WorldWideScience

Sample records for wheat straw board

  1. Development of low-cost wheat-straw insulation board

    Energy Technology Data Exchange (ETDEWEB)

    Norford, L.K.; Glicksman, L.R.; Harvey, H.S. Jr.; Charlson, J.A.

    2000-07-01

    Insulation boards suitable for buildings with solid masonry walls that lack cavities necessary for loose-fill insulation have been fabricated and tested for use in developing countries. The boards were made at low density, 80 to 160 kg/m{sup 3}, and have suitable thermal properties for an air-based insulation, with a thermal resistivity of 21 to 28 m{center_dot}K/W [R3 to R4 per inch (h{center_dot}ft{sup 2}{center_dot}{degree}F/Btu{center_dot}in)]. The initial effort focused on straw insulation boards suitable for use in buildings with solid masonry walls that lack cavities necessary for loose-fill insulation. The possible methods of fabrication initially evaluated were (1) containing the straw in panels with wire and battens, (2) pulping the straw, and (3) binding with adhesive. Starch, polyvinyl acetate (PVA), and sodium silicate were evaluated as adhesives for both uncut and shredded straw. Methods of application included spraying, foaming, and dipping, at various adhesive-loading rates. Small samples were formed at a range of densities and tested for structural and thermal properties. All three approaches can succeed structurally and thermally, but are unable to compete economically with existing insulation board. A final batch of boards was made by spraying methane di-isocyanate (MDI), a synthetic resin, into a rotating tumbler that contained shredded straw. The boards, made over a range of densities and resin contents, and using straw with and without the fine particles, were tested thermally and structurally. Good mechanical properties were obtained at resin contents as low as 2% by mass. At densities of 128 and 160 kg/m{sup 3}, the boards had thermal resistivities of 24 to 26 m{sup 2}{center_dot}K/W. The pressure required to compress the 160 kg/m{sup 3} boards to 10% of their original thickness was approximately 100 kPa, and the modulus of rupture in bending was about 340 kPa. Removing the fine particles from the straw improved board strength markedly. The

  2. SODIUM HYDROXIDE TREATED WHEAT STRAW FOR SHEEP

    African Journals Online (AJOL)

    . Schwab & Satter (1976). Diets were fed twice daily at 08h30 and 15h30 at a level of ad lib + lO%. The untreated wheat straw wfuch ... A comparison of NaOH treated wheat straw iraed and not rinsed and untreated wheat strow fed to sheep.

  3. Production of ethanol from wheat straw

    Directory of Open Access Journals (Sweden)

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  4. Plasma-Assisted Pretreatment of Wheat Straw

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Leipold, Frank; Bindslev, Henrik

    2011-01-01

    and milled particle size (the extent to which the wheat straw was milled) were investigated and optimized. The developed methodology offered the advantage of a simple and relatively fast (0.5–2 h) pretreatment allowing a dry matter concentration of 45–60%. FTIR measurements did not suggest any structural...... straw with desired lignin content because of the online analysis. The O3 consumption of wheat straw and its polymeric components, i.e., cellulose, hemicellulose, and lignin, as well as a mixture of these, dry as well as with 50% water, were studied. Furthermore, the process parameters dry matter content...

  5. Pelletizing properties of torrefied wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Nielsen, Niels Peter; Hansen, Hans Ove

    2013-01-01

    of wheat straw have been analyzed. Laboratory equipment has been used to investigate the pelletizing properties of wheat straw torrefied at temperatures between 150 and 300 °C. IR spectroscopy and chemical analyses have shown that high torrefaction temperatures change the chemical properties of the wheat......Combined torrefaction and pelletization are used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. However, pelletization of torrefied biomass can be challenging and in this study the torrefaction and pelletizing properties...... straw significantly, and the pelletizing analyses have shown that these changes correlate to changes in the pelletizing properties. Torrefaction increase the friction in the press channel and pellet strength and density decrease with an increase in torrefaction temperature....

  6. Nutraceutical and functional scenario of wheat straw.

    Science.gov (United States)

    Pasha, Imran; Saeed, Farhan; Waqas, Khalid; Anjum, Faqir Muhammad; Arshad, Muhammad Umair

    2013-01-01

    In the era of nutrition, much focus has been remunerated to functional and nutraceutical foodstuffs. The health endorsing potential of such provisions is attributed to affluent phytochemistry. These dynamic constituents have functional possessions that are imperative for cereal industry. The functional and nutraceutical significance of variety of foods is often accredited to their bioactive molecules. Numerous components have been considered but wheat straw and its diverse components are of prime consideration. In this comprehensive dissertation, efforts are directed to elaborate the functional and nutraceutical importance of wheat straw. Wheat straw is lignocellulosic materials including cellulose, hemicellulose and lignin. It hold various bioactive compounds such as policosanols, phytosterols, phenolics, and triterpenoids, having enormous nutraceutical properties like anti-allergenic, anti-artherogenic, anti-inflammatory, anti-microbial, antioxidant, anti-thrombotic, cardioprotective and vasodilatory effects, antiviral, and anticancer. These compounds are protecting against various ailments like hypercholesterolemia, intermittent claudication, benign prostatic hyperplasia and cardiovascular diseases. Additionally, wheat straw has demonstrated successfully, low cost, renewable, versatile, widely distributed, easily available source for the production of biogas, bioethanol, and biohydrogen in biorefineries to enhance the overall effectiveness of biomass consumption in protected and eco-friendly environment. Furthermore, its role in enhancing the quality and extending the shelf life of bakery products through reducing the progression of staling and retrogradation is limelight of the article.

  7. Changes of chemical and mechanical behavior of torrefied wheat straw

    DEFF Research Database (Denmark)

    Shang, Lei; Ahrenfeldt, Jesper; Holm, Jens Kai

    2012-01-01

    wheat straw and torrefied wheat straw showed a clear reduction with increasing torrefaction temperature. In addition, Hardgrove Grindability Index (HGI) of wheat straw torrefied at different conditions was determined on a standard Hardgrove grinder. Both results showed an improvement of grindability......The purpose of the study was to investigate the influence of torrefaction on the grindability of wheat straw. Straw samples were torrefied at temperatures between 200 °C and 300 °C and with residence times between 0.5 and 3 h. Spectroscopic information obtained from ATR-FTIR indicated that below...

  8. Steam gasification of wheat straw, barley straw, willow and giganteus

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.K. [FLS Miljoe A/S, Valby (Denmark); Rathmann, O.; Olsen, A. [Risoe National Lab., Roskilde (Denmark); Poulsen, K. [ReaTech, CAT Science Centre Roskilde (Denmark)

    1997-08-01

    A thorough experimental study of the H{sub 2}O gasification char-reactivity of wheat straw, barley straw, willow and giganteus at 1-10 bar total pressure, 0.15-1.5 bar H{sub 2}O and O-1.0 bar H{sub 2} and 750-925 C, was performed in a Pressurized Thermogravimetric Analyzer. There were a total of 58 experiments. Kinetic experiments with char of wheat straw at 10 bar total pressure showed that the reactivity increases with rising temperature and increasing partial pressure of H{sub 2}O,, while it decreases with increasing partial pressure of H{sub 2}. At constant partial H{sub 2}O pressure in the absence of H-2, an indication of a negative influence by the total pressure was observed. Except for the effect of total pressure, the experimental data were analyzed by means of the Langmuir-Hinshelwood equation, including both inhibition by H{sub 2} and reactivity limitation at high H{sub 2}O concentration. Also, the reactivity profile was assumed to be independent of temperature and reactant concentration. The value found for the main activation energy E{sub 1}, 149 kJ/mole, describing the temperature dependence at low H{sub 2}O concentration, is close to experimental values for biomass reported by other workers. At conditions relevant to both fluid-bed and entrained-flow gasifier types the present results indicate an inhibiting effect of the product gas H{sub 2}, reducing the reactivity by a factor of up to 10. A screening study of steam gasification of barley straw, willow and giganteus in addition to the wheat straw showed reaction rates with rather equal temperature dependence. However, at equal temperatures, there was a spread in reactivity of about 10 times from the lowest (wheat and giganteus) to the highest (barley), probably due to different contents of catalytic elements. (au) 5 tabs., 15 ills., 10 refs.

  9. Oyster mushroom cultivation with rice and wheat straw.

    Science.gov (United States)

    Zhang, Ruihong; Li, Xiujin; Fadel, J G

    2002-05-01

    Cultivation of the oyster mushroom, Pleurotus sajor-caju, on rice and wheat straw without nutrient supplementation was investigated. The effects of straw size reduction method and particle size, spawn inoculation level, and type of substrate (rice straw versus wheat straw) on mushroom yield, biological efficiency, bioconversion efficiency, and substrate degradation were determined. Two size reduction methods, grinding and chopping, were compared. The ground straw yielded higher mushroom growth rate and yield than the chopped straw. The growth cycles of mushrooms with the ground substrate were five days shorter than with the chopped straw for a similar particle size. However, it was found that when the straw was ground into particles that were too small, the mushroom yield decreased. With the three spawn levels tested (12%, 16% and 18%), the 12% level resulted in significantly lower mushroom yield than the other two levels. Comparing rice straw with wheat straw, rice straw yielded about 10% more mushrooms than wheat straw under the same cultivation conditions. The dry matter loss of the substrate after mushroom growth varied from 30.1% to 44.3%. The straw fiber remaining after fungal utilization was not as degradable as the original straw fiber, indicating that the fungal fermentation did not improve the feed value of the straw.

  10. Ethanol production from mixtures of wheat straw and wheat meal

    Directory of Open Access Journals (Sweden)

    Galbe Mats

    2010-07-01

    Full Text Available Abstract Background Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G or lignocellulosic (second generation; 2G raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilization of the biomass can be achieved. It would, furthermore, decrease the energy demand of 2G ethanol production and also provide both 1G and 2G plants with heat and electricity. In the current study, steam-pretreated wheat straw (SPWS was mixed with presaccharified wheat meal (PWM and converted to ethanol in simultaneous saccharification and fermentation (SSF. Results Both the ethanol concentration and the ethanol yield increased with increasing amounts of PWM in mixtures with SPWS. The maximum ethanol yield (99% of the theoretical yield, based on the available C6 sugars was obtained with a mixture of SPWS containing 2.5% water-insoluble solids (WIS and PWM containing 2.5% WIS, resulting in an ethanol concentration of 56.5 g/L. This yield was higher than those obtained with SSF of either SPWS (68% or PWM alone (91%. Conclusions Mixing wheat straw with wheat meal would be beneficial for both 1G and 2G ethanol production. However, increasing the proportion of WIS as wheat straw and the possibility of consuming the xylose fraction with a pentose-fermenting yeast should be further investigated.

  11. Ethanol production from mixtures of wheat straw and wheat meal.

    Science.gov (United States)

    Erdei, Borbála; Barta, Zsolt; Sipos, Bálint; Réczey, Kati; Galbe, Mats; Zacchi, Guido

    2010-07-02

    Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G) or lignocellulosic (second generation; 2G) raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilization of the biomass can be achieved. It would, furthermore, decrease the energy demand of 2G ethanol production and also provide both 1G and 2G plants with heat and electricity. In the current study, steam-pretreated wheat straw (SPWS) was mixed with presaccharified wheat meal (PWM) and converted to ethanol in simultaneous saccharification and fermentation (SSF). Both the ethanol concentration and the ethanol yield increased with increasing amounts of PWM in mixtures with SPWS. The maximum ethanol yield (99% of the theoretical yield, based on the available C6 sugars) was obtained with a mixture of SPWS containing 2.5% water-insoluble solids (WIS) and PWM containing 2.5% WIS, resulting in an ethanol concentration of 56.5 g/L. This yield was higher than those obtained with SSF of either SPWS (68%) or PWM alone (91%). Mixing wheat straw with wheat meal would be beneficial for both 1G and 2G ethanol production. However, increasing the proportion of WIS as wheat straw and the possibility of consuming the xylose fraction with a pentose-fermenting yeast should be further investigated.

  12. Yield response of mushroom (Agaricus bisporus) on wheat straw ...

    African Journals Online (AJOL)

    SERVER

    2008-01-18

    Jan 18, 2008 ... The study was conducted to investigate yields of mushroom (Agaricus bisporus) on wheat straw and waste tea leaves ... waste tea leaves based composts, the highest mushroom yield (24.90%) were recorded on wheat straw and pigeon ... kg then filled into plastic bags at 7 kg wet weight basis. During.

  13. Thermal transitions of the amorphous polymers in wheat straw

    Science.gov (United States)

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2011-01-01

    The thermal transitions of the amorphous polymers in wheat straw were investigated using dynamic mechanical thermal analysis (DMTA). The study included both natural and solvent extracted wheat straw, in moist (8–9% water content) and dry conditions, and was compared to spruce samples. Under these conditions two transitions arising from the glass transition of lignin...

  14. Thermal transitions of the amorphous polymers in wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2011-01-01

    determined at 2, −1 and 5 °C, respectively. Differences are likely due to different compositions of lignin and hemicelluloses from straw and spruce and structural differences between the raw materials. The high wax content in wheat straw resulted in a transition at about 40 °C which was absent in solvent......The thermal transitions of the amorphous polymers in wheat straw were investigated using dynamic mechanical thermal analysis (DMTA). The study included both natural and solvent extracted wheat straw, in moist (8–9% water content) and dry conditions, and was compared to spruce samples. Under...

  15. Production of Biocellulosic Ethanol from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Ismail

    2012-01-01

    Full Text Available Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses.Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

  16. Yield response of mushroom ( Agaricus bisporus ) on wheat straw ...

    African Journals Online (AJOL)

    Yield response of mushroom ( Agaricus bisporus ) on wheat straw and waste tea leaves based composts using supplements of some locally available peats and their mixture with some secondary casing materials.

  17. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    African Journals Online (AJOL)

    Cultivation of Agaricus bisporus on wheat straw and waste tea leaves based composts and locally available casing materials Part III: Dry matter, protein, and carbohydrate contents of Agaricus bisporus.

  18. Microbial production of biopolymers from the renewable resource wheat straw.

    Science.gov (United States)

    Gasser, E; Ballmann, P; Dröge, S; Bohn, J; König, H

    2014-10-01

    Production of poly-ß-hydroxybutyrate (PHB) and the chemical basic compound lactate from the agricultural crop 'wheat straw' as a renewable carbon resource. A thermal pressure hydrolysis procedure for the breakdown of wheat straw was applied. By this means, the wheat straw was converted into a partially solubilized hemicellulosic fraction, consisting of sugar monomers, and an insoluble cellulosic fraction, containing cellulose, lignin and a small portion of hemicellulose. The insoluble cellulosic fraction was further hydrolysed by commercial enzymes in monomers. The production of PHB from the sugar monomers originating from hemicellulose or cellulose was achieved by the isolates Bacillus licheniformis IMW KHC 3 and Bacillus megaterium IMW KNaC 2. The basic chemical compound, lactate, a starting compound for the production of polylactide (PLA), was formed by some heterofermentative lactic acid bacteria (LAB) able to grow with xylose from the hemicellulosic wheat straw hydrolysate. Two strains were selected which were able to produce PHB from the sugars both from the hemicellulosic and the cellulosic fraction of the wheat straw. In addition, some of the LAB tested were capable of producing lactate from the hemicellulosic hydrolysate. The renewable resource wheat straw could serve as a substrate for microbiologically produced basic chemicals and biodegradable plastics. © 2014 The Society for Applied Microbiology.

  19. Biodegradation of wheat straw by different isolates of Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    A.R. Astaraei

    2016-04-01

    Full Text Available Efficient use of agricultural wastes due to their recycling and possible production of cost effective materials, have economic and ecological advantages. A biological method used for degrading agricultural wastes is a new method for improving the digestibility of these materials and favoring the ease of degradation by other microorganisms. This research was carried out to study the possible biodegradation of wheat straw by different species and isolates of Trichoderma fungi. Two weeks after inoculation of wheat straw by different isolates, oven drying in 75◦C, the samples were weighted and (Acid Detergent Fiber ADF and NDF (Neutral Detergent Fiber reductions of each sample under influence of fungal growth were compared with their controls. The results showed that biodegradation of wheat straw were closely related to fungi species and also its isolates. The Reductions in NDF and ADF of wheat straw by T. reesei and T. longibrachiatum were more pronounced compared to others, although T. reesei was superior in ADF of wheat straw reduction. It is concluded that for improving in digestibility and also shortening the timing of composting process, it is recommended to treat the wheat straw with Trichoderma fungi and especially with T. reesei and T. longibrachiatum that performed well and had excellent efficiencies.

  20. Hydration properties of briquetted wheat straw biomass feedstock

    DEFF Research Database (Denmark)

    Zhang, Heng; Fredriksson, Maria; Mravec, Jozef

    2017-01-01

    process with the aim of subsequent processing for 2nd generation bioethanol production. The hydration properties of the unprocessed and briquetted wheat straw were characterized for water absorption via low field nuclear magnetic resonance and sorption balance measurements. The water was absorbed more......Biomass densification elevates the bulk density of the biomass, providing assistance in biomass handling, transportation, and storage. However, the density and the chemical/physical properties of the lignocellulosic biomass are affected. This study examined the changes introduced by a briquetting...... rapidly and was more constrained in the briquetted straw compared to the unprocessed straw, potentially due to the smaller fiber size and less intracellular air of the briquetted straw. However, for the unprocessed and briquetted wheat straw there was no difference between the hygroscopic sorption...

  1. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    African Journals Online (AJOL)

    This study was designed to determine the pin head formation time and yield values of Agaricus bisporus on some casing materials. Composts were prepared basically from wheat straw and waste tea leaves by using wheat chaff as activator substance. Temperatures of the compost formulas were measured during ...

  2. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    African Journals Online (AJOL)

    Administrator

    2007-02-19

    Feb 19, 2007 ... This study was designed to determine the pin head formation time and yield values of Agaricus bisporus on some casing materials. Composts were prepared basically from wheat straw and waste tea leaves by using wheat chaff as activator substance. Temperatures of the compost formulas were measured ...

  3. Examining the Potential of Plasma-Assisted Pretreated Wheat Straw for Enzyme Production by Trichoderma reesei

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Lehmann, Linda Olkjær; Schultz-Jensen, Nadja

    2012-01-01

    Plasma-assisted pretreated wheat straw was investigated for cellulase and xylanase production by Trichoderma reesei fermentation. Fermentations were conducted with media containing washed and unwashed plasma-assisted pretreated wheat straw as carbon source which was sterilized by autoclavation...

  4. Reprint of: Pelletizing properties of torrefied wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Nielsen, Niels Peter K.; Hansen, Hans Ove

    2013-01-01

    of wheat straw have been analyzed. Laboratory equipment has been used to investigate the pelletizing properties of wheat straw torrefied at temperatures between 150 and 300 °C. IR spectroscopy and chemical analyses have shown that high torrefaction temperatures change the chemical properties of the wheat......Combined torrefaction and pelletization are used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. However, pelletization of torrefied biomass can be challenging and in this study the torrefaction and pelletizing properties...... straw significantly, and the pelletizing analyses have shown that these changes correlate to changes in the pelletizing properties. Torrefaction increase the friction in the press channel and pellet strength and density decrease with an increase in torrefaction temperature....

  5. Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing.

    Science.gov (United States)

    Badve, Mandar P; Gogate, Parag R; Pandit, Aniruddha B; Csoka, Levente

    2014-01-01

    The present work deals with application of hydrodynamic cavitation for intensification of delignification of wheat straw as an essential step in the paper manufacturing process. Wheat straw was first treated with potassium hydroxide (KOH) for 48 h and subsequently alkali treated wheat straw was subjected to hydrodynamic cavitation. Hydrodynamic cavitation reactor used in the work is basically a stator and rotor assembly, where the rotor is provided with indentations and cavitational events are expected to occur on the surface of rotor as well as within the indentations. It has been observed that treatment of alkali treated wheat straw in hydrodynamic cavitation reactor for 10-15 min increases the tensile index of the synthesized paper sheets to about 50-55%, which is sufficient for paper board manufacture. The final mechanical properties of the paper can be effectively managed by controlling the processing parameters as well as the cavitational parameters. It has also been established that hydrodynamic cavitation proves to be an effective method over other standard digestion techniques of delignification in terms of electrical energy requirements as well as the required time for processing. Overall, the work is first of its kind application of hydrodynamic cavitation for enhancing the effectiveness of delignification and presents novel results of significant interest to the paper and pulp industry opening an entirely new area of application of cavitational reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Wet explosion og wheat straw and codigestion with swine manure

    DEFF Research Database (Denmark)

    Wang, Guangtao; Gavala, Hariklia N.; Skiadas, Ioannis V.

    2009-01-01

    feedstock but their economical profitable operation relies on the addition of other biomass products with a high biogas yield. Wheat straw is the major crop residue in Europe and the second largest agricultural residue in the world. So far it has been used in several applications, i.e. pulp and paper making......, production of regenerated cellulose fibers as an alternative to wood for cellulose-based materials and ethanol production. The advantage of exploiting wheat straw for various applications is that it is available in considerable quantity and at low-cost. In the present study, the codigestion of swine manure...

  7. Regularity and mechanism of wheat straw properties change in ball milling process at cellular scale.

    Science.gov (United States)

    Gao, Chongfeng; Xiao, Weihua; Ji, Guanya; Zhang, Yang; Cao, Yaoyao; Han, Lujia

    2017-10-01

    To investigate the change of structure and physicochemical properties of wheat straw in ball milling process at cellular scale, a series of wheat straws samples with different milling time were produced using an ultrafine vibration ball mill. A multitechnique approach was used to analyze the variation of wheat straw properties. The results showed that the characteristics of wheat straw powder displayed regular changes as a function of the milling time, i.e., the powder underwent the inversion of breakage to agglomerative regime during wheat straw ball milling process. The crystallinity index, bulk density and water retention capacity of wheat straw were exponential relation with ball milling time. Moreover, ball milling continually converted macromolecules of wheat straw cell wall into water-soluble substances resulting in the water extractives proportional to milling time. Copyright © 2017. Published by Elsevier Ltd.

  8. Optimization of the dilute maleic acid pretreatment of wheat straw

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Beeftink, H.H.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    Background - In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1)

  9. Pre-process desilication of wheat straw with citrate

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sorensen, Hanne R.; Meyer, Anne S.

    2017-01-01

    Effects of treatment time, citrate concentration, temperature, and pH on Si extraction from wheat straw prior to hydrothermal pretreatment were investigated for maximising Si removal and biomass recovery before biomass refining. With citrate, an almost linear negative correlation between Si conte...

  10. Hydration properties of briquetted wheat straw biomass feedstock

    DEFF Research Database (Denmark)

    Zhang, Heng; Fredriksson, Maria; Mravec, Jozef

    2017-01-01

    process with the aim of subsequent processing for 2nd generation bioethanol production. The hydration properties of the unprocessed and briquetted wheat straw were characterized for water absorption via low field nuclear magnetic resonance and sorption balance measurements. The water was absorbed more...

  11. Optimization of wet oxidation pretreatment of wheat straw

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Thomsen, A.B.

    1998-01-01

    The wet oxidation process (water; oxygen and elevated temperature) was investigated under alkaline conditions for fractionation of hemicellulose, cellulose, and lignin from wheat straw. At higher temperature and longer reaction time, a purified cellulose fraction (69% w/w) was produced with high ...

  12. Substitution of lucerne hay by ammoniated wheat straw in growth ...

    African Journals Online (AJOL)

    Lucerne hay (LH) was substituted by urea-ammoniated wheat straw (AWS) in four lamb-growth diets, all containing 60% roughage. The ratio of LH to AWS was 60: 0, 40: 20, 20: 40 and 0: 60 in the respective diets, which were composed on an iso-nitrogenous basis. However, cell wall constituents (CWC) increased with ...

  13. ESTIMATION OF WHEAT STRAW AND RAPESEED USEFULNESS FOR WHEAT FERTILISATION IN ARABLE FARMING

    Directory of Open Access Journals (Sweden)

    Sławomir Stankowski

    2015-02-01

    Full Text Available The aim of the research was the estimation of wheat and rapeseed straw usefulness for fertilising plants in arable farming. The subject matter of the study was the analysis of the influence of soil fertilisation with wheat and rapeseed straw on the yield and changes in the content of phosphorus, potassium, calcium and magnesium in winter wheat grain cultivars: Finezja and Ludwig. The static field experiment was conducted at Agricultural Experiment Station, Grabów, Institute of Soil Science and Plant Cultivation – State Research Institute (51°21′ N, 21°40′ E in the years 2008–2010 on Haplic Luvisol. The effect of fertilisation with wheat and rapeseed straw did not have a significant effect on grain yield of winter wheat cultivars ‘Finezja’ and ‘Ludwig’. The introduction of complementary nitrogen fertilisation caused an increase in grain yield of wheat cultivar Ludwig. Organic fertilisation with wheat and rapeseed straw as well as complementary nitrogen fertilisation did not significantly differentiate the content of phosphorus, potassium, calcium and magnesium in winter wheat grain cultivars ‘Finezja’ and ‘Ludwig’.

  14. Wheat straw biomass: a resource for high-value chemicals.

    Science.gov (United States)

    Schnitzer, Morris; Monreal, Carlos M; Powell, Erin E

    2014-01-01

    Two methods are proposed for increasing the commercial value of wheat straw based on its chemical constituents. The first method involves the determination and extraction of the major organic components of wheat straw, and the second involves those found and extracted in the aqueous and viscous biooils derived from the straw by fast pyrolysis. We used pyrolysis-field ionization mass spectrometry to identify the fine chemicals, which have high commercial values. The most abundant organic compounds in the wheat straw and biooil used as precursors for green chemicals are N-heterocycles (16 to 29% of the Total Ion Intensities, TII) and fatty acids (19 to 26% of TIIs), followed by phenols and lignins (12 to 23% of TIIs). Other important precursors were carbohydrates and amino acids (1 to 8% TIIs), n-alkyl benzenes (3 to 5% of TIIs), and diols (4 to 9% TIIs). Steroids and flavonoids represented 1 to 5% of TIIs in the three materials. Examples of valuable chemical compounds that can be extracted from the wheat straw and biooils are m/z 256, 270, 278, 280, 282 and 284, which are the n-C16 and n-C17 fatty acids respectively, and the C18:3, C18:2 and C18:1 unsaturated fatty acids. In particular, the C18:2 (linoleic acid) is present at a concentration of 1.7% of TIIs. Pyrazole, pyrazine, pyridine, indoles, quinolines, carbazoles, and their identified derivatives are found in relatively high concentrations (1 to 8% of TIIs). Other useful compounds are sterols such as m/z 412 (stigmasterol), m/z 414 (β-sitosterol), and steroids such m/z 394 (stigmastatriene), m/z 398 (stigmastene) and m/z 410 (stigmastadienone). Relative to the wheat straw, the relative concentration of all flavonoids such as m/z 222 (flavone) and m/z 224 (flavonone) doubled in the biooils. The conversion of wheat straw by fast pyrolysis, followed by chemical characterization with mass spectrometry, and extraction of fine chemicals, opens up new possibilities for increasing the monetary value of crop residues.

  15. TG-FTIR Study of the Influence of potassium Chloride on Wheat Straw Pyrolysis

    DEFF Research Database (Denmark)

    Jensen, Anker; Dam-Johansen, Kim; Wójtowicz, M.A.

    1998-01-01

    of products into char, tar and gas. In this work, a combination of thermogravimetry and evolved gas analysis by Fourier transform infrared analysis (TG-FTIR) has been applied to study the influence of potassium chloride (KCl) on wheat straw pyrolysis. Raw straw, washed straw and washed straw impregnated...

  16. Enhanced cellulase production from Trichoderma reesei QM 9414 on physically treated wheat straw

    Energy Technology Data Exchange (ETDEWEB)

    Acebal, C.; Castillon, M.P.; Estrada, P.; Mata, I.; Costa, E.; Aguado, J.; Romero, D.; Jimenez, F.

    1986-06-01

    Trichoderma reesei QM 9414 was grown on wheat straw as the sole carbon source. The straw was pretreated by physical and chemical methods. The particle size of straw was less than 0.177 mm. Growth of T. reesei QM 9414 was maximal with alkali-pretreated straw whereas cellulase production was optimal when physically pretreated straw was used as substrate. Cellulase yields expressed as IU enzyme activity/g cellulose present in the cultures were considerably higher when alkali pretreatment of wheat straw was omitted. Cellulase yields of 666 IU/g cellulose for filter paper activity (FPA) are the highest described for cultures of T. reesei QM 9414 carried out in analogous conditions. Crystallinity index of the cellulose contained in wheat straw increased slightly after alkali pretreatment. This increase did not decrease cellulose accessibility to the fungus. Delignification of wheat straw was not necessary to achieve the best cellulase production.

  17. Xylanase and ultrasound assisted pulping of wheat straw.

    Science.gov (United States)

    Dedhia, Bhavin S; Csoka, Levente; Rathod, Virendra K

    2012-10-01

    In the present work, a novel approach to pretreat wheat straw pulping was investigated with ultrasound and xylanase to achieve maximum reduction in lignin content. Sequential xylanase pretreatment and alkaline pulping was found to reduce kappa number by 0.31 to 4.84 % compared with only alkaline pulping alone at different pulping conditions. Although Klason lignin of ultrasound-treated straw was found to be 7.37 % less compared with untreated straw, sequential ultrasound pretreatment and alkaline pulping could not show any significant reduction in kappa number compared with alkaline pulping alone. Also, sequential xylanase and ultrasound pretreatment could not show any significant reduction in kappa number. Total yield of the pulp was found to be less in ultrasound-assisted processing compared with both alkaline pulping alone and sequential xylanase pretreatment and alkaline pulping.

  18. Ozone pretreatment and fermentative hydrolysis of wheat straw

    Science.gov (United States)

    Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.

    2017-11-01

    Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.

  19. Plasma-Assisted Pretreatment of Wheat Straw for Ethanol Production

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Kádár, Zsófia; Thomsen, Anne Belinda

    2011-01-01

    The potential of wheat straw for ethanol production after pretreatment with O3 generated in a plasma at atmospheric pressure and room temperature followed by fermentation was investigated. We found that cellulose and hemicellulose remained unaltered after ozonisation and a subsequent washing step...... (0–7 h), e.g., oxalic acid and acetovanillon. Interestingly, washing had no effect on the ethanol production with pretreatment times up to 1 h. Washing improved the glucose availability with pretreatment times of more than 2 h. One hour of ozonisation was found to be optimal for the use of washed...... and unwashed wheat straw for ethanol production (maximum ethanol yield, 52%). O3 cost estimations were made for the production of ethanol at standard conditions....

  20. Optimization of microwave pretreatment on wheat straw for ethanol production

    DEFF Research Database (Denmark)

    Xu, Jian; Chen, Hongzhang; Kádár, Zsófia

    2011-01-01

    An orthogonal design (L9(34)) was used to optimize the microwave pretreatment on wheat straw for ethanol production. The orthogonal analysis was done based on the results obtained from the nine pretreatments. The effect of four factors including the ratio of biomass to NaOH solution, pretreatment...... time, microwave power, and the concentration of NaOH solution with three different levels on the chemical composition, cellulose/hemicellulose recoveries and ethanol concentration was investigated. According to the orthogonal analysis, pretreatment with the ratio of biomass to liquid at 80 g kg−1......, the NaOH concentration of 10 kg m−3, the microwave power of 1000 W for 15 min was confirmed to be the optimal condition. The ethanol yield was 148.93 g kg−1 wheat straw at this condition, much higher than that from the untreated material which was only 26.78 g kg−1....

  1. Plastic timber with wheat straw and polymer matrix

    OpenAIRE

    García-Velázquez, Ángel; Amado-Moreno, María Guadalupe; Campbell-Ramírez, Héctor Enrique; Brito-Páez, Reyna Arcelia; Toscano-Palomar, Lydia

    2013-01-01

    The objective of the research was to develop plastic timber with wheat straw and polymer matrix. In the Mexicali Valley in Baja California, Mexico, the agricultural activities and the maquiladora industry are the main source of income in the region.  However, agricultural activities generate wastes that contribute heavily to pollution of Mexicali and its valley. The burning of agricultural waste is a traditional practice in the Valley, and is done in order to prepare the soil for the next cro...

  2. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Serrano, Maria; Thomsen, Anne Belinda

    2009-01-01

    . Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus......, multiple biofuels production from wheat straw can increase the efficiency for material and energy and can presumably be more economical process for biomass utilization. (C) 2008 Elsevier Ltd. All rights reserved....

  3. Optimization of the dilute maleic acid pretreatment of wheat straw

    Directory of Open Access Journals (Sweden)

    Scott Elinor L

    2009-12-01

    Full Text Available Abstract Background In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1 glucose benefits from improved enzymatic digestibility of wheat straw solids; (2 xylose benefits from the solubilization of xylan to the liquid phase during the pretreatment; (3 maleic acid replenishment costs; (4 neutralization costs of pretreated material; (5 costs due to furfural production; and (6 heating costs of the input materials. For each response factor, experimental data were fitted mathematically. After data translation to €/Mg dry straw, determining the relative contribution of each response factor, an economic optimization was calculated within the limits of the design variables. Results When costs are disregarded, an almost complete glucan conversion to glucose can be reached (90% from solids, 7%-10% in liquid, after enzymatic hydrolysis. During the pretreatment, up to 90% of all xylan is converted to monomeric xylose. Taking cost factors into account, the optimal process conditions are: 50 min at 170°C, with 46 mM maleic acid, resulting in a yield of 65 €/Mg (megagram = metric ton dry straw, consisting of 68 €/Mg glucose benefits (from solids: 85% of all glucan, 17 €/Mg xylose benefits (from liquid: 80% of all xylan, 17 €/Mg maleic acid costs, 2.0 €/Mg heating costs and 0.68 €/Mg NaOH costs. In all but the most severe of the studied conditions, furfural formation was so limited that associated costs are considered negligible. Conclusions After the dilute maleic acid pretreatment and subsequent enzymatic hydrolysis, almost complete conversion of wheat straw glucan and xylan is possible. Taking maleic acid replenishment, heating, neutralization and furfural formation into account, the optimum in the dilute maleic acid

  4. Determination of Performance of Yearlings Fed with Rations Containing Wheat, Maize and Buckwheat Straws

    Directory of Open Access Journals (Sweden)

    Zeynel Acar

    2014-09-01

    Full Text Available As well as cereal straw, the use of maize straw in ruminant feeding has been increasing as the feed shortage widens. In addition, cultivation of buckwheat with high straw yield potential is becoming widespread. Thus, performance of 15 female Karya yearlings fed with ration containing wheat, maize or buckwheat straws were compared. The yearlings fed either containing wheat, maize or buckwheat straws in three total mixed rations (30% straw in dry matter that were consisted of, maize silage, concentrate and cracked maize, formulated to provide 150 g daily live weight gain for 21 d. Total mixed rations was prepared based on the nutritive value of wheat straw. Prior to feeding trial yearlings were acclimatized to their respective feed for a period of 14 d. Straws were included in total mixed rations following the chopping at 1-2 cm. Daily live weight gain and dry matter intake of yearlings fed with mixed ration containing wheat, maize or buckwheat straw were 88, 85 and 135 g/d (P=0.10 and 954, 931 and 1078 g/d (P=0.09, respectively. However, crude protein intake of yearlings (g/d fed with the ration containing buckwheat straw 14% higher than yearlings fed with the ration containing wheat or maize straw. It was concluded that performance of yearling fed with ration containing buckwheat straws was superior to performance of yearlings fed with ration containing wheat and maize straw, while performance of yearling fed with ration containing wheat or maize straw was similar.

  5. Use of Pleurotus pulmonarius to change the nutritional quality of wheat straw. I. effect on chemical composition

    OpenAIRE

    Oziel Dante Montañez-Valdez

    2008-01-01

    The effect of Pleurotus pulmonarius on the chemical composition of wheat straw was evaluated. Wheat straw, treated and untreated with P. pulmonarius, was obtained from a commercial facility. Ten samples plastic bags of wheat straw used previously as substrate to culture edible fungus were collected at random. The negative control group consisted of the pasteurized wheat straw untreated with P. pulmonarius. All samples were analyzed to determine dry matter, organic matter, crude protein, neutr...

  6. Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Thomsen, Sune Tjalfe; Kádár, Zsófia

    2013-01-01

    .5%. When comparing hydrothermally treated wheat straw (170, 180 and 190°C) with hydrothermally treated ensiled wheat straw (same temperatures), several positive effects of ensiling were revealed. Glucan was up-concentrated in the solid fraction and the solubilisation of hemicellulose was significantly...

  7. Thermal and colorimetry properties of bleached wheat straw/LDPE biocomposites

    Directory of Open Access Journals (Sweden)

    Behjat Tajeddin

    2016-09-01

    Full Text Available This research was done to study the thermal and colorimetric properties of bleached wheat straw/polyethylene biocomposites. Thus, wheat straw was firstly bleached using different natural and/or chemical bleaching methods. The bleached wheat straw and the pure polyethylene were then mixed in ratio of 40 to 60 by twin screw extrouder at 145OC. Maleic anhydride polyethylene was also applied in %10 of polyethylene weight. Thermal and colorimetric properties of treatments were evaluated and compared to control sample (pure polyethylene. The results showed that the unbleached wheat straw composite had the lowest lightness value. Biocomposites containing bleached wheat straw pulp with xylanase and hydrogen peroxide 1% had the most lightness value after pure polyethylene. The results of the thermal behavior of the composites from DSC curves showed that the melting temperature of bleached wheat straw pulp with xylanase and hydrogen peroxide1% composite was higher than pure polyethylene and the others. The maximum and the minimum decomposition temperature of the composites belonged to the unbleached wheat straw (424.76°C and the bleached wheat straw pulp (354.23°C, respectively.

  8. Delignification of Wheat Straw by Pleurotus spp. under Mushroom-Growing Conditions †

    Science.gov (United States)

    Tsang, Linda J.; Reid, Ian D.; Coxworth, Ewen C.

    1987-01-01

    Pleurotus sajor-caju, P. sapidus, P. cornucopiae, and P. ostreatus mushrooms were produced on unsupplemented wheat straw. The yield of mushrooms averaged 3.6% (dry-weight basis), with an average 18% straw weight loss. Lignin losses (average, 11%) were lower than cellulose (20%) and hemicellulose (50%) losses. The cellulase digestibility of the residual straw after mushroom harvest was generally lower than that of the original straw. It does not appear feasible to simultaneously produce Pleurotus mushrooms and a highly delignified residue from wheat straw. PMID:16347363

  9. Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, L.J.; Reid, I.D.; Coxworth, E.C.

    1987-06-01

    Pleurotus sajor-caju, P. sapidus, P. cornucopiae, and P. ostreatus mushrooms were produced on unsupplemented wheat straw. The yield of mushrooms averaged 3.6% (dry-weight basis), with an average 18% straw weight loss. Lignin losses (average, 11%) were lower than cellulose (20%) and hemicellulose (50%) losses. The cellulase digestibility of the residual straw after mushroom harvest was generally lower than that of the original straw. It does not appear feasible to simultaneously produce Pleurotus mushrooms and a highly delignified residue from wheat straw. (Refs. 24).

  10. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2012-01-01

    are investigated by comparing wheat straw before and after organic solvent extraction. The lignin glass transition temperature for wheat straw and extracted wheat straw is determined by dynamic mechanical thermal analysis. At a moisture content of 8%, transitions are identified at 53°C and 63°C, respectively...

  11. Biogeochemical Processes That Produce Dissolved Organic Matter From Wheat Straw

    Science.gov (United States)

    Wershaw, Robert L.; Rutherford, David W.; Leenheer, Jerry A.; Kennedy, Kay R.; Cox, Larry G.; Koci, Donald R.

    2003-01-01

    The chemical reactions that lead to the formation of dissolved organic matter (DOM) in natural waters are poorly understood. Studies on the formation of DOM generally are complicated because almost all DOM isolates have been derived from mixtures of plant species composed of a wide variety of different types of precursor compounds for DOM formation. This report describes a study of DOM derived mainly from bales of wheat straw that had been left in a field for several years. During this period of time, black water from the decomposing wheat straw accumulated in pools in the field. The nuclear magnetic resonance and infrared spectra of the black water DOM indicate that it is composed almost entirely of lignin and carbohydrate polymeric units. Analysis by high-performance size-exclusion chromatography with multi-angle laser-light scattering detection indicates that the number average molecular weight of the DOM is 124,000 daltons. The results presented in this report indicate that the black water DOM is composed of hemicellulose chains cross-linked to lignin oligomers. These types of structures have been shown to exist in the hemicellulose matrix of plant cell walls. The cross-linked lignin-hemicellulose complexes apparently were released from partially degraded wheat-straw cell walls with little alteration. In solution in the black water, these lignin-hemicellulose polymers fold into compact globular particles in which the nonpolar parts of the polymer form the interiors of the particles and the polar groups are on the exterior surfaces of the particles. The tightly folded, compact conformation of these particles probably renders them relatively resistant to microbial degradation. This should be especially the case for the aromatic lignin structures that will be buried in the interiors of the particles.

  12. Growth of bacteria and yeast on enzymically degraded alkali treated rice and wheat straws

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, J.K.; Shirkot, C.K.; Dhawan, S.

    1981-01-01

    An enzyme filtrate of Trichoderma viride QM 9414 was used to saccharify rice and wheat straw. Delignification of the straw by alkali treatment increased the enzymic saccharification of both materials to approximately 70%. The optimum conditions for delignification were autoclaving at 120 degrees for 30 minutes with 2% Sodium Hydroxide. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Lactobacillus acidophilus, Bacillus megaterium, and Saccharomyces cerevisiae grew very well on enriched hydrolyzates of rice and wheat straws. Even nonenriched straw hydrolyzates supported better growth of L. acidophilus, B. megaterium, and E. coli on rice straw than the enriched synthetic medium containing equivalent glucose. S. cerevisiae grown in shake flasks containing 25 mL of enriched rice and wheat straw hydrolyzates yielded 0.595 g and 0.450 g of dry cells, respectively. The corresponding yield was 0.396 g from enriched synthetic medium containing equal amounts of glucose.

  13. Integration of first and second generation biofuels: Fermentative hydrogen production from wheat grain and straw

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2013-01-01

    Integrating of lignocellulose-based and starch-rich biomass-based hydrogen production was investigated by mixing wheat straw hydrolysate with a wheat grain hydrolysate for improved fermentation. Enzymatic pretreatment and hydrolysis of wheat grains led to a hydrolysate with a sugar concentration of

  14. Improving Anaerobic Digestion of Wheat Straw by Plasma-Assisted Pretreatment

    DEFF Research Database (Denmark)

    Heiske, Stefan; Schultz-Jensen, Nadja; Leipold, Frank

    2013-01-01

    methane yields at higher substrate concentrations, indicating the presence of other unidentified inhibitors. However, in a continuous lab-scale biogas reactor experiment, stable codigestion of cattle manure with 20% PAP wheat straw was demonstrated, while no signs of adverse effects on the anaerobic...... digestion process were observed. After the introduction of the pretreated wheat straw to the reactor, volatile fatty acid concentrations remained low and stable, while gas production increased. In co-digestion, the PAP wheat straw was converted at an average yield of 343mL CH4/gVS....

  15. Enzymatic hydrolysis of pretreated barley and wheat straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa

    2007-01-01

    feeding strategy to increase the substrate loading in the hydrolysis reaction. The substrate for the enzymatic hydrolysis was primarily steam pretreated wheat and barley straw since these substrates were the primary feedstocks for the Babilafuente Bioethanol process. The initial work showed...... that there was indeed potential to boost the enzyme activities in Celluclast (arising from Trichoderma reesei) by addition of small amounts of fermentation broth from fungal sources other than T. reesei at optimal reaction conditions for Celluclast, pH 5, 50 °C. The activity(ies) related to the boosting effect were...... indicated to arise from more efficient or different endoglucanase activities than those found in Celluclast. Evaluating of the extent of hydrolysis using the 4 major enzyme activities in Celluclast, which constituted a complete set of enzymes for hydrolysis of cellulose, showed that the most efficient...

  16. Simulation of the ozone pretreatment of wheat straw.

    Science.gov (United States)

    Bhattarai, Sujala; Bottenus, Danny; Ivory, Cornelius F; Gao, Allan Haiming; Bule, Mahesh; Garcia-Perez, Manuel; Chen, Shulin

    2015-11-01

    Wheat straw is a potential feedstock in biorefinery for sugar production. However, the cellulose, which is the major source of sugar, is protected by lignin. Ozonolysis deconstructs the lignin and makes cellulose accessible to enzymatic digestion. In this study, the change in lignin concentration with different ozonolysis times (0, 1, 2, 3, 5, 7, 10, 15, 20, 30, 60min) was fit to two different kinetic models: one using the model developed by Garcia-Cubero et al. (2012) and another including an outer mass transfer barrier or "cuticle" region where ozone mass transport is reduced in proportion to the mass of unreacted insoluble lignin in the cuticle. The kinetic parameters of two mathematical models for predicting the soluble and insoluble lignin at different pretreatment time were determined. The results showed that parameters derived from the cuticle-based model provided a better fit to experimental results compared to a model without a cuticle layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Fermentative production of butyric acid from wheat straw: Economic evaluation

    DEFF Research Database (Denmark)

    Baroi, G. N.; Gavala, Hariklia N.; Westermann, P.

    2017-01-01

    . Two scenarios (S1 and S2) were examined assuming a plant with an annual capacity of 10,000 tonnes of product installed in India (due to significantly lower feedstock prices). S1 resulted in a product of 89% butyric acid mixed with acetic acid and S2 produced butyric acid of 99% purity. Unit production......The economic feasibility of biochemical conversion of wheat straw to butyric acid was studied in this work. Basic process steps included physicochemical pretreatment, enzymatic hydrolysis and saccharification, fermentation with in-situ acids separation by electrodialysis and product purification...... cost was estimated at 2.75 and 3.31 $ per kg product for S1 and S2 respectively. The main part of production cost was attributed to steam for the purification step and electricity for the in-situ acids separation. This unit production cost combined with an estimated butyric acid selling price (year...

  18. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    Science.gov (United States)

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2012-01-01

    The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing wood biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit...

  19. Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Jensen, K.; Nielsen, P.

    1996-01-01

    Wheat straw was pretreated by wet oxidation (oxygen pressure, alkaline conditions, elevated temperature) or hydrothermal processing (without oxygen) in order to solubilize the hemicellulose, facilitating bio-conversion. The effect of oxygen pressure and sodium carbonate addition on hemicellulose ...

  20. Production of ethanol from wet oxidised wheat straw by Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Ahring, B.K.; Licht, D.; Schmidt, A.S.

    1999-01-01

    The wet oxidation process (water, oxygen, elevated temperature, sodium carbonate) was investigated as a means of solubilising hemicellulose from wheat straw. Sixteen different combinations of oxygen pressure and sodium carbonate concentration were applied. The hemicellulose hydrolysates were eval...

  1. Use of wheat straw, soybean trash and nitrogen fertiliser for maize ...

    African Journals Online (AJOL)

    Use of wheat straw, soybean trash and nitrogen fertiliser for maize production in the Kenyan highlands. J R Okalebo, C A Palm, M Gichuru, J O Owuor, C O Othieno, A Munyampundu, R M Muasya, P L Woolmer ...

  2. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Beeftink, H.H.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    The efficiencies of fumaric, maleic, and sulfuric acid in wheat straw pretreatment were compared. As a measure for pretreatment efficiency, enzymatic digestibility of the lignocellulose was determined. Monomeric glucose and xylose concentrations were measured after subsequent enzymatic hydrolysis,

  3. Characteristics of Wheat Straw Lignins from Ethanol-based Organosolv Treatment

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Telysheva, G.; Arshanitsa, A.; Gosselink, R.J.A.; Wild, de P.J.

    2014-01-01

    Non-purified lignins resulting from ethanol-based organosolv fractionation of wheat straw were characterized for the presence of impurities (carbohydrates and ash), functional groups (hydroxyl, carboxyl and methoxyl), phenyl-propanoid structural moieties, molar mass distribution and thermal

  4. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions

    National Research Council Canada - National Science Library

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L

    2016-01-01

    .... aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments...

  5. White-rot fungal conversion of wheat straw to energy rich cattle feed.

    Science.gov (United States)

    Shrivastava, Bhuvnesh; Thakur, Shilpi; Khasa, Yogender Pal; Gupte, Akshaya; Puniya, Anil Kumar; Kuhad, Ramesh Chander

    2011-07-01

    In order to improve the digestibility and nutrient availability in rumen, wheat straw was subjected to solid state fermentation (SSF) with white-rot fungi (i.e. Pleurotus ostreatus and Trametes versicolor) and the fermented biomass (called myco-straw) was evaluated for biochemical, enzymatic and nutritional parameters. The fungal treatment after 30 days led to significant decrease (P fiber (ADF), neutral detergent fiber (NDF), hemicellulose, lignin and cellulose to the extent of 35.00, 38.88, 45.00, 37.48 and 37.86%, respectively in P. ostreatus fermented straw, while 30.04, 33.85, 39.90, 31.29 and 34.00%, respectively in T. versicolor fermented straw. However, maximum efficiency of fermentation in terms of low carbohydrate consumption per unit of lignin degradation, favoring cattle feed production was observed for P. ostreatus on the 10th day (17.12%) as compared with T. versicolor on the 30th day (16.91%). The myco-straw was found to contain significantly high (P carbon and was rich in nitrogen with lower C/N ratio as compared to control wheat straw. Results suggest that the fungal fermentation of wheat straw effectively improved CP content, OM digestibility, SCFAs production, ME value and simultaneously lowered the C/N ratio, thus showing potential for bioconversion of lignin rich wheat straw into high energy cattle feed.

  6. Impact of removing straw from wheat and barley fields: A literature review

    Science.gov (United States)

    The sustainability of straw removal from wheat and barley fields from the standpoint of its effects on soil properties and nutrient cycling is a concern. A recent literature review reveals that there is no negative effect of small grain straw removal on soil organic carbon (SOC) content with irriga...

  7. Characteristics of Greenhouse Gas Emissions from the Wheat Fields with Different Returning Methods of Maize Straws

    Directory of Open Access Journals (Sweden)

    LI Xin-hua

    2016-03-01

    Full Text Available In order to investigate the effect of different returning methods of maize straw on the greenhouse gas emissions from the wheat fields, we explored the greenhouse gas CO2, N2O and CH4 emissions from the wheat fields using static chamber-gas chromatograph technique from December 2013 to May 2014. The experiments set four treatments including no maize straw returning(CK, direct maize straw returning directly(CS, maize straw-rumen-cattle dung returning(CGS and maize straw-mushroom residue returning(CMS, and the four treatments were investigated under the same watering and fertilizing conditions. The results showed that the greenhouse gas emissions from the wheat fields all had distinct seasonal variations and the cumulative emissions of greenhouse gas emissions were different. During the maize growing season, the cumulative emissions of both CO2 and N2O were emitted and in the order of CK >CGS >CS >CMS while the cumulative absorptions of CH4 were in the order of CS >CGS >CK >CMS with the significant difference between different treatments(PCGS >CK >CMS under the different returning methods of maize straw, which indicated that direct straw returning could significantly increase the global warming potential of greenhouse gases from the wheat field, followed by CGS while the straw-mushroom residue returning(CMS could decrease the global warming potential of greenhouse gases from the wheat field. The method of straw-mushroom residue returning should be recommended from the viewpoint of reducing GWP of the greenhouse gas. In all, our study could provide the scientific foundation for the efficiency straw recycle and reducing greenhouse gas emission.

  8. The Effect of wheat straw particle size on the mechanical and water absorption properties of wheat straw/low density polyethylene biocomposites for packaging applications

    Directory of Open Access Journals (Sweden)

    Behjat Tajeddin

    2017-08-01

    Full Text Available Natural composites with biodegradability properties can be used as a renewable alternative to replacing conventional plastics. Thus, to reduce the plastics applications in the packaging industry, biocomposites content of wheat straw (with 40, 100, 140 mesh as a natural biodegradable composite and low density polyethylene (LDPE as a common synthetic polymer in the packaging industry were prepared and characterized by the mechanical and water absorption properties. Polyethylene-graft-maleic anhydride was used as a compatibilizer material. Morphology of wheat straw flour was studied by optical microscope to obtain the aspect ratio (L/D. The tensile and flexural tests were applied for determining mechanical properties and scanning electron microscope (SEM was used for particles distribution and sample structures. The water absorption of the samples was calculated by weight difference. The results indicated that the particle size of wheat straw four and the L/D amount are Significantly affected on the tensile strength and water absorption of the samples. However, the effect of wheat sraw particle size on the flexural strength was not significant. Overall conclusions show that by increasing the particle size of the filler (wheat straw, can prepare the biocomposite with better tensile strength and less water absorption compared with smaller particle size.

  9. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    Energy Technology Data Exchange (ETDEWEB)

    Hess, J.R

    2005-01-31

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. We investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) An efficient combine-based threshing system for separating the internodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  10. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-09-30

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. They investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) an efficient combine-based threshing system for separating the intermodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  11. Biohydrogen and carboxylic acids production from wheat straw hydrolysate.

    Science.gov (United States)

    Chandolias, Konstantinos; Pardaev, Sindor; Taherzadeh, Mohammad J

    2016-09-01

    Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Bioconversion of wheat straw and wheat straw components into single-cell protein. [Spicaria fusispora, Cochliobolus specifer, Myrothecium verrucaria, Rhizoctonia solani, and Gliocladium sp

    Energy Technology Data Exchange (ETDEWEB)

    Chahal, D.S.; Moo-Young, M.; Dhillon, G.S.

    1979-01-01

    Several fungi (Aspergillus niger, A. terreus, Cochliobolus specifer, Myrothecium verrucaria, Rhizoctonia solani, Spicaria fusispora, Penicillium sp., and Gliocladium sp.) were isolated from decomposing wheat straw and tested for their ability to utilize whole straw and its components, holocellulose (hemicellulose and cellulose) and cellulose, for the production of single-cell protein (SCP). C. specifer was the most efficient fungus for protein synthesis with the 3 substrates. Using KNO/sub 3/ as N source in mixtures of .04 g N/g substrate (0.04% wt./vol.) at pH 4.5, it was found that incubation periods of 3, 4, and 5 days were optimal for protein production on cellulose and holocellulose fractions, and whole straw, respectively. Whole native straw was the most recalcitrant to bioconversion into SCP; however, protein production was almost doubled when the lignin component was removed using a mixture of NaClO/sub 2/ and HOAc.

  13. Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario.

    Science.gov (United States)

    Mishra, Archana; Kumar, Akash; Ghosh, Sanjoy

    2018-03-01

    Impact of second-generation ethanol (2G) use in transportation sector mainly depends upon energy efficiency of entire production process. The objective of present study was to determine energy efficiency of a potential lignocellulosic feedstock; wheat straw and its conversion into cellulosic ethanol in Indian scenario. Energy efficiency was determined by calculating Net energy ratio (NER), i.e. ratio of output energy obtained by ethanol and input energy used in ethanol production. Energy consumption and generation at each step is calculated briefly (11,837.35 MJ/ha during Indian dwarf irrigated variety of wheat crop production and 7.1148 MJ/kg straw during ethanol production stage). Total energy consumption is calculated as 8.2988 MJ/kg straw whereas energy generation from ethanol is 15.082 MJ/kg straw; resulting into NER > 1. Major portion of agricultural energy input is contributed by diesel and fertilisers whereas refining process of wheat straw feedstock to ethanol and by-products require mainly in the form of steam and electricity. On an average, 1671.8 kg water free ethanol, 930 kg lignin rich biomass (for combustion), and 561 kg C5-molasses (for fodder) per hectare are produced. Findings of this study, net energy ratio (1.81) and figure of merit (14.8028 MJ/nil kg carbon) proves wheat straw as highest energy efficient lignocellulosic feedstock for the country.

  14. Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.

    Science.gov (United States)

    Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng

    2017-08-01

    Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha-1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha-1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation.

    Science.gov (United States)

    Talebnia, Farid; Karakashev, Dimitar; Angelidaki, Irini

    2010-07-01

    Wheat straw is an abundant agricultural residue with low commercial value. An attractive alternative is utilization of wheat straw for bioethanol production. However, production costs based on the current technology are still too high, preventing commercialization of the process. In recent years, progress has been made in developing more effective pretreatment and hydrolysis processes leading to higher yield of sugars. The focus of this paper is to review the most recent advances in pretreatment, hydrolysis and fermentation of wheat straw. Based on the type of pretreatment method applied, a sugar yield of 74-99.6% of maximum theoretical was achieved after enzymatic hydrolysis of wheat straw. Various bacteria, yeasts and fungi have been investigated with the ethanol yield ranging from 65% to 99% of theoretical value. So far, the best results with respect to ethanol yield, final ethanol concentration and productivity were obtained with the native non-adapted Saccharomyses cerevisiae. Some recombinant bacteria and yeasts have shown promising results and are being considered for commercial scale-up. Wheat straw biorefinery could be the near-term solution for clean, efficient and economically-feasible production of bioethanol as well as high value-added products. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Acidic Pretreatment of Wheat Straw in Decanol for the Production of Surfactant, Lignin and Glucose

    Directory of Open Access Journals (Sweden)

    Boris Estrine

    2011-12-01

    Full Text Available Wheat straw is an abundant residue of agriculture which is increasingly being considered as feedstock for the production of fuels, energy and chemicals. The acidic decanol-based pre-treatment of wheat straw has been investigated in this work. Wheat straw hemicellulose has been efficiently converted during a single step operation into decyl pentoside surfactants and the remaining material has been preserved keeping all its promises as potential feedstock for fuels or value added platform chemicals such as hydroxymethylfurfural (HMF. The enzymatic digestibility of the cellulose contained in the straw residue has been evaluated and the lignin prepared from the material characterized. Wheat-based surfactants thus obtained have exhibited superior surface properties compared to fossil-based polyethoxylates decyl alcohol or alkyl oligoglucosides, some of which are largely used surfactants. In view of the growing importance of renewable resource-based molecules in the chemical industry, this approach may open a new avenue for the conversion of wheat straw into various chemicals.

  17. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.

    Science.gov (United States)

    Biswas, Bijoy; Pandey, Nidhi; Bisht, Yashasvi; Singh, Rawel; Kumar, Jitendra; Bhaskar, Thallada

    2017-08-01

    Pyrolysis studies on conventional biomass were carried out in fixed bed reactor at different temperatures 300, 350, 400 and 450°C. Agricultural residues such as corn cob, wheat straw, rice straw and rice husk showed that the optimum temperatures for these residues are 450, 400, 400 and 450°C respectively. The maximum bio-oil yield in case of corn cob, wheat straw, rice straw and rice husk are 47.3, 36.7, 28.4 and 38.1wt% respectively. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. All bio-oils contents were mainly composed of oxygenated hydrocarbons. The higher area percentages of phenolic compounds were observed in the corn cob bio-oil than other bio-oils. From FT-IR and (1)H NMR spectra showed a high percentage of aliphatic functional groups for all bio-oils and distribution of products is different due to differences in the composition of agricultural biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Genetic variation in degradability of wheat straw and potential for improvement through plant breeding

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner; Magid, Jakob; Hansen-Møller, Jens

    2011-01-01

    The degradability of cereal straw is of importance when it is used for animal feed, biological means of bioenergy production such as bioethanol production and when it is incorporated in soil. We examined wheat straw from 106 different winter wheat cultivars representing the northwest European...... contemporary gene pool. The cultivars were grown at two different locations to assess the potential for breeding for improved degradability. The straws exhibited much variation in degradability ranging from 258 g kg1 to 407 g kg1 of dry matter. The heritability for degradability was estimated to 29% indicating...... a reasonable potential for response to selection. Inclusion of height as a regression-term, indicated that only a minor part of genetic differences are directly related to plant height and that improvements in degradability may be achieved without unacceptable changes in straw length. Finally, a lack...

  19. Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Schultz-Jensen, Nadja; Jensen, J. S.

    2015-01-01

    as with Scanning Electron Microscopy (SEM) imaging. Compounds resulting from wax degradation were analyzed in the washing water of PAP wheat straw. The wax removal enhanced enzymatic hydrolysis yield and, consequently, the efficiency of wheat straw conversion into ethanol. In total, PAP increased the conversion...

  20. Wheat straw as ruminant feed : effect of supplementation and ammonia treatment on voluntary intake and nutrient availability

    NARCIS (Netherlands)

    Oosting, S.J.

    1993-01-01

    This thesis describes the results of experiments with goats, sheep and cattle fed untreated or ammonia-treated wheat straw. Aim of the experiments was to identify factors limiting voluntary intake and digestion of these low-quality feeds. Supplementation of urea to untreated wheat straw

  1. The Investigation of Culture Conditions of Agaricus campester (L.)Fr. on Synthetic Compost With Wheat Straw

    OpenAIRE

    ÖZTÜRK, Celaleddin; KAŞIK, Gıyasettin

    2000-01-01

    In this study, the culture conditions of Agaricus campester on synthetic compost with wheat straw were investigated. The culture-medium was prepared with fermentation and cemical disinfection methods. After the yield period of 5 weeks, 228.6 kilos of mushroom were obtained from the prepared compost using 1 ton of wheat straw.

  2. Impact of bioaugmentation on biochemical methane potential for wheat straw with addition of Clostridium cellulolyticum.

    Science.gov (United States)

    Peng, Xiaowei; Börner, Rosa Aragão; Nges, Ivo Achu; Liu, Jing

    2014-01-01

    Hydrolysis is usually the rate-limited step for methane production from lignocellulosic substrate. Two bioaugmentation strategies, using the cellulolytic anaerobic bacteria Clostridium cellulolyticum, were adopted to enhance the hydrolysis of wheat straw with the purpose of improving the biochemical methane potential (BMP). Namely, the 24-h-incubated seed (C24S) with cellobiose as carbon source and the 60-h-incubated seed (WS60S) with wheat straw as carbon source were respectively used as the bioaugmentation agents. As a result, the BMPs were respectively 342.5 and 326.3 ml g(-1) VS of wheat straw, with an increase of 13.0% and 7.6% comparing to the no-bioaugmentation BMP of 303.3 ml g(-1) VS. The result indicates that the anaerobic digestion efficiency can be improved by bioaugmentation, which therefore may be a promising method for improving methane production from lignocellulosic substrate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The effect of temperature on the ammoniation of wheat straw by urea

    African Journals Online (AJOL)

    wheat straw. Urea was added at 75 g/kg throughout. Treated straw was sealed in 96 airtight plastic bottles of. 1000 ml for periods of 0, 1,2,4,6 and 8 weeks. Samples were dried at 59°Cin a fan-oven and subsequently analysed according to the in vitro technique (Engels & Van der. Merwe, 1967) for organic matter digestibility ...

  4. Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield

    Science.gov (United States)

    Mierzwa-Hersztek, Monika; Gondek, Krzysztof; Klimkowicz-Pawlas, Agnieszka; Baran, Agnieszka

    2017-07-01

    The variety of technological conditions and raw materials from which biochar is produced is the reason why its soil application may have different effects on soil properties and plant growth. The aim of this study was to evaluate the effect of the addition of wheat straw and Miscanthus giganteus straw (5 t DM ha-1) and biochar obtained from this materials in doses of 2.25 and 5 t DM ha-1 on soil enzymatic activity, soil ecotoxicity, and plant yield (perennial grass mixture with red clover). The research was carried out under field conditions on soil with the granulometric composition of loamy sand. No significant effect of biochar amendment on soil enzymatic activity was observed. The biochar-amended soil was toxic to Vibrio fischeri and exhibited low toxicity to Heterocypris incongruens. Application of wheat straw biochar and M. giganteus straw biochar in a dose of 5 t DM ha-1 contributed to an increase in plant biomass production by 2 and 14%, respectively, compared to the soil with mineral fertilisation. Biochars had a more adverse effect on soil enzymatic activity and soil ecotoxicity to H. incongruens and V. fischeri than non-converted wheat straw and M. giganteus straw, but significantly increased the grass crop yield.

  5. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions.

    Directory of Open Access Journals (Sweden)

    Hongjian Gao

    Full Text Available Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k for mass loss under aerobic conditions (0.022 d-1 was higher than that under anaerobic conditions (0.014 d-1. The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR

  6. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions.

    Science.gov (United States)

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  7. Research on Wheat Straw Pulping with Ionic Liquid 1-Ethyl-3-Methylimidazole Bromide

    OpenAIRE

    Wei Song; Yu Deng; Hong Zhu

    2016-01-01

    In this paper, the pulping process of wheat straw using ionic liquid 1-ethyl-3-methylimidazolium bromide ([Emim]Br) as the digestion liquor is presented. The influence of pulping conditions on the pulp yield are analysed by single-factor and orthogonal experiments, and optimum pulping conditions are obtained. The average pulp yield reaches 44 %, and the average recovery rate of ionic liquid is 93.5 %. The XRD pattern shows no obvious change in the crystal structure of the wheat straw cellulos...

  8. Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass

    DEFF Research Database (Denmark)

    Petrik, SiniŠa; Márová, Ivana; Kádár, Zsófia

    2013-01-01

    into ethanol, simultaneous saccharification and fermentation of S. cerevisiae was performed under semi-anaerobic conditions. The highest ethanol production efficiency of 65-66% was obtained following pretreatment at 200°C without the catalytic action of acetic acid, and at 195 and 200°C respectively......In this work hydrothermally pretreated wheat straw was used for production of bioethanol by Saccharomyces cerevisiae and carotene-enriched biomass by red yeasts Rhodotorula glutinis, Cystofilobasidium capitatum and Sporobolomyces roseus. To evaluate the convertibility of pretreated wheat straw...

  9. Research on Wheat Straw Pulping with Ionic Liquid 1-Ethyl-3-Methylimidazole Bromide

    Directory of Open Access Journals (Sweden)

    Wei Song

    2016-12-01

    Full Text Available In this paper, the pulping process of wheat straw using ionic liquid 1-ethyl-3-methylimidazolium bromide ([Emim]Br as the digestion liquor is presented. The influence of pulping conditions on the pulp yield are analysed by single-factor and orthogonal experiments, and optimum pulping conditions are obtained. The average pulp yield reaches 44 %, and the average recovery rate of ionic liquid is 93.5 %. The XRD pattern shows no obvious change in the crystal structure of the wheat straw cellulose. Additionally, the SEM image illustrates that there are many fine fibres in the pulp and the spaces between the fibres are large.

  10. Power plant intake quantification of wheat straw composition for 2nd generation bioethanol optimization

    DEFF Research Database (Denmark)

    Lomborg, Carina J.; Thomsen, Mette Hedegaard; Jensen, Erik Steen

    2010-01-01

    Optimization of 2nd generation bioethanol production from wheat straw requires comprehensive knowledge of plant intake feedstock composition. Near Infrared Spectroscopy is evaluated as a potential method for instantaneous quantification of the salient fermentation wheat straw components: cellulose...... (glucan), hemicelluloses (xylan, arabinan), and lignin. Aiming at chemometric multivariate calibration, 44 pre-selected samples were subjected to spectroscopy and reference analysis. For glucan and xylan prediction accuracies (slope: 0.89, 0.94) and precisions (r2: 0.87) were obtained, corresponding...

  11. External nitrogen input affects pre- and post-harvest cell wall composition but not the enzymatic saccharification of wheat straw

    DEFF Research Database (Denmark)

    Baldwin, Laetitia Andrée; Glazowska, Sylwia Emilia; Mravec, Jozef

    2017-01-01

    Wheat is one of the most important crops for food and feed and its straw is a potential feedstock for biorefinery purposes. Nitrogen (N) is an essential input factor in wheat agriculture but no information is available on how it affects straw composition during maturation and at harvest. To inves......Wheat is one of the most important crops for food and feed and its straw is a potential feedstock for biorefinery purposes. Nitrogen (N) is an essential input factor in wheat agriculture but no information is available on how it affects straw composition during maturation and at harvest....... To investigate this, we conducted a large scale field experiment in which wheat plants were cultivated at three levels of externally applied N. The plants were harvested at different stages of maturation, spanning green straw at heading (ear emergence) to fully yellow straw at final maturity. Defined parts...... of the straw were analyzed for cell wall characteristics relevant for further biomass processing. The straw N concentration corroborated with the level of N input, but the yield of straw biomass was not largely affected. High N treatment modified cell wall composition, namely increased abundance...

  12. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis

    DEFF Research Database (Denmark)

    Garde, Arvid; Jonsson, Gunnar Eigil; Schmidt, A. S.

    2002-01-01

    Lactic acid production by Lactobacillus brevis and Lactobacillus pentosus on a hemicellulose hydrolysate (HH) of wet-oxidized wheat straw was evaluated. The potential of 11-12 g/l fermentable sugars was released from the HH through either enzymatic or acidic pretreatment. Fermentation of added...

  13. Nitrogen fertilization affects silicon concentration, cell wall composition and biofuel potential of wheat straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko; Laursen, Kristian Holst; Lindedam, Jane

    2014-01-01

    Nitrogen is an essential input factor required for plant growth and biomass production. However, very limited information is available on how nitrogen fertilization affects the quality of crop residues to be used as lignocellulosic feedstock. In the present study, straw of winter wheat plants gro...

  14. Production of ethanol from wheat straw by pretreatment and fermentation at high dry matter concentrations

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Slomp, R.S.

    2011-01-01

    High concentrations of substrate and product are important for the economy of second-generation bioethanol production. By a dilute acid thermal pretreatment of large pieces of relatively dry wheat straw using a novel rapid heating method, followed by fed-batch preliquefaction with hydrolytic

  15. The effect of temperature on the ammoniation of wheat straw by urea

    African Journals Online (AJOL)

    x moisture level, temperature x treatment period and moisture level x treatment period interactions were also significant (P:::;:; 0,01). Treatment for one and two weeks. Table 1 The effect of temperature and moisture level on the % OMD of wheat straw ammoniated by urea, determined in vitro. Temperature. Moisture level.

  16. Assessment of leaf/stem ratio in wheat straw feedstock and impact on enzymatic conversion

    DEFF Research Database (Denmark)

    Zhang, Heng; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2014-01-01

    The composition of wheat straw leaf and stem fractions were characterized using traditional strong acid hydrolysis, and monoclonal antibodies using comprehensive microarray polymer profiling (CoMPP). These results are then related to high throughput lignocellulose pretreatment and saccharificatio...... of novel screening techniques; especially pectin or arabinogalactan proteins related epitopes are promising....

  17. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Science.gov (United States)

    Jan B. Kristensen; G. Thygesen Lisbeth; Claus Felby; Henning Jorgensen; Thomas Elder

    2008-01-01

    Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw...

  18. TiO2/UV based photocatalytic pretreatment of wheat straw for biogas production

    DEFF Research Database (Denmark)

    Alvarado-Morales, Merlin; Tsapekos, Panagiotis; Awais, Muhammad

    2017-01-01

    The present study deals with the application of an advanced oxidation process combining UV irradiation in the presence of the photocatalyst titanium dioxide (TiO2), as an effective pretreatment method of wheat straw as means for increasing its biodegradability for increased biogas production...

  19. Evaluation of the nutritive value of apple pulp mixed with different amounts of wheat straw

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Guedes, C.M.; Rodrigues, A.; Cone, J.W.; Gelder, van A.H.; Ferreira, L.M.M.

    2008-01-01

    Given the high amounts of apple rejected for commercialization its use as alternative feed for ruminants should be considered. This study was designed to investigate the nutritive value of apple pulp-wheat straw mixtures. Chemical composition, in vitro organic matter digestibility (IVOMD) and gas

  20. Potential of a gypsum-free composting process of wheat straw for mushroom production

    NARCIS (Netherlands)

    Mouthier, Thibaut M.B.; Kilic, Baris; Vervoort, Pieter; Gruppen, Harry; Kabel, Mirjam A.

    2017-01-01

    Wheat straw based composting generates a selective substrate for mushroom production. The first phase of this process requires 5 days, and a reduction in time is wished. Here, we aim at understanding the effect of gypsum on the duration of the first phase and the mechanism behind it. Hereto, the

  1. Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw

    DEFF Research Database (Denmark)

    Lindedam, Jane; Andersen, Sven Bode; DeMartini, J.

    2012-01-01

    Optimizing cellulosic ethanol yield depends strongly on understanding the biological variation of feedstocks. Our objective was to study variation in capacity for producing fermentable sugars from straw of winter wheat cultivars with a high-throughput pretreatment and hydrolysis well-plate techni...

  2. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne Boye Strunge

    2007-01-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment pro...

  3. The fIXationof nitrogen in urea ammoniated wheat straw by means ...

    African Journals Online (AJOL)

    gens behandel. S.Afr. Tydskr. Veek. 1984, 14: 173-176. Keywords: Ammoniated wheat straw, nitrogen fixation, acids, voluntary intake. S.W.P. Cloete* and N.M. Kritzinger. Winter Rainfall Region, Private Bag, Elsenburg, 7607 Republic of. South Africa. Introduction. Ammoniation is now a generally accepted method of improv-.

  4. TiO2/UV based photocatalytic pretreatment of wheat straw for biogas production

    DEFF Research Database (Denmark)

    Alvarado-Morales, Merlin; Tsapekos, Panagiotis; Awais, Muhammad

    2017-01-01

    The present study deals with the application of an advanced oxidation process combining UV irradiation in the presence of the photocatalyst titanium dioxide (TiO2), as an effective pretreatment method of wheat straw as means for increasing its biodegradability for increased biogas production by a...

  5. High-performance removal of acids and furans from wheat straw pretreatment liquid by diananofiltration

    DEFF Research Database (Denmark)

    Sueb, Mohd Shafiq Mohd; Zdarta, Jakub; Jesionowski, Teofil

    2017-01-01

    Two model solutions and a real stream from the hydrothermal pretreatment of wheat straw were subjected to nanofiltration, and permeate flux, retention and resistance to fouling were evaluated. Three commercial NF membranes were tested, and a pressure of 4 bars (range: 1–20 bars) and a temperature...

  6. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process

    NARCIS (Netherlands)

    Snelders, J.; Dornez, E.; Benjelloun-Mlayah, B.; Huijgen, W.J.J.; Wild, de P.J.; Gosselink, R.J.A.; Gerritsma, J.; Courtin, C.M.

    2014-01-01

    To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized

  7. Modification of wheat straw lignin by solid state fermentation with white-rot fungi

    NARCIS (Netherlands)

    Dinis, M.J.; Bezerra, R.M.F.; Nunes, F.; Dias, A.A.; Guedes, C.; Ferreira, L.M.M.; Cone, J.W.; Marques, G.S.M.; Barros, A.R.N.; Rodrigues, M.A.M.

    2009-01-01

    The potential of crude enzyme extracts, obtained from solid state cultivation of four white-rot fungi (Trametes versicolor, Bjerkandera adusta, Ganoderma applanatum and Phlebia rufa), was exploited to modify wheat straw cell wall. At different fermentation times, manganese-dependent peroxidase

  8. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites.

    Science.gov (United States)

    Mengeloglu, Fatih; Karakus, Kadir

    2008-01-24

    Thermal behaviors of wheat straw flour (WF) filled thermoplastic compositeswere measured applying the thermogravimetric analysis and differential scanningcalorimetry. Morphology and mechanical properties were also studied using scanningelectron microscope and universal testing machine, respectively. Presence of WF inthermoplastic matrix reduced the degradation temperature of the composites. One for WFand one for thermoplastics, two main decomposition peaks were observed. Morphologicalstudy showed that addition of coupling agent improved the compatibility between WFs andthermoplastic. WFs were embedded into the thermoplastic matrix indicating improvedadhesion. However, the bonding was not perfect because some debonding can also be seenon the interface of WFs and thermoplastic matrix. In the case of mechanical properties ofWF filled recycled thermoplastic, HDPE and PP based composites provided similar tensileand flexural properties. The addition of coupling agents improved the properties ofthermoplastic composites. MAPE coupling agents performed better in HDPE while MAPPcoupling agents were superior in PP based composites. The composites produced with thecombination of 50-percent mixture of recycled HDPE and PP performed similar with theuse of both coupling agents. All produced composites provided flexural properties requiredby the ASTM standard for polyolefin-based plastic lumber decking boards.

  9. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Kadir Karakus

    2008-01-01

    Full Text Available Thermal behaviors of wheat straw flour (WF filled thermoplastic compositeswere measured applying the thermogravimetric analysis and differential scanningcalorimetry. Morphology and mechanical properties were also studied using scanningelectron microscope and universal testing machine, respectively. Presence of WF inthermoplastic matrix reduced the degradation temperature of the composites. One for WFand one for thermoplastics, two main decomposition peaks were observed. Morphologicalstudy showed that addition of coupling agent improved the compatibility between WFs andthermoplastic. WFs were embedded into the thermoplastic matrix indicating improvedadhesion. However, the bonding was not perfect because some debonding can also be seenon the interface of WFs and thermoplastic matrix. In the case of mechanical properties ofWF filled recycled thermoplastic, HDPE and PP based composites provided similar tensileand flexural properties. The addition of coupling agents improved the properties ofthermoplastic composites. MAPE coupling agents performed better in HDPE while MAPPcoupling agents were superior in PP based composites. The composites produced with thecombination of 50-percent mixture of recycled HDPE and PP performed similar with theuse of both coupling agents. All produced composites provided flexural properties requiredby the ASTM standard for polyolefin-based plastic lumber decking boards.

  10. [Effects of wheat-straw returning into paddy soil on dissolved organic carbon contents and rice grain yield].

    Science.gov (United States)

    Xu, Ke; Liu, Meng; Chen, Jing-du; Gu, Hai-yan; Dai, Qi-gen; Ma, Ke-qiang; Jiang, Feng; He, Li

    2015-02-01

    A tank experiment using conventional rice cultivar Nanjing 44 as experimental material was conducted at the Experimental Farm of Yangzhou University to investigate the dynamics of wheat straw decomposition rate and the amount of carbon release in clay and sandy soils, as well as its effects on the content of dissolved organic carbon (DOC) and rice yield. The two rates of wheat straw returning were 0 and 6000 kg · hm(-2), and three N application levels were 0, 225, 300 kg · hm(-2). The results showed that, the rate of wheat straw decomposition and the amount of carbon release in clay and sandy soils were highest during the initial 30 days after wheat straw returning, and then slowed down after, which could be promoted by a higher level of nitrogen application. The rate of wheat straw decomposition and the amount of carbon release in clay soil were higher than that in sandy soil. The DOC content in soil increased gradually with wheat straw returning into paddy soil and at the twenty-fifth day, and then decreased gradually to a stable value. The DOC content at the soil depth of 15 cm was significantly increased by wheat straw returning, but not at the soil depth of 30 cm and 45 cm. It was concluded that wheat straw returning increased the DOC content in the soil depth of 0-15 cm mainly. N application decreased the DOC content and there was no difference between the two N application levels. Straw returning decreased the number of tillers in the early growth period, resulted in significantly reduced panicles per unit area, but increased spikelets per panicle, filled-grain percentages, 1000-grain mass, and then enhanced grain yield.

  11. [Effects of straw mulching on the soil aggregates in dryland wheat field under no-tillage].

    Science.gov (United States)

    Wang, Hai-Xia; Sun, Hong-Xia; Han, Qing-Fang; Wang, Min; Zhang, Rui; Jia, Zhi-Kuan; Nie, Jun-Feng; Liu, Ting

    2012-04-01

    A field experiment was conducted to study the effects of full period and growth period straw mulching with an amount of 3000, 6000, and 9000 kg x hm(-2) on the soil aggregates in a no-tillage dryland wheat field in Weibei Loess Pleateau of Shaanxi Province, taking no full period straw mulching as the control. In the 0-40 cm soil layer, the content of > 5 mm aggregates increased with depth, while that of aggregates was in adverse. Under straw mulching, the total contents of > 0.25 mm mechanical stable aggregates (DR0.25) and of > 0.25 mm water stable aggregates (WR0.25) were significantly higher than the control, with an increase of 13.0%-26.4% and 18.6%-45.6%, respectively and the largest increment in the treatment 6000 kg x hm(-2) of straw mulching. Straw mulching increased the soil organic matter content, and the latter had a significant positive correlation with the WR0.25 content. All the straw mulching treatments decreased the soil unstable aggregate index (E(LT)) which was the lowest in treatment 6000 kg x hm(-2) of straw mulching. This study showed that straw mulching could increase the >0.25 mm aggregates and organic matter contents in 0-40 cm soil layer and improve the soil structural stability, and mulching with an amount of 6000 kg x hm(-2) had the best effect, being a reasonable straw mulching mode to be applied in the agricultural production in Weibei Loess Plateau.

  12. Growth of higher fungi on wheat straw and their impact on the digestibility of the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Moyson, E.; Verachtert, H. (Catholic Univ. of Leuven (Belgium). Faculty of Agriculture)

    1991-12-01

    The influence of the growth of three higher fungi on the composition of wheat straw was investigated. Pleurotus pulmonarius, P. sajor-caju and Lentinus edodes grew very well on lignocellulosic substrates, breaking down a considerable amount of lignin. The initial lignin concentration of straw was halved after 12 weeks of fungal growth, doubling the enzymic digestibility. Together with lignin, the higher fungi consumed half of the amount of hemicellulose (i.e. 15%), leaving cellulose fairly intact, which should remain as an energy source for ruminants. (orig.).

  13. Effects of Different Tillage and Straw Return on Soil Organic Carbon in a Rice-Wheat Rotation System

    OpenAIRE

    Liqun Zhu; Naijuan Hu; Minfang Yang; Xinhua Zhan; Zhengwen Zhang

    2014-01-01

    Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C) contents. However, the effects of tillage method or straw return on soil organic C (SOC) have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess th...

  14. Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation

    NARCIS (Netherlands)

    Tuyen, Van Dinh; Cone, J.W.; Baars, J.J.P.; Sonnenberg, A.S.M.; Hendriks, W.H.

    2012-01-01

    Eleven white-rot fungi were examined for their potency to degrade lignin and to improve the rumen fermentability of wheat straw. The straw was inoculated with the fungi and incubated under solid state conditions at 24 °C for 0–49 days to determine changes in in vitro gas production and chemical

  15. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    Science.gov (United States)

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Degradation of wheat straw cell wall by white rot fungi Phanerochaete chrysosporium

    Science.gov (United States)

    Zeng, Jijiao

    The main aim of this dissertation research was to understand the natural microbial degradation process of lignocellulosic materials in order to develop a new, green and more effective pretreatment technology for bio-fuel production. The biodegradation of wheat straw by white rot fungi Phanerochaete chrysosporium was investigated. The addition of nutrients significantly improved the performance of P.chrysosporium on wheat straw degradation. The proteomic analysis indicated that this fungus produced various pepetides related to cellulose and lignin degradation while grown on the biomass. The structural analysis of lignin further showed that P.chrysosporium preferentially degraded hydroxycinnamtes in order to access cellulose. In details, the effects of carbon resource and metabolic pathway regulating compounds on manganeses peroxidase (MnP) were studied. The results indicated that MnP activity of 4.7 +/- 0.31 U mL-1 was obtained using mannose as a carbon source. The enzyme productivity further reached 7.36 +/- 0.05 U mL-1 and 8.77 +/- 0.23 U mL -1 when the mannose medium was supplemented with cyclic adenosine monophosphate (cAMP) and S-adenosylmethionine (SAM) respectively, revealing highest MnP productivity obtained by optimizing the carbon sources and supplementation with small molecules. In addition, the effects of nutrient additives for improving biological pretreatment of lignocellulosic biomass were studied. The pretreatment of wheat straw supplemented with inorganic salts (salts group) and tween 80 was examined. The extra nutrient significantly improved the ligninase expression leading to improve digestibility of lignocellulosic biomass. Among the solid state fermentation groups, salts group resulted in a substantial degradation of wheat straw within one week, along with the highest lignin loss (25 %) and ˜ 250% higher efficiency for the total sugar release through enzymatic hydrolysis. The results were correlated with pyrolysis GC-MS (Py

  17. Bleach-boosting effect of crude xylanase from Bacillus stearothermophilus SDX on wheat straw pulp.

    Science.gov (United States)

    Garg, Gaurav; Dhiman, Saurabh Sudha; Mahajan, Ritu; Kaur, Amanjot; Sharma, Jitender

    2011-01-31

    Pretreatment of wheat straw pulp using cellulase-free xylanase produced from Bacillus stearothermophilus SDX at 60°C for 120min resulted in 4.75% and 22.31% increase in brightness and whiteness, respectively. Enzyme dose of 10U/g of oven dried pulp at pH 9 decreased the kappa number and permanganate number by 7.14% and 5.31%, respectively. Further chlorine dioxide and alkaline bleaching sequences (CDED(1)D(2)) resulted in 1.76% and 3.63% increase in brightness and whiteness, respectively. Enzymatic prebleaching of pulp decreased 20% of chlorine consumption without any decrease in brightness. Improvement in various pulp properties like viscosity, burst factor, burstness, breaking length, double fold, gurley porosity, tear factor, and tearness were also observed after bleaching of xylanase treated wheat straw pulp. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Autocatalyzed Ethanol-Water Pulping of Wheat (Triticum aestivum L.) Straw

    OpenAIRE

    KIRCI, Hüseyin

    2014-01-01

    This study aimed possibility of organosolv pulp production by adding to the pulping liquor without any inorganic catalyzes from the wheat straw which is known as an important raw-material for pulp production in Turkey. To obtain optimum pulping conditions ethanol ratio to pulping liquor, temperature and cooking time at maximum temperature were changed systematically and 18 pulping trial were made. The results showed that the pulping temperature at 170ºC was critical for delignification and fi...

  19. Cellulosic ethanol: interactions between cultivar and enzyme loading in wheat straw processing

    Directory of Open Access Journals (Sweden)

    Felby Claus

    2010-11-01

    Full Text Available Abstract Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield from straw of five winter wheat cultivars at three enzyme loadings (2.5, 5 and 10 FPU g-1 dm pretreated straw and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher yields than coarse particles. The amount of coarse particles from the cultivar with lowest sugar yield was negatively correlated with sugar conversion. Conclusions We conclude that genetic differences in sugar yield and response to enzyme loading exist for wheat straw at pilot scale, depending on differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment.

  20. Quality evaluation of co-composted wheat straw, poultry droppings and oil seed cakes.

    Science.gov (United States)

    Gaind, Sunita; Nain, Lata; Patel, V B

    2009-06-01

    Poultry droppings, neem cake, castor cake, jatropha cake and grass clippings were used separately as organic nitrogen additives to decrease the high C:N ratio of wheat straw. Composting was carried out aerobically in presence of fungal consortium developed by including Aspergillus awamori, Aspergillus nidulans, Trichoderma viride and Phanerochaete chrysosporium. The degraded product was characterized to assess the technical viability of organic nitrogen supplements as well as fungal consortium in improving the quality of compost and hastening the process of decomposition of high lignocellulolytic waste. Evaluation of maturity showed that mixture of wheat straw, poultry dropping and jatropha cake had the lowest C:N ratio of 10:1, the highest humic acid fraction of 3.15%, the lowest dehydrogenase activity and a germination index exceeding 80% in 60 days of decomposition. Inoculated and grass clipping amended wheat straw-poultry dropping mixture resulted in compost with highest humus content of 11.8% and C:N ratio of 13.5, humic acid fraction of 2.84% and germination index of 59.66%. Fungal consortium was effective in improving the humus content of all the composted mixtures. In some treatments, germination index could not be correlated with C:N ratio. Non edible oil seed cake supplemented substrate mixtures did not respond to fungal inoculation as far as C:N ratio was concerned.

  1. Effect of a magnetic field on the adsorptive removal of methylene blue onto wheat straw biochar.

    Science.gov (United States)

    Li, Guoting; Zhu, Weiyong; Zhang, Chunyu; Zhang, Shen; Liu, Lili; Zhu, Lingfeng; Zhao, Weigao

    2016-04-01

    Biochar pyrolyzed from wheat straw was innovatively used for the adsorptive removal of cationic dye methylene blue through exposure to a magnetic field. The adsorption capability of the biochar pyrolyzed at 200 °C exceeded that of samples pyrolyzed at higher temperatures. The surface acidic functional groups of wheat straw biochar were deduced to be more sensitive to the effects of the external magnetic field. The enhancement of the magnetic field achieved by increases in the initial dye concentration, and a decrease in the biochar dosage and solution pH, were more significant compared with those caused by other conditions. Kinetic experiments indicated that chemisorption occurred during adsorption. The qmax values for dye adsorption without, and with, an external magnetic field were found to be 46.6 and 62.5mg/g, respectively. These demonstrated that wheat straw biochar could be used for the efficient adsorption of pollutants when assisted by an external magnetic field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [TG-FTIR study on pyrolysis of wheat-straw with abundant CaO additives].

    Science.gov (United States)

    Han, Long; Wang, Qin-Hui; Yang, Yu-Kun; Yu, Chun-Jiang; Fang, Meng-Xiang; Luo, Zhong-Yang

    2011-04-01

    Biomass pyrolysis in presence of abundant CaO additives is a fundamental process prior to CaO sorption enhanced gasification in biomass-based zero emission system. In the present study, thermogravimetric Fourier transform infrared (TG-FTIR) analysis was adopted to examine the effects of CaO additives on the mass loss process and volatiles evolution of wheat-straw pyrolysis. Observations from TG and FTIR analyses simultaneously demonstrated a two-stage process for CaO catalyzed wheat-straw pyrolysis, different from the single stage process for pure wheat-straw pyrolysis. CaO additives could not only absorb the released CO2 but also reduce the yields of tar species such as toluene, phenol, and formic acid in the first stage, resulting in decreased mass loss and maximum mass loss rate in this stage with an increase in CaO addition. The second stage was attributed to the CaCO3 decomposition and the mass loss and maximum mass loss rate increased with increasing amount of CaO additives. The results of the present study demonstrated the great potential of CaO additives to capture CO2 and reduce tars yields in biomass-based zero emission system. The gasification temperature in the system should be lowered down to avoid CaCO3 decomposition.

  3. Allelopathic appraisal effects of straw extract wheat varieties on the ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-29

    Nov 29, 2010 ... or indirectly from live or dead parts and cause allelopathic and phytotoxic effects. In Kerman province of Iran, cultivating corn after winter wheat usually causes .... created by using excel software to show the difference between treatments graphically. The statistical analysis program used was. MSTAT-C.

  4. Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production.

    Science.gov (United States)

    Wang, Lin; Mao, Jiugeng; Zhao, Hejuan; Li, Min; Wei, Qishun; Zhou, Ying; Shao, Heping

    2016-09-01

    Rice straw (RS) is an important raw material for the preparation of Agaricus bisporus compost in China. In this study, the characterization of composting process from RS and wheat straw (WS) was compared for mushroom production. The results showed that the temperature in RS compost increased rapidly compared with WS compost, and the carbon (C)/nitrogen (N) ratio decreased quickly. The microbial changes during the Phase I and Phase II composting process were monitored using denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid (PLFA) analysis. Bacteria were the dominant species during the process of composting and the bacterial community structure dramatically changed during heap composting according to the DGGE results. The bacterial community diversity of RS compost was abundant compared with WS compost at stages 4-5, but no distinct difference was observed after the controlled tunnel Phase II process. The total amount of PLFAs of RS compost, as an indicator of microbial biomass, was higher than that of WS. Clustering by DGGE and principal component analysis of the PLFA compositions revealed that there were differences in both the microbial population and community structure between RS- and WS-based composts. Our data indicated that composting of RS resulted in improved degradation and assimilation of breakdown products by A. bisporus, and suggested that the RS compost was effective for sustaining A. bisporus mushroom growth as well as conventional WS compost.

  5. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system.

    Directory of Open Access Journals (Sweden)

    Liqun Zhu

    Full Text Available Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C contents. However, the effects of tillage method or straw return on soil organic C (SOC have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess the effects of different tillage methods combined with straw return on soil labile C fractions in the rice-wheat rotation system. In this study, a field experiment was used to evaluate the effects of different tillage methods, straw return and their interaction on soil total organic C (TOC and labile organic C fractions at three soil depths (0-7, 7-14 and 14-21 cm for a rice-wheat rotation in Yangzhong of the Yangtze River Delta of China. Soil TOC, easily oxidizable C (EOC, dissolved organic C (DOC and microbial biomass C (MBC contents were measured in this study. Soil TOC and labile organic C fractions contents were significantly affected by straw returns, and were higher under straw return treatments than non-straw return at three depths. At 0-7 cm depth, soil MBC was significantly higher under plowing tillage than rotary tillage, but EOC was just opposite. Rotary tillage had significantly higher soil TOC than plowing tillage at 7-14 cm depth. However, at 14-21 cm depth, TOC, DOC and MBC were significantly higher under plowing tillage than rotary tillage except for EOC. Consequently, under short-term condition, rice and wheat straw both return in rice-wheat rotation system could increase SOC content and improve soil quality in the Yangtze River Delta.

  6. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system.

    Science.gov (United States)

    Zhu, Liqun; Hu, Naijuan; Yang, Minfang; Zhan, Xinhua; Zhang, Zhengwen

    2014-01-01

    Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C) contents. However, the effects of tillage method or straw return on soil organic C (SOC) have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess the effects of different tillage methods combined with straw return on soil labile C fractions in the rice-wheat rotation system. In this study, a field experiment was used to evaluate the effects of different tillage methods, straw return and their interaction on soil total organic C (TOC) and labile organic C fractions at three soil depths (0-7, 7-14 and 14-21 cm) for a rice-wheat rotation in Yangzhong of the Yangtze River Delta of China. Soil TOC, easily oxidizable C (EOC), dissolved organic C (DOC) and microbial biomass C (MBC) contents were measured in this study. Soil TOC and labile organic C fractions contents were significantly affected by straw returns, and were higher under straw return treatments than non-straw return at three depths. At 0-7 cm depth, soil MBC was significantly higher under plowing tillage than rotary tillage, but EOC was just opposite. Rotary tillage had significantly higher soil TOC than plowing tillage at 7-14 cm depth. However, at 14-21 cm depth, TOC, DOC and MBC were significantly higher under plowing tillage than rotary tillage except for EOC. Consequently, under short-term condition, rice and wheat straw both return in rice-wheat rotation system could increase SOC content and improve soil quality in the Yangtze River Delta.

  7. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia.

    Science.gov (United States)

    Jiménez, Diego Javier; Dini-Andreote, Francisco; van Elsas, Jan Dirk

    2014-01-01

    Mixed microbial cultures, in which bacteria and fungi interact, have been proposed as an efficient way to deconstruct plant waste. The characterization of specific microbial consortia could be the starting point for novel biotechnological applications related to the efficient conversion of lignocellulose to cello-oligosaccharides, plastics and/or biofuels. Here, the diversity, composition and predicted functional profiles of novel bacterial-fungal consortia are reported, on the basis of replicated aerobic wheat straw enrichment cultures. In order to set up biodegradative microcosms, microbial communities were retrieved from a forest soil and introduced into a mineral salt medium containing 1% of (un)treated wheat straw. Following each incubation step, sequential transfers were carried out using 1 to 1,000 dilutions. The microbial source next to three sequential batch cultures (transfers 1, 3 and 10) were analyzed by bacterial 16S rRNA gene and fungal ITS1 pyrosequencing. Faith's phylogenetic diversity values became progressively smaller from the inoculum to the sequential batch cultures. Moreover, increases in the relative abundances of Enterobacteriales, Pseudomonadales, Flavobacteriales and Sphingobacteriales were noted along the enrichment process. Operational taxonomic units affiliated with Acinetobacter johnsonii, Pseudomonas putida and Sphingobacterium faecium were abundant and the underlying strains were successfully isolated. Interestingly, Klebsiella variicola (OTU1062) was found to dominate in both consortia, whereas K. variicola-affiliated strains retrieved from untreated wheat straw consortia showed endoglucanase/xylanase activities. Among the fungal players with high biotechnological relevance, we recovered members of the genera Penicillium, Acremonium, Coniochaeta and Trichosporon. Remarkably, the presence of peroxidases, alpha-L-fucosidases, beta-xylosidases, beta-mannases and beta-glucosidases, involved in lignocellulose degradation, was indicated

  8. Utilization of the water soluable fraction of wheat straw as a plant nutrient source

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.

    1990-01-01

    Recovery of water soluble, inorganic nutrients from the inedible portion of wheat was found to be an effective means of recycling nutrients within hydroponic systems. Through aqueous extraction (leaching), 60 percent of the total inorganic nutrient weight was removed from wheat straw and roots, although the recovery of individual nutrients varied. Leaching also removed about 20 percent of the total organic carbon from the biomass. In terms of dry weight, the leachate was comprised of approximately 60 percent organic and 40 percent inorganic compounds. Direct use of wheat straw leachate in static hydroponic systems had an inhibitory effect on wheat growth, both in the presence and absence of microorganisms. Biological treatment of leachate either with a mixed microbial community or the oyster mushroom Pleurotus ostreatus L., prior to use in hydroponic solutions, significantly reduced both the organic content and the inhibitory effects of the leachate. The inhibitory effects of unprocessed leachate appear to be a result of rapidly acting phytotoxic compounds that are detoxified by microbial activity. Leaching holds considerable promise as a method for nutrient recycling in a Controlled Ecological Life Support System (CELSS).

  9. Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system.

    Science.gov (United States)

    Zhao, Jun; Ni, Tian; Xun, Weibing; Huang, Xiaolei; Huang, Qiwei; Ran, Wei; Shen, Biao; Zhang, Ruifu; Shen, Qirong

    2017-06-01

    To study the influence of straw incorporation with and without straw decomposer on bacterial community structure and biological traits, a 3-year field experiments, including four treatments: control without fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer plus 7500 kg ha-1 straw incorporation (NPKS), and chemical fertilizer plus 7500 kg ha-1 straw incorporation and 300 kg ha-1 straw decomposer (NPKSD), were performed in a rice-wheat cropping system in Changshu (CS) and Jintan (JT) city, respectively. Soil samples were taken right after wheat (June) and rice (October) harvest in both sites, respectively. The NPKS and NPKSD treatments consistently increased crop yields, cellulase activity, and bacterial abundance in both sampling times and sites. Moreover, the NPKS and NPKSD treatments altered soil bacterial community structure, particularly in the wheat harvest soils in both sites, separating from the CK and NPK treatments. In the rice harvest soils, both NPKS and NPKSD treatments had no considerable impacts on bacterial communities in CS, whereas the NPKSD treatment significantly shaped bacterial communities compared to the other treatments in JT. These practices also significantly shifted the bacterial composition of unique operational taxonomic units (OTUs) rather than shared OTUs. The relative abundances of copiotrophic bacteria (Proteobacteria, Betaproteobacteria, and Actinobacteria) were positively correlated with soil total N, available N, and available P. Taken together, these results indicate that application of straw incorporation with and without straw decomposer could particularly stimulate the copiotrophic bacteria, enhance the soil biological activity, and thus, contribute to the soil productivity and sustainability in agro-ecosystems.

  10. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Directory of Open Access Journals (Sweden)

    Jørgensen Henning

    2008-04-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy in order to understand this increase in digestibility. Results The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. Conclusion Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall.

  11. Wheat straw degradation and production of alternative substrates for nitrogenase of Rhodobacter sphaeroides.

    Science.gov (United States)

    Dziga, Dariusz; Jagiełło-Flasińska, Dominika

    2015-01-01

    Cellulose is a major component of plant biomass and could be applied in the production of biofuels, especially bioethanol. An alternative approach is production of a clean fuel - hydrogen from cellulosic biomass. In this paper an innovatory model of cellulosic waste degradation has been proposed to verify the possibility of utilization of cellulose derivatives by purple non-sulfur bacteria. The concept is based on a two-step process of wheat straw conversion by bacteria in order to obtain an organic acid mixture. In the next stage such products are consumed by Rhodobacter sphaeroides, the known producer of hydrogen. It has been documented that Cellulomonas uda expresses cellulolytic activity in the presence of wheat straw as an only source of carbon. R. sphaeroides applied in this research can effectively consume organic acids released from straw by C. uda and Lactobacillus rhamnosus and is able to grow in the presence of these substrates. Additionally, an increased nitrogenase activity of R. sphaeroides has been indicated when bacteria were cultivated in the presence of cellulose derivatives which suggests that hydrogen production occurs.

  12. [15N-flow after in sacco incubation and feeding of sheep and goats with untreated wheat straw or straw treated with 15N horse urine].

    Science.gov (United States)

    Schubert, R; Flachowsky, G; Bochröder, B

    1994-01-01

    Chopped wheat straw was homogeneously mixed with urine of horses (5.75 gN per 1, 16.88 atom-% 15N-excess) and airtightly stored in plastic containers for 6 months. Three rumen fistulated sheep and goats each were fed with untreated or urine treated straw. Concentrate was added to straw. Untreated and urine treated straw were given in nylon bags and incubated in the rumen of sheep and goats for 1, 3, 6, 12, 24, 48 and 72 hours. A three compartment exponential function was used to fit the measurements of 15N-excess and 15N-amount of bag content. The curves and the calculated partial Y-values of the three compartments show the inflow and outflow of 15N into or from the bags and allow conclusions about the binding of urine N. Most N of urine was not compactly bound by straw during storage. Primarily microbial N was attached to the straw in the rumen. About 6% of urine N were bound more compact to the straw. Similar curves were calculated for 15N-excess and 15N-amount of nylon bags. The curves allow conclusions about tracer flows without quantitative knowledge. There were no significant differences between animal species.

  13. Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85.

    Science.gov (United States)

    Li, Qiang; Siles, Jose A; Thompson, Ian P

    2010-10-01

    Succinic acid is a platform molecule that has recently generated considerable interests. Production of succinate from waste orange peel and wheat straw by consolidated bioprocessing that combines cellulose hydrolysis and sugar fermentation, using a cellulolytic bacterium, Fibrobacter succinogenes S85, was studied. Orange peel contains D-limonene, which is a well-known antibacterial agent. Its effects on batch cultures of F. succinogenes S85 were examined. The minimal concentrations of limonene found to inhibit succinate and acetate generation and bacterial growth were 0.01%, 0.1%, and 0.06% (v/v), respectively. Both pre-treated orange peel by steam distillation to remove D: -limonene and intact wheat straw were used as feedstocks. Increasing the substrate concentrations of both feedstocks, from 5 to 60 g/L, elevated succinate concentration and productivity but lowered the yield. In addition, pre-treated orange peel generated greater succinate productivities than wheat straw but had similar resultant titres. The greatest succinate titres were 1.9 and 2.0 g/L for pre-treated orange peel and wheat straw, respectively. This work demonstrated that agricultural waste such as wheat straw and orange peel can be biotransformed to succinic acid by a one-step consolidated bioprocessing. Measures to increase fermentation efficiency are also discussed.

  14. Biomechanics of Wheat/Barley Straw and Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens; Eric D. Steffler; J. Richard Hess; Thomas H. Ulrich

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such a manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.

  15. Performance of hemicellulolytic enzymes in culture supernatants from a wide range of fungi on insoluble wheat straw and corn fiber fractions

    NARCIS (Netherlands)

    Gool, van M.P.; Toth, K.; Schols, H.A.; Szakacs, G.; Gruppen, H.

    2012-01-01

    Filamentous fungi are a good source of hemicellulolytic enzymes for biomass degradation. Enzyme preparations were obtained as culture supernatants from 78 fungal isolates grown on wheat straw as carbon source. These enzyme preparations were utilized in the hydrolysis of insoluble wheat straw and

  16. Persistence of Pendimethalin in/on Wheat, Straw, Soil and Water.

    Science.gov (United States)

    Chopra, Indu; Chauhan, Reena; Kumari, Beena

    2015-11-01

    Pendimethalin, a dinitroaniline group of organic herbicide compounds used as pre emergence weed control in wheat, onion and soyabean crops in India. The experiments were designed to study the harvest time residues of pendimethalin in wheat grain and straw its dissipation behaviour in soil and water. At harvest time, the residues of pendimethalin in wheat grain and straw were found to be below determination limit of 0.001 mg kg(-1) following single application of the herbicide at the rate of 1 (T1/single dose) and 2 (T2/double dose) kg a.i. ha(-1). Soil samples from the field were collected periodically and analysed by GC-ECD system. In soil, initial deposits of 4.069 and 10.473 mg kg(-1) of pendimethalin persisted up to 90 days and dissipation followed first order kinetics with half life period of 12.03 days in T1 and 13.00 days in T2. Residues of pendimethalin studied in water under laboratory conditions at 0.5 (T1) and 1.0 (T2) mg L(-1) levels persisted up to 90 days. Dissipation kinetics followed first order kinetics with half-life values of 12.70 and 13.78 days at single and double dose, respectively. Limit of determination in grain, straw and soil were 0.001 mg kg(-1) and in water was 0.001 mg L(-1). Application of the herbicide is considered quite safe from consumer and environmental point of view.

  17. Adsorptive Removal of Toxic Chromium from Waste-Water Using Wheat Straw and Eupatorium adenophorum

    Science.gov (United States)

    Song, Dagang; Pan, Kaiwen; Tariq, Akash; Azizullah, Azizullah; Sun, Feng; Li, Zilong; Xiong, Qinli

    2016-01-01

    Environmental pollution with heavy metals is a serious issue worldwide posing threats to humans, animals and plants and to the stability of overall ecosystem. Chromium (Cr) is one of most hazardous heavy metals with a high carcinogenic and recalcitrant nature. Aim of the present study was to select low-cost biosorbent using wheat straw and Eupatorium adenophorum through simple carbonization process, capable of removing Cr (VI) efficiently from wastewater. From studied plants a low cost adsorbent was prepared for removing Cr (VI) from aqueous solution following very simple carbonization method excluding activation process. Several factors such as pH, contact time, sorbent dosage and temperature were investigated for attaining ideal condition. For analysis of adsorption equilibrium isotherm data, Langmuir, Freundlich and Temkin models were used while pseudo-first-order, pseudo-second-order, external diffusion and intra-particle diffusion models were used for the analysis of kinetic data. The obtained results revealed that 99.9% of Cr (VI) removal was observed in the solution with a pH of 1.0. Among all the tested models Langmuir model fitted more closely according to the data obtained. Increase in adsorption capacity was observed with increasing temperature revealing endothermic nature of Cr (VI). The maximum Cr (VI) adsorption potential of E. adenophorum and wheat straw was 89.22 mg per 1 gram adsorbent at 308K. Kinetic data of absorption precisely followed pseudo-second-order model. Present study revealed highest potential of E. adenophorum and wheat straw for producing low cost adsorbent and to remove Cr (VI) from contaminated water. PMID:27911906

  18. Effect of reactor configuration on biogas production from wheat straw hydrolysate.

    Science.gov (United States)

    Kaparaju, Prasad; Serrano, María; Angelidaki, Irini

    2009-12-01

    The potential of wheat straw hydrolysate for biogas production was investigated in continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge bed (UASB) reactors. The hydrolysate originated as a side stream from a pilot plant pretreating wheat straw hydrothermally (195 degrees C for 10-12 min) for producing 2nd generation bioethanol [Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I., 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology 100 (9), 2562-2568]. Results from batch assays showed that hydrolysate had a methane potential of 384 ml/g-volatile solids (VS)(added). Process performance in CTSR and UASB reactors was investigated by varying hydrolysate concentration and/or organic loading rate (OLR). In CSTR, methane yields increased with increase in hydrolysate concentration and maximum yield of 297 ml/g-COD was obtained at an OLR of 1.9 g-COD/l d and 100% (v/v) hydrolysate. On the other hand, process performance and methane yields in UASB were affected by OLR and/or substrate concentration. Maximum methane yields of 267 ml/g-COD (COD removal of 72%) was obtained in UASB reactor when operated at an OLR of 2.8 g-COD/l d but with only 10% (v/v) hydrolysate. However, co-digestion of hydrolysate with pig manure (1:3 v/v ratio) improved the process performance and resulted in methane yield of 219 ml/g-COD (COD removal of 72%). Thus, anaerobic digestion of hydrolysate for biogas production was feasible in both CSTR and UASB reactor types. However, biogas process was affected by the reactor type and operating conditions.

  19. Dilute acid hydrolysis of wheat straw hemicellulose at moderate temperature: a simplified kinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G.; Lopez-Santin, J.; Caminal, G.; Sola, C.

    1986-02-01

    Wheat straw has been hydrolized with sulfuric acid at 34 and 90 degrees C. The treatment at 90 degrees C yields complete solubilization of hemicellulose to xylose and arabinose without significant amounts of furfural. The influence of acid concentration was studied and the kinetics of the acid-catalyzed hydrolysis has been modeled suggesting a two-consecutive reactions mechanism. This model is useful to explain the different behavior of the concentration of the two main sugars produced. The enhanced cellulose accessibility to enzymatic attack is also reported. 26 references.

  20. Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity

    Directory of Open Access Journals (Sweden)

    Jian LI,Caichao WAN,Yun LU,Qingfeng SUN

    2014-02-01

    Full Text Available An effectively mild solvent solution containing NaOH/PEG was employed to dissolve the cellulose extracted from the wheat straw. With further combined regeneration process and freeze-drying, the cellulose aerogel was successfully obtained. Scanning electron microscope, X-ray diffraction technique, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller were used to characterize this cellulose aerogel of low density (about 40 mg·cm-3 and three-dimensional network with large specific surface area (about 101 m2·g-1. Additionally, with a hydrophobic modification by trimethylchlorosilane, the cellulose aerogel showed a strong absorptive capacity for oil and dye solutions.

  1. Polyoxometalate (POM)-aided modification of lignin from wheat straw biorefinery

    OpenAIRE

    Dizhbite, Tatiana; Jashina, Lilija; Dobele, Galina; Andersone, Anna; Evtuguin, Dmitry; Bikovens, Oskar; Telysheva, Galina

    2013-01-01

    The oxidative modification of Biolignin (BL) has been investigated to make it more suitable as an adsorbent for transition/heavy metals. BL is a by-product of a wheat straw organosolv process for the production of pulp, ethanol, and pentoses (CIMV S.A. pilot plant, Levallois Perret, France). It was subjected to oxidation by a polyoxometalate (POM) H-3[PMo12O40], aiming at the increment of oxygen-containing adsorption-active sites. The POM oxidation of BL was performed under moderate condition...

  2. Selective hydrolysis of wheat straw hemicellulose using high-pressure CO2 as catalyst 

    OpenAIRE

    Relvas, F.; Morais, Ana Rita; Bogel-Lukasik, R.

    2015-01-01

    The processing of wheat straw using high-pressure CO2–H2O technology was studied with the objective to evaluate the effect of CO2 as catalyst on the hydrothermal production of hemicellulose-derived sugars either as oligomers or as monomers. Also, the reduction of the crystallinity of the cellulose-rich fraction was assessed. Over a range of reaction conditions (0 to 50 bar of initial CO2 pressure and 0 to 45 minutes of holding time, at T ¼ 180 C), the addition of CO2 to water-based processes ...

  3. Pyrolysis and Combustion of Pulverized Wheat Straw in a Pressurized Entrained Flow Reactor

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Gjernes, Erik; Hansen, Lars Kresten

    1996-01-01

    at relevant conditions. The pressurized entrained now reactor designed at Rise is introduced. Pyrolysis and combustion at 10 and 20 bar pressure have been studied using pulverized wheat straw. Samples of partly reacted particles are collected, and the conversion is calculated using the ash tracer technique....... The pyrolysis experiments show a yield larger than the yield from the proximate analysis. The pyrolysis is completed in about Is, and the yield is the same for 10 and 20 bar pressure. The combustion experiments show a high reactivity with oxygen, and the effects of pressure on combustion are discussed using...... the 10 and 20 bar experiments....

  4. Improvement of wheat straw anaerobic digestion through alkali pre-treatment: Carbohydrates bioavailability evaluation and economic feasibility.

    Science.gov (United States)

    Romero-Güiza, Maycoll Stiven; Wahid, Radziah; Hernández, Verónica; Møller, Henrik; Fernández, Belén

    2017-10-01

    Lignocellulosic biomasses such as wheat straw are widely used as a feedstock for biogas production. However, these biomasses are mainly composed of a compact fibre structure and therefore, it is recommended to treat them prior to its usage for biogas production in order to improve their bioavailability. The aim of this work is to evaluate, in terms of performance stability, methane yield and economic feasibility, two different scenarios: a mesophilic codigestion of wheat straw and animal manure with or without a low-energy demand alkaline pre-treatment (0.08gKOHgTS(-1)of wheat straw, for 24h and at 25°C). Besides this, said pre-treatment was also analysed based on the improvement of the bioavailable carbohydrate content in the untreated versus the pre-treated wheat straw. The results pointed out that pre-treated wheat straw prompted a more stable performance (in terms of pH and alkalinity) and an improved methane yield (128% increment) of the mesophilic codigestion process, in comparison to the "untreated" scenario. The pre-treatment increased the content of cellulose, hemicellulose and other compounds (waxes, pectin, oil, etc.) in the liquid fraction, from 5% to 60%, from 11.5% to 39.1% TS and from 57% to 79% of the TS in the liquid fraction for the untreated and pre-treated wheat straws, respectively. Finally, the pre-treated scenario gained an energy surplus of a factor 13.5 and achieved a positive net benefit of 90.4€tVS-WS(-1)d(-1), being a favourable case for an eventual scale-up of the combined process. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production.

    Science.gov (United States)

    Erdei, Borbála; Hancz, Dóra; Galbe, Mats; Zacchi, Guido

    2013-11-29

    Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of streams is beneficial. Improved ethanol concentrations in the 2G production process lowers energy demand in distillation, improves overall energy efficiency and thus lower production cost. There is also a potential to reach higher ethanol yields, which is required in economically feasible ethanol production. Integrated process scenarios with addition of saccharified wheat meal (SWM) or fermented wheat meal (FWM) were investigated in simultaneous saccharification and (co-)fermentation (SSF or SSCF) of steam-pretreated wheat straw, while the possibility of recovering the valuable protein-rich fibre residue from the wheat was also studied. The addition of SWM to SSF of steam-pretreated wheat straw, using commercially used dried baker's yeast, S. cerevisiae, resulted in ethanol concentrations of about 60 g/L, equivalent to ethanol yields of about 90% of the theoretical. The addition of FWM in batch mode SSF was toxic to baker's yeast, due to the ethanol content of FWM, resulting in a very low yield and high accumulation of glucose. The addition of FWM in fed-batch mode still caused a slight accumulation of glucose, but the ethanol concentration was fairly high, 51.2 g/L, corresponding to an ethanol yield of 90%, based on the amount of glucose added.In batch mode of SSCF using the xylose-fermenting, genetically modified S. cerevisiae strain KE6-12, no improvement was observed in ethanol yield or concentration, compared with baker's yeast, despite the increased xylose utilization, probably due to the considerable increase in glycerol production. A slight increase in xylose consumption was seen when glucose from SWM was fed at a low feed rate, after 48 hours, compared

  6. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas.

    Science.gov (United States)

    Wei, Ting; Zhang, Peng; Wang, Ke; Ding, Ruixia; Yang, Baoping; Nie, Junfeng; Jia, Zhikuan; Han, Qingfang

    2015-01-01

    Soil infertility is the main barrier to dryland agricultural production in China. To provide a basis for the establishment of a soil amelioration technical system for rainfed fields in the semiarid area of northwest China, we conducted a four-year (2007-2011) field experiment to determine the effects of wheat straw incorporation on the arid soil nutrient levels of cropland cultivated with winter wheat after different straw incorporation levels. Three wheat straw incorporation levels were tested (H: 9000 kg hm(-2), M: 6000 kg hm(-2), and L: 3000 kg hm(-2)) and no straw incorporation was used as the control (CK). The levels of soil nutrients, soil organic carbon (SOC), soil labile organic carbon (LOC), and enzyme activities were analyzed each year after the wheat harvest. After straw incorporation for four years, the results showed that variable straw amounts had different effects on the soil fertility indices, where treatment H had the greatest effect. Compared with CK, the average soil available N, available P, available K, SOC, and LOC levels were higher in the 0-40 cm soil layers after straw incorporation treatments, i.e., 9.1-30.5%, 9.8-69.5%, 10.3-27.3%, 0.7-23.4%, and 44.4-49.4% higher, respectively. On average, the urease, phosphatase, and invertase levels in the 0-40 cm soil layers were 24.4-31.3%, 9.9-36.4%, and 42.9-65.3% higher, respectively. Higher yields coupled with higher nutrient contents were achieved with H, M and L compared with CK, where these treatments increased the crop yields by 26.75%, 21.51%, and 7.15%, respectively.

  7. Grinding energy and physical properties of chopped and hammer-milled barley, wheat, oat, and canola straws

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Tumuluru; L.G. Tabil; Y. Song; K.L. Iroba; V. Meda

    2014-01-01

    In the present study, specific energy for grinding and physical properties of wheat, canola, oat and barley straw grinds were investigated. The initial moisture content of the straw was about 0.13–0.15 (fraction total mass basis). Particle size reduction experiments were conducted in two stages: (1) a chopper without a screen, and (2) a hammer mill using three screen sizes (19.05, 25.4, and 31.75 mm). The lowest grinding energy (1.96 and 2.91 kWh t-1) was recorded for canola straw using a chopper and hammer mill with 19.05-mm screen size, whereas the highest (3.15 and 8.05 kWh t-1) was recorded for barley and oat straws. The physical properties (geometric mean particle diameter, bulk, tapped and particle density, and porosity) of the chopped and hammer-milled wheat, barley, canola, and oat straw grinds measured were in the range of 0.98–4.22 mm, 36–80 kg m-3, 49–119 kg m-3, 600–1220 kg m-3, and 0.9–0.96, respectively. The average mean particle diameter was highest for the chopped wheat straw (4.22-mm) and lowest for the canola grind (0.98-mm). The canola grinds produced using the hammer mill (19.05-mm screen size) had the highest bulk and tapped density of about 80 and 119 kg m-3; whereas, the wheat and oat grinds had the lowest of about 58 and 88–90 kg m-3. The results indicate that the bulk and tapped densities are inversely proportional to the particle size of the grinds. The flow properties of the grinds calculated are better for chopped straws compared to hammer milled using smaller screen size (19.05 mm).

  8. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas.

    Directory of Open Access Journals (Sweden)

    Ting Wei

    Full Text Available Soil infertility is the main barrier to dryland agricultural production in China. To provide a basis for the establishment of a soil amelioration technical system for rainfed fields in the semiarid area of northwest China, we conducted a four-year (2007-2011 field experiment to determine the effects of wheat straw incorporation on the arid soil nutrient levels of cropland cultivated with winter wheat after different straw incorporation levels. Three wheat straw incorporation levels were tested (H: 9000 kg hm(-2, M: 6000 kg hm(-2, and L: 3000 kg hm(-2 and no straw incorporation was used as the control (CK. The levels of soil nutrients, soil organic carbon (SOC, soil labile organic carbon (LOC, and enzyme activities were analyzed each year after the wheat harvest. After straw incorporation for four years, the results showed that variable straw amounts had different effects on the soil fertility indices, where treatment H had the greatest effect. Compared with CK, the average soil available N, available P, available K, SOC, and LOC levels were higher in the 0-40 cm soil layers after straw incorporation treatments, i.e., 9.1-30.5%, 9.8-69.5%, 10.3-27.3%, 0.7-23.4%, and 44.4-49.4% higher, respectively. On average, the urease, phosphatase, and invertase levels in the 0-40 cm soil layers were 24.4-31.3%, 9.9-36.4%, and 42.9-65.3% higher, respectively. Higher yields coupled with higher nutrient contents were achieved with H, M and L compared with CK, where these treatments increased the crop yields by 26.75%, 21.51%, and 7.15%, respectively.

  9. Effect of moisture and nitrogen levels on the decomposition of wheat straw in soil.

    Science.gov (United States)

    Bhardwaj, K K; Novák, B

    1978-01-01

    Two per cent of wheat straw was mixed with samples of a slightly degraded chernozem soil, and its decomposition was studied at 10, 20, and 30 per cent moisture content of the soil with the addition of 160, 240, and 400 ppm of NH4 + -N. The overall decomposition, measured as CO2 production, and total carbon loss from the soil at 28 degrees C was enhanced by the added nitrogen at all levels of moisture in proportion to the quantity added. Maximum mineralization of the straw carbon was observed at 30 per cent moisture content but there was no significant difference between the amount of carbon mineralized at 20 and 30 per cent moisture levels. No stabilization of the substrate took place in the soil except at 240 and 400 ppm of applied nitrogen at 30 per cent moisture level towards the end of the incubation period. More straw carbon was mineralized when the soil samples were subjected to daily measurements of CO2 evolved than when CO2 measurements were made at intervals over the same period of incubation.

  10. Effect of Additions on Ensiling and Microbial Community of Senesced Wheat Straw

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson; Joni M. Barnes; Tracy P. Houghton

    2005-04-01

    Crop residues collected during or after grain harvest are available once per year and must be stored for extended periods. The combination of air, high moisture, and high microbial loads leads to shrinkage during storage and risk of spontaneous ignition. Ensiling is a wet preservation method that could be used to store these residues stably. To economically adapt ensiling to biomass that is harvested after it has senesced, the need for nutrient, moisture, and microbial additions must be determined. We tested the ensiling of senesced wheat straw in sealed columns for 83 d. The straw was inoculated with Lactobacillus plantarum and amended with several levels of water and free sugars. The ability to stabilize the straw polysaccharides was strongly influenced by both moisture and free sugars. Without the addition of sugar, the pH increased from 5.2 to as much as 9.1, depending on moisture level, and losses of 22% of the cellulose and 21% of the hemicellulose were observed. By contrast, when sufficient sugars were added and interstitial water was maintained, a final pH of 4.0 was attainable, with correspondingly low (<5%) losses of cellulose and hemicellulose. The results show that ensiling should be considered a promising method for stable storage of wet biorefinery feedstocks.

  11. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    Science.gov (United States)

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available This study synthesized the wheat straw biochar-supported nanoscale zerovalent iron (BC-nZVI via in-situ reduction with NaBH4 and biochar pyrolyzed at 600°C. Wheat straw biochar, as a carrier, significantly enhanced the removal of trichloroethylene (TCE by nZVI. The pseudo-first-order rate constant of TCE removal by BC-nZVI (1.079 h-1 within 260 min was 1.4 times higher and 539.5 times higher than that of biochar and nZVI, respectively. TCE was 79% dechlorinated by BC-nZVI within 15 h, but only 11% dechlorinated by unsupported nZVI, and no TCE dechlorination occurred with unmodified biochar. Weakly acidic solution (pH 5.7-6.8 significantly enhanced the dechlorination of TCE. Chloride enhanced the removal of TCE, while SO42-, HCO3- and NO3- all inhibited it. Humic acid (HA inhibited BC-nZVI reactivity, but the inhibition decreased slightly as the concentration of HA increased from 40 mg∙L-1 to 80 mg∙L-1, which was due to the electron shutting by HA aggregates. Results suggest that BC-nZVI was promising for remediation of TCE contaminated groundwater.

  13. Ethanol from Cellulosic Biomass with Emphasis of Wheat Straw Utilization. Analysis of Strategies for Process Development

    Directory of Open Access Journals (Sweden)

    Alexander Dimitrov Kroumov

    2015-12-01

    Full Text Available The "Green and Blue Technologies Strategies in HORIZON 2020" has increased the attention of scientific society on global utilization of renewable energy sources. Agricultural residues can be a valuable source of energy because of drastically growing human needs for food. The goal of this review is to show the current state of art on utilization of wheat straw as a substrate for ethanol production. The specifics of wheat straw composition and the chemical and thermodynamic properties of its components pre-determined the application of unit operations and engineering strategies for hydrolysis of the substrate and further its fermentation. Modeling of this two processes is crucially important for optimal overall process development and scale up. The authors gave much attention on main hydrolisis products as a glucose and xylose (C6 and C5 sugars, respectivelly and on the specifics of their metabolization by ethanol producing microorganisms. The microbial physiology reacting on C6 and C5 sugars and mathematical aproaches describing these phenomena are discussing, as well.

  14. Heat treatment of wheat straw by immersion in hot water decreases mushroom yield in Pleurotus ostreatus.

    Science.gov (United States)

    Jaramillo Mejía, Santiago; Albertó, Edgardo

    2013-01-01

    The oyster mushroom, Pleurotus ostreatus, is cultivated worldwide. It is one of the most appreciated mushrooms due to its high nutritional value. Immersion of the substrate in hot water is one of the most popular and worldwide treatment used for mushroom farmers. It is cheap and easy to implement. To compare the yields obtained during mushroom production of P. ostreatus using different pre-treatments (immersion in hot water, sterilization by steam and the use of fungicide) to determine if they influence mushroom crop. Four different treatments of substrate (wheat straw) were carried out: (i) immersion in hot water (IHW); (ii) steam sterilization; (iii) chemical; and (iv) untreated. The residual water from the IHW treatment was used to evaluate the mycelium growth and the production of P. ostreatus. Carbendazim treatment produced highest yields (BE: 106.93%) while IHW produced the lowest BE with 75.83%. Sugars, N, P, K and Ca were found in residual water of IHW treatment. The residual water increased the mycelium growth but did not increase yields. We have proved that IHW treatment of substrate reduced yields at least 20% when compared with other straw treatments such as steam, chemical or untreated wheat straw. Nutrients like sugars, proteins and minerals were found in the residual water extract which is the resultant water where the immersion treatment is carried out. The loss of these nutrients would be the cause of yield decrease. Alternative methods to the use of IHW as treatment of the substrate should be considered to reduce economical loss. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  15. Nutritive value of wheat straw treated with gaseous or liquid ammonia trough nylon bag and in vitro gas production techniques

    Directory of Open Access Journals (Sweden)

    Samad Sadeghi

    2016-04-01

    Full Text Available Introduction Feed shortage is the most important characteristic of Iranian animal industry. Increased costs of livestock production have caused the Iranian producers to reduce feed costs mainly by inclusion low quality crop residues into ruminants diets. It is estimated that around 20 million tons wheat straw produced in Iran every year. Both the digestibility and crude protein content of wheat straw are typically low. Since 1900, a wide variety of chemical treatments have been tested for their potential to improve the feeding value of wheat straw. Upgrading of wheat straw by ammoniation has been known for a long time, but application of this method of wheat straw treatment has received the least attention in the area (Khorasan Province, Iran. Therefore, the object of the present study was to evaluate the effect of gaseous and liquid ammonia on nutritive value of wheat straw through in vitro techniques. Material and Methods One kg dry wheat straw was placed into the plastic cylinders with dimension of 1 m (diameter and 1.8 m (height and 0.8 mm (thickness. Gaseous and liquid commercial ammonia was injected or added to the wrapped straw at the rate of 2, 4 and 6 percent. The treatment time was 1 month at room temperature (20-25 ºC. At the end of treatment period the cylinders were opened and the ammoniated straw exposed to the air for 4 days. The treated straws were sampled for the subsequent analyses. Dry matter degradability of the samples was done by using nylon bags (10x20 cm with pore size of 40 micron. About 2 g ground samples (2 mm were placed into the nylon bags and incubated in rumen of 4 permanently fistulated steers for 3, 6, 12, 24, 36, 48, 72, 96 and 120 hrs. The experimental steers were fed by the ordinary diet containing 65% forage and 35% concentrate twice daily. The Menke and Steingass method was followed for the in vitro gas production method. Result and discussion Crude protein (CP content of the treated wheat straw samples

  16. Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions

    DEFF Research Database (Denmark)

    Zhang, Yuming; Chen, Xiangrong; Qi, Benkun

    2014-01-01

    Bacillus coagulans IPE22 was used to produce lactic acid (LA) from mixed sugar and wheat straw hydrolysates, respectively. All fermentations were conducted under non-sterilized conditions and sodium hydroxide was used as neutralizing agent to avoid the production of insoluble CaSO4. In order to e...

  17. Solid-state anaerobic co-digestion of spent mushroom substrate with yard trimmings and wheat straw for biogas production.

    Science.gov (United States)

    Lin, Yunqin; Ge, Xumeng; Li, Yebo

    2014-10-01

    Spent mushroom substrate (SMS) is a biomass waste generated from mushroom production. About 5 kg of SMS is generated for every kg of mushroom produced. In this study, solid state anaerobic digestion (SS-AD) of SMS, wheat straw, yard trimmings, and their mixtures was investigated at different feedstock to effluent ratios. SMS was found to be highly degradable, which resulted in inhibition of SS-AD due to volatile fatty acid (VFA) accumulation and a decrease in pH. This issue was addressed by co-digestion of SMS with either yard trimmings or wheat straw. SS-AD of SMS/yard trimmings achieved a cumulative methane yield of 194 L/kg VS, which was 16 and 2 times higher than that from SMS and yard trimmings, respectively. SS-AD of SMS/wheat straw obtained a cumulative methane yield of 269 L/kg VS, which was 23 times as high as that from SMS and comparable to that from wheat straw. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Direct Conversion of Wheat Straw into Electricity with a Biomass Flow Fuel Cell Mediated by Two Redox Ion Pairs.

    Science.gov (United States)

    Gong, Jian; Liu, Wei; Du, Xu; Liu, Congmin; Zhang, Zhe; Sun, Feifei; Yang, Le; Xu, Dong; Guo, Hua; Deng, Yulin

    2017-02-08

    In this paper, a biomass flow fuel cell to directly convert wheat straw to electricity at low temperature (80-90 °C) and atmospheric pressure is presented. Two redox ion pairs, Fe3+ /Fe2+ and VO2+ /VO2+ , acting as redox catalysts and charge carriers, were used in the anode and cathode flow tanks, respectively. The wheat straw was first oxidized by Fe3+ in the anode tank at approximately 100 °C. The reduced Fe2+ in the anode was used to construct a fuel cell with VO2+ in the cathode. The VO2+ ions were reduced to VO2+ and regenerated to VO2+ by oxygen oxidation. The wheat straw flow fuel cell showed a power output of 100 mW cm-2 . Mediated with liquid Fe3+ carriers, the solid powder of wheat straw could be gradually degraded into low-molecular-weight organic molecules and even oxidized to CO2 at the anode without using noble-metal catalysts. The overpotential for the electrodes of the flow fuel cell was examined and the energy cost was estimated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Clausen, Sønnik

    2012-01-01

    , modeling effort on an 88 MW grate-fired boiler burning wheat straw is presented in this paper. Different modeling issues and their expected impacts on CFD analysis of the kind of grate boilers are discussed. The modeling results are compared with in-flame measurements in the 88 MW boiler, which shows...

  20. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Pinto, P.; Bezerra, R.M.F.; Dias, A.A.; Guedes, C.M.; Cone, J.W.

    2008-01-01

    A series of in vitro experiments were completed to evaluate the potential of enzyme extracts, obtained from the white-rot fungi Trametes versicolor (TV1, TV2), Bjerkandera adusta (BA) and Fomes fomentarius (FF), to increase degradation of cell wall components of wheat straw. The studies were

  1. Evolution and qualitative modifications of humin-like matter during high rate composting of pig faeces amended with wheat straw

    NARCIS (Netherlands)

    Genevini, P.L.; Tambone, F.; Adani, F.; Veeken, A.H.M.; Nierop, K.G.J.; Montoneri, E.

    2003-01-01

    During a 4-week period of composting of wheat straw-amended pig faeces, humin (HU)- and core-HU-like matter were isolated by NaOH-Na4P2O7 treatment of the compost bed, respectively, without and with previous extraction by organic solvent and by H2SO4. The changes in the content and elemental

  2. The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips

    NARCIS (Netherlands)

    Kuijk, van Sandra J.A.; Sonnenberg, Anton S.M.; Baars, Johan J.P.; Hendriks, Wouter H.; Cone, John W.

    2016-01-01

    Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains (0.5, 1.5 or 3.0 % per g

  3. Bacterial cellulose-assisted de-lignified wheat straw-PVA based bio-composites with novel characteristics.

    Science.gov (United States)

    Asgher, Muhammad; Ahmad, Zanib; Iqbal, Hafiz M N

    2017-04-01

    In the present study, in-house extracted ligninolytic consortium was used as a green catalyst to modify the pristine wheat straw through de-lignification. The ligninolytic consortium showed an enhanced level of de-lignification with a maximal cellulose exposure from 24% to 76.54% cellulose. The de-lignified wheat straw was further strengthened using bacterial cellulose integration. Subsequently, a well-known compression molding technique was used to develop bio-composites from a de-lignified and bacterially modified wheat straw in the presence of polyvinyl alcohol (PVA) and glycerol as a plasticizer. The newly developed bio-composites were characterized using a variety of analytical and imaging techniques including Fourier Transform Infra-Red Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Evidently, the characterization profile revealed a considerable improvement in the morphology, mechanical and water uptake features of the newly developed bio-composites. In summary, the improved characteristics of bacterial cellulose-assisted de-lignified wheat straw-PVA based bio-composites suggest a high potential of enzymatic treatment for biotechnological exploitability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes.

    Science.gov (United States)

    Wang, Qing; Hu, Jinguang; Shen, Fei; Mei, Zili; Yang, Gang; Zhang, Yanzong; Hu, Yaodong; Zhang, Jing; Deng, Shihuai

    2016-01-01

    Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Vertical Distribution Characteristics of Nutrient and Nutrient-Returning Amount of Wheat Straw Under Different Stubble Heights in Jiangsu Province, China

    Directory of Open Access Journals (Sweden)

    GU Ke-jun

    2015-12-01

    Full Text Available In order to estimate the nutrient-returning amount of wheat straw under different stubble heights, 25 leading wheat varieties in Jiangsu Province, including 9 spring wheat varieties and 16 semi-winter wheat varieties, were investigated. Wheat stalks below spike were cut into 5 parts from the basal node, and the first 4 parts had 5 cm length each, marked with 0~5, 5~10, 10~15, 15~20, >20 cm, respectively. Hull and rachis from wheat spikes were sampled as the sixth part. Each part of wheat straw was dried and weighed, and then the nutrient contents of nitrogen (N, phosphorus (P and potassium (K were measured. The results showed that the proportion of the first section of straw to the whole wheat straw in biomass of semi-winter wheat was higher than that of spring wheat. The similar results were also achieved from the second to the fourth part of straw. However, the proportion of the fifth part (>20 cm to the whole wheat straw in biomass of semi-winter wheat was lower than that of spring wheat. N and P contents of spring wheat straw were much higher than those of semi-winter wheat at the same layer, whereas, K contents was lower than that of semi-winter wheat. Additionally, the N and P contents of straw decreased gradually from the base to the top of the plant in spring wheat, while the N contents had a slight change and the P contents showed a shape of “U” in semi-winter wheat. K contents of straw from the base to the top of the plant increased gradually in both two ecological types of wheat. Compared with spring wheat, the returning quantity of N and P of semi-winter wheat straw increased by 23.4%~26.9% and 16.7%~30.8%, respectively, but the K nutrient return decreased by 20.4%~25.9%, with the same amount of straw return when the stubble height left in field was 10~20 cm. The total nutrients of N, P and K of wheat straw in Jiangsu Province were 10.20×104, 1.16×104 t and 19.52×104 t, respectively. The nutrients return of N, P and K were 4

  6. Genotypic effects on sugar and by-products of liquid hydrolysates and on saccharification of acid-insoluble residues of from wheat straw.

    Science.gov (United States)

    Ohno, Ryoko; Teramura, Hiroshi; Ogino, Chiaki; Kondo, Akihiko; Takumi, Shigeo

    2018-01-17

    Wheat straw is one of the major attractive resources for low-cost raw materials for renewable energy, biofuels and biochemicals. However, like other sources of lignocellulosic biomass, straw is a heterogeneous material due to its mixed origin from different tissue and cell types. Here, to examine the genotypic effects on biorefinery usage of wheat straw, straw obtained from different wheat cultivars and experimental lines was pretreated with dilute acid. Significant differences between cultivars were observed in the concentrations of glucose and toxic by-products of the liquid hydrolysates. A higher content of xylose than glucose was found in liquid hydrolysates from wheat straw, and the xylose content appeared to be affected by both environmental and genetic factors. Analysis using chromosome substitution lines of the common wheat cultivar Chinese Spring showed that chromosomes 2A and 3A from other wheat cultivars, Hope and Timstein, significantly increased the xylose content. However, no significant relationship was observed between the liquid hydrolysate xylose content and the glucose content obtained from enzymatic saccharification of the acid-insoluble residue. These results highlight the potential of wheat breeding to improve biomass-related traits in wheat straw.

  7. Shiitake Medicinal Mushroom, Lentinus edodes (Higher Basidiomycetes) Productivity and Lignocellulolytic Enzyme Profiles during Wheat Straw and Tree Leaf Bioconversion.

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Asatiani, Mikheil D

    2015-01-01

    Two commercial strains of Lentinus edodes have been comparatively evaluated for their productivity and lignocellulolytic enzyme profiles in mushroom cultivation using wheat straw or tree leaves as the growth substrates. Both substrates are profitable for recycling into shiitake fruit bodies. L. edodes 3715 gave the lowest yield of mushroom during tree leaves bioconversion with the biological efficiency (BE) 74.8% while the L. edodes 3721 BE achieved 83.4%. Cultivation of shiitake on wheat straw, especially in the presence of additional nitrogen source, increased the L. edodes 3721 BE to 92-95.3% owing to the high hydrolases activity and favorable conditions. Despite the quantitative variations, each strain of L. edodes had a similar pattern for secreting enzymes into the wheat straw and tree leaves. The mushrooms laccase and MnP activities were high during substrate colonization and declined rapidly during primordia appearance and fruit body development. While oxidase activity decreased, during the same period cellulases and xylanase activity raised sharply. Both cellulase and xylanase activity peaked at the mature fruit body stage. When mushrooms again shifted to the vegetative growth, oxidase activity gradually increased, whereas the hydrolases activity dropped rapidly. The MnP, CMCase, and FP activities of L. edodes 3721 during cultivation on wheat straw were higher than those during mushroom growth on tree leaves whereas the laccase activity was rather higher in fermentation of tree leaves. Enrichment of wheat straw with an additional nitrogen source rather favored to laccase, MnP, and FPA secretion during the vegetative stage of the L. edodes 3721 growth.

  8. Comparison of mechanistic models in the initial rate enzymatic hydrolysis of AFEX-treated wheat straw

    Directory of Open Access Journals (Sweden)

    Agbogbo Frank K

    2010-03-01

    Full Text Available Abstract Background Different mechanistic models have been used in the literature to describe the enzymatic hydrolysis of pretreated biomass. Although these different models have been applied to different substrates, most of these mechanistic models fit into two- and three-parameter mechanistic models. The purpose of this study is to compare the models and determine the activation energy and the enthalpy of adsorption of Trichoderma reesei enzymes on ammonia fibre explosion (AFEX-treated wheat straw. Experimental enzymatic hydrolysis data from AFEX-treated wheat straw were modelled with two- and three-parameter mechanistic models from the literature. In order to discriminate between the models, initial rate data at 49°C were subjected to statistical analysis (analysis of variance and scatter plots. Results For three-parameter models, the HCH-1 model best fitted the experimental data; for two-parameter models Michaelis-Menten (M-M best fitted the experimental data. All the three-parameter models fitted the data better than the two-parameter models. The best three models at 49°C (HCH-1, Huang and M-M were compared using initial rate data at three temperatures (35°, 42° and 49°C. The HCH-1 model provided the best fit based on the F values, the scatter plot and the residual sum of squares. Also, its kinetic parameters were linear in Arrhenius/van't Hoff's plots, unlike the other models. The activation energy (Ea is 47.6 kJ/mol and the enthalpy change of adsorption (ΔH is -118 kJ/mol for T. reesei enzymes on AFEX-treated wheat straw. Conclusion Among the two-parameter models, Michaelis-Menten model provided the best fit compared to models proposed by Humphrey and Wald. For the three-parameter models, HCH-1 provided the best fit because the model includes a fractional coverage parameter (ϕ which accounts for the number of reactive sites covered by the enzymes.

  9. Simplification of urea treatment method of wheat straw for its better ...

    African Journals Online (AJOL)

    ... a bag, piling the straw on the bag, again moistening the straw with water (50% of straw) and incubating this material for a month under the cover of plastic sheet or mud plaster. In this method three steps including preparation of urea solution, sprinkling of solution on straw and pressing the straw during treatment process, ...

  10. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw.

    Science.gov (United States)

    Erdei, Borbála; Frankó, Balázs; Galbe, Mats; Zacchi, Guido

    2012-03-12

    The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol

  11. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    Directory of Open Access Journals (Sweden)

    Erdei Borbála

    2012-03-01

    Full Text Available Abstract Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS, resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and

  12. Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production.

    Science.gov (United States)

    Zhang, Xi; Zhong, Yaohua; Yang, Shida; Zhang, Weixin; Xu, Meiqing; Ma, Anzhou; Zhuang, Guoqiang; Chen, Guanjun; Liu, Weifeng

    2014-10-01

    The development of communities of three important composting players including actinobacteria, fungi and clostridia was explored during the composting of wheat straw for mushroom production. The results revealed the presence of highly diversified actinobacteria and fungal communities during the composting process. The diversity of the fungal community, however, sharply decreased in the mature compost. Furthermore, an apparent succession of both actinobacteria and fungi with intensive changes in the composition of communities was demonstrated during composting. Notably, cellulolytic actinomycetal and fungal genera represented by Thermopolyspora, Microbispora and Humicola were highly enriched in the mature compost. Analysis of the key cellulolytic genes revealed their prevalence at different composting stages including several novel glycoside hydrolase family 48 exocellulase lineages. The community of cellulolytic microbiota also changed substantially over time. The prevalence of the diversified cellulolytic microorganisms holds the great potential of mining novel lignocellulose decomposing enzymes from this specific ecosystem. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Synthesis and characterization of a novel super-absorbent based on wheat straw.

    Science.gov (United States)

    Ma, Zuohao; Li, Qian; Yue, Qinyan; Gao, Baoyu; Xu, Xing; Zhong, Qianqian

    2011-02-01

    In order to develop an eco-friendly polymer, a novel super-absorbent polymer was prepared by graft copolymerization of acrylic acid (AA), acrylic amide (AM) and dimethyl diallyl ammonium chloride (DMDAAC) onto the pretreatment wheat straw (PTWS). The molecular structure of the super-absorbent was confirmed by FTIR. The factors that can influence absorbencies of the super-absorbent resin (SAR) were investigated, such as weight ratio between the monomers, the ratio of PTWS to monomers, the amount of initiator and cross-linker, temperature reaction time and neutralization degree of AA. The SAR has the water absorbency of 133.76 g/g in distilled water and 33.83 g/g in 0.9 wt.% NaCl solution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Isolation and characterization of lignins from wheat straw: Application as binder in lithium batteries.

    Science.gov (United States)

    Domínguez-Robles, Juan; Sánchez, Rafael; Díaz-Carrasco, Pilar; Espinosa, Eduardo; García-Domínguez, M T; Rodríguez, Alejandro

    2017-11-01

    Three different lignin-rich fractions have been used as binder material for electrodes in rechargeable lithium batteries. Lignin samples were obtained through three different pulping processes; kraft, soda and organosolv pulping processes, using wheat straw as raw material. Physico-chemical characterization of three types of lignins was evaluated. Characterization has been performed using Fourier transform infrared spectroscopy (FTIR) and 31P NMR Spectroscopy to analyse the functional groups; gel permeation chromatography (GPC) for determining molar mass distribution (MWD), and thermogravimetric analysis (TGA) to follow the thermal behaviour. Electrodes containing lignin or poly vinylidene fluoride (PVDF) were tested electrochemically. The three different lignin samples exhibited excellent performance as binder, retaining the specific capacity after 50 cycles at a current density of 100mAg-1. These results show that lignin could be used as a low-cost and environmental binder, replacing the PVDF polymer in electrodes for energy storage applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw.

    Science.gov (United States)

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David; Jørgensen, Henning

    2014-12-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from a second generation feedstock, namely, wheat straw. The LCA used lab results of a set of 36 process configurations in which dry matter content, enzyme preparation and loading, and process strategy were varied. The LCA results show that higher dry matter content leads to a higher environmental impact of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately determine their environmental impact. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate

    DEFF Research Database (Denmark)

    Thygesen, Anders; Poulsen, Finn Willy; Angelidaki, Irini

    2011-01-01

    Electricity production from microbial fuel cells fueled with hydrolysate produced by hydrothermal treatment of wheat straw can achieve both energy production and domestic wastewater purification. The hydrolysate contained mainly xylan, carboxylic acids, and phenolic compounds. Power generation...... density with the hydrolysate was higher than the one with only xylan (120 mW m−2) and carboxylic acids as fuel. The higher power density can be caused by the presence of phenolic compounds in the hydrolysates, which could mediate electron transport. Electricity generation with the hydrolysate resulted...... in 95% degradation of the xylan and glucan. The study demonstrates that lignocellulosic hydrolysate can be used for co-treatment with domestic wastewater for power generation in microbial fuel cells....

  17. Butyric acid fermentation from pre-treated wheat straw by a mutant clostridium tyrobutyricum strain

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Baumann, Ivan; Westermann, Peter

    ’s platform for a variety of products for industrial use. Butyric acid is considered as a potential chemical building-block for the production of chemicals for e.g. polymeric compounds and the aim of this work was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces less acetic......Only little research on butyric acid fermentation has been carried out in relationship to bio-refinery perspectives involving strain selection, development of adapted strains, physiological analyses for higher yield, productivity and selectivity. However, a major step towards the development...... acid (higher selectivity), has a higher yield and a higher productivity of butyric acid from pre-treated lignocellulosic biomass. Pre-treated wheat straw was used as the main carbon source. After one year of serial adaptation and selection a mutant strain of C. tyrobutyricum was developed. This new...

  18. Influence of dimethyl formamide pulping of wheat straw on cellulose degradation and comparison with Kraft process.

    Science.gov (United States)

    Ziaie-Shirkolaee, Y; Mohammadi-Rovshandeh, J; Rezayati-Charani, P; Khajeheian, M B

    2008-06-01

    The pulping of wheat straw with dimethyl formamide was studied in order to investigate the effects of the cooking variables (temperature (190 degrees C, 200 degrees C, and 210 degrees C) and time (120 min, 150 min, and 180 min) and organic solvent ratio (30%, 50%, and 70%) dimethyl formamide (DMF+water) value) on the degradation of cellulose and degree of polymerization (DP) of organosolv pulp. The SCAN viscosity was applied to estimating the extent of cellulose degradation produced by cooking condition and then, it was compared with Kraft pulp at equal Kappa number. Response of pulp and handsheets properties to the process variables were analyzed using statistical software (MINITAB 14). The process variables (cooking temperature and cooking time) must be set at low variables with high DMF ratio in order to ensure a high yield and high SCAN viscosity. Also, pulps with high mechanical properties can be acceptably obtained at 210 degrees C for 150 min with 50% DMF. Generally, the cooking temperature was a significant factor while the cooking time and DMF ratio had a smaller role. By the comparison of Kraft and organosolv pulp, it can be resulted that DMF basically had improvement role on reducing of cellulose degradation by reason of high SCAN viscosity of organosolv pulp than Kraft pulp under equal kappa number and, scanning electron microscopy (SEM) of obtained pulp. Consequently, the protective action of organic solvent on non-cellulosic polysaccharides of wheat straw against degradation under Kraft pulping conditions was pointed as a main reason of the fairly high yield of organosolv pulps.

  19. Demethylation of Wheat Straw Alkali Lignin for Application in Phenol Formaldehyde Adhesives

    Directory of Open Access Journals (Sweden)

    Yan Song

    2016-05-01

    Full Text Available Lignin is a natural biopolymer with a complex three-dimensional network. It is the second most abundant natural polymer on earth. Commercially, lignin is largely obtained from the waste liquors of pulping and bioethanol productions. In this study, wheat straw alkali lignin (WSAL was demethylated by using an in-situ generated Lewis acid under an optimized demethylation process. The demethylation process was monitored by a semi-quantitative Fourier Transform Infrared Spectroscopy (FTIR method. The demethylated wheat straw alkali lignin (D-WSAL was further characterized by Proton Nuclear Magnetic Resonance (1H NMR, Gel Permeation Chromatography (GPC, and titration methods. After the demethylation process, it was found that the relative value of the methoxy group decreased significantly from 0.82 to 0.17 and the phenolic hydroxyl group increased from 5.2% to 16.0%. Meanwhile, the hydroxyl content increased from 6.6% to 10.3%. GPC results suggested that the weighted averaged molecular weight of D-WSAL was lower than that of WSAL with a smaller polydispersity index. The D-WSAL was then used to replace 60 wt % of phenol to prepare lignin-based phenol formaldehyde adhesives (D-LPF. It was found that both the free formaldehyde content and the free phenol content in D-LPF were less than those of the lignin-based phenol formaldehyde adhesives without lignin demethylation (LPF. Gel time of D-LPF was shortened. Furthermore, the wet and dry bonding strengths of lap shear wood samples bonded using D-LPF were higher than those of the samples bonded using LPF. Therefore, D-WSAL has shown good potential for application in phenol formaldehyde adhesives.

  20. Effect of moisture level on nitrogen immobilization as affected by wheat straw decomposition in soil.

    Science.gov (United States)

    Bhardwaj, K K; Novák, B

    1978-01-01

    Samples of a slightly degraded chernozem soil were amended with 2 per cent of wheat straw at three moisture levels (10, 20, and 30 per cent) and were provided with 160, 240, and 400 ppm of ammoniacal nitrogen. Amounts of total, ammonia, and nitrate were determined at different periods of incubation at 28 degrees C and immobilization of the total available nitrogen in the soil was calculated. Substantial amounts of the added nitrogen were immobilized in the soil as a result of the straw decomposition during the first month of incubation. The amount of inorganic nitrogen (NH4 + -N + NO3 - -N), bound within 75 days of incubation, was almost three times less than that immobilized within 30 days. Maximum quantity of nitrogen was immobilized at 30 and 20 per cent moisture levels at 30 and 75 days of incubation, respectively. Minimum immobilization was observed at 10 per cent moisture at almost all levels of nitrogen. The absolute amount of nitrogen immobilized increased in proportion to the quantity of nitrogen added, but the relative immobilization tended to decrease with the increased inorganic nitrogen the soil.

  1. Straw export in continuous winter wheat and the ability of oil radish catch crops and early sowing of wheat to offset soil C and N losses: A simulation study

    DEFF Research Database (Denmark)

    Peltre, Clément; Nielsen, M; Christensen, Bent Tolstrup

    2016-01-01

    The export of winter wheat straw for bioenergy may reduce soil C stocks and affect N losses. Establishing fast-growing catch crops between successive wheat crops could potentially offset some of the C and N losses. Another option is to sow wheat earlier, increasing biomass production during...... the autumn. The effects of straw export, oil radish catch crop and early sowing of wheat on soil C storage, N leaching losses and N2O emissions were simulated by applying the Daisy model to winter wheat grown continuously for a period of 100 years on a sandy loam soil in a Danish climate. The simulations...... included five levels of initial soil C content (1–3% C), three levels of straw incorporation (0, 50 and 100%), +/− catch crop (oil radish) and two sowing dates (1 and 22 September). Exporting the entire straw production reduced soil C stocks by 1.2 to 14% after 100 years, depending on the initial C content...

  2. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion

    National Research Council Canada - National Science Library

    Maas, R.H.W; Bakker, R.R.C; Boersma, A.R; Bisschops, I; Pels, J.R; Jong, de, E; Weusthuis, R.A; Reith, H

    2008-01-01

    ...-neutral biofuels, such as ethanol derived from lignocellulosic material. Results This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight...

  3. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion

    National Research Council Canada - National Science Library

    Maas, Ronald Hw; Bakker, Robert R; Boersma, Arjen R; Bisschops, Iemke; Pels, Jan R; de Jong, Ed; Weusthuis, Ruud A; Reith, Hans

    2008-01-01

    ...-neutral biofuels, such as ethanol derived from lignocellulosic material. This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight...

  4. Chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage 1

    National Research Council Canada - National Science Library

    Y Babaeinasab; Y Rouzbehan; H Fazaeli; J Rezaei

    2015-01-01

    ...) on the chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of an ensiled potato-wheat straw mixture in a completely randomized design with 4 replicates...

  5. Chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage

    National Research Council Canada - National Science Library

    Babaeinasab, Y; Rouzbehan, Y; Fazaeli, H; Rezaei, J

    2015-01-01

    ...) on the chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of an ensiled potato-wheat straw mixture in a completely randomized design with 4 replicates...

  6. Effects of Corn Straw Returning and Nitrogen Fertilizer Application Methods on N2O Emission from Wheat Growing Season

    Directory of Open Access Journals (Sweden)

    XU Yu

    2015-12-01

    Full Text Available Based on a wheat field experiment, the effect of four treatments such as no-straw returning (SN, straw returning (SR, control release fertilizer application(SRC and nitrogen drilling(SRR on N2O emission was studied using the static chamber method and the gas chromatographic technique. The results indicated that the wheat field was the sources of N2O emission. The N2O emission peaks followed each time of fertilizer application and irrigation, and usually continued for 1~2 weeks. N2O emissions accounted for more than 40% of total emissions during the N2O emission peak. The amount of N2O emission during three growing stage of wheat from high to low was arranged in turn pre-wintering period, post-wintering period and wintering period. N2O emission could be increased by straw returning. Compared with SN, N2O emission could be enhanced by 48.6% under SR. Both SRC and SRR could decrease the N2O emission, increase wheat yield and economic benefit, especially the latter. Nitrogen drilling is a good method for yield increment and N2O abatement.

  7. Improved Anaerobic Fermentation of Wheat Straw by Alkaline Pre-Treatment and Addition of Alkali-Tolerant Microorganisms

    Directory of Open Access Journals (Sweden)

    Heike Sträuber

    2015-04-01

    Full Text Available The potential of two alkali-tolerant, lignocellulolytic environmental enrichment cultures to improve the anaerobic fermentation of Ca(OH2-pre-treated wheat straw was studied. The biomethane potential of pre-treated straw was 36% higher than that of untreated straw. The bioaugmentation of pre-treated straw with the enrichment cultures did not enhance the methane yield, but accelerated the methane production during the first week. In acidogenic leach-bed fermenters, a 61% higher volatile fatty acid (VFA production and a 112% higher gas production, mainly CO2, were observed when pre-treated instead of untreated straw was used. With one of the two enrichment cultures as the inoculum, instead of the standard inoculum, the VFA production increased by an additional 36% and the gas production by an additional 110%, again mainly CO2. Analysis of the microbial communities in the leach-bed processes revealed similar bacterial compositions in the fermenters with pre-treated straw, which developed independently of the used inoculum. It was suggested that the positive metabolic effects with the enrichment cultures observed in both systems were due to initial activities of the alkali-tolerant microorganisms tackling the alkaline conditions better than the standard inocula, whereas the latter dominated in the long term.

  8. Effect of Surface-Modified TiO₂ Nanoparticles on the Anti-Ultraviolet Aging Performance of Foamed Wheat Straw Fiber/Polypropylene Composites.

    Science.gov (United States)

    Xuan, Lihui; Han, Guangping; Wang, Dong; Cheng, Wanli; Gao, Xun; Chen, Feng; Li, Qingde

    2017-04-26

    Surface modification and characterization of titanium dioxide (TiO₂) nanoparticles and their roles in thermal, mechanical, and accelerated aging behavior of foamed wheat straw fiber/polypropylene (PP) composites are investigated. To improve the dispersion of nanoparticles and increase the possible interactions between wheat straw fiber and the PP matrix, the surface of the TiO₂ nanoparticles was modified with ethenyltrimethoxy silane (A171), a silane coupling agent. The grafting of A171 on the TiO₂ nanoparticles' surface was characterized by Fourier transform infrared spectroscopy (FTIR). The wheat straw fibers treated with A171 and modified TiO₂ nanoparticles were characterized by FTIR and thermogravimetric analysis (TGA). FTIR spectra confirmed that the organic functional groups of A171 were successfully grafted onto the TiO₂ nanoparticles and wheat straw fibers, and the modified TiO₂ nanoparticles were adsorbed onto the wheat straw fibers. Thermogravimetric analysis showed that a higher thermal stability of the wheat straw fiber was obtained with the modified TiO₂ nanoparticles. The flexural, tensile, and impact properties were improved. A higher ultraviolet (UV) stability of the samples treated with modified TiO₂ nanoparticles was exhibited by the study of the color change and loss in mechanical properties.

  9. Comparison of high temperature chars of wheat straw and rice husk with respect to chemistry, morphology and reactivity

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    Fast pyrolysis of wheat straw and rice husk was carried out in an entrained flow reactor at hightemperatures(1000e1500) C. The collected char was analyzed using X-ray diffractometry, N2-adsorption,scanning electron microscopy, particle size analysis with CAMSIZER XT, 29Si and 13C solid......-statenuclear magnetic resonance spectroscopy and thermogravimetric analysis to investigate the effect ofinorganic matter on the char morphology and oxygen reactivity. The silicon compounds were dispersedthroughout the turbostratic structure of rice husk char in an amorphous phase with a low meltingtemperature (z730 C......), which led to the formation of a glassy char shell, resulting in a preserved particlesize and shape of chars. The high alkali content in the wheat straw resulted in higher char reactivity,whereas the lower silicon content caused variations in the char shape from cylindrical to near...

  10. White-rot fungal pretreatment of wheat straw with Phanerochaete chrysosporium for biohydrogen production: simultaneous saccharification and fermentation.

    Science.gov (United States)

    Zhi, Zelun; Wang, Hui

    2014-07-01

    This paper demonstrates biohydrogen production was enhanced by white-rot fungal pretreatment of wheat straw (WS) through simultaneous saccharification and fermentation (SSF). Wheat straw was pretreated by Phanerochaete chrysosporium at 30 °C under solid state fermentation for 12 days, and lignin was removed about 28.5 ± 1.3 %. Microscopic structure observation combined thermal gravity and differential thermal gravity analysis further showed that the lignocellulose structure obviously disrupted after fungal pretreatment. Subsequently, the pretreated WS and crude cellulases prepared from Trichoderma atroviride were applied in SSF for hydrogen production using Clostridium perfringens. The maximum hydrogen yield was obtained to be 78.5 ± 3.4 ml g(-1)-pretreated WS, which was about 1.8-fold than the unpretreated group. Furthermore, the modified Gompertz model was applied study the progress of cumulative H(2) production. This work developed a novel bio-approach to improve fermentative H(2) yield from lignocellulosic biomass.

  11. TiO2 assisted photo-oxidative pretreatment of wheat straw for biogas production

    DEFF Research Database (Denmark)

    Awais, Muhammad; Alvarado-Morales, Merlin; Tsapekos, Panagiotis

    (i.e. 0.5, 1, 1.5 and 2 wt%) with four different exposure time periods (i.e. 0, 60, 120 and 180 min) were investigated under 700W medium pressure UV lamp radiations. Subsequently, biochemical methane potentials (BMPs) assays were conducted under thermophilic conditions for the different pretreated...... to enhance biomass biodegradability in anaerobic digestion (AD) process. Thus, the present study elucidated the photo-catalytic oxidation of highly lignified wheat straw using TiO2at the presence of UV light in the region of 300-360nm. Specifically, the combinations of four different concentrations of TiO2...... microscopy (SEM) images of the pretreated wheat straw that showed augmented damaged areas and development of pits after the pretreatment. In addition, the products of oxidation were also measured, as it was expected the lignin to be oxidized into phenolic acids. For instance, vanillic acid was found...

  12. Comparison of Two Cellulomonas Strains and Their Interaction with Azospirillum brasilense in Degradation of Wheat Straw and Associated Nitrogen Fixation

    OpenAIRE

    Halsall, Dorothy M.; Gibson, Alan H.

    1986-01-01

    A mutant strain of Cellulomonas sp. CS1-17 was compared with Cellulomonas gelida 2480 as the cellulolytic component of a mixed culture which was responsible for the breakdown of wheat straw to support asymbiotic nitrogen fixation by Azospirillum brasilense Sp7 (ATCC 29145). Cellulomonas sp. strain CSI-17 was more efficient than was C. gelida in cellulose breakdown at lower oxygen concentrations and, in mixed culture with A. brasilense, it supported higher nitrogenase activity (C2H2 reduction)...

  13. Cadmium availability and uptake by radish (Raphanus sativus) grown in soils applied with wheat straw or composted pig manure.

    Science.gov (United States)

    Shan, Hong; Su, Shiming; Liu, Rongle; Li, Shutian

    2016-08-01

    Soil cadmium (Cd) availability and uptake by cherry-red radish (Raphanus sativus) grown in Cd-contaminated soils after addition with wheat straw or composted pig manure were studied. The results indicated that wheat straw application promoted radish growth until the second harvest, while pig manure application improved radish biomass in Acid Ferralsols regardless of harvesting seasons. Application with pig manure might be more effective in lowering the Cd uptake by radish than wheat straw. Especially when pig manure of 11.9 g TOC kg(-1) amended into Acid Ferralsols, Cd contents in leaves and roots of radish decreased by 89.2 and 95.7 % at the second harvest, respectively. The changes in Cd fractions distribution in soils after application were contributed to the decline of Cd availability. Furthermore, significantly negative linear correlation (P radish. Thus, it is recommended to stabilize soil Cd and reducing plant uptake by application with composted manure without or slightly contaminated with metals.

  14. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw

    DEFF Research Database (Denmark)

    Thygesen, A.; Thomsen, A.B.; Schmidt, A.S.

    2003-01-01

    The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension suppleme......The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension...... hydrolysis of filter cake from wet-oxidised wheat straw for 48 h with an enzyme loading of 5 FPU/g biomass resulted in glucose yields from cellulose of 58% (w/w) and 39% (w/w) using enzymes produced by R brasilianum and a commercial enzyme mixture, respectively. At higher enzyme loading (25 FPU/g biomass......) using either enzyme mixtures the glucose yield from cellulose was in the range of 77-79% (w/w)....

  15. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw.

    Science.gov (United States)

    Ozbayram, E Gozde; Kleinsteuber, Sabine; Nikolausz, Marcell; Ince, Bahar; Ince, Orhan

    2017-08-01

    The aim of this study was to determine the potential of bioaugmentation with cellulolytic rumen microbiota to enhance the anaerobic digestion of lignocellulosic feedstock. An anaerobic cellulolytic culture was enriched from sheep rumen fluid using wheat straw as substrate under mesophilic conditions. To investigate the effects of bioaugmentation on methane production from straw, the enrichment culture was added to batch reactors in proportions of 2% (Set-1) and 4% (Set-2) of the microbial cell number of the standard inoculum slurry. The methane production in the bioaugmented reactors was higher than in the control reactors. After 30 days of batch incubation, the average methane yield was 154 mL N CH 4 g VS -1 in the control reactors. Addition of 2% enrichment culture did not enhance methane production, whereas in Set-2 the methane yield was increased by 27%. The bacterial communities were examined by 454 amplicon sequencing of 16S rRNA genes, while terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of mcrA genes was applied to analyze the methanogenic communities. The results highlighted that relative abundances of Ruminococcaceae and Lachnospiraceae increased during the enrichment. However, Cloacamonaceae, which were abundant in the standard inoculum, dominated the bacterial communities of all batch reactors. T-RFLP profiles revealed that Methanobacteriales were predominant in the rumen fluid, whereas the enrichment culture was dominated by Methanosarcinales. In the batch rectors, the most abundant methanogens were affiliated to Methanobacteriales and Methanomicrobiales. Our results suggest that bioaugmentation with sheep rumen enrichment cultures can enhance the performance of digesters treating lignocellulosic feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The effects of different levels of applied wheat straw in different dates on saffron (Crocus sativus L. daughter corms and flower initiation criteria in the second year

    Directory of Open Access Journals (Sweden)

    Parviz Rezvani Moghaddam

    2013-12-01

    Full Text Available In order to investigate the effects of different levels of applied wheat straw as mulch in different dates on flower characteristics and corms behavior of Saffron (Crocus sativus L. in the second year, a field experiment was conducted as factorial layout based on a randomized complete block design with three replications at Faculty of Agriculture, Ferdowsi University of Mashhad, Iran in years of 2010-2011 and 2011-2012. The experimental treatments were all combination of different levels of wheat straw as mulch (0, 2, 4, 6 and 8 t. ha-1 based on surface applied method in three different dates (June, August and October. The results showed that the applied wheat straw as mulch in different dates had significant effects on flower characteristics of saffron (flower number, fresh and dried flower and stigma+ style yields. Based on these results, applied wheat straw as mulch in October had highest effects on increasing flower number, fresh and dried flower yields (by 46, 61 and 65%, respectively. In addition, applied wheat straw as mulch had significant effects on number and yield of replacement corms. The applied straw as mulch in October increased yield of replacement corms with 12 g or higher weight and total corm yield of saffron by 104 and 103 %, respectively, as compared to control treatment.

  17. Improvement of yield of the edible and medicinal mushroom Lentinula edodes on wheat straw by use of supplemented spawn

    Directory of Open Access Journals (Sweden)

    Rigoberto Gaitán-Hernández

    2014-06-01

    Full Text Available The research evaluated the interactions of two main factors (strain / types of spawn on various parameters with the purpose to assess its effect on yield and biochemical composition of Lentinula edodes fruiting bodies cultivated on pasteurized wheat straw. The evaluation was made with four strains (IE-40, IE-105, IE-124 and IE-256. Different types of spawns were prepared: Control (C (millet seed, 100%, F1 (millet seed, 88.5%; wheat bran, 8.8%; peat moss, 1.3%; and CaS0(4, 1.3% and F2 (the same formula as F1, but substituting the wheat bran with powdered wheat straw. Wheat straw was pasteurized by soaking it for 1 h in water heated to 65 °C. After this the substrate (2 kg wet weight was placed in polypropylene bags. The bags were inoculated with each spawn (5% w/w and incubated in a dark room at 25 °C. A proximate analysis of mature fruiting bodies was conducted. The mean Biological Efficiency (BE varied between 66.0% (C-IE-256 and 320.1% (F1-IE-124, with an average per strain of 125.6%. The highest mean BE was observed on spawn F1 (188.3%, significantly different from C and F2. The protein content of fruiting bodies was high, particularly in strain IE-40-F1 (17.7%. The amount of fat varied from 1.1 (F1-IE-40 to 2.1% (F2-IE-105 on dry matter. Carbohydrates ranged from 58.8% (F1-IE-40 to 66.1% (F1-IE-256. The energy value determined ranged from 302.9 kcal (F1-IE-40 to 332.0 kcal (F1-IE-256. The variability on BE observed in this study was significantly influenced by the spawn's formulation and genetic factors of the different strains.

  18. Improvement of yield of the edible and medicinal mushroom Lentinula edodes on wheat straw by use of supplemented spawn

    Science.gov (United States)

    Gaitán-Hernández, Rigoberto; Cortés, Norberto; Mata, Gerardo

    2014-01-01

    The research evaluated the interactions of two main factors (strain / types of spawn) on various parameters with the purpose to assess its effect on yield and biochemical composition of Lentinula edodes fruiting bodies cultivated on pasteurized wheat straw. The evaluation was made with four strains (IE-40, IE-105, IE-124 and IE-256). Different types of spawns were prepared: Control (C) (millet seed, 100%), F1 (millet seed, 88.5%; wheat bran, 8.8%; peat moss, 1.3%; and CaS04, 1.3%) and F2 (the same formula as F1, but substituting the wheat bran with powdered wheat straw). Wheat straw was pasteurized by soaking it for 1 h in water heated to 65 °C. After this the substrate (2 kg wet weight) was placed in polypropylene bags. The bags were inoculated with each spawn (5% w/w) and incubated in a dark room at 25 °C. A proximate analysis of mature fruiting bodies was conducted. The mean Biological Efficiency (BE) varied between 66.0% (C-IE-256) and 320.1% (F1-IE-124), with an average per strain of 125.6%. The highest mean BE was observed on spawn F1 (188.3%), significantly different from C and F2. The protein content of fruiting bodies was high, particularly in strain IE-40-F1 (17.7%). The amount of fat varied from 1.1 (F1-IE-40) to 2.1% (F2-IE-105) on dry matter. Carbohydrates ranged from 58.8% (F1-IE-40) to 66.1% (F1-IE-256). The energy value determined ranged from 302.9 kcal (F1-IE-40) to 332.0 kcal (F1-IE-256). The variability on BE observed in this study was significantly influenced by the spawn’s formulation and genetic factors of the different strains. PMID:25242929

  19. Detailed Componential Characterization of Extractable Species with Organic Solvents from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Yong-Chao Lu

    2017-01-01

    Full Text Available Componential analysis of extractives is important for better understanding the structure and utilization of biomass. In this investigation, wheat straw (WS was extracted with petroleum ether (PE and carbon disulfide (CS2 sequentially, to afford extractable fractions EFPE and EFCS2, respectively. Detailed componential analyses of EFPE and EFCS2 were carried out with Fourier transform infrared (FTIR spectroscopy, gas chromatography/mass spectrometry (GC/MS, X-ray photoelectron spectroscopy (XPS, transmission electron microscopy (TEM, energy dispersive spectrometry (EDS, and electron probe microanalysis (EPMA. Total extractives were quantified 4.96% by weight compared to the initial WS sample. FTIR and GC/MS analyses results showed that PE was effective for the extraction of ketones and waxes derived compounds; meanwhile CS2 preferred ketones and other species with higher degrees of unsaturation. Steroids were enriched into EFPE and EFCS2 with considerable high relative contents, namely, 64.52% and 79.58%, respectively. XPS analysis showed that most of the C atoms in extractives were contained in the structures of C-C, C-COOR, and C-O. TEM-EDS and EPMA analyses were used to detect trace amount elements, such as Al, Si, P, S, Cl, and Ca atoms. Detailed characterization of extractable species from WS can provide more information on elucidation of extractives in biomass.

  20. Electrocoagulation treatment of black liquor from soda-AQ pulping of wheat straw.

    Science.gov (United States)

    Rastegarfar, N; Behrooz, R; Bahramifar, N

    2015-02-01

    The effect of electrocoagulation treatment was investigated on black liquor from soda-anthraquinone (AQ) pulping of wheat straw. Removal of phenol, chemical oxygen demand (COD), color, total suspended solids (TSS), total dissolved solids (TDS), and total solids (TS) from black liquor was investigated at different current densities by using aluminum electrodes at various electrolysis times (10, 25, 40, 55, and 70 min) and pH levels (3, 5, 7, 9, and 10.5). It was observed that at 16 V, electrolysis time of 55 min and current density of 61.8 mA/cm(2) were sufficient for the removal of the pollutants. Energy consumption was evaluated as an important cost-relation parameter. Results showed that the electrocoagulation treatment reduced color intensity from the high initial value of 18,750 to 220 PCU. This was strongly influenced by the pH level of the wastewater. In addition, it was found that the removal efficiency increased with increasing of current density. The maximum efficiencies for removal were 98.8, 81, 80, 92, 61, and 68 % for color, phenol, COD, TSS, TDS, and TS, respectively. The lowest energy consumption values were obtained at neutral pH after 55 min. Electrocoagulation was found to be an effective, simple, and low-cost technique to treat black liquor.

  1. Evaluation of different water-washing treatments effects on wheat straw combustion properties.

    Science.gov (United States)

    Ma, Qiulin; Han, Lujia; Huang, Guangqun

    2017-09-08

    A series of experiments was conducted to explore the effects of various water-washing solid-liquid ratios (1:50 and 1:10) and the stirring on wheat straw (WS) combustion properties. Comparing different solid-liquid ratio groups, a 16% increment in the higher heating value was obtained for 1:50 groups and only 5% for 1:10 groups relative to the raw material. Moreover, energy was lost 4-26 times greater in 1:10 groups than 1:50 groups. While water-washing reduced the comprehensive combustibility index by 14.89%-32.09%, the index values of washed WS were all higher than 2, indicating good combustion performance. The combustion activation energy of four washed WS were 175, 172, 186, and 176kJ/mol, which were all higher than the 160kJ/mol of WS. The fouling/slagging propensity of washed WS reduced to a lower possibility compared to medium of untreated WS. Overall, the recommended condition for washing WS before combustion is 1:50 ratio without stirring. Copyright © 2017. Published by Elsevier Ltd.

  2. Potential of a gypsum-free composting process of wheat straw for mushroom production

    Science.gov (United States)

    Mouthier, Thibaut M. B.; Kilic, Baris; Vervoort, Pieter; Gruppen, Harry

    2017-01-01

    Wheat straw based composting generates a selective substrate for mushroom production. The first phase of this process requires 5 days, and a reduction in time is wished. Here, we aim at understanding the effect of gypsum on the duration of the first phase and the mechanism behind it. Hereto, the regular process with gypsum addition and the same process without gypsum were studied during a 5-day period. The compost quality was evaluated based on compost lignin composition analysed by py-GC/MS and its degradability by a commercial (hemi-)cellulolytic enzyme cocktail. The composting phase lead to the decrease of the pyrolysis products 4-vinylphenol and 4-vinylguaiacol that can be associated with p-coumarates and ferulates linking xylan and lignin. In the regular compost, the enzymatic conversion reached 32 and 39% for cellulose, and 23 and 32% for xylan after 3 and 5 days, respectively. In absence of gypsum similar values were reached after 2 and 4 days, respectively. Thus, our data show that in absence of gypsum the desired compost quality was reached 20% earlier compared to the control process. PMID:28982119

  3. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration.

    Science.gov (United States)

    Kongjan, Prawit; Angelidaki, Irini

    2010-10-01

    Hydrogen production from hemicellulose-rich wheat straw hydrolysate was investigated in continuously-stirred tank reactor (CSTR), up-flow anaerobic sludge bed (UASB) reactor, and anaerobic filter (AF) reactor. The CSTR was operated at an hydraulic retention time (HRT) of 3 days, and the UASB and AF reactors were operated at 1 day HRT, using mixed extreme thermophiles at 70 °C. The highest hydrogen production yield of 212.0±6.6 mL-H₂/g-sugars, corresponding to a hydrogen production rate of 821.4±25.5 mL-H₂/dL was achieved with the UASB reactor. Lowering the HRT to 2.5 days caused cell mass washout in the CSTR, while the UASB and AF reactors gave fluctuating and reducing hydrogen production at a 0.5-day HRT. The original rate and yield were recovered when the HRT was increased back to 1 day. These results demonstrate that reactor configuration is an important factor for enhancing and stabilizing H₂ production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome

    Science.gov (United States)

    Davidi, Lital; Moraïs, Sarah; Artzi, Lior; Knop, Doriv; Hadar, Yitzhak; Arfi, Yonathan; Bayer, Edward A.

    2016-01-01

    Efficient breakdown of lignocellulose polymers into simple molecules is a key technological bottleneck limiting the production of plant-derived biofuels and chemicals. In nature, plant biomass degradation is achieved by the action of a wide range of microbial enzymes. In aerobic microorganisms, these enzymes are secreted as discrete elements in contrast to certain anaerobic bacteria, where they are assembled into large multienzyme complexes termed cellulosomes. These complexes allow for very efficient hydrolysis of cellulose and hemicellulose due to the spatial proximity of synergistically acting enzymes and to the limited diffusion of the enzymes and their products. Recently, designer cellulosomes have been developed to incorporate foreign enzymatic activities in cellulosomes so as to enhance lignocellulose hydrolysis further. In this study, we complemented a cellulosome active on cellulose and hemicellulose by addition of an enzyme active on lignin. To do so, we designed a dockerin-fused variant of a recently characterized laccase from the aerobic bacterium Thermobifida fusca. The resultant chimera exhibited activity levels similar to the wild-type enzyme and properly integrated into the designer cellulosome. The resulting complex yielded a twofold increase in the amount of reducing sugars released from wheat straw compared with the same system lacking the laccase. The unorthodox use of aerobic enzymes in designer cellulosome machinery effects simultaneous degradation of the three major components of the plant cell wall (cellulose, hemicellulose, and lignin), paving the way for more efficient lignocellulose conversion into soluble sugars en route to alternative fuels production. PMID:27621442

  5. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk.

    Science.gov (United States)

    Shen, Zhengtao; Zhang, Yunhui; McMillan, Oliver; Jin, Fei; Al-Tabbaa, Abir

    2017-05-01

    The adsorption characteristics and mechanisms of Ni 2+ on four-standard biochars produced from wheat straw pellets (WSP550, WSP700) and rice husk (RH550, RH700) at 550 and 700 °C, respectively, were investigated. The kinetic results show that the adsorption of Ni 2+ on the biochars reached an equilibrium within 5 min. The increase of the solid to liquid ratio resulted in an increase of Ni 2+ removal percentage but a decrease of the adsorbed amount of Ni 2+ per weight unit of biochar. The Ni 2+ removal percentage increased with the increasing of initial solution pH values at the range of 2-4, was relatively constant at the pH range of 4-8, and significantly increased to ≥98% at pH 9 and stayed constantly at the pH range of 9-10. The calculated maximum adsorption capacities of Ni 2+ for the biochars follow the order of WSP700 > WSP550 > RH700 > RH550. Both cation exchange capacity and pH of biochar can be a good indicator of the maximum adsorption capacity for Ni 2+ showing a positively linear and exponential relationship, respectively. This study also suggests that a carefully controlled standardised production procedure can make it reliable to compare the adsorption capacities between different biochars and investigate the mechanisms involved.

  6. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice-wheat cropping systems in central China

    Science.gov (United States)

    Zhang, Z. S.; Guo, L. J.; Liu, T. Q.; Li, C. F.; Cao, C. G.

    2015-12-01

    Significant efforts have been devoted to assess the effects of conservation tillage (no-tillage [NT] and straw returning) on greenhouse gas (GHG) emissions, global warming potential (GWP), greenhouse gas intensity (GHGI), and net economic budget in crop growing seasons. However, only a few studies have evaluated the effects conservation tillage on the net ecosystem economic budget (NEEB) in a rice-wheat cropping system. Therefore, a split-plot field experiment was performed to comprehensively evaluate the effects of tillage practices (i.e., conventional intensive tillage [CT] and NT) and straw returning methods (i.e., straw returning or removal of preceding crop) on the soil total organic carbon (TOC), GHG emissions, GWP, GHGI, and NEEB of sandy loam soil in a rice-wheat cropping system in central China. Conservation tillage did not affect rice and wheat grain yields. Compared with CT and straw removal, NT and straw returning significantly increased the TOC of 0-5 cm soil layer by 2.9% and 7.8%, respectively. However, the TOC of 0-20 cm soil layer was not affected by tillage practices and straw returning methods. NT did not also affect the N2O emissions during the rice and wheat seasons; NT significantly decreased the annual CH4 emissions by 7.5% and the annual GWP by 7.8% compared with CT. Consequently, GHGI under NT was reduced by 8.1%. Similar to NT, straw returning did not affect N2O emissions during the rice and wheat seasons. Compared with straw removal, straw returning significantly increased annual CH4 emissions by 35.0%, annual GWP by 32.0%, and annual GHGI by 31.1%. Straw returning did not also affect NEEB; by contrast, NT significantly increased NEEB by 15.6%. NT without straw returning resulted in the lowest GWP, the lowest GHGI, and the highest NEEB among all treatments. This finding suggested that NT without straw returning may be applied as a sustainable technology to increase economic and environmental benefits. Nevertheless, environmentally straw

  7. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer

    Science.gov (United States)

    Xia, Longlong; Xia, Yongqiu; Ma, Shutan; Wang, Jinyang; Wang, Shuwei; Zhou, Wei; Yan, Xiaoyuan

    2016-08-01

    Impacts of simultaneous inputs of crop straw and nitrogen (N) fertilizer on greenhouse gas (GHG) emissions and N losses from rice production are not well understood. A 2-year field experiment was established in a rice-wheat cropping system in the Taihu Lake region (TLR) of China to evaluate the GHG intensity (GHGI) as well as reactive N intensity (NrI) of rice production with inputs of wheat straw and N fertilizer. The field experiment included five treatments of different N fertilization rates for rice production: 0 (RN0), 120 (RN120), 180 (RN180), 240 (RN240), and 300 kg N ha-1 (RN300, traditional N application rate in the TLR). Wheat straws were fully incorporated into soil before rice transplantation. The meta-analytic technique was employed to evaluate various Nr losses. Results showed that the response of rice yield to N rate successfully fitted a quadratic model, while N fertilization promoted Nr discharges exponentially (nitrous oxide emission, N leaching, and runoff) or linearly (ammonia volatilization). The GHGI of rice production ranged from 1.20 (RN240) to 1.61 kg CO2 equivalent (CO2 eq) kg-1 (RN0), while NrI varied from 2.14 (RN0) to 10.92 g N kg-1 (RN300). Methane (CH4) emission dominated the GHGI with a proportion of 70.2-88.6 % due to direct straw incorporation, while ammonia (NH3) volatilization dominated the NrI with proportion of 53.5-57.4 %. Damage costs to environment incurred by GHG and Nr releases from current rice production (RN300) accounted for 8.8 and 4.9 % of farmers' incomes, respectively. Cutting N application rate from 300 (traditional N rate) to 240 kg N ha-1 could improve rice yield and nitrogen use efficiency by 2.14 and 10.30 %, respectively, while simultaneously reducing GHGI by 13 %, NrI by 23 %, and total environmental costs by 16 %. Moreover, the reduction of 60 kg N ha-1 improved farmers' income by CNY 639 ha-1, which would provide them with an incentive to change the current N application rate. Our study suggests that GHG

  8. Comparison of Two Cellulomonas Strains and Their Interaction with Azospirillum brasilense in Degradation of Wheat Straw and Associated Nitrogen Fixation

    Science.gov (United States)

    Halsall, Dorothy M.; Gibson, Alan H.

    1986-01-01

    A mutant strain of Cellulomonas sp. CS1-17 was compared with Cellulomonas gelida 2480 as the cellulolytic component of a mixed culture which was responsible for the breakdown of wheat straw to support asymbiotic nitrogen fixation by Azospirillum brasilense Sp7 (ATCC 29145). Cellulomonas sp. strain CSI-17 was more efficient than was C. gelida in cellulose breakdown at lower oxygen concentrations and, in mixed culture with A. brasilense, it supported higher nitrogenase activity (C2H2 reduction) and nitrogen fixation with straw as the carbon source. Based on gravimetric determinations of straw breakdown and total N determinations, the efficiency of nitrogen fixation was 72 and 63 mg of N per g of straw utilized for the mixtures containing Cellulomonas sp. and C. gelida, respectively. Both Cellulomonas spp. and Azospirillum spp. exhibited a wide range of pH tolerance. When introduced into sterilized soil, the Cellulomonas sp.-Azospirillum brasilense association was more effective in nitrogen fixation at a pH of 7.0 than at the native soil pH (5.6). This was also true of the indigenous diazotrophic microflora of this soil. The potential implications of this work to the field situation are discussed. PMID:16347043

  9. Influence of Substrate Particle Size and Wet Oxidation on Physical Surface Structures and Enzymatic Hydrolysis of Wheat Straw

    DEFF Research Database (Denmark)

    Pedersen, Mads; Meyer, Anne S.

    2009-01-01

    In the worldwide quest for producing biofuels from lignocellulosic biomass, the importance of the substrate pretreatment is becoming increasingly apparent. This work examined the effects of reducing the substrate particle sizes of wheat straw by grinding prior to wet oxidation and enzymatic...... with reduced particle size. After wet oxidation, the glucose release from the smallest particles (53-149 m) reached 90% of the theoretical maximum after 24 h of enzyme treatment. The corresponding glucose release from the wet oxidized reference samples (2-4 cm) was 65% of the theoretical maximum. The xylose...... release only increased (by up to 39%) with particle size decrease for the straw particles that had not been wet oxidized. Wet oxidation pretreatment increased the enzymatic xylose release by 5.4 times and the glucose release by 1.8 times across all particle sizes. Comparison of scanning electron...

  10. Removal of cadmium in aqueous solution using wheat straw biochar: effect of minerals and mechanism.

    Science.gov (United States)

    Liu, Li; Fan, Shisuo

    2018-01-10

    The biochars were produced from wheat straw (WSBC) at different pyrolytic temperatures. Biochars were characterized by multiple instrumental techniques and were applied to remove Cd from aqueous solution. The removal mechanism was explored, and the quantitative information regarding the relative contribution of related mechanisms to Cd sorption on biochars was provided. The results showed that pseudo-second-order kinetic model, TC (two-compartment) model, and Freundlich isotherm could well fit the process of Cd sorption on biochars. The sorption could be divided into fast and slow adsorption stages. The order of the Cd removal capacity by biochar was WSBC700 > WSBC500 > WSBC300. Adsorption amount of Cd by biochar reduced when the biochar was rinsed with 1.0 M HCl, which indicated that acid-soluble minerals in biochar played an important role during the Cd removal process, especially for the biochar obtained at high pyrolytic temperature. Various equipments were used to investigate the interaction mechanism between biochar and Cd. Mineral precipitation, surface complexation, and cation-π interaction were the main mechanisms of Cd sorption on the biochars. The contribution of cation-π mechanism was in the range of 25.42-48.58%, 2.18-19.30% for surface complexation and 32.12-72.41% for mineral precipitation, respectively. The pyrolytic temperature significantly influenced the removal capacity and mechanism of Cd on biochars. The cation-π mechanism was predominant for biochar obtained at lower pyrolytic temperature. However, mineral precipitation mechanism played a crucial role for biochar obtained at high pyrolytic temperature. These results are helpful for the design or screening of "engineered biochar" to act as sorbents to remove or immobilized Cd in polluted soil or water. Graphical abstract ᅟ.

  11. Effects of Branched-chain Amino Acids on Ruminal Fermentation of Wheat Straw

    Directory of Open Access Journals (Sweden)

    Hui Ling Zhang

    2013-04-01

    Full Text Available This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA, and ammonia nitrogen (NH3-N in the ruminal fluid were determined. Dry matter (DM and neutral detergent fiber (NDF degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields (p≤0.001. However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001. The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05. Moreover, the proportions of propionate and butyrate decreased (p<0.01 with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001 by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001 increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L.

  12. The addition of ground wheat straw as a fiber source in the gestation diet of sows and the effect on sow and litter performance for three successive parities.

    Science.gov (United States)

    Veum, T L; Crenshaw, J D; Crenshaw, T D; Cromwell, G L; Easter, R A; Ewan, R C; Nelssen, J L; Miller, E R; Pettigrew, J E; Ellersieck, M R

    2009-03-01

    A regional experiment was conducted at 8 experiment stations, with a total of 320 sows initially, to evaluate the efficacy of adding 13.35% ground wheat straw to a corn-soybean meal gestation diet for 3 successive gestation-lactation (reproductive) cycles compared with sows fed a control diet without straw. A total of 708 litters were farrowed over 3 reproductive cycles. The basal gestation diet intake averaged 1.95 kg daily for both treatments, plus 0.30 kg of straw daily for sows fed the diet containing ground wheat straw (total intake of 2.25 kg/d). During lactation, all sows on both gestation treatments were fed ad libitum the standard lactation diet used at each station. Response criteria were sow farrowing and rebreeding percentages, culling factors and culling rate, weaning-to-estrus interval, sow BW and backfat measurements at several time points, and litter size and total litter weight at birth and weaning. Averaged over 3 reproductive cycles, sows fed the diet containing wheat straw farrowed and weaned 0.51 more pigs per litter (P sows fed the control gestation diet. Sows fed the gestation diet containing wheat straw consumed more (P = 0.01) lactation diet per day than control sows. There were no gestation diet treatment differences for any sow fate criterion (farrowing and rebreeding percentages, and culling rate), any sow BW and backfat measurement, or the weaning-to-estrus interval. Lactation diet intake and all sow BW and backfat measurements increased with increasing parity. In conclusion, when the daily intake of the basal gestation diet was equalized for both treatments, the addition of 13.35% ground wheat straw to the gestation diet improved sow and litter performance, with increases in litter size and total litter weight at birth and weaning compared with control sows and litters.

  13. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22

    DEFF Research Database (Denmark)

    Zhang, Yuming; Chen, Xiangrong; Luo, Jianquan

    2014-01-01

    features, an efficient process was developed to produce LA from wheat straw. The process consisted of biomass pretreatment by dilute sulfuric acid and subsequent SSCF (simultaneous saccharification and co-fermentation), while the operations of solid–liquid separation and detoxification were avoided. Using......A thermophilic lactic acid (LA) producer was isolated and identified as Bacillus coagulans strain IPE22. The strain showed remarkable capability to ferment pentose, hexose and cellobiose, and was also resistant to inhibitors from lignocellulosic hydrolysates. Based on the strain’s promising...

  14. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments

    DEFF Research Database (Denmark)

    Schmidt, A. S.; Mallon, S.; Thomsen, Anne Belinda

    2002-01-01

    reacted differently in the two processes. The chemical composition changed little following enzyme treatment. After alkaline wet oxidation, fibers enriched in cellulose were obtained. With both materials, almost all hemicellulose (80%) together with a large portion of the lignin were solubilised...... by alkaline wet oxidation, but essentially all cellulose remained in the solid fraction. Following enzyme treatment most material remained as a solid. For wheat straw, reaction with acetic anhydride indicated that both treatments resulted in more hydroxyl groups being accessible for reaction. The enzyme...

  15. Effect of biostimulation using sewage sludge, soybean meal and wheat straw on oil degradation and bacterial community composition in a contaminated desert soil

    Directory of Open Access Journals (Sweden)

    Sumaiya eAl-Kindi

    2016-03-01

    Full Text Available Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography-mass spectrometry (GC-MS, shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities more than the addition of soybean meal. GC-MS analysis revealed that the addition of addition of sewage sludge and wheat straw resulted in 1.7 to 1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥ 90% of the C14 to C30 alkanes were measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5-86.4% of total sequences of acquired sequences from the original soil belonged to Alphaproteobacteria, Gammaproteobacteria and Firmicutes. Multivariate analysis of operational taxonomic units (OTUs placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R=0.66, P=0.0001. The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95-98% of the total sequences belonging to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils.

  16. Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400.

    Science.gov (United States)

    Erdei, Borbála; Frankó, Balázs; Galbe, Mats; Zacchi, Guido

    2013-03-10

    Wheat straw was pretreated and fermented to ethanol. Two strains, which had been mutated from the genetically modified Saccharomyces cerevisiae TMB3400, KE6-12 and KE6-13i, have been used in this study and the results of performance were compared to that of the original strain. The glucose and xylose co-fermentation ability was investigated in batch fermentation of steam-pretreated wheat straw (SPWS) liquid (undiluted, and diluted 1.5 and 2 times). Both strains showed improved xylose uptake in diluted SPWS liquid, and increased ethanol yields compared with the original TMB3400 strain, although xylitol formation also increased slightly. In undiluted SPWS liquid, however, only KE6-13i performed better than the original strain regarding xylose utilization. Fed-batch fermentation of 1.5 and 2 times diluted liquid was performed by adding the glucose-rich hydrolysates from enzymatic hydrolysis of the solid fraction of SPWS at a constant feed rate after 5 h of fermentation, when the glucose had been depleted. The modified strains showed improved xylose conversion; however, the ethanol yield was not significantly improved due to increased glycerol production. Fed-batch fermentation resulted in faster xylose utilization than in the batch cases. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions.

    Science.gov (United States)

    Zhang, Yuming; Chen, Xiangrong; Qi, Benkun; Luo, Jianquan; Shen, Fei; Su, Yi; Khan, Rashid; Wan, Yinhua

    2014-07-01

    Bacillus coagulans IPE22 was used to produce lactic acid (LA) from mixed sugar and wheat straw hydrolysates, respectively. All fermentations were conducted under non-sterilized conditions and sodium hydroxide was used as neutralizing agent to avoid the production of insoluble CaSO4. In order to eliminate the sequential utilization of mixed sugar and feedback inhibition during batch fermentation, membrane integrated repeated batch fermentation (MIRB) was used to improve LA productivity. With MIRB, a high cell density was obtained and the simultaneous fermentation of glucose, xylose and arabinose was successfully realized. The separation of LA from broth by membrane in batch fermentation also decreased feedback inhibition. MIRB was carried out using wheat straw hydrolysates (29.72 g/L glucose, 24.69 g/L xylose and 5.14 g/L arabinose) as carbon source, LA productivity was increased significantly from 1.01 g/L/h (batch 1) to 2.35 g/L/h (batch 6) by the repeated batch fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Improving the fermentation quality of wheat straw silage stored at low temperature by psychrotrophic lactic acid bacteria.

    Science.gov (United States)

    Zhang, Miao; Lv, Haoxin; Tan, Zhongfang; Li, Ya; Wang, Yanping; Pang, Huili; Li, Zongwei; Jiao, Zhen; Jin, Qingsheng

    2017-02-01

    This study aimed to explore the feasible approaches to develop a silage production technique in regions with low temperatures. An effective low-temperature silage technology system was constructed and two frigostable Lactobacillus (L.) strains isolated from alpine pastures were selected and proved to be available for wheat straw silage at 5°C. The strains QZ227 and QZ887 were both identified as L. plantarum according to the phenotype, 16S rRNA, and RecA gene analysis. QZ227, QZ887 and a commercial inoculant FG1 consisting of L. plantarum were effective for improving the fermentation quality of wheat straws silage at 5°C for 30 days as indicated by the higher content of lactic acid and for 60 days by lower pH values, while the control with sterile water instead conferred reduced benefits. Additionally, silages fermented at low temperature proved to be acceptable for feeding livestock after being placed in a simulated environmental temperature of 20°C for 14 days to detect its edibility during the early spring when the temperature begins to rise. Both QZ227 and QZ887 showed potential applications of silage making in frigid areas and were effective inoculants in a low-temperature silage technology system. © 2016 Japanese Society of Animal Science.

  19. Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by Saccharomyces cerevisiae.

    Science.gov (United States)

    Jørgensen, Henning

    2009-05-01

    Wheat straw hydrolysate produced by enzymatic hydrolysis of hydrothermal pretreated wheat straw at a very high solids concentration of 30% dry matter (w/w) was used for testing the effect of nutrients on their ability to improve fermentation performance of Saccharomyces cerevisiae. The nutrients tested were MgSO4 and nitrogen sources; (NH4)2SO4, urea, yeast extract, peptone and corn steep liquor. The fermentation was tested in a separate hydrolysis and fermentation process using a low amount of inoculum (0.33 g kg(-1)) and a non-adapted baker's yeast strain. A factorial screening design revealed that yeast extract, peptone, corn steep liquor and MgSO4 were the most significant factors in obtaining a high fermentation rate, high ethanol yield and low glycerol formation. The highest volumetric ethanol productivity was 1.16 g kg(-1) h(-1) and with an ethanol yield close to maximum theoretical. The use of urea or (NH4)2SO4 separately, together or in combination with MgSO4 or vitamins did not improve fermentation rate and resulted in increased glycerol formation compared to the use of yeast extract. Yeast extract was the single best component in improving fermentation performance and a concentration of 3.5 g kg(-1) resulted in high ethanol yield and a volumetric productivity of 0.6 g kg(-1) h(-1).

  20. Role of Bacillus spp. in antagonism between Pleurotus ostreatus and Trichoderma harzianum in heat-treated wheat-straw substrates.

    Science.gov (United States)

    Velázquez-Cedeño, Marnyye; Farnet, Anne Marie; Mata, Gerardo; Savoie, Jean-Michel

    2008-10-01

    This study aimed to identify bacteria involved in Trichodermaharzianum inhibition while promoting Pleurotus ostreatus defences in order to favour cultivation-substrate selectivity for mushroom production. PCR-DGGE profiles of total DNA from wheat-straw substrate showed weak differences between bacterial communities from substrate inoculated with P. ostreatus with or without T. harzianum. The major cultivable bacteria were isolated from three batches of wheat-straw-based cultivation substrates showing an efficient selectivity. They were screened for their ability to inhibit T.harzianum. By using specific media for bacterial isolation and by sequencing certain 16S-rDNA, we observed that Bacillus spp. were the main inhibitors. Among them, a dominant species was identified as Paenibacillus polymyxa. This species was co-cultivated on agar media with P. ostreatus. The measurement of laccase activities from culture plugs indicated that P. polymyxa induced increases in enzyme activities. Bacillus spp. and specifically P. polymyxa from cultivation substrates are implicated in their selectivity by both inhibiting the growth of T.harzianum and stimulating defences of the mushroom P. ostreatus through the induction of laccases. The management of microbial communities during P.ostreatus cultivation-substrate preparation in order to favour P. polymyxa and other Bacillus spp. growth, can be a way to optimize the development of P. ostreatus for mushroom production or other environmental uses of this fungus.

  1. Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification.

    Science.gov (United States)

    Qiu, Jingwen; Wang, Qing; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Song, Chun

    2017-03-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H 3 PO 4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H 3 PO 4 proportion, and time. H 3 PO 4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H 3 PO 4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H 3 PO 4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H 3 PO 4 proportion of 70.2 % (H 2 O 2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.

  2. Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw

    Science.gov (United States)

    Yi Ding; Bo Du; Xuebing Zhao; J.Y. Zhu; Dehua Liu

    2017-01-01

    Phosphomolybdic acid (PMo12) was used as an electron mediator and proton carrier to mediate biomass pretreatment for ethanol production and electricity generation from wheat straw. In the pretreatment, lignin was oxidized anaerobically by PMo12 with solubilization of a fraction of hemicelluloses, and the PMo12...

  3. Evolution of humic acid-like and core-humic acid-like during high-rate composting of pig faeces amended with wheat straw

    NARCIS (Netherlands)

    Genevini, P.; Adani, F.; Veeken, A.H.M.

    2002-01-01

    The changes in the absolute amounts and in the composition of humic acid-like (RA-like) and core-humic acid-like (core-RA-like) were monitored for the high-rate composting process (4 weeks) of wheat straw-amended pig faeces. Absolute amounts of HA-like and core-HA-like were obtained by extraction of

  4. Intake and utilization of energy from ammonia-treated and untreated wheat straw by steers and wether sheep given a basal diet of grass pellets and hay.

    NARCIS (Netherlands)

    Oosting, S.J.; Boekholt, H.A.; Los, M.J.N.; Leffering, C.P.

    1993-01-01

    Two experiments, experiment 1 with six steers in a 3 × 3 Latin-square design and experiment 2 with four wether sheep in a cross-over design, were conducted to study the effect of species and ammonia treatment on intake and utilization of the energy of untreated wheat straw. Treatments were: (1)

  5. Chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage.

    Science.gov (United States)

    Babaeinasab, Y; Rouzbehan, Y; Fazaeli, H; Rezaei, J

    2015-09-01

    The aim of this study was to determine the effect of molasses and lactic acid bacteria (LAB) on the chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of an ensiled potato-wheat straw mixture in a completely randomized design with 4 replicates. Wheat straw was harvested at full maturity and potato tuber when the leaves turned yellowish. The potato-wheat straw (57:43 ratio, DM basis) mixture was treated with molasses, LAB, or a combination. Lalsil Fresh LB (Lallemand, France; containing NCIMB 40788) or Lalsil MS01 (Lallemand, France; containing MA18/5U and MA126/4U) were each applied at a rate of 3 × 10 cfu/g of fresh material. Treatments were mixed potato-wheat straw silage (PWSS) without additive, PWSS inoculated with Lalsil Fresh LB, PWSS inoculated with Lalsil MS01, PWSS + 5% molasses, PWSS inoculated with Lalsil Fresh LB + 5% molasses, PWSS inoculated with Lalsil MS01 + 5% molasses, and corn silage (CS). The compaction densities of PWSS treatments and CS were approximately 850 and 980 kg wet matter/m, respectively. After anaerobic storage for 90 d, chemical composition, silage fermentation characteristics, in vitro gas production (GP), estimated OM disappearance (OMD), ammonia-N, VFA, microbial CP (MCP) production, and cellulolytic bacteria count were determined. Compared to CS, PWSS had greater ( fermentation quality of PWSS was lesser than that of CS. However, addition of molasses and molasses + LAB improved fermentation quality of PWSS.

  6. Enzymatic hydrolyses of pretreated eucalyptus residues, wheat straw or olive tree pruning, and their mixtures towards flexible sugar-based biorefineries

    DEFF Research Database (Denmark)

    Silva-Fernandes, Talita; Marques, Susana; Rodrigues, Rita C. L. B.

    2016-01-01

    Eucalyptus residues, wheat straw, and olive tree pruning are lignocellulosic materials largely available in Southern Europe and have high potential to be used solely or in mixtures in sugar-based biorefineries for the production of biofuels and other bio-based products. Enzymatic hydrolysis of ce...

  7. How mushrooms feed on compost: conversion of carbohydrates and linin in industrial wheat straw based compost enabling the growth of Agaricus bisporus

    NARCIS (Netherlands)

    Jurak, E.

    2015-01-01

    Abstract In this thesis, the fate of carbohydrates and lignin was studied in industrial wheat straw based compost during composting and growth of Agaricus bisporus. The aim was to understand the availability and degradability of carbohydrates in order to help improve their

  8. Two-Dimensional NMR Evidence for Cleavage of Lignin and Xylan Substituents in Wheat Straw Through Hydrothermal Pretreatment and Enzymatic Hydrolysis

    Science.gov (United States)

    Daniel J. Yelle; Prasad Kaparaju; Christopher G. Hunt; Kolby Hirth; Hoon Kim; John Ralph; Claus Felby

    2012-01-01

    Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond 13C-1H NMR correlation spectroscopy, via...

  9. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate

    NARCIS (Netherlands)

    Maas, R.H.W.; Bakker, R.R.; Jansen, M.L.A.; Visser, D.; Jong, de E.; Eggink, G.; Weusthuis, R.A.

    2008-01-01

    Conventional processes for lignocellulose-to-organic acid conversion requires pretreatment, enzymatic hydrolysis, and microbial fermentation. In this study, lime-treated wheat straw was hydrolyzed and fermented simultaneously to lactic acid by an enzyme preparation and Bacillus coagulans DSM 2314.

  10. The effect of adding urea, manganese and linoleic acid to wheat straw and wood chips on lignin degradation by fungi and subsequent

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2016-01-01

    The aim of this study was optimizing Ceriporiopsis subvermispora and Lentinula edodes pre-treatment of wheat straw and wood chips by adding urea, manganese and linoleic acid. Optimization was defined as more lignin degradation and an increase in in vitro gas

  11. Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment

    DEFF Research Database (Denmark)

    Pedersen, Mads; Viksø-Nielsen, Anders; Meyer, Anne S.

    2010-01-01

    pretreatment at pH 1 gave the highest yield of saccharides in the liquid fraction, the solid fraction was more susceptible to enzymatic attack when pretreated at pH 13. The highest yields were obtained after pretreatment with hydrochloric acid at pH 1, and with sodium hydroxide at pH 13 when enzymatic...... hydrolysis was employed. A two-step pretreatment strategy at pH 1 (hydrochloric acid) and subsequently at pH 13 (sodium hydroxide) released 69 and 95% of the theoretical maximal amounts of glucose and xylose, respectively. Furthermore, this two-step pretreatment removed 68% of the lignin from the straw......The influence of various low temperature (140 °C) pretreatments, using different acid and alkaline catalysts and different pH values, was studied for enzymatic hydrolysis of wheat straw. The pretreated wheat straw was treated by a standard blend of Celluclast 1.5 L and Novozym 188. While...

  12. Effect of the incorporation of date pits and orange pulp in rations composed of wheat straw and concentrate on the blood biochemical parameters of Ouled Djellal breeding

    Directory of Open Access Journals (Sweden)

    N. Lakhdara

    2014-12-01

    Full Text Available Twenty four lambs of Ouled Djellal breeding from the region of Constantine, Algeria, were assigned randomly into 4 groups, the mean initial weights within the groups, ranged between 37.6±4.27 and 39.8±5.41 kg, to investigate the effect of the incorporation of two by-products of food industry, fresh orange pulp, ground date pits in rations composed of wheat straw as roughage, and concentrate as supplement. Four feeding groups were formed, the first group (T1 was fed with wheat straw and concentrate (60%/40%, the second group (T2 with wheat straw and orange pulp (60%/40%, for group 3 and 4 (T3-T4, the diet consisted on a mixture of 60% wheat straw and date pits at a ratio of (80 to 20% as a roughage in addition to 40% orange pulp for T3 and 40% concentrate for T4. Blood samples were collected from the jugular vein before morning feeding. Values of animal's plasma levels of Ca, glucose, proteins and urea were measured using a UV spectrophotometer. There was no significant difference in all the diets for Ca value, Ca values varied between 8.37 and 10.74 mg/Dl. T4 showed the highest value. Glucose blood content was similar for all the animals with no significant differences. While a very significant difference <0.001 was observed in blood proteins level in T3 and T4 comparing to the other groups. When date pits were incorporated in the diet containing wheat straw and concentrate, a very significant difference on urea blood content of lambs was observed (P<0.001.

  13. The effect of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw.

    Science.gov (United States)

    He, Xiangyu; Wu, Yanping; Cai, Min; Mu, Chunlong; Luo, Weihong; Cheng, Yanfen; Zhu, Weiyun

    2015-01-01

    This experiment was conducted to investigate the effects of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw. The field experiment was carried out from November 2012 to June 2013 at Changshu (31°32'93″N, 120°41'88″E) agro-ecological experimental station. A total of three treatments were set. The concentration of CO2 was increased to 500 μmol/mol in the first treatment (CO2 group). The temperature was increased by 2 °C in the second treatment (TEM group) and the concentration of CO2 and temperature were both increased in the third treatment (CO2 + TEM group). The mean temperature and concentration of CO2 in control group were 10.5 °C and 413 μmol/mol. At harvesting, the wheat straws were collected and analyzed for chemical composition and in vitro digestibility. Results showed that dry matter was significantly increased in all three treatments. Ether extracts and neutral detergent fiber were significantly increased in TEM and CO2 + TEM groups. Crude protein was significantly decreased in CO2 + TEM group. In vitro digestibility analysis of wheat straw revealed that gas production was significantly decreased in CO2 and CO2 + TEM groups. Methane production was significantly decreased in TEM and CO2 + TEM groups. Ammonia nitrogen and microbial crude protein were significantly decreased in all three treatments. Total volatile fatty acids were significantly decreased in CO2 and CO2 + TEM groups. In conclusion, the chemical composition of the wheat straw was affected by temperature and CO2 and the in vitro digestibility of wheat straw was reduced, especially in the combined treatment of temperature and CO2.

  14. Influence of tillage practices and straw incorporation on soil aggregates, organic carbon, and crop yields in a rice-wheat rotation system

    Science.gov (United States)

    Song, Ke; Yang, Jianjun; Xue, Yong; Lv, Weiguang; Zheng, Xianqing; Pan, Jianjun

    2016-11-01

    In this study, a fixed-site field experiment was conducted to study the influence of different combinations of tillage and straw incorporation management on carbon storage in different-sized soil aggregates and on crop yield after three years of rice-wheat rotation. Compared to conventional tillage, the percentages of >2 mm macroaggregates and water-stable macroaggregates in rice-wheat double-conservation tillage (zero-tillage and straw incorporation) were increased 17.22% and 36.38% in the 0-15 cm soil layer and 28.93% and 66.34% in the 15-30 cm soil layer, respectively. Zero tillage and straw incorporation also increased the mean weight diameter and stability of the soil aggregates. In surface soil (0-15 cm), the maximum proportion of total aggregated carbon was retained with 0.25-0.106 mm aggregates, and rice-wheat double-conservation tillage had the greatest ability to hold the organic carbon (33.64 g kg-1). However, different forms occurred at higher levels in the 15-30 cm soil layer under the conventional tillage. In terms of crop yield, the rice grown under conventional tillage and the wheat under zero tillage showed improved equivalent rice yields of 8.77% and 6.17% compared to rice-wheat double-cropping under zero tillage or conventional tillage, respectively.

  15. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Thomsen, A.B.; Ahring, Birgitte Kiær

    2001-01-01

    /l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present...... in the hydrolysate, were each tested in concentrations of 10-100x the concentration found in the hydrolysate for their effect on fermentation by T. mathranii. At 2 mM, these aromatic compounds were not inhibitory to growth or ethanol yield in T mathranii. When the concentration of aromatics was increased to 10 m...

  16. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger.

    Science.gov (United States)

    Jiang, Yanping; Duarte, Alexandra Vivas; van den Brink, Joost; Wiebenga, Ad; Zou, Gen; Wang, Chengshu; de Vries, Ronald P; Zhou, Zhihua; Benoit, Isabelle

    2016-01-01

    To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and β-D-glucosidase activities of the best mutant were increased from 1.8 IU/ml, 0.1 IU/ml and 0.05 IU/ml to 4.8 IU/ml, 0.4 IU/ml and 0.3 IU/ml, respectively. The sugar yield of wheat straw saccharification by combining enzymes from this mutant and the Aspergillus niger genetically modified strain ΔcreA/xlnR c/araR c was improved up to 7.5 mg/ml, a 229 % increase compared to the combination of wild type strains. Mixing enzymes from T. reesei and A. niger combined with the genetic modification of transcription factors is a promising strategy to increase saccharification efficiency.

  17. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost.

    Science.gov (United States)

    Jurak, Edita; Punt, Arjen M; Arts, Wim; Kabel, Mirjam A; Gruppen, Harry

    2015-01-01

    In wheat straw based composting, enabling growth of Agaricus bisporus mushrooms, it is unknown to which extent the carbohydrate-lignin matrix changes and how much is metabolized. In this paper we report yields and remaining structures of the major components. During the Phase II of composting 50% of both xylan and cellulose were metabolized by microbial activity, while lignin structures were unaltered. During A. bisporus' mycelium growth (Phase III) carbohydrates were only slightly consumed and xylan was found to be partially degraded. At the same time, lignin was metabolized for 45% based on pyrolysis GC/MS. Remaining lignin was found to be modified by an increase in the ratio of syringyl (S) to guaiacyl (G) units from 0.5 to 0.7 during mycelium growth, while fewer decorations on the phenolic skeleton of both S and G units remained.

  18. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost

    Science.gov (United States)

    Jurak, Edita; Punt, Arjen M.; Arts, Wim; Kabel, Mirjam A.; Gruppen, Harry

    2015-01-01

    In wheat straw based composting, enabling growth of Agaricus bisporus mushrooms, it is unknown to which extent the carbohydrate-lignin matrix changes and how much is metabolized. In this paper we report yields and remaining structures of the major components. During the Phase II of composting 50% of both xylan and cellulose were metabolized by microbial activity, while lignin structures were unaltered. During A. bisporus’ mycelium growth (Phase III) carbohydrates were only slightly consumed and xylan was found to be partially degraded. At the same time, lignin was metabolized for 45% based on pyrolysis GC/MS. Remaining lignin was found to be modified by an increase in the ratio of syringyl (S) to guaiacyl (G) units from 0.5 to 0.7 during mycelium growth, while fewer decorations on the phenolic skeleton of both S and G units remained. PMID:26436656

  19. Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.

    2004-01-01

    Organic municipal solid waste enriched with wheat straw was subjected to wet-oxidation as a pre-treatment for subsequent enzymatic conversion and fermentation into bio-ethanol. The effect of tempera (185-195degrees C), oxygen pressure (3-12) and sodium carbonate (0-2 g l(-1)) addition on enzymatic...... in the treated waste could be converted into respectively hexose and pentose sugars compared to 46% for cellulose and 36% for hemicellulose in the raw waste. For all wet oxidation conditions tested, total carbohydrate recoveries were high (> 89%) and 44-66% of the original lignin could be converted into non...... conversion efficiency during SSF was 50, 62 65 and 70% for a total enzyme loading of 5, 10, 15 and 25 FPU g(-1) DS, respectively. Hence, this study shows that wet oxidation is a suitable pre-treatment for the conversion of organic waste carbohydrates into ethanol and that compatible conversion yields (60...

  20. Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw.

    Science.gov (United States)

    Kalogeris, E; Iniotaki, F; Topakas, E; Christakopoulos, P; Kekos, D; Macris, B J

    2003-02-01

    A laboratory bioreactor, designed for solid-state fermentation of thermophilic microorganisms, was operated for production of cellulases and hemicellulases by the thermophilic fungus Thermoascus aurantiacus. The suitability of the apparatus for the effective control of important operating variables affecting growth of microbes in solid-state cultivation was determined. Application of the optimum conditions found for the moisture content of the medium, growth temperature and airflow rate produced enzyme yields of 1709 U endoglucanase, 4 U cellobiohydrolase, 79 U beta-glucosidase, 5.5 U FPA, 4490 U xylanase and 45 U beta-xylosidase per g of dry wheat straw. The correlation between microorganism growth and production of enzymes was efficiently described by the Le Duy kinetic model.

  1. Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation

    Science.gov (United States)

    Fang, Zheng; Deng, Wei; Zhang, Yanli; Ding, Xiang; Tang, Mingjin; Liu, Tengyu; Hu, Qihou; Zhu, Ming; Wang, Zhaoyi; Yang, Weiqiang; Huang, Zhonghui; Song, Wei; Bi, Xinhui; Chen, Jianmin; Sun, Yele; George, Christian; Wang, Xinming

    2017-12-01

    Agricultural residues are among the most abundant biomass burned globally, especially in China. However, there is little information on primary emissions and photochemical evolution of agricultural residue burning. In this study, indoor chamber experiments were conducted to investigate primary emissions from open burning of rice, corn and wheat straws and their photochemical aging as well. Emission factors of NOx, NH3, SO2, 67 non-methane hydrocarbons (NMHCs), particulate matter (PM), organic aerosol (OA) and black carbon (BC) under ambient dilution conditions were determined. Olefins accounted for > 50 % of the total speciated NMHCs emission (2.47 to 5.04 g kg-1), indicating high ozone formation potential of straw burning emissions. Emission factors of PM (3.73 to 6.36 g kg-1) and primary organic carbon (POC, 2.05 to 4.11 gC kg-1), measured at dilution ratios of 1300 to 4000, were lower than those reported in previous studies at low dilution ratios, probably due to the evaporation of semi-volatile organic compounds under high dilution conditions. After photochemical aging with an OH exposure range of (1.97-4.97) × 1010 molecule cm-3 s in the chamber, large amounts of secondary organic aerosol (SOA) were produced with OA mass enhancement ratios (the mass ratio of total OA to primary OA) of 2.4-7.6. The 20 known precursors could only explain 5.0-27.3 % of the observed SOA mass, suggesting that the major precursors of SOA formed from open straw burning remain unidentified. Aerosol mass spectrometry (AMS) signaled that the aged OA contained less hydrocarbons but more oxygen- and nitrogen-containing compounds than primary OA, and carbon oxidation state (OSc) calculated with AMS resolved O / C and H / C ratios increased linearly (p < 0.001) with OH exposure with quite similar slopes.

  2. The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed

    Directory of Open Access Journals (Sweden)

    Zhang Junhua

    2011-12-01

    Full Text Available Abstract Background Due to the complexity of lignocellulosic materials, a complete enzymatic hydrolysis into fermentable sugars requires a variety of cellulolytic and xylanolytic enzymes. Addition of xylanases has been shown to significantly improve the performance of cellulases and to increase cellulose hydrolysis by solubilizing xylans in lignocellulosic materials. The goal of this work was to investigate the effect of acetyl xylan esterase (AXE originating from Trichoderma reesei on xylan solubilization and enzymatic hydrolysis of cellulose. Results The solubilization of xylan in pretreated wheat straw and giant reed (Arundo donax by xylanolytic enzymes and the impact of the sequential or simultaneous solubilization of xylan on the hydrolysis of cellulose by purified enzymes were investigated. The results showed that the removal of acetyl groups in xylan by AXE increased the accessibility of xylan to xylanase and improved the hydrolysis of xylan in pretreated wheat straw and giant reed. Solubilization of xylan led to an increased accessibility of cellulose to cellulases and thereby increased the hydrolysis extent of cellulose. A clear synergistic effect between cellulases and xylanolytic enzymes was observed. The highest hydrolysis yield of cellulose was obtained with a simultaneous use of cellulases, xylanase and AXE, indicating the presence of acetylated xylan within the cellulose matrix. Acetylated xylobiose and acetylated xylotriose were produced from xylan without AXE, as confirmed by atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry. Conclusions The results in this paper demonstrate that supplementation of xylanase with AXE enhances the solubilization of xylan to some extent and, consequently, increases the subsequent hydrolysis of cellulose. The highest hydrolysis yield was, however, obtained by simultaneous hydrolysis of xylan and cellulose, indicating a layered structure of cellulose and

  3. Hybrid Composites from Wheat Straw, Inorganic Filler, and Recycled Polypropylene: Morphology and Mechanical and Thermal Expansion Performance

    Directory of Open Access Journals (Sweden)

    Min Yu

    2016-01-01

    Full Text Available Reinforcing effect of hybrid filler including wheat straw (WS and inorganic filler (heavy calcium carbonate, silicon dioxide, and fly ash in recycled polypropylene (R-PP has been investigated. The effects of individual filler (WS and combined fillers (WS and inorganic filler on morphological, mechanical, and thermal expansion and water absorption properties of hybrid composites were investigated. The flexural modulus and flexural strength were both reduced when reinforced with three kinds of inorganic fillers, respectively, which was possibly due to the poor interphase adhesion as observed in SEM. The high surface energy of heavy calcium carbonate due to its high acidic character provides an opportunity of better PP-heavy calcium carbonate interfacial interactions compared to PP-straw, PP-fly ash, and PP-SiO2 interface. The water absorption at saturation increased markedly by introduction of WS in it. The hybrid composites from WS and inorganic fillers showed better water absorption compared to those WS/PP composites. The thermal expansion of composites decreased with the increase of WS loading. Heavy calcium and SiO2 can obviously reduce the LCTE value of composite. At the 25% inorganic filler content, composites had the smallest LCTE values.

  4. Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Rinnan, Åsmund; Bruun, Sander; Lindedam, Jane

    2017-01-01

    The combination of NIR spectroscopy and chemometrics is a powerful correlation method for predicting the chemical constituents in biological matrices, such as the glucose and xylose content of straw. However, difficulties arise when it comes to predicting enzymatic glucose and xylose release...

  5. Growth performance, behaviour, forestomach development and meat quality of veal calves provided with barley grain or ground wheat straw for welfare purpose

    Directory of Open Access Journals (Sweden)

    Igino Andrighetto

    2010-01-01

    Full Text Available Two different feeding plans for veal calves were compared in the study: a traditional liquid diet supplemented with 250  g/calf/d of barley grain or with 250 g/calf/d of ground wheat straw. The two solid feeds had different chemical composi-  tion but a similar particle size obtained by grinding the straw in a mill with an 8-mm mesh screen. Twenty-four Polish  Friesian male calves were used in the study and they were housed in individual wooden stalls (0.83 x 1.80 m. The health  status of all the calves was satisfactory for the entire fattening period and no specific medical treatment was required  during the trial. Calves fed wheat straw showed a greater intake of solid feed (196 vs. 139 g/d; P  average daily gain (1288 vs. 1203 g/d; P  not affected by the type of solid feed and no milk refusal episodes were detected. The haemoglobin concentration was  similar in calves receiving the two feeding treatments despite the higher iron intake provided by the wheat straw through-  out the fattening period (2.12 vs. 1.15 g; P  calves’ metabolism. Feeding behaviour was affected by the provision of solid feeds. Eating and chewing were prolonged  in calves receiving ground wheat straw and the same solid feed reduced the frequency of oral stereotypies at the end of  the fattening period. At the slaughterhouse, no differences were observed between the feeding treatments as regards  carcass weight and dressing percentage. The calves fed ground wheat straw had a heavier weight of the empty omasum  (518 vs. 341 g; P  fed barley grain. The incidence of abomasal erosions, ulcers and scars was similar in both treatments; however the index  of abomasal damage, which considers the number and the seriousness of different type of lesions, was higher in calves  receiving barley grain. Therefore, the grinding of straw particles, as opposed to barley grain, can reduce the abrasive-  ness of roughage at the abomasum level. Visual evaluation of the

  6. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.

    2002-01-01

    degreesC with addition of 12 bar oxygen and 6.5 g l(-1) Na2CO3. At these conditions the hemicellulose fraction from 100 g straw consisted of soluble hemicellulose (16 g), low molecular weight carboxylic acids (11 g), monomeric phenols (0.48 g) and 2-furoic acid (0.01 g). Formic acid and acetic acid...... constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde, acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from...... the solid fraction (62%) did not provide a corresponding increase in the phenol monomer content but was correlated to high carboxylic acid concentrations. The degradation products in the hemicellulose fractions co-varied with the pre-treatment conditions in the principal component analysis according...

  7. Mechanical Properties and Kinetics of Thermal Degradation of Bioplastics based on Straw Cellulose and Whole Wheat Flour

    Directory of Open Access Journals (Sweden)

    Hesam Omrani fard

    2012-12-01

    Full Text Available During  the  past  two  decades  the  use  of  bioplastics,  as  a  suitable  alternative to  petroleum-based  plastics,  has  attracted  researchers'  attention  to  a  great extent.  In  this  study,  the whole wheat four and  straw cellulose at different proportions were mixed with glycerol and bioplastics sheets were obtained by a press type molding machine.  The mechanical  properties  of  samples  were  examined  on compositions prepared by whole wheat weight in three proportions of 70, 60 and 50% and the cellulose in three proportions 75, 70 and 65%. The tensile tests on the samples indicated  that with  lowering  proportions  of  both  four  and  cellulose,  the modulus of elasticity and  tensile  strength of  the bioplastics dropped as well. The maximum modulus of  elasticity  achieved  for  the four  and  cellulose  compositions were 12.5, and 8.6 MPa, and the maximum tensile strengths were 878 and 202 kPa, respectively. The TGA tests indicated that the bioplastics prepared from whole wheat four showed higher temperatures of thermal degradation. The activation energies calculated for the four and cellulose bioplastics, as estimated by Arrhenius type equation, were 133.0 and 63.8 kJ/mol, respectively.

  8. Influence of nutritional supplementation on solid-substrate fermentation of wheat straw with an alkaliphilic white-rot fungus (Coprinus sp. )

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, J.S.

    1987-08-01

    The solid-substrate fermentation of wheat straw with an alkaliphilic white-rot fungus (Coprinus sp.) was found to be influenced by the levels of nitrogen, phosphorus + sulphur and free carbohydrates, in terms of biodegradation of straw ingredients, microbial protein production and changes in in-vitro dry matter digestibility (IVDMD). Nitrogen and Phosphorus + Sulphur compounds favoured the bioconversion and their optimum levels were (g/100 g DM): urea (sterile): 1.5, urea (unsterile): 3.0; superphosphate: 1.0. The addition of free carbohydrates as molasses and whey had detrimental effect on biodegradation of lignin as also on organic matter degradation and digestibility. However, the protein production was enhanced in the supplemented straw. The optimized laboratory fermentation was also extended to 4 kg-(sterile and unsterile) and 50 kg-(unsterile) fermentation.

  9. Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2008-01-01

    Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70C. Undetoxified wheat straw hydrolysate was used (3-12% dry matter), corresponding...... was not detoxified, ethanol yield in a range of 0.39-0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68-76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has...... considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol. The work reported here also demonstrates that the use of FBR configuration might be a viable approach for thermophilic anaerobic ethanol fermentation....

  10. Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw

    DEFF Research Database (Denmark)

    Pedersen, Mads; Johansen, Katja S.; Meyer, Anne S.

    2011-01-01

    Background: The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic...... C for 10 min. The maximal enzymatic glucose and xylose yields from the solid, pretreated wheat straw fraction were obtained after pretreatments at the most extreme pH values (pH 1 or pH 13) at the maximum pretreatment temperature of 140 degrees C. Surface response models revealed significantly...... correlating interactions of the pretreatment pH and temperature on the enzymatic liberation of both glucose and xylose from pretreated, solid wheat straw. The influence of temperature was most pronounced with the acidic pretreatments, but the highest enzymatic monosaccharide yields were obtained after...

  11. Degradation of Lignocellulosic Structures by Fungal Inoculation and Determination of Feed Value Using In-situ Nylon Bag Technique of Wheat Straw:

    Directory of Open Access Journals (Sweden)

    Fatma YÜKSEL

    2017-09-01

    Full Text Available This study was carried out to determine the effect of inoculation of Phanerochaete chrysosporium (PC and Pleurotus eryngii (PE fungis in wheat straw (S with treated and untreated urea on in-situ dry matter degradability in rumen. The four rumen cannulated Holstein bulls, average 400 kg live weight, were used as animal material. Wheat straw (control and other feed combination groups such as PCS, PCSU, PES, PESU, SU were incubated for 0, 4, 8, 16, 24, 48, 72 and 96 hours for in-situ dry matter degradability and digestibility in the rumen. It was found that differences in terms of dry matter degradibilities among the feed mixture groups were found to be significant (P<0,01.

  12. Rapid analysis of formic acid, acetic acid, and furfural in pretreated wheat straw hydrolysates and ethanol in a bioethanol fermentation using atmospheric pressure chemical ionisation mass spectrometry

    Science.gov (United States)

    2011-01-01

    Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS) offers advantages as a rapid analytical technique for the quantification of three biomass degradation products (acetic acid, formic acid and furfural) within pretreated wheat straw hydrolysates and the analysis of ethanol during fermentation. The data we obtained using APCI-MS correlated significantly with high-performance liquid chromatography analysis whilst offering the analyst minimal sample preparation and faster sample throughput. PMID:21896164

  13. Two-dimensional NMR evidence for cleavage of lignin and xylan substituents in wheat straw through hydrothermal pretreatment and enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Yelle, Daniel J.; Kaparaju, Laxmi-Narasimha Prasad; Hunt, Christopher G.

    2013-01-01

    correlation spectroscopy, via an heteronuclear single quantum coherence experiment, revealed substantial lignin β-aryl ether cleavage, deacetylation via cleavage of the natural acetates at the 2-O- and 3-O-positions of xylan, and uronic acid depletion via cleavage of the (1 → 2)-linked 4-O-methyl...... hydrolysis incurred further deacetylation of the xylan, leaving approximately 10 % of acetate intact based on the weight of original wheat straw....

  14. Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics: The challenge of inherently intercorrelated response functions.

    Science.gov (United States)

    Rinnan, Åsmund; Bruun, Sander; Lindedam, Jane; Decker, Stephen R; Turner, Geoffrey B; Felby, Claus; Engelsen, Søren Balling

    2017-04-15

    The combination of NIR spectroscopy and chemometrics is a powerful correlation method for predicting the chemical constituents in biological matrices, such as the glucose and xylose content of straw. However, difficulties arise when it comes to predicting enzymatic glucose and xylose release potential, which is matrix dependent. Further complications are caused by xylose and glucose release potential being highly intercorrelated. This study emphasizes the importance of understanding the causal relationship between the model and the constituent of interest. It investigates the possibility of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000 samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major quality traits for saccharification of wheat straw: glucose and xylose release. The large sample set enabled a versatile and robust calibration model to be developed, showing that the prediction model for xylose release is based on a causal relationship with the NIR spectral data. In contrast, the prediction of glucose release was found to be highly dependent on the intercorrelation with xylose release. If this correlation is broken, the model performance breaks down. A simple method was devised for avoiding this breakdown and can be applied to any large dataset for investigating the causality or lack of causality of a prediction model. Copyright © 2017. Published by Elsevier B.V.

  15. Combination of ensiling and fungal delignification as effective wheat straw pretreatment

    DEFF Research Database (Denmark)

    Thomsen, Sune T.; Londono, Jorge E. G.; Ambye-Jensen, Morten

    2016-01-01

    Background: Utilization of lignocellulosic feedstocks for bioenergy production in developing countries demands competitive but low-tech conversion routes. White-rot fungi (WRF) inoculation and ensiling are two methods previously investigated for low-tech pretreatment of biomasses such as wheat st...

  16. Investigating the Mechanical Properties and Degradability of Bioplastics Made from Wheat Straw Cellulose and Date Palm Fiber

    Directory of Open Access Journals (Sweden)

    H Omrani Fard

    2014-04-01

    Full Text Available During the past two decades, the use of bioplastics as an alternative to regular plastics has received much attention in many different industries. The mechanical and degradable properties of bioplastic are important for their utilization. In this research cellulose of wheat straw and glycerol were mixed by different weight ratios and then reinforced by using date palm fibers. To prepare the bioplastic plates, the materials were poured in molds and pressed by means of a hydraulic press and simultaneously heating of the molds. The experiments were performed based on a 3×3 factorial design with three levels: 50%, 60% and 70% of wheat cellulose and three types of reinforcement methods, namely: no-reinforcement, network reinforcement and parallel string reinforcement. The effect of the two factors on tensile strength, tensile strain, bending strength, modulus of elasticity and modulus of bending were investigated. The results indicated that the two factors and their interactions had significant effects on the mentioned properties of bioplastics (at α=0.05 level . The comparison of the means of the tests showed that the network reinforcement type with 50% cellulose had the highest tensile and bending strengths with 1992.02 and 28.71 MPa, respectively. The maximum modulus of elasticity and modulus bending were 40.4 and 2.3 MPa, respectively for parallel string arrangement and 70% of cellulose. The degradability tests of bioplastic using a fistulated sheep indicated that with increasing the percentage of cellulose, the degradability rate deceased. The maximum degradability rate, after 48 h holding in the sheep rumen, was 74% that belonged to bioplastics with 50% cellulose. The degradability data were well fitted to a mathematical model (R2=0.97.

  17. Wheat-straw as roughage component in finishing diets of growing ...

    African Journals Online (AJOL)

    non-degradeable protein, 337o neutral detergent ftbre, lSVo acid detergent fibne, 0,87o caJcium and 0,37o phosphorus) so that lucerne hay (LFI) was substituted by inoeasing levels of wheat-suaw (WS), lupins and fish-meal. The LH content of the diets decreased from 42 to }Vo, while the WS, lupin and fish-meal contents ...

  18. MECHANICAL DISINTEGRATION OF WHEAT STRAW BY ROLLER-PLATE GRIND SYSTEM WITH SHARP-EDGED SEGMENTS

    Directory of Open Access Journals (Sweden)

    Lukas Kratky

    2015-04-01

    Full Text Available Colloid mills and extruders are widely used for disintegrating wet fibrous biomass. However, their main disadvantages are a high energy requirement in the range of hundreds or thousands of kWh per ton of material, and the fact that they grind in process cycles. Efforts have therefore been made to design a new type of continuously operated grinder. Its disintegration principle uses a roller-plate grinding system with sharp-edged segments, where the compressive and shear forces combine to comminute the particles. Test experiments verified that the grinder disintegrates wet untreated straw to particles below 10mm in an effective manner in a single pass, with an energy requirement of 50 kWht−1 TS. A 23% increase in biogas yield was achieved, leading to a net gain in electric energy of310 kWht−1 TS.

  19. Influence of gaseous phase, light and substrate pretreatment on fruit-body formation, lignin degradation and in vitro digestibility of wheat straw fermented with Pleurotus spp

    Energy Technology Data Exchange (ETDEWEB)

    Kamra, D.N.; Zadrazil, F.

    1986-01-01

    Wheat straw was fermented in the solid state with Pleurotus sajor-caju and P. eryngii at 25 degrees C under different concentrations of oxygen and carbon dioxide. Lower than 20% oxygen in the gaseous phase adversely affected the loss of organic matter, the lignin degradation and the change in straw digestibility with both species of Pleurotus. Higher concentrations (10%-30%) of carbon dioxide, with 20% oxygen in the atmospshere, slightly decreased the loss of lignin and organic matter when compared with the losses under oxygen or air. In spite of better lignin degradation by P. sajor-caju, the process efficiency with P. eryngii was higher, because of lower loss of organic matter during the fermentation. Fruit-bodies were not formed by P. eryngii during the period of experiment in any of the treatments. In P. sajor-caju, fruit-bodies were only formed either in flasks closed with cotton plugs or supplied with a continuous flow of sterile air. Carbon dioxide inhibited the process of primordia initiation and fruit-body development. A short exposure (20 minutes per day) to light was essential for primordia and fruit-body formation. The substrate changes and process efficiency with respect to increase in digestibility were much higher in darkness than in light. Light leads to intensive fruit-body production and a different pattern of substrate degradation. The indigenous microflora of wheat straw inhibited fruit-body formation and caused a higher organic matter loss, accompanied by a decrease in digestibility of the fermented wheat straw. 33 references.

  20. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Olsson, Lisbeth; Thomsen, A.B.

    2003-01-01

    -molecular-weight carboxylic acids (3.9 g/L), phenols (0.27 g/L = 1.7 mM) and 2-furoic acid (0.007 g/L). The wet oxidized wheat straw hydrolysate caused no inhibition of ethanol production by Saccharomyces cerevisiae ATCC 96581. Nine phenols and 2-furoic acid, identified to be present in the hydrolysate, were each tested...... in concentrations of 50-100 times the concentration found in the hydrolysate for their effect on fermentation by yeast. At these high concentrations (10 mM), 4-hydroxy-benzaldehyde, vanillin, 4-hydroxyacetophenone and acetovanillone caused a 53-67% decrease in the volumetric ethanol productivity in S. cerevisiae...... compared to controls with an ethanol productivity of 3.8 g/L. The phenol acids (4-hydroxy, vanillic and syringic acid), 2-furoic acid, syringaldehyde and acetosyringone were less inhibitory, causing a 5-16% decrease in ethanol productivity. By adding the same aromatic compounds to hydrolysate (10 m...

  1. Yield and nutritional content of Pleurotus sajor caju on wheat straw supplemented with raw and detoxified mahua cake.

    Science.gov (United States)

    Gupta, Aditi; Sharma, Satyawati; Saha, Supradip; Walia, Suresh

    2013-12-15

    The effect of supplementation of wheat straw (WS) with raw/detoxified mahua cake (MC) on yield and nutritional quality of Pleurotus sajor caju was studied. Raw cake significantly enhanced the yield compared to control and could be tolerated up to a 10% addition. Detoxification further improved the mushroom yield giving a maximum of 1024.7 g kg(-1) from WS supplemented with 20% saponin free detoxified mahua cake. Chemical analysis of fruit bodies revealed that they are rich in proteins (27.4-34.8%), soluble sugars (28.6-32.2%) and minerals. Glucose, trehalose and glutamic acid, alanine were the major sugars and amino acids detected by HPLC analysis, respectively. HPLC studies further confirmed the absence of saponins (characteristic toxins present in MC) in both fruit bodies and spent. Degradation of complex molecules in spent was monitored via FTIR. The study proved beneficial for effective management of agricultural wastes along with production of nutrient rich and saponin free fruit bodies/spent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse.

    Science.gov (United States)

    van den Brink, Joost; Maitan-Alfenas, Gabriela Piccolo; Zou, Gen; Wang, Chengshu; Zhou, Zhihua; Guimarães, Valéria Monteze; de Vries, Ronald P

    2014-10-01

    Plant-degrading enzymes can be produced by fungi on abundantly available low-cost plant biomass. However, enzymes sets after growth on complex substrates need to be better understood, especially with emphasis on differences between fungal species and the influence of inhibitory compounds in plant substrates, such as monosaccharides. In this study, Aspergillus niger and Trichoderma reesei were evaluated for the production of enzyme sets after growth on two "second generation" substrates: wheat straw (WS) and sugarcane bagasse (SCB). A. niger and T. reesei produced different sets of (hemi-)cellulolytic enzymes after growth on WS and SCB. This was reflected in an overall strong synergistic effect in releasing sugars during saccharification using A. niger and T. reesei enzyme sets. T. reesei produced less hydrolytic enzymes after growth on non-washed SCB. The sensitivity to non-washed plant substrates was not reduced by using CreA/Cre1 mutants of T. reesei and A. niger with a defective carbon catabolite repression. The importance of removing monosaccharides for producing enzymes was further underlined by the decrease in hydrolytic activities with increased glucose concentrations in WS media. This study showed the importance of removing monosaccharides from the enzyme production media and combining T. reesei and A. niger enzyme sets to improve plant biomass saccharification. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw.

    Science.gov (United States)

    Janczak, Damian; Malińska, Krystyna; Czekała, Wojciech; Cáceres, Rafaela; Lewicki, Andrzej; Dach, Jacek

    2017-08-01

    Composting of poultry manure which is high in N and dense in structure can cause several problems including significant N losses in the form of NH3 through volatilization. Biochar due to its recalcitrance and sorption properties can be used in composting as a bulking agent and/or amendment. The addition of a bulking agent to high moisture raw materials can assure optimal moisture content and enough air-filled porosity but not necessarily the C/N ratio. Therefore, amendment of low C/N composting mixtures with biochar at low rates can have a positive effect on composting dynamics. This work aimed at evaluating the effect of selected doses of wood derived biochar amendment (0%, 5% and 10%, wet weight) to poultry manure (P) mixed with wheat straw (S) (in the ratio of 1:0.4 on wet weight) on the total ammonia emissions (including gaseous emissions of ammonia and liquid emissions of ammonium in the collected condensate and leachate) during composting. The process was performed in 165L laboratory scale composting reactors for 42days. The addition of 5% and 10% of biochar reduced gaseous ammonia emission by 30% and 44%, respectively. According to the obtained results, the measure of emission through the condensate would be necessary to assess the impact of the total ammonia emission during the composting process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fe3O4–wheat straw: preparation, characterization and its application for methylene blue adsorption

    Directory of Open Access Journals (Sweden)

    A. Ebrahimian Pirbazari

    2014-09-01

    Full Text Available The removal of methylene blue (MB from aqueous solution by NaOH-treated wheat straw from agriculture biomass impregnated with Fe3O4 magnetic nanoparticles (MNP-NWS was investigated. Magnetic nanoparticles (Fe3O4 were prepared by chemical precipitation of a mixture of Fe2+ and Fe3+ salts from solution aqueous by ammonia. These magnetic nanoparticles of the adsorbent Fe3O4 were characterized by Field Emission Scanning Electron Microscopy (FESEM, X-ray Diffraction (XRD, nitrogen physisorption and Fourier Transform Infrared Spectroscopy (FTIR. FTIR results showed complexation and ion exchange appears to be the principal mechanism for MB adsorption. The adsorption isotherm data were fitted to Langmuir, Sips, Redlich–Peterson and Freundlich equations. Langmuir adsorption capacity, Qmax, was found to be 1374.6 mgg−1. The Freundlich equation yielded the best fit to the experimental data in comparison to the other isotherm models. The removal of MB by MNP-NWS followed pseudo-first-order reaction kinetics based on Lagergren equations.

  5. Co-consumption of glucose and xylose for organic acid production by Aspergillus carbonarius cultivated in wheat straw hydrolysate.

    Science.gov (United States)

    Yang, Lei; Lübeck, Mette; Souroullas, Konstantinos; Lübeck, Peter S

    2016-04-01

    Aspergillus carbonarius exhibits excellent abilities to utilize a wide range of carbon sources and to produce various organic acids. In this study, wheat straw hydrolysate containing high concentrations of glucose and xylose was used for organic acid production by A. carbonarius. The results indicated that A. carbonarius efficiently co-consumed glucose and xylose and produced various types of organic acids in hydrolysate adjusted to pH 7. The inhibitor tolerance of A. carbonarius to the hydrolysate at different pH values was investigated and compared using spores and recycled mycelia. This comparison showed a slight difference in the inhibitor tolerance of the spores and the recycled mycelia based on their growth patterns. Moreover, the wild-type and a glucose oxidase deficient (Δgox) mutant were compared for their abilities to produce organic acids using the hydrolysate and a defined medium. The two strains showed a different pattern of organic acid production in the hydrolysate where the Δgox mutant produced more oxalic acid but less citric acid than the wild-type, which was different from the results obtained in the defined medium This study demonstrates the feasibility of using lignocellulosic biomass for the organic acid production by A. carbonarius.

  6. Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors

    Science.gov (United States)

    Shi, Xiao-Shuang; Yu, Jun-Hong; Yin, Hua; Hu, Shu-Min; Huang, Shu-Xia

    2017-01-01

    Three semicontinuous continuous stirred-tank reactors (CSTR) operating at mesophilic conditions (35°C) were used to investigate the effect of hydraulic retention time (HRT) on anaerobic digestion of wheat straw. The results showed that the average biogas production with HRT of 20, 40, and 60 days was 46.8, 79.9, and 89.1 mL/g total solid as well as 55.2, 94.3, and 105.2 mL/g volatile solids, respectively. The methane content with HRT of 20 days, from 14.2% to 28.5%, was the lowest among the three reactors. The pH values with HRT of 40 and 60 days were in the acceptable range compared to that with HRT of 20 days. The propionate was dominant in the reactor with HRT of 20 days, inhibiting the activities of methanogens and causing the lower methane content in biogas. The degradation of cellulose, hemicellulose, and crystalline cellulose based on XRD was also strongly influenced by HRTs. PMID:28589134

  7. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    Science.gov (United States)

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors

    Directory of Open Access Journals (Sweden)

    Xiao-Shuang Shi

    2017-01-01

    Full Text Available Three semicontinuous continuous stirred-tank reactors (CSTR operating at mesophilic conditions (35°C were used to investigate the effect of hydraulic retention time (HRT on anaerobic digestion of wheat straw. The results showed that the average biogas production with HRT of 20, 40, and 60 days was 46.8, 79.9, and 89.1 mL/g total solid as well as 55.2, 94.3, and 105.2 mL/g volatile solids, respectively. The methane content with HRT of 20 days, from 14.2% to 28.5%, was the lowest among the three reactors. The pH values with HRT of 40 and 60 days were in the acceptable range compared to that with HRT of 20 days. The propionate was dominant in the reactor with HRT of 20 days, inhibiting the activities of methanogens and causing the lower methane content in biogas. The degradation of cellulose, hemicellulose, and crystalline cellulose based on XRD was also strongly influenced by HRTs.

  9. In vivo detection of genotoxicity in waste water from a wheat and rye straw paper pulp factory.

    Science.gov (United States)

    Wrisberg, M N; van der Gaag, M A

    1992-06-30

    The genotoxicity of waste water from a wheat and rye straw paper pulp mill was investigated by in vivo genotoxicity tests using micronuclei and sister chromatid exchange as endpoints. Micronuclei were studied in mussels (Mytilus edulis) and sister chromatid exchange in fish (Nothobranchius rachowi). The paper mill uses chlorine dioxide for bleaching, and the bleaching effluent as well as the combined effluent, i.e. the mixture of all waste water streams, were both tested. Both effluents induced micronuclei and sister chromatid exchanges, although the presence of toxic substances could mask the expression of genotoxicity in some cases for both test systems. The study revealed that genotoxins are produced in the chlorine dioxide bleaching process as well as in the pulping process, indicating also genotoxic activity of non-chlorinated compounds. In contrast to previous studies in which mutagenicity was determined with bacterial assays, genotoxins were only associated with chlorinated organics from bleaching with chlorine and failed in detecting genotoxins in chlorine dioxide bleaching effluents. Aquatic in vivo genotoxicity tests are sensitive and efficient systems and seem to be a promising tool in effluent testing.

  10. Effect of particle size reduction and ensiling fermentation on biogas formation and silage quality of wheat straw.

    Science.gov (United States)

    Gallegos, Daniela; Wedwitschka, Harald; Moeller, Lucie; Zehnsdorf, Andreas; Stinner, Walter

    2017-08-24

    The effect of ensiling fermentation and mechanical pretreatment on the methane yield of lignocellulosic biomass was investigated in order to determine the optimum pretreatment conditions for biogas production. Wheat straw was treated using the following techniques: mechanical disintegration by chopping and extruder-grinding to particle sizes of 2.0 and 0.2cm, respectively, and ensiling by 30% and 45% total solids with addition of enzymatic, chemical and biological silage additives individually and in combination. The total and volatile solid content, biochemical methane potential and products of silage fermentation of 32 variants were tested. The results indicate that the methane potential increased by 26% (from 179 to 244mLCH4g(-1)VS) by reducing particle size. The maximum methane potential of 275mLCH4g(-1)VS was obtained from silage with 30% total solids and extruder grinding. However, the effect of the addition of silage additives on the methane potential was limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Enzymatic Hydrolysis and Ethanol Fermentation of High Dry Matter Wet-Exploded Wheat Straw at Low Enzyme Loading

    Science.gov (United States)

    Georgieva, Tania I.; Hou, Xiaoru; Hilstrøm, Troels; Ahring, Birgitte K.

    Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis. The results showed that pretreatment with the use of O2 as oxidizing agent was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing generation of furfural as a by-product. For scale-up of the process, high dry matter (DM) concentrations of 15-20% will be necessary. However, high DM hydrolysis and fermentation are limited by high viscosity of the material, higher inhibition of the enzymes, and fermenting microorganism. The wet-explosion pretreatment method enabled relatively high yields from both enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) to be obtained when performed on unwashed slurry with 14% DM and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%.

  12. Corn Stover and Wheat Straw Combustion in a 176-kW Boiler Adapted for Round Bales

    Directory of Open Access Journals (Sweden)

    Joey Villeneuve

    2013-11-01

    Full Text Available Combustion trials were conducted with corn stover (CS and wheat straw (WS round bales in a 176-kW boiler (model Farm 2000. Hot water (80 °C stored in a 30,000-L water tank was transferred to a turkey barn through a plate exchanger. Gross calorific value measured in the laboratory was 17.0 and 18.9 MJ/kg DM (dry matter for CS and WS, respectively. Twelve bales of CS (1974 kg DM total, moisture content of 13.6% were burned over a 52-h period and produced 9.2% ash. Average emissions of CO, NOx and SO2 were 2725, 9.8 and 2.1 mg/m3, respectively. Thermal efficiency was 40.8%. For WS, six bales (940 kg DM total, MC of 15% were burned over a 28-h period and produced 2.6% ash. Average emissions of CO, NOx and SO2 were 2210, 40.4 and 3.7 mg/m3, respectively. Thermal efficiency was 68.0%. A validation combustion trial performed a year later with 90 CS bales confirmed good heating performance and the potential to lower ash content (6.2% average.

  13. Process analysis of superheated steam pre-treatment of wheat straw and its relative effect on ethanol selling price

    Directory of Open Access Journals (Sweden)

    Dave Barchyn

    2014-12-01

    Full Text Available Existing bioethanol operations rely on starch-based substrates, which have been criticized for their need to displace food crops in order to be produced. As an alternative to these first generation biofuels, the use of agricultural residues is being considered to create more environmentally-benign second generation, or cellulosic biofuels. Recalcitrance of these substrates to fermentation requires extensive pre-treatment processes, which often consume more energy than can be extracted from the ethanol that they produce, so one of the priorities in developing cellulosic ethanol is an effective and efficient pre-treatment method. This study examines the use of superheated steam (SS as a process medium by which wheat straw lignocellulosic material is pre-treated. Following enzymatic hydrolysis, it was found that 47% of the total glucose could be liberated from the substrate, and the optimal conditions for pre-treatment were 15 min in hot water (193 kPa, 119˚C followed by 2 min in SS. Furthermore, a preliminary relative economic analysis showed that the minimum ethanol selling price (MESP was comparable to that obtained from steam explosion, a similar process, while energy consumption was 22% less. The conclusion of the study is that SS treatment stands to be a competitive pre-treatment technology to steam explosion.

  14. LCA of 1,4-Butanediol Produced via Direct Fermentation of Sugars from Wheat Straw Feedstock within a Territorial Biorefinery

    Directory of Open Access Journals (Sweden)

    Annachiara Forte

    2016-07-01

    Full Text Available The bio-based industrial sector has been recognized by the European Union as a priority area toward sustainability, however, the environmental profile of bio-based products needs to be further addressed. This study investigated, through the Life Cycle Assessment (LCA approach, the environmental performance of bio-based 1,4-butanediol (BDO produced via direct fermentation of sugars from wheat straw, within a hypothetical regional biorefinery (Campania Region, Southern Italy. The aim was: (i to identify the hotspots along the production chain; and (ii to assess the potential environmental benefits of this bio-based polymer versus the reference conventional product (fossil-based BDO. Results identified the prevailing contribution to the total environmental load of bio-based BDO in the feedstock production and in the heat requirement at the biorefinery plant. The modeled industrial bio-based BDO supply chain, showed a general reduction of the environmental impacts compared to the fossil-based BDO. The lowest benefits were gained in terms of acidification and eutrophication, due to the environmental load of the crop phase for feedstock cultivation.

  15. Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process.

    Science.gov (United States)

    Yang, Haitao; Xie, Yimin; Zheng, Xing; Pu, Yunqiao; Huang, Fang; Meng, Xianzhi; Wu, Weibing; Ragauskas, Arthur; Yao, Lan

    2016-05-01

    To understand the structural changes of lignin after soda-AQ and kraft pretreatment, milled straw lignin, black liquor lignin and residual lignin extracted from wheat straw were characterized by FT-IR, UV, GPC and NMR. The results showed that the main lignin linkages were β-aryl ether substructures (β-O-4'), followed by phenylcoumaran (β-5') and resinol (β-β') substructures, while minor content of spirodienone (β-1'), dibenzodioxocin (5-5') and α,β-diaryl ether linkages were detected as well. After pretreatment, most lignin inter-units and lignin-carbohydrate complex (LCC) linkages were degraded and dissolved in black liquor, with minor amount left in residual pretreated biomass. In addition, through quantitative (13)C and 2D-HSQC NMR spectral analysis, lignin and LCC were found to be more degraded after kraft pretreatment than soda-AQ pretreatment. Furthermore, the subsequent enzymatic hydrolysis results showed that more cellulose in wheat straw was converted to glucose after kraft pretreatment, indicating that LCC linkages were important in the enzymatic hydrolysis process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Potential production from poultry litter, chicken manure and wheat straw; Potencial de producao de biogas da cama de aviario, esterco de galinhas e palha de trigo

    Energy Technology Data Exchange (ETDEWEB)

    Zanatta, Fabio L.; Silva, Jadir Nogueira da [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola], email: fabio.zanatta@ufv.br; Scholz, Volkhard; Schonberg, Mandy [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Post Harvest Technology Dept.; Martin, Samuel [Universidade de Brasilia (UNB), DF (Brazil). Dept. de Engenharia Rural

    2011-07-01

    Poultry litter is a sub product of growth chicken, rich in nitrogen and used like fertilizer in grains and forage production. Normally is applied in the fields without treatment. It's a very good material to be used for biogas generation because his compounds are chicken manure, straw and others organics compounds like coffee and rice husks. The biogas produced by poultry litter can be used for electric generation or for the heating systems of chicken production. The aimed of this work was evaluated the biogas and methane production of poultry litter, chicken manure and wheat straw. The experiment was made in the Biogastechnikum Laboratory of Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), in Potsdam-Germany, from May to December 2010, according the rule VDI 4630 (Verein Deutscher Ingenieure). According to set conditions of the experiment, the results for biogas production are 393.25, 398.37 e 518.44 Nl biogas/kg{sub TSadded} and methane 223.72, 229.68, e 272.73 Nlmethane/kg{sub TSadded}; for poultry litter, poultry manure and wheat straw, respectively. (author)

  17. Pretreatment and Fractionation of Wheat Straw for Production of Fuel Ethanol and Value-added Co-products in a Biorefinery

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2014-08-01

    Full Text Available An integrated process has been developed for a wheat straw biorefinery. In this process, wheat straw was pretreated by soaking in aqueous ammonia (SAA, which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment conditions included 15 wt% NH4OH, 1:10 solid:liquid ratio, 65 oC and 15 hours. Under these conditions, 48% of the original lignin was removed, whereas 98%, 83% and 78% of the original glucan, xylan, and arabinan, respectively, were preserved. The pretreated material was subsequently hydrolyzed with a commercial hemicellulase to produce a solution rich in xylose and low in glucose plus a cellulose-enriched solid residue. The xylose-rich solution then was used for production of value-added products. Xylitol and astaxanthin were selected to demonstrate the fermentability of the xylose-rich hydrolysate. Candida mogii and Phaffia rhodozyma were used for xylitol and astaxanthin fermentation, respectively. The cellulose-enriched residue obtained after the enzymatic hydrolysis of the pretreated straw was used for ethanol production in a fed-batch simultaneous saccharification and fermentation (SSF process. In this process, a commercial cellulase was used for hydrolysis of the glucan in the residue and Saccharomyces cerevisiae, which is the most efficient commercial ethanol-producing organism, was used for ethanol production. Final ethanol concentration of 57 g/l was obtained at 27 wt% total solid loading.

  18. Priming effect of (13)C-labelled wheat straw in no-tillage soil under drying and wetting cycles in the Loess Plateau of China.

    Science.gov (United States)

    Liu, Enke; Wang, Jianbo; Zhang, Yanqing; Angers, Denis A; Yan, Changrong; Oweis, Theib; He, Wenqing; Liu, Qin; Chen, Baoqing

    2015-09-08

    The objectives of this study were to determine the effects of drying and wetting (DW) cycles on soil organic carbon (SOC) mineralisation and on the priming effect (PE) induced by the addition of (13)C-labelled wheat straw to long-term no-tillage (NT) and conventional-tillage (CT) soils. We observed that the SOC mineralisation rate in rewetted soils was greater than that in soils that were kept at constant water content. The proportion of CO2 derived from the straw declined dramatically during the first 10 days. The priming direction was first positive, and then became slightly negative. The PE was higher under DW cycles than under constant water content. There was no significant effect of the tillage system on the SOC mineralisation rate or PE. The data indicate that the DW cycles had a significant effect on the SOC mineralisation rate and on the PE, demonstrating a positive combined effect between wheat straw and moisture fluctuations. Further research is needed to study the role of microbial communities and C pools in affecting the SOC mineralisation response to DW cycles.

  19. Impact of organic loading rate on the performance of psychrophilic dry anaerobic digestion of dairy manure and wheat straw: long-term operation.

    Science.gov (United States)

    Saady, Noori M Cata; Massé, Daniel I

    2015-04-01

    Development of efficient processes for valorising animal wastes would be a major advancement in cold-climate regions. This paper reports the results of long term (315 days experiment) of novel psychrophilic (20°C) dry anaerobic digestion (PDAD) of cow feces and wheat straw in laboratory scale sequence batch reactor operated at increasing organic loading rate. The PDAD process fed with a mixture of feces and straw (TS of 27%) over a treatment cycle length of 21 days at organic loading rate (OLR) 4.0, 5.0 and 6.0 g TCOD kg(-1) inoculum d(-1) (of 2.9 ± 0.1, 3.7 ± 0.1, and 4.4 ± 0.1g VS kg(-1) inoculum d(-1), respectively) resulted in average specific methane yield (SMY) of 187.3 ± 18.1, 163.6 ± 39.5, 150.8 ± 32.9 N L CH4 kg(-1)VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.4 at OLR of 6.0 g TCOD kg(-1) inoculum d(-1). Hydrolysis was the limiting step reaction. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. Nitrogen Fertilizer and Straw Applications Affect Uptake of 13C,15N-Glycine by Soil Microorganisms in Wheat Growth Stages.

    Science.gov (United States)

    Yang, Lijie; Zhang, Lili; Yu, Chunxiao; Li, Dongpo; Gong, Ping; Xue, Yan; Song, Yuchao; Cui, Yalan; Doane, Timothy A; Wu, Zhijie

    2017-01-01

    This study investigated the influence of nitrogen (N) fertilizer and straw on intact amino acid N uptake by soil microorganisms and the relationship between amino acid turnover and soil properties during the wheat growing season. A wheat pot experiment was carried out with three treatments: control (CK), N fertilizer (NF) and N fertilizer plus rice straw (NS). We used stable isotope compound-specific analysis to determine the uptake of 13C,15N-glycine by soil microorganisms. In the NF treatment, microbial 13C,15N-glycine uptake was lower compared with CK, suggesting that inorganic N was the preferred N source for soil microorganisms. However, The application of straw with N fertilizer (in NS treatment) increased microbial 13C,15N-glycine uptake even with the same amount of N fertilizer application. In this treatment, enzyme activities, soil microbial biomass C and microbial biomass N increased simultaneously because more C was available. Soil mineral N and plant N contents all decreased substantially. The increased uptake of intact 13C,15N-glycine in the NS treatment can be attributed to direct assimilation by soil microorganisms to satisfy the demand for N when inorganic N was consumed.

  1. Combination of ensiling and fungal delignification as effective wheat straw pretreatment

    DEFF Research Database (Denmark)

    Thomsen, Sune T.; Londono, Jorge E. G.; Ambye-Jensen, Morten

    2016-01-01

    : A combination of the ensiling and WRF treatment induced efficient pretreatment of WS by reducing lignin content and increasing enzymatic sugar release, thereby enabling an ethanol yield of 66 % of the theoretical max on the WS glucan, i.e. a yield comparable to yields obtained with high-tech, large.......Conclusion: The combination of the L. buchneri ensiling and C. subvermispora WRF treatment provided a significant improvement in the pretreatment effect on WS. This combined biopretreatment produced particularly promising results for ethanol production.......Background: Utilization of lignocellulosic feedstocks for bioenergy production in developing countries demands competitive but low-tech conversion routes. White-rot fungi (WRF) inoculation and ensiling are two methods previously investigated for low-tech pretreatment of biomasses such as wheat...

  2. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Tomas Pejo, Elia; Oliva, Jose M.; Ballesteros, Mercedes

    2008-01-01

    , it showed an ethanol yield on consumed sugars of 0.43 g/g and a volumetric ethanol productivity of 0.7 g/Lh for the first 3 h. Ethanol concentrations obtained in SSF processes were in all cases higher than those from SHF at the same conditions. Furthermore, using the whole slurry, final ethanol......In this study, bioethanol production from steam-exploded wheat straw using different process configurations was evaluated using two Saccharomyces cerevisiae strains, F12 and Red Star. The strain F12 has been engineerically modified to allow xylose consumption as cereal straw contain considerable...... amounts of pentoses. Red Star is a robust hexose-fermenting strain used for industrial fuel ethanol fermentations and it was used for comparative purposes. The highest ethanol concentration, 23.7 g/L, was reached using the whole slurry (10%, w/v) and the recombinant strain (F12) in an SSF process...

  3. The effect of wheat straw substitution by different levels of date palm leaves on performance and health of Baluchi ewe lamb

    Directory of Open Access Journals (Sweden)

    Reza Valizadeh

    2016-04-01

    Full Text Available Introduction A major constraint of animal production in south of Iran is the lack of cheap source of roughages. Date palm leaves (DPL is one of the most abundant agricultural by-products in south of Iran. Almost all pruned leaves are discarded in the fields, mainly for nutrients recycling and soil conservation (M. Wan Zahari, et al1999. The yearly maintenance of date palm tree produces a (around 20 kg per each tree considerable quantities of green leaves (Bahman et al (1997; Pascual et al (2000. Ruminant can utilize crop residues, with poor nutritional value. These residues are traditionally fed to animal as the main part of diet in many developing countries. However; dry matter intake of these by-products are not adequate to fulfill the nutrient requirements of livestock even at maintenance level (Dixon and Egan, 2002. DPL has a great potential for use as a roughage or bulk source in total mixed ration (TMR for ruminants in dry areas. Detailed studies on fermentation characteristics and palatability of DPL silage, as well as on animal performance, have been reported by many workers (e.g. Abu Hassan and Ishida, 1991; Ishida and Abu Hassan, 1997; Oshio et al., 1999. Some researchers such as El-din and Tag-El-Din, 1996; and Bahman et al., 1997 have reported that DPL cannot be fed to animals because of low crude protein (6-7% and high level of fibrous cell wall content low palatability and digestibility. Therefore we design one experiment that investigates possibility of using DPL without any enrichment. The objective of this trial was to study the effect of replacement DPL with wheat straw and voluntary intake, average body gain and health of Baluchi ewe lambs. Materials and Methods Twenty-four Iranian Baluchi female lambs with initial body weight (BW of 20.48±0.5 kg and age of 130±10 days were assigned to 4 dietary treatments in a completely randomized design. Groups were balanced for weight and experimental trail lasted for 76 days. All lambs

  4. Hydrolysis of solubilized hemicellulose derived from wet-oxidized wheat straw by a mixture of commercial fungal enzyme preparations

    Energy Technology Data Exchange (ETDEWEB)

    Skammelsen Schmidt, Anette; Thomsen, Alle Belinda; Woidemann, Anders [Risoe National Lab. (Denmark); Tenkanen, Maija [VTT Biotechnology and Food Research (Finland)

    1998-04-01

    The enzymatic hydrolysis of the solubilized hemicellulose fraction from wet-oxidized wheat straw was investigated for quantification purposes. An optimal hydrolysis depends on factors such as composition of the applied enzyme mixture and the hydrolysis conditions (enzyme loading, hydrolysis time, pH-value, and temperature). A concentrated enzyme mixture was used in this study prepared at VTT Biotechnology and Food Research, Finland, by mixing four commercial enzyme preparations. No distinctive pH-value and temperature optima were identified after a prolonged incubation of 24 hours. By reducing the hydrolysis time to 2 hours a temperature optimum was found at 50 deg. C, where a pH-value higher than 5.2 resulted in reduced activity. An enzyme-substrate-volume-ratio of 0.042, a pH-value of 5.0, and a temperature of 50 deg. C were chosen as the best hydrolysis conditions due to an improved monosaccharide yield. The hydrolysis time was chosen to be 24 hours to ensure equilibrium and total quantification. Even under the best hydrolysis conditions, the overall sugar yield from the enzymatic hydrolysis was only 85% of that of the optimal acid hydrolysis. The glucose yield were approximately the same for the two types of hydrolyses, probably due to the high cellulase activity in the VTT-enzyme mixture. For xylose and arabinose the enzymatic hydrolysis yielded only 80% of that of the acid hydrolysis. As the pentoses existed mainly as complex polymers their degradation required many different enzymes, some of which might be missing from the VTT-enzyme mixture. Furthermore, the removal of side-choins from the xylan backbone during the wet-oxidation pretreatment process might enable the hemicellulosic polymers to interact and precipitate, hence, reducing the enzymatic digestibility of the hemicellulose. (au) 8 tabs., 10 ills., 65 refs.

  5. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Burkholderia sacchari using wheat straw hydrolysates and gamma-butyrolactone.

    Science.gov (United States)

    Cesário, M Teresa; Raposo, Rodrigo S; M D de Almeida, M Catarina; van Keulen, Frederik; Ferreira, Bruno S; Telo, João P; R da Fonseca, M Manuela

    2014-11-01

    Burkholderia sacchari DSM 17165 is able to grow and produce poly(3-hydroxybutyrate) both on hexoses and pentoses. In a previous study, wheat straw lignocellulosic hydrolysates (WSH) containing high C6 and C5 sugar concentrations were shown to be excellent carbon sources for P(3HB) production. Using a similar feeding strategy developed for P(3HB) production based on WSH, fed-batch cultures were developed aiming at the production of the copolymer P(3HB-co-4HB) (poly(3-hydroxybutyrate-co-4-hydroxybutyrate)) by B. sacchari. The ability of this strain to synthesize P(3HB-co-4HB) was first shown in shake flasks using gamma-butyrolactone (GBL) as precursor of the 4HB units. Fed-batch cultures using glucose as carbon source (control) and GBL were developed to achieve high copolymer productivities and 4HB incorporations. The attained P(3HB-co-4HB) productivity and 4HB molar% were 0.7g/(Lh) and 4.7molar%, respectively. The 4HB incorporation was improved to 6.3 and 11.8molar% by addition of 2g/L propionic and acetic acid, respectively. When WSH were used as carbon source under the same feeding conditions, the values achieved were 0.5g/(Lh) and 5.0molar%, respectively. Burkholderia sacchari, a strain able to produce biopolymers based on xylose-rich lignocellulosic hydrolysates, is for the first time reported to produce P(3HB-co-4HB) using gamma butyrolactone as precursor. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. [Effects of Warming and Straw Application on Soil Respiration and Enzyme Activity in a Winter Wheat Cropland].

    Science.gov (United States)

    Chen, Shu-tao; Sang, Lin; Zhang, Xu; Hu, Zheng-hua

    2016-02-15

    In order to investigate the effects of warming and straw application on soil respiration and enzyme activity, a field experiment was performed from November 2014 to May 2015. Four treatments, which were control (CK), warming, straw application, and warming and straw application, were arranged in field. Seasonal variability in soil respiration, soil temperature and soil moisture for different treatments were measured. Urease, invertase, and catalase activities for different treatments were measured at the elongation, booting, and anthesis stages. The results showed that soil respiration in different treatments had similar seasonal variation patterns. Seasonal mean soil respiration rates for the CK, warming, straw application, and warming and straw application treatments were 1.46, 1.96, 1.92, and 2.45 micromol x (m2 x s)(-1), respectively. ANOVA indicated that both warming and straw applications significantly (P soil respiration compared to the control treatment. The relationship between soil respiration and soil temperature in different treatments fitted with the exponential regression function. The exponential regression functions explained 34.3%, 28.1%, 24.6%, and 32.0% variations of soil respiration for CK, warming, straw application, and warming and straw application treatments, respectively. Warming and straw applications significantly (P soil respiration and urease activity fitted with a linear regression function, with the P value of 0.061. The relationship between soil respiration and invertase (P = 0.013), and between soil respiration and catalase activity (P = 0.002) fitted well with linear regression functions.

  7. Nutritive value of straw, with special reference to wet-season rice straw as related to variety and location of growth in East-Java, Indonesia.

    NARCIS (Netherlands)

    Soebarinoto,; Siti Chuzaemi,; Hermanto,; Hartutik,; Bruchem, van J.; Orskov, E.R.

    1993-01-01

    Variation in nutritive quality between morphological components is less for rice straw than for wheat straw. Wheat straw stems have a lower quality than stems of rice straw, while leaves and leaf sheaths of wheat are of better quality than of rice. Variation in voluntary organic matter intake, and

  8. Kinetics of batch anaerobic co-digestion of poultry litter and wheat straw including a novel strategy of estimation of endogenous decay and yield coefficients using numerical integration.

    Science.gov (United States)

    Shen, Jiacheng; Zhu, Jun

    2016-10-01

    The kinetics of anaerobic co-digestion of poultry litter and wheat straw has not been widely reported in the literature. Since endogenous decay and yield coefficients are two basic parameters for the design of anaerobic digesters, they are currently estimated only by continues experiments. In this study, numerical integration was employed to develop a novel strategy to estimate endogenous decay and yield coefficients using initial and final liquid data combined with methane volumes produced over time in batch experiments. To verify this method, the kinetics of batch anaerobic co-digestion of poultry litter and wheat straw at different TS and VS levels was investigated, with the corresponding endogenous decay and (non-observed) yield coefficients in the exponential periods determined to be between 0.74 × 10(-3) and 6.1 × 10(-3) d(-1), and between 0.0259 and 0.108 g VSS (g VS)(-1), respectively. A general Gompertz model developed early for bio-product could be used to simulate the methane volume profile in the co-digestion. The same model parameters obtained from the methane model combined with the corresponding yield coefficients could also be used to describe the VSS generation and VS destruction.

  9. Measurement of process variables in solid-state fermentation of wheat straw using FT-NIR spectroscopy and synergy interval PLS algorithm

    Science.gov (United States)

    Jiang, Hui; Liu, Guohai; Mei, Congli; Yu, Shuang; Xiao, Xiahong; Ding, Yuhan

    2012-11-01

    The feasibility of rapid determination of the process variables (i.e. pH and moisture content) in solid-state fermentation (SSF) of wheat straw using Fourier transform near infrared (FT-NIR) spectroscopy was studied. Synergy interval partial least squares (siPLS) algorithm was implemented to calibrate regression model. The number of PLS factors and the number of subintervals were optimized simultaneously by cross-validation. The performance of the prediction model was evaluated according to the root mean square error of cross-validation (RMSECV), the root mean square error of prediction (RMSEP) and the correlation coefficient (R). The measurement results of the optimal model were obtained as follows: RMSECV = 0.0776, Rc = 0.9777, RMSEP = 0.0963, and Rp = 0.9686 for pH model; RMSECV = 1.3544% w/w, Rc = 0.8871, RMSEP = 1.4946% w/w, and Rp = 0.8684 for moisture content model. Finally, compared with classic PLS and iPLS models, the siPLS model revealed its superior performance. The overall results demonstrate that FT-NIR spectroscopy combined with siPLS algorithm can be used to measure process variables in solid-state fermentation of wheat straw, and NIR spectroscopy technique has a potential to be utilized in SSF industry.

  10. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China

    Science.gov (United States)

    Guo, Lijin; Zheng, Shixue; Cao, Cougui; Li, Chengfang

    2016-09-01

    The objective of this study was to investigate how the relationships between bacterial communities and organic C (SOC) in topsoil (0-5 cm) are affected by tillage practices [conventional intensive tillage (CT) or no-tillage (NT)] and straw-returning methods [crop straw returning (S) or removal (NS)] under a rice-wheat rotation in central China. Soil bacterial communities were determined by high-throughput sequencing technology. After two cycles of annual rice-wheat rotation, compared with CT treatments, NT treatments generally had significantly more bacterial genera and monounsaturated fatty acids/saturated fatty acids (MUFA/STFA), but a decreased gram-positive bacteria/gram-negative bacteria ratio (G+/G-). S treatments had significantly more bacterial genera and MUFA/STFA, but had decreased G+/G- compared with NS treatments. Multivariate analysis revealed that Gemmatimonas, Rudaea, Spingomonas, Pseudomonas, Dyella, Burkholderia, Clostridium, Pseudolabrys, Arcicella and Bacillus were correlated with SOC, and cellulolytic bacteria (Burkholderia, Pseudomonas, Clostridium, Rudaea and Bacillus) and Gemmationas explained 55.3% and 12.4% of the variance in SOC, respectively. Structural equation modeling further indicated that tillage and residue managements affected SOC directly and indirectly through these cellulolytic bacteria and Gemmationas. Our results suggest that Burkholderia, Pseudomonas, Clostridium, Rudaea, Bacillus and Gemmationas help to regulate SOC sequestration in topsoil under tillage and residue systems.

  11. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC

    Science.gov (United States)

    2016-01-01

    Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative 13C nuclear magnetic resonance (13C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake. The combination of both techniques provided new information on the chemical composition of bio-oils for further upgrading. 13C NMR analysis indicated that pinewood-based bio-oil contained mostly methoxy/hydroxyl (≈30%) and carbohydrate (≈27%) carbons; wheat straw bio-oil showed to have high amount of alkyl (≈35%) and aromatic (≈30%) carbons, while rapeseed cake-based bio-oil had great portions of alkyl carbons (≈82%). More than 200 compounds were identified and quantified using GC × GC coupled to a flame ionization detector (FID) and a time of flight mass spectrometer (TOF-MS). Nonaromatics were the most abundant and comprised about 50% of the total mass of compounds identified and quantified via GC × GC. In addition, this analytical approach allowed the quantification of high value-added phenolic compounds, as well as of low molecular weight carboxylic acids and aldehydes, which exacerbate the unstable and corrosive character of the bio-oil. PMID:27668136

  12. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC.

    Science.gov (United States)

    Negahdar, Leila; Gonzalez-Quiroga, Arturo; Otyuskaya, Daria; Toraman, Hilal E; Liu, Li; Jastrzebski, Johann T B H; Van Geem, Kevin M; Marin, Guy B; Thybaut, Joris W; Weckhuysen, Bert M

    2016-09-06

    Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative 13C nuclear magnetic resonance (13C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake. The combination of both techniques provided new information on the chemical composition of bio-oils for further upgrading. 13C NMR analysis indicated that pinewood-based bio-oil contained mostly methoxy/hydroxyl (≈30%) and carbohydrate (≈27%) carbons; wheat straw bio-oil showed to have high amount of alkyl (≈35%) and aromatic (≈30%) carbons, while rapeseed cake-based bio-oil had great portions of alkyl carbons (≈82%). More than 200 compounds were identified and quantified using GC × GC coupled to a flame ionization detector (FID) and a time of flight mass spectrometer (TOF-MS). Nonaromatics were the most abundant and comprised about 50% of the total mass of compounds identified and quantified via GC × GC. In addition, this analytical approach allowed the quantification of high value-added phenolic compounds, as well as of low molecular weight carboxylic acids and aldehydes, which exacerbate the unstable and corrosive character of the bio-oil.

  13. Fluorescence enhancement effect of Eu(III)-thenoyltrifluoroacetone-cetyltrimethyl ammonium bromide in water-dissolved organic matter extracted from wheat straw.

    Science.gov (United States)

    Huang, Fei; Meng, Fanhui; Fan, Mengdi; Zhao, Yanyan; Wu, Xia; Shen, Lin

    2015-01-01

    The fluorescence spectral characteristics of water-dissolved organic matter extracted from wheat straw (DOM-WS) were studied using three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy. The results indicated that 3D-EEM spectra of DOM-WS showed four different fluorophores: humic-like, visible fulvic-like, UV fulvic-like and protein-like substances. It is interesting that DOM-WS can obviously enhance the fluorescence intensity of Eu(III)-thenoyltrifluoroacetone-cetyltrimethyl ammonium bromide system. On the basis of this study, a new fluorescence method for the determination of trace amounts of Eu(III) was developed. Under the optimal conditions, the enhanced fluorescence intensity was in proportion to the concentration of Eu(III) in the range of 8.0×10(-8)-8.0×10(-7)mol/L. The detection limit (S/N=3) was 1.1×10(-9)mol/L. This method was applied to the analysis of Eu(III) concentration in standard sample and obtained satisfactory results. It may be a new way to use wheat straw effectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw.

    Science.gov (United States)

    Ding, Yi; Du, Bo; Zhao, Xuebing; Zhu, J Y; Liu, Dehua

    2017-03-01

    Phosphomolybdic acid (PMo 12 ) was used as an electron mediator and proton carrier to mediate biomass pretreatment for ethanol production and electricity generation from wheat straw. In the pretreatment, lignin was oxidized anaerobically by PMo 12 with solubilization of a fraction of hemicelluloses, and the PMo 12 was simultaneously reduced. In an external liquid flow cell, the reduced PMo 12 was re-oxidized with generation of electricity. The effects of several factors on pretreatment were investigated for optimizing the conditions. Enzymatic conversion of cellulose and xylan were about 80% and 45%, respectively, after pretreatment of wheat straw with 0.25M PMo 12 , at 95°C for 45min. FeCl 3 was found to be an effective liquid mediator to transfer electrons to air, the terminal electron acceptor. By investigating the effects of various operation parameters and cell structural factors, the highest output power density of about 11mW/cm 2 was obtained for discharging of the reduced PMo 12 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaluating Lignin-Rich Residues from Biochemical Ethanol Production of Wheat Straw and Olive Tree Pruning by FTIR and 2D-NMR

    Directory of Open Access Journals (Sweden)

    José I. Santos

    2015-01-01

    Full Text Available Lignin-rich residues from the cellulose-based industry are traditionally incinerated for internal energy use. The future biorefineries that convert cellulosic biomass into biofuels will generate more lignin than necessary for internal energy use, and therefore value-added products from lignin could be produced. In this context, a good understanding of lignin is necessary prior to its valorization. The present study focused on the characterization of lignin-rich residues from biochemical ethanol production, including steam explosion, saccharification, and fermentation, of wheat straw and olive tree pruning. In addition to the composition and purity, the lignin structures (S/G ratio, interunit linkages were investigated by spectroscopy techniques such as FTIR and 2D-NMR. Together with the high lignin content, both residues contained significant amounts of carbohydrates, mainly glucose and protein. Wheat straw lignin showed a very low S/G ratio associated with p-hydroxycinnamates (p-coumarate and ferulate, whereas a strong predominance of S over G units was observed for olive tree pruning lignin. The main interunit linkages present in both lignins were β-O-4′ ethers followed by resinols and phenylcoumarans. These structural characteristics determine the use of these lignins in respect to their valorization.

  16. COMPARED ANALYSIS OF CATALASE AND PEROXIDASE ACTIVITY IN CELLULOLYTIC FUNGUS TRICHODERMA REESEI GROWN ON MEDIUM WITH DIFFERENT CONCENTRATIONS OF GRINDED WHEAT AND BARLEY STRAWS

    Directory of Open Access Journals (Sweden)

    Mihaela Cristica

    2010-09-01

    Full Text Available The purpose of this study was to assess the evolution of catalase and peroxidase activity in Trichoderma reesei grown on medium containing grinded wheat and barley straws. Carbon source of cultivation medium - glucose was replaced by various concentrations of grinded wheat and barley straws, finally resulting three experimental variants as follows: V1 = 20 g/l, V2 = 30 g/l, V3 = 40 g/l. ĂŽn addition to these variants a control sample was added in which composition remainded unchanged. The catalase activity was determined by spectrophotometric Sinha method (Artenie et al., 2008 while peroxidase activity was assesed using the o-dianisidine method (Cojocaru, 2009. Enzymatic determinations were carried out at 7 and 14 days from inoculation, in both fungus mycelium and culture liquid. The enzymatic assay showed significant differences between determinations intervals and work variants. Enzyme activity is influenced by the age of fungus and by the different nature of the substrate used.

  17. Partial replacement of dried Leucaena leucocephala (Lam.) de Wit leaves for noug (Guizotia abyssinica) (L.f.) Cass. seed cake in the diet of highland sheep fed on wheat straw.

    Science.gov (United States)

    Tesfay, Temesgen; Tesfay, Yayneshet

    2013-02-01

    This study investigated the effect of replacing noug (Guizotia abyssinica) (L.f.) Cass. seed cake by dried Leucaena leucocephala (Lam.) de Wit leaves on feed intake, live weight gain, nutrient digestibility, and nitrogen balance of highland sheep in Tigray Region in northern Ethiopia. Twenty intact yearling male highland sheep weighing 16.9 ± 1.62 kg were used in a randomized complete block design and included the following four treatments: T1 (control, wheat straw ad libitum + 200 g noug seed cake (NSC) + 150 g wheat bran (WB)); T2 (wheat straw ad libitum + 170 g NSC + 44.3 g dried L. leucocephala (DLL) + 150 g WB); T3 (wheat straw ad libitum + 140 g NSC + 87.3 g DLL + 150 g WB); and T4 (wheat straw ad libitum + 110 g NSC + 130.2 g DLL + 150 g WB). Sheep fed on T4 diet consumed higher total dry matter (658 g/head/day) and recorded the highest average daily weight gain (59 g/head/day). Sheep fed on T4 diet had higher dry matter (61 %), organic matter (63 %), and crude protein (75 %) digestibility values than the other treatments. Sheep fed on T3 diet demonstrated higher feed conversion ratio (11.93) than sheep kept on the other treatments. All sheep exhibited positive nitrogen balance, with the highest nitrogen retention being measured in T4 (12 g/head/day). It is concluded that partially replacing NSC by DLL can improve total dry matter intake, digestibility of nutrients, and body weight gain in highland sheep fed on wheat straw as the basal diet.

  18. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by ¤Thermoanaerobacter mathranii¤

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, B.K.

    2001-01-01

    /l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present...... in the hydrolysate, were each tested in concentrations of 10-100x the concentration found in the hydrolysate for their effect on fermentation by T. mathranii. At 2 mM, these aromatic compounds were not inhibitory to growth or ethanol yield in T mathranii. When the concentration of aromatics was increased to 10 m...

  19. Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Topakas, Evangelos; Moukouli, Maria

    2011-01-01

    by the addition of commercially available enzymes Celluclast® 1.5 L FG and Novozym® 188 in 3:1 ratio for the treatment of PWS, resulted in a 3-fold increase in the volumetric ethanol productivity without increasing the ethanol production significantly. By direct bioconversion of 110 kg m−3 dry matter of PWS......, ethanol concentration (4.9 kg m−3) and yield (40 g kg−1 of PWS) were similarly obtained by F. oxysporum and the mixed culture, while productivity rates as high as 34 g m−3 h−1 and 108 g m−3 h−1 were obtained by F. oxysporum and the mixed culture, respectively.......Fusarium oxysporum F3 alone or in mixed culture with Saccharomyces cerevisiae F12 were used to ferment carbohydrates of wet exploded pre-treated wheat straw (PWS) directly to ethanol. Both microorganisms were first grown aerobically to produce cell mass and thereafter fermented PWS to ethanol under...

  20. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse.

    Science.gov (United States)

    Bolado-Rodríguez, Silvia; Toquero, Cristina; Martín-Juárez, Judit; Travaini, Rodolfo; García-Encina, Pedro Antonio

    2016-02-01

    The effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the methane produced by the anaerobic digestion of wheat straw (WS) and sugarcane bagasse (SCB) was studied, using whole slurry and solid fraction. All the pretreatments released formic and acetic acids and phenolic compounds, while 5-hydroxymetilfurfural (HMF) and furfural were generated only by acid pretreatment. A remarkable inhibition was found in most of the whole slurry experiments, except in thermal pretreatment which improved methane production compared to the raw materials (29% for WS and 11% for SCB). The alkaline pretreatment increased biodegradability (around 30%) and methane production rate of the solid fraction of both pretreated substrates. Methane production results were fitted using first order or modified Gompertz equations, or a novel model combining both equations. The model parameters provided information about substrate availability, controlling step and inhibitory effect of compounds generated by each pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion.

    Science.gov (United States)

    Maas, Ronald Hw; Bakker, Robert R; Boersma, Arjen R; Bisschops, Iemke; Pels, Jan R; de Jong, Ed; Weusthuis, Ruud A; Reith, Hans

    2008-08-12

    The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight) is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae). After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52%) in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (in)organic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane), whereas the solid fraction functioned as fuel for thermal conversion (combustion), yielding thermal energy, which can be used for heat and power generation. Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per kilogram (dry basis).

  2. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion

    Directory of Open Access Journals (Sweden)

    de Jong Ed

    2008-08-01

    Full Text Available Abstract Introduction The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. Results This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae. After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52% in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (inorganic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane, whereas the solid fraction functioned as fuel for thermal conversion (combustion, yielding thermal energy, which can be used for heat and power generation. Conclusion Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per

  3. Cereal straws form important part of livestock feeding in developing ...

    African Journals Online (AJOL)

    Kamran

    E-mail: agrotech@brain.net.pk. Introduction. In developing countries, livestock is usually fed high fibrous crop residues (wheat straw, rice straw, stovers, etc.) characterized by high .... urea up to 5% level of urea is safe, economical and had a significant (P <0.01) effect on increasing the crude protein content of wheat straw.

  4. [Short-term effects of different tillage modes combined with straw-returning on the soil labile organic carbon components in a farmland with rice-wheat double cropping].

    Science.gov (United States)

    Yang, Min-Fang; Zhu, Li-Qun; Han, Xin-Zhong; Gu, Ke-Jun; Hu, Nai-Juan; Bian, Xin-Min

    2013-05-01

    A two-year (2009-2011) field experiment was conducted to study the effects of different tillage modes, straw-returning, and their interactions on the soil total organic carbon (TOC) and labile organic carbon (LOC) components (easily oxidizable organic carbon (EOC), water-soluble organic carbon (WSOC), and microbial biomass carbon (MBC)) at the soil depths of 0-7, 7-14, and 14-21 cm in a farmland with rice-wheat double cropping. In all treatments of straw-returning, the TOC and LOC contents in each soil layer were significantly higher than those without straw-returning. Under plowing tillage, the MBC content in 0-7 cm soil layer was significantly higher than that under rotary tillage, but the EOC content was in adverse. Rotary tillage made the TOC content in 7 - 14 cm soil layer being significantly higher, as compared with plowing tillage. The TOC, WSOC, and MBC contents in 14-21 cm soil layer under plowing tillage were significantly higher than those under rotary tillage. Plowing tillage combined with rice and wheat straws-returning made the soil TOC content being higher than the other treatments.

  5. The kinetics of inhibitor production resulting from hydrothermal deconstruction of wheat straw studied using a pressurised microwave reactor.

    Science.gov (United States)

    Ibbett, Roger; Gaddipati, Sanyasi; Greetham, Darren; Hill, Sandra; Tucker, Greg

    2014-03-29

    The use of a microwave synthesis reactor has allowed kinetic data for the hydrothermal reactions of straw biomass to be established from short times, avoiding corrections required for slow heating in conventional reactors, or two-step heating. Access to realistic kinetic data is important for predictions of optimal reaction conditions for the pretreatment of biomass for bioethanol processes, which is required to minimise production of inhibitory compounds and to maximise sugar and ethanol yields. The gravimetric loss through solubilisation of straw provided a global measure of the extent of hydrothermal deconstruction. The kinetic profiles of furan and lignin-derived inhibitors were determined in the hydrothermal hydrolysates by UV analysis, with concentrations of formic and acetic acid determined by HPLC. Kinetic analyses were either carried out by direct fitting to simple first order equations or by numerical integration of sequential reactions. A classical Arrhenius activation energy of 148 kJmol-1 has been determined for primary solubilisation, which is higher than the activation energy associated with historical measures of reaction severity. The gravimetric loss is primarily due to depolymerisation of the hemicellulose component of straw, but a minor proportion of lignin is solubilised at the same rate and hence may be associated with the more hydrophilic lignin-hemicellulose interface. Acetic acid is liberated primarily from hydrolysis of pendant acetate groups on hemicellulose, although this occurs at a rate that is too slow to provide catalytic enhancement to the primary solubilisation reactions. However, the increase in protons may enhance secondary reactions leading to the production of furans and formic acid. The work has suggested that formic acid may be formed under these hydrothermal conditions via direct reaction of sugar end groups rather than furan breakdown. However, furan degradation is found to be significant, which may limit ultimate

  6. Effects of Earthworm (Eisenia fetida) and Wheat (Triticum aestivum) Straw Additions on Selected Properties of Petroleum-Contaminated Soils

    Science.gov (United States)

    Mac A. Callaham; Arthur J. Stewart; Clara Alarcon; Sara J. McMillen

    2002-01-01

    Current bioremediation techniques for petroleum-contaminated soils are designed to remove contaminants as quickly and efficiently as possible, but not necessarily with postremediation soil biological quality as a primary objective. To test a simple postbioremediation technique, we added earthworms (Eisenia fetida) or wheat (Triticum aestivum...

  7. Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation.

    Science.gov (United States)

    Moreno, Antonio D; Tomás-Pejó, Elia; Ibarra, David; Ballesteros, Mercedes; Olsson, Lisbeth

    2013-11-13

    Lignocellulosic bioethanol is expected to play an important role in fossil fuel replacement in the short term. Process integration, improvements in water economy, and increased ethanol titers are key considerations for cost-effective large-scale production. The use of whole steam-pretreated slurries under high dry matter (DM) conditions and conversion of all fermentable sugars offer promising alternatives to achieve these goals. Wheat straw slurry obtained from steam explosion showed high concentrations of degradation compounds, hindering the fermentation performance of the evolved xylose-recombinant Saccharomyces cerevisiae KE6-12 strain. Fermentability tests using the liquid fraction showed a higher number of colony-forming units (CFU) and higher xylose consumption rates when treating the medium with laccase. During batch simultaneous saccharification and co-fermentation (SSCF) processes, cell growth was totally inhibited at 12% DM (w/v) in untreated slurries. However, under these conditions laccase treatment prior to addition of yeast reduced the total phenolic content of the slurry and enabled the fermentation. During this process, an ethanol concentration of 19 g/L was obtained, corresponding to an ethanol yield of 39% of the theoretical yield. By changing the operation from batch mode to fed-batch mode, the concentration of inhibitors at the start of the process was reduced and 8 g/L of ethanol were obtained in untreated slurries with a final consistency of 16% DM (w/v). When fed-batch SSCF medium was supplemented with laccase 33 hours after yeast inoculation, no effect on ethanol yield or cell viability was found compared to untreated fermentations. However, if the laccase supplementation (21 hours after yeast inoculation) took place before the first addition of substrate (at 25 hours), improved cell viability and an increased ethanol titer of up to 32 g/L (51% of the theoretical) were found. Laccase treatment in SSCF processes reduces the inhibitory effect

  8. A systems analysis of biodiesel production from wheat straw using oleaginous yeast: process design, mass and energy balances.

    Science.gov (United States)

    Karlsson, Hanna; Ahlgren, Serina; Sandgren, Mats; Passoth, Volkmar; Wallberg, Ola; Hansson, Per-Anders

    2016-01-01

    Biodiesel is the main liquid biofuel in the EU and is currently mainly produced from vegetable oils. Alternative feedstocks are lignocellulosic materials, which provide several benefits compared with many existing feedstocks. This study examined a technical process and its mass and energy balances to gain a systems perspective of combined biodiesel (FAME) and biogas production from straw using oleaginous yeasts. Important process parameters with a determining impact on overall mass and energy balances were identified and evaluated. In the base case, 41% of energy in the biomass was converted to energy products, primary fossil fuel use was 0.37 MJprim/MJ produced and 5.74 MJ fossil fuels could be replaced per kg straw dry matter. The electricity and heat produced from burning the lignin were sufficient for process demands except in scenarios where the yeast was dried for lipid extraction. Using the residual yeast cell mass for biogas production greatly increased the energy yield, with biogas contributing 38% of total energy products. In extraction methods without drying the yeast, increasing lipid yield and decreasing the residence time for lipid accumulation are important for the energy and mass balance. Changing the lipid extraction method from wet to dry makes the greatest change to the mass and energy balance. Bioreactor agitation and aeration for lipid accumulation and yeast propagation is energy demanding. Changes in sugar concentration in the hydrolysate and residence times for lipid accumulation greatly affect electricity demand, but have relatively small impacts on fossil energy use (NER) and energy yield (EE). The impact would probably be greater if externally produced electricity were used.

  9. Enhancing Nutritional Contents of Lentinus sajor-caju Using Residual Biogas Slurry Waste of Detoxified Mahua Cake Mixed with Wheat Straw

    Science.gov (United States)

    Gupta, Aditi; Sharma, Satyawati; Kumar, Ashwani; Alam, Pravej; Ahmad, Parvaiz

    2016-01-01

    Residual biogas slurries (BGS) of detoxified mahua cake and cow dung were used as supplements to enhance the yield and nutritional quality of Lentinus sajor-caju on wheat straw (WS). Supplementation with 20% BGS gave a maximum yield of 1155 gkg-1 fruit bodies, furnishing an increase of 95.1% over WS control. Significant increase (p ≤ 0.05) in protein content (29.6-38.9%), sugars (29.1-32.3%) and minerals (N, P, K, Fe, Zn) was observed in the fruit bodies. Principle component analysis (PCA) was performed to see the pattern of correlation within a set of observed variables and how these different variables varied in different treatments. PC1 and PC2 represented 90% of total variation in the observed variables. Moisture (%), lignin (%), celluloses (%), and C/N ratio were closely correlated in comparison to Fe, N, and saponins. PCA of amino acids revealed that, PC1 and PC2 represented 74% of total variation in the data set. HPLC confirmed the absence of any saponin residues (characteristic toxins of mahua cake) in fruit bodies and mushroom spent. FTIR studies showed significant degradation of celluloses (22.2-32.4%), hemicelluloses (14.1-23.1%) and lignin (27.4-39.23%) in the spent, along with an increase in nutrition content. The study provided a simple, cost effective approach to improve the yield and nutritional quality of L. sajor-caju by resourceful utilization of BGS. PMID:27790187

  10. Enhancing Nutritional Contents ofLentinus sajor-cajuUsing Residual Biogas Slurry Waste of Detoxified Mahua Cake Mixed with Wheat Straw.

    Science.gov (United States)

    Gupta, Aditi; Sharma, Satyawati; Kumar, Ashwani; Alam, Pravej; Ahmad, Parvaiz

    2016-01-01

    Residual biogas slurries (BGS) of detoxified mahua cake and cow dung were used as supplements to enhance the yield and nutritional quality of Lentinus sajor-caju on wheat straw (WS). Supplementation with 20% BGS gave a maximum yield of 1155 gkg -1 fruit bodies, furnishing an increase of 95.1% over WS control. Significant increase ( p ≤ 0.05) in protein content (29.6-38.9%), sugars (29.1-32.3%) and minerals (N, P, K, Fe, Zn) was observed in the fruit bodies. Principle component analysis (PCA) was performed to see the pattern of correlation within a set of observed variables and how these different variables varied in different treatments. PC1 and PC2 represented 90% of total variation in the observed variables. Moisture (%), lignin (%), celluloses (%), and C/N ratio were closely correlated in comparison to Fe, N, and saponins. PCA of amino acids revealed that, PC1 and PC2 represented 74% of total variation in the data set. HPLC confirmed the absence of any saponin residues (characteristic toxins of mahua cake) in fruit bodies and mushroom spent. FTIR studies showed significant degradation of celluloses (22.2-32.4%), hemicelluloses (14.1-23.1%) and lignin (27.4-39.23%) in the spent, along with an increase in nutrition content. The study provided a simple, cost effective approach to improve the yield and nutritional quality of L. sajor-caju by resourceful utilization of BGS.

  11. Feasibility of using olive mill effluent (OME) as a wetting agent during the cultivation of oyster mushroom, Pleurotus ostreatus, on wheat straw.

    Science.gov (United States)

    Kalmis, Erbil; Azbar, Nuri; Yildiz, Hasan; Kalyoncu, Fatih

    2008-01-01

    In this study, cultivation of oyster mushroom, Pleurotus ostreatus, on wheat straw substrate containing tap water and olive mill effluent (OME) mixture containing varying volume of OME was studied in order to investigate the feasibility of using OME as an alternative wetting agent and OME's impact on some fundamental food quality characteristics of mushrooms. Time period for mycelial colonization, primordium initiation and first harvest were comparatively evaluated with the control group. It was shown that the use of OME and tap water mixture consisting of OME up to 25% volumetrically was possible for the purpose of commercial mushroom production. Experimental results obtained from substrate containing 25% OME mixture showed no statistically significant difference compared to control group. The negative effects of increasing volume of OME in the mixture were also indicated by bioefficiency, which was found to be 13.8% for substrates wetted with 100% OME, whereas bioefficiency was 53.6% for control group. Increasing volume of OME in the mixture resulted in deformation of fruit body shape, whereas no significant difference in food quality was observed due to the higher amount of OME. This work suggested that the use of OME up to 25% as moisturizer could be considered, especially for the locations having significant number of olive mills and mushroom producers, both as an environmentally friendly solution for the safe and ecological disposal of OME and a practical way for recovering OME's economic value thereby.

  12. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management

    Science.gov (United States)

    Huang, Tao; Ju, Xiaotang; Yang, Hao

    2017-02-01

    Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38-60 kg N ha-1 from conventional N managements, but declined by 32-71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.

  13. [Effects of grape seed addition in swine manure-wheat straw composting on the compost microbial community and carbon and nitrogen contents].

    Science.gov (United States)

    Huang, Yi-Mei; Liu, Xue-Ling; Jiang, Ji-Shao; Huang, Hua; Liu, Dong

    2012-08-01

    Taking substrates swine manure and wheat straw (fresh mass ratio 10.5:1) as the control (PMW), a composting experiment was conducted in a self-made aerated static composting bin to study the effects of adding 8% grape seed (treatment PMW + G) on the succession of microbial community and the transformation of carbon and nitrogen in the substrates during the composting. Seven samples were collected from each treatment, according to the temperature of the compost during the 30 d composting period. The microbial population and physiological groups were determined, and the NH4(+)-N, NO3(-)-N, organic N, and organic C concentrations in the compost were measured. Grape seed addition induced a slight increase of bacterial count and a significant increase of actinomycetes count, but decreased the fungal count significantly. Grape seed addition also decreased the ratio of bacteria to actinomycetes and the counts of ammonifiers and denitrifiers, but increased the counts of nitrifiers, N-fixing bacteria, and cellulose-decomposing microorganisms. The contents of NH4(+)-N and organic C decreased, while that of NO3(-)-N increased obviously. The NO3(-)-N content in the compost was positively correlated with the actinomycetes count. During composting, the compost temperature in treatment PMW + G increased more rapidly, and remained steady in thermophilic phase, while the water content changed little, which provided a stable and higher population of actinomycetes and nitrifiers in thermophilic phase, being beneficial to the increase of compost nitrate N.

  14. Enhancing nutritional contents of Lentinus sajor-caju using residual biogas slurry waste of detoxified mahua cake mixed with wheat straw

    Directory of Open Access Journals (Sweden)

    Aditi Gupta

    2016-10-01

    Full Text Available Residual biogas slurries (BGS of detoxified mahua cake (DMC and cow dung (CD were used as supplements to enhance the yield and nutritional quality of Lentinus sajor-caju on wheat straw (WS. Supplementation with 20% BGS gave a maximum yield of 1155 gkg-1 fruit bodies, furnishing an increase of 95.1% over WS control. Significant increase (p≤0.05 in protein content (29.6-38.9%, sugars (29.1-32.3% and minerals (N, P, K, Fe, Zn was observed in the fruit bodies. Principle component analysis (PCA was performed to see the pattern of correlation within a set of observed variables and how these different variables varied in different treatments. PC1 and PC2 represented 90% of total variation in the observed variables. Moisture (%, lignin (%, celluloses (% and C/N ratio were closely correlated in comparison to Fe, N and saponins. PCA of amino acids revealed that, PC1 and PC2 represented 74% of total variation in the data set. HPLC confirmed the absence of any saponin residues (characteristic toxins of mahua cake in fruit bodies and mushroom spent. FTIR studies showed significant degradation of celluloses (22.2-32.4%, hemicelluloses (14.1-23.1% and lignin (27.4-39.23% in the spent, along with an increase in nutrition content. The study provided a simple, cost effective approach to improve the yield and nutritional quality of Lentinus sajor-caju by resourceful utilization of BGS.

  15. Xylanase production using agro-residue in solid-state fermentation from Bacillus pumilus ASH for biodelignification of wheat straw pulp.

    Science.gov (United States)

    Garg, Gaurav; Mahajan, Ritu; Kaur, Amanjot; Sharma, Jitender

    2011-11-01

    Two stage statistical design was used to optimize xylanase production from Bacillus pumilus ASH under solid-state fermentation. Initially, Plackett-Burman designing (PB) was used for the selection of crucial production parameters. Peptone, yeast extract, incubation time, moisture level and pH were found to be the crucial factors for the xylanase production. Crucial variables were further processed through central composite designing (CCD) of response surface methodology (RSM) to maximize the xylanase yield. Each significant factor was investigated at five different levels to study their influence on enzyme production. Statistical approach resulted in 2.19-fold increase in xylanase yield over conventional strategy. The determination coefficient (R (2)) as shown by analysis of variance (ANOVA) was 0.9992, which shows the adequate credibility of the model. Potential of cellulase-free xylanase was further investigated for biobleaching of wheat straw pulp. Xylanase aided bleaching through XCDED(1)D(2) sequence resulted in 20 and 17% reduction in chlorine and chlorine dioxide consumption as compared to control. Significant increase in pulp brightness (%ISO), whiteness and improvement in various pulp properties was also observed.

  16. One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ming; Zhong, Ruibo; Gao, Haiyang; Li, Wanrong; Yun, Xiaoling; Liu, Jingran; Zhao, Xinmin; Zhao, Guofen; Zhang, Feng, E-mail: fengzhang1978@hotmail.com

    2015-11-15

    Graphical abstract: Water-soluble photoluminescent carbon dots can be synthesized simply by a green, economic and one-pot hydrothermal treatment of wheat straw with ∼20% yield, in addition to the compact size and robust photostability they are experimentally demonstrated for multiplexed applications such as sensing ions and labeling and imaging for inorganic nanostructures, cells and even nematodes. The converting biomass wastes to promising biocompatible nanomaterials could be a “one-stone-two-birds” strategy to other carbon-containing biomass waste for a highly effectively carbon recycling use and sustainable energy and environment future. - Highlights: • Photoluminescent carbon dots can be synthesized by wheat straw with about 20% yield. • Carbon dots can be used for both nonliving and living labeling, imaging, and sensing. • Carbon dots can be used as a fluorescent ink. - Abstract: The use of biomass as renewable and sustainable energy source has attracted the attention of politics and research and development (R&D) facilities around the world. Agricultural straw acts as a typical biowaste, which still needs highly effective recycling to save the biomass urgently at present. Photoluminescent carbon dots (C-dots) are novel biocompatible nanomaterials that have been proved to be produced from many carbon-abundant materials and hold great promise for the modern nanobiomedicine. In order to realize a “one-stone-two-birds” strategy, we report a green, economic, one-pot method in this article for synthesizing photoluminescent C-dots by hydrothermal treatment of wheat straw. Using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), we show that the as-prepared C-dots are amorphous in structure and are mainly composed of carbon. Their tiny size (<2 nm), combined with the characteristic excitation-dependent relatively bright emission, and robust photostability made the C-dots a potential biocompatible nanomaterial for bio-applications. We

  17. [Effect of long-term shallow tillage and straw returning on soil potassium content and stratification ratio in winter wheat/summer maize rotation system in Guanzhong Plain, Northwest China].

    Science.gov (United States)

    Shi, Jiang-lan; Li, Xiu-shuang; Wang, Shu-juan; Li, Shuo; Li, You-bing; Tian, Xiao-hong

    2015-11-01

    Soil stratified sampling method and potassium chemical fractionation analysis were used to investigate effects of long-term shallow tillage and straw returning on soil K contents and stratification ratios in winter wheat/summer maize rotation system in Guanzhong Plain of Northwest China. The results showed that after 13-year continuous shallow tillage and straw returning, surface accumulation and stratification effect obviously occurred for soil available K (SAK) and non-exchangeable K (NEK), which was particularly remarkable for SAK and its fractions. Serious depletion of SAK occurred in 15-30 cm soil layer, and the SAK value was lower than the critical value of soil potassium deficiency. Meanwhile, significant differences were found between SR1 and SR2 values of SAK and its fractions, SR was obtained by values of topsoil layer (0-5 cm) divided by corresponding values of lower soil layers (5-15 cm layer, SR1, or 15-30 cm layer, SR2). However, no significant difference was observed between SR values of NEK and mineral K. In conclusion, returning of all straw over 10 years in the winter wheat/summer maize rotation system contributed greatly to maintaining soil K pool balance, while special attention should be paid to the negative effects of surface accumulation and stratification of SAK on soil K fertility.

  18. One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing

    Science.gov (United States)

    Yuan, Ming; Zhong, Ruibo; Gao, Haiyang; Li, Wanrong; Yun, Xiaoling; Liu, Jingran; Zhao, Xinmin; Zhao, Guofen; Zhang, Feng

    2015-11-01

    The use of biomass as renewable and sustainable energy source has attracted the attention of politics and research and development (R&D) facilities around the world. Agricultural straw acts as a typical biowaste, which still needs highly effective recycling to save the biomass urgently at present. Photoluminescent carbon dots (C-dots) are novel biocompatible nanomaterials that have been proved to be produced from many carbon-abundant materials and hold great promise for the modern nanobiomedicine. In order to realize a ;one-stone-two-birds; strategy, we report a green, economic, one-pot method in this article for synthesizing photoluminescent C-dots by hydrothermal treatment of wheat straw. Using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), we show that the as-prepared C-dots are amorphous in structure and are mainly composed of carbon. Their tiny size (<2 nm), combined with the characteristic excitation-dependent relatively bright emission, and robust photostability made the C-dots a potential biocompatible nanomaterial for bio-applications. We have experimentally demonstrated their potential applications in biomedical labeling, imaging, and sensing/detecting. The high yield (∼20%) of C-dots from wheat straw may suggest a new economic strategy for recycling biowaste.

  19. Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals

    DEFF Research Database (Denmark)

    Østergaard Petersen, Mai; Larsen, Jan; Thomsen, Mette Hedegaard

    2009-01-01

    In the IBUS process (Integrated Biomass Utilization System) lignocellulosic biomass is converted into ethanol at high dry matter content without addition of chemicals and with a strong focus on energy efficiency. This study describes optimization of continuous hydrothermal pretreatment of wheat s...... cellulase mixtures - increasing to 92% when adding a commercial xylanase. (C) 2009 Elsevier Ltd. All rights reserved........ The experiments show that the optimum pretreatment parameters are 195 degrees C for 6-12 min. At these conditions, a total of app. 70% of the hemicellulose is recovered, 93-94% of the cellulose is recovered in the fibers and app. 89% of the cellulose in the fibers can be converted into ethanol by commercial...

  20. Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw.

    Science.gov (United States)

    Turbe-Doan, Annick; Arfi, Yonathan; Record, Eric; Estrada-Alvarado, Isabel; Levasseur, Anthony

    2013-06-01

    Cellobiose dehydrogenases (CDHs) are extracellular glycosylated haemoflavoenzymes produced by many different wood-degrading and phytopathogenic fungi. Putative cellobiose dehydrogenase genes are recurrently discovered by genome sequencing projects in various phylogenetically distinct fungi. The genomes from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina were screened for candidate cdh genes, and one and three putative gene models were evidenced, respectively. Two putative cdh genes were selected and successfully expressed for the first time in Aspergillus niger. CDH activity was measured for both constructions (CDHcc and CDHpa), and both recombinant CDHs were purified to homogeneity and subsequently characterised. Kinetic constants were determined for several carbohydrates including β-1,4-linked di- and oligosaccharides. Optimal temperature and pH were 60 °C and 5 for CDHcc and 65-70 °C and 6 for CDHpa. Both CDHs showed a broad range of pH stability between 4 and 8. The effect of both CDHs on saccharification of micronized wheat straw by an industrial Trichoderma reesei secretome was determined. The addition of each CDH systematically decreased the release of total reducing sugars, but to different extents and according to the CDH concentration. Analytical methods were carried out to quantify the release of glucose, xylose and gluconic acid. An increase of glucose and xylose was measured at a low CDHcc concentration. At moderated and high CDHcc and CDHpa concentrations, glucose was severely reduced with a concomitant increase of gluconic acid. In conclusion, these results give new insights into the physical and chemical parameters and diversity of basidiomycetous and ascomycetous CDHs. These findings also demonstrated that CDH drastically influenced the saccharification on a natural substrate, and thus, CDH origin, concentration and potential enzymatic partners should be carefully considered in future artificial secretomes for

  1. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system.

    Science.gov (United States)

    Xu, Chao; Chen, Hao-Xiang; Xiang, Qian; Zhu, Han-Hua; Wang, Shuai; Zhu, Qi-Hong; Huang, Dao-You; Zhang, Yang-Zhu

    2018-01-01

    Soil amendments, such as biochar, have been used to enhance the immobilization of heavy metals in contaminated soil. A pot experiment was conducted to immobilize the available cadmium (Cd) and lead (Pb) in soil using peanut shell biochar (PBC) and wheat straw biochar (WBC), and to observe the accumulation of these heavy metals in rice (Oryza sativa L.). The application of PBC and WBC led to significantly higher pH, soil organic carbon (SOC), and cation exchange capacity (CEC) in paddy soil, while the content of MgCl2-extractable Cd and Pb was lower than that of untreated soil. MgCl2-extractable Cd and Pb showed significant negative correlations with pH, SOC, and CEC (p biochar to contaminated paddy soil led to reductions of 40.4-45.7 and 68.6-79.0%, respectively, in the content of MgCl2-extractable Cd and Pb. PBC more effectively immobilized Cd and Pb than WBC. Sequential chemical extractions revealed that biochar induced the transformation of the acid-soluble fraction of Cd to oxidizable and residual fractions, and the acid-soluble fraction of Pb to reducible and residual fractions. PBC and WBC clearly inhibited the uptake and accumulation of Cd and Pb in rice plants. Specially, when compared to the corresponding concentrations in rice grown in control soils, 5% PBC addition lowered Cd and Pb concentrations in grains by 22.9 and 12.2%, respectively, while WBC addition lowered them by 29.1 and 15.0%, respectively. Compared to Pb content, Cd content was reduced to a greater extent in grain by PBC and WBC. These results suggest that biochar application is effective for immobilizing Cd and Pb in contaminated paddy soil, and reduces their bioavailability in rice. Biochar could be used as a soil amendment for the remediation of soils contaminated with heavy metals.

  2. Modification in the properties of paper by using cellulase-free xylanase produced from alkalophilic Cellulosimicrobium cellulans CKMX1 in biobleaching of wheat straw pulp.

    Science.gov (United States)

    Walia, Abhishek; Mehta, Preeti; Guleria, Shiwani; Shirkot, Chand Karan

    2015-09-01

    Alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost is an actinomycete that produces industrially important and environmentally safer thermostable cellulase-free xylanase, which is used in the pulp and paper industry as an alternative to the use of toxic chlorinated compounds. Strain CKMX1 was previously characterized by metabolic fingerprinting, whole-cell fatty acids methyl ester analysis, and 16S rDNA and was found to be C. cellulans CKMX1. Crude enzyme (1027.65 U/g DBP) produced by C. cellulans CKMX1, having pH and temperature optima of 8.0 and 60 °C, respectively, in solid state fermentation of apple pomace, was used in the production of bleached wheat straw pulp. Pretreatment with xylanase at a dose of 5 U/g after pulping decreased pulp kappa points by 1.4 as compared with the control. Prebleaching with a xylanase dose of 5 U/g pulp reduced the chlorine charge by 12.5%, increased the final brightness points by approximately 1.42% ISO, and improved the pulp strength properties. Xylanase could be substituted for alkali extraction in C-Ep-D sequence and used for treating chemically bleached pulp, resulting in bleached pulp with higher strength properties. Modification of bleached pulp with 5 U of enzyme/g increased pulp whiteness and breaking length by 1.03% and 60 m, respectively; decreased tear factor of pulp by 7.29%; increased bulk weight by 3.99%, as compared with the original pulp. Reducing sugars and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. Cellulosimicrobium cellulans CKMX1 has a potential application in the pulp and paper industries.

  3. Bed agglomeration risk related to combustion of cultivated fuels (wheat straw, red canary grass, industrial hemp) in commercial bed materials; Baeddagglomereringsrisk vid foerbraenning av odlade braenslen (hampa, roerflen, halm) i kommersiella baeddmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Erhardsson, Thomas; Oehman, Marcus; Geyter, Sigrid de; Oehrstroem, Anna

    2006-12-15

    The market of forest products is expanding and thus resulting in more expensive biomass fuels. Therefore research within the combustion industry for alternative fuels is needed, for example cultivated fuels. Combustion and gasification research on these cultivated fuels are limited. The objectives of this work was to increase the general knowledge of silicon rich cultivated fuels by study the agglomeration characteristics for wheat straw, reed canary grass and industrial hemp in combination with commercial bed materials. Controlled fluidized bed agglomeration tests was conducted in a 5 kW, bench-scale, bubbling fluidized bed reactor. The tendencies of agglomeration were determined with the three cultivated fuels in combination with various minerals present in natural sand (quarts, plagioclase and potassium feldspar) and an alternative bed material (olivine). During the experiments bed samples and formed agglomerates were collected for further analyses with a scanning electron microscope (SEM) and with X-ray microanalysis (EDS). Wheat straw had the highest agglomeration tendency of the studied fuels followed by reed canary grass and industrial hemp. No significant layer formation was found around the different bed particles. Instead, the ash forming matter were found as individual ash sticky (partial melted) particles in the bed. The bed material mineralogical composition had no influence of the agglomeration process because of the non layer formation propensities of the used silicon rich fuels.

  4. Nitrogen Fixation Associated with Development and Localization of Mixed Populations of Cellulomonas sp. and Azospirillum brasilense Grown on Cellulose or Wheat Straw

    Science.gov (United States)

    Halsall, Dorothy M.; Goodchild, David J.

    1986-01-01

    Mixed cultures of Cellulomonas sp. and Azospirillum brasilense were grown with straw or cellulose as the carbon source under conditions favoring the fixation of atmospheric nitrogen. Rapid increases in cell numbers, up to 109 cells per g of substrate, were evident after 4 and 5 days of incubation at 30°C for cellulose and straw, respectively. Nitrogen fixation (detected by acetylene reduction measured on parallel cultures) commenced after 2 and 4 days of incubation for straw and cellulose, respectively, and continued for the duration of the experiment. Pure cultures of Cellulomonas sp. showed an increase in cell numbers, but CO2 production was low, and acetylene reduction was not detected on either cellulose or straw. Pure cultures of A. brasilense on cellulose showed an initial increase in cell numbers (107 cells per g of substrate) over 4 days, followed by a decline presumably caused by the exhaustion of available carbon substrate. On straw, A. brasilense increased to 109 cells per g of substrate over 5 days and then declined slowly; this growth was accompanied by acetylene reduction. Scanning electron micrographs of straw incubated with a mixed culture under the above conditions for 8 days showed cells of both species in close proximity to each other. Evidence was furnished that the close spatial relationship of cells from the two species facilitated the mutually beneficial association between them and thus increased the efficiency with which the products of straw breakdown were used for nitrogen fixation. Images PMID:16347042

  5. Power from triticale straw

    Energy Technology Data Exchange (ETDEWEB)

    Dassanayake, M.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the feasibility of using triticale straw for production of electricity in Canada. Triticale is a manmade hybrid of wheat and rye and it has a high potential of growth in Canada. The cost ($/MWh) of producing electricity from triticale straw was estimated using a data intensive techno-economic model. The study also determined the optimum size of a biomass power plant (MW) which is a trade-off between capital cost of the plant and transportation cost of biomass. Cost curves were also developed in order to evaluate the impact of scale on power production costs. The location of the power plant and the future expansion of triticale were among the factors considered in the techno-economic mode. The scope of the work included all the processes beginning with the collection of straw to the conversion to electricity through direct combustion at the power plant. According to the preliminary results, the cost of producing power from triticale straw is higher than coal-based electricity production in western Canada.

  6. Effects of Amendment of Biochar and Pyroligneous Solution from wheat straw pyrolysis on Yield and soil and crop salinity in a Salt stressed cropland from Central China Great Plain

    Science.gov (United States)

    Li, L.; Liu, Y.; Pan, W.; Pan, G.; Zheng, J.; Zheng, J.; Zhang, X.

    2012-04-01

    Crop production has been subject to salt stress in large areas of world croplands. Organic and/or bio-fertilizers have been applied as soil amendments for alleviating salt stress and enhancing crop productivity in these salt-stressed croplands. While biochar production systems using pyrolysis of crop straw materials have been well developed in the world, there would be a potential measure to use materials from crop straw pyrolysis as organic amendments in depressing salt stress in agriculture. In this paper, a field experiment was conducted on the effect of biochar and pyroligneous solution from cropstraw pyrolysis on soil and crop salinity, and wheat yield in a moderately salt stressed Entisol from the Central Great Plain of North China. Results indicated that: biochar and pyroligneous solution increased soil SOC, total nitrogen, available potassium and phosphorous by 43.77%, 6.50%, 45.54% and 108.01%, respectively. While Soil bulk density was decreased from 1.30 to 1.21g cm-3; soil pH (H2O) was decreased from 8.23 to 7.94 with a decrease in soluble salt content by 38.87%. Wheat yield was doubled over the control without amendment. In addition, sodium content was sharply declined by 78.80% in grains, and by 70.20% and 67.00% in shoot and root, respectively. Meanwhile, contents of potassium and phosphorus in plant tissue were seen also increased despite of no change in N content. Therefore, the combined amendment of biochar with pyroligneous solution would offer an effective measure to alleviate the salt stress and improving crop productivity in world croplands. Keywords: biochar, salt affected soils, wheat, crop productivity, salinity

  7. Kinetics of wheat straw solid-state fermentation with Trametes versicolor and Pleurotus ostreatus - lignin and polysaccharide alteration and production of related enzymatic activities

    Energy Technology Data Exchange (ETDEWEB)

    Valmaseda, M.; Martinez, M.J.; Martinez, A.T. (Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Centro des Investigaciones Biologicas)

    1991-09-01

    The kinetics of straw solid-state fermentation (SSF) with Trametes versicolor and Pleurotus ostreatus was investigated to characterize the delignification processes by these white-rot fungi. Two sucessive phases could be defined during straw transformation, characterized by changes in respiratory activity, changes in lignin and polysaccharide content and composition, increase in in-vitro digestibility, and enzymatic activities produced by the fungi. Lignin composition was analysed after CuO alkaline degradation, and decreases in syringyl/guaiacyl and syringyl/p-hydroxyphenyl ratios and cinnamic acid content were observed during the fungal treatment. An increase in the phenolic acid yield, revealing fungal degradation of sidechains in lignin, was produced by P. ostreatus. The highest xylanase level was produced by P. ostreatus, and exocellulase activity was nearly absent from straw treated with this fungus. Laccase activity was found in straw treated with both fungi, but lignin peroxidase was only detected during the initial phase of straw transformation with T. versicolor. High levels of H{sub 2}O{sub 2}-producing acryl-alcohol oxidase occurred throughout the straw SSF with P. ostreatus. (orig.).

  8. Effect of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw

    DEFF Research Database (Denmark)

    Frederiksen, Helle B.; Ronn, R.; Christensen, S.

    2001-01-01

    Straw from wheat plants grown at ambient and elevated atmospheric CO2 concentrations was placed in litterbags in a grass fallow field and a wheat field. The CO2 treatment induced an increase in straw concentration of ash-free dry mass from 84% to 93% and a decrease in nitrogen concentration from ...... decomposition of wheat straw, but the effect is probably of minor importance compared to the effect of varying crops, agricultural practise or changing land use....

  9. Effects of feeding alfalfa stemlage or wheat straw for dietary energy dilution on nutrient intake and digestibility, growth performance and feeding behavior of holstein dairy heifers

    Science.gov (United States)

    Feeding high-quality forage diets may lead to excessive weight gains and over-conditioning for dairy heifers. Restriction of energy density and dry matter intake by using low-energy forages, such as straw, is a good approach for controlling this problem. Alfalfa ...

  10. Management of parthenium weed by extracts and residue of wheat

    African Journals Online (AJOL)

    Ehsan Zaidi

    2011-10-24

    Oct 24, 2011 ... bioassay, dried and chopped wheat straw of the four test wheat varieties was thoroughly mixed in pot soil at 0.5 .... Copped materials were mixed in sandy loam soil in plastic pots of 8 ... Effect of different concentrations of methanol straw extracts of four wheat varieties on germination and seedling growth of.

  11. Optimization of methane production in anaerobic co-digestion of poultry litter and wheat straw at different percentages of total solid and volatile solid using a developed response surface model.

    Science.gov (United States)

    Shen, Jiacheng; Zhu, Jun

    2016-01-01

    Poultry litter (PL) can be good feedstock for biogas production using anaerobic digestion. In this study, methane production from batch co-digestion of PL and wheat straw (WS) was investigated for two factors, i.e., total solid (2%, 5%, and 10%) and volatile solid (0, 25, and 50% of WS), constituting a 3 × 3 experimental design. The results showed that the maximum specific methane volume [197 mL (g VS)(‑1)] was achieved at 50% VS from WS at 5% TS level. It was estimated that the inhibitory threshold of free ammonia was about 289 mg L(--1), beyond which reduction of methanogenic activity by at least 54% was observed. The specific methane volume and COD removal can be expressed using two response surface models (R(2) = 0.9570 and 0.9704, respectively). Analysis of variance of the experimental results indicated that the C/N ratio was the most significant factor influencing the specific methane volume and COD removal in the co-digestion of these two materials.

  12. Batch and semi-continuous anaerobic co-digestion of goose manure with alkali solubilized wheat straw: A case of carbon to nitrogen ratio and organic loading rate regression optimization.

    Science.gov (United States)

    Hassan, Muhammad; Ding, Weimin; Umar, Muhammad; Rasool, Ghulam

    2017-04-01

    The present study focused on carbon to nitrogen ratio (C/N) and organic loading rate (OLR) optimization of goose manure (GM) and wheat straw (WS). Dealing the anaerobic digestion of poultry manure on industrial scale; the question of optimum C/N (mixing ratio) and OLR (daily feeding concentration) have significant importance still lack in literature. Therefore, Batch and CSTR co-digestion experiments of the GM and WS were carried out at mesophilic condition. The alkali (NaOH) solubilization pretreatment for the WS had greatly enhanced its anaerobic digestibility. The highest methane production was evaluated between the C/N of 20-30 during Batch experimentation while for CSTRs; the second applied OLR of (3g.VS/L.d) was proved as the optimum with maximum methane production capability of 254.65ml/g.VS for reactor B at C/N of 25. The C/N and OLR regression optimization models were developed for their commercial scale usefulness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Improved Production of Thermostable Cellulase from Thermoascus aurantiacus RCKK by Fermentation Bioprocessing and Its Application in the Hydrolysis of Office Waste Paper, Algal Pulp, and Biologically Treated Wheat Straw.

    Science.gov (United States)

    Jain, Kavish Kumar; Kumar, Sandeep; Deswal, Deepa; Kuhad, Ramesh Chander

    2017-02-01

    Thermostable cellulases have wide variety of applications and distinctive advantages, but their low titer becomes the hurdle in their commercialization. In the present work, an assessment of optimum levels of significant factors (temperature, moisture ratio, inoculum size, and ammonium sulfate) and the effect of their interactions on production of thermostable CMCase, FPase, and β-glucosidase by Thermoascus aurantiacus RCKK under solid-state fermentation (SSF) was carried out using central composite design (CCD) of response surface methodology (RSM). The study revealed 33, 13, and 8 % improvement in FPase, CMCase, and β-glucosidase production, respectively. Moreover, crude cellulase from T. aurantiacus RCKK efficiently hydrolyzed office waste paper, algal pulp (Gracillaria verulosa), and biologically treated wheat straw at 60 °C with sugar release of about 830 mg/ml, 285 mg/g, and 260 mg/g of the substrate, respectively. The thermostable enzyme from T. aurantiacus RCKK holds potential to be used in biofuel industry.

  14. Resource assessment and removal analysis for corn stover and wheat straw in the United States : rainfall and wind-induced soil erosion methodology

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.G. [Kansas State Univ., Manhattan, KS (United States); Walsh, M.; Graham, R. [Oak Ridge National Laboratory, Oakridge, TN (United States); Sheehan, J.J. [National Renewable Energy Laboratory, Golden, CO (United States)

    2003-07-01

    This paper presents a newly developed methodology to estimate the quantities of crop residues that can be removed while maintaining rain or wind erosion at less than or equal to the tolerable soil-loss level. Several factors directly influence the removal of agricultural residues for bioenergy and bioproduct use such as grain yield, crop rotation, field management practices within a rotation, climate, and physical characteristics of the soil. The authors analyzed six corn and wheat rotations in the 10 largest corn-producing states, Iowa, Illinois, Indiana, Kansas, Minnesota, Missouri, Nebraska, Ohio, South Dakota, and Wisconsin. An evaluation for conventional, mulch-reduced, and no-till field operations was performed of residue removal rates for each rotation. The results showed that potential removable maximum quantities vary from almost 5.5 million dry metric tons per year for a continuous corn rotation using conventional till in Kansas, to in excess of 97 million dry metric tons per year for a corn-wheat rotation using no-till in Illinois. 9 refs., 5 tabs.

  15. Development of Sclerotium rolfsii sclerotia on soybean, corn, and wheat straw, under different soil temperatures and moisture contents Desenvolvimento de escleródios de Sclerotium rolfsii em palhas de soja, milho e trigo, sob diferentes temperaturas e umidades do solo

    Directory of Open Access Journals (Sweden)

    Victor dos Reis Pinheiro

    2010-03-01

    Full Text Available The objective of this work was to evaluate the effect of moisture and temperature on the development of Sclerotium rolfsii on soybean, corn, and wheat straw. Wheat straw produced the lowest number of sclerotia. Intermediate soil moisture level (70% of field capacity, and temperatures ranging between 25-30ºC favored sclerotia development. No sclerotia were formed at temperatures between 30-35ºC, on any type of straw.O objetivo deste trabalho foi avaliar o efeito da umidade e da temperatura do solo no desenvolvimento de Sclerotium rolfsii sobre palhas de soja, milho e trigo. A palha de trigo proporcionou a formação de menor quantidade de escleródios. Umidade do solo intermediária (70% da capacidade de campo e temperaturas entre 25-30ºC favoreceram a formação de escleródios. Na faixa de 30-35ºC, nenhum escleródio foi produzido em qualquer tipo de palha.

  16. Development and validation of a sensitive UPLC-MS/MS instrumentation and alkaline nitrobenzene oxidation method for the determination of lignin monomers in wheat straw.

    Science.gov (United States)

    Zheng, Mengjing; Gu, Shubo; Chen, Jin; Luo, Yongli; Li, Wenqian; Ni, Jun; Li, Yong; Wang, Zhenlin

    2017-06-15

    A method to determine the lignin monomers (p-hydroxybenzaldehyde, vanillin and syringaldehyde) in plant cell wall of wheat internode was developed and validated using a high-throughput nitrobenzene oxidation step and ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for quantification. UPLC analyses were carried out using an reversed phase C18 column (ACQUITY UPLC BEH, 1.7μm, 2.1×100mm) and gradient elution with water and acetonitrile. This method was completely validated in terms of analyzing speed, linearity, sensitivity, limits of detection (LODs) and limits of quantification (LOQs).The three lignin monomers were successfully separated within 6min and only 2min were required to regain its equilibrium. The method linearity with regression coefficients values (R2) greater than 0.997. Additionally, LODs ranged from 0.21 to 0.89μgL(-1) and LOQs ranged from 0.69 to 2.95μgL(-1). The applicability of this analytical approach for determining the three lignin monomers was confirmed by the successful analysis of real samples of wheat stem internodes. The nitrobenzene oxidation method was used for the analysis of lignin monomers. We have optimized the treatment temperature (170°C, 1h) and realized the high-throughput using the microwave digestion instrument. Recovery of this extraction method ranged from 68.4% to 77.7%. The analysis result showed that the guaiacyl unit (G) was the major component of lignin and there was a higher content of the syringyl unit (S) than that of the hydroxybenzyl unit (H). Copyright © 2017. Published by Elsevier B.V.

  17. Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China

    Directory of Open Access Journals (Sweden)

    Jiguang Zhang

    2016-07-01

    Full Text Available To determine the effects of straw incorporation on soil nutrients, enzyme activity, and aggregates in tobacco fields, we conducted experiments with different amounts of wheat and maize straw in Zhucheng area of southeast Shandong province for three years (2010–2012. In the final year of experiment (2012, straw incorporation increased soil organic carbon (SOC and related parameters, and improved soil enzyme activity proportionally with the amount of straw added, except for catalase when maize straw was used. And maize straw incorporation was more effective than wheat straw in the tobacco field. The percentage of aggregates >2 mm increased with straw incorporation when measured by either dry or wet sieving. The mean weight diameter (MWD and geometric mean diameter (GMD in straw incorporation treatments were higher than those in the no-straw control (CK. Maize straw increased soil aggregate stability more than wheat straw with the same incorporation amount. Alkaline phosphatase was significantly and negatively correlated with soil pH. Sucrase and urease were both significantly and positively correlated with soil alkali-hydrolysable N. Catalase was significantly but negatively correlated with soil extractable K (EK. The MWD and GMD by dry sieving had significantly positive correlations with SOC, total N, total K, and EK, but only significantly correlated with EK by wet sieving. Therefore, soil nutrients, metabolic enzyme activity, and aggregate stability might be increased by increasing the SOC content through the maize or wheat straw incorporation. Moreover, incorporation of maize straw at 7500 kg·hm−2 was the best choice to enhance soil fertility in the tobacco area of Eastern China.

  18. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy)acetic acid and the growth of sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Tatarková, Veronika; Hiller, Edgar; Vaculík, Marek

    2013-06-01

    Biochar addition to agricultural soils might increase the sorption of herbicides, and therefore, affect other sorption-related processes such as leaching, dissipation and toxicity for plants. In this study, the impact of wheat straw biochar on the sorption, leaching and dissipation in a soil, and toxicity for sunflower of (4-chloro-2-methylphenoxy)acetic acid (MCPA), a commonly used ionizable herbicide, was investigated. The results showed that MCPA sorption by biochar and biochar-amended soil (1.0wt% biochar) was 82 and 2.53 times higher than that by the non-amended soil, respectively. However, desorption of MCPA from biochar-amended soil was only 1.17 times lower than its desorption in non-amended soil. Biochar addition to soil reduced both MCPA leaching and dissipation. About 35% of the applied MCPA was transported through biochar-amended soil, while up to 56% was recovered in the leachates transported through non-amended soil. The half-life value of MCPA increased from 5.2d in non-amended soil to 21.5 d in biochar-amended soil. Pot experiments with sunflower (Helianthus annuus L.) grown in MCPA-free, but biochar-amended soil showed no positive effect of biochar on the growth of sunflower in comparison to the non-amended soil. However, biochar itself significantly reduced the content of photosynthetic pigments (chlorophyll a, b) in sunflower. There was no significant difference in the phytotoxic effects of MCPA on sunflowers between the biochar-amended soil and the non-amended soil. Furthermore, MCPA had no effect on the photosynthetic pigment contents in sunflower. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Recovering low molecular weight extractives from degraded straw by oyster mushroom at the farm scale for high value use

    OpenAIRE

    Koncsag, Claudia I.; Eastwood, Daniel C; Kirwan, Kerry

    2011-01-01

    The cultivation of mushrooms on wheat straw can be considered a solid state fermentation, yet following harvest the residual, partially degraded straw is discarded. During cultivation, the degradation of lignocellulose in the straw takes place by the fungus under the action of enzymes releasing degradation products with small molecular weight, some of which are potentially valuable. These compounds may be extracted from straw after mushroom cultivation in two stages: an aqueous extraction fol...

  20. Prototype ATLAS straw tracker

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  1. Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading and temperature

    National Research Council Canada - National Science Library

    Azadeh Babaee; Jalal Shayegan; Anis Roshani

    2013-01-01

      In order to obtain basic design criteria for anaerobic digestion of a mixture of poultry manure and wheat straw, the effects of different temperatures and organic loading rates on the biogas yield...

  2. [Effects of straw application and earthworm inoculation on soil labile organic carbon].

    Science.gov (United States)

    Yu, Jian-Guang; Li, Hui Xin; Chen, Xiao-Yun; Hu, Feng

    2007-04-01

    A six-year field plot experiment of rice-wheat rotation was conducted to study the effects of straw application and earthworm inoculation on cropland soil organic carbon and labile organic carbon. Five treatments were installed, i.e., CK, straw mulch (M), straw mulch plus earthworm inoculation (ME), incorporated straw with soil (I), and incorporated straw with soil plus earthworm inoculation (IE). The results showed that soil organic carbon content increased significantly after six years straw application, and treatment I was more efficient than treatment M. Earthworm inoculation under straw application had no significant effects on soil organic carbon content. Straw application, whether straw mulch or incorporated straw with soil, increased the content of soil labile organic carbon, and incorporated straw with soil was more beneficial to the increase of the contents of hot water-extractable carbon, potentially mineralizable carbon, acid-extractable carbon, readily oxidizable carbon, particulate organic carbon, and light fraction organic carbon. There was a little relationship between the quantitative variations of soil dissoluble organic carbon and microbial biomass carbon and the patterns of straw application. Among the treatments, the activity of soil organic carbon was decreased in the order of IF > I > M > ME > CK. Straw application pattern was the main factor affecting soil organic carbon and labile organic carbon, while earthworm inoculation was not universally significanfly effective to all kinds of soil labile organic carbon.

  3. Mapping straw yield using on-combine light detection and ranging (LiDAR)

    Science.gov (United States)

    Wheat (Triticum aestivum L.) straw is not only important for long-term soil productivity, but also as a raw material for biofuel, livestock feed, building, packing, and bedding. Inventory figures in the United States for potential straw availability are largely based on whole states and counties. ...

  4. Environmental performance of straw-based pulp making: A life cycle perspective.

    Science.gov (United States)

    Sun, Mingxing; Wang, Yutao; Shi, Lei

    2018-03-01

    Agricultural straw-based pulp making plays a vital role in pulp and paper industry, especially in forest deficient countries such as China. However, the environmental performance of straw-based pulp has scarcely been studied. A life cycle assessment on wheat straw-based pulp making in China was conducted to fill of the gaps in comprehensive environmental assessments of agricultural straw-based pulp making. On average, the global warming potential (GWP), GWP excluding biogenic carbon, acidification potential and eutrophication potential of wheat straw based pulp making are 2299kg CO2-eq, 4550kg CO2-eq, 16.43kg SO2-eq and 2.56kg Phosphate-eq respectively. The dominant factors contributing to environmental impacts are coal consumption, electricity consumption, and chemical (NaOH, ClO2) input. Chemical input decrease and energy recovery increase reduce the total environmental impacts dramatically. Compared with wood-based and recycled pulp making, wheat straw-based pulp making has higher environmental impacts, which are mainly due to higher energy and chemical requirements. However, the environmental impacts of wheat straw-based pulp making are lower than hemp and flax based pulp making from previous studies. It is also noteworthy that biogenic carbon emission is significant in bio industries. If carbon sequestration is taken into account in pulp making industry, wheat straw-based pulp making is a net emitter rather than a net absorber of carbon dioxide. Since wheat straw-based pulp making provides an alternative for agricultural residue management, its evaluation framework should be expanded to further reveal its environmental benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The degradation of wheat straw lignin

    Science.gov (United States)

    Liang, Jiaqi

    2017-03-01

    Lignin is a kind of formed by polymerization of aromatic alcohol, prices are lower and sources of renewable resources. Using lignin as raw material, through the push to resolve together preparation phenolic high value-added fine chemicals alkanes and aromatic hydrocarbons, such as the high grade biofuels, can partly replace fossil fuels as raw material to the production process, biomass resources is an important part of the comprehensive utilization of effective components. In lignin push solve clustering method, catalytic hydrogenolysis can directly to the lignin into liquid fuels, low oxygen content in the use of biofuels shows great potential. In this paper, through the optimization of the reaction time, reaction temperature, catalyst type and solvent type, dosage of catalyst, etc factors, determines the alcoholysis - hydrogen solution two-step degradation of lignin, the optimal process conditions: lignin alcoholysis under 50% methanol and NaOH catalyst in the solution, the lignin in methanol solution and 50% hydrogen solution under the Pd/C catalyst. In this process, the degradation of lignin yield can reach 42%.

  6. Dehalogenation and decolorization of wheat straw- basedbleachery ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... pulp and paper effluents (Nonwood, 2000). In wastewater treatment, biological oxygen demand. (BOD), aquatic toxicity, organic halides (AOX) and color of water are important factors. In principle the wastewater contains easily degradable components such as sugars, fatty acids and alcohols while lignin an ...

  7. Changes in bacterial community of soil induced by long-term straw returning

    Directory of Open Access Journals (Sweden)

    Yanling Chen

    Full Text Available ABSTRACT: Straw returning is an effective way to improve soil quality. Whether the bacterial community development has been changed by long-term straw returning in non-calcareous soil is not clear. In this study, the following five treatments were administered: soil without fertilizer (CK; wheat and corn straw returning (WC; wheat straw returning with 276 kg N ha−1 yr−1 (WN; manure, 60,000 kg ha−1 pig manure compost (M and wheat and corn straw returning with 276 kg N ha−1 yr−1 (WCN. The high-throughput 16S rRNA sequencing technology was used to evaluate the bacterial communities. The results showed that the community was composed mostly of two dominant groups (Proteobacteria and Acidobacteria. Bacterial diversity increased after the application of straw and manure. Principal component analyses revealed that the soil bacterial community differed significantly between treatments. The WCN treatment showed relatively higher total soil N, available P, available K, and organic carbon and invertase, urease, cellulase activities and yield than the WC treatment. Our results suggested that application of N fertilizer to straw returning soil had significantly higher soil fertility and enzyme activity than straw returning alone, which resulted in a different bacterial community composition, Stenotrophomonas, Pseudoxanthomonas, and Acinetobacter which were the dominant genera in the WC treatment while Candidatus, Koribacter and Granulicella were the dominant genera in the WCN treatment. To summarize, wheat and maize straw returning with N fertilizer would be the optimum proposal for improving soil quality and yield in the future in non-calcareous fluro-acquic-wheat and maize cultivated soils in the North China Plain in China.

  8. Canola straw chemimechanical pulping for pulp and paper production.

    Science.gov (United States)

    Hosseinpour, Reza; Fatehi, Pedram; Latibari, Ahmad Jahan; Ni, Yonghao; Javad Sepiddehdam, S

    2010-06-01

    Non-wood is one of the most important raw materials for pulp and paper production in several countries due to its abundance and cost-effectiveness. However, the pulping and papermaking characteristics of canola straw have rarely been investigated. The objective of this work was to determine the potential application of canola straw in the chemimechanical pulping (CMP) process. At first, the chemical composition and characteristics of canola straw were assessed and compared with those of other non-woods. Then, the CMP pulping of canola straw was conducted using different dosages of sodium sulfite and sodium hydroxide. The results showed that, by applying a mild chemical pretreatment, i.e., 4-12% (wt.) NaOH and 8-12% (wt.) Na(2)SO(3), in the CMP pulping of canola straw, the pulp brightness reached almost 40%ISO, and the strength properties were comparable to those of bagasse CMP and of wheat straw CMP. The impact of post-refining on the properties of canola straw CMP was also discussed in this work. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation Produção de xilitol em hidrolisado hemicelulósico de palha de trigo: destoxificação do hidrolisado e fonte de carbono utilizada para o preparo do inóculo

    Directory of Open Access Journals (Sweden)

    Larissa Canilha

    2008-06-01

    Full Text Available Wheat straw hemicellulosic hydrolysate was used for xylitol bioproduction. The use of a xylose-containing medium to grow the inoculum did not favor the production of xylitol in the hydrolysate, which was submitted to a previous detoxification treatment with 2.5% activated charcoal for optimized removal of inhibitory compounds.Hidrolisado hemicelulósico de palha de trigo foi utilizado para a bioprodução de xilitol. O uso de meio contendo xilose para crescer o inóculo não favoreceu a produção de xilitol no hidrolisado, que foi submetido a um tratamento prévio de destoxificação com 2.5% de carvão ativo para remoção otimizada de compostos inibitórios.

  10. Rice straw mulch for post-fire erosion control: assessing non-target effects on vegetation communities

    Science.gov (United States)

    Kristen L. Shive; Becky L. Estes; Angela M. White; Hugh D. Safford; Kevin L. O' Hara; Scott L. Stephens

    2017-01-01

    Straw mulch is commonly used for post-fire erosion control in severely burned areas but this practice can introduce non-native species, even when certified weed-free straw is used. Rice straw has recently been promoted as an alternative to wheat under the hypothesis that non-native species that are able to grow in a rice field are unlikely to establish in dry forested...

  11. Effect of various tillage operations and straw management on the occurence of weeds

    Directory of Open Access Journals (Sweden)

    Ivana Remešová

    2005-01-01

    Full Text Available The weed infestation was assessed in a field experiment at the Research Institute for Folder Crops Ltd., Troubsko near Brno in 2001−2004. Numbers of individual weed species were determined using a counting method on the area of 0.25 m2 in winter wheat stands within the 6-crop rotation (peas, winter wheat, spring barley, oilseed rape, winter wheat, winter wheat in different variants of soil tillage and straw management. The highest weed infestation in all variants was found when winter wheat followed winter wheat. The highest number of weeds was assessed in the variant with stubble tillage to the depth of 0.12−0.15 m, planting with a precision drill and straw chopping. The lowest number of weeds was found in winter wheat after peas in the variant with incorporation of chopped straw using a tiller to 0.12−0.15 m and planting with a drilling combination, and in the variant where chopped straw was sprayed with the BETA-LIQ preparation, incorporation with a tiller to 0.12−0.15 m and planting with a drilling combination.

  12. ECONOMIC ANALYSIS OF SELECTED OPTIONS OF STRAW USE DEPENDING ON HARVESTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Lukasz KUTA

    2014-10-01

    Full Text Available Post-harvest straw deserves particular attention among agricultural raw materials. It can be intended for sale, applied as litter material in animal husbandry or used in field fertilization. To a lesser extent it can be used for fodder production, covering mounds of roots and tubers and the production of insulation materials in horticulture and building construction. Using surplus straw directly for energy generation, including production of pellets and briquettes, should also be considered rational. Several applications were analyzed. The main purpose of the research is to determine the profitability level of winter wheat cultivation and of energy use of the straw obtained. Among others, they included situations in which obtained straw was used in the production of pellets, in fertilization after prior grinding and mixing with manure or used for direct sale. For our calculations, the costs/ha of wheat cultivation and then straw collection were estimated. The comparative analysis of various options of wheat straw utilization shows the highest profitability in the option of selling the straw and mineral fertilization.

  13. [Influence of Different Straws Returning with Landfill on Soil Microbial Community Structure Under Dry and Water Farming].

    Science.gov (United States)

    Lan, Mu-ling; Gao, Ming

    2015-11-01

    Based on rice, wheat, corn straw and rape, broad bean green stalk as the research object, using phospholipid fatty acid (PLFA) method, combining principal component analysis method to study the soil microbial quantity, distribution of flora, community structure characteristics under dry and water farming as two different cultivated land use types. The PLFA analysis results showed that: under dry farming, total PLFA quantity ranged 8.35-25.15 nmol x g(-1), showed rape > broad bean > corn > rice > wheat, rape and broad bean significantly increased total PLFA quantity by 1.18 and 1.08 times compared to the treatment without straw; PLFA quantity of bacterial flora in treatments with straws was higher than that without straw, and fungal biomass was significantly increased, so was the species richness of microbial community. Under water faming, the treatments of different straws returning with landfill have improved the PLFA quantity of total soil microbial and flora comparing with the treatment without straw, fungi significantly increased, and species richness of microbial communities value also increased significantly. Total PLFA quantity ranged 4.04-22.19 nmol x g(-1), showed rice > corn > wheat > broad bean > rape, which in rape and broad bean treatments were lower than the treatment without straw; fungal PLFA amount in 5 kinds of straw except broad bean treatment was significantly higher than that of the treatment without straw, bacteria and total PLFA quantity in broad bean processing were significantly lower than those of other treatments, actinomycetes, G+, G- had no significant difference between all treatments; rice, wheat, corn, rape could significantly increase the soil microbial species richness index and dominance index under water faming. The results of principal component analysis showed that broad bean green stalk had the greatest impact on the microbial community structure in the dry soil, rape green stalk and wheat straw had the biggest influence on

  14. The Last Straw

    CERN Multimedia

    McFarlane, K.W.

    2002-01-01

    On 4 December 2002 at Hampton University, we completed processing the 'straws' for the Barrel TRT. The straws are plastic tubes 4 mm in diameter and 1.44 m long. More than 52 thousand straws will be used to build the drift tube detectors in the Barrel TRT. The picture shows some members of the Hampton production team ceremonially cutting the last straw to its final precise length. The production team, responsible for processing 64 thousand straws, included Jacquelyn Hodges, Carolyn Griffin, Princess Wilkins, Aida Kelly, Alan Fry, and (not pictured) Chuck Long, Nedra Peeples, and Hilda Williams. The straws have a cosmopolitan history. First, plastic film from a U.S. company was shipped to Russia to be coated with conductive materials and adhesive. The coated film was slit into long ribbons and sent to the UK to be wound into tubes. The tubes were then sent to two ATLAS collaborators in Russia, PNPI (Gatchina) and JINR (Dubna), where they were reinforced with carbon fibres to make them stiff and accuratel...

  15. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw☆

    Science.gov (United States)

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B.; Du, Chenyu

    2013-01-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase. PMID:24121367

  16. Summer fallow soil management - impact on rainfed winter wheat

    DEFF Research Database (Denmark)

    Li, Fucui; Wang, Zhaohui; Dai, Jian

    2014-01-01

    is the summer fallow period in the winter wheat-summer fallow cropping system. With bare fallow in summer as a control, a 3-year location-fixed field experiment was conducted in the Loess Plateau to investigate the effects of wheat straw retention (SR), green manure (GM) planting, and their combination on soil...

  17. ESTIMATION OF RESOURCE-HEALING ROLE LUPINE AND STRAW IN THE GRAIN-ROW CROP ROTATION

    Directory of Open Access Journals (Sweden)

    Tatyana ANISIMOVA

    2014-03-01

    Full Text Available In field experiences on soddy-podzolic sandy soil of Meshchersky lowland high agroeconomic efficiency of an adaptive link of a crop rotation with, grown up on grain, a potato and barley is established, at entering winter wheat straw under lupine . Straw in a combination with lupine has proved to be a perspective reserve of reproduction of fertility of soils without participation of nitrogen of mineral fertilizers.

  18. Deoxynivalenol, zearalenone, and Fusarium graminearum contamination of cereal straw; field distribution; and sampling of big bales.

    Science.gov (United States)

    Häggblom, P; Nordkvist, E

    2015-05-01

    Sampling of straw bales from wheat, barley, and oats was carried out after harvest showing large variations in deoxynivalenol (DON) and zearalenone (ZEN) levels. In the wheat field, DON was detected in all straw samples with an average DON concentration of 976 μg/kg and a median of 525 μg/kg, while in four bales, the concentrations were above 3000 μg/kg. For ZEN, the concentrations were more uniform with an average concentration of 11 μg/kg. The barley straw bales were all positive for DON with an average concentration of 449 μg/kg and three bales above 800 μg/kg. In oat straw, the average DON concentration was 6719 μg/kg with the lowest concentration at 2614 μg/kg and eight samples above 8000 μg/kg. ZEN contamination was detected in all bales with an average concentration of 53 μg/kg with the highest concentration at 219 μg/kg. Oat bales from another field showed an average concentration of 16,382 μg/kg. ZEN concentrations in the oat bales were on average 153 μg/kg with a maximum at 284 μg/kg. Levels of Fusarium graminearum DNA were higher in oat straw (max 6444 pg DNA/mg straw) compared to straw from wheat or barley. The significance of mycotoxin exposure from straw should not be neglected particularly in years when high levels of DON and ZEN are also detected in the feed grain. With a limited number of samples preferably using a sampling probe, it is possible to distinguish lots of straw that should not be used as bedding material for pigs.

  19. Straw Appliqué Technique

    African Journals Online (AJOL)

    User

    2010-10-17

    Oct 17, 2010 ... Straw is a first line materials required in the production of mat, hats, traditional fan and interior decorations. 2. Drinking straw: - Is a tiny tube of plastic or paper that you suck a drink through. In this paper Straw will be used as a generic term for dry stem of any grain plant mostly grouped as grass botanically.

  20. [Effects of different straw recycling and tillage methods on soil respiration and microbial activity].

    Science.gov (United States)

    Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia

    2015-06-01

    To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.

  1. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil.

    Science.gov (United States)

    Xu, Ping; Sun, Cai-Xia; Ye, Xue-Zhu; Xiao, Wen-Dan; Zhang, Qi; Wang, Qiang

    2016-10-01

    Biochar derived from various materials has been investigated with regard to its ability to decrease the bioavailability of heavy metals in contaminated soils, and thus reduce their potential to enter the food chain. However, little attention has been given to the adsorption capacity of untreated crop straws, which are commonly used as a biochar feedstock, especially in soils. Hence, this study was conducted to investigate the effect of crop straws on heavy metal immobilization and subsequent heavy metal uptake by maize and ryegrass in a soil artificially polluted by Cd and Pb. Bamboo biochar, rice straw, and wheat straw were mixed into soil four weeks before the experiment, enabling them to reach equilibrium at 2% (w/w), 1% (w/w), and 1% (w/w), respectively. The results showed that soil pH for both species was significantly increased by all treatments, except when wheat straw was used for ryegrass cultivation. Soil organic carbon was only improved in the rice straw treatment and the soil alkali-hydrolyzable N content was significantly decreased with all of the amendments, which may have contributed to the lack of an effect on plant biomass. Soil available Cd was significantly lower in the rice straw treatment than in the control soil, while Pb levels clearly decreased in wheat straw treatment. The Cd concentration in shoots of maize was reduced by 50.9%, 69.5%, and 66.9% with biochar, rice straw, and wheat straw, respectively. In addition, shoot Cd accumulation was decreased by 47.3%, 67.1%, and 66.4%, respectively. Shoot Pb concentration and accumulation were only reduced with the rice straw treatment for both species. However, metal uptake in plant roots was more complex, with increased metal concentrations also detected. Overall, the direct application of crop straw could be considered a feasible way to immobilize selected metals in soil, once the long-term effects are confirmed. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Building a Straw Bridge

    Science.gov (United States)

    Teaching Science, 2015

    2015-01-01

    This project is for a team of students (groups of two or three are ideal) to design and construct a model of a single-span bridge, using plastic drinking straws as the building material. All steps of the design, construction, testing and critiquing stages should be recorded by students in a journal. Students may like to include labelled diagrams,…

  3. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    Energy Technology Data Exchange (ETDEWEB)

    Cara, Irina Gabriela, E-mail: coroirina@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania); Trincă, Lucia Carmen, E-mail: lctrinca@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Trofin, Alina Elena, E-mail: aetrofin@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Cazacu, Ana, E-mail: anagarlea@gmail.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Ţopa, Denis, E-mail: topadennis@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania); Peptu, Cătălina Anişoara, E-mail: catipeptu@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 D. Mangeron Street, 700050 Iasi (Romania); Jităreanu, Gerard, E-mail: gerardj@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania)

    2015-12-15

    Highlights: • Surface characteristics of activated straw (wheat, corn, soybean) were assessed. • Modification methods to enhance materials sorption were presented. • Adsorption mechanism of metribuzin was revealed and discussed. - Abstract: Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  4. Wheat Allergy

    Science.gov (United States)

    ... Soy sauce Starch (gelatinized starch, modified starch, modified food starch, vegetable starch) Surimi Some Unexpected Sources of Wheat Ale Asian dishes can feature wheat flour flavored and shaped ...

  5. Accumulation of biomass and bioenergy in culms of cereals as a factor of straw cutting height

    Science.gov (United States)

    Zając, Tomasz; Synowiec, Agnieszka; Oleksy, Andrzej; Macuda, Jan; Klimek-Kopyra, Agnieszka; Borowiec, Franciszek

    2017-04-01

    Cereal straw is an important biomass source in Europe. This work assessed: 1) the morphological and energetic characteristics of culms of spring and winter cereals, 2) the energy deposited in the different aboveground parts of cereals, 3) losses of energy due to different cutting heights. The straw of winter and spring cereals was collected from arable fields during the seasons 2009/10 and 2010/11 in southern Poland. Detailed biometric measurements of culms and internodes were performed. The losses of straw biomass and energy were assessed during simulation of cutting the culm at different heights, up to 50 cm. Longer and heavier culms were developed by winter wheat and triticale and oat. Cutting of straw up to 10 cm did not lead to significant losses in straw yield. The total amount of energy in the culms was as follows: triticale > winter wheat > oat > spring wheat > winter barley > spring barley. Cutting the culms above 20 cm led to significant differences in terms of biomass energy between cereal species. The smallest losses of energy were recorded for spring and winter barley. Oat and barley accumulated the highest energy in grains.

  6. Removal of straw lignin from spent pulping liquor using synthetic cationic and biobased flocculants

    Science.gov (United States)

    Aqueous alkaline delignification of wheat straw produces hemicellulose for bioenergy and other applications. After removal of the hemicellulose, spent pulping liquor (SPL) remains. The spent pulping liquor is approximately 28% water, 40% ash, 3% hemicellulose, 25% lignin, 5% protein, and less than...

  7. PANDA straw tube detectors and readout

    Science.gov (United States)

    Strzempek, P.; Panda Collaboration

    2016-07-01

    PANDA is a detector under construction dedicated to studies of production and interaction of particles in the charmonium mass range using antiproton beams in the momentum range of 1.5 - 15 GeV/c at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt. PANDA consists of two spectrometers: a Target Spectrometer with a superconducting solenoid and a Forward Spectrometer using a large dipole magnet and covering the most forward angles (Θ < 10 °). In both spectrometers, the particle's trajectories in the magnetic field are measured using self-supporting straw tube detectors. The expected high count rates, reaching up to 1 MHz/straw, are one of the main challenges for the detectors and associated readout electronics. The paper presents the readout chain of the tracking system and the results of tests performed with realistic prototype setups. The readout chain consists of a newly developed ASIC chip (PASTTREC 〈 PANDASTTReadoutChip 〉) with amplification, signal shaping, tail cancellation, discriminator stages and Time Readout Boards as digitizer boards.

  8. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning.

    Science.gov (United States)

    Huang, Rong; Lan, Muling; Liu, Jiang; Gao, Ming

    2017-12-01

    Agriculture wastes returning to soil is one of common ways to reuse crop straws in China. The returned straws are expected to improve the fertility and structural stability of soil during the degradation of straw it selves. The in situ effect of different straw (wheat, rice, maize, rape, and broad bean) applications for soil aggregate stability and soil organic carbon (SOC) distribution were studied at both dry land soil and paddy soil in this study. Wet sieving procedures were used to separate soil aggregate sizes. Aggregate stability indicators including mean weight diameter, geometric mean diameter, mean weight of specific surface area, and the fractal dimension were used to evaluate soil aggregate stability after the incubation of straws returning. Meanwhile, the variation and distribution of SOC in different-sized aggregates were further studied. Results showed that the application of straws, especially rape straw at dry land soil and rice straw at paddy soil, increased the fractions of macro-aggregate (> 0.25 mm) and micro-aggregate (0.25-0.053 mm). Suggesting the nutrients released from straw degradation promotes the growing of soil aggregates directly and indirectly. The application of different straws increased the SOC content at both soils and the SOC mainly distributed at aggregates. However, the contribution of SOC in macro- and micro-aggregates increased. Straw-applied paddy soil have a higher total SOC content but lower SOC contents at > 0.25 and 0.25-0.053 mm aggregates with dry land soil. Rape straw in dry land and rice straw in paddy field could stabilize soil aggregates and increasing SOC contents best.

  9. Neutron activation analysis of wheat samples

    Energy Technology Data Exchange (ETDEWEB)

    Galinha, C. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Anawar, H.M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Freitas, M.C., E-mail: cfreitas@itn.pt [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Pacheco, A.M.G. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Almeida-Silva, M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Coutinho, J.; Macas, B.; Almeida, A.S. [INRB/INIA-Elvas, National Institute of Biological Resources, Est. Gil Vaz, 7350-228 Elvas (Portugal)

    2011-11-15

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation

  10. Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions

    Science.gov (United States)

    Wang, Ning; Yu, Jian-Guang; Zhao, Ya-Hui; Chang, Zhi-Zhou; Shi, Xiao-Xia; Ma, Lena Q.; Li, Hong-Bo

    2018-02-01

    To explore microbial mechanisms of straw-induced changes in CO2, CH4, and N2O emissions from paddy field, wheat straw was amended to two paddy soils from Taizhou (TZ) and Yixing (YX), China for 60 d under flooded condition. Illumia sequencing was used to characterize shift in bacterial community compositions. Compared to control, 1-5% straw amendment significantly elevated CO2 and CH4 emissions with higher increase at higher application rates, mainly due to increased soil DOC concentrations. In contrast, straw amendment decreased N2O emission. Considering CO2, CH4, and N2O emissions as a whole, an overall increase in global warming potential was observed with straw amendment. Total CO2 and CH4 emissions from straw-amended soils were significantly higher for YX than TZ soil, suggesting that straw-induced greenhouse gas emissions depended on soil characteristics. The abundance of C-turnover bacteria Firmicutes increased from 28-41% to 54-77% with straw amendment, thereby increasing CO2 and CH4 emissions. However, straw amendment reduced the abundance of denitrifying bacteria Proteobacteria from 18% to 7.2-13% or increased the abundance of N2O reducing bacteria Clostridium from 7.6-11% to 13-30%, thereby decreasing N2O emission. The results suggested straw amendment strongly influenced greenhouse gas emissions via alerting soil properties and bacterial community compositions. Future field application is needed to ascertain the effects of straw return on greenhouse gas emissions.

  11. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications

    Directory of Open Access Journals (Sweden)

    Marwen Bouasker

    2014-04-01

    Full Text Available The aim of this paper is to find out new alternative materials that respond to sustainable development criteria. For this purpose, an original utilization of straw for the design of lightweight aggregate concretes is proposed. Four types of straw were used: three wheat straws and a barley straw. In the present study, the morphology and the porosity of the different straw aggregates was studied by SEM in order to understand their effects on the capillary structure and the hygroscopic behavior. The physical properties such as sorption-desorption isotherms, water absorption coefficient, pH, electrical conductivity and thermo-gravimetric analysis were also studied. As a result, it has been found that this new vegetable material has a very low bulk density, a high water absorption capacity and an excellent hydric regulator. The introduction of the straw in the water tends to make the environment more basic; this observation can slow carbonation of the binder matrix in the presence of the straw.

  12. Wheat Allergy

    Science.gov (United States)

    ... References Wheat allergy. American College of Allergy, Asthma & Immunology. http://www.acaai.org/allergist/allergies/Types/food- ... http://www.mayoclinic.org/diseases-conditions/wheat-allergy/basics/definition/CON-20031834 . Mayo Clinic Footer Legal Conditions ...

  13. Impact of Fungicides Used for Wheat Treatment on Button Mushroom Cultivation

    Directory of Open Access Journals (Sweden)

    Ivana Potočnik

    2012-01-01

    Full Text Available Little information is currently available on the potential environmental risks that fungicides applied during wheat cultivation and remaining in straw may have for mushroom production. The substrate for many cultivated mushrooms is mostly based on cereal straw. This review aimed to answer the question whether residues of the fungicides commonly used in wheat production and remaining in straw could be directly or indirectly responsible for changes in yields of Agaricus bisporus. Potential chemical risks of eight fungicides (for wheat treatments for A. bisporus: mancozeb, carbendazim, thiophanate-methyl,carbendazim+cyproconazole, carbedazim+flusilasole, captan, chlorothalonil and trifloxystrobinare disscused. Only the value of maximum residue level of flusilasole and its formulation was evaluated as higher than medium effective concentration of the fungicide for A.bisporus. As a conclusion, flusilazole treatment could be a limiting factor for using straw for composting and mushroom cultivation.

  14. Straw detector: 1 - Vacuum: 0

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    The NA62 straw tracker is using pioneering CERN technology to measure charged particles from very rare kaon decays. For the first time, a large straw tracker with a 4.4 m2 coverage will be placed directly into an experiment’s vacuum tank, allowing physicists to measure the direction and momentum of charged particles with extreme precision. NA62 measurements using this technique will help physicists take a clear look at the kaon decay rate, which might be influenced by particles and processes that are not included in the Standard Model.   Straw ends are glued to an aluminium frame, a crucial step in the assembly of a module. The ends are then visually inspected before a leak test is performed.  “Although straw detectors have been around since the 1980s, what makes the NA62 straw trackers different is that they can work under vacuum,” explains Hans Danielsson from the PH-DT group leading the NA62 straw project. Straw detectors are basically small drift cha...

  15. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China.

    Science.gov (United States)

    Zhang, Man; Cheng, Gong; Feng, Hao; Sun, Benhua; Zhao, Ying; Chen, Haixin; Chen, Jing; Dyck, Miles; Wang, Xudong; Zhang, Jianguo; Zhang, Afeng

    2017-04-01

    Soil from the Loess Plateau of China is typically low in organic carbon and generally has poor aggregate stability. Application of organic amendments to these soils could help to increase and sustain soil organic matter levels and thus to enhance soil aggregate stability. A field experiment was carried out to evaluate the effect of the application of wheat straw and wheat straw-derived biochar (pyrolyzed at 350-550 °C) amendments on soil aggregate stability, soil organic carbon (SOC), and enzyme activities in a representative Chinese Loess soil during summer maize and winter wheat growing season from 2013 to 2015. Five treatments were set up as follows: no fertilization (CK), application of inorganic fertilizer (N), wheat straw applied at 8 t ha-1 with inorganic fertilizer (S8), and wheat straw-derived biochar applied at 8 t ha-1 (B8) and 16 t ha-1 (B16) with inorganic fertilizer, respectively. Compared to the N treatment, straw and straw-derived biochar amendments significantly increased SOC (by 33.7-79.6%), microbial biomass carbon (by 18.9-46.5%), and microbial biomass nitrogen (by 8.3-38.2%), while total nitrogen (TN) only increased significantly in the B16 plot (by 24.1%). The 8 t ha-1 straw and biochar applications had no significant effects on soil aggregation, but a significant increase in soil macro-aggregates (>2 mm) (by 105.8%) was observed in the B16 treatment. The concentrations of aggregate-associated SOC increased by 40.4-105.8% in macro-aggregates (>2 mm) under straw and biochar amendments relative to the N treatment. No significant differences in invertase and alkaline phosphatase activity were detected among different treatments. However, urease activity was greater in the biochar treatment than the straw treatment, indicating that biochar amendment improved the transformation of nitrogen in the soil. The carbon pool index and carbon management index were increased with straw and biochar amendments, especially in the B16 treatment. In

  16. Pilot plant straw biomass power plant; Demonstrationsanlage Strohkraftwerk Gronau

    Energy Technology Data Exchange (ETDEWEB)

    Vodegel, Stefan [Claustahler Umwelttechnik-Institut GmbH (CUTEC), Clausthal-Zellerfeld (Germany); Lach, Friedrich-Wilhelm [Ueberlandwerk Leinetal GmbH, Gronau (Leine) (Germany)

    2008-07-01

    Drastically increasing prices for oil and gas promote the change to renewable energies. Biomass has the advantage of the storability. However, it has the disadvantage of a small stocking density. This suggests decentralized power plants. Also the proven technology of water vapour cycles with use of turbine is questioned. In the rural district Hildesheim there are efforts of thermal utilisation straw from wheat cropping. For this, a feasibility study of the Claustahler Umwelttechnik-Technik GmbH (Clausthal Zellerfeld, Federal Republic of Germany) presents technical and economic possibilities exemplary for the industrial area West in Gronau (Federal Republic of Germany). Technical and economic chances and risks are pointed out.

  17. Deposition and high temperature corrosion in a 10 MW straw

    DEFF Research Database (Denmark)

    Michelsen, Hanne Philbert; Frandsen, Flemming; Dam-Johansen, Kim

    1998-01-01

    Deposition and corrosion measurements were conducted at a 10 MW wheat straw fired stoker boiler used for combined power and heat production. The plant experiences major problems with deposits on the heat transfer surfaces, and test probes have shown enhanced corrosion due to selective corrosion...... for metal temperatures above 520 C. Deposition measurements carried out at a position equal to the secondary superheater showed deposits rich in potassium and chlorine and to a lesser extent in silicon, calcium, and sulfur. Potassium and chlorine make up 40-80 wt% of the deposits. Mechanisms of deposit...

  18. Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions

    Science.gov (United States)

    Fushimi, Akihiro; Saitoh, Katsumi; Hayashi, Kentaro; Ono, Keisuke; Fujitani, Yuji; Villalobos, Ana M.; Shelton, Brandon R.; Takami, Akinori; Tanabe, Kiyoshi; Schauer, James J.

    2017-08-01

    Open burning of crop residue is a major source of atmospheric fine particle emissions. We burned crop residues (rice straws, barley straws, wheat straws, and rice husks produced in Japan) in an outdoor chamber and measured particle mass, composition (elemental carbon: EC, organic carbon: OC, ions, elements, and organic species), and oxidative potential in the exhausts. The fine particulate emission factors from the literature were within the range of our values for rice straws but were 1.4-1.9 and 0.34-0.44 times higher than our measured values for barley straw and wheat straw, respectively. For rice husks and wheat straws, which typically lead to combustion conditions that are relatively mild, the EC content of the particles was less than 5%. Levoglucosan seems more suitable as a biomass burning marker than K+, since levoglucosan/OC ratios were more stable than K+/particulate mass ratios among crop species. Stigmasterol and β-sitosterol could also be used as markers of biomass burning with levoglucosan or instead of levoglucosan. Correlation analysis between chemical composition and combustion condition suggests that hot or flaming combustions enhance EC, K+, Cl- and polycyclic aromatic hydrocarbons emissions, while low-temperature or smoldering combustions enhance levoglucosan and water-soluble organic carbon emissions. Oxidative potential, measured with macrophage-based reactive oxygen species (ROS) assay and dithiothreitol (DTT) assay, of open burning fine particles per particulate mass as well as fine particulate emission factors were the highest for wheat straws and second highest for rice husks and rice straws. Oxidative potential per particulate mass was in the lower range of vehicle exhaust and atmosphere. These results suggest that the contribution of open burning is relatively small to the oxidative potential of atmospheric particles. In addition, oxidative potential (both ROS and DTT activities) correlated well with water-insoluble organic species

  19. The transportation and accumulation of arsenic, cadmium, and phosphorus in 12 wheat cultivars and their relationships with each other

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Gao Ling; Zhu, Shun; Bai, Sheng Nan; Xia, Yan; Lou, Lai Qing, E-mail: loulq@njau.edu.cn; Cai, Qing Sheng, E-mail: qscai@njau.edu.cn

    2015-12-15

    Highlights: • As and Cd concentrations in wheat grain differed significantly among 12 cultivars. • As and Cd in wheat grains were correlated with P in straw and grain. • A significant positive correlation was observed between root As and Cd. • Rachis may play a key role in the difference between As and Cd transport to grains. - Abstract: Pot experiments were conducted to investigate the difference in arsenic (As), cadmium (Cd), and phosphorus (P) uptake, accumulation, and translocation among 12 wheat cultivars and their relationships with each other in soil “naturally” contaminated with both As and Cd. As, Cd, and P concentrations in wheat grain, straw, and root differed significantly (p < 0.05) among the 12 wheat cultivars. The grain As concentration was not correlated with straw and root As, or the total As content in plants, but was significantly (p < 0.05) correlated with As translocation factors (TFs), i.e., TFs{sub (Grain/Root)} and TFs{sub (Grain/Straw)}. The grain Cd concentration was positively correlated with the total Cd content and TFs{sub (Grain/Straw).} The grain P concentration was positively correlated with straw and root P. Both As and Cd concentrations in wheat grains were correlated with P in wheat straw and grain. Compared with As, Cd was more easily transported to the wheat grain, and the rachis played a key role in ensuring this difference. A significant positive correlation was observed between root As and Cd, but no significant relationship was detected between grain As and Cd concentrations. The lack of a relationship between grain As and Cd suggests the possibility of selecting cultivars in which little As and Cd accumulation occurs in the wheat grain.

  20. A scanning electron microscopy study of ash, char, deposits and fuels from straw combustion and co-combustion of coal and straw

    Energy Technology Data Exchange (ETDEWEB)

    Sund Soerensen, H.

    1998-07-01

    The SEM-study of samples from straw combustion and co-combustion of straw and coal have yielded a reference selection of representative images that will be useful for future comparison. The sample material encompassed potential fuels (wheat straw and grain), bottom ash, fly ash and deposits from straw combustion as well as fuels (coal and wheat straw), chars, bottom ash, fly ash and deposits from straw + coal co-combustion. Additionally, a variety of laboratory ashes were studied. SEM and CCSEM analysis of the samples have given a broad view of the inorganic components of straw and of the distribution of elements between individual ash particles and deposits. The CCSEM technique does, however, not detect dispersed inorganic elements in biomass, so to get a more complete visualization of the distribution of inorganic elements additional analyses must be performed, for example progressive leaching. In contrast, the CCSEM technique is efficient in characterizing the distribution of elements in ash particles and between ash fractions and deposits. The data for bottom ashes and fly ashes have indicated that binding of potassium to silicates occurs to a significant extent. The silicates can either be in the form of alumino-silicates or quartz (in co-combustion) or be present as straw-derived amorphous silica (in straw combustion). This process is important for two reasons. One is that potasium lowers the melting point of silica in the fly ash, potentially leading to troublesome deposits by particle impaction and sticking to heat transfer surfaces. The other is that the reaction between potassium and silica in the bottom ash binds part of the potassium meaning that it is not available for reaction with chlorine or sulphur to form KCl or K{sub 2}SO{sub 4}. Both phases are potentially troublesome because they can condense of surfaces to form a sticky layer onto which fly ash particles can adhere and by inducing corrosion beneath the deposit. It appears that in the studied

  1. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    Science.gov (United States)

    Cara, Irina Gabriela; Trincă, Lucia Carmen; Trofin, Alina Elena; Cazacu, Ana; Ţopa, Denis; Peptu, Cătălina Anişoara; Jităreanu, Gerard

    2015-12-01

    Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  2. Nutritive Value and Digestion Kinetics of Manure Ensiled Wheat ...

    African Journals Online (AJOL)

    After the completion of ensilation period, the samples of ensiled wheat straw were analyzed for pH, dry matter (DM), crude protein (CP), true protein (TP), ammonia nitrogen (NH3- N), neutral detergent fiber (NDF) and acid detergent fiber (ADF). The result showed that pH, NDF and ADF were decreased at 40 days ensilation ...

  3. Pathosystem management of powdery mildew in winter wheat

    NARCIS (Netherlands)

    Daamen, R.A.

    1990-01-01

    Winter wheat cropping has changed considerably over the years 1974-1986 in The Netherlands. Yield has been increased from 5 to 8 ton/ha, due to short strawed cultivars and higher levels of agrochemical inputs. The changes were described. Epidemics and damage relations of powdery mildew

  4. Study of genetic determinism of harvest index in durum wheat ...

    African Journals Online (AJOL)

    Out of six varieties of durum wheat (Triticum durum Desf.), two local varieties with a low harvest index and four others with high harvest indices and short straw imported from France were studied in a diallel cross. The experiment was done in a complete randomized block design with three replications. It was done at the ...

  5. Degradation and utilization of cellulose and straw by three different anaerobic fungi from the ovine rumen.

    Science.gov (United States)

    Gordon, G L; Phillips, M W

    1989-07-01

    Three different ruminal fungi, a Neocallimastix sp. (strain LM-1), a Piromonas sp. (strain SM-1), and a Sphaeromonas sp. (strain NM-1), were grown anaerobically in liquid media which contained a suspension of either 1% (wt/vol) purified cellulose or finely milled wheat straw as the source of fermentable carbon. Fungal biomass was estimated by using cell wall chitin or cellular protein in cellulose cultures and chitin in straw cultures. Both strains LM-1 and SM-1 degraded cellulose with a concomitant increase in fungal biomass. Maximum growth of both fungi occurred after incubation for 4 days, and the final yield of protein was the same for both fungi. Cellulose degradation continued after growth ceased. Strain NM-1 failed to grow in the cellulose medium. All three anaerobic fungi grew in the straw-containing medium, and loss of dry weight from the cultures indicated degradation of straw to various degrees (LM-1 greater than SM-1 greater than NM-1). The total fiber component and the cellulose component of the straw were degraded in similar proportions, but the lignin component remained undegraded by any of the fungi. Maximum growth yield on straw occurred after 4 days for strain LM-1 and after 5 days for strains SM-1 and NM-1. The calculated yield of cellular protein for strain LM-1 was twice that of both strains SM-1 and NM-1. The cellular protein yield of strain SM-1 was the same in both cellulose and straw cultures. In contrast to cellulose, straw degradation ceased after the end of the growth phase.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Development of multi-functional combine harvester with grain harvesting and straw baling

    Directory of Open Access Journals (Sweden)

    Zhong Tang

    2017-04-01

    Full Text Available The decomposition and burning of straw results in serious environmental pollution, and research is needed to improve strategies for straw collection to reduce pollution. This work presents an integrated design of multi-functional rice combine harvester that allows grain harvesting and straw baling. This multi-functional combine harvester could reduce the energy consumption required for rice harvesting and simplify the process of harvesting and baling. The transmission schematic, matching parameters and the rotation speed of threshing cylinder and square baler were designed and checked. Then the evaluation of grain threshing and straw baling were tested on a transverse threshing cylinders device tes rig and straw square bales compression test rig. The test results indicated that, with a feeding rate of 3.0 kg/s, the remaining straw flow rate at the discharge outlet was only 1.22 kg/s, which indicates a variable mass threshing process by the transverse threshing cylinder. Then the optimal diameter, length and rotating speed of multi-functional combine harvester transverse threshing cylinder were 554 mm, 1590 mm, and 850 r/min, respectively. The straw bale compression rotating speed of crank compression slider and piston was 95 r/min. Field trials by the multi-functional combine harvester formed bales with height×width×length of 40×50×54-63 cm, bale mass of 22.5 to 26.0 kg and bale density 206 to 216 kg/m3. This multi-functional combine harvester could be used for stem crops (such as rice, wheat and soybean grain harvesting and straw square baling, which could reduce labor cost and power consumption.

  7. Development of multi-functional combine harvester with grain harvesting and straw baling

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Z.; Li, Y.; Cheng, C.

    2017-09-01

    The decomposition and burning of straw results in serious environmental pollution, and research is needed to improve strategies for straw collection to reduce pollution. This work presents an integrated design of multi-functional rice combine harvester that allows grain harvesting and straw baling. This multi-functional combine harvester could reduce the energy consumption required for rice harvesting and simplify the process of harvesting and baling. The transmission schematic, matching parameters and the rotation speed of threshing cylinder and square baler were designed and checked. Then the evaluation of grain threshing and straw baling were tested on a transverse threshing cylinders device tes rig and straw square bales compression test rig. The test results indicated that, with a feeding rate of 3.0 kg/s, the remaining straw flow rate at the discharge outlet was only 1.22 kg/s, which indicates a variable mass threshing process by the transverse threshing cylinder. Then the optimal diameter, length and rotating speed of multi-functional combine harvester transverse threshing cylinder were 554 mm, 1590 mm, and 850 r/min, respectively. The straw bale compression rotating speed of crank compression slider and piston was 95 r/min. Field trials by the multi-functional combine harvester formed bales with height×width×length of 40×50×54-63 cm, bale mass of 22.5 to 26.0 kg and bale density 206 to 216 kg/m3. This multi-functional combine harvester could be used for stem crops (such as rice, wheat and soybean) grain harvesting and straw square baling, which could reduce labor cost and power consumption.

  8. Enzymic hydrolysis of wood and straw polysaccharides. 10. Effect of the morphological structure of cell walls on hydrolysis. [Cellulase, Cellokoningin P10 X, Celloviridin G3X, Cellolignorin

    Energy Technology Data Exchange (ETDEWEB)

    Katkevich, Y.Y.; Gromov, V.S.; Vevere, P.; Samokhvalova, T.A.

    1982-01-01

    Treatment of powdered wood and straw with cellulolytic enzymes (cellulase, Cellokoningin P10 X, Celloviridin G3X, and Cellolignorin) resulted in the degradation of cell wall biopolymers and facilitated the hydrolysis of polysaccharides of the powdered material. The rate of hydrolysis depended on the high degree of disintegration of wood (from aspen and spruce), straw (wheat and rye), and cellulose sulfate (from henbane). The outer layers of cellulose fibers were most resistant to cellulases. Kinetics of the enzymic reactions are given.

  9. Process optimization for the preparation of straw feedstuff for rearing yellow mealworms (Tenebrio molitor L.) in BLSS

    Science.gov (United States)

    Li, Leyuan; Liu, lh64. Hong

    2012-07-01

    It has been confirmed in our previous work that in bioregenerative life support systems, feeding yellow mealworms (Tenebrio molitor L.) using fermented straw has the potential to provide good animal protein for astronauts, meanwhile treating with plant wastes. However, since the nitrogen content in straw is very low, T. molitor larvae can not obtain sufficient nitrogen, which results in a relatively low growth efficiency. In this study, wheat straw powder was mixed with simulated human urine before fermentation. Condition parameters, e.g. urine:straw ratio, moisture content, inoculation dose, fermentation time, fermentation temperature and pH were optimized using Taguchi method. Larval growth rate and average individual mass of mature larva increased significantly in the group of T. molitor larvae fed with feedstuff prepared with the optimized process.

  10. Kinetics of SO2-ethanol-water (AVAP®) fractionation of sugarcane straw.

    Science.gov (United States)

    You, Xiang; van Heiningen, Adriaan; Sixta, Herbert; Iakovlev, Mikhail

    2016-07-01

    Kinetics of SO2-ethanol-water (AVAP®) fractionation was determined for sugarcane (SC) straw in terms of pulp composition (non-carbohydrate components, cellulose, hemicelluloses) and properties (kappa number, pulp intrinsic viscosity in CED and cellulose degree of polymerization). Effect of temperature (135-165°C) and time (18-118min) was studied at fixed liquor composition (SO2/ethanol/water=12:22.5:65.5, w/w) and a liquor-to-solid ratio (4Lkg(-1)). Interpretation is given in terms of major fractionation reactions, removal of non-carbohydrate components and xylan, as well as acid hydrolysis of cellulose, and is compared to other lignocellulosic substrates (beech, spruce and wheat straw). Overall, SO2-ethanol-water process efficiently fractionates SC straw by separating cellulose from both non-carbohydrate components and xylan while reducing cellulose DP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Eat Wheat!

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  12. Increased Yield Surplus of Vetch-Wheat Rotations under Drought in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Panagiotis Dalias

    2012-01-01

    Full Text Available This paper presents results of a plot-scale field experiment aiming at the comparative evaluation of agricultural practices and agricultural systems as far as their performance in very-low-rainfall conditions is concerned. Wheat was seeded after common vetch, treated in three different ways, after fallow or after the incorporation of dried sewage sludge or straw. Grain and straw yields and grain characteristics were always compared with conventional wheat monoculture without any additional organic inputs. Results showed a clear positive effect of vetch on next year's wheat yield and an increase in grain protein. Not only did the exceptionally dry season mask this effect, but also vetch-wheat systems were proved to be more effective in restraining wheat yield reductions, which are unavoidable under drought, marking these systems the most promising for improving sustainability and stability of rainfed agriculture.

  13. A trial burn of rape straw and whole crops harvested for energy use to assess efficiency implications

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R.

    2003-11-01

    Increased biomass utilisation and alternatives to cereal straw such as oil seed rape (OSR) straw will be necessary to achieve the Government's renewable energy targets. This report describes the results of a study to investigate the technical and economic feasibility of burning OSR straw and whole crops in an existing biomass power plant operated by EPR Ely Ltd in comparison with conventional cereal straw. Suitable quantities of bales of each fuel were provided for the combustion trials by Anglian Straw Ltd. Three trials were conducted: one using wheat-based cereal straw; one using 92% OSR; and one using 65% whole crop fuel. The availability of OSR straw and whole crop in Eastern England for use as fuel was also determined. Plant performance and stack emissions were evaluated and samples of delivered crop samples, bottom ash and fly ash from each trial were analysed. The parameters against which performance was assessed included: ease of handling and conveying; ease of chopping; ease of entry into the combustion chamber; furnace temperature profile; steam and electricity production rate; plant chimney emissions; ash collection and removal; operating stability; sustainability; and fuel availability.

  14. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    African Journals Online (AJOL)

    According to the results of the study, in both compost types, maximum temperature values were observed in the second turning stage. While in the first and second turning stages, inner-pile temperature of the compost was in a tendency of exhibiting steady increase, they are prone to decrease in the following turning stages.

  15. Pyrolysis of wheat straw-derived organosolv lignin

    NARCIS (Netherlands)

    Wild, P.J. de; Huijgen, W.J.J.; Heeres, H.J.

    2012-01-01

    The cost-effectiveness of a lignocellulose biorefinery may be improved by developing applications for lignin with a higher value than application as fuel. We have developed a pyrolysis based lignin biorefinery approach, called LIBRA, to transform lignin into phenolic bio-oil and biochar using

  16. Induction of wheat straw delignification by Trametes species

    National Research Council Canada - National Science Library

    Knežević, Aleksandar; Stajić, Mirjana; Jovanović, Vladimir M; Kovačević, Višnja; Ćilerdžić, Jasmina; Milovanović, Ivan; Vukojević, Jelena

    2016-01-01

    .... The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent promising degraders due to a well-developed ligninolytic enzyme system...

  17. Characteristics and community diversity of a wheat straw-colonizing ...

    African Journals Online (AJOL)

    5 was 75.6%. For cellulose, hemicellulose and lignin, the degradation rates were 94.2, 81.9 and 21.3%, respectively. The optimal pH for filter paper, CMCase, avicelase, β- glucosidase and xylanse activities was 6.24, 6.24, 5.91, 5.91 and 6.24, ...

  18. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    Dec 17, 2007 ... This study was performed to determine the effects of composts and casing materials on dry matter, protein, and carbohydrate contents of the fruit bodies of Agaricus bisporus. Results showed that. Agaricus bisporus cultivated on group I and group II casing soil groups showed remarkably higher dry.

  19. Intrinsic kinetics and devolatilization of wheat straw during torrefaction

    DEFF Research Database (Denmark)

    Shang, Lei; Ahrenfeldt, Jesper; Holm, Jens Kai

    2013-01-01

    of water, carbon monoxide, formic acid, formaldehyde, methanol, acetic acid, carbon dioxide, methyl chloride, traces of hydrogen sulfide and carbonyl sulfide were found at torrefaction temperatures of 250 and 300 °C. --------------------------------------------------------------------------------...

  20. Allelopathic appraisal effects of straw extract wheat varieties on the ...

    African Journals Online (AJOL)

    Allelopathy is a process in which secondary metabolites produced by plants, micro-organisms, viruses and fungi control growth and development of other biological systems. Some plants may beneficially or antagonistically affect other plants through allelochemical compounds which may be released directly or indirectly ...

  1. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...

  2. Wheat Allergy

    Science.gov (United States)

    ... Watery eyes Wheat allergy Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  3. Cadmium Isotope Fractionation in Soil-Wheat Systems.

    Science.gov (United States)

    Wiggenhauser, Matthias; Bigalke, Moritz; Imseng, Martin; Müller, Michael; Keller, Armin; Murphy, Katy; Kreissig, Katharina; Rehkämper, Mark; Wilcke, Wolfgang; Frossard, Emmanuel

    2016-09-06

    Analyses of stable metal isotope ratios constitute a novel tool in order to improve our understanding of biogeochemical processes in soil-plant systems. In this study, we used such measurements to assess Cd uptake and transport in wheat grown on three agricultural soils under controlled conditions. Isotope ratios of Cd were determined in the bulk C and A horizons, in the Ca(NO3)2-extractable Cd soil pool, and in roots, straw, and grains. The Ca(NO3)2-extractable Cd was isotopically heavier than the Cd in the bulk A horizon (Δ(114/110)Cdextract-Ahorizon = 0.16 to 0.45‰). The wheat plants were slightly enriched in light isotopes relative to the Ca(NO3)2-extractable Cd or showed no significant difference (Δ(114/110)Cdwheat-extract = -0.21 to 0.03‰). Among the plant parts, Cd isotopes were markedly fractionated: straw was isotopically heavier than roots (Δ(114/110)Cdstraw-root = 0.21 to 0.41‰), and grains were heavier than straw (Δ(114/110)Cdgrain-straw = 0.10 to 0.51‰). We suggest that the enrichment of heavy isotopes in the wheat grains was caused by mechanisms avoiding the accumulation of Cd in grains, such as the chelation of light Cd isotopes by thiol-containing peptides in roots and straw. These results demonstrate that Cd isotopes are significantly and systematically fractionated in soil-wheat systems, and the fractionation patterns provide information on the biogeochemical processes in these systems.

  4. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    Science.gov (United States)

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid

  5. Pre-study - Straw ash in a nutrient loop; Foerstudie - Halmaska i ett kretslopp

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Peter; Bjurstroem, Henrik; Johansson, Christina; Svensson, Sven-Erik; Mattsson, Jan Erik

    2009-03-15

    A sustainable production of energy crops requires that the loss of mineral nutrients when removing biomass is compensated naturally or by an addition of plant nutrients. Recycling ash is a natural way to satisfy this need arising after combustion of energy crops. In this pre-study, the prerequisites for recycling straw ash have been investigated. The Danish experience with spreading ash to fields and information in literature on the composition of ash have been collected and presented. Analysis of straw samples taken from four different places in Scania yielded information on cadmium and nutrient concentration in straw and in ash. A balance between removal of nutrient and cadmium with wheat straw and restoring them by recycling straw ash has been computed. Straw ash is a potassium fertiliser with some phosphorus and some liming effect. It is technically difficult to spread the small quantities of ash in solid form, ca 250 kg per hectare and year in average, which a pure recycling would require. It is easier to spread larger quantities, e.g. ca 1 ton per hectare every fourth year, which corresponds to spreading once in a four year crop rotation, but then one provides too much potassium if one considers the actual needs of the coming crops at that occasion, which could lead to potassium being leached out on light soils. Alternatively, one could spread only bottom ash, but this would lead to half of the potassium content not being recycled to agricultural soil and lost with the fly ash that is disposed of. If one spreads about 500 kg bottom ash per hectare every other year, which could be a suitable strategy to avoid overloading soils with potassium, the dose brought to 1 ha may be computed as: 4 - 10 kg phosphorus, 50 - 100 kg potassium, 5 - 15 kg sulphur, 4 - 8 kg magnesium, 0.1 - 0.3 kg manganese and 20 - 40 kg CaO. These basis of these calculations is the results from the analyses performed in this study. The cadmium concentration was significantly higher in wheat

  6. Wheat: The Whole Story.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  7. [Effects of different fertilization regimes on weed communities in wheat fields under rice-wheat cropping system].

    Science.gov (United States)

    Yuan, Fang; Li, Yong; Li, Fen-hua; Sun, Guo-jun; Han, Min; Zhang, Hai-yan; Ji, Zhong; Wu, Chen-yu

    2016-01-01

    To reveal the effects of different fertilization regimes on weed communities in wheat fields under a rice-wheat rotation system, a survey was conducted before wheat harvest in 2014 after a 4-year long-term recurrent fertilization scheme. Weed species types, density, height and diversity index under different fertilization and straw-returning schemes in wheat fields were studied and complemented with a canonical correspondence analysis on weed community distribution and soil nutrient factors. Twenty weed species were recorded among 36 wheat fields belonging to 19 genera and 11 families. Beckmannia syzigachne, Hemistepta lyrata, Malachium aquaticum and Cnidium monnieri were widely distributed throughout the sampled area. Long-term fertilization appeared to reduce weed species richness and density, particularly for broadleaf weeds, but increased weed height. Diversity and evenness indices of weed communities were lower and dominance indices were higher in fields where chemical fertilizers were applied alone or combined with organic fertilizers, especially, where organic-inorganic compound fertilizer was used, in which it readily caused the outbreak of a dominant species and severe damage. Conversely, diversity and evenness indices of weed communities were higher and dominance indices were lower when the straw was returned to the field combined with chemical or organic fertilizers, in which weed community structures were complex and stable with lower weed density. Under these conditions weeds only caused slight reduction of wheat growth.

  8. Decomposition of Rice Straw and Corn Straw Under Aerobic and Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    WANG Jing

    2017-01-01

    Full Text Available Decomposition dynamics of rice straw and corn straw at aerobic and anaerobic condition were investigated under the simulated condition in the lab. Results showed that two stages, i.e. the rapid decomposition stage from 0 to 3 months, and the slow one between 3 and 12 months, of decomposition dynamics of rice straw and corn straw were found under anaerobic and aerobic incubation condition, and more than 55%of rice straw and corn mass was lost at the initial 3 months incubation period. The half times(t1/2of rice straw and corn straw mass lost under aerobic condition were 59.2 d and 52.9 d, which were short than those(72.6 d and 79.9 dunder the anaerobic condition, respectively. Carbon release constants from rice straw and corn straw under aerobic condition were 0.61 and 0.60 per month, which were higher than those (0.55 and 0.57 per monthunder anaerobic condition. The nitrogen release from crop straw followed the same rule as the carbon release from straw. The constants of nitrogen released from rice straw and corn straw under aerobic condition were 0.25 and 2.36 per month, which were higher than those(0.16 and 2.32 per monthunder anaerobic condition. The losses of cellulose, hemicelluloses and lignin from rice straw and corn straw under aerobic condition were also higher than those under anaerobic condition. In summary, the aerobic environment increases de composition and release of organic and inorganic substances from crop straw.

  9. Cattle, straw and system control : a study of straw feeding systems

    NARCIS (Netherlands)

    Schiere, J.B.

    1995-01-01

    Straw is an important animal feed in many farming systems of the world. It can be fed in different ways, and for a variety of objectives. An analysis of the role of straw is therefore undertaken to explain the usefulness of straw feeding methods in different systems. Automatically this

  10. Bioethanol production from rice straw residues

    Directory of Open Access Journals (Sweden)

    Elsayed B. Belal

    2013-01-01

    Full Text Available A rice straw -cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 ºC, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L-1.

  11. Electrodialytic Removal of Cadmium from Straw Ash

    DEFF Research Database (Denmark)

    Hansen, Henrik; Ottosen, Lisbeth M.; Villumsen, Arne

    1999-01-01

    A problem with flyash from straw and wood combustion is the high level of heavy metals, especially cadmium. Two electrodialytic remediation experiments were carried out on cadmium polluted flyash from straw combustion. The flyash could be cleaned to 1/3 of its initial level after 24 days of remed......A problem with flyash from straw and wood combustion is the high level of heavy metals, especially cadmium. Two electrodialytic remediation experiments were carried out on cadmium polluted flyash from straw combustion. The flyash could be cleaned to 1/3 of its initial level after 24 days...

  12. Effect of Leucaena and Sesbania supplementation on body growth and scrotal circumference of Ethiopian highland sheep and goats fed teff straw basal diet

    NARCIS (Netherlands)

    Kaitho, R.J.; Tegegne, A.; Umunna, N.N.; Nsahlai, I.V.; Tamminga, S.; Bruchem, J. van; Arts, J.M.

    1998-01-01

    The long term effect of supplementation of Leucaena pallida and Sesbania sesban on growth and reproduction performance was determined on 30 male Ethiopian highland sheep and 25 East African goats. Unchopped teff straw (Eragrostis tef) was given ad libitum and supplemented with either wheat bran (150

  13. Pushing Wheat

    DEFF Research Database (Denmark)

    Sharp, Paul Richard

    This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between these varia......This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between...

  14. Decomposition of Rice Straw and Corn Straw Under Aerobic and Anaerobic Conditions

    OpenAIRE

    Wang,Jing; Chen, Xi; WEI Jun-ling

    2017-01-01

    Decomposition dynamics of rice straw and corn straw at aerobic and anaerobic condition were investigated under the simulated condition in the lab. Results showed that two stages, i.e. the rapid decomposition stage from 0 to 3 months, and the slow one between 3 and 12 months, of decomposition dynamics of rice straw and corn straw were found under anaerobic and aerobic incubation condition, and more than 55%of rice straw and corn mass was lost at the initial 3 months incubation period. The half...

  15. [Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield].

    Science.gov (United States)

    Zhao, Ya-li; Guo, Hai-bin; Xue, Zhi-wei; Mu, Xin-yuan; Li, Chao-hai

    2015-06-01

    A two-year field study with split plot design was conducted to investigate the effects of different soil tillage (conventional tillage, CT; deep tillage, DT; subsoil tillage, ST) and straw returning (all straw retention, AS; no straw returning, NS) on microorganism quantity, enzyme activities in soil and grain yield. The results showed that, deep or subsoil tillage and straw returning not only reduced the soil bulk density and promoted the content of organic carbon in soil, but increased the soil microbial quantity, soil enzyme activities and grain yield. Furthermore, such influences in maize season were greater than that in wheat season. Compared with CT+NS, DT+AS and ST+AS decreased the soil bulk density at 20-30 cm depth by 8.5% and 6.6%, increased the content of soil organic carbon by 14.8% and 12.4%, increased the microorganism quantity by 45.9% and 33.9%, increased the soil enzyme activities by 34.1% and 25.5%, increased the grain yield by 18.0% and 19.3%, respectively. No significant difference was observed between DT+AS and ST+AS. We concluded that retaining crop residue and deep or subsoil tillage improved soil microorganism quantity, enzyme activities and crop yield.

  16. The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience

    Science.gov (United States)

    Jäger, Alexander; Ortner, Tina; Kahr, Heike

    2015-04-01

    The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience The successful use of bioethanol as a fuel requires its widespread acceptance by consumers. Due to the planned introduction of a 10 per cent proportion of bioethanol in petrol in Austria, the University of Applied Sciences Upper Austria carried out a representative opinion poll to collect information on the population's acceptance of biofuels. Based on this survey, interviews with important stakeholders were held to discuss the results and collect recommendations on how to increase the information level and acceptance. The results indicate that there is a lack of interest and information about biofuels, especially among young people and women. First generation bioethanol is strongly associated with the waste of food resources, but the acceptance of the second generation, produced from agricultural remnants like straw from wheat or corn, is considerably higher. The interviewees see more transparent, objective and less technical information about biofuels as an essential way to raise the information level and acceptance rate. As the production of bioethanol from straw is now economically feasible, there is one major scientific question to answer: In which way does the withdrawal of straw from the fields affect the formation of humus and, therefore, the quality of the soil? An interdisciplinary approach of researchers in the fields of bioethanol production, geoscience and agriculture in combination with political decision makers are required to make the technologies of renewable bioenergy acceptable to the population.

  17. Straw Combustion in a Grate Furnace

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der

    1998-01-01

    Fixed-bed combustion of straw has been conducted in a 15 cm diameter and 137 cm long cylindrical reactor. Air, which could be preheated, was introduced through the bottom plate. The straw was ignited at the top with a radiation heater. After ignition, when a self-sustaining reaction front...

  18. Using rice straw to manufacture ceramic bricks

    Directory of Open Access Journals (Sweden)

    Gorbunov German Ivanovich

    2014-12-01

    Full Text Available In the article, the co-authors offer their advanced and efficient methodologies for the recycling of the rice straw, as well as the novel approaches to the ceramic brick quality improvement through the application of the rice straw as the combustible additive and through the formation of amorphous silica in the course of the rice straw combustion. The co-authors provide characteristics of the raw materials, production techniques used to manufacture ceramic bricks, and their basic properties in the article. The co-authors describe the simulated process of formation of amorphous silica. The process in question has two independent steps (or options: 1 rice straw combustion and ash formation outside the oven (in the oxidizing medium, and further application of ash as the additive in the process of burning clay mixtures; 2 adding pre-treated rice straw as the combustible additive into the clay mixture, and its further burning in compliance with the pre-set temperature mode. The findings have proven that the most rational pre-requisite of the rice straw application in the manufacturing of ceramic bricks consists in feeding milled straw into the clay mixture to be followed by molding, drying and burning. Brick samples are highly porous, and they also demonstrate sufficient compressive strength. The co-authors have also identified optimal values of rice straw and ash content in the mixtures under research.

  19. Producing ergosterol from corn straw hydrolysates using ...

    African Journals Online (AJOL)

    Producing ergosterol from corn straw hydrolysates using Saccharomyces cerevisiae. ... Ergosterol is an economically important metabolite produced by Saccharomyces cerevisiae. In this study, the production of ... Cultivation in 10 L bioreactor was carried out under the optimized corn straw hydrolysate medium. According to ...

  20. Effect of Straw Amendment on Soil Zn Availability and Ageing of Exogenous Water-Soluble Zn Applied to Calcareous Soil.

    Directory of Open Access Journals (Sweden)

    Yanlong Chen

    Full Text Available Organic matter plays a key role in availability and transformation of soil Zn (zinc, which greatly controls Zn concentrations in cereal grains and human Zn nutrition level. Accordingly, soils homogenized with the wheat straw (0, 12 g straw kg-1 and Zn fertilizer (0, 7 mg Zn kg-1 were buried and incubated in the field over 210 days to explore the response of soil Zn availability and the ageing of exogenous Zn to straw addition. Results indicated that adding straw alone scarcely affected soil DTPA-Zn concentration and Zn fractions because of the low Zn concentration of wheat straw and the high soil pH, and large clay and calcium carbonate contents. However, adding exogenous Zn plus straw increased the DTPA-Zn abundance by about 5-fold and had the similar results to adding exogenous Zn alone, corresponding to the increased Zn fraction loosely bounded to organic matter, which had a more dominant presence in Zn reaction than soil other constituents such as carbonate and minerals in calcareous soil. The higher relative amount of ineffective Zn (~50% after water soluble Zn addition also occurred, and at the days of 120-165 and 180-210when the natural temperature and rainfall changed mildly, the ageing process of exogenous Zn over time was well evaluated by the diffusion equation, respectively. Consequently, combining crop residues with exogenous water soluble Zn application is promising strategy to maximize the availability of Zn in calcareous soil, but the higher ageing rate of Zn caused by the higher Zn mobility should be considered.

  1. Board Evaluations

    OpenAIRE

    Pierce, Chris; Larson, Mary Jo

    2015-01-01

    Board evaluation has emerged as a corporate governance priority and brought to the forefront many associated challenges. This is not a revolutionary change. Board assessment procedures are evolving as nations and companies formulate and test diverse requirements. Until recently effective Board evaluation was not regarded a Board priority. In 2002, Yale University Professor Jeffrey Sonnenfe...

  2. Bioethanol production from rice straw: An overview.

    Science.gov (United States)

    Binod, Parameswaran; Sindhu, Raveendran; Singhania, Reeta Rani; Vikram, Surender; Devi, Lalitha; Nagalakshmi, Satya; Kurien, Noble; Sukumaran, Rajeev K; Pandey, Ashok

    2010-07-01

    Rice straw is an attractive lignocellulosic material for bioethanol production since it is one of the most abundant renewable resources. It has several characteristics, such as high cellulose and hemicelluloses content that can be readily hydrolyzed into fermentable sugars. But there occur several challenges and limitations in the process of converting rice straw to ethanol. The presence of high ash and silica content in rice straw makes it an inferior feedstock for ethanol production. One of the major challenges in developing technology for bioethanol production from rice straw is selection of an appropriate pretreatment technique. The choice of pretreatment methods plays an important role to increase the efficiency of enzymatic saccharification thereby making the whole process economically viable. The present review discusses the available technologies for bioethanol production using rice straw. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Possibilities and evaluation of straw pretreatment

    DEFF Research Database (Denmark)

    Knudsen, Niels Ole; Jensen, Peter Arendt; Sander, Bo

    1998-01-01

    Biomass utilisation by cofiring of straw in a pulverised coal fire boiler is economically attractive compared to dedicated straw fired plants. However, the high content of potassium and chloride impedes utilisation of the fly ash, deactivates the de NOx catalysts in the flue gas cleaning system...... and may also lead to increased deposit formation. A pretreatment process is required to solve the problems. In this paper two pretreatment processes are considred, one based on straw wash and another based on pyrolysis and char wash. To evaluate and compare the processes, laboratory and technical...... invetsigations were performed. The economy of both processes are favourable compared with seperate straw fired boilers, however, the removal efficiency of potassium of the pyrolysi based process is relatively low. At the present level of invetsigations the straw wash process looks promising and commercially...

  4. Opportunities and barriers to straw construction

    DEFF Research Database (Denmark)

    White, Caroline Meyer; Howard, Thomas J.; Lenau, Torben Anker

    2012-01-01

    produced to support communication between clients and the consultants and facilitate the straw build design and decision making process. The intended audiences for the design guide are clients of small scale construction projects, architects, engineers, builders of straw construction, homeowner...... and techniques of construction are considered. At the same time the request for a living environment free from toxins and allergenic substances, providing the basis for stress-free living and working conditions is increasingly demanded by clients for newly built homes. Since straw built houses supply a possible......-builders and entrepreneurs considering the use of, straw construction. The aim of the design guide is both to acting as inspiration for the clients by outlining the benefits, determine whether straw construction would be suitable for a given project, and if so, to suggest a specific approach to the design and development...

  5. Co-digestion of ley crop silage, straw and manure

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Aa.; Edstroem, M. [Swedish Inst. of Agricultural Engineering, Uppsala (Sweden)

    1997-08-01

    Anaerobic co-digestion of ley crop silage, wheat straw and liquid manure with liquid recirculation was investigated in laboratory- and pilot scale. An organic loading rate of 6.0 g Vs L{sup -1} d{sup -1} was obtained when 20% of liquid manure (TS-basis) was added, whereas an organic loading rate of 2.5 g VS L{sup -1} d{sup -1} was obtained when the manure was replaced with a trace element solution. The methane yield varied between 0.28 and 0.32 L g VS{sup -1}, with the value being lowest for a mixture containing 60% silage, 20% straw and 20% manure (TS-basis), and highest for 100% ley crop silage. The concentration of ammonia-N was maintained at ca 2 g L{sup -1} by adjusting the C:N-ratio with straw. To achieve good mixing characteristics with a reasonable energy input at TS-concentrations around 10%, the particle sizes of straw and silage had to be reduced with a meat mincer. The digester effluent was dewatered, resulting in a solid phase that could be composted without having to add amendments or bulking agents, and a liquid phase containing 7-8% TS (mainly soluble and suspended solids). The liquid phase, which should be used as an organic fertilizer, contained up to 90% of the N and 74% of the P present in the residues. Calculations of the costs for a full-scale plant showed that a biogas price of SEK 0.125 MJ{sup -1} (0.45 k Wh{sup -1}) is necessary to balance the costs of a 1-MW plant. An increase in plant size to 4 MW together with an increase in compost price from SEK 100 tonnes{sup -1} to SEK 370 tonnes{sup -1} and a 20% rise in the methane yield through post-digestion (20%) would decrease the price to SEK 0.061 MJ{sup -1} (0.22 kWh{sup -1}). (au) 15 refs.

  6. Analysis of diallel crosses between six varieties of durum wheat in ...

    African Journals Online (AJOL)

    $$)9

    2014-01-08

    Jan 8, 2014 ... The study of morphological genetic determinism characteristics and production of durum wheat. (Triticum durum Desf.) through ... Increasing yields in unfavorable areas to culture should. *Corresponding author. ... efficiency, a very short straw, sensitive to water stress of end cycle. They are precocious and ...

  7. Aerosol Formation during the Combustion of Straw with Addition of Sorbents

    DEFF Research Database (Denmark)

    Zeuthen, Frederik Jacob; Jensen, Peter Arendt; Jensen, Jørgen P.

    2007-01-01

    The influence of six sorbents on aerosol formation during the combustion of straw in a 100 MW boiler on a Danish power plant has been studied in full-scale. The following sorbents were studied: ammonium sulfate, monocalcium phosphate, Bentonite, ICA5000, clay, and chalk. Bentonite and ICA5000......, calcium phosphate, Bentonite, ICA5000, and clay. The addition of chalk increased the aerosol mass concentration by 24%. Experiments in a laminar flow aerosol condenser with the six sorbents were carried out in the laboratory using a synthetic flue gas to avoid fluctuations in the alkali feeding...... are mixtures of clay minerals and consist mainly of the oxides from Fe, Al, and Si. The straw used was Danish wheat and seed grass. Measurements were also made with increased flow of primary air. The experiments showed between 46% and 70% reduction in particle mass concentrations when adding ammonium sulfate...

  8. Phosphorus bioavailability in straw and sewage sludge ashes from low-temperature biomass gasification

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Jakobsen, Iver; Grønlund, Mette

    2017-01-01

    to their P bioavailability. A set of pot experiments with spring barley was carried out to compare the ash P fertiliser value with mineral P fertiliser and the sewage sludge feedstock. An indirect radioactive labelling approach with 33P was used to determine the amount of P taken up from the fertiliser......Re-use of phosphorus (P) from waste streams used for bioenergy conversion is desirable in order to reduce dependence on non-renewable P resources. Two different ash materials from low-temperature biomass gasification of wheat straw and sewage sludge, respectively, were investigated with regard...... materials. Depending on the dosage applied, straw gasification ash had a fertiliser effect comparable to mineral P. However, P uptake from the ash was generally lower than uptake from equivalent amounts of mineral P, and the calculated relative effectiveness was 44 % after six weeks of plant growth...

  9. Numerical modeling of straw combustion in a fixed bed

    DEFF Research Database (Denmark)

    Zhou, Haosheng; Jensen, Anker; Glarborg, Peter

    2005-01-01

    . The straw combustion processes include moisture evaporation, straw pyrolysis, gas combustion, and char combustion. The model provides detailed information of the structure of the ignition flame front. Simulated gas species concentrations at the bed surface, ignition flame front rate, and bed temperature...... packing condition, and heat capacity of the straw have considerable effects on the model predictions of straw combustion in the fixed bed....

  10. Performance of herbicides in sugarcane straw

    Directory of Open Access Journals (Sweden)

    Rosilaine Araldi

    2015-12-01

    Full Text Available The process of mechanical harvesting of sugarcane generates a large deposition of straw on the soil surface, providing a coverage that several studies have found important for reducing the weed population. Although such coverage reduces weed infestations, additional management, including chemical control, is still needed. Thus, this study aimed to evaluate the leaching of atrazine, pendimethalin, metribuzin, clomazone, diuron and hexazinone in sugarcane straw. The experiment was conducted at the School of Agronomic Engineering at UNESP (Sao Paulo State University - Botucatu/SP. The sugarcane straw was collected in the field, cut and placed in quantities of 10t ha-1 in the capsules used as experimental units. The experimental design was completely randomized, using six herbicide treatments and four replications. Within 24 hours after the herbicides were applied in capsules with straw, five different rainfalls (5, 10, 20, 50 and 100mm were simulated. The leached water was collected for chromatographic analysis. The herbicide percentages that crossed the straw layer were statistically correlated with the rainfall amount by the Mitscherlich model that compares the facility of herbicide removal from sugarcane straw. In summary, pendimethalin did not present quantified transposition of the product by sugarcane straw even with a rain simulation of 100 mm. Furthermore, two different profiles of facility to transpose the herbicides in straw were found: one for metribuzin and hexazinone that crossed quickly through the straw layer and another for atrazine, diuron and clomazone that required more rainfall to be leached from coverage to the soil according to the maximum removable amount of each herbicide.

  11. Cereal straw management: a trade-off between energy and agronomic fate

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    2015-06-01

    Full Text Available Climate change mitigation is the most important driving force for bioenergy development. Consequently, the environmental design of bioenergy value chains should address the actual savings of both primary energy demand and greenhouse gases (GHG emissions. According to the EU Renewable Energy Directive (2009/28/EC, no direct impacts and no GHG emissions should be attributed to crop residues (like cereal straws when they are removed from agricultural land for the purpose of bioenergy utilisation. The carbon neutral assumption applied to crop residues is, however, a rough simplification. Crop residues, indeed, should not be viewed simply as a waste to be disposed, because they play a critical role in sustaining soil organic matter and therefore have an inherent C-capturing value. Moreover, considering straws as an energy feedstock, its status of co-product is clearly recognised and its availability could be obtained according to different cropping systems, corresponding to different primary energy costs and GHG emissions. This paper highlights some hidden features in the assessment of agricultural energy and carbon balance, still very difficult to be detected and accounted for. Although they are frequently disregarded, these features (such as long term dynamic trend of soil organic carbon and annual nitrous oxide emissions from the soil should be carefully considered in assembling the energy and emission balance. By using a crop simulation model, the long-term soil organic matter and annual N2O soil emissions were estimated. Consequently, a comprehensive energy and GHG balance was determined in accordance with the life cycle assessment methodology. Contrasting methods of straw management and wheat cultivation were compared: straw retention vs removal from the soil; conventional vs conservation tillage; wheat cropping system as a single-crop or in rotation. The resulting carbon footprint of straws has different magnitudes with respect to the several

  12. Analysis and simulation of straw fuel logistics

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Daniel [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Agricultural Engineering

    1998-12-31

    Straw is a renewable biomass that has a considerable potential to be used as fuel in rural districts. This bulky fuel is, however, produced over large areas and must be collected during a limited amount of days and taken to the storages before being ultimately transported to heating plants. Thus, a well thought-out and cost-effective harvesting and handling system is necessary to provide a satisfactory fuel at competitive costs. Moreover, high-quality non-renewable fuels are used in these operations. To be sustainable, the energy content of these fuels should not exceed the energy extracted from the straw. The objective of this study is to analyze straw as fuel in district heating plants with respect to environmental and energy aspects, and to improve the performance and reduce the costs of straw handling. Energy, exergy and emergy analyses were used to assess straw as fuel from an energy point of view. The energy analysis showed that the energy balance is 12:1 when direct and indirect energy requirements are considered. The exergy analysis demonstrated that the conversion step is ineffective, whereas the emergy analysis indicated that large amounts of energy have been used in the past to form the straw fuel (the net emergy yield ratio is 1.1). A dynamic simulation model, called SHAM (Straw HAndling Model), has also been developed to investigate handling of straw from the fields to the plant. The primary aim is to analyze the performance of various machinery chains and management strategies in order to reduce the handling costs and energy needs. The model, which is based on discrete event simulation, takes both weather and geographical conditions into account. The model has been applied to three regions in Sweden (Svaloev, Vara and Enkoeping) in order to investigate the prerequisites for straw harvest at these locations. The simulations showed that straw has the best chances to become a competitive fuel in south Sweden. It was also demonstrated that costs can be

  13. Dust-Firing of Straw and Additives

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming

    2011-01-01

    In the present work, the ash chemistry and deposition behavior during straw dust-firing were studied by performing experiments in an entrained flow reactor. The effect of using spent bleaching earth (SBE) as an additive in straw combustion was also investigated by comparing with kaolinite. During...... dust-firing of straw, the large (>∼2.5 μm) fly ash particles generated were primarily molten or partially molten spherical particles rich in K, Si, and Ca, supplemented by Si-rich flake-shaped particles. The smaller fly ash particles (...

  14. Phosphorus bioavailability in straw and sewage sludge ashes from low-temperature biomass gasification

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Jakobsen, Iver; Grønlund, Mette

    2017-01-01

    Re-use of phosphorus (P) from waste streams used for bioenergy conversion is desirable in order to reduce dependence on non-renewable P resources. Two different ash materials from low-temperature biomass gasification of wheat straw and sewage sludge, respectively, were investigated with regard....... In contrast, low- temperature gasification of Fe-rich sewage sludge reduced its P fertiliser value to practically zero. The results suggest that ashes from low-temperature gasification could be developed into alternative P fertilisers, however since their P bioavailability varies strongly depending...

  15. Bread in the Economy of Qualities: The Creative Reconstitution of the Canada-UK Commodity Chain for Wheat

    Science.gov (United States)

    Magnan, Andre

    2011-01-01

    This article traces the creative reconstitution of the Canada-UK wheat-bread commodity chain since the 1990s. In the mid-1990s, the Canadian Wheat Board (CWB) and a British bakery, Warburtons, pioneered an innovative identity-preserved sourcing relationship that ties contracted prairie wheat growers to consumers of premium bread in the United…

  16. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang; Yu, Haiyang [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Jing [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Xu, Hua, E-mail: hxu@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Wu, Qinyan; Yang, Jinghui; Zhuang, Yiqing [Zhenjiang Institute of Agricultural Science of Hilly Regions in Jiangsu, Jurong 212400 (China)

    2015-06-15

    Incorporation of straw together with microbial inoculant (a microorganism agent, accelerating straw decomposition) is being increasingly adopted in rice cultivation, thus its effect on greenhouse gas (GHG) emissions merits serious attention. A 3-year field experiment was conducted from 2010 to 2012 to investigate combined effect of straw and microbial inoculant on methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) in a rice field in Jurong, Jiangsu Province, China. The experiment was designed to have treatment NPK (N, P and K fertilizers only), treatment NPKS (NPK plus wheat straw), treatment NPKSR (NPKS plus Ruilaite microbial inoculant) and treatment NPKSJ (NPKS plus Jinkuizi microbial inoculant). Results show that compared to NPK, NPKS increased seasonal CH{sub 4} emission by 280–1370%, while decreasing N{sub 2}O emission by 7–13%. When compared with NPKS, NPKSR and NPKSJ increased seasonal CH{sub 4} emission by 7–13% and 6–12%, respectively, whereas reduced N{sub 2}O emission by 10–27% and 9–24%, respectively. The higher CH{sub 4} emission could be attributed to the higher soil CH{sub 4} production potential triggered by the combined application of straw and microbial inoculant, and the lower N{sub 2}O emission to the decreased inorganic N content. As a whole, the benefit of lower N{sub 2}O emission was completely offset by increased CH{sub 4} emission, resulting in a higher GWP for NPKSR (5–12%) and NPKSJ (5–11%) relative to NPKS. Due to NPKSR and NPKSJ increased rice grain yield by 3–6% and 2–4% compared to NPKS, the GHGI values for NPKS, NPKSR and NPKSJ were comparable. These findings suggest that incorporating straw together with microbial inoculant would not influence the radiative forcing of rice production in the terms of per unit of rice grain yield relative to the incorporation of straw alone. - Highlights: • This paper presents 3-year measurements of CH

  17. Board news

    NARCIS (Netherlands)

    NN,

    1997-01-01

    Composition of the Board of the Foundation Flora Malesiana. — The Board met during the Flora of Thailand Symposium in Phuket. The members Dr. P. Baas and Dr. K. Iwatsuki, whose terms had expired, were happy to continue on the Board. Dr. S.H. Sohmer withdrew and Dr. A. Hay agreed to take the vacant

  18. Responses of Wheat Yield, Macro- and Micro-Nutrients, and Heavy Metals in Soil and Wheat following the Application of Manure Compost on the North China Plain.

    Directory of Open Access Journals (Sweden)

    Fan Wang

    Full Text Available The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except

  19. Responses of Wheat Yield, Macro- and Micro-Nutrients, and Heavy Metals in Soil and Wheat following the Application of Manure Compost on the North China Plain.

    Science.gov (United States)

    Wang, Fan; Wang, Zhaohui; Kou, Changlin; Ma, Zhenghua; Zhao, Dong

    2016-01-01

    The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn.

  20. Atmospheric contribution to boron enrichment in aboveground wheat tissues.

    Science.gov (United States)

    Wang, Cheng; Ji, Junfeng; Chen, Mindong; Zhong, Cong; Yang, Zhongfang; Browne, Patrick

    2017-05-01

    Boron is an essential trace element for all organisms and has both beneficial and harmful biological functions. A particular amount of boron is discharged into the environment every year because of industrial activities; however, the effects of environmental boron emissions on boron accumulation in cereals has not yet been estimated. The present study characterized the accumulation of boron in wheat under different ecological conditions in the Yangtze River Delta (YRD) area. This study aimed to estimate the effects of atmospheric boron that is associated with industrial activities on boron accumulation in wheat. The results showed that the concentrations of boron in aboveground wheat tissues from the highly industrialized region were significantly higher than those from the agriculture-dominated region, even though there was no significant difference in boron content in soils. Using the model based on the translocation coefficients of boron in the soil-wheat system, we estimated that the contribution of atmosphere to boron accumulation in wheat straw in the highly industrialized region exceeded that in the agriculture-dominated region by 36%. In addition, from the environmental implication of the model, it was estimated that the development of boron-utilizing industries had elevated the concentration of boron in aboveground wheat tissues by 28-53%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Nitrate leaching, yields and carbon sequestration after noninversion tillage, catch crops, and straw retention.

    Science.gov (United States)

    Hansen, E M; Munkholm, L J; Olesen, J E; Melander, B

    2015-05-01

    Crop management factors, such as tillage, rotation, and straw retention, need to be long-term to allow conclusions on effects on crop yields, nitrate leaching, and carbon sequestration. In 2002, two field experiments, each including four cash crop rotations, were established on soils with 9 and 15% clay, under temperate, coastal climate conditions. Direct drilling and harrowing to two different depths were compared to plowing with respect to yield, nitrate N leaching, and carbon sequestration. For comparison of yields across rotations, grain and seed dry matter yields for each crop were converted to grain equivalents (GE). Leaching was compared to yields by calculating yield-scaled leaching (YSL, g N kg GE), and N balances were calculated as the N input in manure minus the N output in products removed from the fields. Direct drilling reduced yields, but no effect on leaching was found. Straw retention did not significantly increase yields, nor did it reduce leaching, while fodder radish ( L.) as a catch crop was capable of reducing nitrate leaching to a low level. Thus, YSL of winter wheat ( L.) was higher than for spring barley ( L.) grown after fodder radish due to the efficient catch crop. Soil organic carbon (SOC) did not increase significantly after 7 yr of straw incorporation or noninversion tillage. There was no correlation between N balances calculated for each growing season and N leaching measured in the following percolation period. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Logistics Mode and Network Planning for Recycle of Crop Straw Resources

    OpenAIRE

    Zhou, Lingyun; Gu, Weidong; Zhang, Qing

    2013-01-01

    To realize the straw biomass industrialized development, it should speed up building crop straw resource recycle logistics network, increasing straw recycle efficiency, and reducing straw utilization cost. On the basis of studying straw recycle process, this paper presents innovative concept and property of straw recycle logistics network, analyses design thinking of straw recycle logistics network, and works out straw recycle logistics mode and network topological structure. Finally, it come...

  3. [Effects of mulching on soil moisture in a dryland winter wheat field, Northwest China].

    Science.gov (United States)

    Fan, Ying-Dan; Chai, Shou-Xi; Cheng, Hong-Bo; Chen, Yu-Zhang; Yang, Chang-Gang; Huang, Cai-Xia; Chang, Lei; Pang, Lei

    2013-11-01

    This paper studied the effects of different mulching modes on the soil moisture in a semi-arid rainfed area of Loess Plateau, Northwest China. Seven treatments were installed, i. e., mulching plastic film in summer (T1), mulching plastic film in autumn (T2), mulching 5 cm long wheat straw in summer (T3), mulching whole wheat straw in summer (T4), mulching plastic film in summer plus wheat straw (T5), mulching used plastic film after harvest (T6), and un-mulching (CK). In T6, the soil moisture in different layers at different crop growth stages was all higher than that in CK. In the other five mulching treatments, the soil moisture in 0-90 cm layer before flowering stage was obviously higher, but that in 0-90 cm layer after flowering stage and in 90-200 cm layer during the whole growth season was lower than that of CK. The soil moisture in 0-200 cm layer in T6 during the whole growth period was significantly higher than that in CK, with a difference of 0.9%, but the soil moisture in 0-200 cm layer in other mulching treatments was lower. As compared with plastic film mulching, straw mulching increased the soil moisture in 0-200 cm layer. The soil moisture under mulching with used plastic film after harvest was higher than that under mulching with new plastic film. As compared to CK, the grain yield of winter wheat with plastic film mulching was increased by 20.3%-29.0%, and that With straw mulching was increased by 5.0%-16.7%. There was a significant positive correlation between the crop productivity and the soil water consumption during the growth period (r = 0.77*).

  4. Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC).

    Science.gov (United States)

    Thygesen, Anders; Marzorati, Massimo; Boon, Nico; Thomsen, Anne Belinda; Verstraete, Willy

    2011-02-01

    In a microbial electrolysis cell (MEC), hydrolysate produced by hydrothermal treatment of wheat straw was used for hydrogen production during selective recovery of phenols. The average H₂ production rate was 0.61 m³ H₂/m³ MEC·day and equivalent to a rate of 0.40 kg COD/m³ MEC·day. The microbial community in the anode biofilm was adapted by establishment of xylose-degrading bacteria of the Bacteriodetes phylum (16%) and Geobacter sulfurreducens (49%). During the process, 61% of the chemical oxygen demand was removed as hydrogen at 64% yield. The total energy production yield was 78% considering the energy content in the consumed compounds and the cell voltage of 0.7 V. The highest hydrogen production was equivalent to 0.8 kg COD/m³ MEC·day and was obtained at pH 7-8 and 25°C. Accumulation of 53% w/v phenolic compounds in the liquor was obtained by stepwise addition of the hydrolysate during simultaneous production of hydrogen from consumption of 95% for the hemicellulose and 100% of the fatty acids. Final calculations showed that hydrolysate produced from 1 kg wheat straw was upgraded by means of the MEC to 22 g hydrogen (266 L), 8 g xylan, and 9 g polyphenolics for potential utilization in biobased materials.

  5. Health of leaves and ears of spring wheat (Triticum aestivum L. cultivated after different forecrops

    Directory of Open Access Journals (Sweden)

    Barbara Majchrzak

    2013-12-01

    Full Text Available The research was conduced in the years 2000-2002. The aim of the research was to determinate the health of leaves and ears of spring wheat cultivated after spring cruciferae plants such as: spring oilseed rape (Brassica napus ssp. oleiferus Metz., chiiiese mustard (Brassica juncea L., white mustard (Sinapis alba L., ole iferous radish (Raphanus sativus var. oleiferus L., false flax (Camelina sativa L., crambe (Crambe abbysinica Hoechst., as well as after oat (Avena sativa L. as con trol. Spring wheat cv. Torka was sown after: pIoughed stubble cultivated on this field, ploughed stubble and straw, ploughed stubble with straw and 30 kg nitrogen per hectare. During all the years of studies on leaves and ears of spring wheat septo ria of leaf blotch and glume blotch (Mycosphaerella graminicola, Phaeosphaeria nodorum were found. Brown rust (Puccinia recondita f. sp. tritici was seen on leaves of wheat only during years 2001-2002. Besides on ears fusarium ear blight (Fusarimn sp. was present in 2002 and sooty mould (Cladosporium sp., Alternaria sp. in 2001. According to health of overground parts of plants the good forecrops to spring wheat were oat, chinese mustard, oleiferous radish. The biggest impact on presence of diseases of leaves and ears had the weather during years of studies. The use of after harvest rests didn't have significant influence on health of leaves and ears of spring wheat.

  6. Experimental and numerical analysis of cylindrical straw drying

    Directory of Open Access Journals (Sweden)

    Goryl Wojciech

    2017-01-01

    Full Text Available The paper presents experimental and numerical results of the heat and mass transfer in a cylindrical bale of straw. The experimental measurements were made in a specialized stand of straw driers. Flue gasses, comes from straw combustion in the biomass boiler, are used as a drying medium. There were made measurements of humidity and temperature inside the cylindrical straw bale during the drying process. The results were used to prepare the drying rate curve. Moreover, data were used to validate the numerical model of straw drying. The numerical model was performed to depict the heat and mass transfer inside the straw bale. Furthermore, the model was used to optimize the drying process. The paper presents result of experimental and numerical drying rates of cylindrical straw bale and heat and mass transfer in its interior. As a result of the work numerical model was obtained. It satisfactorily describes the mechanisms inside the drying straw bale.

  7. Board Charter

    International Development Research Centre (IDRC) Digital Library (Canada)

    TEST

    relationship between the Board and management, the relationship between the Centre and. Parliament through .... members in such a manner that public confidence and trust in the integrity of IDRC and its. Board is maintained. .... electronic, or other communication facilities as permit all persons participating in the meeting.

  8. Straw insulated buildings. Nature building materials; Strohgedaemmte Gebaeude. Naturbaustoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Straw is one of the major agricultural by-products and is mainly used as litter in animal husbandry and to compensate the balance of humus. A relatively recent development is the use of straw bales for the construction of buildings. The brochure under consideration documents the technical development of straw construction in Germany. Possibilities of the use of straw in single family homes up to commercial buildings are described.

  9. Sorption potential of alkaline treated straw and a soil for sulfonylurea herbicide removal from aqueous solutions: An environmental management strategy.

    Science.gov (United States)

    Cara, Irina-Gabriela; Rusu, Bogdan-George; Raus, Lucian; Jitareanu, Gerard

    2017-11-01

    The adsorption potential of alkaline treated straw (wheat and corn) in mixture with soil, has been investigated for the removal of sulfonylurea molecules from an aqueous solutions. The surface characteristics were investigated by scanning electron microscopy and Fourier Transform Infrared - FTIR, while the adsorbent capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry. Surface analysis of alkaline treated straw samples by scanning electron microscopy - SEM showed the increasing of the surface roughness improving their functional surface activity. An increase (337.22 mg g(-1)) of adsorption capacity of sulfonylurea molecules was obtained for all studied straw. The Langmuir isotherm model was the best model for the mathematical description of the adsorption process indicating the forming of a surface sorption monolayer with a finite number of identical sites. The kinetics of sulfonylurea herbicide followed the pseudo-second order mechanism corresponding to strong chemical interactions. The results sustained that the alkaline treated straw have biosorption characteristics, being suitable adsorbent materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation

    DEFF Research Database (Denmark)

    Yin, Chungen; Kær, Søren Knudsen; Rosendahl, Lasse

    2010-01-01

    . The baseline CFD models show a good agreement with the measured maps of main species in the reactor. The straw particles, less affected by the swirling secondary air jet due to the large fuel/air jet momentum and large particle response time, travels in a nearly straight line and penetrate through the oxygen......-lean core zone; whilst the coal particles are significantly affected by secondary air jet and swirled into the oxygen-rich outer radius with increased residence time (in average, 8.1s for coal particles vs. 5.2s for straw particles in the 3m high reactor). Therefore, a remarkable difference in the overall......This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150 kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451μm) and coal particles (mean diameter of 110.4μm...

  11. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  12. An Uncoventional Approach for a Straw Tube-Microstrip Detector

    OpenAIRE

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.

    2004-01-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported on as well.

  13. Nutritional evaluation of treated canola straw for ruminants using in ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... male cattle. Experimental materials were collected from different regions of Parsabad province. (Ardabile, Iran). Experimental group were: untreated canola straw (control) and 4% molasses treated canola straw. After providing uniform mix, chemical composition for untreated straw including dry matter (DM) ...

  14. Design, the "Straw" Missing from the "Bricks" of IS Curricula

    Science.gov (United States)

    Waguespack, Leslie J.

    2011-01-01

    As punishment in the biblical story of Moses the slaves were told they had to make bricks without straw. This was impossible because bricks made without straw had the appearance of strength and function but could not withstand the proof of actual use. The slaves' punishment was therefore not only to make bricks, but also to find the straw on their…

  15. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management

    Science.gov (United States)

    Huang, T.; Gao, B.; Christie, P.; Ju, X.

    2013-12-01

    The effects of nitrogen and straw management on global warming potential (GWP) and greenhouse gas intensity (GHGI) in a winter wheat-summer maize double-cropping system on the North China Plain were investigated. We measured nitrous oxide (N2O) emissions and studied net GWP (NGWP) and GHGI by calculating the net exchange of CO2 equivalent (CO2-eq) from greenhouse gas emissions, agricultural inputs and management practices, as well as changes in soil organic carbon (SOC), based on a long-term field experiment established in 2006. The field experiment includes six treatments with three fertilizer N levels (zero N (control), optimum and conventional N) and straw removal (i.e. N0, Nopt and Ncon) or return (i.e. SN0, SNopt and SNcon). Optimum N management (Nopt, SNopt) saved roughly half of the fertilizer N compared to conventional agricultural practice (Ncon, SNcon), with no significant effect on grain yields. Annual mean N2O emissions reached 3.90 kg N2O-N ha-1 in Ncon and SNcon, and N2O emissions were reduced by 46.9% by optimizing N management of Nopt and SNopt. Straw return increased annual mean N2O emissions by 27.9%. Annual SOC sequestration was 0.40-1.44 Mg C ha-1 yr-1 in plots with N application and/or straw return. Compared to the conventional N treatments the optimum N treatments reduced NGWP by 51%, comprising 25% from decreasing N2O emissions and 75% from reducing N fertilizer application rates. Straw return treatments reduced NGWP by 30% compared to no straw return because the GWP from increments of SOC offset the GWP from higher emissions of N2O, N fertilizer and fuel after straw return. The GHGI trends from the different nitrogen and straw management practices were similar to the NGWP. In conclusion, optimum N and straw return significantly reduced NGWP and GHGI and concomitantly achieved relatively high grain yields in this important winter wheat-summer maize double-cropping system.

  16. Net global warming potential and greenhouse gas intensity in a double cropping cereal rotation as affected by nitrogen and straw management

    Science.gov (United States)

    Huang, T.; Gao, B.; Christie, P.; Ju, X.

    2013-08-01

    The effects of nitrogen and straw management on global warming potential (GWP) and greenhouse gas intensity (GHGI) in a winter wheat-summer maize double-cropping system on the North China Plain were investigated. We measured nitrous oxide (N2O) emissions and studied net GWP (NGWP) and GHGI by calculating the net exchange of CO2 equivalent (CO2-eq) from greenhouse gas emissions, agricultural inputs and management practices, and changes in soil organic carbon (SOC), based on a long-term field experiment established in 2006. The field experiment includes six treatments with three fertilizer N levels (zero-N control, optimum and conventional N) and straw removal (i.e. N0, Nopt and Ncon) or return (i.e. N0, Nopt and SNcon). Optimum N management (Nopt, SNopt) saved roughly half of the fertilizer N compared to conventional agricultural practice (Ncon, SNcon) with no significant effect on grain yields. Annual mean N2O emissions reached 3.90 kg N2O-N ha-1 in Ncon and SNcon, and N2O emissions were reduced by 46.9% by optimizing N management of Nopt and SNopt. Straw return increased annual mean N2O emissions by 27.9%. Annual SOC sequestration was 0.40-1.44 Mg C ha-1 yr-1 in plots with N application and/or straw return. Compared to the conventional N treatments the optimum N treatments reduced NGWP by 51%, comprising 25% from decreasing N2O emissions and 75% from reducing N fertilizer application rates. Straw return treatments reduced NGWP by 30% compared to no straw return because the GWP from increments of SOC offset the GWP from higher emissions of N2O, N fertilizer and fuel after straw return. The GHGI trends from the different nitrogen and straw management practices were similar to the NGWP. In conclusion, optimum N and straw return significantly reduced NGWP and GHGI and concomitantly achieved relatively high grain yields in this important winter wheat-summer maize double-cropping system.

  17. Proteomics of wheat flour

    Science.gov (United States)

    Wheat is a major food crop grown on more than 215 million hectares of land throughout the world. Wheat flour provides an important source of protein for human nutrition and is used as a principal ingredient in a wide range of food products, largely because wheat flour, when mixed with water, has un...

  18. Wheat and gluten intolerance

    NARCIS (Netherlands)

    Busink-van den Broeck, Hetty; Gilissen, L.J.W.J.; Brouns, F.

    2016-01-01

    With this White Paper, the current state of scientific knowledge on human disorders related to gluten and wheat is presented, with reference to other grains such as spelt, barley, rye, and oats. Backgrounds are described of coeliac disease (gluten intolerance), wheat allergies and any kind of wheat

  19. Économie d'un procédé d'hydrolyse enzymatique et fermentation de la paille de blé pour la production d'alcool carburant Economics of a Process for Producing Alcohol Fuels by Enzymatic Hydrolysis and Fermentation of Wheat Straw

    Directory of Open Access Journals (Sweden)

    Arlie J. P.

    2006-11-01

    Full Text Available Après définition des grandes lignes d'un procédé de base d'hydrolyse-fermentation de la paille de blé, l'analyse de sensibilité montre que le rendement de l'hydrolyse a une grande importance sur les bilans énergétique et économique. Des rendements de l'ordre de 85 % permettent d'obtenir des valeurs d'investissement par tonne de pétrole économisée tout à fait comparables à celles obtenues par d'autres techniques de valorisation de la biomasse en alcool, telle la synthèse du méthanol obtenu après gazéification du bois à l'oxygène. The basic features of a process for production from cereal straw of an acetone-butanol mixture for use as a gasoline substitute are described. They include pretreatment and enzymatic hydrolysis of the substrate followed by fermentation of the sugars produced. A cost evaluation based on the performances of a reference process is presented. Then, an analysis of the sensitivity of the cost price of the process to the variation of the important parameters such as production capacity, enzyme productivity, hydrolysis yield is carried out. The energy balance of the process is presented.

  20. Effect of increasing amounts of straw on pigs' explorative behaviour

    DEFF Research Database (Denmark)

    Jensen, Margit Bak; Herskin, Mette S.; Forkman, Björn

    2015-01-01

    on pigs’manipulation of the straw, and hypothesised that after a certain point increasing straw amount will nolonger increase oral manipulation further. From 30 to 80 kg live weight, pigs were housed in 90 groups of18 pigs in pens (5.48 m × 2.48 m) with partly slatted concrete floor and daily provided...... live weights, pigsspent most time manipulating straw during the hour after allocation of straw. Similar effects of increasingamounts of straw were found for the percentage of pigs engaged in simultaneous manipulation of thestraw. Post hoc analyses were applied to estimate the point, after which...

  1. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking...

  2. Fitness of three Fusarium pathogens of wheat.

    Science.gov (United States)

    Tunali, Berna; Obanor, Friday; Erginbaş, Gul; Westecott, Rhyannyn A; Nicol, Julie; Chakraborty, Sukumar

    2012-09-01

    Crown rot and head blight of wheat are caused by the same Fusarium species. To better understand their biology, this study has compared 30 isolates of the three dominant species using 13 pathogenic and saprophytic fitness measures including aggressiveness for the two diseases, saprophytic growth and fecundity and deoxynivalenol (DON) production from saprophytic colonization of grain and straw. Pathogenic fitness was generally linked to DON production in infected tissue. The superior crown rot fitness of Fusarium pseudograminearum was linked to high DON production in the stem base tissue, while Fusarium culmorum and Fusarium graminearum had superior head blight fitness with high DON production in grains. Within each species, some isolates had similar aggressiveness for both diseases but differed in DON production in infected tissue to indicate that more than one mechanism controlled aggressiveness. All three species produced more DON when infecting living host tissue compared with saprophytic colonization of grain or straw, but there were significant links between these saprophytic fitness components and aggressiveness. As necrotrophic pathogens spend a part of their life cycle on dead organic matter, saprophytic fitness is an important component of their overall fitness. Any management strategy must target weaknesses in both pathogenic fitness and saprophytic fitness. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Straw - H{sub 2}O gasification kinetics. Determination and discussion

    Energy Technology Data Exchange (ETDEWEB)

    Holst Soerensen, L.; Tarp Poulsen, K. [ReaTech, Roskilde (Denmark); Henriksen, U. [The Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Risnes, H. [NTNU, Dept. of Thermal Energy and Hydropower, Trondheim (Norway); Hansen, L.K. [FLS Miljoe A/S, Valby (Denmark); Olsen, A.; Rathmann, O. [Risoe National Lab., Roskilde (Denmark)

    1999-11-01

    Preliminary steam reactivity data is presented from an experimental study of reactivity for wheat and barley char. The parameters currently investigated ranges from 0.15-1.5 bar H{sub 2}O and 0-1.0 bar H{sub 2}. Kinetics of the Langmuir-Hinshelwood type is used to discuss the reactivity variations with steam partial pressure and also the effects of adding hydrogen. The reactivity of char from wheat and washed barley was low and significantly decreasing with conversion. A significant increasing reactivity with conversion was observed for the char derived from a barley sample and a barley sample six times enriched by the water-soluble parts from the straw sample. The six times enriched barley was roughly six times as reactive as the barley. For wheat significant inhibiting effect from hydrogen was found. Assuming Langmuir Hinshelwood kinetics with reverse oxygen exchange and structural profile invariance, kinetics for the inhibiting reaction by H{sub 2} were estimated. 0.5 and 1 bar H{sub 2} decreased the reactivity roughly by one order of magnitude in 1.5 bar H{sub 2}O. (au) EFP-96. 17 refs.

  4. Testing the effect of different enzyme blends on increasing the biogas yield of straw and digested manure fibers

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Jurado, Esperanza; Malmgren-Hansen, Bjørn

    In this study, enzymatic treatment was tested to increase the biogas yield of wheat straw (WS) and digested manure fibers (DMF) in the Re-Injection Loop Concept, which combines anaerobic digestion with solid separation to enhance the biogas yield per ton of manure by: 1. Digestion of the easily...... degradable fraction of manure in the biogas process. 2. Separation of the residual recalcitrant digested fiber fraction project. 3. Ultrasound and/or enzymatic treatment of the digested fiber fraction. 4. Recirculation of the treated fiber fraction into the reactor....

  5. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation.

    Science.gov (United States)

    Yin, Chungen; Kaer, Søren K; Rosendahl, Lasse; Hvid, Søren L

    2010-06-01

    This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451microm) and coal particles (mean diameter of 110.4microm) are independently fed into the burner through two concentric injection tubes, i.e., the centre and annular tubes, respectively. Multiple simulations are performed, using three meshes, two global reaction mechanisms for homogeneous combustion, two turbulent combustion models, and two models for fuel particle conversion. It is found that for pulverized biomass particles of a few hundred microns in diameter the intra-particle heat and mass transfer is a secondary issue at most in their conversion, and the global four-step mechanism of Jones and Lindstedt may be better used in modelling volatiles combustion. The baseline CFD models show a good agreement with the measured maps of main species in the reactor. The straw particles, less affected by the swirling secondary air jet due to the large fuel/air jet momentum and large particle response time, travels in a nearly straight line and penetrate through the oxygen-lean core zone; whilst the coal particles are significantly affected by secondary air jet and swirled into the oxygen-rich outer radius with increased residence time (in average, 8.1s for coal particles vs. 5.2s for straw particles in the 3m high reactor). Therefore, a remarkable difference in the overall burnout of the two fuels is predicted: about 93% for coal char vs. 73% for straw char. As the conclusion, a reliable modelling methodology for pulverized biomass/coal co-firing and some useful co-firing design considerations are suggested. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  7. Enhancing board effectiveness.

    Science.gov (United States)

    Curran, Connie R; Totten, Mary K

    2010-01-01

    Like any other job, board work is associated with specific competencies. Competencies are the combination of knowledge, skills, personal characteristics, and behaviors needed to perform a job or task effectively. Boards are only as strong as their weakest member. Board education should focus on improving the knowledge and skills of the board and individual members and on overall board performance. Assessment of individual board member performance is designed to evaluate the trustee's knowledge of board roles and responsibilities and the expectations of board members. Board effectiveness is built through competency-based board member recruitment and selection; board member education and development; and evaluation of board, board member, and meeting performance.

  8. Soil physical characteristics and yield of wheat and maize as affected by mulching materials and sowing methods

    Directory of Open Access Journals (Sweden)

    Syed Shahid Hussain Shah, Anwar-Ul-Hassan, Abdul Ghafoor

    2013-05-01

    Full Text Available Soil physical degradation due to agriculture activity is a pressing issue in Pakistan causing reduction in crop yields. The study was conducted to assess the effects of two sowing methods and two mulching materials on soil physical characteristics and yields of wheat and maize during 2008-10 at Faisalabad, Pakistan. Results showed that Bed sowing method along with wheat straw mulch increased Leaf Area Index of wheat by 5 to 16%, and of maize by 4 to 14% compared with other treatments. This treatment also produced maximum 1000-grain weight (50.5 g of wheat and maize (439.2g as compared to flat sowing method where no mulch was applied. The highest grain yields of wheat (5017 kg ha-1 and maize (10.6 Mg ha-1 were recorded in Bed sowing + wheat straw mulch plots. Bed sowing alone decreased bulk density by 4% at 0-15 cm soil depth and 13.7% less soil penetration resistance (788.2 kPa was noted. About 23.0% higher soil organic carbon contents (4.2 g kg-1 at 0-15 cm soil depth, 39.1% higher field saturated hydraulic conductivity (24.3 mm hr-1 and 14.2% higher infiltration rate (58.5 mm hr-1 were recorded compared to flood irrigated flat sowing. Furrow irrigated raised bed technique was found to be environment friendly in combination with farm manure compared to wheat straw having enhanced soil organic carbon contents.

  9. Water-use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau

    Science.gov (United States)

    Wang, Li-Fang; Shangguan, Zhou-Ping

    2015-07-01

    Mulching and tillage are widely considered to be major practices for improving soil and water conservation where water is scarce. This paper studied the effects of FM (flat mulching), RFM (ridge-furrow mulching), SM (straw mulching), MTMC (mulching with two materials combined), MOM (mulching with other materials), NT (no-tillage) ST (subsoiling tillage) and RT (rotational tillage) on wheat yield based on a synthesis of 85 recent publications (including 2795 observations at 24 sites) in the Loess Plateau, China. This synthesis suggests that wheat yield was in the range of 259-7898 kg ha-1 for FM and RFM. The sequence of water use efficiency (WUE) effect sizes was similar to that of wheat yield for the practices. Wheat yields were more sensitive to soil water at planting covered by plastic film, wheat straw, liquid film, water-permeable plastic film and sand compared to NT, ST and RT. RFM and RT increased the yields of wheat by 18 and 15%, respectively, and corresponding for WUE by 20.11 and 12.50%. This synthesis demonstrates that RFM was better for avoiding the risk of reduced production due to lack of precipitation; however, under conditions of better soil moisture, RT and MTMC were also economic.

  10. Glycine betaine and salicylic acid induced modification in productivity of two different cultivars of wheat grown under water stress

    Directory of Open Access Journals (Sweden)

    Heshmat S. Aldesuquy

    2012-05-01

    Full Text Available A pot experiment was conducted to evaluate the beneficial effect of foliar application of glycine betaine (10mM, grain presoaking in salicylic acid (0.05 M and their interaction on drought tolerance of two wheat (Triticum aestivum L. cultivars (sensitive, Sakha 94 and resistant, Sakha 93. Water stress decreased wheat yield components (spike length, number of spikelets / main spike, 100 kernel weight, grain number / spike, grain yield / spike, grain yield / plant, straw yield / plant, crop yield / plant, harvest, mobilization and crop indices and the biochemical aspects of grains(grain biomass, carbohydrates, total protein, total phosphorus, ions content and amino acids in both wheat cultivars. The applied chemicals appeared to alleviate the negative effects of water stress on wheat productivity (particularly the sensitive one and the biochemical aspects of yielded grains. The effect was more pronounced with GB+SA treatment. This improvement would result from the repairing effect of the provided chemicals on growth and metabolism of wheat plants grown under water deficit condition. In response to the applied water stress and the used chemicals, the grain yield of the sensitive and resistant wheat cultivars was strongly correlated with all the estimated yield components (shoot length, spike length, plant height, main spike weight, number of spikelets per main spike, 100 kernel weight, grain number per spike, grain weight per plant, straw weight per plant, crop yield per plant, harvest, mobilization and crop indices.

  11. Water-use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau.

    Science.gov (United States)

    Wang, Li-fang; Shangguan, Zhou-ping

    2015-07-20

    Mulching and tillage are widely considered to be major practices for improving soil and water conservation where water is scarce. This paper studied the effects of FM (flat mulching), RFM (ridge-furrow mulching), SM (straw mulching), MTMC (mulching with two materials combined), MOM (mulching with other materials), NT (no-tillage) ST (subsoiling tillage) and RT (rotational tillage) on wheat yield based on a synthesis of 85 recent publications (including 2795 observations at 24 sites) in the Loess Plateau, China. This synthesis suggests that wheat yield was in the range of 259-7898 kg ha(-1) for FM and RFM. The sequence of water use efficiency (WUE) effect sizes was similar to that of wheat yield for the practices. Wheat yields were more sensitive to soil water at planting covered by plastic film, wheat straw, liquid film, water-permeable plastic film and sand compared to NT, ST and RT. RFM and RT increased the yields of wheat by 18 and 15%, respectively, and corresponding for WUE by 20.11 and 12.50%. This synthesis demonstrates that RFM was better for avoiding the risk of reduced production due to lack of precipitation; however, under conditions of better soil moisture, RT and MTMC were also economic.

  12. Water–use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau

    Science.gov (United States)

    Wang, Li-fang; Shangguan, Zhou-ping

    2015-01-01

    Mulching and tillage are widely considered to be major practices for improving soil and water conservation where water is scarce. This paper studied the effects of FM (flat mulching), RFM (ridge-furrow mulching), SM (straw mulching), MTMC (mulching with two materials combined), MOM (mulching with other materials), NT (no-tillage) ST (subsoiling tillage) and RT (rotational tillage) on wheat yield based on a synthesis of 85 recent publications (including 2795 observations at 24 sites) in the Loess Plateau, China. This synthesis suggests that wheat yield was in the range of 259–7898 kg ha−1 for FM and RFM. The sequence of water use efficiency (WUE) effect sizes was similar to that of wheat yield for the practices. Wheat yields were more sensitive to soil water at planting covered by plastic film, wheat straw, liquid film, water-permeable plastic film and sand compared to NT, ST and RT. RFM and RT increased the yields of wheat by 18 and 15%, respectively, and corresponding for WUE by 20.11 and 12.50%. This synthesis demonstrates that RFM was better for avoiding the risk of reduced production due to lack of precipitation; however, under conditions of better soil moisture, RT and MTMC were also economic. PMID:26192158

  13. Board meetings

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ruxandra Staicu

    Purpose: Board meetings. Date(s):. 2015-11-16 to 2015-11-19. Destination(s):. Ottawa. Airfare: $5,596.11. Other. Transportation: $67.54. Accommodation: $340.45. Meals and. Incidentals: $175.39. Other: $0.00. Total: $6,179.49. Comments: 2015-2016 Travel and Hospitality Expense. Reports for Shainoor Khoja, Governor.

  14. Board meetings

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ruxandra Staicu

    Purpose: Board meetings. Date(s):. 2015-07-13 to 2015-07-14. Destination(s):. Ottawa. Airfare: $5,687.53. Other Transportation: $60.14. Accommodation: $344.56. Meals and. Incidentals: $150.00. Other: Total: $6,242.23. Comments: 2015-2016 Travel and Hospitality Expense. Reports for Shainoor Khoja, Governor.

  15. Board news

    NARCIS (Netherlands)

    NN,

    1994-01-01

    Thanks to the hospitality and arrangements of Professor IWATSUKI, the Board could meet during the XV International Botanical Congress. At the meeting Prof. LUCAS AND DR. Roos were re-appointed, whereas Dr. BURLEY was appointed to succeed Dr. STEVENS as representative of the Harvard University. The

  16. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China.

    Science.gov (United States)

    Yang, Yan-min; Liu, Xiao-jing; Li, Wei-qiang; Li, Cun-zhen

    2006-11-01

    Freshwater shortage is the main problem in Heilonggang lower-lying plain, while a considerable amount of underground saline water is available. We wanted to find an effective way to use the brackish water in winter wheat production. Surface mulch has significant effect in reducing evaporation and decreasing soil salinity level. This research was aimed at comparing the effect of different mulch materials on winter wheat production. The experiment was conducted during 2002~2003 and 2003~2004. Four treatments were setup: (1) no mulch, (2) mulch with plastic film, (3) mulch with corn straw, (4) mulch with concrete slab between the rows. The result indicated that concrete mulch and straw mulch was effective in conserving soil water compared to plastic film mulch which increased soil temperature. Concrete mulch decreases surface soil salinity better in comparison to other mulches used. Straw mulch conserved more soil water but decreased wheat grain yield probably due to low temperature. Concrete mulch had similar effect with plastic film mulch on promoting winter wheat development and growth.

  17. WheatGenome.info: A Resource for Wheat Genomics Resource.

    Science.gov (United States)

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .

  18. Immunotoxicological evaluation of wheat genetically modified with TaDREB4 gene on BALB/c mice.

    Science.gov (United States)

    Liang, Chun Lai; Zhang, Xiao Peng; Song, Yan; Jia, Xu Dong

    2013-08-01

    To evaluate the immunotoxicological effects of genetically modified wheat with TaDREB4 gene in female BALB/c mice. Female mice weighing 18-22 g were divided into five groups (10 mice/group), which were set as negative control group, common wheat group, parental wheat group, genetically modified wheat group and cyclophosphamide positive control group, respectively. Mice in negative control group and positive control group were fed with AIN93G diet, mice in common wheat group, non-genetically modified parental wheat group and genetically modified wheat group were fed with feedstuffs added corresponding wheat (the proportion is 76%) for 30 days, then body weight, absolute and relative weight of spleen and thymus, white blood cell count, histological examination of immune organ, peripheral blood lymphocytes phenotyping, serum cytokine, serum immunoglobulin, antibody plaque-forming cell, serum half hemolysis value, mitogen-induced splenocyte proliferation, delayed-type hypersensitivity reaction and phagocytic activities of phagocytes were detected. No immunotoxicological effects related to the consumption of the genetically modified wheat were observed in BALB/c mice when compared with parental wheat group, common wheat group and negative control group. From the immunotoxicological point of view, results from this study demonstrate that genetically modified wheat with TaDREB4 gene is as safe as the parental wheat. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  19. Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC)

    DEFF Research Database (Denmark)

    Thygesen, Anders; Marzorati, Massimo; Boon, Nico

    2011-01-01

    In a microbial electrolysis cell (MEC), hydrolysate produced by hydrothermal treatment of wheat straw was used for hydrogen production during selective recovery of phenols. The average H2 production rate was 0.61 m3 H2/m3 MEC·day and equivalent to a rate of 0.40 kg COD/m3 MEC·day. The microbial...... the energy content in the consumed compounds and the cell voltage of 0.7 V. The highest hydrogen production was equivalent to 0.8 kg COD/m3 MEC·day and was obtained at pH 7–8 and 25°C. Accumulation of 53% w/v phenolic compounds in the liquor was obtained by stepwise addition of the hydrolysate during...

  20. Investigation of Mechanical Properties of Rice Straw Fibre Polypropylene Composites

    OpenAIRE

    K Sudhakar,; Ch Srinivas

    2014-01-01

    The main objective of present work is to investigate the mechanical properties of rice straw fibre reinforced polypropylene composites at different weight fractions (0%, 5%, 10%, 15%, 20% and 25%) of rice straw fibre. Rice straw fibre reinforced polypropylene composites were manufactured according to ASTM standards using injection moulding technique. The developed composites were then tested for their tensile, bending and impact properties. The standard test methods ASTM-D638M...

  1. Improved techniques to enhance the yield of paddy straw mushroom ...

    African Journals Online (AJOL)

    Improved techniques to enhance the yield of paddy straw mushroom (Volvariella volvacea) for commercial cultivation. Gurudevan Thiribhuvanamala, Subbiah Krishnamoorthy, Karupannan Manoranjitham, Velappa Praksasm, Sakthivel Krishnan ...

  2. Simulation and cost analysis of systems for handling of fuel straw - applied to a heating plant in Skaane; Simulering och kostnadsanalys av hanteringssystem foer braenslehalm - tillaempning foer en vaermeanlaeggning i Skaane

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Daniel

    2010-05-15

    The following conclusions were drawn from this study: - The total costs for delivery of fuel straw to heating plants ranged from about 130 SEK/MWh to 180 SEK/MWh (1 SEK approx 0.14 USD), depending on the payment to farmers for the straw, the storage method used, the profit margins of the contractors, etc. - The area investigated, which covered parts of the municipalities of Svaloev, Esloev and Kaevlinge, has very good conditions for harvest of straw compared with other parts of Sweden. The yield of winter wheat (and straw) is high, the road network is well developed, the fields are concentrated and large, the straw crops ripen early, and security of supply between years is high. - For a harvest and handling system with an average capacity of about 8 000 tonnes of straw per year, the simulations showed that a machine system with six balers, two loaders in the field, four transporters (tractor), one loader at the stores and lorry transport to the heating plant was cost-effective with regard to system performance (for example, expressed as the average amount of straw baled per year with a moisture content below 18%, the average quantity of straw per year put into storage prior to 1 October, the average lying time for the straw between threshing and baling, etc.). - Harvesting straw from various crops (in this case winter rape, rye and winter wheat) instead of only winter wheat had no major impact on costs, but increased the chance to harvest 'greyer' straw with lower contents of alkali metals, chlorine, etc. Only including fields of at least 5 ha had a minor impact on costs. Noticeable cost savings occurred when the field size limit was set to 10 ha or more. Increasing the moisture content limit at baling to 20% made it possible to harvest more straw, especially in years with difficult weather conditions. - The storage method used had a decisive impact on costs. Outdoor storage decreased the total costs to 133 SEK/MWh (7% storage losses), compared with 154

  3. Buddy Board

    DEFF Research Database (Denmark)

    Enggaard, Helle; Moselund, Lene

    2015-01-01

    udviklingspotentiale. Rammer og baggrund for projektet er beskrevet i bilag 1. Dette resumé er skrevet på baggrund af kvalitative data, som er indsamlet i forbindelse med afprøvning af BuddyBoard på Havly (Sæby Ældrecenter) i perioden november 2014 – marts 2015. Hovedpunkterne i resuméet er en beskrivelse teknologiens...

  4. Effects of different phosphorus and potassium fertilization on contents and uptake of macronutrients (N, P, K, Ca, Mg in winter wheat I. Content of macronutrients

    Directory of Open Access Journals (Sweden)

    Renata GAJ

    2014-12-01

    Full Text Available The aim of the study carried out under field conditions was to evaluate the effect of differentiated phosphorus and potassium fertilization level on nutritional status of winter wheat at stem elongation (BBCH 31 and flowering (BBCH 65 development stages as well as on macronutrient contents in yield obtained (grain and straw. The research was conducted in 2007-2010, within an individual agricultural holding, on lessive soil with medium and high richness in potassium and phosphorus, respectively. The contents of nitrogen, phosphorus, potassium, magnesium and calcium in wheat changed depending on the organ assessed and plant development stage. At BBCH 31, regardless fertilization level, the plants observed were malnourished with potassium, phosphorus and calcium and at the control site also with nitrogen. Furthermore, there were found significant correlation relationships among the contents of nutrient pairs: nitrogen-potassium, nitrogen-phosphorus, nitrogen-magnesium and nitrogen-calcium. The content of nitrogen in wheat grain and straw differed mainly due to weather conditions during the study. Irrespective of the years of observation, differentiated rates of P and K applied had no significant effect on N accumulation in wheat at full ripening stage. In contrast to nitrogen, the level of P and K fertilization significantly differentiated the contents of phosphorus, potassium and magnesium in wheat grain and straw. In case of calcium, the effect of fertilization factor was indicated only as regards the content of this nutrient in grain.

  5. A Field Experiment on Enhancement of Crop Yield by Rice Straw and Corn Stalk-Derived Biochar in Northern China

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-10-01

    Full Text Available Biochar, a green way to deal with burning and burying biomass, has attracted more attention in recent years. To fill the gap of the effects of different biochar on crop yield in Northern China, the first field experiment was conducted in farmland located in Hebei Province. Biochars derived from two kinds of feedstocks (rice straw and corn stalk were added into an Inceptisols area with different dosages (1 ton/ha, 2 ton/ha or 4 ton/ha in April 2014. The crop yields were collected for corn, peanut, and sweet potato during one crop season from spring to autumn 2014, and the wheat from winter 2014 to summer 2015, respectively. The results showed biochar amendment could enhance yields, and biochar from rice straw showed a more positive effect on the yield of corn, peanut, and winter wheat than corn stalk biochar. The dosage of biochar of 2 ton/ha or 1 ton/ha could enhance the yield by 5%–15% and biochar of 4 ton/ha could increase the yield by about 20%. The properties of N/P/K, CEC, and pH of soils amended with biochar were not changed, while biochar effects could be related to improvement of soil water content.

  6. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette Sophie; Imparato, Valentina

    2017-01-01

    Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study...... investigated the impact of traditional straw incorporation vs. straw removal for thermal gasification bioenergy production and the application of straw gasification biochar (GB) on soil quality and crop production. Two rates of GB were applied over three successive years in which the field was cropped...

  7. Stem base diseases of winter wheat grown after forecrops of the family Brassicaceae

    Directory of Open Access Journals (Sweden)

    Barbara Majchrzak

    2012-12-01

    Full Text Available A study into the sanitary state of roots and culm base of winter wheat was carried out in 1999-2002 in the Production and Experimental Station in Bałcyny near Ostróda. Experimental wheat was cultivated after spring cross plants such as spring oilseed rape (Brassica napus ssp. oleiferus Metz., white mustard (Sinapis alba L, chinese mustard (Brassica juncea L., oleiferous radish (Raphanus sativus var. oleiferus L., false flax (Camelina sativa L., crambe (Crambe abbysinica Hoechst. and after oats (Avena sativa L. as a control. The other experimental factor was the method of after-harvest residue management, i.e. ploughing in the stubble, ploughing in the stubble and straw, ploughing in the stubble and straw with nitrogen added. The occurrence of root rot and stem base diseases was affected by weather conditions and forecrop species. Winter wheat roots were attacked to the lowest degree when spring rape and radish were used as forecrops, and to the highest degree - when grown after oat. The culm base was most intensely infected with fusarium foot rot (Fusarium spp.. The remaining root-rot diseases occurred every year but with different intensity. The method of utilization of after-harvest residues did not have a clear effect on the intensity of infection of the roots and culm base of winter wheat.

  8. Cryopreservation of boar semen in mini- and maxi-straws.

    Science.gov (United States)

    Bwanga, C O; de Braganca, M M; Einarsson, S; Rodriguez-Martinez, H

    1990-10-01

    Split ejaculates from four boars were frozen with a programmable freezing machine, in mini- (0.25 ml) and maxi- (5 ml) plastic straws with an extender at either acidic (6.3) or alkaline (7.4) pH. Glycerol (3%) was used as cryoprotectant. The freezing of the semen was monitored by way of thermocouples placed in the straws. Post-thaw motility and acrosome integrity were evaluated; the latter using phase contrast microscopy, eosin-nigrosin stain and electron microscopy. Post-thaw sperm motility was significantly higher when semen was frozen in mini-straws than in maxi-straws. For the mini-straws, the motility was better when semen was exposed to an acidic environment during freezing, but this beneficial effect of the low extracellular pH was not evident when maxi-straws were thawed. The motility of the spermatozoa diminished significantly during the thermoresistance test (0 h and 2 h time) at 37 degrees C in a similar way for both straws and extracellular pH's. The freezing procedure, no matter the extracellular pH, did not cause major acrosomal damages, but significantly more normal apical ridges were present in the mini-straws than in the maxi-straws. This in vitro evaluation indicated that the freezing method employed was better for mini- than for maxi-straws since the freezing of the 5 ml volumes was not homogeneous, due to the large section area between the surface and the core of the straw.

  9. Biological control of broad-leaved dock infestation in wheat using plant antagonistic bacteria under field conditions.

    Science.gov (United States)

    Abbas, Tasawar; Zahir, Zahir Ahmad; Naveed, Muhammad; Aslam, Zubair

    2017-06-01

    Conventional weed management systems have produced many harmful effects on weed ecology, human health and environment. Biological control of invasive weeds may be helpful to minimize these harmful effects and economic losses incurred to crops by weeds. In our earlier studies, plant antagonistic bacteria were obtained after screening a large number of rhizobacteria for production of phytotoxic substances and effects on wheat and its associated weeds under laboratory conditions. In this study, five efficient strains inhibitory to broad-leaved dock and non-inhibitory to wheat were selected and applied to broad-leaved dock co-seeded with wheat both in pot trial and chronically infested field trial. Effects of plant antagonistic bacteria on the weed and infested wheat were studied at tillering, booting and harvesting stage of wheat. The applied strains significantly inhibited the germination and growth of the weed to variable extent. Similarly, variable recovery in losses of grain and straw yield of infested wheat from 11.6 to 68 and 13 to 72.6% was obtained in pot trial while from 17.3 to 62.9 and 22.4 to 71.3% was obtained in field trial, respectively. Effects of plant antagonistic bacteria were also evident from the improvement in physiology and nutrient contents of infested wheat. This study suggests the use of these plant antagonistic bacteria to biologically control infestation of broad-leaved dock in wheat under field conditions.

  10. Response of Soil CO2 Emission and Summer Maize Yield to Plant Density and Straw Mulching in the North China Plain

    Directory of Open Access Journals (Sweden)

    Quanru Liu

    2014-01-01

    Full Text Available Demand for food security and the current global warming situation make high and strict demands on the North China Plain for both food production and the inhibition of agricultural carbon emissions. To explore the most effective way to decrease soil CO2 emissions and maintain high grain yield, studies were conducted during the 2012 and 2013 summer maize growing seasons to assess the effects of wheat straw mulching on the soil CO2 emissions and grain yield of summer maize by adding 0 and 0.6 kg m−2 to fields with plant densities of 100 000, 75 000, and 55 000 plants ha−1. The study indicated that straw mulching had some positive effects on summer maize grain yield by improving the 1000-kernel weight. Meanwhile, straw mulching effectively controlled the soil respiration rate and cumulative CO2 emission flux, particularly in fields planted at a density of 75 000 plants ha−1, which achieved maximum grain yield and minimum carbon emission per unit yield. In addition, soil microbial biomass and microbial activity were significantly higher in mulching treatments than in nonmulching treatments. Consequently, summer maize with straw mulching at 75 000 plants ha−1 is an environmentally friendly option in the North China Plain.

  11. Analysis and simulation of straw fuel logistics

    OpenAIRE

    Nilsson, Daniel

    1998-01-01

    Straw is a renewable biomass that has a considerable potential to be used as fuel in rural districts. This bulky fuel is, however, produced over large areas and must be collected during a limited amount of days and taken to the storages before being ultimately transported to heating plants. Thus, a well thought-out and cost-effective harvesting and handling system is necessary to provide a satisfactory fuel at competitive costs. Moreover, high-quality non-renewable fuels are used in these ope...

  12. Feasiblity of collecting naturally leached rice straw for thermal conversion

    NARCIS (Netherlands)

    Bakker, R.R.; Jenkins, B.M.

    2003-01-01

    The practical application of field or natural leaching to rice straw was evaluated with the goal of improving biomass fuel value. Observations on three rice farms in the Sacramento Valley, California indicated that potassium, chlorine and total ash are leached from rice straw by rainfall regardless

  13. Straw Gasification in a Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Hindsgaul, Claus; Henriksen, Ulrik Birk

    2002-01-01

    Additive-prepared straw pellets were gasified in the 100 kW two-stage gasifier at The Department of Mechanical Engineering of the Technical University of Denmark (DTU). The fixed bed temperature range was 800-1000°C. In order to avoid bed sintering, as observed earlier with straw gasification...

  14. Coffee Stirrers and Drinking Straws as Disposable Spatulas

    Science.gov (United States)

    Turano, Morgan A.; Lobuono, Cinzia; Kirschenbaum, Louis J.

    2015-01-01

    Although metal spatulas are damaged through everyday use and become discolored and corroded by chemical exposure, plastic drinking straws are inexpensive, sterile, and disposable, reducing the risk of cross-contamination during laboratory procedures. Drinking straws are also useful because they come in a variety of sizes; narrow sample containers…

  15. 521 Image Making in Two Dimensional Art; Experiences with Straw ...

    African Journals Online (AJOL)

    User

    Online). Image Making in Two Dimensional Art; Experiences with. Straw and Fabric (Straw Appliqué Technique) (Pp. 521-528). Enenajor Marshall Eniwo - Department of Fine Arts and Design,. University of Port Harcourt, P.O.Box 106 Uniport, ...

  16. Sugarcane straw removal effects on plant growth and stalk yield

    Science.gov (United States)

    There is growing interest in sugarcane straw removal from the field to use as raw material for bioenergy production. In contrast, sugarcane straw removal may have negative implications for many soil ecosystem services and subsequent plant growth. A two-year experiment was conducted at Bom Retiro and...

  17. Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam-Anh D.; Kim, Kyoung-Rok; Sim, Sang Jun [Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Mi Sun [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of)

    2010-12-15

    Rice straw, a low-cost lignocellulosic biomass was used as feedstock for thermophilic hydrogen fermentation by Thermotoga neapolitana. Hydrogen production, the growth and cellulose digestibility of the hyperthermophile in batch mode from untreated as well as chemically pretreated (ammonia and dilute sulfuric acid) Korean rice straws were investigated. Pretreatment method using combination of 10% ammonia and 1.0% dilute sulfuric acid was developed to increase the digestibility of rice straw for the hyperthermophilic H{sub 2} fermentation and to decrease the time consumption. In a typical fermentation using raw rice straw, 29% of the substrate was digested and 2.3 mmol H{sub 2}/g straw of hydrogen yield was consistently obtained. Compared with the pretreatments using only ammonia or dilute sulfuric acid, the combined pretreatment method using both chemical agents significantly increases the digestibility of rice straw with 85.4% of substrate consumption. H{sub 2} production on rice straw from this combined pretreatment showed the highest yield (2.7 mmol H{sub 2}/g straw) and the highest sugar conversions (72.9% of glucose and 95.7% of xylose). (author)

  18. Decomposition characteristics of maize ( Zea mays . L.) straw with ...

    African Journals Online (AJOL)

    Decomposition of maize straw incorporated into soil with various nitrogen amended carbon to nitrogen (C/N) ratios under a range of moisture was studied through a laboratory incubation trial. The experiment was set up to simulate the most suitable C/N ratio for straw carbon (C) decomposition and sequestering in the soil.

  19. ADVANTAGES AND DISADVANTAGES OF STRAW-BALE BUILDING

    Directory of Open Access Journals (Sweden)

    Larisa Brojan

    2014-06-01

    Full Text Available This paper is focused on general properties of straw bale as a building material which has been proven by buildings throughout the world to be an appropriate material choice. Still, there are many hesitations about using this alternative building material. The building techniques are relatively easy to learn and the performance of straw bale structures has a high value in terms of several aspects as long as general requirements are followed. The primary benefit of straw bale as a building material is its low embodied energy. It also has high thermal and sound insulation properties. Many previous research studies on straw bale building have been focused on structural stability, fire resistance and assessing moisture content in straw bales which is one of the major issues. Therefore, special attention needs to be devoted to details to insure proper building safety. Render selection is especially crucial and an extremely important step in straw bale building, not only in matters concerning moisture but also structural capacity and fire protection. A major disadvantage of straw bale construction is its lack of material research. The paper is divided into three parts in which advantages and disadvantages of such a building are discussed. In the third part, results are presented for a survey in which correspondents emphasized the advantages and disadvantages of living in a straw bale building.

  20. Obtaining of Peracetic Cellulose from Oat Straw for Paper Manufacturing

    Directory of Open Access Journals (Sweden)

    Tetyana V. Zelenchuk

    2017-10-01

    Full Text Available Background. Development of technology for obtaining peracetic pulp from oat straw and its use in the production of one of the paper mass types. Objective. Determination of peracetic cooking technological parameters’ optimal values for oat straw peracetic cellulose quality indicators. Methods. The oat straw cooking was carried out with peracetic acid at 95 ± 1 °C from 90 to 180 min for hydromodulus 8:1 and 7:1, using a sodium tungstate catalyst. To determine the oat straw peracetic cellulose mechanical indexes, laboratory samples of paper weighing 70 g/m2 were made. Results. Technological parameters’ optimum values (temperature, cooking duration, hydromodulus, hydrogen peroxide and acetic acid concentration for the oat straw delignification process were established. It is shown that the sodium tungstate catalyst addition to the cooking solution at a rate of up to 1 % of the plant raw material weight helps to reduce the lignin content in cellulose to 15 %. A diagram of the cellulose yield dependence on its residual lignin content for various methods of non-wood plant material species delignification is constructed. The high efficiency of the peracetic method for obtaining cellulose from non-wood plant raw materials, in particular from oat straw, has been confirmed. It is determined that the obtained peracetic cellulose from oat straw has high mechanical indexes. Conclusions. Oat straw peracetic cellulose can be used for the production of paper and cardboard mass types, in particular wrapping paper.