at temperatures of 4 °C and 28 °C, respec-tively. The greatest variations in color occurred in samples stored at 28 °C, indicating the influence of the temperature change on the product compo-nents. In addition, L*, a* and b* parameters were less affected under storage temperature of 4 °C, and their values correspond to a second degree polynomial.

  8. Hydrolysis of whey lactose by immobilized β-Galactosidase

    Directory of Open Access Journals (Sweden)

    Marcela Panaro Mariotti

    2008-12-01

    Full Text Available Hydrolysis of whey lactose to glucose and galactose by immobilized galactosidase comes as an alternative to enlarge the possibilities of commercial use of this feedstock. To be applied at industrial scale, the process should be performed continuously .This work aimed to study the hydrolysis of whey lactose by an immobilized enzyme reactor. b-Galactosidase from Aspergillus oryzae was immobilized on silica and activity and stability were evaluated. The best immobilization results were attained by using glutaraldehyde as support's activator and enzyme stabilizer. The optimized enzyme proportion for immobilization was 15-20 mg g-1 of support. Treatments of whey were performed (microfiltration, thermal treatment and ultrafiltration, seeking the elimination of sludge, and the effects on operating the fixed bed reactor were evaluated. Ultrafiltration was the best treatment towards a proper substrate solution for feeding the reactor.A hidrólise de lactose de soro de leite, resultando em glicose e galactose, apresenta-se como uma alternativa para ampliar as possibilidades de uso comercial deste insumo. Para ser aplicado em escala industrial, o processo deve ser operado de modo contínuo. Reporta-se o estudo de um sistema objetivando hidrólise de lactose de soro de leite através de um reator com enzima imobilizada. b-Galactosidase de Aspergillus oryzae foi imobilizada em sílica, sendo avaliadas a estabilidade e atividade. Os melhores resultados de imobilização foram obtidos usando glutaraldeído como ativante do suporte e estabilizador da enzima. A proporção otimizada entre enzima e suporte foi 15-20 mg.g-1. Foram estudadas formas de tratamento do soro (microfiltração, tratamento térmico e ultrafiltração, objetivando eliminação de material suspenso, e avaliando os efeitos na operação de reator de leito fixo. A ultrafiltração foi o melhor tratamento, na busca de uma solução de substrato apropriada para o reator contínuo.

  9. Carbery milk products in Ireland produces alcohol from whey

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R

    1980-01-01

    A brief illustrated description is given of alcohol production by Carbery Milk Products Ltd., introduced in 1976 as an alternative to whey drying. The initial investment into the new alcohol factory was 1.6 million. The process includes whey ultrafiltration at a rate of 125,000 gallons/day, fermentation of the premeate in 6 fermentation tanks (total capacity 42,000 gallons) in batch operation, each requiring on average 6 hours; efficiency of lactose conversion to alcohol is 86% of the theoretical yield. After separation of the yeasts, the liquor is pasteurized and heated to the correct temperature for distillation which is carried out in a plant consisting of six 32-metre high cylinders incorporating rectification towers. The finished alcohol is stored under customs supervision in 3 storage tanks, each with a capacity of 125000 gallons. The waste products from the fermentation and distillation stages necessitated the installation of a purification plant for treating daily about 200000 gallons effluent with 9000 lb BOD, in addition to another plant handling 400 000 gallons with also 9000 lb BOD of normal dairy waste water.

  10. LACTOSUERO: IMPORTANCIA EN LA INDUSTRIA DE ALIMENTOS WHEY: IMPORTANCE IN THE FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    Ricardo Adolfo Parra Huertas

    2009-06-01

    Full Text Available El lactosuero de quesería es un subproducto líquido obtenido después de la precipitación de la caseína durante la elaboración del queso. Contiene principalmente lactosa, proteínas como sustancias de importante valor nutritivo, minerales, vitaminas y grasa. La composición y tipo de lactosuero varía considerablemente dependiendo del tipo de leche, tipo de queso elaborado y el proceso de tecnología empleado. La lactosa es el principal componente nutritivo (4,5 % p-v, proteína (0,8% p/v, y lípidos (0,5%. Si en la coagulación de la leche se utiliza enzimas el lactosuero se denomina dulce, y si se reemplaza la enzima por ácidos orgánicos se denomina ácido. Para la industria alimentaria, el lactosuero constituye una fuente económica de proteínas que otorga múltiples propiedades en una amplia gama de alimentos. Los productos del suero, incluyendo la lactosa, mejoran la textura, realzan el sabor y color, emulsifican y estabilizan, mejoran las propiedades de flujo y muestran muchas otras propiedades funcionales que aumentan la calidad de los productos alimenticios. Basados en el valor nutricional del lactosuero, un número de usos comerciales se han obtenido como etanol, ácidos orgánicos, bebidas no alcohólicas, bebidas fermentadas, biomasa, concentrados, aislados e hidrolizados de proteína, películas comestibles, medio de soporte para encapsular sustancias, producción de xantana, enzimas, separación de la lactosa para fines endulzantes en alimentos entre otras aplicaciones.Cheese whey is a by-product liquid obtained after precipitation of casein during the production cheese. Mainly contains lactose, protein and important nutritional substances, minerals, vitamins and fat. The type and composition of whey varies considerably depending on the type of milk, cheese produced and the process technology used. Lactose is the primary nutritional component (4.5% pv, protein (0.8% w / v and lipids (0.5%. If the milk clotting enzyme used is

  11. Resistance training with soy vs whey protein supplements in hyperlipidemic males

    Directory of Open Access Journals (Sweden)

    Leddy John J

    2009-03-01

    Full Text Available Abstract Background Most individuals at risk for developing cardiovascular disease (CVD can reduce risk factors through diet and exercise before resorting to drug treatment. The effect of a combination of resistance training with vegetable-based (soy versus animal-based (whey protein supplementation on CVD risk reduction has received little study. The study's purpose was to examine the effects of 12 weeks of resistance exercise training with soy versus whey protein supplementation on strength gains, body composition and serum lipid changes in overweight, hyperlipidemic men. Methods Twenty-eight overweight, male subjects (BMI 25–30 with serum cholesterol >200 mg/dl were randomly divided into 3 groups (placebo (n = 9, and soy (n = 9 or whey (n = 10 supplementation and participated in supervised resistance training for 12 weeks. Supplements were provided in a double blind fashion. Results All 3 groups had significant gains in strength, averaging 47% in all major muscle groups and significant increases in fat free mass (2.6%, with no difference among groups. Percent body fat and waist-to-hip ratio decreased significantly in all 3 groups an average of 8% and 2%, respectively, with no difference among groups. Total serum cholesterol decreased significantly, again with no difference among groups. Conclusion Participation in a 12 week resistance exercise training program significantly increased strength and improved both body composition and serum cholesterol in overweight, hypercholesterolemic men with no added benefit from protein supplementation.

  12. Protein denaturation and functional properties of Lenient Steam Injection heat treated whey protein concentrate

    DEFF Research Database (Denmark)

    Dickow, Jonatan Ahrens; Kaufmann, Niels; Wiking, Lars

    2012-01-01

    Whey protein concentrate (WPC) was heat treated by use of the novel heat treatment method of Lenient Steam Injection (LSI) to elucidate new functional properties in relation to heat-induced gelation of heat treated WPC. Denaturation was measured by both DSC and FPLC, and the results of the two...... methods were highly correlated. Temperatures of up to 90 °C were applicable using LSI, whereas only 68 °C could be reached by plate heat exchange before coagulation/fouling. Denaturation of whey proteins increased with increasing heat treatment temperature up to a degree of 30–35% denaturation at 90 °C...

  13. Industrial testing of modified clay powders by the ''Permneft''' organization

    Energy Technology Data Exchange (ETDEWEB)

    Matytsyn, V I; Kosivchenko, A M; Ryabchenko, V I; Shishov, V A

    1980-01-01

    VNIIKRneft' has developed a modified clay powder based on Cherkask bentonite with one ton of solution resulting in 20-28 cubic meters of powder per TU 39-08-123-77 formula. The modification stems from the type of bentonite treatment used. Bentonite is used in the amount of 3-5% of the total mass and the treatment involves the use of 0.3% calcium soda, copolymer methacrylic acid with M-14VV methacrylate. These reagents induce processes of change within the clay. The carbonate-nitrate activity serves to penthiatize the clay particles and the reagent solution which accompany the process of coagulation in the polymer structure, and in turn, increases the incidence of viscosity in the newly emerging systems. Tests indicate that the use of modified clay powder enhances drill bit pass-through. The large quantity of drilling solution resulting from one ton of modified clay powder further enhances the practical aspects of this system and reduces overall expenditures for solution treatment and clay powder while permitting the reduction of expenditures for other chemical reagents. Such economic benefits have been confirmed by industrial testing.

  14. Physicochemical and functional properties, microstructure, and storage stability of whey protein/polyvinylpyrrolidone based glue sticks

    Directory of Open Access Journals (Sweden)

    Guorong Wang

    2012-11-01

    Full Text Available A glue stick is comprised of solidified adhesive mounted in a lipstick-like push-up tube. Whey is a byproduct of cheese making. Direct disposal of whey can cause environmental pollution. The objective of this study was to use whey protein isolate (WPI as a natural polymer along with polyvinylpyrrolidone (PVP to develop safe glue sticks. Pre-dissolved WPI solution, PVP, sucrose, 1,2-propanediol (PG, sodium stearate, defoamer, and preservative were mixed and dissolved in water at 90 oC and then molded in push-up tubes. Chemical composition, functional properties (bonding strength, glue setting time, gel hardness, extension/retraction, and spreading properties, microstructure, and storage stability of the prototypes were evaluated in comparison with a commercial control. Results showed that all WPI/PVP prototypes had desirable bonding strength and exhibited faster setting than PVP prototypes and control. WPI could reduce gel hardness and form less compact and rougher structures than that of PVP, but there was no difference in bonding strength. PVP and sucrose could increase the hygroscopicity of glue sticks, thus increasing storage stability. Finally, the optimized prototype GS3 (major components: WPI 8.0%, PVP 12.0%, 1,2-propanediol 10.0%, sucrose 10.0%, and stearic sodium 7.0% had a comparable functionality to the commercial control. Results indicated that whey protein could be used as an adhesive polymer for glue stick formulations, which could be used to bond fiber or cellulose derived substrates such as paper.

  15. Acceptability of prebiotic fiber-treated whey drink fermented with ...

    African Journals Online (AJOL)

    This work aimed to develop a fermented drink by diversifying the quantities of Lactobacillus acidophilus inoculum and prebiotic fiber in the form of inulin and using the total dry extract of whey and sucrose. After fermentation, the following measurements were made after 0, 7, 14, 21 and 28 days of storage at 6°C: titratable ...

  16. Sorption of fission nuclides on model milk components. II. Sorption of radiostrontium on hydroxyapatite in milk and whey

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Kopunec, R.; Matel, L.; Macasek, F.

    1999-01-01

    In this work the whey was chosen as a model solution of liquid phase for sorption study of strontium on hydroxyapatite. The whey was obtained using two methods - ultracentrifugation and precipitation of casein. The sorption was studied at a different pH and at a different concentration of calcium. The sorption of strontium on hydroxyapatite from milk was studied, too. (authors)

  17. Development and buildup of a biomass by various yeasts on whey

    Energy Technology Data Exchange (ETDEWEB)

    Zalashka, L S; Samtsevich, S A; Bakunowicz, L

    1967-01-01

    Of the 113 strains of yeast grown on whey, 29 assimilated lactose by fermentation and 23 by direct souring. The most productive were Candida humicola and C. curvata. The buildup of biomass averaged 18 to 30 g./1. medium.

  18. The impact of using chickpea flour and dried carp fish powder on pizza quality

    OpenAIRE

    El-Beltagi, Hossam S.; El-Senousi, Naglaa A.; Ali, Zeinab A.; Omran, Azza A.

    2017-01-01

    Pizza being the most popular food worldwide, quality and sensory appeal are important considerations during its modification effort. This study was aimed to evaluate the quality of pizza made using two different sources of proteins, chickpea (Cicer arietinum) flour and dried carp fish powder (Cyprinus carpio). Analysis indicated nutrients richness specificity of chickpea flour (higher fiber, energy, iron, zinc, linoleic acid and total nonessential amino acids) and dried carp fish powder (high...

  19. Maillard Conjugation of Sodium Alginate to Whey Protein for Enhanced Resistance to Surfactant-Induced Competitive Displacement from Air-Water Interfaces.

    Science.gov (United States)

    Cai, Bingqing; Saito, Anna; Ikeda, Shinya

    2018-01-24

    Whey protein adsorbed to an interface forms a viscoelastic interfacial film but is displaced competitively from the interface by a small-molecule surfactant added afterward. The present study evaluated the impact of the covalent conjugation of high- or low-molecular-weight sodium alginate (HA or LA) to whey protein isolate (WPI) via the Maillard reaction on the ability of whey protein to resist surfactant-induced competitive displacement from the air-water interface. Surfactant added after the pre-adsorption of conjugate to the interface increased surface pressure. At a given surface pressure, the WPI-LA conjugate showed a significantly higher interfacial area coverage and lower interfacial film thickness compared to those of the WPI-HA conjugate or unconjugated WPI. The addition of LA to the aqueous phase had little effect on the interfacial area and thickness of pre-adsorbed WPI. These results suggest the importance of the molecular weight of the polysaccharide moiety in determining interfacial properties of whey protein-alginate conjugates.

  20. Using 3D Printing for Rapid Prototyping of Characterization Tools for Investigating Powder Blend Behavior

    DEFF Research Database (Denmark)

    Hirschberg, Cosima; Boetker, Johan P; Rantanen, Jukka

    2018-01-01

    of complex powder behavior, such as mixing process and segregation phenomenon. An approach based on the fast prototyping of new powder handling geometries and interfacing solutions for process analytical tools is reported. This study utilized 3D printing for rapid prototyping of customized geometries...... the percolation thresholds. Blends with a paracetamol wt% above the percolation threshold were subsequently investigated in relation to their segregation behavior. Rapid prototyping using 3D printing allowed designing two funnels with tailored flow behavior (funnel flow) of model formulations, which could...... blend were monitored during blending. Rapid prototyping allowed for fast modification of powder testing geometries and easy interfacing with process analytical tools, opening new possibilities for more detailed powder characterization....

  1. Integrative approach for utilization of olive mill wastewater and lebna's whey for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, M.A.; Hayek, B.O.; Al-Hmoud, N.; Al-Gogazeh, L.

    2009-09-15

    The industry of olive oil extraction in Jordan involves an intensive consumption of water and generates large quantities of olive mill wastewater (OMW). This wastewater has a high pollution risk with biological oxygen demand (BOD). The organic fraction of OMW includes sugars, tannins, polyphenols, polyalcohols, pectins and lipids. The presence of remarkable amounts of aromatic compounds in OMW is responsible for its phytotoxic and antimicrobial effects. The environmental problems and potential hazards caused by OMW had led olive oil producing countries to limit their discharge and to propose and develop new technologies for OMW treatments, such as physicochemical and biological treatments. In the present investigation lebna's whey a local byproduct of widely consumed local yogurt was used with OMW for ethanol production. The obtained results showed that the proteins of lebna's whey can remove substantial amounts of aromatic compounds present in OMW. This was reflected on the reduction of the intensity of black color of OMW and removal of 37% polyphenols. Moreover, the production of ethanol was ascertained in fermentation media composed of whey and in presence of various concentrations of OMW up to 20% OMW. The obtained results showed the possibility to develop a process for improvement and enhancement of ethanol production from whey and olive oil waste in mixed yeast cultures. (au)

  2. Novel Functional Whey-Based Drinks with Great Potential in the Dairy Industry

    Directory of Open Access Journals (Sweden)

    Marta Henriques

    2015-01-01

    Full Text Available This work focuses on the production of liquid whey protein concentrates by ultrafiltration followed by thermal denaturation and homogenization of the ultrafiltrated concentrate, as well as on the production of ultrafiltrated permeates concentrated by reverse osmosis. Kefir grains (fresh and thawed and/or commercial probiotic bacteria were inoculated in both liquid whey protein concentrates and concentrated ultrafiltrated permeates and grown at 25 °C for 24 h for the manufacture of fermented drinks. The physicochemical characterization (pH, titratable acidity, viscosity, and content of total solids, ash, fat and proteins of the obtained drinks was then assessed and compared. Enumeration of viable microorganisms was carried out immediately aft er inoculation (at 0 h, during the fermentation period (at 12 and 24 h and during refrigerated storage (at 48, 168 and 336 h. The fermented drinks showed acceptable physicochemical and sensorial properties, and contained above 7 log CFU/mL of lactococci and lactobacilli and 6 log CFU/mL of yeasts after 14 days of refrigerated storage, which is in agreement with the standards required by international organizations like European Food Safety Authority (EFSA and Food and Drug Administration (FDA for products containing probiotics. In summary, the strategy developed in this work contributes to the expansion of the applications of products derived from whey fractionation for the design of novel functional foods.

  3. Novel Functional Whey-Based Drinks with Great Potential in the Dairy Industry

    Science.gov (United States)

    Pereira, Carlos; Gomes, David; Gomez-Zavaglia, Andrea; de Antoni, Graciela

    2015-01-01

    Summary This work focuses on the production of liquid whey protein concentrates by ultrafiltration followed by thermal denaturation and homogenization of the ultrafiltrated concentrate, as well as on the production of ultrafiltrated permeates concentrated by reverse osmosis. Kefir grains (fresh and thawed) and/or commercial probiotic bacteria were inoculated in both liquid whey protein concentrates and concentrated ultrafiltrated permeates and grown at 25 °C for 24 h for the manufacture of fermented drinks. The physicochemical characterization (pH, titratable acidity, viscosity, and content of total solids, ash, fat and proteins) of the obtained drinks was then assessed and compared. Enumeration of viable microorganisms was carried out immediately after inoculation (at 0 h), during the fermentation period (at 12 and 24 h) and during refrigerated storage (at 48, 168 and 336 h). The fermented drinks showed acceptable physicochemical and sensorial properties, and contained above 7 log CFU/mL of lactococci and lactobacilli and 6 log CFU/mL of yeasts after 14 days of refrigerated storage, which is in agreement with the standards required by international organizations like European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) for products containing probiotics. In summary, the strategy developed in this work contributes to the expansion of the applications of products derived from whey fractionation for the design of novel functional foods. PMID:27904362

  4. Whey and casein labelled with L-[1-13C]-leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2011-01-01

    to a single bolus intake of whey or casein after performance of heavy resistance exercise. Young male individuals were randomly assigned to participate in two protein trials (n = 9) or one control trial (n = 8). Infusion of l-[1-(13)C]leucine was carried out, and either whey, casein (0.3 g/kg lean body mass......), or a noncaloric control drink was ingested immediately after exercise. l-[1-(13)C]leucine-labeled whey and casein were used while muscle protein synthesis (MPS) was assessed. Blood and muscle tissue samples were collected to measure systemic hormone and amino acid concentrations, tracer enrichments......, and myofibrillar protein synthesis. Western blots were used to investigate the Akt signaling pathway. Plasma insulin and branched-chain amino acid concentrations increased to a greater extent after ingestion of whey compared with casein. Myofibrillar protein synthesis was equally increased 1-6 h postexercise after...

  5. Investigation of the protective effect of whey proteins on lactococcal phages during heat treatment at various pH.

    Science.gov (United States)

    Geagea, Hany; Gomaa, Ahmed I; Remondetto, Gabriel; Moineau, Sylvain; Subirade, Muriel

    2015-10-01

    The incorporation of whey protein concentrates (WPC) into cheese is a risky process due to the potential contamination with thermo-resistant phages of lactic acid bacteria (LAB). Furthermore, whey proteins can protect phages during heat treatment, thereby increasing the above risk. The main objective of this work was to understand this protective effect in order to better control LAB phages and maximize whey recycling in the cheese industry. First, the inactivation of a previously characterized thermo-resistant lactococcal virulent phage (P1532) was investigated at 95 °C in WPC, in individual whey components β-lactoglobulin, α-lactalbumin, and bovine serum albumin as well as under different heat and pH conditions. The structural changes of the tested proteins were also monitored by transmission FTIR spectroscopy. Phage inactivation results indicated that the protective effect of whey proteins was pH and time dependent at 95 °C and was not restricted to one component. FTIR spectra suggest that the protection is related to protein molecular structures and to the level of protein aggregates, which was more pronounced in acidic conditions. Moreover, the molecular structure of the three proteins tested was differently influenced by pH and the duration of the heat treatment. This work confirms the protective effect of WPC on phages during heat treatment and offers the first hint to explain such phenomenon. Finding the appropriate treatment of WPC to reduce the phage risk is one of the keys to improving the cheese manufacturing process. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Quantitative physiology of Penicillium cyclopium grown on whey for production of microbial protein

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J H; Libuchi, S; Lebeault, J M

    1981-01-01

    A filamentous fungus, Penicillium cyclopium, capable of growing on deproteinized whey was isolated and characterized for the purpose of production of microbial protein. This organism has a maximum specific growth rate of 0.2/hour at pH 3.0 to 4.5 and 28 degrees C in a medium containing only ammonium nitrogen and deproteinized whey. The yield coefficients are 0.68 g biomass/g lactose, 12.0 g biomass/g nitrogen, and 2.10 g biomass/g oxygen respectively. Crude protein and total nucleic acid contents of this organism are 47.5% and 7.4% (dry cell weight basis), respectively. The profile of essential amino acids show that it could be a good source of animal feed or food protein. However there are several advantages in using fungal cells (Spicer 1971); their amino acid profile is better, the recovery of biomass from the culture broth is much easier, their filamentous structure facilitates production of texturized foodstuffs without extraction and spinning, and they are already accepted as foods in many parts of the world. The authors have selected a filamentous fungus, Penicillium cyclopium which grows fast on deproteinized whey and has a high protein content. This paper describes the quantitative physiology of this organism and the amino acid profile of its protein. (Refs. 19).

  7. Effect of whey protein- and carbohydrate-enriched diet on glycogen resynthesis during the first 48 h after a soccer game

    DEFF Research Database (Denmark)

    Gunnarsson, Thomas Gunnar Petursson; Bendiksen, Mads; Bischoff, R.

    2013-01-01

    The effect of a whey protein- and carbohydrate (CHO)-enriched diet on the rate of muscle glycogen resynthesis after a soccer match was examined. Sixteen elite soccer players were randomly assigned to a group ingesting a diet rich in carbohydrates and whey protein [CHO, protein, and fat content...... was 71, 21, and 8E%, respectively; high content of carbohydrates and whey protein (HCP), n¿=¿9] or a group ingesting a normal diet (55, 18, and 26E%; control [CON], n¿=¿7) during a 48-h recovery period after a soccer match. CON and three additional players carried out a 90- and 60-min simulated match...

  8. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode.

    Science.gov (United States)

    Farup, J; Rahbek, S K; Vendelbo, M H; Matzon, A; Hindhede, J; Bejder, A; Ringgard, S; Vissing, K

    2014-10-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD) or a carbohydrate group (PLA). Subjects completed 12 weeks maximal knee extensor training with one leg using eccentric contractions and the other using concentric contractions. Before and after training cross-sectional area (CSA) of m. quadriceps and patellar tendon CSA was quantified with magnetic resonance imaging and a isometric strength test was used to assess maximal voluntary contraction (MVC) and rate of force development (RFD). Quadriceps CSA increased by 7.3 ± 1.0% (P tendon CSA increased by 14.9 ± 3.1% (P effect of contraction mode. MVC and RFD increased by 15.6 ± 3.5% (P effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training - irrespective of contraction mode. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The use dynamic avalanching and fractal analysis to characterise uranium oxide powders

    International Nuclear Information System (INIS)

    Hobbs, J.W.; Rhodes, D.

    2000-01-01

    Direct thermal denitration is an attractive method of co-converting mixed-metal nitrate solutions of plutonium and uranium into oxide because of its apparent simplicity. Such benefits are often marred by the relatively poor powder quality and handling characteristics, which can be overcome by modifications to the process chemistry. To ensure that powder synthesis routes under assessment require the minimal further processing it is necessary to be able to characterise the powder fully in term of the key fundamental properties. This paper will demonstrate the use of a dynamic avalanching technique, fractal analysis and morphology to assess processing behaviour. The use of dynamic avalanching to uniquely characterise the chaotic flow properties of urania powders has proved successful and results have shown that this technique is capable of detecting small differences in processing behaviour due changes in morphologies and particle size distribution. This technique has promise for being able to provide nearly instantaneous feedback to the powder generation process being monitored (e.g. calcination, milling, mixing). The use of fractals to describe powders is an interesting characterisation tool when combined with morphological shape factors and the flow index. (authors)

  10. Whey Based Bioactive Peptides Used in Animal Products

    Directory of Open Access Journals (Sweden)

    Ayse Demet Karaman

    2016-10-01

    Full Text Available Bioactive peptides come out as a result of the hydrolysis of milk proteins and contain nutritional, functional and biological activities. Nowadays, the utilization of whey proteins to provide various features in the animal products such as meat and milk products and animal production has been increasing. In this compilation, after being introduced some general information about their common characteristics, bioactive peptides will be mentioned about their particularly recent usage in animal products.

  11. Effects of whey, molasses and exogenous enzymes on the ensiling ...

    African Journals Online (AJOL)

    The study was conducted to assess the effects of whey, molasses and exogenous enzymes on fermentation, aerobic stability and nutrient composition of ensiled maize cobs. Five treatments were ensiled in 1.5 L anaerobic glass jars over 32 days, namely i) control (maize cobs without additives (CON); ii) maize cobs with ...

  12. Feasibility, safety, and economic implications of whey-recovered water in cleaning-in-place systems: A case study on water conservation for the dairy industry.

    Science.gov (United States)

    Meneses, Yulie E; Flores, Rolando A

    2016-05-01

    Water scarcity is threatening food security and business growth in the United States. In the dairy sector, most of the water is used in cleaning applications; therefore, any attempt to support water conservation in these processes will have a considerable effect on the water footprint of dairy products. This study demonstrates the viability for recovering good quality water from whey, a highly pollutant cheese-making by-product, to be reused in cleaning-in-place systems. The results obtained in this study indicate that by using a combined ultrafiltration and reverse osmosis system, 47% of water can be recovered. This system generates protein and lactose concentrates, by-products that once spray-dried fulfill commercial standards for protein and lactose powders. The physicochemical and microbiological quality of the recovered permeate was also analyzed, suggesting suitable properties to be reused in the cleaning-in-place system without affecting the quality and safety of the product manufactured on the cleaned equipment. A cost analysis was conducted for 3 cheese manufacturing levels, considering an annual production of 1, 20, and 225 million liters of whey. Results indicate the feasibility of this intervention in the dairy industry, generating revenues of $0.18, $3.05, and $33.4 million per year, respectively. The findings provide scientific evidence to promote the safety of reuse of reconditioned water in food processing plants, contributing to building a culture of water conservation and sustainable production throughout the food supply chain. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Effects of combination of whey protein intake and rehabilitation on muscle strength and daily movements in patients with hip fracture in the early postoperative period.

    Science.gov (United States)

    Niitsu, Masaya; Ichinose, Daisuke; Hirooka, Taku; Mitsutomi, Kazuhiko; Morimoto, Yoshitaka; Sarukawa, Junichiro; Nishikino, Shoichi; Yamauchi, Katsuya; Yamazaki, Kaoru

    2016-08-01

    Elderly patients can be at risk of protein catabolism and malnutrition in the early postoperative period. Whey protein includes most essential amino acids and stimulates the synthesis of muscle protein. The purpose of this study was to investigate the effect of resistance training in combination with whey protein intake in the early postoperative period. We randomized patients to a whey protein group or a control group. The former group received 32.2 g of whey protein pre- and post-rehabilitation in the early postoperative period for two weeks. Outcomes were knee extension strength on either side by Biodex 4.0, and the ability of transfer, walking, toilet use and stair use by the Barthel Index (BI). We performed initial and final assessments in the second and tenth rehabilitation sessions. A total of 38 patients were recruited: 20 in the whey protein group and 18 in the control group. Participants in the whey protein group showed significantly greater improvement in knee extension strength in the operated limb compared with the control group (F = 6.11, P = 0.02). The non-operated limb also showed a similar tendency (F = 3.51, P = 0.07). The abilities of transfer, walking and toilet use showed greater improvements in the whey protein group than in the control group by BI (P patients with hip fracture. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. Kluyveromyces lactis β-galactosidase immobilization in calcium alginate spheres and gelatin for hydrolysis of cheese whey lactose

    Directory of Open Access Journals (Sweden)

    Ana Paula Mörschbächer

    2016-05-01

    Full Text Available ABSTRACT: One of the greatest challenges for dairy industries is the correct destination of all the whey generated during cheese making, considering its high impact, the large volume created, and its technological potential. Enzymatic hydrolysis of cheese whey lactose is a biotechnological alternative. However, one of the limiting factors of its use is the relatively high cost of the enzymes, which could be lowered with the immobilization of these biocatalysts. Considering this context, the objective of this research was to evaluate the commercial Kluyveromyces lactis β-galactosidase enzyme immobilized in calcium alginate spheres and gelatin, using glutaraldehyde and concanavalin A (ConA as modifying agents in the hydrolysis of cheese whey lactose process. Results have shown that the enzyme encapsulation complexed with ConA in alginate-gelatin spheres, without glutaraldehyde in the immobilization support, has significantly increased the hydrolysis of lactose rate, achieving a maximum conversion of 72%.

  15. Effects of whey protein supplement in the elderly submitted to resistance training: systematic review and meta-analysis.

    Science.gov (United States)

    Colonetti, Tamy; Grande, Antonio Jose; Milton, Karen; Foster, Charlie; Alexandre, Maria Cecilia Manenti; Uggioni, Maria Laura Rodrigues; Rosa, Maria Inês da

    2017-05-01

    We performed a systematic review to map the evidence and analyze the effect of whey protein supplementation in the elderly submitted to resistance training. A comprehensive search on Medline, LILACS, EMBASE, and the Cochrane Library for relevant publications was conducted until August 2015. The terms used in the search were: "Resistance training"; "Whey protein"; "Elderly". A total of 632 studies were screened. Five studies were included composing a sample of 391 patients. The supplement whey protein was associated with higher total protein ingestion 9.40 (95% CI: 4.03-14.78), and with an average change in plasma leucine concentration. The supplementation was also associated with increased mixed muscle protein synthesis 1.26 (95% CI: 0.46-2.07) compared to the control group. We observed an increase in total protein intake, resulting in increased concentration of leucine and mixed muscle protein fractional synthesis rate.

  16. Effect of N-Ethylmaleimide as a Blocker of Disulfide Crosslinks Formation on the Alkali-Cold Gelation of Whey Proteins.

    Directory of Open Access Journals (Sweden)

    Zhao Lei

    Full Text Available N-ethylmaleimide (NEM was used to verify that no new disulfide crosslinks were formed during the fascinating rheology of the alkali cold-gelation of whey proteins, which show Sol-Gel-Sol transitions with time at pH > 11.5. These dynamic transitions involve the formation and subsequent destruction of non-covalent interactions between soluble whey aggregates. Therefore, incubation of aggregates with NEM was expected not to affect much the rheology. Experiments show that very little additions of NEM, such as 0.5 mol per mol of protein, delayed and significantly strengthened the metastable gels formed. Interactions between whey protein aggregates were surprisingly enhanced during incubation with NEM as inferred from oscillatory rheometry at different protein concentrations, dynamic swelling, Trp fluorescence and SDS-PAGE measurements.

  17. Effect of N-Ethylmaleimide as a Blocker of Disulfide Crosslinks Formation on the Alkali-Cold Gelation of Whey Proteins

    Science.gov (United States)

    Lei, Zhao; Chen, Xiao Dong

    2016-01-01

    N-ethylmaleimide (NEM) was used to verify that no new disulfide crosslinks were formed during the fascinating rheology of the alkali cold-gelation of whey proteins, which show Sol-Gel-Sol transitions with time at pH > 11.5. These dynamic transitions involve the formation and subsequent destruction of non-covalent interactions between soluble whey aggregates. Therefore, incubation of aggregates with NEM was expected not to affect much the rheology. Experiments show that very little additions of NEM, such as 0.5 mol per mol of protein, delayed and significantly strengthened the metastable gels formed. Interactions between whey protein aggregates were surprisingly enhanced during incubation with NEM as inferred from oscillatory rheometry at different protein concentrations, dynamic swelling, Trp fluorescence and SDS-PAGE measurements. PMID:27732644

  18. Effects of carbon and hafnium concentrations in wrought powder-metallurgy superalloys based on nasa 2b-11 alloy

    International Nuclear Information System (INIS)

    Miner, R.V. Jr.

    1976-01-01

    A candidate alloy for advanced-temperature turbine engine disks and four modifications of that alloy with various C and Hf concentrations were produced as cross-rolled disks from prealloyed powder that was hot isostatically compacted. The mechanical properties, microstructures, and phase relations of the alloys are discussed in terms of their C and Hf concentrations. A low-C and high-Hf modification of IIB-11 had the best balance of mechanical properties for service below about 750 C. Because of their finer grain sizes, none of the powder-metallurgy alloys produced had the high-temperature rupture strength of conventionally cast and wrought IIB-11. (Author)

  19. Functional properties of whey protein and its application in nanocomposite materials and functional foods

    Science.gov (United States)

    Walsh, Helen

    Whey is a byproduct of cheese making; whey proteins are globular proteins which can be modified and polymerized to add functional benefits, these benefits can be both nutritional and structural in foods. Modified proteins can be used in non-foods, being of particular interest in polymer films and coatings. Food packaging materials, including plastics, can linings, interior coatings of paper containers, and beverage cap sealing materials, are generally made of synthetic petroleum based compounds. These synthetic materials may pose a potential human health risk due to presence of certain chemicals such as Bisphenol A (BPA). They also add to environmental pollution, being difficult to degrade. Protein-based materials do not have the same issues as synthetics and so can be used as alternatives in many packaging types. As proteins are generally hydrophilic they must be modified structurally and their performance enhanced by the addition of waterproofing agents. Polymerization of whey proteins results in a network, adding both strength and flexibility. The most interesting of the food-safe waterproofing agents are the (large aspect ratio) nanoclays. Nanoclays are relatively inexpensive, widely available and have low environmental impact. The clay surface can be modified to make it organophilic and so compatible with organic polymers. The objective of this study is the use of polymerized whey protein (PWP), with reinforcing nanoclays, to produce flexible surface coatings which limit the transfer of contents while maintaining food safety. Four smectite and kaolin type clays, one treated and three natural were assessed for strengthening qualities and the potential waterproofing and plasticizing benefits of other additives were also analyzed. The nutritional benefits of whey proteins can also be used to enhance the protein content of various foodstuffs. Drinkable yogurt is a popular beverage in the US and other countries and is considered a functional food, especially when

  20. Sustainable treatment of different high-strength cheese whey wastewaters: an innovative approach for atmospheric CO2 mitigation and fertilizer production.

    Science.gov (United States)

    Prazeres, Ana R; Rivas, Javier; Paulo, Úrsula; Ruas, Filipa; Carvalho, Fátima

    2016-07-01

    Raw cheese whey wastewater (CWW) has been treated by means of FeCl3 coagulation-flocculation, NaOH precipitation, and Ca(OH)2 precipitation. Three different types of CWW were considered: without cheese whey recovery (CWW0), 60 % cheese whey recovery (CWW60), and 80 % cheese whey recovery (CWW80). Cheese whey recovery significantly influenced the characteristics of the wastewater to be treated: organic matter, solids, turbidity, conductivity, sodium, chloride, calcium, nitrogen, potassium, and phosphorus. Initial organic load was reduced to values in the interval of 60-70 %. Application of FeCl3, NaOH, or Ca(OH)2 involved additional chemical oxygen demand (COD) depletions regardless of the CWW used. Under optimum conditions, the combination of 80 % cheese whey recovery and lime application led to 90 % reduction in COD. Turbidity (99.8%), total suspended solids (TSS) (98-99 %), oils and fats (82-96 %), phosphorus (98-99 %), potassium (96-97 %), and total coliforms (100 %) were also reduced. Sludge generated in the latter process showed excellent settling properties. This solid after filtration and natural evaporation can be used as fertilizer with limitations due to its saline nature. In an innovative, low-cost, and environmentally friendly technology, supernatant coming from the Ca(OH)2 addition was naturally neutralized in 4-6 days by atmospheric CO2 absorption without reagent addition. Consequently, a final aerobic biodegradation step can be applied for effluent polishing. This technology also allows for some atmospheric CO2 mitigation. Time requirement for the natural carbonation depends on the effluent characteristics. A precipitate rich in organic matter and nutrients and depletions of solids, sodium, phosphorus, magnesium, Kjeldahl, and ammoniacal nitrogen were also achieved during the natural carbonation.

  1. Partially hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse model and enhance regulatory T and B cell frequencies

    NARCIS (Netherlands)

    Kiewiet, Mensiena B. Gea; van Esch, Betty C. A. M.; Garssen, Johan; Faas, Marijke M.; de Vos, Paul

    2017-01-01

    Scope: Partially hydrolyzed cow's milk proteins are used to prevent cow's milk allergy in children. Here we studied the immunomodulatory mechanisms of partial cow's milk hydrolysates in vivo. Methods and results: Mice were sensitized with whey or partially hydrolyzed whey using cholera toxin.

  2. Partially hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse model and enhance regulatory T and B cell frequencies

    NARCIS (Netherlands)

    Kiewiet, Mensiena B. Gea; van Esch, Betty C. A. M.; Garssen, Johan; Faas, Marijke M.; de Vos, Paul

    Scope: Partially hydrolyzed cow's milk proteins are used to prevent cow's milk allergy in children. Here we studied the immunomodulatory mechanisms of partial cow's milk hydrolysates in vivo. Methods and results: Mice were sensitized with whey or partially hydrolyzed whey using cholera toxin.

  3. Efficacy of whey protein supplementation on resistance exercise-induced changes in muscle strength, lean mass, and function in mobility-limited older adults

    Science.gov (United States)

    Whey protein supplementation may augment resistance exercise-induced increases in muscle strength and mass. Further studies are required to determine whether this effect extends to functionally compromised older adults. The objectives of the study were to compare the effects of whey protein concent...

  4. Partially hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse model and enhance regulatory T and B cell frequencies

    NARCIS (Netherlands)

    Kiewiet, Mensiena B Gea; van Esch, Betty C A M; Garssen, Johan; Faas, Marijke M; Vos, Paul

    2017-01-01

    SCOPE: Partially hydrolyzed cow's milk proteins are used to prevent cow's milk allergy in children. Here we studied the immunomodulatory mechanisms of partial cow's milk hydrolysates in vivo. METHODS AND RESULTS: Mice were sensitized with whey or partially hydrolyzed whey using cholera toxin.

  5. Absolute Quantification of Human Milk Caseins and the Whey/Casein Ratio during the First Year of Lactation.

    Science.gov (United States)

    Liao, Yalin; Weber, Darren; Xu, Wei; Durbin-Johnson, Blythe P; Phinney, Brett S; Lönnerdal, Bo

    2017-11-03

    Whey proteins and caseins in breast milk provide bioactivities and also have different amino acid composition. Accurate determination of these two major protein classes provides a better understanding of human milk composition and function, and further aids in developing improved infant formulas based on bovine whey proteins and caseins. In this study, we implemented a LC-MS/MS quantitative analysis based on iBAQ label-free quantitation, to estimate absolute concentrations of α-casein, β-casein, and κ-casein in human milk samples (n = 88) collected between day 1 and day 360 postpartum. Total protein concentration ranged from 2.03 to 17.52 with a mean of 9.37 ± 3.65 g/L. Casein subunits ranged from 0.04 to 1.68 g/L (α-), 0.04 to 4.42 g/L (β-), and 0.10 to 1.72 g/L (α-), with β-casein having the highest average concentration among the three subunits. Calculated whey/casein ratio ranged from 45:55 to 97:3. Linear regression analyses show significant decreases in total protein, β-casein, κ-casein, total casein, and a significant increase of whey/casein ratio during the course of lactation. Our study presents a novel and accurate quantitative analysis of human milk casein content, demonstrating a lower casein content than earlier believed, which has implications for improved infants formulas.

  6. Production of Viscous Dextran-Containing Whey-Sucrose Broths by Leuconostoc mesenteroides ATCC 14935

    OpenAIRE

    Schwartz, Robert D.; Bodie, Elizabeth A.

    1984-01-01

    Viscous broths were produced by growing Leuconostoc mesenteroides on a medium containing whey supplemented with sucrose. When combined with similarly produced xanthan-containing broths, a synergistic increase in viscosity was observed.

  7. Effect of Stirring and Seeding on Whey Protein Fibril Formation

    NARCIS (Netherlands)

    Bolder, S.G.; Sagis, L.M.C.; Venema, P.; Linden, van der E.

    2007-01-01

    The effect of stirring and seeding on the formation of fibrils in whey protein isolate (WPI) solutions was studied. More fibrils of a similar length are formed when WPI is stirred during heating at pH 2 and 80 C compared to samples that were heated at rest. Addition of seeds did not show an

  8. Production of n-butanol from whey filtrate using Clostridium acetobutylicum NCIB 2951

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, I S

    1980-01-01

    Production of the important solvent n-butanol by traditional fermentation of corn mash or molasses by Clostridium acetobutylicum produces a mixed end product in the ratio butanol:acetone:ethanol 6:3:1. Laboratory experiments have shown that H2SO4 casein whey after ultrafiltration to remove protein (DSA 40, 5658) is a possible substrate for butanol fermentation, which would also reduce a major waste disposal problem. The organism was maintained in the casein whey permeate; inocula were heat-shocked at 70 degrees Celcius for 90 s, followed by incubation at 30 degrees Celcius for 3 days to provide working cultures. Whey permeate supplemented with 0.5% (w/v) yeast extract was adjusted to pH 6.5 with 1 M NH4OH, inoculated with 5% culture and incubated at 30 degrees Celcius. Cell counts were recorded daily, together with residual lactose concentration and production of butyric acid, acetic acid, butanol, acetone and ethanol (determined by GLC). Initially butyric and acetic acids were produced, but after 2 days conversion to butanol and acetone began. Cell growth ceased after 3 days, but conversion continued to reach a maximum yield of butanol after 5 days, in the favourable ratio of butanol:acetone:ethanol of 10:1:1. Inhibition by end products prevented complete utilization of the lactose. Omission of the yeast supplement produced a slower but similar fermentation reaching a butanol yield of 1.3% after 7 days. The ultrafiltration may not be necessary. (Refs. 3).

  9. Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch-whey protein blend edible films.

    Science.gov (United States)

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-02-01

    Starch and whey protein isolate and their mixtures were used for making edible films. Moisture sorption isotherms, water vapour permeability, sorption of aroma compounds, microstructure, water contact angle and surface properties were investigated. With increasing protein content, the microstructure changes became more homogeneous. The water vapour permeability increases with both the humidity gradient and the starch content. For all films, the hygroscopicity increases with starch content. Surface properties change according to the starch/whey protein ratio and are mainly related to the polar component of the surface tension. Films composed of 80% starch and 20% whey proteins have more hydrophobic surfaces than the other films due to specific interactions. The effect of carbohydrate/protein ratio significantly influences the microstructure, the surface wettability and the barrier properties of wheat starch-whey protein blend films. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Chemical and Biological Evaluation of Whey

    International Nuclear Information System (INIS)

    Mohamed, N.E.; Anwar, M.M.

    2013-01-01

    This Study has been carried out to extract whey protein concentrate (WPC) from sweet whey and to study the chemical composition, amino acids composition, amino acid scores and to investigate the possible role of WPC in ameliorating some biochemical disorders induced in γ-irradiated rats. Animals were divided into 4 groups. Group 1, fed on normal diet during experimental period. Group 2, fed on diet containing 15% WPC instead of soybean protein. Group 3, rats exposed to whole body γ-radiation with single dose of 5 Gy and fed on the normal diet. Group 4, rats exposed to 5 Gy then fed on diet containing 15% WPC. The rats were decapitated 14 and 28 days post irradiation. Chemical analysis of WPC revealed that it contains high amounts of protein (44%), total amino acids (71%) and all essential amino acids (EAA), phenylalanine (37%), isoleucine cystine and threonine were the major EAA and high amounts of sulphur amino acids. Methionine gave rich chemical score (102.67%) also, isoleucine (119.95%) and phenylalanine+ tyrosine gave maximum chemical score (198.8%), respectively. Exposure to γ-irradiation caused significant elevation of serum cholesterol, triglycerides, low density lipoprotein (LDL), lipid per oxidation end product (TBARS) and iron (Fe) with significant decrease in high density lipoprotein (HDL), glutathione (GSH) and catalase (CAT) in serum. Also, irradiated rats had significant decrease in copper (Cu), magnesium (Mg) and zinc (Zn) in serum. The histological examination of cardiac tissue showed severe structural damage. Irradiated rats fed on WPC revealed significant improvement of some biochemical parameters. It could be concluded that WPC must be added to diet for reducing radiation injury via metabolic pathway

  11. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2012-01-01

    Full Text Available In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR of <2 [cm³(STP/(m²d bar] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.

  12. Antioxidative features of whey and its application in liver protection

    Directory of Open Access Journals (Sweden)

    Radić Ivan

    2016-01-01

    Full Text Available Oxidative stress represents a condition in which there is an imbalance between the production of free radicals and their removal. Many risk factors, including alcohol, drugs, environmental pollutants, radiation, infective agents can induce oxidative stress in the liver leading to the functional disturbance of the liver cells. In order to reduce oxidative stress, modern medicine goes back to the natural substances, which are becoming increasingly popular both in prevention and in treatment of many diseases. Numerous hepatoprotective substances such as silymarin, spirulina, pumpkin oil and whey are used in traditional diets by many people. Some experimental studies on animals and the monitoring of the effects on humans showed that whey can be estimated as an important antioxidant in the treatment of liver diseases. New information obtained on the basis of controlled experimental and clinical studies of its effects in terms of protection or treatment of already existing changes in the liver tissue, certainly contribute to defining the concrete possibilities of potential use in therapeutic methods, either as a supplement or extrication of specific medicinal ingredients.

  13. Process for the manufacture of whey products

    Energy Technology Data Exchange (ETDEWEB)

    Blanie, P

    1980-01-01

    Whey is subjected to ultrafiltration to retain about 10% of the T5, whilst the permeate is demineralized to 7% or less ash in the final product and dried to 3% moisture. The product, containing (in DM) 75% or more lactose, 6% or less protein and 8% or less minerals, is hydrolysed, e.g. with beta-galactosidase. It may be used for replacing sucrose, in the manufacture of a range of foods. Applications include chewing gum, fondants, nougats, chocolate, bakery and confectionery products as well as cream and yoghurt.

  14. Anaerobic digestion of cheese whey using up-flow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J.Q.; Lo, K.V.; Liao, P.H.

    1989-01-01

    Anaerobic treatment of cheese whey using a 17.5-litre up-flow anaerobic sludge blanket reactor was investigated in the laboratory. The reactor was studied over a range of influent concentration from 4.5 to 38.1 g chemical oxygen demand per litre at a constant hydraulic retention time of 5 days. The reactor start-up and the sludge acclimatization were discussed. The reactor performance in terms of methane production, volatile fatty acids conversion, sludge net growth and chemical oxygen demand reduction were also presented in this paper. Over 97% chemical oxygen demand reduction was achieved in this experiment. At the influent concentration of 38.1 g chemical oxygen demand per litre, an instability of the reactor was observed. The results indicated that the up-flow anaerobic sludge blanket reactor process could treat cheese whey effectively.

  15. The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells

    DEFF Research Database (Denmark)

    Salehi, Albert; Gunnerud, Ulrika; Muhammed, Sarheed J

    2012-01-01

    Whey protein increases postprandial serum insulin levels. This has been associated with increased serum levels of leucine, isoleucine, valine, lysine, threonine and the incretin hormone glucose-dependent insulinotropic polypeptide (GIP). We have examined the effects of these putative mediators...... of whey's action on insulin secretion from isolated mouse Langerhans islets....

  16. Chemical modification of carbon powders with aminophenyl and aryl-aliphatic amine groups by reduction of in situ generated diazonium cations: Applicability of the grafted powder towards CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Aurelie Grondein; Daniel Belanger [Universite du Quebec a Montreal, Montreal, PQ (Canada). Departement de Chimie

    2011-08-15

    Aminophenyl, p-aminobenzyl and p-aminoethylphenyl groups were grafted at the surface of carbon Vulcan XC72R by spontaneous reduction of the in situ generated diazonium cations from the corresponding amine. X-ray photoelectron spectroscopy and elemental analysis confirmed an amine loading of about 1 mmol/g. The grafting of amine functionalities leads to a decrease of specific surface area from 223 to about 110 m{sup 2}/g with a drastic loss of microporosity. Acid-base properties of the surface are also affected by the modification. Aminophenyl grafted groups make the surface more acidic while aryl-aliphatic amines groups tends to render it more basic. The grafted layer shows in each case a good thermal stability up to 250{sup o}C. The affinity of the modified powder towards CO{sub 2} and N{sub 2} has been evaluated by thermal swing adsorption. The maximum adsorption capacity of CO{sub 2} of modified carbons is lower than the unmodified carbon but the presence of the amine functionalities involves a better selectivity of the material towards CO{sub 2} adsorption in comparison of N{sub 2} adsorption. 53 refs., 9 figs., 3 tabs.

  17. Buffalo Cheese Whey Proteins, Identification of a 24 kDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion.

    Science.gov (United States)

    Bassan, Juliana C; Goulart, Antonio J; Nasser, Ana L M; Bezerra, Thaís M S; Garrido, Saulo S; Rustiguel, Cynthia B; Guimarães, Luis H S; Monti, Rubens

    2015-01-01

    Milk whey proteins are well known for their high biological value and versatile functional properties, characteristics that allow its wide use in the food and pharmaceutical industries. In this work, a 24 kDa protein from buffalo cheese whey was analyzed by mass spectrometry and presented homology with Bos taurus beta-lactoglobulin. In addition, the proteins present in buffalo cheese whey were hydrolyzed with pepsin and with different combinations of trypsin, chymotrypsin and carboxypeptidase-A. When the TNBS method was used the obtained hydrolysates presented DH of 55 and 62% for H1 and H2, respectively. Otherwise for the OPA method the DH was 27 and 43% for H1 and H2, respectively. The total antioxidant activities of the H1 and H2 samples with and without previous enzymatic hydrolysis, determined by DPPH using diphenyl-p-picrylhydrazyl radical, was 4.9 and 12 mM of Trolox equivalents (TE) for H2 and H2Dint, respectively. The increased concentrations for H1 and H2 samples were approximately 99% and 75%, respectively. The in vitro gastrointestinal digestion efficiency for the samples that were first hydrolyzed was higher compared with samples not submitted to previous hydrolysis. After in vitro gastrointestinal digestion, several amino acids were released in higher concentrations, and most of which were essential amino acids. These results suggest that buffalo cheese whey is a better source of bioavailable amino acids than bovine cheese whey.

  18. Functionality of whey proteins covalently modified by allyl isothiocyanate. Part 1 physicochemical and antibacterial properties of native and modified whey proteins at pH 2 to 7

    NARCIS (Netherlands)

    Keppler, Julia Katharina; Martin, Dierk; Garamus, Vasil M.; Berton-Carabin, Claire; Nipoti, Elia; Coenye, Tom; Schwarz, Karin

    2017-01-01

    Whey protein isolate (WPI) (∼75% β-lactoglobulin (β-LG)) is frequently used in foods as a natural emulsifying agent. However, at an acidic pH value, its emulsification capacity is greatly reduced. The covalent attachment of natural electrophilic hydrophobic molecules to WPI proteins is a

  19. Effect of sodium sulfite, sodium dodecyl sulfate, and urea on the molecular interactions and properties of whey protein isolate-based films

    Science.gov (United States)

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2016-12-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm³ (STP / standard temperature and pressure) 100 µm (m² d bar)-1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 µm (m² d)-1 measured at 50 to 0 % r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient.

  20. Differential effects of casein versus whey on fasting plasma levels of insulin, IGF-1 and IGF-1/IGFBP-3

    DEFF Research Database (Denmark)

    Hoppe, Camilla; Mølgaard, Christian; Dalum, Cathrine

    2009-01-01

    to the identification of which components in milk that stimulate growth, we have performed an intervention study with 57 eight-year-old boys in which we examined the effects of the two major milk protein fractions, whey and casein, and milk minerals (Ca and P) in a 2x2 factorial design on IGFs and glucose......–insulin metabolism. The amounts of whey and casein were identical to the content in 1.5 l skim milk. The amounts of Ca and P were similar to 1.5 l skim milk in the high-mineral drinks, whereas the amounts of Ca and P were reduced in the low-mineral drinks. Results: There were no interactions between milk mineral...... groups (high, low) and milk protein groups (whey, casein). Serum IGF-1 increased by 15% (P...

  1. Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network.

    Science.gov (United States)

    Alves da Rocha, Roney; Paiva, Igor Moura; Anjos, Virgílio; Furtado, Marco Antônio Moreira; Bell, Maria José Valenzuela

    2015-06-01

    In this work, we assessed the use of confocal Raman microscopy and artificial neural network as a practical method to assess and quantify adulteration of fluid milk by addition of whey. Milk samples with added whey (from 0 to 100%) were prepared, simulating different levels of fraudulent adulteration. All analyses were carried out by direct inspection at the light microscope after depositing drops from each sample on a microscope slide and drying them at room temperature. No pre- or posttreatment (e.g., sample preparation or spectral correction) was required in the analyses. Quantitative determination of adulteration was performed through a feed-forward artificial neural network (ANN). Different ANN configurations were evaluated based on their coefficient of determination (R2) and root mean square error values, which were criteria for selecting the best predictor model. In the selected model, we observed that data from both training and validation subsets presented R2>99.99%, indicating that the combination of confocal Raman microscopy and ANN is a rapid, simple, and efficient method to quantify milk adulteration by whey. Because sample preparation and postprocessing of spectra were not required, the method has potential applications in health surveillance and food quality monitoring. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Quy Bau Nguyen

    2017-10-01

    Full Text Available In this study, the flow characteristics and behaviors of virgin and recycled Inconel powder for powder-bed additive manufacturing (AM were studied using different powder characterization techniques. The results revealed that the particle size distribution (PSD for the selective laser melting (SLM process is typically in the range from 15 μm to 63 μm. The flow rate of virgin Inconel powder is around 28 s·(50 g−1. In addition, the packing density was found to be 60%. The rheological test results indicate that the virgin powder has reasonably good flowability compared with the recycled powder. The inter-relation between the powder characteristics is discussed herein. A propeller was successfully printed using the powder. The results suggest that Inconel powder is suitable for AM and can be a good reference for researchers who attempt to produce AM powders.

  3. Aplicação de filmes proteicos à base de soro de leite Application of whey protein films

    Directory of Open Access Journals (Sweden)

    Cristiana Maria Pedroso Yoshida

    2009-06-01

    Full Text Available A eficiência da aplicação de filmes à base de proteínas de soro de leite foi avaliada em um sistema de embalagem que consistia em um pote plástico utilizando-se filmes de proteínas de soro de leite como fechamento superior. Pedaços de maçã foram embalados e armazenados à temperatura ambiente (25 °C e sob refrigeração (10 °C. Os filmes proteicos à base de soro de leite foram obtidos por três procedimentos distintos: por desnaturação térmica; com a incorporação de ácido esteárico (0,5%, em massa; e por modificação enzimática utilizando-se a transglutaminase microbiana (10U/g proteína, ACTIVA TG-B , a partir de uma formulação básica de 6,50% de proteína, 3,0% de plastificante (glicerol e pH 7,0. A integridade dos filmes após embalagem e durante armazenamento foi observada, medindo-se as propriedades mecânicas dos filmes. A permeabilidade ao vapor d'água foi avaliada pela perda de massa, teor de umidade, e variação de textura dos pedaços de maçã. Os resultados indicaram que os filmes apresentam uma barreira moderada à umidade, apresentando diferença entre potes com e sem coberturas de filmes. A permeabilidade ao oxigênio foi conferida pelo escurecimento enzimático das maçãs pela ação da enzima polifenoxidase, apresentando diferença em relação ao das amostras acondicionadas em atmosfera modificada com gás N2.The efficiency of whey protein films packaging was evaluated. The packaging system consisted of whey protein films closing the top extremity of synthetic plastic container. Slices of apple were packed and stored at room temperature (25 °C and at 10 °C. Modified atmosphere packaging (N2 gas flushing was studied to verify the oxygen permeability of the films. Whey protein films (6.5% of protein, 3.0% of glycerol, and pH 7.0 were obtained by thermal denaturation, emulsification (0.5% (w/w with stearic acid, and enzymatic modification (10U/g protein of transglutaminase, ACTIVA-TG. Mechanical

  4. Proteomic Profiling Comparing the Effects of Different Heat Treatments on Camel (Camelus dromedarius) Milk Whey Proteins.

    Science.gov (United States)

    Benabdelkamel, Hicham; Masood, Afshan; Alanazi, Ibrahim O; Alzahrani, Dunia A; Alrabiah, Deema K; AlYahya, Sami A; Alfadda, Assim A

    2017-03-28

    Camel milk is consumed in the Middle East because of its high nutritional value. Traditional heating methods and the duration of heating affect the protein content and nutritional quality of the milk. We examined the denaturation of whey proteins in camel milk by assessing the effects of temperature on the whey protein profile at room temperature (RT), moderate heating at 63 °C, and at 98 °C, for 1 h. The qualitative and quantitative variations in the whey proteins before and after heat treatments were determined using quantitative 2D-difference in gel electrophoresis (DIGE)-mass spectrometry. Qualitative gel image analysis revealed a similar spot distribution between samples at RT and those heated at 63 °C, while the spot distribution between RT and samples heated at 98 °C differed. One hundred sixteen protein spots were determined to be significantly different ( p protein spots were decreased in common in both the heat-treated samples and an additional 25 spots were further decreased in the 98 °C sample. The proteins with decreased abundance included serum albumin, lactadherin, fibrinogen β and γ chain, lactotransferrin, active receptor type-2A, arginase-1, glutathione peroxidase-1 and, thiopurine S, etc. Eight protein spots were increased in common to both the samples when compared to RT and included α-lactalbumin, a glycosylation-dependent cell adhesion molecule. Whey proteins present in camel milk were less affected by heating at 63 °C than at 98 °C. This experimental study showed that denaturation increased significantly as the temperature increased from 63 to 98 °C.

  5. Additives in yoghurt production

    Directory of Open Access Journals (Sweden)

    Milna Tudor

    2008-02-01

    Full Text Available In yoghurt production, mainly because of sensory characteristics, different types of additives are used. Each group, and also each substance from the same group has different characteristics and properties. For that reason, for improvement of yoghurt sensory characteristics apart from addition selection, the quantity of the additive is very important. The same substance added in optimal amount improves yoghurt sensory attributes, but too small or too big addition can reduce yoghurt sensory attributes. In this paper, characteristics and properties of mostly used additives in yoghurt production are described; skimmed milk powder, whey powder, concentrated whey powder, sugars and artificial sweeteners, fruits, stabilizers, casein powder, inulin and vitamins. Also the impact of each additive on sensory and physical properties of yoghurt, syneresis and viscosity, are described, depending on used amount added in yoghurt production.

  6. Effect Of Dried Whey Milk Supplement On Some Blood Biochemical And Immunological Indices In Relation To Growth Performance Of Heat Stressed Bovine baladi Calves

    International Nuclear Information System (INIS)

    ABDALLA, E.B.; EL-MASRY, K.A.; TEAMA, F.E.; EMARA, S.S.

    2009-01-01

    This experiment was carried out under hot environmental conditions, where temperature-humidity index was equivalent to 86 - 90 and 78 - 80 during day and night, respectively. Twelve bovine Baladi calves of 8 - 10 months old and 112 kg average initial live body weight were used in this study. The calves were divided into two groups of 6 animals each to study the effect of supplementation of dried whey milk on some blood biochemical and immunological indices and growth performance of calves under hot weather conditions of Egypt. The results showed that supplementation of dried whey milk to the diet of heat-stressed calves at the level of 150 g / calf / day reduced significantly each of respiration rate and rectal temperature as well as serum lipid concentrations and their fractions e.g. total cholesterol and phospholipids. Also, dried whey milk supplement caused a significant decline in both AST and ALT activities and reduced significantly alpha globulin concentration, while non-significant changes were observed in each of beta globulin, gamma globulin and immunoglobulin G. However, supplementing dried whey milk to growing calves increased significantly serum concentrations of total protein, albumin, calcium, phosphorous, T 3 and T 4 . Moreover, dried whey milk improved significantly both feed efficiency and daily gain of growing calves. It could be concluded that addition of dried whey milk to the diet reduced rectal temperature and respiration rate and induced an improvement in most blood biochemical parameters and growth performance of heat-stressed bovine Baladi calves.

  7. Effects of surface modification of Nd-Fe-B powders using parylene C by CVDP method on the properties of anisotropic bonded Nd–Fe–B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Bin; Sun, Aizhi, E-mail: sunaizhi@126.com; Lu, Zhenwen; Cheng, Chuan; Xu, Chen

    2016-10-15

    This paper presents effects of surface modification of Nd–Fe–B powders using parylene C by means of chemical vapor deposition polymerization (CVDP) on the properties of anisotropic bonded Nd–Fe–B magnets. It can be well verified from SEM images and EDS analysis that the surface of Nd–Fe–B powder is coated with thin parylene C films. The maximum energy product ((BH)max), degree of alignment (DOA), actual density and corrosion resistance of parylene Nd–Fe–B magnets prepared at room temperature are much higher than that of non-parylene Nd–Fe–B magnets. (BH)max, DOA and actual density of parylene Nd–Fe–B magnets (70 kJ/m{sup 3}, 0.342, 5.82 g/cm{sup 3}) prepared at room temperature under 578 MPa are improved by 18.6%, 4.6%, 2.1% and 27.3%, 29.1%, 7.8% compared with non-parylene Nd‐Fe‐B magnets prepared at 140 °C (59 kJ/m{sup 3}, 0327, 5.70 g/cm{sup 3}) and room temperature (55 kJ/m{sup 3}, 0.265, 5.40 g/cm{sup 3}), respectively. Additional, the improvement of actual density and the room temperature process also solve problems such as powders’ sticking wall, non-uniform powder filling, non-uniform magnetic properties, seriously mould damage, short life cycle of mould and so on, which exists during warm compaction process. Parylene Nd–Fe–B magnets have better corrosion resistance and worse mechanical properties than that of non-parylene Nd–Fe–B magnets. The reason for the improvement of magnetic properties and actual density is the low friction cofficient of parylene C films, which results in lower frictional resistance and better lubricating property of parylene Nd–Fe–B powders. - Highlights: • Parylene Nd–Fe–B magnets prepared at room temperature show higher (BH)max and DOA. • Actual density of parylene Nd–Fe–B magnet is improved greatly. • Problems such as powders’ sticking wall, mould damage and so on are solved. • Parylene NdFeB magnets have better corrosion resistance. • Low friction cofficient of

  8. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  9. Rietveld analysis, powder diffraction and cement

    International Nuclear Information System (INIS)

    Peterson, V.

    2002-01-01

    Full text: Phase quantification of cement is essential in its industrial use, however many methods are inaccurate and/or time consuming. Powder diffraction is one of the more accurate techniques used for quantitative phase analysis of cement. There has been an increase in the use of Rietveld refinement and powder diffraction for the analysis and phase quantification of cement and its components in recent years. The complex nature of cement components, existence of solid solutions, polymorphic variation of phases and overlapping phase peaks in diffraction patterns makes phase quantification of cements by powder diffraction difficult. The main phase in cement is alite, a solid solution of tricalcium silicate. Tricalcium silicate has been found to exist in seven modifications in three crystal systems, including triclinic, monoclinic, and rhombohedral structures. Hence, phase quantification of cements using Rietveld methods usually involves the simultaneous modelling of several tricalcium silicate structures to fit the complex alite phase. An industry ordinary Portland cement, industry and standard clinker, and a synthetic tricalcium silicate were characterised using neutron, laboratory x-ray and synchrotron powder diffraction. Diffraction patterns were analysed using full-profile Rietveld refinement. This enabled comparison of x-ray, neutron and synchrotron data for phase quantification of the cement and examination of the tricalcium silicate. Excellent Rietveld fits were achieved, however the results showed that the quantitative phase analysis results differed for some phases in the same clinker sample between various data sources. This presentation will give a short introduction about cement components including polymorphism, followed by the presentation of some problems in phase quantification of cements and the role of Rietveld refinement in solving these problems. Copyright (2002) Australian X-ray Analytical Association Inc

  10. Synthesis and Characterization of Nanocrystalline Al-20 at. % Cu Powders Produced by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Molka Ben Makhlouf

    2016-06-01

    Full Text Available Mechanical alloying is a powder processing technique used to process materials farther from equilibrium state. This technique is mainly used to process difficult-to-alloy materials in which the solid solubility is limited and to process materials where nonequilibrium phases cannot be produced at room temperature through conventional processing techniques. This work deals with the microstructural properties of the Al-20 at. % Cu alloy prepared by high-energy ball milling of elemental aluminum and copper powders. The ball milling of powders was carried out in a planetary mill in order to obtain a nanostructured Al-20 at. % Cu alloy. The obtained powders were characterized using scanning electron microscopy (SEM, differential scanning calorimetry (DSC and X-ray diffraction (XRD. The structural modifications at different stages of the ball milling are investigated with X-ray diffraction. Several microstructure parameters such as the crystallite sizes, microstrains and lattice parameters are determined.

  11. Butanol production by bioconversion of cheese whey in a continuous packed bed reactor.

    Science.gov (United States)

    Raganati, F; Olivieri, G; Procentese, A; Russo, M E; Salatino, P; Marzocchella, A

    2013-06-01

    Butanol production by Clostridium acetobutylicum DSM 792 fermentation was investigated. Unsupplemented cheese whey was adopted as renewable feedstock. The conversion was successfully carried out in a biofilm packed bed reactor (PBR) for more than 3 months. The PBR was a 4 cm ID, 16 cm high glass tube with a 8 cm bed of 3mm Tygon rings, as carriers. It was operated at the dilution rate between 0.4h(-1) and 0.94 h(-1). The cheese whey conversion process was characterized in terms of metabolites production (butanol included), lactose conversion and biofilm mass. Under optimized conditions, the performances were: butanol productivity 2.66 g/Lh, butanol concentration 4.93 g/L, butanol yield 0.26 g/g, butanol selectivity of the overall solvents production 82 wt%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Factors affecting the electrostatic charge of ceramic powders; Factores que afectan la carga electrostatica en polvos ceremicos

    Energy Technology Data Exchange (ETDEWEB)

    Lorite, I; Romero, J; Fernandez, J F

    2011-07-01

    The phenomenon of electrostatic charge in ceramic powders takes place when the particle surfaces enter in contact between them or with the containers. The accumulation of electrostatic charge is of relevance in ceramic powders in view of their insulating character and the risk of explosions during the material handling. In this work the main factors that affect the appearance of intrinsic charge and tribo-charge in ceramic powder have been studied. In ceramic powders of alumina it has been verified that the smallest particle sizes present an increase of the electrostatic charge of negative polarity. A correlation has been observed between the nature of the OH -surface groups and the electrostatic charge. The intrinsic charge and the tribocharge in ceramic powders can be diminished by compensating the surface groups that support the charge. The dry dispersion of nanoparticles on microparticles allows surface charge compensation with a noticeable modification of the powder agglomeration. (Author) 19 refs.

  13. Dietary whey protein lessens several risk factors for metabolic diseases: a review

    Science.gov (United States)

    2012-01-01

    Obesity and type 2 diabetes mellitus (DM) have grown in prevalence around the world, and recently, related diseases have been considered epidemic. Given the high cost of treatment of obesity/DM-associated diseases, strategies such as dietary manipulation have been widely studied; among them, the whey protein diet has reached popularity because it has been suggested as a strategy for the prevention and treatment of obesity and DM in both humans and animals. Among its main actions, the following activities stand out: reduction of serum glucose in healthy individuals, impaired glucose tolerance in DM and obese patients; reduction in body weight; maintenance of muscle mass; increases in the release of anorectic hormones such as cholecystokinin, leptin, and glucagon like-peptide 1 (GLP-1); and a decrease in the orexigenic hormone ghrelin. Furthermore, studies have shown that whey protein can also lead to reductions in blood pressure, inflammation, and oxidative stress. PMID:22676328

  14. Dietary whey protein lessens several risk factors for metabolic diseases: a review

    Directory of Open Access Journals (Sweden)

    Sousa Gabriela TD

    2012-07-01

    Full Text Available Abstract Obesity and type 2 diabetes mellitus (DM have grown in prevalence around the world, and recently, related diseases have been considered epidemic. Given the high cost of treatment of obesity/DM-associated diseases, strategies such as dietary manipulation have been widely studied; among them, the whey protein diet has reached popularity because it has been suggested as a strategy for the prevention and treatment of obesity and DM in both humans and animals. Among its main actions, the following activities stand out: reduction of serum glucose in healthy individuals, impaired glucose tolerance in DM and obese patients; reduction in body weight; maintenance of muscle mass; increases in the release of anorectic hormones such as cholecystokinin, leptin, and glucagon like-peptide 1 (GLP-1; and a decrease in the orexigenic hormone ghrelin. Furthermore, studies have shown that whey protein can also lead to reductions in blood pressure, inflammation, and oxidative stress.

  15. Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli.

    Science.gov (United States)

    Pasotti, Lorenzo; Zucca, Susanna; Casanova, Michela; Micoli, Giuseppina; Cusella De Angelis, Maria Gabriella; Magni, Paolo

    2017-06-02

    Whey permeate is a lactose-rich effluent remaining after protein extraction from milk-resulting cheese whey, an abundant dairy waste. The lactose to ethanol fermentation can complete whey valorization chain by decreasing dairy waste polluting potential, due to its nutritional load, and producing a biofuel from renewable source at the same time. Wild type and engineered microorganisms have been proposed as fermentation biocatalysts. However, they present different drawbacks (e.g., nutritional supplements requirement, high transcriptional demand of recombinant genes, precise oxygen level, and substrate inhibition) which limit the industrial attractiveness of such conversion process. In this work, we aim to engineer a new bacterial biocatalyst, specific for dairy waste fermentation. We metabolically engineered eight Escherichia coli strains via a new expression plasmid with the pyruvate-to-ethanol conversion genes, and we carried out the selection of the best strain among the candidates, in terms of growth in permeate, lactose consumption and ethanol formation. We finally showed that the selected engineered microbe (W strain) is able to efficiently ferment permeate and concentrated permeate, without nutritional supplements, in pH-controlled bioreactor. In the conditions tested in this work, the selected biocatalyst could complete the fermentation of permeate and concentrated permeate in about 50 and 85 h on average, producing up to 17 and 40 g/l of ethanol, respectively. To our knowledge, this is the first report showing efficient ethanol production from the lactose contained in whey permeate with engineered E. coli. The selected strain is amenable to further metabolic optimization and represents an advance towards efficient biofuel production from industrial waste stream.

  16. Fouling behavior and performance of microfiltration membranes for whey treatment in steady and unsteady-state conditions

    Directory of Open Access Journals (Sweden)

    H. Rezaei

    2014-06-01

    Full Text Available Whey pretreatment for protein purification is one of the main applications of cross-flow microfiltration before an ultrafiltration process. In this paper, the effects of the operating pressure and crossflow velocity on the membrane performance and the individual resistances in microfiltration of whey for both unsteady and steady-state conditions were investigated for two 0.45 µm mean pore size polymeric membranes, Polyethersulfone (PES and Polyvinylidene fluoride (PVDF. A laboratory-scale microfiltration setup with a flat rectangular module was used. The Reynolds number and operating pressure showed positive and negative effects on the amount of all resistances, respectively. The dominant effect of the concentration polarization and cake resistances was demonstrated by using a "Resistance-in-Series" model for unsteadystate investigations, which could vary during the filtration time. An empirical model revealed a linear relationship between the Reynolds number and permeate flux and a second-order polynomial relationship between the transmembrane pressure and the permeate flux. This empirical correlation, implemented for the limited range of MF operating parameters tested in this article for whey protein, was validated with experimental data and showed good agreement between calculated and experimental data.

  17. Effects of whey on the colonization and sporulation of arbuscular ...

    African Journals Online (AJOL)

    The aim of this study is to research the effect of 2 different doses of whey [50 ml kg-1(W50) and 100 ml kg-1(W100)], an important organic waste, on colonization and sporulation of arbuscular mycorhizal fungus (AMF) Glomus intraradices'(G.i.) inoculated to lentil plant and the effects of changing P ratio in the soil and plant as ...

  18. Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.; Yang, S.T. [Ohio State Univ., Columbus, OH (United States). Dept. of Chemical Engineering

    1998-11-20

    Acetate was produced from whey lactose in batch and fed-batch fermentations using co-immobilized cells of Clostridium formicoaceticum and Lactococcus lactis. The cells were immobilized in a spirally wound fibrous sheet packed in a 0.45-L column reactor, with liquid circulated through a 5-L stirred-tank fermentor. Industrial-grade nitrogen sources, including corn steep liquor, casein hydrolysate, and yeast hydrolysate, were studied as inexpensive nutrient supplements to whey permeate and acid whey. Supplementation with either 2.5% (v/v) corn steep liquor or 1.5 g/L casein hydrolysate was adequate for the cocultured fermentation. The overall acetic acid yield from lactose was 0.9 g/g, and the productivity was 0.25 g/(L h). Both lactate and acetate at high concentrations inhibited the homoacetic fermentation. To overcome these inhibitions, fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentation was 75 g/L, which was the highest acetate concentration ever produced by C. formicoaceticum. Even at this high acetate concentration, the overall productivity was 0.18 g/(L h) based on the total medium volume and 1.23 g/(L h) based on the fibrous-bed reactor volume. The cells isolated from the fibrous-bed bioreactor at the end of this study were more tolerant to acetic acid than the original culture used to seed the bioreactor, indicating that adaptation and natural selection of acetate-tolerant strains occurred. This cocultured fermentation process could be used to produce a low-cost acetate deicer from whey permeate and acid whey.

  19. Investigating the Influence of Waste Basalt Powder on Selected Properties of Cement Paste and Mortar

    Science.gov (United States)

    Dobiszewska, Magdalena; Beycioğlu, Ahmet

    2017-10-01

    Concrete is the most widely used man-made construction material in civil engineering applications. The consumption of cement and thus concrete, increases day by day along with the growth of urbanization and industrialization and due to new developments in construction technologies, population growing, increasing of living standard. Concrete production consumes much energy and large amounts of natural resources. It causes environmental, energy and economic losses. The most important material in concrete production is cement. Cement industry contributes to production of about 7% of all CO2 generated in the world. Every ton of cement production releases nearly one ton of CO2 to atmosphere. Thus the concrete and cement industry changes the environment appearance and influences it very much. Therefore, it has become very important for construction industry to focus on minimizing the environmental impact, reducing energy consumption and limiting CO2 emission. The need to meet these challenges has spurred an interest in the development of a blended Portland cement in which the amount of clinker is reduced and partially replaced with mineral additives - supplementary cementitious materials (SCMs). Many researchers have studied the possibility of using another mineral powder in mortar and concrete production. The addition of marble dust, basalt powder, granite or limestone powder positively affects some properties of cement mortar and concrete. This paper presents an experimental study on the properties of cement paste and mortar containing basalt powder. The basalt powder is a waste emerged from the preparation of aggregate used in asphalt mixture production. Previous studies have shown that analysed waste used as a fine aggregate replacement, has a beneficial effect on some properties of mortar and concrete, i.e. compressive strength, flexural strength and freeze resistance also. The present study shows the results of the research concerning the modification of cement

  20. Effect of homogenization and pasteurization on the structure and stability of whey protein in milk.

    Science.gov (United States)

    Qi, Phoebe X; Ren, Daxi; Xiao, Yingping; Tomasula, Peggy M

    2015-05-01

    The effect of homogenization alone or in combination with high-temperature, short-time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a 2-stage homogenizer at 35°C (6.9 MPa/10.3 MPa) and, along with skim milk, were subjected to HTST pasteurization (72°C for 15 s) or UHT processing (135°C for 2 s). Other whole milk samples were processed using homogenization followed by either HTST pasteurization or UHT processing. The processed skim and whole milk samples were centrifuged further to remove fat and then acidified to pH 4.6 to isolate the corresponding whey fractions, and centrifuged again. The whey fractions were then purified using dialysis and investigated using the circular dichroism, Fourier transform infrared, and Trp intrinsic fluorescence spectroscopic techniques. Results demonstrated that homogenization combined with UHT processing of milk caused not only changes in protein composition but also significant secondary structural loss, particularly in the amounts of apparent antiparallel β-sheet and α-helix, as well as diminished tertiary structural contact. In both cases of homogenization alone and followed by HTST treatments, neither caused appreciable chemical changes, nor remarkable secondary structural reduction. But disruption was evident in the tertiary structural environment of the whey proteins due to homogenization of whole milk as shown by both the near-UV circular dichroism and Trp intrinsic fluorescence. In-depth structural stability analyses revealed that even though processing of milk imposed little impairment on the secondary structural stability, the tertiary structural stability of whey protein was altered significantly. The following order was derived based on these studies: raw whole>HTST, homogenized, homogenized and pasteurized>skimmed and pasteurized, and skimmed UHT