WorldWideScience

Sample records for wheat quality analysis

  1. Early prediction of wheat quality: analysis during grain development using mass spectrometry and multivariate data analysis

    DEFF Research Database (Denmark)

    Ghirardo, A.; Sørensen, Helle Aagaard; Petersen, M.

    2005-01-01

    Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and multivariate data analysis have been used for the determination of wheat quality at different stages of grain development. Wheat varieties with one of two different end-use qualities (i.e. suitable or not suitable...... data analysis, offers a method that can replace the traditional rather time-consuming ones such as gel electrophoresis. This study focused on the determination of wheat quality at 15 dpa, when the grain is due for harvest 1 month later....

  2. Genetic analysis for grain quality traits in pakistani wheat varieties

    International Nuclear Information System (INIS)

    Minhas, N.M.; Ajmal, S.U.; Iqbal, Z.; Munir, M.

    2014-01-01

    A set of eight parental diallel involving seven commercial wheat cultivars and one breeding line was made to investigate the nature of gene action determining inheritance pattern of grain quality characters. Highly significant differences were observed among the genotypes for 1000 grain weight, protein content, wet gluten and lysine content. Adequacy tests were employed to estimate the fitness of data sets to additive dominance model. Both the tests i.e. analysis of uniformity of Wr, Vr and joint regression analysis validated the data of these traits for genetic analysis. Gene actions for grain quality traits were ascertained following Hayman's analysis of variance. Results of the genetic analysis revealed that both additive and dominance genetic components were involved in the manifestation of characters under study. However, additive gene effects were more pronounced in the genetic control of these traits. Non significance of b1, b2 and b3 values revealed the absence of directional dominance, symmetrical distribution of genes among the parental lines and absence of specific genes action respectively in all the traits. Maternal effects were also noted in 1000 grain weight, protein content and wet gluten percentage. It is concluded that additive effects are crucial in the expression of grain quality characters of wheat in germplasm under study and single plant selection may be recommended in segregating generations for effective improvement in these characters. (author)

  3. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop

    Science.gov (United States)

    Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...

  4. A comparative study among methods used for wheat flour analysis and for measurements of gluten properties using the Wheat Gluten Quality Analyser (WGQA

    Directory of Open Access Journals (Sweden)

    Maria Cristina Ferrari

    2014-06-01

    Full Text Available This study aimed at comparing both the results of wheat flour quality assessed by the new equipment Wheat Gluten Quality Analyser (WGQA and those obtained by the extensigraph and farinograph. Fifty-nine wheat samples were evaluated for protein and gluten contents; the rheological properties of gluten and wheat flour were assessed using the WGQA and the extensigraph/farinograph methods, respectively, in addition to the baking test. Principal component analysis (PCA and linear regression were used to evaluate the results. The parameters of energy and maximum resistance to extension determined by the extensigraph and WGQA showed an acceptable level for the linear correlation within the range from 0.6071 to 0.6511. The PCA results obtained using WGQA and the other rheological apparatus showed values similar to those expected for wheat flours in the baking test. Although all equipment used was effective in assessing the behavior of strong and weak flours, the results of medium strength wheat flour varied. WGQA has shown to use less amount of sample and to be faster and easier to use in relation to the other instruments used.

  5. Durum wheat quality prediction in Mediterranean environments

    DEFF Research Database (Denmark)

    Toscano, P.; Gioli, B.; Genesio, L.

    2014-01-01

    Durum wheat is one of the most important agricultural crops in the Mediterranean area. In addition to yield, grain quality is very important in wheat markets because of the demand for high-quality end products such as pasta, couscous and bulgur wheat. Grain quality is directly affected by several...

  6. Statistical analysis of the influence of wheat black point kernels on selected indicators of wheat flour quality

    Directory of Open Access Journals (Sweden)

    Petrov Verica D.

    2011-01-01

    Full Text Available The influence of wheat black point kernels on selected indicators of wheat flour quality - farinograph and extensograph indicators, amylolytic activity, wet gluten and flour ash content, were examined in this study. The examinations were conducted on samples of wheat harvested in the years 2007 and 2008 from the area of Central Banat in four treatments-control (without black point flour and with 2, 4 and 10% of black point flour which was added as a replacement for a part of the control sample. Statistically significant differences between treatments were observed on the dough stability, falling number and extensibility. The samples with 10% of black point flour had the lowest dough stability and the highest amylolytic activity and extensibility. There was a trend of the increasing 15 min drop and water absorption with the increased share of black point flour. Extensograph area, resistance and ratio resistance to extensibility decreased with the addition of black point flour, but not properly. Mahalanobis distance indicates that the addition of 10% black point flour had the greatest influence on the observed quality indicators, thus proving that black point contributes to the technological quality of wheat, i.e .flour.

  7. Quality and Safety Aspects of Cereals (Wheat) and Their Products.

    Science.gov (United States)

    Varzakas, Theo

    2016-11-17

    Cereals and, most specifically, wheat are described in this chapter highlighting on their safety and quality aspects. Moreover, wheat quality aspects are adequately addressed since they are used to characterize dough properties and baking quality. Determination of dough properties is also mentioned and pasta quality is also described in this chapter. Chemometrics-multivariate analysis is one of the analyses carried out. Regarding production weighing/mixing of flours, kneading, extruded wheat flours, and sodium chloride are important processing steps/raw materials used in the manufacturing of pastry products. Staling of cereal-based products is also taken into account. Finally, safety aspects of cereal-based products are well documented with special emphasis on mycotoxins, acrylamide, and near infrared methodology.

  8. Effect of HMM Glutenin Subunits on Wheat Quality Attributes

    Directory of Open Access Journals (Sweden)

    Daniela Horvat

    2009-01-01

    Full Text Available Glutenin is a group of polymeric gluten proteins. Glutenin molecules consist of glutenin subunits linked together with disulphide bonds and having higher (HMM-GS and lower (LMM-GS molecular mass. The main objective of this study is the evaluation of the influence of HMM-GS on flour processing properties. Seven bread wheat genotypes with contrasting quality attributes and different HMM-GS composition were analyzed during three years. The composition and quantity of HMM-GS were determined by SDS-PAGE and RP-HPLC, respectively. The quality diversity among genotypes was estimated by the analysis of wheat grain, and flour and bread quality parameters. The presence of HMM glutenin subunits 1 and 2* at Glu-A1 and the subunits 5+10 at Glu-D1 loci, as well as a higher proportion of total HMM-GS, had a positive effect on wheat quality. Cluster analysis of the three groups of data (genotype and HMM-GS, flour and bread quality, and dough rheology yielded the same hierarchical structure for the first top three levels, and similarity of the corresponding dendrograms was proved by the principal eigenvalues of the corresponding Euclidian distance matrices. The obtained similarity in classification based on essentially different types of measurements reflects strong natural association between genetic data, product quality and physical properties. Principal component analysis (PCA was applied to effectively reduce large data set into lower dimensions of latent variables amenable for the analysis. PCA analysis of the total set of data (15 variables revealed a very strong interrelationship between the variables. The first three PCA components accounted for 96 % of the total variance, which was significant to the level of 0.05 and was considered as the level of experimental error. These data imply that the quality of wheat cultivars can be contributed to HMM-GS data and should be taken into account in breeding programs assisted by computer models with the aim to

  9. Spatial Variability Analysis of Within-Field Winter Wheat Nitrogen and Grain Quality Using Canopy Fluorescence Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Xiaoyu Song

    2017-03-01

    Full Text Available Wheat grain protein content (GPC is a key component when evaluating wheat nutrition. It is also important to determine wheat GPC before harvest for agricultural and food process enterprises in order to optimize the wheat grading process. Wheat GPC across a field is spatially variable due to the inherent variability of soil properties and position in the landscape. The objectives of this field study were: (i to assess the spatial and temporal variability of wheat nitrogen (N attributes related to the grain quality of winter wheat production through canopy fluorescence sensor measurements; and (ii to examine the influence of spatial variability of soil N and moisture across different growth stages on the wheat grain quality. A geostatistical approach was used to analyze data collected from 110 georeferenced locations. In particular, Ordinary Kriging Analysis (OKA was used to produce maps of wheat GPC, GPC yield, and wheat canopy fluorescence parameters, including simple florescence ratio and Nitrogen Balance Indices (NBI. Soil Nitrate-Nitrogen (NO3-N content and soil Time Domain Reflectometry (TDR value in the study field were also interpolated through the OKA method. The fluorescence parameter maps, soil NO3-N and soil TDR maps obtained from the OKA output were compared with the wheat GPC and GPC yield maps in order to assess their relationships. The results of this study indicate that the NBI spatial variability map in the late stage of wheat growth can be used to distinguish areas that produce higher GPC.

  10. THE IMPACT OF REFORMING WHEAT IMPORTING STATE-TRADING ENTERPRISES ON THE QUALITY OF WHEAT IMPORTED

    OpenAIRE

    Lavoie, Nathalie

    2003-01-01

    Recent surveys of wheat importers indicate that countries that import wheat via a state trader are less sensitive to quality issues in import decision making than countries that import wheat through private traders. This study examines conceptually and empirically the impact of the deregulation of wheat imports on the quality and source of wheat imports.

  11. Self-Organized Crystallization Patterns from Evaporating Droplets of Common Wheat Grain Leakages as a Potential Tool for Quality Analysis

    Directory of Open Access Journals (Sweden)

    Maria Olga Kokornaczyk

    2011-01-01

    Full Text Available We studied the evaporation-induced pattern formation in droplets of common wheat kernel leakages prepared out of ancient and modern wheat cultivars as a possible tool for wheat quality analysis. The experiments showed that the substances which passed into the water during the soaking of the kernels created crystalline structures with different degrees of complexity while the droplets were evaporating. The forms ranged from spots and simple structures with single ramifications, through dendrites, up to highly organized hexagonal shapes and fractal-like structures. The patterns were observed and photographed using dark field microscopy in small magnifications. The evaluation of the patterns was performed both visually and by means of the fractal dimension analysis. From the results, it can be inferred that the wheat cultivars differed in their pattern-forming capacities. Two of the analyzed wheat cultivars showed poor pattern formation, whereas another two created well-formed and complex patterns. Additionally, the wheat cultivars were analyzed for their vigor by means of the germination test and measurement of the electrical conductivity of the grain leakages. The results showed that the more vigorous cultivars also created more complex patterns, whereas the weaker cultivars created predominantly poor forms. This observation suggests a correlation between the wheat seed quality and droplet evaporation patterns.

  12. Bread-Making Quality of Standard Winter Wheat Cultivars

    OpenAIRE

    Ćurić, Duška; Novotni, Dubravka; Bauman, Ingrid; Krička, Tajana; Jukić, Željko; Voća, Neven; Kiš, Darko

    2009-01-01

    The purpose of this study was to define an impact of the cultivar, year and cultivation area of the standard Croatian winter wheat on the bread-making quality. The bread-making quality of cultivars ‘Divana’, ‘Žitarka’ and ‘Sana’ from the crop years 1998, 2000, 2002, 2004 and 2006, and from Zagreb and Osijek location was analyzed. Wheat from the cultivar tests cultivated under the same agro technological conditions was used for this testing. The tested winter wheat bread-making quality primari...

  13. End-use quality of soft kernel durum wheat

    Science.gov (United States)

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...

  14. HARMFUL ENTOMOPHAUNA IMPACTS ON QUALITY OF MERCANTILE WHEAT AND FLOUR

    Directory of Open Access Journals (Sweden)

    Stanislav Milošević

    2005-06-01

    Full Text Available Presence of harmful insects and mites is almost inevitable in mercantile wheat stored in warehouses. They cause significant damages and therefore it is necessary to perform pest control and chemical treatment. Study of harmful and destructive entomophauna impacts on quality of mercantile wheat and flour has been presented. Mercantile wheat stored in silos has been used in the study. Testing of quality of rheological properties and presence of harmful entomophauna were done in the labs within the silos «Žitoprerada d.o.o. Valpovo « and Department of Plant Protection on Faculty of Agriculture in Osijek. Presence of harmful entomophauna, quality of mercantile wheat stored in a warehouse and rheological flour properties were determined. The following harmful entomophauna were found: mites (Acarinae, primary pests of order Coleoptera and Lepidoptera, secondary pests of order Coleoptera and other insects found belong to Coleoptera, Psocoptera and useful insects of Hymenoptera orders. Influence of harmful entomophauna on quality of mercantile wheat is manifested by reduced quality of stored wheat due to decrease of water content and hectoliter mass. Lower quality of flour obtained by milling of infected wheat is manifested by change in rheological properties: dough stability, water absorption, growth, resistance, energy, extensibility, maximum resistance, start of puffing up, and viscosity.

  15. Study of Winter Wheat Yield Quality Analysis at ARDS Turda

    Directory of Open Access Journals (Sweden)

    Ovidiu Adrian Ceclan

    2016-11-01

    Full Text Available The purpose of this research is to study the potential for yield and quality indicators for winter wheat genotypes in terms of pedological and climate condition and applied technology, at ARDS Turda during 2014 – 2015. Depending on the climatic conditions that are associated with applied technology is a decisive factor in successful wheat crop for all genotypes that were studied at Ards Turda during the 2014 – 2016. That’s wy each genotype responded differently to the conditions of the ARDS Turda also through the two levels of fertilisations applied in the winter with fertilizers 20:20:0, 250 kg/ha assuring 50 kg/ha N and P active substance and second level of fertilisations with 150 kg/ha ammonium nitrate assuring 50 kg/ha N active substance. All genotype that were studied in terms of yield and quality indicators were influenced by the fertilization level. The influence of pedo-climatic conditions, applied technologies and fertilizers level at ARDS Turda showed that all genotypes with small yield had higher protein and gluten content respectively Zeleny index.

  16. EVALUATION OF QUALITY INDICATORS RELATED TO QUALITY BREAD WHEAT PROMISING LINES

    Directory of Open Access Journals (Sweden)

    Watson Munyanyi

    2014-01-01

    Full Text Available The bread waste is one of the important socio-economic's issues country now, the urgent need is feeling to improve the wheat quality. Therefore, using the methods of farming and breeding is necessary to improve the quality of this strategic product. As a result, tests of quality's traits in wheat promising lines in Isfahan climate took place. In this study, the choice 17 advanced lines of compare the performances,s experiments, an experiment was conducted for two consecutive cropping (2011-2012 at cultural experiment and research centre in Isfahan located in Kabutar Abad region. Randomized complete block designs with 3 replications were compared with Spring variety (for control. Traits including: 1000 grain weight, hectolitre weight, protein content, Zeleny sedimentation rate, bread volume, grain moisture content, grain hardness, water absorption, falling number, percentage of dry gluten, gluten index, sedimentation rates were SDS.The results of the combined analysis of variance qualitative characteristics,s for two consecutive cropping showed that treatments with compare together and control variety had significant influence in 1% probability.Correlation coefficients of two years showed that the compound test significant positive correlation within grain hardness index and protein content, wet gluten and dry deposition rates of SDS. Also, significant positive correlation with the percentage of protein content of dry gluten. In view of the high correlation with protein content of dry gluten (quantity. However, grain hardness and relatively high correlation with SDS sedimentation as an important measure of protein quality. Therefore, the test results of dry gluten grains can be tough to choose in order to improve the quality of wheat bread may be used.

  17. Factor Analysis and Modelling for Rapid Quality Assessment of Croatian Wheat Cultivars with Different Gluten Characteristics

    Directory of Open Access Journals (Sweden)

    Želimir Kurtanjek

    2008-01-01

    Full Text Available Factor analysis and multivariate chemometric modelling for rapid assessment of baking quality of wheat cultivars from Slavonia region, Croatia, have been applied. The cultivars Žitarka, Kata, Monika, Ana, Demetra, Divana and Sana were grown under controlled conditions at the experimental field of Agricultural Institute Osijek during three years (2000–2002. Their quality properties were evaluated by 45 different chemical, physical and biochemical variables. The measured variables were grouped as: indirect quality parameters (6, farinographic parameters (7, extensographic parameters (5, baking test parameters (2 and reversed phase-high performance liquid chromatography (RP-HPLC of gluten proteins (25. The aim of this study is to establish minimal number (three, i.e. principal factors, among the 45 variables and to derive multivariate linear regression models for their use in simple and fast prediction of wheat properties. Selection of the principal factors based on the principal component analysis (PCA has been applied. The first three main factors of the analysis include: total glutenins (TGT, total ω-gliadins (Tω- and the ratio of dough resistance/extensibility (R/Ext. These factors account for 76.45 % of the total variance. Linear regression models gave average regression coefficients (R evaluated for the parameter groups: indirect quality R=0.91, baking test R=0.63, farinographic R=0.78, extensographic R=0.95 and RP-HPLC of gluten data R=0.90. Errors in the model predictions were evaluated by the 95 % significance intervals of the calibration lines. Practical applications of the models for rapid quality assessment and laboratory experiment planning were emphasized.

  18. Proteomic analysis of the impacts of powdery mildew on wheat grain.

    Science.gov (United States)

    Li, Jie; Liu, Xinhao; Yang, Xiwen; Li, Yongchun; Wang, Chenyang; He, Dexian

    2018-09-30

    Powdery mildew of wheat is one of the major foliar diseases, causing significant yield loss and flour quality change. In this study, grain protein and starch response to powdery mildew infection were investigated. Total protein, glutenin and gliadin exhibited a greater increase in grains from infected wheat, while the content of total starch and amylopectin was decreased. Comparative proteomic analysis demonstrated that the overabundant protein synthesis-related proteins might facilitate the accumulation of storage proteins in grains from infected plants. The significant increase in triticin, serpin and HMW-GS in grains from infected wheat might relate to the superior gluten quality. In addition, overabundant carbohydrate metabolism-related proteins in grains from infected wheat were conducive to the depletion of starch, whereas the decreased abundance of ADP glucose pyrophosphorylase might be related to the deficiency of starch synthesis. These results provide a deeper understanding on the change of wheat quality under powdery mildew infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. PREDICTION OF WHITE FLOUR QUALITY OBTAINED BY INDUSTRIAL MILLING OF WHEAT

    Directory of Open Access Journals (Sweden)

    IULIANA APRODU

    2014-08-01

    Full Text Available In order to establish the relations between quality of the wheat and white flour obtained through industrial milling, several parameters related to functional properties of the proteins and starch were analyzed. The parameters defining the proteins functionality are wet gluten, Gluten index, deformation energy of dough and minimum torque C2 and allowed establishing significant correlations between wheat and flour. Concerning the starch baking performance, the parameters that allowed establishing significant correlations between wheat and flour are falling number value, amylase activity, starch gelatinization and cooking stability range. Analyzing the trend of variation of the quality parameters given by Mixolab and Alveograph tests for wheat and flour, one can see that it is possible to predict the flour quality based on wheat quality.

  20. QUALITY PREMIUMS FOR AUSTRALIAN WHEAT IN THE GROWING ASIAN MARKETS

    OpenAIRE

    Ahmadi-Esfahani, Fredoun Z.; Stanmore, Roland G.

    1994-01-01

    An hedonic price function is applied to Australia's wheat exports to the growing Asian markets. The values for the quality characteristics in the wheat markets of Indonesia, Malaysia, Singapore, South Korea, and Thailand are estimated. The data base for the study is from the Australian Wheat Board shipments over the period 1984 to 1991. The sample is divided into two separate time periods to test the consistency in demand for export wheat and to trace recent trends in quality premiums. The im...

  1. Nutritional and technological quality of the durum wheat

    Directory of Open Access Journals (Sweden)

    Zina Flagella

    Full Text Available Durum wheat quality is a complex system that combines yield characteristics, cultivation conditions and certification requirements. In this review, the technological and nutritional aspects of grain quality were evaluated in relation to the influence of climate and agronomic practices. In particular, the technological quality was investigated with regard to the kind of processed product (pasta, bread, couscous, burghul. The influence of nitrogen and sulphur nutrition, temperature, water regime and organic farming on grain quality was evaluated. Furthermore, the nutritional characteristics of durum wheat related to starch, proteins, lipids, vitamins, fibres and mineral ions content were examined. Special focus was on the antioxidant activity capable of preventing chronic and degenerative diseases thanks to the high content in bioactive compounds, as phenols, tocols, carotenoids and fibres in whole grain. In the light of the new direction of the Community agricultural policy and of the growing interest in human nutrition, two prospects for development of the durum wheat sector were delineated: i developing certified products (PGI, PDO and organic; ii promoting production and processing technologies aimed at increasing the level of bioactive compounds in durum wheat grain and its by-products.

  2. Identification of milling and baking quality QTL in multiple soft wheat mapping populations.

    Science.gov (United States)

    Cabrera, Antonio; Guttieri, Mary; Smith, Nathan; Souza, Edward; Sturbaum, Anne; Hua, Duc; Griffey, Carl; Barnett, Marla; Murphy, Paul; Ohm, Herb; Uphaus, Jim; Sorrells, Mark; Heffner, Elliot; Brown-Guedira, Gina; Van Sanford, David; Sneller, Clay

    2015-11-01

    Two mapping approaches were use to identify and validate milling and baking quality QTL in soft wheat. Two LG were consistently found important for multiple traits and we recommend the use marker-assisted selection on specific markers reported here. Wheat-derived food products require a range of characteristics. Identification and understanding of the genetic components controlling end-use quality of wheat is important for crop improvement. We assessed the underlying genetics controlling specific milling and baking quality parameters of soft wheat including flour yield, softness equivalent, flour protein, sucrose, sodium carbonate, water absorption and lactic acid, solvent retention capacities in a diversity panel and five bi-parental mapping populations. The populations were genotyped with SSR and DArT markers, with markers specific for the 1BL.1RS translocation and sucrose synthase gene. Association analysis and composite interval mapping were performed to identify quantitative trait loci (QTL). High heritability was observed for each of the traits evaluated, trait correlations were consistent over populations, and transgressive segregants were common in all bi-parental populations. A total of 26 regions were identified as potential QTL in the diversity panel and 74 QTL were identified across all five bi-parental mapping populations. Collinearity of QTL from chromosomes 1B and 2B was observed across mapping populations and was consistent with results from the association analysis in the diversity panel. Multiple regression analysis showed the importance of the two 1B and 2B regions and marker-assisted selection for the favorable alleles at these regions should improve quality.

  3. Quality of synthetic hexaploid wheat containing null alleles at Glu-A1

    Indian Academy of Sciences (India)

    GSs. However, incorporation of HMW-GS from Ae. tauschii in six synthetic hexaploid wheat lines significantly increased most quality related parameters. The potential values of these wheat lines in improving the quality of wheat are discussed.

  4. Genetic variation at loci controlling quality traits in spring wheat

    International Nuclear Information System (INIS)

    Ali, N.; Iqbal, M.; Asif, M.

    2013-01-01

    Selection for quality traits in bread wheat (Triticum aestivum L.) during early breeding generations requires quick analytical methods that need small grain samples. Marker assisted selection can be useful for the improvement of quality traits in wheat. The present study was conducted to screen 117 Pakistani adapted spring wheat varieties with DNA markers linked with genes controlling composition of low and high molecular weight glutenin subunits (LMW-GS and HMW-GS, respectively), starch viscosity, Polyphenol oxidase (PPO) activity and grain hardness. DNA fragments associated with the presence/absence of quality related genes were amplified using Polymerase chain reaction (PCR) and detected using agarose gel electrophoresis. Positive allele of beta-secalin, which indicates presence of 1B.1R translocation, was found in 77 (66%) varieties. The marker PPO05 was found in 30 (26%) varieties, indicating lower PPO activity. Grain hardness controlled by Pinb-D1b allele was present in 49 (42%) varieties. Allele Wx-B1b which confers superior noodle quality was found in 48 (41%) varieties. HMW-GS encoded by Glu-D1d allele that exerts a positive effect on dough strength was present in 115 (98%) varieties. LMW-GS alleles Glu-A3d and Glu-B3 were observed in 21 (18%) and 76 (65%) varieties, respectively. Results of the present study may help wheat breeders in selecting parents for improving desirable quality attributes of future wheat varieties. The varieties, identified having desirable quality genes, in this study can be used in the wheat breeding programs aiming to improve quality traits. Early generation marker assisted selection can help to efficiently utilize resources of a breeding program. (author)

  5. Effects of gamma irradiation on durum wheats and spaghetti quality

    International Nuclear Information System (INIS)

    Köksel, H.; Celik, S.; Tuncer, T.

    1996-01-01

    The efficient control of insects in cereal grains has long been the main objective of processors who are always looking for safer and more economical methods. Gamma irradiation is a physical technique of food preservation that seems to have a potential to protect grains from insect infestation and microbial contamination during storage. It has been reported that gamma irradiation doses in the range of 0.2-1.0 kGy are effective in controlling insect infestation in cereals (IAEA 1991). Increasing the dose to 5 kGy totally kills the spores of many fungi surviving the lower doses (Murray 1990). Besides its protective role from insects and microorganisms, gamma irradiation also has important effects on various quality criteria of cereal grains. Experiments have been performed to study the effects of gamma irradiation on various aspects of wheat quality such as milling characteristics, dough properties, and baking quality (Lai et al 1959, Lee 1959, Fifield et al 1967, Rao et al 1975, Paredes-Lopez and Covarrubias-Alvarez 1984, MacArthur and D'Appolonia 1983, Ng et al 1989). It was reported that amylograph peak viscosity and falling number values of the flour decreased significantly as radiation levels increased (MacArthur and D'Appolonia 1983, Ng et al 1989). Rao et al (1975) showed that as radiation dose increased, amylograph peak height and dough stability decreased. At 10 kGy, loaf volume and crumb grain were impaired. Paredes-Lopez and Covarrubias-Alvarez (1984) found that the overall bread quality of wheat was greatly reduced at medium doses of radiation (1-10 kGy). At doses >5 kGy, irrespective of the baking formula used, loaf volume and baking quality deteriorated (Lai et al 1959). Irradiation of grain has also caused problems in noodle quality. Japanese noodles (udon) show increased cooking losses and inferior scores in sensory analysis when the bread wheats have been irradiated in the range of 0.2-1.0 kGy (Shibata et al 1974, Urbain 1986). However, no detailed

  6. Effect of wheat flour characteristics on sponge cake quality.

    Science.gov (United States)

    Moiraghi, Malena; de la Hera, Esther; Pérez, Gabriela T; Gómez, Manuel

    2013-02-01

    To select the flour parameters that relate strongly to cake-making performance, in this study the relationship between sponge cake quality, solvent retention capacity (SRC) profile and flour physicochemical characteristics was investigated using 38 soft wheat samples of different origins. Particle size average, protein, damaged starch, water-soluble pentosans, total pentosans, SRC and pasting properties were analysed. Sponge cake volume and crumb texture were measured to evaluate cake quality. Cluster analysis was applied to assess differences in flour quality parameters among wheat lines based on the SRC profile. Cluster 1 showed significantly higher sponge cake volume and crumb softness, finer particle size and lower SRC sucrose, SRC carbonate, SRC water, damaged starch and protein content. Particle size, damaged starch, protein, thickening capacity and SRC parameters correlated negatively with sponge cake volume, while total pentosans and pasting temperature showed the opposite effect. The negative correlations between cake volume and SRC parameters along with the cluster analysis results indicated that flours with smaller particle size, lower absorption capacity and higher pasting temperature had better cake-making performance. Some simple analyses, such as SRC, particle size distribution and pasting properties, may help to choose flours suitable for cake making. Copyright © 2012 Society of Chemical Industry.

  7. Molecular markers for predicting end-products quality of wheat ...

    African Journals Online (AJOL)

    Molecular markers for predicting end-products quality of wheat (Triticum aestivum L.) ... African Journal of Biotechnology. Journal Home · ABOUT ... Four new Saudi wheat lines (KSU 102, KSU 103, KSU 105 and KSU 106) and two. American ...

  8. Quality characteristics of U.S. soft white and club wheat

    Science.gov (United States)

    U.S. soft white wheat from the Pacific Northwest states of Washington, Oregon and Idaho is a premium quality, versatile soft wheat. Soft White wheat (SWW) is comprised of winter and spring-sown varieties; spike morphology further delineates the class into ‘common’ (lax) and club sub-classes. The reg...

  9. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    International Nuclear Information System (INIS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Chenwei, Nie; Dong, Ren

    2014-01-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps

  10. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  11. Management Effects On Quality of Organically Grown Winter Wheat

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Schweinzer, A.; Friedel, J. K.

    2013-01-01

    The potential for improving wheat grain quality by management strategies involving crop rotation, catch crops, and organic manure was tested in organic long-term experiments in Denmark and Austria. Growing grass clover in a four-year rotation resulted in a higher wheat yield increase that could n...

  12. Impact of Added Colored Wheat Bran on Bread Quality

    OpenAIRE

    Lenka Machálková; Marie Janečková; Luděk Hřivna; Yvona Dostálová; Joany Hernandez; Eva Mrkvicová; Tomáš Vyhnánek; Václav Trojan

    2017-01-01

    The impact of colored wheat bran addition on bread quality was tested on wheat varieties with purple pericarp (Konini, Rosso and Karkulka) and on a variety containing blue aleurone (Skorpion). The effect of 10 %, 15 % and 20 % bran addition on sensory evaluation, bread color and texture was compared to the characteristics of bread prepared from wheat variety Mulan. The addition of 10 % bran significantly increased the sensory evaluation scores of bread. Crumb characteristics were improved mai...

  13. Comparative proteome analysis of glutenin synthesis and accumulation in developing grains between superior and poor quality bread wheat cultivars.

    Science.gov (United States)

    Liu, Wan; Zhang, Yanzhen; Gao, Xuan; Wang, Ke; Wang, Shunli; Zhang, Yong; He, Zhonghu; Ma, Wujun; Yan, Yueming

    2012-01-15

    Wheat glutenins are the major determinants of wheat quality. In this study, grains at the development stage from three wheat cultivars (Jimai 20, Jin 411 and Zhoumai 16) with different bread-making quality were harvested based on thermal times from 150 °C(d) to 750 °C(d) , and were used to investigate glutenin accumulation patterns and their relationships with wheat quality. High and low molecular weight glutenin subunits (HMW-GSs and LMW-GSs) were synthesised concurrently. No obvious correlations between HMW/LMW glutenin ratios and dough property were observed. Accumulation levels of HMW-GSs and LMW-GSs as well as 1Bx13 + 1By16 and 1Dx4 + 1Dy12 subunits were higher in superior gluten quality cultivar Jimain 20 than in poor quality cultivar Jing 411 and Zhoumai 16. According to the results of two-dimensional gel electrophoresis, six types of accumulation patterns in LMW-GSs were identified and classified. The possible relationships between individual LMW-GSs and gluten quality were established. The high accumulation level of HMW-GSs and LMW-GSs as well as 1Bx13 + 1By16 and 1Dx4 + 1Dy12 subunits contributed to the superior gluten quality of Jimai 20. Two highly expressed and 16 specifically expressed LMW glutenin subunits in Jimain 20 had positive effects on dough quality, while 17 specifically expressed subunits in Zhoumai 16 and Jing 411 appeared to have negative effects on gluten quality. Copyright © 2011 Society of Chemical Industry.

  14. Soft wheat quality characteristics required for making baking powder biscuits

    Science.gov (United States)

    Fifteen soft wheat varieties were evaluated for their grain, milling, flour and dough mixing characteristics, as well as their solvent retention capacities (SRCs), pasting properties and suitability for making baking powder biscuits, to identify wheat quality characteristics required for making bisc...

  15. Grain yield and baking quality of wheat under different sowing dates

    Directory of Open Access Journals (Sweden)

    Raphael Rossi Silva

    2014-04-01

    Full Text Available Choosing the right sowing dates can maximize the outcomes of the interaction between genotype and environment, thus increasing grain yield and baking quality of wheat (Triticum aestivum L.. The present study aimed at determining the most appropriate sowing dates that maximize grain yield and baking quality of wheat cultivars. Seven wheat cultivars (BRS 179, BRS Guamirim, BRS Guabiju, BRS Umbu, Safira, CD 105 and CD 115 were evaluated at four sowing dates (the 1st and the 15th of June and July in two harvesting seasons (2007 and 2008. The study was setup in a completely randomized block design with four repetitions. The effects of the year and sowing date when combined explained 93% of the grain yield variance. In 2007, the CD 105 and Safira cultivars had the highest grain yield (GY for all sowing dates. Only the BRS Guabiju and Safira cultivars possessed high baking quality for all sowing dates assessed. In 2008, the environmental conditions were favorable for superior GY, but the baking quality was inferior. Considering adapted cultivars and sowing dates, it is possible to maximize grain yield and baking quality of wheat.

  16. Predicting rheological behavior and baking quality of wheat flour using a GlutoPeak test.

    Science.gov (United States)

    Rakita, Slađana; Dokić, Ljubica; Dapčević Hadnađev, Tamara; Hadnađev, Miroslav; Torbica, Aleksandra

    2018-06-01

    The purpose of this research was to gain an insight into the ability of the GlutoPeak instrument to predict flour functionality for bread making, as well as to determine which of the GlutoPeak parameters show the best potential in predicting dough rheological behavior and baking performance. Obtained results showed that GlutoPeak parameters correlated better with the indices of extensional rheological tests which consider constant dough hydration than with those which were performed at constant dough consistency. The GlutoPeak test showed that it is suitable for discriminating wheat varieties of good quality from those of poor quality, while the most discriminating index was maximum torque (MT). Moreover, MT value of 50 BU and aggregation energy value of 1,300 GPU were set as limits of wheat flour quality. The backward stepwise regression analysis revealed that a high-level prediction of indices which are highly affected by protein content (gluten content, flour water absorption, and dough tenacity) was achieved by using the GlutoPeak indices. Concerning bread quality, a moderate prediction of specific loaf volume and an intense level prediction of breadcrumb textural properties were accomplished by using the GlutoPeak parameters. The presented results indicated that the application of this quick test in wheat transformation chain for the assessment of baking quality would be useful. Baking test is considered as the most reliable method for assessing wheat-baking quality. However, baking test requires trained stuff, time, and large sample amount. These disadvantages have led to a growing demand to develop new rapid tests which would enable prediction of baked product quality with a limited flour size. Therefore, we tested the possibility of using a GlutoPeak tester to predict loaf volume and breadcrumb textural properties. Discrimination of wheat varieties according to quality with a restricted flour amount was also examined. Furthermore, we proposed the limit

  17. Physicochemical, microbiological and sensory quality of noodles produced with partial replacement of wheat semolina by amaranth flour

    Directory of Open Access Journals (Sweden)

    Víctor Samir Vedia-Quispe

    2016-09-01

    Full Text Available Introduction: Pasta is a worldwide high consumption and acceptability food due to its low cost, easy preparation and storage. Pasta is usually made of edible wheat semolina and water. The replacement of wheat semolina by amaranth flour stimulates the development of new products and improves nutritional profile of pasta. The aim of this study was to assess physicochemical, microbiological and sensory properties of noodles made with partially replaced wheat semolina by whole grain and raw amaranth flours. Material and Methods: We evaluated the effect of the partial substitution (20% and 30% of wheat semolina using raw amaranth and whole grain amaranth flours in physicochemical, microbiological, quality characteristics and sensory analysis of acceptance. Results: The best treatment was the combination of 70% wheat semolina and 30% raw amaranth, where flavor was the factor in the overall acceptance, and some quality parameters correlated with the sensory responses. All pastas show sanitary quality and food safety. Conclusions: The partial substitution of amaranth flour, either raw or whole grain, improved significantly physicochemical characteristics of fiber with an increase of 60% and 140% in minerals (calcium and iron in the noodles.

  18. Seed Biochemical Analysis Based Profiling of Diverse Wheat Genetic Resource from Pakistan

    Science.gov (United States)

    Khalid, Anam; Hameed, Amjad

    2017-01-01

    Wheat is the major nutrient source worldwide. In Pakistan, it has a crucial place in agriculture as well as in national economy. For seed biochemical compositional analysis, wheat germplasm (77 genotypes) was collected from different agro-climatic zones of Pakistan. Significant variation (p sugar was found in Saleem-2000 (29.86 mg/g s. wt.), reducing sugars in Punjab-96 (12.68 mg/g s. wt.), non-reducing sugars in Saleem-2000 (27.33 mg/g s. wt.). However, highest albumins was identified in TC-4928 (352.89 mg/g s. wt.) and globulins in MEXI PAK (252.67 mg/g s. wt.), salt soluble proteins in Faisalabad-2008 (162.44 mg/g s. wt.), and total soluble proteins in Punjab-96 (487.33 mg/g s. wt.) indicating good quality of wheat genotypes as well as good nutritional status. Genotypes which have been ranked high in respective parameter can be employed in breeding to enhance the nutritional quality of wheat. PMID:28775731

  19. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions

    Science.gov (United States)

    2014-01-01

    Background The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Results Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT

  20. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions.

    Science.gov (United States)

    Singh, Anuradha; Mantri, Shrikant; Sharma, Monica; Chaudhury, Ashok; Tuli, Rakesh; Roy, Joy

    2014-01-16

    The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study

  1. WHITE WHEAT MARKET AND STRATEGY ANALYSIS FOR NORTH DAKOTA

    OpenAIRE

    Janzen, Edward L.; Wilson, William W.

    2001-01-01

    There is a growing interest and a perceived demand for hard white (HW) wheat to satisfy the needs of the growing Asian noodle market which is currently dominated by Australia. The wheat industry is reviewed with attention to U.S. and Australian production and international markets for white wheat. Quality issues and target markets/market development are discussed. Economic issues associated with production of HW wheat in hard red spring (HRS) wheat producing areas, primarily North Dakota, are...

  2. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome evolution between two wheat cultivars

    KAUST Repository

    Thind, Anupriya Kaur

    2018-02-08

    Background: Recent improvements in DNA sequencing and genome scaffolding have paved the way to generate high-quality de novo assemblies of pseudomolecules representing complete chromosomes of wheat and its wild relatives. These assemblies form the basis to compare the evolutionary dynamics of wheat genomes on a megabase-scale. Results: Here, we provide a comparative sequence analysis of the 700-megabase chromosome 2D between two bread wheat genotypes, the old landrace Chinese Spring and the elite Swiss spring wheat line CH Campala Lr22a. There was a high degree of sequence conservation between the two chromosomes. Analysis of large structural variations revealed four large insertions/deletions (InDels) of >100 kb. Based on the molecular signatures at the breakpoints, unequal crossing over and double-strand break repair were identified as the evolutionary mechanisms that caused these InDels. Three of the large InDels affected copy number of NLRs, a gene family involved in plant immunity. Analysis of single nucleotide polymorphism (SNP) density revealed three haploblocks of 8 Mb, 9 Mb and 48 Mb with a 35-fold increased SNP density compared to the rest of the chromosome. Conclusions: This comparative analysis of two high-quality chromosome assemblies enabled a comprehensive assessment of large structural variations. The insight obtained from this analysis will form the basis of future wheat pan-genome studies.

  3. A kaizen approach to food safety quality management in the value chain from wheat to bread

    CERN Document Server

    Hill, Victoria

    2014-01-01

    This book provides a Management Science approach to quality management in food production. Aspects of food quality, product conformance and reliability/food safety are examined, starting with wheat and ending with its value chain transformation into bread. Protein qualities that influence glycemic index levels in bread are used to compare the value chains of France and the US. With Kaizen models the book shows how changes in these characteristics are the result of management decisions made by the wheat growers in response to government policy and industry strategy. Lastly, it provides step-by-step instructions on how to apply kaizen methodology and Deming's work on quality improvement to make the HACCPs (Hazard Analysis and Critical Control Points) in food safety systems more robust.

  4. Ammonium as sole N source improves grain quality in wheat.

    Science.gov (United States)

    Fuertes-Mendizábal, Teresa; González-Torralba, Jon; Arregui, Luis M; González-Murua, Carmen; González-Moro, M Begoña; Estavillo, José M

    2013-07-01

    The skilful handling of N fertilizer, including N source type and its timing, is necessary to obtain maximum profitability in wheat crops in terms of production and quality. Studies on grain yield and quality with ammonium as sole N source have not yet been conducted. The aim of this study was to evaluate the effect of N source management (nitrate vs. ammonium), and splitting it into two or three amendments during the wheat life cycle, on grain yield and quality under irrigated conditions. This experiment demonstrates that Cezanne wheat plants growing with ammonium as exclusive N source are able to achieve the same yield as plants growing with nitrate and that individual wheat plants grown in irrigated pots can efficiently use late N applied in GS37. Ammonium nutrition increased both types of grain reserve proteins (gliadins and glutenins) and also increased the ratio gli/glu with respect to nitrate nutrition. The splitting of the N rate enhanced the ammonium effect on grain protein composition. The application of ammonium N source, especially when split into three amendments, has an analogous effect on grain protein content and composition to applications at a higher N rate, leading to higher N use efficiency. © 2012 Society of Chemical Industry.

  5. Effect of seeding rate on grain quality of winter wheat

    Directory of Open Access Journals (Sweden)

    Veselinka Zecevic

    2014-03-01

    Full Text Available Planting density is important factor which influence yield and quality of wheat (Triticum aestivum L. For this reason, in scientific investigations is constantly investigated optimization of plant number per unit area. The objective of this study was to determine the influence of seeding rate in grain quality of winter wheat cultivars. The experiment was conducted with four winter wheat genotypes ('Ana Morava', 'Vizija', 'L-3027', and 'Perla' at the Small Grains Research Centre of Kragujevac, Serbia, in 3 yr at two seeding rates (SR1 = 500 and SR2 = 650 germinating seeds m-2. The 1000-kernel weight, Zeleny sedimentation, and wet gluten content in divergent wheat genotypes were investigated depending on the seeding rate and ecological factors. Significant differences in quality components were established between investigated seeding rates. The highest values of all investigated quality traits were established in SR2 variant when applied 650 seeds m-2. Genotypes reacted differently to seeding rate. 'Perla' in average had the highest mean sedimentation value (42.2 mL and wet gluten content (33.76% in SR2 variant and this cultivar responded the best to seeding rate. Significant differences for sedimentation value and wet gluten content were found among cultivars, years, seeding rate, and for all their interactions. Also, ANOVA for 1000-kernel weight showed highly significant differences among investigated varieties, seeding rate and growing seasons, but all their interactions were not significant. In all investigated genotypes, better quality was established in SR2 variant when applied 650 seeds m-2.

  6. Bran characteristics and bread-baking quality of whole grain wheat flour

    Science.gov (United States)

    Varietal variations in physical and compositional characteristics of bran and their associations with bread-baking quality of whole grain wheat flour (WWF) were investigated using bran obtained from roller milling of 18 wheat varieties. Bran was characterized for composition including protein, fat, ...

  7. Effect of Pleurotus eryngii Mushroom β-Glucan on Quality Characteristics of Common Wheat Pasta.

    Science.gov (United States)

    Kim, SunHee; Lee, Jo-Won; Heo, Yena; Moon, BoKyung

    2016-04-01

    The objective of this study was to evaluate the effect of β-glucan-rich fractions (BGRFs) from Pleurotus eryngii mushroom powder on the quality, textural properties, and sensory evaluation of common wheat pasta. Pasta was prepared from semolina flour and common wheat flour by replacing common wheat flour at 2%, 4%, and 6% with BGRFs. Semolina flour showed significantly higher viscosities than common wheat flour samples. However, all viscosities, except the breakdown viscosity, were reduced with increasing percentages of BGRFs. Replacement of the common wheat flour with BGRFs resulted in a reddish brown colored pasta with a lower L* value and a higher a* value. The common wheat pastas containing up to 4% BGRFs were not significantly different from semolina pasta with regard to cooking loss. Addition of up to 2% BGRFs had no significant impact on swelling index and water absorption. The addition of BGRFs in common wheat flour had a positive effect on the quality of common wheat pasta and resulted in hardness values similar to those of semolina pasta. In a sensory evaluation, cooked pasta with 2% BGRFs had the highest overall acceptability score. In summary, the results showed that common wheat flour containing 4% BGRFs could be used to produce pasta with an improved quality and texture properties similar to semolina pasta. © 2016 Institute of Food Technologists®

  8. Determination of Zinc in Wheat and Wheat Bran by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Ghazi Zahedi, M.; Bahrami Samani, A.; Sedaghati Zadeh, M.; Ghannadi Maragheh, M.

    2012-01-01

    The knowledge of concentration of elements in foodstuffs is of significant interest. Wheat is one of the most consumed food stuffs in Iran and zinc is also considered as one of the necessary and vital elements. Since the measurement of some trace elements is not practical by the conventional analytical methods, due to the lower detection limit, the neutron activation analysis was applied to determine the zinc in wheat and wheat bran. Food sample of roughly 50 mg was irradiated for 24 hours. After cooling, the interval samples were counted by a gamma spectrometry system. The concentration of zinc in wheat without bran and the wheat bran were 18.444±0.656 and 19.927±0.698 ppm, respectively. The amount of zinc in wheat bran was noticeable so it showed that consuming wheat with bran is more beneficial than the wheat with no bran for the human-beings body requirements.

  9. Analysis of Quality-Related Parameters in Mature Kernels of Polygalacturonase Inhibiting Protein (PGIP) Transgenic Bread Wheat Infected with Fusarium graminearum.

    Science.gov (United States)

    Masci, Stefania; Laino, Paolo; Janni, Michela; Botticella, Ermelinda; Di Carli, Mariasole; Benvenuto, Eugenio; Danieli, Pier Paolo; Lilley, Kathryn S; Lafiandra, Domenico; D'Ovidio, Renato

    2015-04-22

    Fusarium head blight, caused by the fungus Fusarium graminearum, has a detrimental effect on both productivity and qualitative properties of wheat. To evaluate its impact on wheat flour, we compared its effect on quality-related parameters between a transgenic bread wheat line expressing a bean polygalacturonase inhibiting protein (PGIP) and its control line. We have compared metabolic proteins, the amounts of gluten proteins and their relative ratios, starch content, yield, extent of pathogen contamination, and deoxynivalenol (DON) accumulation. These comparisons showed that Fusarium significantly decreases the amount of starch in infected control plants, but not in infected PGIP plants. The flour of PGIP plants contained also a lower amount of pathogen biomass and DON accumulation. Conversely, both gluten and metabolic proteins were not significantly influenced either by the transgene or by fungal infection. These results indicate that the transgenic PGIP expression reduces the level of infection, without changing significantly the wheat seed proteome and other quality-related parameters.

  10. Whole wheat bread: Effect of bran fractions on dough and end-product quality

    Science.gov (United States)

    Consumption of whole-wheat based products is encouraged due to its important nutritional elements that beneficial to human health. However, processing of whole-wheat based products, such as whole-wheat bread, results in poor end-product quality. Bran was postulated as the major problem. In this stud...

  11. Improving the baking quality of bread wheat by genomic selection in early generations.

    Science.gov (United States)

    Michel, Sebastian; Kummer, Christian; Gallee, Martin; Hellinger, Jakob; Ametz, Christian; Akgöl, Batuhan; Epure, Doru; Löschenberger, Franziska; Buerstmayr, Hermann

    2018-02-01

    Genomic selection shows great promise for pre-selecting lines with superior bread baking quality in early generations, 3 years ahead of labour-intensive, time-consuming, and costly quality analysis. The genetic improvement of baking quality is one of the grand challenges in wheat breeding as the assessment of the associated traits often involves time-consuming, labour-intensive, and costly testing forcing breeders to postpone sophisticated quality tests to the very last phases of variety development. The prospect of genomic selection for complex traits like grain yield has been shown in numerous studies, and might thus be also an interesting method to select for baking quality traits. Hence, we focused in this study on the accuracy of genomic selection for laborious and expensive to phenotype quality traits as well as its selection response in comparison with phenotypic selection. More than 400 genotyped wheat lines were, therefore, phenotyped for protein content, dough viscoelastic and mixing properties related to baking quality in multi-environment trials 2009-2016. The average prediction accuracy across three independent validation populations was r = 0.39 and could be increased to r = 0.47 by modelling major QTL as fixed effects as well as employing multi-trait prediction models, which resulted in an acceptable prediction accuracy for all dough rheological traits (r = 0.38-0.63). Genomic selection can furthermore be applied 2-3 years earlier than direct phenotypic selection, and the estimated selection response was nearly twice as high in comparison with indirect selection by protein content for baking quality related traits. This considerable advantage of genomic selection could accordingly support breeders in their selection decisions and aid in efficiently combining superior baking quality with grain yield in newly developed wheat varieties.

  12. Improvement of Nutritional and Bread-making Quality of Wheat by Genetic Engineering

    OpenAIRE

    Alvarez, Maria Lucrecia

    2000-01-01

    Wheat-derived products provide the basic nutrition for more than a billion of people in the world (about 40% of humankind). Humans consume more proteins from wheat than from any other source. However, the nutritional quality of wheat proteins is limited by the low content of lysine, one of the essential amino acids that we should incorporate through the diet. As part of this thesis work, we obtained transgenic wheat lines expressing the CI-2 gene from barley under the control of a promoter th...

  13. Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality.

    Science.gov (United States)

    Tamás, Cecília; Kisgyörgy, Boglárka N; Rakszegi, Mariann; Wilkinson, Mark D; Yang, Moon-Sik; Láng, László; Tamás, László; Bedo, Zoltán

    2009-07-01

    An amaranth (Amaranthus hypochondriacus) albumin gene, encoding the 35-kDa AmA1 protein of the seed, with a high content of essential amino acids, was used in the biolistic transformation of bread wheat (Triticum aestivum L.) variety Cadenza. The transformation cassette carried the ama1 gene under the control of a powerful wheat endosperm-specific promoter (1Bx17 HMW-GS). Southern-blot analysis of T(1) lines confirmed the integration of the foreign gene, while RT-PCR and Western-blot analyses of the samples confirmed the transcription and translation of the transgene. The effects of the extra albumin protein on the properties of flour, produced from bulked T(2) seeds, were calculated using total protein and essential amino acid content analysis, polymeric/monomeric protein and HMW/LMW glutenin subunit ratio measurements. The results indicated that not only can essential amino acid content be increased, but some parameters associated with functional quality may also be improved because of the expression of the AmA1 protein.

  14. Bran characteristics influencing quality attributes of whole wheat Chinese steamed bread

    Science.gov (United States)

    This study investigated the variations in the characteristics of brans obtained from a pilot-scale milling of 17 soft red winter wheat varieties and their influences on the quality of whole wheat northern-style Chinese steamed bread (CSB) prepared from blends of a base flour and brans of different w...

  15. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration.

    Science.gov (United States)

    Xue, Cheng; Auf'm Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.

  16. Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration

    Directory of Open Access Journals (Sweden)

    Cheng eXue

    2016-06-01

    Full Text Available The use of late nitrogen (N fertilization (N application at late growth stages of wheat, e.g. booting, heading or anthesis to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS, which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.

  17. Improved wheat for baking.

    Science.gov (United States)

    Faridi, H; Finley, J W

    1989-01-01

    To bakers, wheat quality means the performance characteristics of the flour milled from the wheat when used in specific wheat products. The tremendous increase in the number of wheat cultivars grown in the U.S. in recent years, along with the unusual climate, new advances in milling technology, and increased automation of baking lines, have resulted in bakery production problems partly attributed to wheat flour quality. In this review various factors affecting wheat quality are explained. Concerns of bread and cookie/cracker manufacturers on deterioration of the wheat quality are discussed, and, finally, some solutions are proposed.

  18. Quality characteristics of northern-style Chinese steamed bread prepared from soft red winter wheat flours with waxy wheat flour substitution

    Science.gov (United States)

    Quality characteristics of Chinese steamed bread (CSB) prepared from two soft red winter (SRW) wheat flours blended with 0-30% waxy wheat flour (WWF) were determined to estimate the influence of starch amylose content. The increased proportion of WWF in blends raised mixograph absorption with insign...

  19. Evaluation of Pakistani wheat germplasm for bread quality based on allelic variation in HMW glutenin subunits

    Energy Technology Data Exchange (ETDEWEB)

    Tabasum, A; Iqbal, N; Hameed, A; Arshad, R [Nuclear Institute for Agriculture and Biology, Faisalabad (Pakistan)

    2011-06-15

    Seventy six Pakistani wheat genotypes including land races were investigated for Bread quality (BQ) based on allelic variation in HMW glutenin subunits at the Glu-1 loci through SDS- polyacrylamide gel electropherosis. Twenty five different allelic combinations were detected with a total of 14 Glu-1 loci. Highest polymorphism was revealed by Glu-B locus and some single/ rare sub units were also screened out. The frequencies of dominant subunits were 50% for 2*, 42.11% for subunit pair 17+18 and 48.68% for 5+10 and 2+12 respectively. The quality scores displayed a range from 4 to 10, however generally good quality score of eight was more frequent (39. 47%). The highest quality scores of 10 and 9 were observed in 22.36% and 19.74% of genotypes respectively. The UPGMA analysis grouped genotypes into three major with two additional sub clusters for each. The cluster 'a' 'b' and 'C' were separated at 73% genetic distance which was further differentiated at a genetic distance of 50% into their sub clusters. Pakistani wheat varieties/land races exhibited large variation in term of HMW-GS. The generated information will lead to the pyrimiding of sub units for high BQ through mission oriented marker assisted breeding programmes for quality improvement of wheat. (author)

  20. Evaluation of Pakistani wheat germplasm for bread quality based on allelic variation in HMW glutenin subunits

    International Nuclear Information System (INIS)

    Tabasum, A.; Iqbal, N.; Hameed, A.; Arshad, R.

    2011-01-01

    Seventy six Pakistani wheat genotypes including land races were investigated for Bread quality (BQ) based on allelic variation in HMW glutenin subunits at the Glu-1 loci through SDS- polyacrylamide gel electropherosis. Twenty five different allelic combinations were detected with a total of 14 Glu-1 loci. Highest polymorphism was revealed by Glu-B locus and some single/ rare sub units were also screened out. The frequencies of dominant subunits were 50% for 2*, 42.11% for subunit pair 17+18 and 48.68% for 5+10 and 2+12 respectively. The quality scores displayed a range from 4 to 10, however generally good quality score of eight was more frequent (39. 47%). The highest quality scores of 10 and 9 were observed in 22.36% and 19.74% of genotypes respectively. The UPGMA analysis grouped genotypes into three major with two additional sub clusters for each. The cluster 'a' 'b' and 'C' were separated at 73% genetic distance which was further differentiated at a genetic distance of 50% into their sub clusters. Pakistani wheat varieties/land races exhibited large variation in term of HMW-GS. The generated information will lead to the pyrimiding of sub units for high BQ through mission oriented marker assisted breeding programmes for quality improvement of wheat. (author)

  1. Chemometric Analysis of High Molecular Mass Glutenin Subunits and Image Data of Bread Crumb Structure from Croatian Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    Zorica Jurković

    2002-01-01

    Full Text Available The aim of this work is to investigate functional relationships among wheat properties, high molecular mass (weight (HMW glutenin subunits and bread quality produced from eleven Croatian wheat cultivars by chemometric analysis. HMW glutenin subunits were fractionated by sodium dodecylsulfate polyacrylamid gel electrophoresis (SDS-PAGE and subsequently analysed by scanning densitometry in order to quantify HMW glutenin fractions. Wheat properties are characterised by four variables: protein content, sedimentation value, wet gluten and gluten index. Bread quality is assessed by the standard measurement of loaf volume, and visual quality of bread slice is quantified by 8 parameters by the use of computer image analysis. The data matrix with 21 columns (measured variables and 11 rows (cultivars is analysed for determination of number of latent variables. It was found that the first two latent variables account for 92, 85 and 87 % of variance of wheat quality properties, HMW glutenin fractions, and the bread quality parameters, respectively. Classification and functional relationships are discussed from the case data (cultivars and variable projections to the planes of the first two latent variables. Between Glu-D1y proportion and the bread quality parameters (standard parameter loaf volume and bread crumb cell area fraction determined by image analysis the strongest positive correlations are found r = 0.651 and r = 0.885, respectively. Between Glu-B1x proportion and the bread quality parameters the strongest negative correlations are found r =-0.535 and r = –0.841, respectively. The results are discussed in view of possible development of new and improvement of existing wheat cultivars and optimisation of bread production.

  2. Development of a wheat-Aegilops searsii substitution line with positively affecting Chinese steamed bread quality.

    Science.gov (United States)

    Du, Xuye; Ma, Xin; Min, Jingzhi; Zhang, Xiaocun; Jia, Zhenzhen

    2018-03-01

    A wheat- Aegilops searsii substitution line GL1402, in which chromosome 1B was substituted with 1S s from Ae. searsii , was developed and detected using SDS-PAGE and GISH. The SDS-PAGE analysis showed that the HMW-GS encoded by the Glu-B1 loci of Chinese Spring was replaced by the HMW-GS encoded by the Glu-1S s loci of Ae. searsii . Glutenin macropolymer (GMP) investigation showed that GL1402 had a much higher GMP content than Chinese Spring did. A dough quality comparison of GL1402 and Chinese Spring indicated that GL1402 showed a significantly higher protein content and middle peak time (MPT), and a smaller right peak slope (RPS). Quality tests of Chinese steamed bread (CSB) showed that the GL1402 also produced good steamed bread quality. These results suggested that the substitution line is a valuable breeding material for improving the wheat processing quality.

  3. Evaluation of Grain Quality in Bread Wheat Recombinant Inbred Lines Under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    H. Shahbazi

    2014-04-01

    Full Text Available To study drought stress effect on grain quality properties of wheat, an experiment was conductedusing 169 recombinant inbreed lines (RILS under water stress and non-stress condition and with two separated lattice designs. Grain yield, protein yield, protein content, volume of Zeleny sediment, grain hardness, water absorption, grain moisture content and grain dry matter were evaluated. Analysis of variance showed that there were significant differences among the lines for all traits. Moreover, comparison between two lines in two environmental conditions showed, the quality in bread wheat under drought stress conditions due to increment of protein yield is improved. Protein yield in both irrigation regimes has a significant and negative correlation with grain moisture and in the other hand, significant and positive correlation with the grain hardiness dry matter, Zeleny sedimentation and water intake in both conditions. The results showed that the identification of favorable quality characteristics in optimum and stressed conditions were possible and the lines with high grain quality can be used in breeding programs for improving of baking quality. Although some drought sensitive genotypes possessed a favorable baking quality but their grain yield was low.

  4. Quality and sensory characteristics of hard red wheat after residential storage for up to 32 y.

    Science.gov (United States)

    Rose, Devin J; Ogden, Lynn V; Dunn, Michael L; Jamison, Rachel G; Lloyd, Michelle A; Pike, Oscar A

    2011-01-01

    Samples of hard red wheat packaged for long-term storage, ranging in age from 0 to 32 y, were obtained from donors in residential households. All samples had been stored under nonabusive conditions (7% to 10% moisture, 13 to 27 °C). Selected quality parameters of the wheat (moisture, thiamin, free fatty acids, flour extraction rate, bread loaf volume, and bread firmness) and sensory properties of bread made from the stored wheat (aroma, appearance, texture, flavor, overall liking, acceptance for use as part of the regular diet, and acceptance for use in emergency situations) were evaluated. Free fatty acids increased significantly from 0.897 to 11.8 μmol/g, and flour extraction rate decreased significantly from 76.5% to 69.9% over time. None of the other quality parameters measured (moisture, thiamin, bread loaf volume, and bread firmness) were significantly correlated with wheat storage time. Panelists who frequently or occasionally consume whole wheat bread rated all breads made from the stored wheat with hedonic scores (9-point scale) of at least 6.4 (like slightly to moderately). Consumer ratings of bread texture, flavor, and overall acceptability were negatively correlated with storage time (P baking quality. Therefore, we tested wheat that had been stored under residential conditions for up to 32 y to determine its functional quality and consumer acceptability. Our results indicate that wheat of low moisture (7% to 10%) packaged in sealed cans and stored for up to 32 y at or below typical room temperature retains quality and can be made into bread that is well accepted by consumers. Thus, whole wheat has good long-term storage stability and can be recommended for emergency food supplies.

  5. Sensory Quality of Wheat and Cassava Breads as Affected by Some ...

    African Journals Online (AJOL)

    The effects of some leguminous seed flours (LSF) on the quality of wheat and cassava breads were investigated. Three LSF, namely Brachystegia eurycoma, Detarium microcarpum, and Mucuna sloanei were added into wheat flour and cassava flour at 0 (control), 0.5, 1.0, 1.5, and 2.0% of the flour basis. The different flour ...

  6. Opportunities in Tajikistan to breed wheat varieties resistant to seed-borne diseases and improved baking quality

    OpenAIRE

    Husenov, Bahromiddin

    2013-01-01

    Wheat seed-borne diseases and options for improving baking quality of wheat, as well as the role of genotypes for breeding to achieve high yield and quality are the key issues discussed in this introductory paper. The importance of wheat for Tajikistan and how to achieve food security goals in the country is also elucidated. Wheat seed-borne diseases are caused mostly by fungi. Loose Smut (Ustilago tritici), Common Bunt (Tilletia laevis and T.caries), Karnal Bunt (T.indica), Dwarf Bunt (T....

  7. Variable selection based near infrared spectroscopy quantitative and qualitative analysis on wheat wet gluten

    Science.gov (United States)

    Lü, Chengxu; Jiang, Xunpeng; Zhou, Xingfan; Zhang, Yinqiao; Zhang, Naiqian; Wei, Chongfeng; Mao, Wenhua

    2017-10-01

    Wet gluten is a useful quality indicator for wheat, and short wave near infrared spectroscopy (NIRS) is a high performance technique with the advantage of economic rapid and nondestructive test. To study the feasibility of short wave NIRS analyzing wet gluten directly from wheat seed, 54 representative wheat seed samples were collected and scanned by spectrometer. 8 spectral pretreatment method and genetic algorithm (GA) variable selection method were used to optimize analysis. Both quantitative and qualitative model of wet gluten were built by partial least squares regression and discriminate analysis. For quantitative analysis, normalization is the optimized pretreatment method, 17 wet gluten sensitive variables are selected by GA, and GA model performs a better result than that of all variable model, with R2V=0.88, and RMSEV=1.47. For qualitative analysis, automatic weighted least squares baseline is the optimized pretreatment method, all variable models perform better results than those of GA models. The correct classification rates of 3 class of 30% wet gluten content are 95.45, 84.52, and 90.00%, respectively. The short wave NIRS technique shows potential for both quantitative and qualitative analysis of wet gluten for wheat seed.

  8. Integrated use of biochar: a tool for improving soil and wheat quality of degraded soil under wheat-maize cropping pattern

    International Nuclear Information System (INIS)

    Ali, K.; Arif, M.; Jan, M.T.

    2015-01-01

    Wheat quality, nutrient uptake and nutrient use efficiency are significantly influenced by nutrient sources and application rate. To investigate the integrative effect of biochar, farmyard manure (FYM) and nitrogen (organic and inorganic soil amendments) in a wheat-maize cropping system, a two year study was designed to assess the interactive outcome of biochar, FYM and nitrogenous fertilizer on wheat nitrogen (N) parameters and associated soil quality parameters. Three levels of biochar (0, 25 and 50 t ha-1), two levels of FYM (5 and 10 t ha-1) and two levels of nitrogen fertilizer (60 and 120 kg ha-1) were used in the study. Biochar application displayed a significantly increased in wheat leaf, stem, straw and grain N content; grain and total N-uptake and grain protein content by 24, 20, 24, 56, 50, 17 and 20% respectively. Similarly, biochar application significantly increased soil total N (TN) and soil mineral N (SMN) by 63 and 40% respectively in second year. FYM application increased grain, leaf and straw N content by 20, 19.5 and 18% respectively, and increased total N-uptake and grain protein content by 49 and 19% respectively. FYM increased soil TN and SMN by 63 and 32% in both the years of the experiment. Mineral N application increased soil TN by over a half and SMN by a third, and grain protein content increased 16%. In contrast, nitrogen use efficiency (NUE) decreased for all amendments relative to the control. However, biochar treated plots improved NUE by 38% compared to plots without biochar. In conclusion, this field experiment has illustrated the potential of biochar to bring about short-term benefits in wheat and soil quality parameters in wheat-maize cropping systems. However, the long-term benefits remain to be quantified. (author)

  9. Predicting Hybrid Performances for Quality Traits through Genomic-Assisted Approaches in Central European Wheat

    KAUST Repository

    Liu, Guozheng

    2016-07-06

    Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1) examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2) explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3) investigate the effects of marker density and the composition and size of the training population on the accuracy of prediction of hybrid performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum L.) and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six environments. The 135 parental lines were genotyped using a 90k single-nucleotide polymorphism array. Genome-wide association mapping initially suggested presence of several quantitative trait loci (QTLs), but cross-validation rather indicated the absence of major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection substantially outperformed marker-assisted selection in predicting hybrid performance. A resampling study revealed that increasing the effective population size in the estimation set of hybrids is relevant to boost the accuracy of prediction for an unrelated test population.

  10. Predicting Hybrid Performances for Quality Traits through Genomic-Assisted Approaches in Central European Wheat.

    Directory of Open Access Journals (Sweden)

    Guozheng Liu

    Full Text Available Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1 examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2 explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3 investigate the effects of marker density and the composition and size of the training population on the accuracy of prediction of hybrid performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum L. and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six environments. The 135 parental lines were genotyped using a 90k single-nucleotide polymorphism array. Genome-wide association mapping initially suggested presence of several quantitative trait loci (QTLs, but cross-validation rather indicated the absence of major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection substantially outperformed marker-assisted selection in predicting hybrid performance. A resampling study revealed that increasing the effective population size in the estimation set of hybrids is relevant to boost the accuracy of prediction for an unrelated test population.

  11. Predicting Hybrid Performances for Quality Traits through Genomic-Assisted Approaches in Central European Wheat

    KAUST Repository

    Liu, Guozheng; Zhao, Yusheng; Gowda, Manje; Longin, C. Friedrich H.; Reif, Jochen C.; Mette, Michael F.

    2016-01-01

    Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1) examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2) explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3) investigate the effects of marker density and the composition and size of the training population on the accuracy of prediction of hybrid performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum L.) and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six environments. The 135 parental lines were genotyped using a 90k single-nucleotide polymorphism array. Genome-wide association mapping initially suggested presence of several quantitative trait loci (QTLs), but cross-validation rather indicated the absence of major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection substantially outperformed marker-assisted selection in predicting hybrid performance. A resampling study revealed that increasing the effective population size in the estimation set of hybrids is relevant to boost the accuracy of prediction for an unrelated test population.

  12. Predicting Hybrid Performances for Quality Traits through Genomic-Assisted Approaches in Central European Wheat

    Science.gov (United States)

    Liu, Guozheng; Zhao, Yusheng; Gowda, Manje; Longin, C. Friedrich H.; Reif, Jochen C.; Mette, Michael F.

    2016-01-01

    Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1) examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2) explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3) investigate the effects of marker density and the composition and size of the training population on the accuracy of prediction of hybrid performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum L.) and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six environments. The 135 parental lines were genotyped using a 90k single-nucleotide polymorphism array. Genome-wide association mapping initially suggested presence of several quantitative trait loci (QTLs), but cross-validation rather indicated the absence of major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection substantially outperformed marker-assisted selection in predicting hybrid performance. A resampling study revealed that increasing the effective population size in the estimation set of hybrids is relevant to boost the accuracy of prediction for an unrelated test population. PMID:27383841

  13. The Relationship Between Protein Fractions of Wheat Gluten and the Quality of Ring-Shaped Rolls Evaluated by the Echolocation Method

    Directory of Open Access Journals (Sweden)

    Grazina Juodeikiene

    2005-01-01

    Full Text Available This paper presents the results of the relationship between separate protein fractions and the quality of baked ring-shaped rolls. The qualitative and quantitative protein composition of flour derived from some wheat varieties grown in Lithuania has been determined. The protein properties are evaluated by SDS-PAGE. A new method of the analysis of swelling, based on the principle of echolocation, has been used to determine the quality of this specific kind of baked goods. For the application of this method the wheat flour, which is most suitable for the production of ring-shaped rolls, made from the wheat variety Portal (Pasvalys PVRS, has been selected. This flour has the following quality parameters: proteins 10.5 %, gluten 22.0 %, gluten index 47 r.u. Correlation between the flour quality parameters and the quality of the final bread product shows that γ-gliadins (r=–0.63, LMM glutenins (r=0.55, HMM glutenins (r=0.63 and the content of gluten (r=0.87 have the greatest influence on the quality of the ring-shaped rolls.

  14. Chemometric Analysis of High Molecular Mass Glutenin Subunits and Image Data of Bread Crumb Structure from Croatian Wheat Cultivars

    OpenAIRE

    Zorica Jurković; Rezica Sudar; Damir Magdić; Daniela Horvat; Želimir Kurtanjek

    2002-01-01

    The aim of this work is to investigate functional relationships among wheat properties, high molecular mass (weight) (HMW) glutenin subunits and bread quality produced from eleven Croatian wheat cultivars by chemometric analysis. HMW glutenin subunits were fractionated by sodium dodecylsulfate polyacrylamid gel electrophoresis (SDS-PAGE) and subsequently analysed by scanning densitometry in order to quantify HMW glutenin fractions. Wheat properties are characterised by four variables: protein...

  15. Assessment of chapatti quality of wheat varieties based on physicochemical, rheological and sensory traits.

    Science.gov (United States)

    Kundu, Manju; Khatkar, Bhupendar Singh; Gulia, Neelam

    2017-07-01

    Fifty wheat varieties were assessed for chapatti quality using grain characteristics, dough rheological properties and pasting characteristics. Results revealed that 88% of wheat varieties studied were medium-hard to hard based on kernel texture. Water absorption and damaged starch were found to be important parameters for chapatti quality as both parameters had significant positive effect on the pliability and puffing height of chapatti. Protein content and gluten strength parameters like SDS sedimentation volume, dough stability and gluten index were found to have a negative impact on chapatti quality. Based on chapatti quality assessment the wheat varieties were classified into four distinct clusters viz. good, acceptable, fair and poor for chapatti making. It was elucidated that 46% of the varieties studied were good to acceptable for chapatti making, while 54% resulted in fair or poor chapatti quality thereby clearly indicating the need to establish and substantiate the development of product-specific varieties. Copyright © 2016. Published by Elsevier Ltd.

  16. Yield and grain quality of winter wheat under Southern Steppe of Ukraine growing conditions

    Directory of Open Access Journals (Sweden)

    М. М. Корхова

    2014-12-01

    Full Text Available The results of three years study of the effect of sowing time and seed application rates on yield and grain quality of different varieties of winter wheat under the conditions of South Steppe of Ukraine were presented. It was found that winter wheat provides optimal combination of high yield and grain quality in case of sowing in October 10 with seed application rate of 5,0 million seeds/ha. The highest yield – 4,59 t/ha on average in 2011–2013 was obtained for the variety of Natalka when sowing in October 10 with seed application rate  of 5 million germinable seeds. With increasing seed application rate from 3 to 5 million seeds/ha, protein content in winter wheat was decreased by 0,3%, gluten – by 0,6%. The variety Natalka  formed the highest quality grains when sowing in October 20 with seed application rate of 3 million seeds/ha, in this case protein content was 15,8%, gluten – 32,9%. It is proved that early sowing time  – September 10 leads to yields reduction and grain   quality deterioration for all winter wheat varieties.

  17. QUALITY EVALUATION OF WHEAT-PUMPKIN-GOLDEN FLAXSEED COMPOSITE BREAD

    Directory of Open Access Journals (Sweden)

    Georgiana Gabriela CODINĂ

    2017-06-01

    Full Text Available The purpose of this study was to optimize the level of wheat, pumpkin seed (PSF and golden flaxseed flour (GFs that can be used in order to obtain high quality bread. The independent variables levels used were between 90 and 95 % for wheat flour and between 2.5% and 7.5% for pumpkin seed and golden flaxseed flour. The quality parameters analyzed were the following: loaf volume, porosity, elasticity and bread crumb structure. The mixture experiment design was used for optimization. Special quadratic mixture models were obtained for all the dependent variables. The optimum mixture levels were of 92.43% for wheat flour, 5.06% for pumkin seed flour and 2.51% for golden seed flour. The values of these flours in terms of loaf volume of bread, porosity and elasticity were of 422 cm3/100g, 76.15%, and 92.82%, respectively. The textural properties (hardness, cohesiveness, adhesiveness, viscosity, elasticity, gumminess, chewiness were analyzed for the control sample and the optimum bread sample obtained with PSF and GFs addition. For the last one mentioned hardness, elasticity, gumminess and chewiness increase with 25.03%, 7.31%, 23.41%, 25.77% while the cohesiveness value decreases with 1.47%.

  18. Basis for selecting soft wheat for end-use quality

    Science.gov (United States)

    Within the United States, end-use quality of soft wheat (Triticum aestivum L.) is determined by several genetically controlled components: milling yield, flour particle size, and baking characteristics related to flour water absorption caused by glutenin macropolymer, non-starch polysaccharides, and...

  19. Relationships between falling number, a-Amylase activity, milling, and sponge cake quality of soft white wheat

    Science.gov (United States)

    Falling Number of wheat is an important quality predictor and carries with it significant economic impact. Lower Falling Numbers are associated with higher a-amylase activity and poorer soft wheat end-use quality, especially sponge cake. In the present study two sample sets were examined, the first ...

  20. Quality characteristics of bread produced from wheat, rice and maize flours.

    Science.gov (United States)

    Rai, Sweta; Kaur, Amarjeet; Singh, Baljit; Minhas, K S

    2012-12-01

    Rice (Oryza sativa) flour and maize (Zea mays) meal substitution in wheat (Triticum aestivum) flour, from 0 to 100% each, for the production of bread was investigated. The proximate analysis, pasting properties, bread making qualities of raw materials and sensory evaluation of the bread samples were determined. The pasting temperature increased with increased percentage of rice flour and maize meal. But the other pasting characters decreased with the higher proportion of rice flour. The baking absorption was observed to increase with higher level of maize meal but it decreased when level of rice flour was increased. Loaf weight (g) decreased with progressive increase in the proportion of maize meal but increased when rice flour incorporation was increased. Loaf volume, loaf height and specific volume decreased for progressively higher level of maize meal and rice flour. The sensory evaluation revealed that 25% replacement of wheat flour was found to be more acceptable than control sample.

  1. Bread Wheat Quality: Some Physical, Chemical and Rheological Characteristics of Syrian and English Bread Wheat Samples

    Directory of Open Access Journals (Sweden)

    Abboud Al-Saleh

    2012-11-01

    Full Text Available The relationships between breadmaking quality, kernel properties (physical and chemical, and dough rheology were investigated using flours from six genotypes of Syrian wheat lines, comprising both commercially grown cultivars and advanced breeding lines. Genotypes were grown in 2008/2009 season in irrigated plots in the Eastern part of Syria. Grain samples were evaluated for vitreousness, test weight, 1000-kernel weight and then milled and tested for protein content, ash, and water content. Dough rheology of the samples was studied by the determination of the mixing time, stability, weakness, resistance and the extensibility of the dough. Loaf baking quality was evaluated by the measurement of the specific weight, resilience and firmness in addition to the sensory analysis. A comparative study between the six Syrian wheat genotypes and two English flour samples was conducted. Significant differences were observed among Syrian genotypes in vitreousness (69.3%–95.0%, 1000-kernel weight (35.2–46.9 g and the test weight (82.2–88.0 kg/hL. All samples exhibited high falling numbers (346 to 417 s for the Syrian samples and 285 and 305 s for the English flours. A significant positive correlation was exhibited between the protein content of the flour and its absorption of water (r = 0.84 **, as well as with the vitreousness of the kernel (r = 0.54 *. Protein content was also correlated with dough stability (r = 0.86 **, extensibility (r = 0.8 **, and negatively correlated with dough weakness (r = −0.69 **. Bread firmness and dough weakness were positively correlated (r = 0.66 **. Sensory analysis indicated Doumah-2 was the best appreciated whilst Doumah 40765 and 46055 were the least appreciated which may suggest their suitability for biscuit preparation rather than bread making.

  2. Bread Wheat Quality: Some Physical, Chemical and Rheological Characteristics of Syrian and English Bread Wheat Samples.

    Science.gov (United States)

    Al-Saleh, Abboud; Brennan, Charles S

    2012-11-22

    The relationships between breadmaking quality, kernel properties (physical and chemical), and dough rheology were investigated using flours from six genotypes of Syrian wheat lines, comprising both commercially grown cultivars and advanced breeding lines. Genotypes were grown in 2008/2009 season in irrigated plots in the Eastern part of Syria. Grain samples were evaluated for vitreousness, test weight, 1000-kernel weight and then milled and tested for protein content, ash, and water content. Dough rheology of the samples was studied by the determination of the mixing time, stability, weakness, resistance and the extensibility of the dough. Loaf baking quality was evaluated by the measurement of the specific weight, resilience and firmness in addition to the sensory analysis. A comparative study between the six Syrian wheat genotypes and two English flour samples was conducted. Significant differences were observed among Syrian genotypes in vitreousness (69.3%-95.0%), 1000-kernel weight (35.2-46.9 g) and the test weight (82.2-88.0 kg/hL). All samples exhibited high falling numbers (346 to 417 s for the Syrian samples and 285 and 305 s for the English flours). A significant positive correlation was exhibited between the protein content of the flour and its absorption of water (r = 0.84 **), as well as with the vitreousness of the kernel (r = 0.54 *). Protein content was also correlated with dough stability (r = 0.86 **), extensibility (r = 0.8 **), and negatively correlated with dough weakness (r = -0.69 **). Bread firmness and dough weakness were positively correlated (r = 0.66 **). Sensory analysis indicated Doumah-2 was the best appreciated whilst Doumah 40765 and 46055 were the least appreciated which may suggest their suitability for biscuit preparation rather than bread making.

  3. Upgrading of shamy wheat bread quality through supplement with flour of certain gamma irradiated legumes

    International Nuclear Information System (INIS)

    Nassef, A.E.

    1997-01-01

    Soybean flour,chick peas flour and lupines were irradiated at 0,5 and 10 kGy and individually used to replace 5,10 or 15% of wheat flour in shamy bread. The effect of supplementation of wheat flour with these legume flours on the major, chemical composition and nutritional quality of bread was studied. Results indicated that protein, ash and fiber contents of supplemented shamy bread were higher than the control. On the other hand, the amino acids of the shamy wheat bread supplemented irradiated legumes flour, improved the quality (water retention capacity, stailing rate and bread freshness) of bread

  4. Improvement of baking quality traits through a diverse soft winter wheat population

    Science.gov (United States)

    Breeding baking quality improvements into soft winter wheat (SWW) entails crossing lines based on quality traits, assessing new lines, and repeating several times as little is known about the genetics of these traits. Previous research on SWW baking quality focused on quantitative trait locus and ge...

  5. Effect of salinity on grain yield and grain quality of wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Abbas, G.; Saqib, M.; Rafique, Q.; Rahman, A.U.; Akhtar, J.; Haq, M.A.U.

    2013-01-01

    Salinity is one of the important stresses resulting in the reduction of growth and yield of different crops including wheat. In saline soils the concentration of Na/sup +/ and Cl/sup -/ is higher accompanied with the decreased K/sup +/: Na/sup +/ ratio thus severely affecting the growth and yield of crops. The effect of salinity on the growth and yield of wheat is well documented, whereas there is very little information about salinity tolerance and grain quality of wheat. Present study was conducted to assess the effect of salinity on yield components, ionic relations and grain quality and to understand the relationship among these parameters. A pot experiment was conducted using wheat genotype Pasban-90. There were two treatments i.e. non-saline (0.33 dS m/sup -1/) and saline (15 dS m/sup -1/) with five replications. Salinity resulted in a significant reduction of the grain protein, fat and fiber contents. Similarly yield components were significantly reduced. Maximum reduction was noted in case of number of tillers plant/sup -1/, followed by grain weight plant/sup -1/. High Na/sup +/ and low K/sup +/, P concentration and K/sup +/: Na/sup +/ ratio was observed in the shoot, root and grain. This disturbed ionic composition seems to be apparent cause of yield reduction and deterioration of wheat quality under salinity. (author)

  6. IDENTIFICATION OF TECHNOLOGICALLY IMPORTANT GENES AND THEIR PRODUCTS IN THE COLLECTION OF BREAD WHEAT GENOTYPES

    Directory of Open Access Journals (Sweden)

    Milan Chňapek

    2015-02-01

    Full Text Available Wheat is the second most cultivated crop on the world and is very important plant for feed not only mankind but also animals. Because of this is necessary to develop new varieties with better properties. Bread making quality of wheat grain is one of the most important paramaters for quality evaluation. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE of wheat storage proteins and allelic specific polymerase chain reaction (AS-PCR are analysis suitable for identification, differentiation and characterization of bread wheat (Triticum aestivum L.. There were analysed 16 genotypes of new varieties of bread wheat in our work by SDS-PAGE and obtained results were verified by AS-PCR. Analysed genotypes of bread wheat genotypes were homogenous and single line with very good bread making quality. Our results confirmed hypothesis, that cultivated bread wheat genotypes are uniformed with high production and quality but there is a risk of sensitivity to environmental conditions. SDS-PAGE analyses of wheat grain proteins are fast and not very expensive technique, which provide us information of bread making quality of grains. However, there is possibility of environmental influence on protein synthesis and because of this is necessary to couple these analysis with analysis of DNA.

  7. Modelling the effects of transglutaminase and L-ascorbic acid on substandard quality wheat flour by response surface methodology

    Directory of Open Access Journals (Sweden)

    Šimurina Olivera D.

    2014-01-01

    Full Text Available In recent decade, there have been observed extreme variations in climatic conditions which in combination with inadequate agro techniques lead to decreased quality of mercantile wheat, actally flour. The application of improvers can optimise the quality of substandard wheat flour. This paper focuses to systematic analysis of individual and interaction effects of ascorbic acid and transglutaminase as dough strengthening improvers. The effects were investigated using the Response Surface Methodology. Transglutaminase had much higher linear effect on the rheological and fermentative properties of dough from substandard flour than L-ascorbic acid. Both transglutaminase and L-ascorbic acid additions had a significant linear effect on the increase of bread specific volume. Effects of transglutaminase and ascorbic acid are dependent on the applied concentrations and it is necessary to determine the optimal concentration in order to achieve the maximum quality of the dough and bread. Optimal levels of tested improvers were determined using appropriate statistical techniques which applied the desirability function. It was found that the combination of 30 mg/kg of transglutaminase and 75.8 mg/kg of L-ascorbic acid achieved positive synergistic effect on rheological and fermentative wheat dough properties, as well on textural properties and specific volume of bread made from substandard quality flour.

  8. The Impact of Novel Fermented Products Containing Extruded Wheat Material on the Quality of Wheat Bread

    Directory of Open Access Journals (Sweden)

    Lina Vaiciulyte-Funk

    2011-01-01

    Full Text Available Lactobacillus sakei MI806, Pediococcus pentosaceus MI810 and Pediococcus acidilactici MI807, able to produce bacteriocin-like inhibitory substances, were originally isolated from Lithuanian spontaneous rye sourdough and adapted in the novel fermentation medium containing extruded wheat material. The novel fermented products (50 and 65 % moisture content were stored at the temperatures used in bakeries (15 days at 30–35 °C in the summer period or 20 days under refrigeration conditions at 0–6 °C. The number of lactic acid bacteria (LAB was determined during the storage of fermented products for 15–20 days. Furthermore, the effect of novel fermented products stored under different conditions on wheat bread quality was examined. Extruded wheat material was found to have a higher positive effect on LAB growth compared to the control medium by lowering the reduction of LAB populations in fermented products with the extension of storage time and increase of temperature. During storage, lower variation and lower decrease in LAB count were measured in the novel fermented products with a moisture content of 65 % compared to those with 50 %. Furthermore, this humidity allows for the production of a product with higher moisture content in continuous production processes. The addition of the new fermented products with 65 % humidity to the wheat bread recipe (10 % of the quantity of flour had a significant effect on bread quality: it increased the acidity of the crumb and specific volume of the bread, and decreased the fractal dimension of the crumb pores and crumb firmness. Based on the microbiological investigations of fermented products during storage and baking tests, the conditions of LAB cultivation in novel fermentation media were optimized (time of cultivation approx. 20 days at 0–6 °C and approx. 10 days at 30–35 °C.

  9. Effects of wheat supplementation levels on growth performance, blood profiles, nutrient digestibility, and pork quality in growing-finishing pigs

    Directory of Open Access Journals (Sweden)

    Tae Hee Han

    2017-08-01

    Full Text Available Objective This study was conducted to evaluate various wheat supplementation levels on growth performance, blood profiles, nutrient digestibility, and pork quality in growing-finishing pigs. Methods A total of 120 growing pigs ([Yorkshire×Landrace]×Duroc, with an average 27.75± 1.319 kg body weight, were used in growth trial. Pigs were allotted into each treatment by body weight and sex in 4 replicates with 6 pigs per pen in a randomized complete block design. Four-phase feeding programs were used in this experiment. The treatments included the following: i corn-soybean meal (SBM – based diet (CON, ii corn-SBM – based diet+15% of wheat (W15, iii corn-SBM – based diet+30% of wheat (W30, iv corn-SBM – based diet+45% of wheat (W45, and 5 corn-SBM–based diet+60% of wheat (W60. Results There was no significant difference in growth performance among the dietary treatments. However, the gain-to-feed (G:F ratio tended to increase (quadratic, p<0.08 when the pigs were fed a higher wheat diet during the finishing period. The digestibility of crude ash and fat tended to decrease as the wheat supplementation level increased (p<0.08. The proximate analysis of the longissimus muscle was not affected by the dietary level of wheat. The crude ash content in pork was decreased linearly as the wheat supplementation level increased (p = 0.05. There was no significant difference in the pH level, shear force, water holding capacity, and cooking loss of the pork. In pork and fat, L*, a*, and b* values were not significantly different among dietary treatments. Conclusion Wheat can be supplemented up to 60% in a growing-finishing pig without detrimental effects on growth and pork quality. The G:F ratio tended to improve in the finishing period by wheat inclusion.

  10. Quality and cost evaluation of bread produced from blends of wheat ...

    African Journals Online (AJOL)

    Background: This study was necessitated by the need to improve the nutritional quality of baked products, ensure their acceptability and the baker's profitability. Objective: The aim of the study therefore was to evaluate the quality and cost of bread produced from composite flours of wheat and partially defatted soy. Materials ...

  11. Modeling end-use quality in U. S. soft wheat germplasm

    Science.gov (United States)

    End-use quality in soft wheat (Triticum aestivum L.) can be assessed by a wide array of measurements, generally categorized into grain, milling, and baking characteristics. Samples were obtained from four regional nurseries. Selected parameters included: test weight, kernel hardness, kernel size, ke...

  12. THE COMPARISON OF QUALITY AND CHEMICAL COMPOSITION OF BREADS BAKED WITH RESIDUAL AND COMMERCIAL OAT FLOURS AND WHEAT FLOUR

    OpenAIRE

    Dorota Litwinek; Halina Gambuś; Gabriela Zięć; Renata Sabat; Anna Wywrocka-Gurgul; Wiktor Berski

    2013-01-01

    The aim of the present work was to compare the quality and nutritional value of breads with 50% addition of oat flours of different origin (commercial and residual – a by-product obtained during production of β-glucan preparation) to standard wheat bread. Commercial wheat and oat flours and residual oat flour, as well as wheat and 50/50% wheat/oat breads were used as material in this research. Quality of breads was evaluated by their volume, baking yield and total baking loss. Bread crumb tex...

  13. Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.

    Science.gov (United States)

    Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L

    2012-03-15

    Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.

  14. Effect of reducing agents on wheat gluten and quality characteristics of flour and cookies

    Directory of Open Access Journals (Sweden)

    Naveen KUMAR

    2013-12-01

    Full Text Available The aim of the present study was to determine the effect of reducing agents (Lcystine, glutathione and proteases on wheat gluten recovery and quality characteristics of dough and cookies. PBW-343 and RAJ-3765 wheat varieties were analysed for physico-chemical properties which indicated that wheat variety RAJ-3765 had superior quality characteristics in comparison to PBW-343. Wet gluten and dry gluten %yields were reduced with addition of reducing agents. As the concentration of reducing agents increased gluten, yield decreased further. The dough strength (resistance to extension decreased, whereas extension of dough increased significantly with the addition of reducing agents. Upon addition of reducing agents, spread factor increased, whereas hardness decreased. Glutathione was found to be the most effective reducing agent out of the three reducing agents used in this study.

  15. Evaluation of Wheat (Triticum aestivum, L. Seed Quality of Certified Seed and Farm-Saved Seed in Three Provinces of Iran

    Directory of Open Access Journals (Sweden)

    Khazaei Fardin

    2016-06-01

    Full Text Available The objective of this study was to study the seed quality aspects of wheat (Triticum aestivum L. and the extent of weed seed contamination present in wheat seeds produced in different regions of Iran. Four districts (cities, each including 12 fields (six certified seed fields and six farm-saved seed fields, were selected in each regions (provinces. One kilogram of the wheat seed sample was collected from each field for analysis in the laboratory. Wheat seeding was commonly done by farm-saved seed sourced from within the farm due to the high costs of certified seeds purchased from outside sources, followed by the low seed quality. The use of a farm-saved seed resulted in a higher germination rate and a lower mean time to germination compared with another system. The more positive temperatures experienced by mother plants could decrease the number of normal seedling and seedling length vigor index. Generally there was virtually no difference about physiological quality between certified seed and farm-saved seed sector that is related to lower quality of certified seed. The certified produced seeds had the lower number of weed seed, species and genus before and after cleaning. The highest seed purity and 1000 seed weight was obtained from the certified seed production system. The need for cleaning the farm-saved seed samples before sowing is one of the important findings of this survey.

  16. Productive performance and industrial quality of wheat genotypes grown in two environments

    Directory of Open Access Journals (Sweden)

    Omar Possatto Junior

    Full Text Available ABSTRACT Wheat flour can be allocated for manufacturing various products, but each purpose requires specificities defined by the industrial quality. The objective of this study was to evaluate the performance of experimental lines and commercial cultivars of wheat, in South and Southeast of Brazil and to identify genotypes with favorable characteristics of industrial quality. Twenty lines in the stage of cultivation and use and three commercial cultivars were evaluated for grain yield components (hectoliter weight and thousand-grain weight and features related to the industrial quality of the flour (protein, flour stability, sedimentation with sodium dodecyl sulfate and color. The genotypes CRX/CD104//ALC, LAJ96010/JSP//ALC and CRX/ALC//ALC showed favorable characteristics for biscuit production, while the genotypes ORL97061/ORL00241//CD104, SUZ6/WEAVER//TUI/3/SUP/4/CD104, ORL99396/ORL97061//SUP, CRX/CD104//ALC, ORL98231/IOR00131//ÔNIX, ORL94346/ALC//AVT/3/ÔNIX, CEP0033/ÔNIX/3/ÔNIX*2//TC14/2*SPEAR, Campo Real/VAN//ÔNIX, ORL97061/CD 104 and PMP/ORL98231//CRX have aptitude for baking. The evaluations were efficient for the classification and selection of genotypes in the wheat breeding program.

  17. Lactic Acid Bacteria Combinations for Wheat Sourdough Preparation and Their Influence on Wheat Bread Quality and Acrylamide Formation.

    Science.gov (United States)

    Bartkiene, Elena; Bartkevics, Vadims; Krungleviciute, Vita; Pugajeva, Iveta; Zadeike, Daiva; Juodeikiene, Grazina

    2017-10-01

    Different lactic acid bacteria (LAB) from spontaneous wheat sourdough were isolated, identified, and characterized by their growth, acidification rate, and carbohydrate metabolism. The combinations of isolated LAB (Pediococcus pentosaceus LUHS183 and Leuconostoc mesenteroides LUHS242, P. pentosaceus LUHS183 and Lactobacillus brevis LUHS173, P. pentosaceus LUHS183 and Enterococcus pseudoavium LUHS 234, P. pentosaceus LUHS183 and Lactobacillus curvatus LUHS51, Lactobacillus plantarum LUHS135 and L. curvatus LUHS51, L. plantarum LUHS135 and P. pentosaceus LUHS183) were used for wheat sourdough production, and the effects of LAB fermentation in sourdoughs on wheat bread quality parameters and acrylamide formation were evaluated. All of the tested strains (except E. pseudoavium LUHS 234) were able to ferment l-arabinose, d-ribose, d-galactose, d-fructose, and d-maltose and showed high tolerance to acidic conditions. The highest overall acceptability (135.8 ± 5.5 mm) was found in the bread produced with L. plantarum and P. pentosaceus sourdough. This group of bread also showed the highest shape coefficient (2.59 ± 0.02), the highest specific volume (3.40 ± 0.03 cm 3 /g), the highest porosity (76.6 ± 0.3%), and the highest moisture content (33.7%). Selected sourdoughs reduced acrylamide content in bread samples by 29.5% (sourdough prepared with P. pentosaceus and L. mesenteroides) to 67.2% (sourdough prepared with P. pentosaceus and L. curvatus). These cultures potentially can be used to reduce acrylamide in breads. The data of this study have practical applications. L. plantarum and P. pentosaceus sourdoughs increases overall acceptability, specific volume, and porosity of wheat bread. Besides the fact that sourdoughs produced by using combinations of selected LAB strains improved the quality parameters of bread, fermentation with prepared sourdoughs also reduced the acrylamide content in wheat bread samples by 29.5% (sourdough prepared with P. pentosaceus

  18. Effect of the addition of wheat bran stream on dough rheology and bread quality

    Directory of Open Access Journals (Sweden)

    Iuliana Banu

    2012-08-01

    Full Text Available The milling by-products have high nutritional value and can be incorporated into white flour. This study was aimed at comparatively examining the rheological behaviour of the doughs made from wheat white flour with different levels (3-30% of bran streams incorporated and from wholewheat. The results indicated significant correlations between the ash content of the wheat bran streams incorporated into flour and Alveograph, Rheofermentograph and Mixolab parameters. The white flour sample with 25% wheat bran streams had the ash content similar to wholewheat, but the dough rheology was improved. The quality of the white flour bread with 25% wheat bran streams was improved compared to the wholemeal bread.

  19. Time Series Analysis of Wheat flour Price Shocks in Pakistan: A Case Analysis

    OpenAIRE

    Asad Raza Abdi; Ali Hassan Halepoto; Aisha Bashir Shah; Faiz M. Shaikh

    2013-01-01

    The current research investigates the wheat flour Price Shocks in Pakistan: A case analysis. Data was collected by using secondary sources by using Time series Analysis, and data were analyzed by using SPSS-20 version. It was revealed that the price of wheat flour increases from last four decades, and trend of price shocks shows that due to certain market variation and supply and demand shocks also play a positive relationship in price shocks in the wheat prices. It was further revealed th...

  20. Enrichment of Bread with Nutraceutical-Rich Mushrooms: Impact of Auricularia auricula (Mushroom) Flour Upon Quality Attributes of Wheat Dough and Bread.

    Science.gov (United States)

    Yuan, Biao; Zhao, Liyan; Yang, Wenjian; McClements, David Julian; Hu, Qiuhui

    2017-09-01

    Edible mushrooms contain a variety of bioactive molecules that may enhance human health and wellbeing. Consequently, there is increasing interest in fortifying functional foods with these nutraceutical-rich substances. However, incorporation of mushroom-based ingredients into foods should not adversely affect the quality attributes of the final product. In this study, the impact of incorporating powdered Auricularia auricula, a widely consumed edible mushroom, into bread products was examined. The rheological and structural properties of wheat dough and bread supplemented with 0% to 10% (w/w) A. auricula flour were measured. Supplementation of wheat doughs with A. auricula flour increased the peak viscosity and enhanced their water holding capacity. Rapid viscosity analysis showed that peak and final viscosities of the blended flour (wheat flour with A. auricula flour) were higher than wheat flour alone. However, dough stability and elastic modulus were reduced by blending wheat flour with A. auricula flour. SEM observation showed that doughs with up to 5% (w/w) A. auricula flour had acceptable gluten network microstructure. Characterization of the quality attributes of bread indicated that incorporation of A. auricula flour at levels >5% negatively impacted bread volume, height, texture, and appearance. © 2017 Institute of Food Technologists®.

  1. Starch and protein analysis of wheat bread enriched with phenolics-rich sprouted wheat flour.

    Science.gov (United States)

    Świeca, Michał; Dziki, Dariusz; Gawlik-Dziki, Urszula

    2017-08-01

    Wheat flour in the bread formula was replaced with sprouted wheat flour (SF) characterized by enhanced nutraceutical properties, at 5%, 10%, 15% and 20% levels. The addition of SF slightly increased the total protein content; however, it decreased their digestibility. Some qualitative and quantitative changes in the electrophoretic pattern of proteins were also observed; especially, in the bands corresponding with 27kDa and 15-17kDa proteins. These results were also confirmed by SE-HPLC technique, where a significant increase in the content of proteins and peptides (molecular masses breads with 20% of SF. Bread enriched with sprouted wheat flour had more resistant starch, but less total starch, compared to control bread. The highest in vitro starch digestibility was determined for the control bread. The studied bread with lowered nutritional value but increased nutritional quality can be used for special groups of consumers (obese, diabetic). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Quality Parameters Of Wheat Bread Enriched With Pumpkin (Cucurbita Moschata By-Products

    Directory of Open Access Journals (Sweden)

    Kampuse Solvita

    2015-12-01

    Full Text Available Pumpkin processing into puree, juice, candied fruit and pumpkin seed oil results in large amount of by-products. Pumpkins are rich in carotenes, vitamins, minerals, pectin and dietary fibre. The aim of the current study was to evaluate effect of pumpkin pomace and pumpkin residue powder on wheat bread quality. The total content of carotenes was analyzed by spectrophotometric method. The initial increase of pumpkin residue addition indicated increase in loaf volume, which started to decrease at higher amounts. Sensory evaluation (appearance; surface, crust; porosity; texture, crumb; taste, and flavour of wheat bread with pumpkin revealed very high consumer acceptance except sample with 50% pomace addition. Total carotene content and colour b* value in wheat bread increased by adding pumpkin by-products. It is recommended to add 5% and 10% of pumpkin powder and no more than 30% of pumpkin pomace (calculated per 100 kg of flour to dough for production of wheat bread with pumpkin by-product additions.

  3. Mutation breeding and studies in wheat and rice

    International Nuclear Information System (INIS)

    Bhagwat, S.G.; Das, B.K.; Suman, Bakshi; Vikash Kumar, K.

    2009-01-01

    Wheat and rice are important part of average Indian diet. Efforts are needed to incorporate resistance to various biotic and abiotic stress factors, quality attributes and higher yield potential in the changing scenario. Radiation induced mutations can play important role in these crops as the variability among the cultivars is low. Mutants in wheat for earliness without affecting quality were selected. Grain shape mutants were isolated using computer based image analysis. In rice mutants with short stature in Basmati type and short stature in salinity tolerant background were isolated. Markers have been developed or validated to facilitate combining stress tolerance/quality and agronomic traits. Studies are underway to understand nature of reduced height mutant in wheat and disease mimic mutants in rice. (author)

  4. Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.

    Science.gov (United States)

    Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng

    2017-08-01

    Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha -1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha -1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Fourier Transform Infrared Spectroscopic Studies Of Wheat In The Mid Infrared

    Science.gov (United States)

    Olinger, Jill M.; Griffiths, Peter R.

    1989-12-01

    Official grain standards of the United States state that wheat may be divided into seven classes which are: Durum, Red Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, White, and Mixed.1 Most end uses of wheat involve converting the grain into flour through one of a variety of grinding methods. The quality of wheat-based products is often very dependent upon the type or class of wheat which was used to make the flour. Pasta products, for example, are made almost exclusively from the flour of durum wheats, which are the hardest of the wheats listed above. The highest quality breads are produced using flour from wheats classed as hard, whereas cakes, cookies and pastries are considered best when flour from wheats classed as soft are used. It is obvious then that the capability of determining the class of a particular wheat, especially with respect to hardness, is of economic importance to growers, processors, and merchants of wheat and wheat products. Hardness has been measured in many different ways 2-5 but, as of yet, no one method has become the method of choice. This paper reports on the use of principal components analysis (PCA) of mid infrared diffuse reflectance (DR) spectra of diluted ground wheats to aid in the classification of those wheats with respect to their hardness. The theory and mathematics involved in a principal component analysis have been described elsewhere.9

  6. Physicochemical composition and glycemic index of whole grain bread produced from composite flours of quality protein maize and wheat

    Directory of Open Access Journals (Sweden)

    C. T. Akanbi

    2016-01-01

    Full Text Available This study entails quality assessment of whole grain bread produced from composite flours of quality protein maize and wheat. Quality protein maize and wheat were processed into flours and mixed at various ratios for bread production. The proximate compositions, physical properties, glycemic response, functional and sensory properties of the samples were evaluated using standard methods. The result showed no significant difference (p<0.05 in the proximate composition parameters of the bread samples. The loaf height (2.50 - 3.95 cm, volume (291.00 - 415.00 cm3 and specific volume(1.72 - 2.42 cm3/g decreased significantly with increasing level of quality protein maize, however, loaf length was not affected by the substitution of quality protein maize. The result of the functional properties showed that final viscosity, water absorption and swelling capacity increased with increasing level of quality protein maize. The result of the glycemic response showed that the inclusion of quality protein maize resulted in decline in the blood glucose content (glycemic index of the products. The bread samples were generally acceptable however; bread with 100% wheat was the most preferred. The result of the sensory properties showed that there was significant difference (p<0.05 in the texture and taste of 100% wheat bread and the other samples. The study concluded that substitution of quality protein maize with wheat produced acceptable whole grain loaves that have positive effect on the reduction of blood glucose level.

  7. Quality assessment of flour and bread from sweet potato wheat ...

    African Journals Online (AJOL)

    This study was to assess the quality of the flour and bread produced from sweet potato wheat composite flour blends. Matured and freshly harvested sweet potato (Ipomea batatas L.) was obtained from a local market in Akure, Nigeria. The tubers were thoroughly washed, peeled, washed again, drained, chipped, oven dried, ...

  8. Gluten characteristics imparting bread quality in wheats differing for high molecular weight glutenin subunits at Glu D1 locus.

    Science.gov (United States)

    Mohan, Devinder; Gupta, Raj Kumar

    2015-07-01

    High yielding genotypes differing for high molecular weight glutenin subunits at Glu D1 locus in national wheat programme of India were examined for bread loaf volume, gluten and protein contents, gluten strength, gluten index and protein-gluten ratio. Number of superior bread quality genotypes in four agro-climatically diverse zones of Indian plains was comparable in both categories of wheat i.e., 5 + 10 and 2 + 12. There wasn't any difference in average bread loaf volume and grain protein content either. 5 + 10 wheats showed better gluten strength and their gluten quality was also superior in the zones where protein content was high. 2 + 10 wheats exerted more gluten due to better protein-gluten ratio. Good bread making in 5 + 10 was derived by better gluten strength and also gluten quality in certain regions but bread quality in 2 + 12 wheats was channelized through higher gluten content as they were more efficient in extracting gluten from per unit protein. Difference in route to bread quality was apparent as gluten content and gluten strength were the key gluten attributes in 5 + 10 whereas protein content and gluten index were prominent in 2 + 12 types. Unlike 2 + 12, there was a ceiling in gluten harvest of 5 + 10 wheats as higher protein failed to deliver more gluten after some limit.

  9. Bran hydration and physical treatments improve the bread-baking quality of whole grain wheat flour

    Science.gov (United States)

    Fine and coarse bran particles of a hard red and a hard white wheat were used to study the influences of bran hydration and physical treatments such as autoclaving and freezing as well as their combinations on the dough properties and bread-baking quality of whole grain wheat flour (WWF). For both h...

  10. Buckwheat-enriched wheat bread: National market placement possibilities

    Directory of Open Access Journals (Sweden)

    Sakač Marijana B.

    2015-01-01

    Full Text Available Quality parameters and the possibility of successful placement of buckwheat-enriched wheat bread on the national market are presented in this paper. Analysis of the market position of buckwheat-enriched wheat bread includes demands, offer and competition. Elements that affect the overall retail price of buckwheat-enriched wheat bread are given in details, along with SWOT analysis and marketing plan including target market, market supply and product marketing mix. According to all performed analyses it could be concluded that this product should be positioned on the national market, especially for people with special needs and requirements.

  11. Study of improving the quality of bread and wheat-aegilops hybrids with the biotechnological ways

    Science.gov (United States)

    Ganbarzada, Aygun; Hasanova, Sudaba

    2016-08-01

    The great need of the people to bread demands to increase high qualitative grain plants. At present time for solving these problem different methods of biochemistry, genetics and molecular biology are widely used in the process of selection. To investigate biochemical peculiarities of wheat-aegilops hybrids and to define the correlative relation between these characteristics. To investigate the technological peculiarities of wheat- aegilops hybrids and to define the relation between their main biochemical and technological characteristics. The conclusion of this investigation showed the followings- the wheat-aegilops hybrids according to their morphological and biochemical characteristics have approached to wheats. The electrophoretic spectres of the wheat- aegilops hybrids which have stable for their morphological characteristics are homogeny and heterogenic. Hereditarily some group protein components have passed to their tribes from their parents. But spontaneous hybridisation results in taking part the components of other unknown wheats in these electrophoretic spectres. There is a relation between the electrophoretic spectres and the indications of the grain quality.

  12. The effects of nitrogen nutrition and glutenin composition on the gluten quality in wheat genotypes

    Directory of Open Access Journals (Sweden)

    NIKOLA HRISTOV

    2010-03-01

    Full Text Available The effect of nitrogen nutrition treatments on the gluten content and some quality parameters of eight winter wheat cultivars has been studied. Six different nitrogen rates were applied (0, 60, 90, 120, 150 and 180 kg N ha-1 to wheat cultivars chosen according to the structure of their high molecular weight glutenin subunits (HMW-GS at the Glu-D1 locus. Four genotypes with HMW-GS 2 + 12 and another four with HMW-GS 5 + 10 were used in the study. The analysis of gluten quality involved the wet gluten content and rheological properties determined by the sensory and instrumental methods (“Instron 4301”. It was determined that in all the cultivars the wet gluten content increased significantly (P < 0.05 in parallel with N rate increase. The cultivars reacted differently regarding their wet gluten rheological properties. Libellula, a cultivar with poor bread making quality (HMW-GS 2 + 12, did not react to different N rates. Sremica, a cultivar with excellent bread making quality (HMW-GS 5 + 10, reduced its gluten quality as the N rate increased. The values obtained by the instrumental method “Instron 4301” at 90% wet gluten compression varied widely (from 0.002 to 0.041 kN. The increase of N fertilizer rate was significantly positively correlated (r2 = 0.811 with the wet gluten content and strength in the cultivars with HMW-GS 5+10.

  13. [The high-molecular glutenins of the soft winter wheats from European countries and their relationship to the glutenin composition of the ancient and modern wheat varieties of Ukraine].

    Science.gov (United States)

    Rabinovich, S V; Fedak, G; Lukov, O

    2000-01-01

    The sources of high-quality components of HMW glutenines determining grain quality, as initial material for breeding in the conditions of Ukraine were revealed on the base of analysis of 75 literature sources data about composition of high-molecular weight (HMW) glutenin and pedigrees of 598 European wheats from 12 countries, bred in 1923-1997, including, 449 cultivars from West and 149 East Europe. Origin of these components was observed in varieties of Great Britain, France and Germany from ancient Ukrainian wheat Red Fife and it derivative spring wheats of Canada--Marquis, Garnet, Regent, Saunders, Selkirk and of USA--spring wheat Thatcher and winter wheats--Kanred and Oro--as directly as via cultivars of European countries and Australia; in wheats of East European countries from winter wheats Myronivs'ka 808 and Bezostaya 1 (derivative of Ukrainian cultivars Ukrainka and Krymka) and their descendants; in wheats of Austria and Italy--from the both genetical sources.

  14. QUALITY AND NUTRITIONAL VALUE OF WHEAT BREAD WITH A PREPARATION OF OAT PROTEINS

    Directory of Open Access Journals (Sweden)

    Renata Sabat

    2012-02-01

    Full Text Available The aim of this study was to investigate possibilities and advisability of the use of oats insoluble protein preparation for the production of wheat bread, in order to increase the amount of protein and biological value of protein in this kind of bakery. Research material consisted of the preparation of insoluble oats protein, wheat flour and wheat bread made with the share of oat protein: 5%, 7.5% and 10%, by weight of wheat flour. AOAC methods (2006 were used to determine protein, β-D-glucan and dietary fiber in raw materials and final products. Amino acid composition was measured with the help of amino acid analyzer AAA 400 and used to calculate chemical score (CS and the integrated index of essential amino acids (EAAI, according to FAO/WHO/UNU, 2007. Quality of breads was evaluated by their volume, baking yield and total baking loss, and organoleptic assessment. Bread crumb texture profile was analyzed by texture analyzer TA.XT Plus.

  15. Chemical compositions as quality parameters of ZP soybean and wheat genotypes

    Directory of Open Access Journals (Sweden)

    Žilić Slađana

    2009-01-01

    Full Text Available This research is focused on the analysis of chemical characteristics of ZP soybean and wheat genotypes, as well as, on nutritional differences between this two complementary plant species. The experimental material consisted of two bread (ZP 96/I and ZP 87/Ip, two durum (ZP 34/I ZP and ZP DSP/01-66M wheat genotypes and four soybean varieties (Nena, Lidija, Lana and Bosa of different genetic background. All ZP soybean genotypes, except the Lana, had over 40% of total proteins by dry matter. Lana and Lidija, variety of recent creation, developed as a result of selection for specific traits, had high oil content. Wheat genotypes had much a lower content of ash, oil, total and water soluble proteins than soybean cultivars. The highest oil, total and water soluble proteins content was detected in grain of durum genotype ZP DSP/01-66M. Lignin content varies much more among soybean than among the wheat genotypes. Generally, contents of total phenolics, carotenes and tocopherol were more abundant in ZP soybean than bread and durum wheat genotypes.

  16. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality.

    Science.gov (United States)

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat ( Triticum aestivum ) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, "C 306" and a poor chapatti variety, "Sonalika." About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2'-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be "variety or genotype" specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding.

  17. Wheat breadmaking properties in dependance on wheat enzymes status and climate conditions.

    Science.gov (United States)

    Tomić, Jelena; Torbica, Aleksandra; Popović, Ljiljana; Hristov, Nikola; Nikolovski, Branislava

    2016-05-15

    The objective of this study was to evaluate albumins profile, proteolytic and amylolytic activity level and baking performance of wheat varieties grown in two production years with different climate conditions (2011 and 2012) in four locations. The results of ANOVA showed that variety, location, production year, and their interactions all had significant effects on all tested wheat quality parameters. The enzymatic activity and specific bread volume were mainly influenced by the variety. The samples from 2012 production year, had the lower values of albumin content, proteolytic and amylolytic activity, and bread specific volume. The correlation analysis, performed for 2011 production year, showed that albumin fraction (15-30 kDa) and proteolytic activity were negatively correlated with bread specific volume indicating the role of this fraction on lowering the crucial bread quality parameter. In 2012 production year, albumin fractions (5-15 kDa; 50-65 kDa) showed the most correlations, especially with parameters of bread quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mineral nutrition as a factor of stability of technological quality in winter wheat cultivars

    Directory of Open Access Journals (Sweden)

    Đurić Veselinka

    2005-01-01

    Full Text Available Afield trial was carried out with eight cultivars (Libellula, Drina, Sremica NSR-2, Jugoslavija, Somborka, Lasta and Pobeda of winter wheat (Trticum aestivum L representing several different periods in our country's wheat selection and having different potentials for technological grain quality. Six different rates of nitrogen fertilizer were tested: 0, 60, 90, 120, 150 and 180 kgNha-1. Increasing N fertilizer rates resulted in a linear increase of the direct and indirect indicators of quality. The best results were obtained with the cultivar Sremica and the poorest with Lasta, while Jugoslavija and Pobeda were shown to be of approximately the same quality. The contribution of N fertilizer variance to total variance was the largest for protein content (43.7%. N nutrition had a greater influence on protein content in cultivars from the earlier periods of selection. Its effect on sedimentation value, on the other hand, was greater in the recently released cultivars. The contribution of the genetic factor to total variance was the highest for crumb value number (CVN (58.7% and bread volume yield (44.2% and the lowest for protein content (20.8%. The absence of significant differences in the CVN means at any of the N nutrition levels studied resulted from the variability of the indirect indicators closely linked with the direct indicators of baking quality, showing the importance of N nutrition for maintaining the stability of technological quality in winter wheat cultivars.

  19. Effect of glutenin subunits on the baking quality of Brazilian wheat genotypes

    Directory of Open Access Journals (Sweden)

    Mariana Souza Costa

    Full Text Available ABSTRACT This study aimed to evaluate the effect of the high and low molecular weight glutenin subunits on the grain traits of sixteen Brazilian wheat genotypes. Grain hardness index, milling traits, physicochemical and rheological properties of the flour, and specific volume and firmness of the bread were evaluated. Physicochemical properties of the flour were not influenced by glutenin subunits. Genotypes with subunits at the Glu-B1 (17+18 or 7+8, Glu-D1 (5+10, and Glu-A3 (b were associated with strong flours and bread with high specific volume and low firmness. The subunits at the Glu-A1 and Glu-B3 had no effect on the rheological properties of the dough and bread quality, while the subunit 2+12 at Glu-D1 negatively affected the resistance to extension, and specific volume and firmness of the bread. Specific volume and firmness of the bread were influenced by the rheological properties of the dough, while the flour protein content was not important to define wheat quality. The identification of glutenin subunits at different loci along with the rheological tests of the flour are fundamental in estimating the potential use of different materials developed in wheat breeding.

  20. Sensory, yield and quality differences between organically and conventionally grown winter wheat.

    Science.gov (United States)

    Arncken, Christine M; Mäder, Paul; Mayer, Jochen; Weibel, Franco P

    2012-11-01

    Consumers expect organic produce to have higher environmental, health and sensory related qualities than conventional produce. In order to test sensory differences between bio-dynamically, bio-organically and conventionally grown winter wheat (Triticum aestivum L., cv. Runal), we performed double-blinded triangle tests with two panels on dry wholemeal flour from the harvest years 2006, 2007 and 2009 and from two field replicates of the 'DOK' long-term farming system comparison field trial near Basel, Switzerland. Yield and quality parameters were also assessed. Significant farming system effects were found for yield (up to 42% reduction in the organic system), thousand kernel weight, hectolitre weight and crude protein content across the three years. In the triangle tests one out of 12 pair-wise farming system comparisons (PFSCs) on wholemeal flour made from the different wheat samples showed significant sensory differentiation (between bio-dynamically and conventionally grown wheat). When all data from the three harvest years and two panels were aggregated, a statistically significant effect (P = 0.045) of PFSCs on the number of correct answers became evident. Although testing of dry wholemeal flour was very challenging for panellists, we were able to show that sensory differences between farming systems can occur. Copyright © 2012 Society of Chemical Industry.

  1. Influence of Wheat-Milled Products and Their Additive Blends on Pasta Dough Rheological, Microstructure, and Product Quality Characteristics

    Directory of Open Access Journals (Sweden)

    B. Dhiraj

    2013-01-01

    Full Text Available This study is aimed to assess the suitability of T. aestivum wheat milled products and its combinations with T. durum semolina with additives such as ascorbic acid, vital gluten and HPMC (Hydroxypropyl methyl cellulose for pasta processing quality characteristics such as pasta dough rheology, microstructure, cooking quality, and sensory evaluation. Rheological studies showed maximum dough stability in Comb1 (T. aestivum wheat flour and semolina. Colour and cooking quality of Comb2 (T. durum semolina and T. aestivum wheat flour and Comb3 (T. aestivum wheat semolina and T. durum semolina were comparable with control. Pasting results indicated that T. aestivum semolina gave the lowest onset gelatinization temperature (66.9°C but the highest peak viscosity (1.053 BU. Starch release was maximum in Comb1 (53.45% when compared with control (44.9% as also proved by microstructure studies. Firmness was seen to be slightly high in Comb3 (2.430 N when compared with control (2.304 N, and sensory evaluations were also in the acceptable range for the same. The present study concludes that Comb3 comprising 50% T. durum semolina and 50% T. aestivum refined wheat flour with additives would be optimal alternate for 100% T. durum semolina for production of financially viable pasta.

  2. Metagenomic Analysis of the Rumen Microbiome of Steers with Wheat-Induced Frothy Bloat

    OpenAIRE

    Pitta, D. W.; Pinchak, W. E.; Indugu, N.; Vecchiarelli, B.; Sinha, R.; Fulford, J. D.

    2016-01-01

    Frothy bloat is a serious metabolic disorder that affects stocker cattle grazing hard red winter wheat forage in the Southern Great Plains causing reduced performance, morbidity, and mortality. We hypothesize that a microbial dysbiosis develops in the rumen microbiome of stocker cattle when grazing on high quality winter wheat pasture that predisposes them to frothy bloat risk. In this study, rumen contents were harvested from six cannulated steers grazing hard red winter wheat (three with bl...

  3. Durum Wheat in Conventional and Organic Farming: Yield Amount and Pasta Quality in Southern Italy

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    2012-01-01

    Full Text Available Five durum wheat cultivars were grown in a Mediterranean area (Southern Italy under conventional and organic farming with the aim to evaluate agronomic, technological, sensory, and sanitary quality of grains and pasta. The cultivar Matt produced the best pasta quality under conventional cropping system, while the quality parameters evaluated were unsatisfactory under organic farming. The cultivar Saragolla showed the best yield amount and pasta quality in all the experimental conditions, thus proving to be the cultivar more adapt to organic farming. In all the tested experimental conditions, nivalenol (NIV and deoxynivalenol (DON occurrence was very low and the other mycotoxins evaluated were completely absent. These data confirm the low risk of mycotoxin contamination in the Mediterranean climate conditions. Finally, it has been possible to produce high-quality pasta in Southern Italy from durum wheat grown both in conventional and organic farming.

  4. Effect of amaranth flour (Amaranthus mantegazzianus) on the technological and sensory quality of bread wheat pasta.

    Science.gov (United States)

    Martinez, Cristina S; Ribotta, Pablo D; Añón, María Cristina; León, Alberto E

    2014-03-01

    The technological and sensory quality of pasta made from bread wheat flour substituted with wholemeal amaranth flour (Amaranthus mantegazzianus) at four levels, 15, 30, 40 and 50% w/w was investigated. The quality of the resulted pasta was compared to that of control pasta made from bread wheat flour. The flours were analyzed for chemical composition and pasting properties. Cooking behavior, color, raw and cooked pasta texture, scanning electron microscopy and sensory evaluation were determined on samples. The pasta obtained from amaranth flour showed some detriment of the technological and sensory quality. So, a maximum substitution level of 30% w/w was defined. This is an equilibrium point between an acceptable pasta quality and the improved nutritional and functional properties from the incorporation of amaranth flour.

  5. A comprehensive survey of soft wheat grain quality in United States germplasm

    Science.gov (United States)

    Wheat (Triticum aestivum L.) quality is dependent upon both genetic and environmental factors, which work in combination to produce specific grain, milling, and baking characteristics. Along with these genetic and environmental factors, the adaptation of the genetics to the given growing environment...

  6. TEXTURE OF COOKED SPELT WHEAT NOODLES

    Directory of Open Access Journals (Sweden)

    Magdaléna Lacko - Bartošová

    2013-02-01

    Full Text Available At present, there are limited and incomplete data on the ability of spelt to produce alimentary pasta of suitable quality. Noodles are traditional cereal-based food that is becoming increasingly popular worldwide because of its convenience, nutritional qualities, and palatability. It is generally accepted that texture is the main criterion for assessing overall quality of cooked noodles. We present selected indicators of noodle texture of three spelt cultivars – Oberkulmer Rotkorn, Rubiota and Franckenkorn grown in an ecological system at the locality of Dolna Malanta near Nitra. A texture analyzer TA.XT PLUS was used to determine cooked spelt wheat noodle firmness (N (AACC 66-50. The texture of cooked spelt wheat noodles was expressed also as elasticity (N and extensibility (mm. Statistical analysis showed significant influence of the variety and year of growing on the firmness, elasticity and extensibility of cooked noodles. The wholemeal spelt wheat noodles were characterized with lower cutting firmness than the flour noodles. Flour noodles were more tensile than wholemeal noodles. The best elasticity and extensibility of flour noodles was found in noodles prepared from Rubiota however from wholemeal noodles it was Oberkulmer Rotkorn. Spelt wheat is suitable for noodle production, however also here it is necessary to differentiate between varieties. According to achieved results, wholemeal noodles prepared from Oberkulmer Rotkorn can be recommended for noodle industry due to their consistent structure and better texture quality after cooking.

  7. Neutron activation analysis of wheat samples

    Energy Technology Data Exchange (ETDEWEB)

    Galinha, C. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Anawar, H.M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Freitas, M.C., E-mail: cfreitas@itn.pt [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Pacheco, A.M.G. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Almeida-Silva, M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Coutinho, J.; Macas, B.; Almeida, A.S. [INRB/INIA-Elvas, National Institute of Biological Resources, Est. Gil Vaz, 7350-228 Elvas (Portugal)

    2011-11-15

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation

  8. BREAD-MAKING QUALITY OF SLOVAK AND SERBIAN WHEAT VARIETIES

    Directory of Open Access Journals (Sweden)

    Tatiana Bojňanská

    2014-02-01

    Full Text Available The basic prerequisite for the production of bakery products of a good quality is the knowledge of the quality parameters of raw materials introduced in the production process and the ability to use their potential. The bread making properties of 17 pure European wheat cultivars were analysed. Baking experiments were carried out according to the methodology of the research workplace; 1000 g of flour was processed with the addition of salt, sugar and yeast. Fermentation for 35 minutes at 30 ° C was followed by the baking with steaming (at 240 ° C and then 220 ° C. During an experimental baking test the selected parameters: loaf volume (cm3, specific loaf volume (cm3.100g-1 loaf, volume efficiency (cm3.100g-1 flour, cambering (loaf height/width ratio, bread yield (%, bread yield baking loss (% in bread were evaluated. Loaf volume has been considered as the most important criterion for the bread-making quality. In the analysed samples (11 varieties of Slovak origin and 6 varieties of Serbian origin, the value of this parameter ranged from 3575 cm3 to 5575 cm3 with higher values occurred in Slovak varieties (average 4 640.91 cm3 compared to the Serbian varieties (average 4 363.33 cm3. Based on the complex evaluation of wheat varieties of the Slovak and Serbian origin assessing the selected quality parameters of the baking experiment it can be concluded that in terms of baking quality the three Slovak varieties IS Ezopus, Bonavita and Jarissa were the best. Therefore, they are recommended for cultivation and their subsequent use in the baking industry, in particular for the production of bread According to a baking quality the evaluated varieties can be sorted from best to worst in the following order: IS Ezopus (SK > Bonavita (SK > Jarissa (SK > IS Questor > Etida (SRB > Venistar (SK > Renesansa (SRB > IS Conditor (SK > IS Corvinus (SK > Zvezdana (SRB > Simonida (SRB > Viglanka (SK > IS Agape (SK > NS 40S (SRB > Panonnija (SRB > IS Escoria (SK

  9. THE COMPARISON OF QUALITY AND CHEMICAL COMPOSITION OF BREADS BAKED WITH RESIDUAL AND COMMERCIAL OAT FLOURS AND WHEAT FLOUR

    Directory of Open Access Journals (Sweden)

    Dorota Litwinek

    2013-02-01

    Full Text Available The aim of the present work was to compare the quality and nutritional value of breads with 50% addition of oat flours of different origin (commercial and residual – a by-product obtained during production of β-glucan preparation to standard wheat bread. Commercial wheat and oat flours and residual oat flour, as well as wheat and 50/50% wheat/oat breads were used as material in this research. Quality of breads was evaluated by their volume, baking yield and total baking loss. Bread crumb texture profile was analyzed by texture analyzer TA.XT Plus. Organoleptic assesment was performed by 15 skilled pearson‘s panel. Moreover both in flours and breads protein, lipids, mineral compounds, dietary fiber (soluble and insoluble fraction and β-glucans content were analyzed by AOAC methods.

  10. Deoxynivalenol in wheat and wheat products from a harvest affected by fusarium head blight

    Directory of Open Access Journals (Sweden)

    Lidiane Viera MACHADO

    Full Text Available Abstract Fusarium head blight is an important disease occurring in wheat, caused mainly by the fungus Fusarium graminearum. In addition to direct damage to crops, reduced quality and yield losses, the infected grains can accumulate mycotoxins (toxic metabolites originating from prior fungal growth, especially deoxynivalenol (DON. Wheat crops harvested in 2014/2015 in southern Brazil were affected by high levels of Fusarium head blight. In this context, the aim of this study was evaluate the mycotoxicological quality of Brazilian wheat grains and wheat products (wheat flour and wheat bran for DON. DON contamination was evaluated in 1,504 wheat and wheat product samples produced in Brazil during 2014. It was determined by high performance liquid chromatograph fitted to a mass spectrometer (LC-MS / MS. The results showed that 1,000 (66.5% out of the total samples tested were positive for DON. The mean level of sample contamination was 1047 µg.kg-1, but only 242 samples (16.1% had contamination levels above the maximum permissible levels (MPL - the maximum content allowed by current Brazilian regulation. As of 2017, MPL will be stricter. Thus, research should be conducted on DON contamination of wheat and wheat products, since wheat is a raw material widely used in the food industry, and DON can cause serious harm to public health.

  11. Effect of Sulphur Fertilization on Grain Quality and Protein Composition of Durum Wheat (Triticum durum Desf.

    Directory of Open Access Journals (Sweden)

    Marianna Pompa

    2009-12-01

    Full Text Available The reduction of atmosphere emission of SO2 and the massive use of fertilizers high in nitrogen and phosphorus resulted in a decrease of the sulphur content in the soil. In durum wheat cultivation, sulphur supply plays a key role not only for plant growth, but also for grain quality. Sulphur is an essential macronutrient primarily used to synthesize methionine and cysteine and it is also involved in establishing protein structures by disulphide bonds. The aim of this study was to evaluate the effect of sulphur nutrition on grain quality and protein composition of durum wheat cultivars grown under water deficit conditions, typical of Mediterranean areas. To this purpose, in the 2003-2004 and 2004-2005 crop seasons a field trial was carried out by comparing two water regimes (irrigated and rainfed, two sulphur fertilizer levels and two durum wheat cultivars. Under our experimental conditions, an increase in protein and gluten content in the rainfed treatment and a positive effect of sulphur fertilization on quality parameters were observed. Few changes were observed in protein composition in response to sulphur fertilization.

  12. Dataset on the mean, standard deviation, broad-sense heritability and stability of wheat quality bred in three different ways and grown under organic and low-input conventional systems.

    Science.gov (United States)

    Rakszegi, Marianna; Löschenberger, Franziska; Hiltbrunner, Jürg; Vida, Gyula; Mikó, Péter

    2016-06-01

    An assessment was previously made of the effects of organic and low-input field management systems on the physical, grain compositional and processing quality of wheat and on the performance of varieties developed using different breeding methods ("Comparison of quality parameters of wheat varieties with different breeding origin under organic and low-input conventional conditions" [1]). Here, accompanying data are provided on the performance and stability analysis of the genotypes using the coefficient of variation and the 'ranking' and 'which-won-where' plots of GGE biplot analysis for the most important quality traits. Broad-sense heritability was also evaluated and is given for the most important physical and quality properties of the seed in organic and low-input management systems, while mean values and standard deviation of the studied properties are presented separately for organic and low-input fields.

  13. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    Directory of Open Access Journals (Sweden)

    Settles Matthew L

    2009-05-01

    Full Text Available Abstract Background Natural antisense transcripts (NATs are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded or a different locus (trans-encoded. They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation. NATs give rise to sense-antisense transcript pairs and the number of these identified has escalated greatly with the availability of DNA sequencing resources and public databases. Traditionally, NATs were identified by the alignment of full-length cDNAs or expressed sequence tags to genome sequences, but an alternative method for large-scale detection of sense-antisense transcript pairs involves the use of microarrays. In this study we developed a novel protocol to assay sense- and antisense-strand transcription on the 55 K Affymetrix GeneChip Wheat Genome Array, which is a 3' in vitro transcription (3'IVT expression array. We selected five different tissue types for assay to enable maximum discovery, and used the 'Chinese Spring' wheat genotype because most of the wheat GeneChip probe sequences were based on its genomic sequence. This study is the first report of using a 3'IVT expression array to discover the expression of natural sense-antisense transcript pairs, and may be considered as proof-of-concept. Results By using alternative target preparation schemes, both the sense- and antisense-strand derived transcripts were labeled and hybridized to the Wheat GeneChip. Quality assurance verified that successful hybridization did occur in the antisense-strand assay. A stringent threshold for positive hybridization was applied, which resulted in the identification of 110 sense-antisense transcript pairs, as well as 80 potentially antisense-specific transcripts. Strand-specific RT-PCR validated the microarray observations, and showed that antisense transcription is likely to be tissue specific. For the annotated sense

  14. Microbiological, Nutritional, and Sensory Quality of Bread Produced from Wheat and Potato Flour Blends

    Directory of Open Access Journals (Sweden)

    Udeme Joshua Josiah Ijah

    2014-01-01

    Full Text Available Dehydrated uncooked potato (Irish and sweet flour was blended by weight with commercial wheat flour at 0 to 10% levels of substitution to make bread. Comparative study of the microbial and nutritional qualities of the bread was undertaken. The total aerobic bacterial counts ranged from 3.0 × 105 cfu/g to 1.09 × 106 cfu/g while the fungal counts ranged from 8.0 × 101 cfu/g to 1.20 × 103 cfu/g of the sample. Coliforms were not detected in the bread. Bacteria isolated were species of Bacillus, Staphylococcus, and Micrococcus while fungi isolates were species of Aspergillus, Penicillium, Rhizopus, and Mucor. The mean sensory scores (color, aroma, taste, texture, and general acceptability were evaluated. The color of the bread baked from WF/IPF2 (wheat/Irish potato flour, 95 : 5% blend was preferred to WF (wheat flour, 100% while WF/SPF1 (wheat/sweet potato flour, 100% and WF/IPF1 (wheat/Irish potato flour, 90 : 10% aroma were preferred to WF. However, the bread baked from WF, WF/IPF2 (wheat flour/Irish potato flour, 95 : 5%, and WF/SPF2 (wheat/sweet potato flour, 95 : 5% was more acceptable than other blends. The use of hydrated potato flour in bread making is advantageous due to increased nutritional value, higher bread yield, and reduced rate of staling.

  15. Neutron activation analysis of wheat samples

    International Nuclear Information System (INIS)

    Galinha, C.; Anawar, H.M.; Freitas, M.C.; Pacheco, A.M.G.; Almeida-Silva, M.; Coutinho, J.; Macas, B.; Almeida, A.S.

    2011-01-01

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation, Jordao presented higher transfer coefficients than Marialva, in particular for Co, Fe, and Na. The Jordao and Marialva cultivars accumulated not statistically significant different

  16. Some parameters of phenotypic stability in the evaluation for quality in wheat baker

    International Nuclear Information System (INIS)

    Brito Molina, R.

    1993-01-01

    4 genotypes of wheat of the 25 included in the regional tests of the highland Cundiboyacense area; were used to determine the phenotypic stability through 21 environments (town for semester), of 5 characteristics of quality by means of 5 methodologies, to specify which or which kept bigger relationship with the procedure used by the program of wheat of the ICA of them, and to compare the average through all the environment with the average of witness, to decide the commercialization of a given genotype. For all the characteristics, 2 or more than the 5 studied methods they were coincident in identifying the genotype of better stability. The 5 methods for the factors, hecto liter weighs and extraction of flour, and the methods of the covalence of Finlay and Wilkinson and of Eberhart and Russell for the characteristic of volume of the bread, they always included Samaca 68 like one of the genotypes wanted by their stability. The last 3 mentioned factors of quality are the important, from the industrial point of view. The methods of Finlay and Wilkinson and of Eberhart and Rusell they also classified to the variety Samaca68 as of general adaptability for the variable extraction of flour and volume of the bread. The selection of Samaca68 for their stability and adaptability was, then, quite concordant with that carried out by the Program of Wheat of the ICA, since this variety was for a lot of time the national witness of quality

  17. Quality of wholemeal wheat bread enriched with green coffee beans

    Directory of Open Access Journals (Sweden)

    Urszula Gawlik-Dziki

    2016-01-01

    Full Text Available Scientific studies have revealed that bioactive components of coffee play a preventive role against various degenerative diseases. Green coffee, in particular, is characterized by its unique composition and properties. The objective of this work was to investigate the influence of green coffee (Coffea arabica beans (GCB addition on the quality and antioxidant properties (AA of the wholemeal bread. For bread preparation, flour form GCB, and wholemeal wheat flour, type 2000 were used. Wholemeal wheat flour was replaced with GCB flour at 1 to 5% levels. Loaf volume, texture, color and sensory properties of bread were determined. Furthermore, total phenolic content and antioxidant activity were evaluated. The results showed that bread supplementation with GCB had little influence on the bread volume. The highest volume of bread was obtained with 3 and 4% of GCB flour. The texture properties of bread crumb (hardness, elasticity, cohesiveness and chewiness were slightly changed as a result of the GCB addition. The lightness of bread crumb decreased with the GCB addition (average from 46.3 to 42.6. Besides, the addition of GCB significantly enriched wheat bread with hydrophilic phenolic compounds. The phenolic compounds were highly bioaccessible in vitro. Moreover, the GCB addition enhanced antiradical activity of bread.

  18. Quality of shear fractionated wheat gluten – comparison to commercial vital wheat gluten

    NARCIS (Netherlands)

    Zalm, van der E.E.J.; Goot, van der A.J.; Boom, R.M.

    2011-01-01

    The functional properties of gluten obtained with a shear-induced separation process, recently proposed by Peighambardoust et al. (2008), are compared with a commercially available vital wheat gluten. Two tests were performed. First, a relatively strong wheat flour, Soissons, was enriched with

  19. Effect of gamma irradiation on pre-treatment on the drying characteristics and qualities of wheat

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yong; Wang, Jun [Zhejiang University (China). Dept. of Biosystems Engineering

    2008-07-01

    Wheat, pretreated by {sup 60}Co gamma irradiation, was dried by hot-air with irradiation dosage 0-3 kGy, drying temperature 40-60 deg C, and initial moisture contents 19-25% (drying basis). The drying characteristics and dried qualities of wheat were evaluated based on drying time, average dehydration rate, wet gluten content (WGC), moisture content of wet gluten (MCWG)and titratable acidity (TA). A quadratic rotation-orthogonal composite experimental design, with three variables (at five levels) and five response functions, and analysis method were employed to study the effect of three variables on the individual response functions. The five response functions (drying time, average dehydration rate, WGC, MCWG, TA) correlated with these variables by second order polynomials consisting of linear, quadratic and interaction terms. A high correlation coefficient indicated the suitability of the second order polynomial to predict these response functions. The linear, interaction and quadratic effects of three variables on the five response functions were all studied. (author)

  20. Effect of gamma irradiation on pre-treatment on the drying characteristics and qualities of wheat

    International Nuclear Information System (INIS)

    Yu, Yong; Wang, Jun

    2008-01-01

    Wheat, pretreated by 60 Co gamma irradiation, was dried by hot-air with irradiation dosage 0-3 kGy, drying temperature 40-60 deg C, and initial moisture contents 19-25% (drying basis). The drying characteristics and dried qualities of wheat were evaluated based on drying time, average dehydration rate, wet gluten content (WGC), moisture content of wet gluten (MCWG)and titratable acidity (TA). A quadratic rotation-orthogonal composite experimental design, with three variables (at five levels) and five response functions, and analysis method were employed to study the effect of three variables on the individual response functions. The five response functions (drying time, average dehydration rate, WGC, MCWG, TA) correlated with these variables by second order polynomials consisting of linear, quadratic and interaction terms. A high correlation coefficient indicated the suitability of the second order polynomial to predict these response functions. The linear, interaction and quadratic effects of three variables on the five response functions were all studied. (author)

  1. Using different classification models in wheat grading utilizing visual features

    Science.gov (United States)

    Basati, Zahra; Rasekh, Mansour; Abbaspour-Gilandeh, Yousef

    2018-04-01

    Wheat is one of the most important strategic crops in Iran and in the world. The major component that distinguishes wheat from other grains is the gluten section. In Iran, sunn pest is one of the most important factors influencing the characteristics of wheat gluten and in removing it from a balanced state. The existence of bug-damaged grains in wheat will reduce the quality and price of the product. In addition, damaged grains reduce the enrichment of wheat and the quality of bread products. In this study, after preprocessing and segmentation of images, 25 features including 9 colour features, 10 morphological features, and 6 textual statistical features were extracted so as to classify healthy and bug-damaged wheat grains of Azar cultivar of four levels of moisture content (9, 11.5, 14 and 16.5% w.b.) and two lighting colours (yellow light, the composition of yellow and white lights). Using feature selection methods in the WEKA software and the CfsSubsetEval evaluator, 11 features were chosen as inputs of artificial neural network, decision tree and discriment analysis classifiers. The results showed that the decision tree with the J.48 algorithm had the highest classification accuracy of 90.20%. This was followed by artificial neural network classifier with the topology of 11-19-2 and discrimient analysis classifier at 87.46 and 81.81%, respectively

  2. Balance sheet method assessment for nitrogen fertilization in bread wheat: I. yield and quality

    Directory of Open Access Journals (Sweden)

    Maria Corbellini

    2006-09-01

    Full Text Available In the European Union the production of high quality wheat is mainly located in the Mediterranean regions where the climatic conditions positively affect protein concentration in the grain. High quality wheat calls for proper management of nitrogen fertilization, thus there is a need to verify whether the limitations imposed by local governments on maximum rate of nitrogen fertilization admitted may affect bread making quality. Trials were conducted in fourteen environments (E to study the effects of different nitrogen fertilizations on eight cultivars (C, belonging to four quality grades (Q. Nitrogen (N was applied to crops according to three rates/modalities: N1 corresponding to the maximum rate admitted calculated according to a balance sheet method and distributed at the stage of spike initiation; N2 with 50 kg ha-1 of nitrogen more than N1, also distributed at the stage of spike initiation; N3 with 50 kg ha-1 of nitrogen more than N1 but distributed at the stage of flag leaf appearance. The effects of environment, nitrogen and cultivar were significant for grain yield, test weight, 1000 kernel weight, heading time, plant height and for quality traits (protein content and alveograph indices. The existence of variability among cultivars and quality grades in the response to rate and timing of nitrogen fertilization was demonstrated by the significance of NxC and NxQ interactions. Dry matter and nitrogen contents of plant at anthesis and at harvest were significantly affected by the main sources of variation. High quality cultivars yielded more grain of better quality with higher N rates (N2 and N3 as compared to the maximum rate of nitrogen admitted by the local government (N1. These results demonstrated that the adopted balance sheet method for the calculation of N requirements of wheat crop adversely affects the full potential expression of the cultivars belonging to superior bread making quality grades.

  3. Balance sheet method assessment for nitrogen fertilization in bread wheat: I. yield and quality

    Directory of Open Access Journals (Sweden)

    Mario Monotti

    2011-02-01

    Full Text Available In the European Union the production of high quality wheat is mainly located in the Mediterranean regions where the climatic conditions positively affect protein concentration in the grain. High quality wheat calls for proper management of nitrogen fertilization, thus there is a need to verify whether the limitations imposed by local governments on maximum rate of nitrogen fertilization admitted may affect bread making quality. Trials were conducted in fourteen environments (E to study the effects of different nitrogen fertilizations on eight cultivars (C, belonging to four quality grades (Q. Nitrogen (N was applied to crops according to three rates/modalities: N1 corresponding to the maximum rate admitted calculated according to a balance sheet method and distributed at the stage of spike initiation; N2 with 50 kg ha-1 of nitrogen more than N1, also distributed at the stage of spike initiation; N3 with 50 kg ha-1 of nitrogen more than N1 but distributed at the stage of flag leaf appearance. The effects of environment, nitrogen and cultivar were significant for grain yield, test weight, 1000 kernel weight, heading time, plant height and for quality traits (protein content and alveograph indices. The existence of variability among cultivars and quality grades in the response to rate and timing of nitrogen fertilization was demonstrated by the significance of NxC and NxQ interactions. Dry matter and nitrogen contents of plant at anthesis and at harvest were significantly affected by the main sources of variation. High quality cultivars yielded more grain of better quality with higher N rates (N2 and N3 as compared to the maximum rate of nitrogen admitted by the local government (N1. These results demonstrated that the adopted balance sheet method for the calculation of N requirements of wheat crop adversely affects the full potential expression of the cultivars belonging to superior bread making quality grades.

  4. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain.

    Science.gov (United States)

    Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William

    2015-10-01

    Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Effects of elevated O3 exposure on nutrient elements and quality of winter wheat and rice grain in Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Zheng, Feixiang; Wang, Xiaoke; Zhang, Weiwei; Hou, Peiqiang; Lu, Fei; Du, Keming; Sun, Zhongfu

    2013-01-01

    With the open-top chambers (OTCs) in situ in Yangtze River Delta, China in 2007 and 2008, the effects of elevated O 3 exposure on nutrient elements and quality of winter wheat and rice grain were investigated. Grain yield per plant of winter wheat and rice declined in both years. The N and S concentrations increased under elevated O 3 exposure in both years and C–N ratios decreased significantly. The concentrations of K, Ca, Mg, P, Mn, Cu and Zn in winter wheat and the concentrations of Mg, K, Mn and Cu in rice increased. The concentrations of protein, amino acid and lysine in winter wheat and rice increased and the concentration of amylose decreased. The increase in the nutrient concentration was less than the reduction of grain yield in both winter wheat and rice, and, hence, the absolute amount of the nutrients was reduced by elevated O 3 . -- Highlights: •The nutrient elements and quality of winter wheat and rice grain response to ozone had been investigated for two years in China. •Grain yield per plant of winter wheat and rice were reduced in both years. •The extent of ozone impact on the nutrient elements concentrations of winter wheat and rice were different. •The concentrations of protein, amino acid and lysine increased but the concentrations of amylose decreased. •The absolute amount of the nutrients was reduced by elevated O 3 . -- The nutrient elements and quality of winter wheat and rice grain were seriously affected under the elevated O 3 exposure

  6. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality

    Science.gov (United States)

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P.; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat (Triticum aestivum) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, “C 306” and a poor chapatti variety, “Sonalika.” About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2′-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be “variety or genotype” specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding

  7. Low-molecular-weight glutenin subunits from the 1U genome of Aegilops umbellulata confer superior dough rheological properties and improve breadmaking quality of bread wheat.

    Science.gov (United States)

    Wang, Jian; Wang, Chang; Zhen, Shoumin; Li, Xiaohui; Yan, Yueming

    2018-04-01

    Wheat-related genomes may carry new glutenin genes with the potential for quality improvement of breadmaking. In this study, we estimated the gluten quality properties of the wheat line CNU609 derived from crossing between Chinese Spring (CS, Triticum aestivum L., 2n = 6x = 42, AABBDD) and the wheat Aegilops umbellulata (2n = 2x = 14, UU) 1U(1B) substitution line, and investigated the function of 1U-encoded low-molecular-weight glutenin subunits (LMW-GS). The main quality parameters of CNU609 were significantly improved due to introgression of the 1U genome, including dough development time, stability time, farinograph quality number, gluten index, loaf size and inner structure. Glutenin analysis showed that CNU609 and CS had the same high-molecular-weight glutenin subunit (HMW-GS) composition, but CNU609 carried eight specific 1U genome-encoded LMW-GS. The introgression of the 1U-encoded LMW-GS led to more and larger protein body formation in the CNU609 endosperm. Two new LMW-m type genes from the 1U genome, designated Glu-U3a and Glu-U3b, were cloned and characterized. Secondary structure prediction implied that both Glu-U3a and Glu-U3b encode subunits with high α-helix and β-strand content that could benefit the formation of superior gluten structure. Our results indicate that the 1U genome has superior LMW-GS that can be used as new gene resources for wheat gluten quality improvement. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Aluminium silicate fertilization in the quality of wheat seeds under salt stress

    Directory of Open Access Journals (Sweden)

    César Iván Suárez Castellanos

    2015-06-01

    Full Text Available Wheat is used as raw material in the production of several foods and it is the first cereal as in the world production of grains. However, the agricultural production is limited for the salinity effect in about 50% of irrigated areas in the world. An alternative to reduce the salt stresses caused in the plants is the silicon use. The objective of this study was to evaluate the fertilizing effect with aluminum silicate using kaolin as a source, on seed quality of wheat produced under salt stress. The experiment was accomplished in greenhouse using wheat seeds of Quartzo cultivar sowed in pots of 10 L containing soil and maintained until harvest. The kaolin (77.9% SiO2 was applied in doses of 0 (control; 1,000; 2,000 and 3,000 kg ha-1. Salt stress was simulated through irrigation with NaCl solutions in the concentrations of 0 (control, 8 and 16 mM. Agronomic characteristics and the physiologic seed quality were evaluated. The results showed that the salt irrigation caused decrease in the number of ears per plant, number of ears with seeds, in the weight of the ears without threshing and in the weight of the produced seeds. The aluminum silicate use increased the weight of a thousand seeds independent of the presence of salt stress. Silicon application contributed to increase the percentage of germination of the produced seeds when the plants were not exposed to the salt stress.

  9. IMAGE ANALYSIS OF BREAD CRUMB STRUCTURE IN RELATION TO GLUTEN STRENGTH OF WHEAT

    Directory of Open Access Journals (Sweden)

    D. Magdić

    2006-06-01

    Full Text Available The objective of this study was to determine bread slice medium part properties in relation to quality parameters with a focus on gluten strength. Since sensory evaluation of bread is time consuming, expensive and subjective in nature, computerized image analysis was applied as objective method of bread crumb quality evaluation. Gluten Index method was applied as fast and reliable tool for defining gluten strength of wheat. Significant (P90 Ana, Demetra, Klara, Srpanjka and Divana have shown trend to give unequal and bigger crumb grains while cultivars Golubica, Barbara, Žitarka, Kata and Sana with optimal gluten strength (GI= 60-90 have shown finer and uniform crumb grain.

  10. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1.

    Directory of Open Access Journals (Sweden)

    Qidi Zhu

    Full Text Available Wheat (Triticum aestivum L., one of the world's most important food crops, is a strictly autogamous (self-pollinating species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther transcriptomes for male fertile wheat and SQ-1-induced male sterile wheat was carried out using next-generation sequencing technology. In all, 42,634,123 sequence reads were generated and were assembled into 82,356 high-quality unigenes with an average length of 724 bp. Of these, 1,088 unigenes were significantly differentially expressed in the fertile and sterile wheat anthers, including 643 up-regulated unigenes and 445 down-regulated unigenes. The differentially expressed unigenes with functional annotations were mapped onto 60 pathways using the Kyoto Encyclopedia of Genes and Genomes database. They were mainly involved in coding for the components of ribosomes, photosynthesis, respiration, purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, RNA transport and signal transduction, reactive oxygen species metabolism, mRNA surveillance pathways, protein processing in the endoplasmic reticulum, protein export, and ubiquitin-mediated proteolysis. This study is the first to provide a systematic overview comparing wheat anther transcriptomes of male fertile wheat with those of SQ-1-induced male sterile wheat and is a valuable source of data for future research in SQ-1-induced wheat male sterility.

  11. Application of Principal Component Analysis in Assessment of Relation Between the Parameters of Technological Quality of Wheat Grains Treated with Inert Dusts Against Rice Weevil (Sitophilus oryzae L.

    Directory of Open Access Journals (Sweden)

    Marija Bodroža-Solarov

    2011-01-01

    Full Text Available Quality parameters of several wheat grain lots (low vitreous and high vitreous grains,non-infested and infested with rice weevils, (Sitophilus oryzae L. treated with inert dusts(natural zeolite, two diatomaceous earths originating from Serbia and a commercial productProtect-It® were investigated. Principal component analysis (PCA was used to investigatethe classification of treated grain lots and to assess how attributes of technological qualitycontribute to this classification. This research showed that vitreousness (0.95 and test weight(0.93 contributed most to the first principal component whereas extensigraph area (-0.76contributed to the second component. The determined accountability of the total variabilityby the first component was around 55%, while with the second it was 18%, which meansthat those two dimensions together account for around 70% of total variability of the observedset of variables. Principal component analysis (PCA of data set was able to distinguishamong the various treatments of wheat lots. It was revealed that inert dust treatments producedifferent effects depending on the degree of endosperm vitreousness.

  12. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones.

    Science.gov (United States)

    Seleiman, Mahmoud F; Kheir, Ahmed M S

    2018-02-01

    Soil salinity and atmosphere temperature change have negative impacts on crop productivity and its quality and can pose a significant risk to soil properties in semi-arid regions. We conducted two field experiments in North (first zone) and South (second zone) of Egypt to investigate the effects of soil bagasse ash (10 ton ha -1 ), foliar thiourea (240 g ha -1 ) and their combination in comparison to the control treatment on saline soil properties and productivity and quality traits of wheat. All studied treatments were received the recommended rate of N, P and K fertilizations. Combination of soil bagasse ash and foliar thiourea application resulted in a significant improvement of most studied soil properties (i.e. EC, compaction, hydraulic conductivity, OM and available P, K, N contents) after harvest in comparison to other treatments in both of zones. Also, it enhanced growth and grain yield of wheat in terms of photosynthesis related attributes and yield components. Moreover, combination of soil bagasse ash and foliar thiourea application resulted in superior grain quality traits in terms of carbohydrate, fibre, protein and ash contents than separated application of soil bagasse ash, foliar thiourea or even control treatment. In conclusion, combination of soil bagasse ash and foliar thiourea application can be used as suitable option to enhance plant nutrition, wheat productivity and improve wheat grain quality and soil traits in saline soil as well as can alleviate heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Growth performance, carcass traits and meat quality of yellow-feathered broilers fed graded levels of alfalfa meal with or without wheat.

    Science.gov (United States)

    Jiang, Shouqun; Gou, Zhongyong; Li, Long; Lin, Xiajing; Jiang, Zongyong

    2018-03-01

    The effects of 0, 40 and 80 g/kg alfalfa meal on growth performance, carcass traits and meat quality of Chinese yellow-feathered broilers fed diets containing or lacking wheat (0 or 200 g/kg) as part of the energy source, were examined using random design with a 2 × 3 factorial arrangement of treatments. Dressing percentage and semi-eviscerated proportion were lower, and meat color a* (redness) value was higher in birds fed diets containing wheat than diets lacking wheat (P meat was higher in chickens fed corn-based diets than in those fed wheat (P Meat from those supplemented with 40 g/kg alfalfa meal had better taste than the other two levels (P meat color and lower drip loss than those fed the diets without wheat, and adding 40 g/kg alfalfa meal generally improved meat quality and taste. © 2017 Japanese Society of Animal Science.

  14. Comparative study of the nutritional quality of potato-wheat steamed and baked breads made with four potato flour cultivars.

    Science.gov (United States)

    Liu, Xingli; Mu, Taihua; Sun, Hongnan; Zhang, Miao; Chen, Jingwang; Fauconnier, Maire Laure

    2017-03-01

    We investigated the nutritional quality of steamed and baked breads containing 35% potato flour from four potato cultivars. Compared with traditional wheat varieties, potato-wheat steamed and baked breads contained higher dietary fiber (1.87-fold), K (2.68-fold), vitamin C (28.56-fold), and total polyphenol (1.90-fold) contents and greater antioxidant activity (1.23-fold). Moreover, the estimated glycemic index of potato-wheat breads ranged from 61.20 (Hongmei-wheat baked bread) to 67.36 (Atlantic-wheat steamed bread), which was lower than that of wheat steamed bread (70.22) and baked bread (70.62). In terms of nutritional value, Hongmei was the optimum cultivar, followed by Blue Congo, Shepody, and Atlantic. For the same cultivar, the nutritional value of steamed bread was higher than that of baked bread. In conclusion, potato flour is a potential wheat flour supplement that improves the nutritional and functional properties of breads.

  15. Substitution of wheat flour with “acha” ( Digitaria exilis ) for bread ...

    African Journals Online (AJOL)

    Effect of wheat flour (WF) substitution with 'Acha' flour (AF) on the quality attributes in bread making was investigated using the following composite blends ratios 85:15, 80:20, 75:25, 70:30, 100:0 (AF) with 100% wheat flour as control. Proximate analysis on both composite flours and their bread products, as well as sensory ...

  16. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    Science.gov (United States)

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  17. High molecular weight glutenin subunits of wheat : qualitative and quantitative variation in relation to bread-making quality

    NARCIS (Netherlands)

    Kolster, P.

    1992-01-01

    In view of the poor bread-making quality of the wheat grown in The Netherlands, only a small part of production is used for baking of bread. Therefore quality improvement is a major aim of plant breeding. Unfortunately, breeding for breadmaking quality is hampered by its complexity. The suitability

  18. LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity

    Directory of Open Access Journals (Sweden)

    István Monostori

    2018-05-01

    Full Text Available The use of light-emitting diode (LED technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.

  19. Soft durum wheat - a paradigm shift

    Science.gov (United States)

    Two traits define most aspects of wheat quality and utilization: kernel texture (hardness) and gluten. The former is far simpler genetically and is controlled by two genes, Puroindoline a and Puroindoline b. Durum wheat lacks puroindolines and has very hard kernels. As such, durum wheat when milled ...

  20. Evaluation of the quality attributes of wheat composite (wheat ...

    African Journals Online (AJOL)

    Composite flour was produced with wheat and other crops like rice, plantain and cassava at 20% substitution. The flour mixes were evaluated for proximate, physico-chemical properties and sensory evaluation was carried out on bread samples produced from these mixes. The moisture contents of these flours ranged from ...

  1. Effect of water migration between arabinoxylans and gluten on baking quality of whole wheat bread detected by magnetic resonance imaging (MRI).

    Science.gov (United States)

    Li, Juan; Kang, Ji; Wang, Li; Li, Zhen; Wang, Ren; Chen, Zheng Xing; Hou, Gary G

    2012-07-04

    A new method, a magnetic resonance imaging (MRI) technique characterized by T(2) relaxation time, was developed to study the water migration mechanism between arabinoxylan (AX) gels and gluten matrix in a whole wheat dough (WWD) system prepared from whole wheat flour (WWF) of different particle sizes. The water sequestration of AX gels in wheat bran was verified by the bran fortification test. The evaluations of baking quality of whole wheat bread (WWB) made from WWF with different particle sizes were performed by using SEM, FT-IR, and RP-HPLC techniques. Results showed that the WWB made from WWF of average particle size of 96.99 μm had better baking quality than those of the breads made from WWF of two other particle sizes, 50.21 and 235.40 μm. T(2) relaxation time testing indicated that the decreased particle size of WWF increased the water absorption of AX gels, which led to water migration from the gluten network to the AX gels and resulted in inferior baking quality of WWB.

  2. Suitability of spring wheat varieties for the production of best quality pizza.

    Science.gov (United States)

    Tehseen, Saima; Anjum, Faqir Muhammad; Pasha, Imran; Khan, Muhammad Issa; Saeed, Farhan

    2014-08-01

    The selection of appropriate wheat cultivars is an imperative issue in product development and realization. The nutritional profiling of plants and their cultivars along with their suitability for development of specific products is of considerable interests for multi-national food chains. In this project, Pizza-Hut Pakistan provided funds for the selection of suitable newly developed Pakistani spring variety for pizza production. In this regard, the recent varieties were selected and evaluated for nutritional and functional properties for pizza production. Additionally, emphasis has been paid to assess all varieties for their physico-chemical attributes, rheological parameters and mineral content. Furthermore, pizza prepared from respective flour samples were further evaluated for sensory attributes Results showed that Anmool, Abadgar, Imdad, SKD-1, Shafaq and Moomal have higher values for protein, gluten content, pelshenke value and SDS sedimentation and these were relatively better in studied parameters as compared to other varieties although which were considered best for good quality pizza production. TD-1 got significantly highest score for flavor of pizza and lowest score was observed from wheat variety Kiran. Moreover, it is concluded from current study that all wheat varieties except TJ-83 and Kiran exhibited better results for flavor.

  3. From image processing to classification: IV. Classification of electrophoretic patterns by neural networks and statistical methods enable quality assessment of wheat varieties for breadmaking

    DEFF Research Database (Denmark)

    Jensen, Kirsten; Kesmir, Can; Søndergaard, Ib

    1996-01-01

    The end-use quality of products made from doughs consisting of wheat flour and water is often dependent upon the storage (gluten) proteins of the grain endosperm. Today the electrophoretic patterns of the high molecular weight (HMW) glutenin subunits are used for quality selections in wheat breed...

  4. THE INFLUENCE OF PROCESSED PRODUCTS OF WHEAT GERM ON GRAIN BREAD QUALITY

    Directory of Open Access Journals (Sweden)

    E. I. Ponomareva

    2014-01-01

    Full Text Available Development and introduction of new types of bakery products with increased nutritional value is one of the basic and urgent problems in the bakery industry. The solution of it is the use of whole grains, as well as secondary products of their processing. The use of by-products of wheat germ (oil, oilcake, oilcake flour, which are rich in proteins and enhances the nutritional value of products is considered to be a promising area in the bakery industry. At the same time the program objectives products, developed in the framework of the "Strategy of development of the food processing industry of the Russian Federation for the period up to 2020"products, are expanding the production of cereal-based foods , and involving of secondary resources in the economy. These technologies are re-source efficient. They allow efficient use of by-products raw materials of the milling industry. The process for the preparation of grain bread on the basis of a thick sourdough from bioactivated wheat grain is known. However, despite all the advantages of grain breads with high amounts of dietary fiber, minerals and vitamins, they exhibit low levels of protein and lysine deficiency. At present larger preference is given to the raw materials of natural origin (millet, buckwheat and oatmeal flours, fruit puree, whole grains, oil, flour and wheat germ flakes, and etc. for foods enrichment in modern food science. Products of processing of wheat germ: oil, flakes, oilcake and oil-cake flour are widely used in bakery technology. To improve the nutritional value flour from wheat germ oilcake was used in the work. In the course of the research its positive effect on the quality of semi-finished and finished products was found. They differed from the control sample in a high content of antioxidants and better digestibility of proteins bread crumb.

  5. Quality of grain and flour of foreign bread wheat cultivars (Triticum aestivum L. under the conditions of south Dobrudzha region

    Directory of Open Access Journals (Sweden)

    P. Chamurliyski

    2016-12-01

    Full Text Available Abstract. Dobrudzha Agricultural Institute One of the main directions of the breeding programs in common winter wheat, besides increasing productivity, is developing of cultivars with excellent baking properties. An important prerequisite for this is the involvement of new gene plasma of variable origin, which is adequate to the growing conditions and the desired breeding direction. The aim of investigation is study of some main properties related to the grain quality and the baking properties of bread wheat accessions of foreign origin under the conditions of the South Dobrudzha region. Twenty-five foreign bread wheat cultivars of various origins were investigated for a three year period. Cultivars Aglika, Enola, Pryaspa and Yantur were used as standards. Some indices related to the quality of grain and flour were analyzed at the Bread Making Laboratory of (DAI. The expression of the following parameters was followed: test weigh, % of protein, sedimentation, wet gluten yield, softening degree, pharinographic value, bread volume, and the quality index (QI was calculated. The cultivars, which demonstrated high grain quality, were the Romanian Faur, Moldovan Dobropolka, American Wahoo and the Ukrainian Zmina. Averaged for the three years, highest variation was found for the index pharinographic value. On the whole, the materials with origin from Romania, Ukraine and USA were characterized with high values of the quality indices. Cultivars Faur and Zmina can be successfully included in the breeding program of DAI for development of strong wheat varieties

  6. Elemental characterization of bread and durum wheat by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Catarina Galinha; Maria do Carmo Freitas; Pacheco, A.M.G.

    2013-01-01

    Cereals are by far the most significant agricultural crops, not only due to the sheer amount of their gross-tonnage production and prevalence in human diets worldwide, but also as food vehicles of important items for human nutrition and wellness at large-proteins, dietary fibers and oligoelements, such as selenium, calcium, zinc and iron, to name just a few. Still, some micronutrients feature an uneven distribution in the upper continental crust, and thus in cultivation soils deriving therefrom. Whether soils have always been poor in an essential element, or have just become deprived of it by intensive farming, the result is the same: insufficient soil-plant transfer, feeble-to-nonexistent plant uptake, and, therefore, unsatisfactory dietary distribution of that element through the food chain. Countries that implemented corrective measures or programs of crop biofortification and consumer education have been successful in dealing with some micronutrients' deficiencies. Given their relative weight in Portuguese diets, cereals are obvious candidates for crop-supplementation strategies that may contribute to an upgrade in the health status of the whole population. A good knowledge of element-baseline data for major cereal varieties (plants) and main production areas (soils) is a pre-requisite though. The present work was aimed at an elemental characterization of cereals and soils from relevant wheat-producing areas of mainland Portugal. This paper is focused on wheat samples-bread and durum wheats; Triticum aestivum L. (Farak and Jordao cultivars) and Triticum durum Desf. (Don Duro and Simeto cultivars), respectively-from the 2009 campaign, collected at Tras-os-Montes, Alto Alentejo and Baixo Alentejo (inland regions). Elemental concentrations were determined by instrumental neutron activation analysis (INAA; k 0 -variant), and assessed with the k 0 -IAEA software. Quality control was asserted through the analysis of NIST-SRM R 1567a (Wheat Flour), NIST-SRM R 1568a

  7. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits

    NARCIS (Netherlands)

    Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo-Martin, C.; Don, C.; Putten, P.E.L. van der

    2006-01-01

    Heat stress effects on grain dry mass and quality were studied in spring wheat genotypes (Triticum aestivum L.). Three cultivars were chosen with respect to heat tolerance: Lavett (genotype 1), selected for temperate growing conditions and two CIMMYT cultivars, Ciano-79 (genotype 2) and Attila

  8. New durum wheat with soft kernel texture: end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    Science.gov (United States)

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which precludes conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft whit...

  9. Construction and analysis of a microsatellite-based database of european wheat varieties

    NARCIS (Netherlands)

    Röder, M.S.; Wendehake, K.; Korzun, V.; Bredemeijer, G.; Laborie, D.; Bertrand, L.; Isaac, P.; Vosman, B.

    2002-01-01

    A database of 502 recent European wheat varieties, mainly of winter type, was constructed using 19 wheat microsatellites and one secalin-specific marker. All datapoints were generated in at least two laboratories using different techniques for fragment analysis. An overall level of >99.5ccuracy

  10. Physicochemical, rheological, thermal, and bread making properties of flour obtained from irradiated wheat

    International Nuclear Information System (INIS)

    Singer, Carolina Sobral

    2006-01-01

    Most of the methods that are nowadays used for food preservation derive from old times. Besides these methods, new non-thermal methods have been developed in order to improve food quality during its processing. Irradiation technology has a great contribution potential to improve preservation, storage and distribution of foods. Several studies from international literature have reported the efficiency of irradiation process on microbiological control of grains and their products. Due to the low technological quality of national wheat, Brazil depends on its import. Wheat is the main ingredient of bread which is one of the most important products of Brazilian people's diet. The objective of this work was to study the effect of ionizing radiation on wheat on physicochemical, rheological, and thermal properties of flour produced from this wheat, and consequently, its performance on bread making. All experiments were conducted on laboratory scale. Wheat was submitted to irradiation on different doses (0.0; 0.5; 1.0 and 2.0 kGy) and flour produced underwent physicochemical, rheological, thermal and microbiological analyses. Flour bread making performance was measured through quality of bread. None of the physicochemical, rheological or thermal parameters was influenced by irradiation, with the exception of Falling Number, which decreased significantly with the increase of irradiation dose, indicating the effect of irradiation on wheat starch, and consequently on dough's gelatinization. Bread quality parameters did also not show significant differences, and sensory analysis showed that bread produced from irradiated and non irradiated wheat did not present perceivable flavor. (author)

  11. Wheat yield dynamics: a structural econometric analysis.

    Science.gov (United States)

    Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin

    2007-10-15

    In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.

  12. SDS-PAGE analysis of high molecular weight glutenin subunits in SP3 from spaceflight carried wheat

    International Nuclear Information System (INIS)

    Zhang Su'na; Lv Jinyin

    2009-01-01

    The compositions of high molecular weight glutenin subunits (HMW-GS) of the third generation (SP 3 ) of two wheat varieties spaceflight carried were analyzed by SDS-PAGE. The quality score of Glu-1 of each site was calculated according to the quality rating system. The results showed that the space flight carried could result in a higher frequency of HMW-GS gene mutation. The variance frequency of HMW-GS in SP 3 of Shaan253 and Xinong1043 were 27.08% and 27.45%, and the quality score in SP 3 of Shaan253 and Xinong1043 were 7 and 6, respectively. Shaan253 SP 3 generation mutants were considered as high-quality wheat. (authors)

  13. From image processing to classification: IV. Classification of electrophoretic patterns by neural networks and statistical methods enable quality assessment of wheat varieties for bread making

    DEFF Research Database (Denmark)

    Jensen, K.; Kesmir, Can; Søndergaard, Ib

    1996-01-01

    The end-use quality of products made from doughs consisting of wheat flour and water is often dependent upon the storage (gluten) proteins of the grain endosperm. Today the electrophoretic patterns of the high molecular weight (HMW) glutenin subunits are used for quality selections in wheat breed...

  14. Marker-assisted selection for recognizing wheat mutant genotypes carrying HMW glutenin alleles related to baking quality.

    Science.gov (United States)

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker's results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism).

  15. Marker-Assisted Selection for Recognizing Wheat Mutant Genotypes Carrying HMW Glutenin Alleles Related to Baking Quality

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Zamani

    2014-01-01

    Full Text Available Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker’s results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism.

  16. Sustainable use of winter Durum wheat landraces under ...

    African Journals Online (AJOL)

    ... the two checks cultivars. Bi- plot analysis showed that some promising lines with reasonable grain yields, good quality parameters, winter hardiness and drought tolerances among yellow rust resistance durum wheat landraces can be selected for semiarid conditions of Mediterranean countries for sustainable production.

  17. Reference-quality genome sequence of Aegilops tauschii, the source of wheat D genome, shows that recombination shapes genome structure and evolution

    Science.gov (United States)

    Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat and an important genetic resource for wheat. A reference-quality sequence for the Ae. tauschii genome was produced with a combination of ordered-clone sequencing, whole-genome shotgun sequencing, and BioNano optical geno...

  18. Wheat EST resources for functional genomics of abiotic stress

    Directory of Open Access Journals (Sweden)

    Links Matthew G

    2006-06-01

    Full Text Available Abstract Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets. Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in

  19. An Economic Analysis for using Gamma and Electron Irradiation Technology in Preservation of Wheat in Egypt

    International Nuclear Information System (INIS)

    El-Gameel, E.A.

    2011-01-01

    The present study discusses the economic analysis of wheat irradiation in Egypt. This study was divided into four sections; the first section included the arrangement of the equation of simple regression foretelling the future of wheat import and national production. The second section include the financial analysis of electron beam accelerator facility, the third section discusses the financial analysis of gamma irradiation facility and the fourth section discusses the national return of wheat irradiation

  20. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality.

    Science.gov (United States)

    Mancebo, Camino M; Merino, Cristina; Martínez, Mario M; Gómez, Manuel

    2015-10-01

    Gluten-free bread production requires gluten-free flours or starches. Rice flour and maize starch are two of the most commonly used raw materials. Over recent years, gluten-free wheat starch is available on the market. The aim of this research was to optimize mixtures of rice flour, maize starch and wheat starch using an experimental mixture design. For this purpose, dough rheology and its fermentation behaviour were studied. Quality bread parameters such as specific volume, texture, cell structure, colour and acceptability were also analysed. Generally, starch incorporation reduced G* and increased the bread specific volume and cell density, but the breads obtained were paler than the rice flour breads. Comparing the starches, wheat starch breads had better overall acceptability and had a greater volume than maize-starch bread. The highest value for sensorial acceptability corresponded to the bread produced with a mixture of rice flour (59 g/100 g) and wheat starch (41 g/100 g).

  1. Predicting the yield and quality of winter wheat grown on calcareous chernozem in the lower Don Region

    Directory of Open Access Journals (Sweden)

    Olga Biryukova

    2015-07-01

    Full Text Available Long-term studies have revealed a system of indicators for predicting the yield of winter wheat grown on a calcareous chernozem. It has been established that the prediction and integrated assessment of the yield and quality of grain should be performed with consideration for the balance of macro- and micronutrients in the grain and the above-ground biomass of plants. It has been shown that the contents of protein and gluten in winter wheat grain are mainly determined by the supply of plants with nitrogen and its balance with Mn, Р, Fe, Zn, and K. Possibility of predicting the contents of macro- and micronutrients in wheat grain from the chemical composition of plants at the shooting stage has been revealed.

  2. Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat

    Directory of Open Access Journals (Sweden)

    Langridge Peter

    2006-10-01

    Full Text Available Abstract Background Our understanding of the mechanisms that govern the cellular process of meiosis is limited in higher plants with polyploid genomes. Bread wheat is an allohexaploid that behaves as a diploid during meiosis. Chromosome pairing is restricted to homologous chromosomes despite the presence of homoeologues in the nucleus. The importance of wheat as a crop and the extensive use of wild wheat relatives in breeding programs has prompted many years of cytogenetic and genetic research to develop an understanding of the control of chromosome pairing and recombination. The rapid advance of biochemical and molecular information on meiosis in model organisms such as yeast provides new opportunities to investigate the molecular basis of chromosome pairing control in wheat. However, building the link between the model and wheat requires points of data contact. Results We report here a large-scale transcriptomics study using the Affymetrix wheat GeneChip® aimed at providing this link between wheat and model systems and at identifying early meiotic genes. Analysis of the microarray data identified 1,350 transcripts temporally-regulated during the early stages of meiosis. Expression profiles with annotated transcript functions including chromatin condensation, synaptonemal complex formation, recombination and fertility were identified. From the 1,350 transcripts, 30 displayed at least an eight-fold expression change between and including pre-meiosis and telophase II, with more than 50% of these having no similarities to known sequences in NCBI and TIGR databases. Conclusion This resource is now available to support research into the molecular basis of pairing and recombination control in the complex polyploid, wheat.

  3. Effects of carbohydrase enzyme supplementation on performance, eggshell quality, and bone parameters of laying hens fed on maize- and wheat-based diets.

    Science.gov (United States)

    Olgun, Osman; Altay, Y; Yildiz, Alp O

    2018-04-01

    1. This study was conducted to determine the effects of enzyme supplementation of maize/wheat-based diets on the performance, egg quality, and serum and bone parameters of laying hens. 2. During the 12-week experimental period, a total of 72 laying hens aged 52 weeks were randomly distributed among 6 experimental groups. Each experimental group contained 4 replicates, each with three birds. The experiment was a randomised design consisting of a 3 × 2 factorial arrangement, with three levels of wheat substitution and two levels of enzyme (xylanase: 1500.00 U/kg, β-glucanase: 100 000 U/kg, cellulase: 1 000 000 U/kg, α-amylase: 160 000 U/kg) inclusion in the diet. Wheat replaced 0, 50, or 100% of maize with or without 1.0 g/kg enzyme supplementation in iso-nitrogenous and iso-caloric experimental diets. 3. Body weight, egg production, egg weight, egg mass, eggshell thickness, and the feed conversion ratio were adversely affected by the wheat-based diet. The eggshell quality parameters decreased with enzyme supplementation to the diet. 4. Wheat-based diets adversely affected calcium and phosphorus concentrations in the tibia, but the addition of the enzymes to the wheat-based diet prevented the negative effects of wheat-based diets on tibia mineralisation in laying hens. The wheat-based diets tended to reduce plasma mineral contents, and the addition of enzymes tended to affect plasma minerals and biomechanical properties of the tibia positively in laying hens. 5. These results indicate that wheat-based diets in aged laying hens adversely affected the mineral metabolism compared with maize-based diets, and the negative effects of wheat on bone mineralisation can be prevented by enzyme supplementation to the diets in laying hens.

  4. Analysis of grain filling process to the varied meteorological conditions in winter wheat [Triticum aestivum] cultivars

    International Nuclear Information System (INIS)

    Inoue, K.; Nakazono, K.; Wakiyama, Y.

    2005-01-01

    This paper describes effects of varied meteorological conditions on the grain filling periods, stabilities of yield and quality of winter wheat cultivars with different maturity characteristics (cv. Ayahikari, Norin61, Bandowase, and Tsurupikari). In the field experiments, the meteorological treatments were made during the first heading time on 17 April 2001 and the middle heading time on 24 April 2000. Air temperature, global solar radiation and soil moisture were controlled using a rain shelter, cheesecloth and irrigation system. The growth speed and growth period of wheat grains varied among four winter wheat cultivars, depending on meteorological conditions. The growth speed increased within 1 8.4 deg C of mean air temperature over the 30 days after the anthesis. On the other hand, it was found that the growth speed of wheat grains and the maximum number of wheat grains (Ymax) decreased greatly with the 44.4% interception of global solar radiation. Logistic functions were fitted to the relationship between the relative thousand-kernel-weight (Y/Ymax) and the total integrated temperature (sigmaTa) after heading for all treatment conditions. The maximum weight of grains (Ymax) achieved at the harvest time varied somewhat clearly among four winter wheat cultivars and meteorological conditions. Multiple regression analysis showed that the grain yield (Ymax) of four wheat cultivars correlated positively with daily mean solar radiation. It was also found that the cultivar Ayahikari had a highly significant negative correlation between its grain weight and soil moisture. Namely, the grain weight of high soil moisture plot with pF=1.5 was lower by about 9% than that of a control plot with pF=3.5. On the other hand, the grain yield of cultivar Norin61 responded inversely to a wet environment, indicating that its grain weight was higher for high soil moisture and high wet-bulb temperature than for a dry environment. The grain yield of early varieties of Bandowase and

  5. Evolution of bread-making quality of Spanish bread-wheat genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.; Aparicio, N.; Ruiz-Paris, E.; Oliete, B.; Caballero, P. A.

    2009-07-01

    In this study, 36 Spanish wheat genotypes (five modern commercial cultivars, four cultivars introduced after the green revolution and 27 land races from northwestern Spain) were evaluated. Grain (yield, specific weight, protein content and falling number) and flour (yield, protein content, Zeleny index, wet gluten and gluten index) properties were analyzed. Dough behaviour during mixing (DoughLAB) and handling (alveograph) was also considered. An evolution in grain and flour properties was observed over time. In modern cultivars, grain yield was improved owing to higher grain production. In land races, higher grain yields were related to larger grain size. Unlike in land races, an inverse correlation between grain yield and protein content was found in modern cultivars. In addition, because of their high protein quality, modern cultivars surpassed land races in bread-making properties. Land races showed considerable variability in protein quality and scored lower curve configuration ratio values than other cultivars with similar strength. Cultivars introduced after the green revolution reached the highest levels of bread-making quality, a feature attributable to their high protein quality. (Author) 24 refs.

  6. Genotype, environment, seeding rate, and top-dressed nitrogen effects on end-use quality of modern Nebraska winter wheat.

    Science.gov (United States)

    Bhatta, Madhav; Regassa, Teshome; Rose, Devin J; Baenziger, P Stephen; Eskridge, Kent M; Santra, Dipak K; Poudel, Rachana

    2017-12-01

    Fine-tuning production inputs such as seeding rate, nitrogen (N), and genotype may improve end-use quality of hard red winter wheat (Triticum aestivium L.) when growing conditions are unpredictable. Studies were conducted at the Agronomy Research Farm (ARF; Lincoln, NE, USA) and the High Plains Agricultural Laboratory (HPAL; Sidney, NE, USA) in 2014 and 2015 in Nebraska, USA, to determine the effects of genotype (6), environment (4), seeding rate (3), and flag leaf top-dressed N (0 and 34 kg N ha -1 ) on the end-use quality of winter wheat. End-use quality traits were influenced by environment, genotype, seeding rate, top-dressed N, and their interactions. Mixograph parameters had a strong correlation with grain volume weight and flour yield. Doubling the recommended seeding rate and N at the flag leaf stage increased grain protein content by 8.1% in 2014 and 1.5% in 2015 at ARF and 4.2% in 2014 and 8.4% in 2015 at HPAL. The key finding of this research is that increasing seeding rates up to double the current recommendations with N at the flag leaf stage improved most of the end-use quality traits. This will have a significant effect on the premium for protein a farmer could receive when marketing wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. DEVELOPMENT OF A FUNCTIONAL PURPOSE WHIPPED BREAD WHOLE GRAIN WHEAT, RYE AND WHEAT BRAN

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2015-01-01

    Full Text Available The article discusses the development of whipped bakery products enriched with dietary fiber, minerals, vitamins retinol, tocopherol, group, polyunsaturated fatty acids through the use of rye and wheat bran and flour of wholegrain wheat. The main raw material for enrichment whipped bakery products used wheat bran and rye. Choice of rye and wheat bran as supplementation prepared whipped bread is explained not only from the point of view of the rationality of the use of this secondary raw materials, but also its rich vitamin and mineral composition. Wheat bran contain the necessary man of b vitamins, including B1, B2, B6, PP and others. Found provitamin a (carotene and vitamin E (tocopherol. Bran is rich in mineral substances. Among them potassium, magnesium, chromium, zinc, copper, selenium and other trace elements. Thanks to this composition bran are essential dietary product. They are rich in insoluble fiber and can be useful to reduce the risk of developing colon cancer. Rye bran contain dietary fiber, tocopherol E, thiamin B1, Riboflavin B2, Pantothenic acid B5, B4 (choline, nicotinic acid B3, etc. In the bran rich set of microelements and macroelements such as iron, calcium, magnesium, phosphorus, potassium, zinc, iodine, selenium, chromium, etc. the Introduction in the diet, bran rye contribute to the prevention and treatment of atherosclerosis, diabetes and anemia. They restore blood pressure, reduce blood sugar levels and improve the cardiovascular system. Flour from wholegrain wheat is the main supplier of bread protein and starch, while preserving the maximum of the original nutritional value of the grain, enriched whipped bread macro - and micronutrients. The analysis of the chemical composition of flour from wholegrain wheat, rye and wheat bran leads to the conclusion that the choice of these types of materials suitable for making the recipe whipped bakery products, because their use can increase the content in bread is not only the

  8. Flour quality and kernel hardness connection in winter wheat

    Directory of Open Access Journals (Sweden)

    Szabó B. P.

    2016-12-01

    Full Text Available Kernel hardness is controlled by friabilin protein and it depends on the relation between protein matrix and starch granules. Friabilin is present in high concentration in soft grain varieties and in low concentration in hard grain varieties. The high gluten, hard wheat our generally contains about 12.0–13.0% crude protein under Mid-European conditions. The relationship between wheat protein content and kernel texture is usually positive and kernel texture influences the power consumption during milling. Hard-textured wheat grains require more grinding energy than soft-textured grains.

  9. The effects of certain enzymes on the rheology of dough and the quality characteristics of bread prepared from wheat meal.

    Science.gov (United States)

    Altınel, Burak; Ünal, S Sezgin

    2017-05-01

    This study was carried out to evaluate the effects of amyloglucosidase, glucose oxidase, hemicellulase (mainly consist of endo-1,4-β-xylanase), cellulase, lipase, and the combination of phospholipase and hemicellulase (phospholipase + hemicellulase) on the extensographic properties of dough and the quality characteristics of bread prepared from wheat meal. The enzymes were added separately in two different amounts. The addition of glucose oxidase (at 0.0003-0.001%) caused a significant decrease in the resistance to extension, ratio of resistance to extensibility and energy values of the wheat meal dough compared with the control dough. The addition of hemicellulase (at 0.001-0.005%) and phospholipase + hemicellulase (at 0.0006-0.0009%) also improved the wheat meal dough rheology by reducing the resistance to extension and the ratio of resistance to extensibility. Glucose oxidase (at 0.0003-0.001%), hemicellulase (at 0.001-0.005%) and phospholipase + hemicellulase (at 0.0006-0.0009%) addition improved the specific volume of wheat meal bread compared with the control bread. Increasing the dosage of glucose oxidase from 0.0003 to 0.001% caused a further increase in the specific volume of wheat meal bread. The addition of hemicellulase (at 0.001-0.005%) caused a significant decrease in the baking loss and an increase in the moisture content of wheat meal bread compared with the control bread. The addition of amyloglucosidase (at 0.000875-0.001%), lipase (at 0.0002-0.001%) and cellulase (at 0.0003-0.0005%) did not considerably affected the dough rheological and the quality characteristics of wheat meal bread.

  10. Addition of Vital Wheat Gluten to Enhance the Quality Characteristics of Frozen Dough Products

    Directory of Open Access Journals (Sweden)

    Virginia Giannou

    2016-01-01

    Full Text Available The aim of this study was to enhance the quality and sensory characteristics of bread made from frozen dough. Both white and whole-wheat flour were used. In order to improve dough strength and stability during frozen storage, samples were supplemented with vital wheat gluten at the levels of 2%, 4%, 5%, and 6% of flour weight. The characteristics of baked samples were determined through weight loss, specific volume, crust, and crumb color, texture, and sensory evaluation. Dough behavior at sub-zero temperatures was further examined for control samples and samples with 6% gluten using Differential Scanning Calorimetry (DSC, while their low molecular sugar content (fructose, glucose, sucrose was measured using High Pressure Liquid Chromatography (HPLC, as it can be associated with yeast viability and dough freezing point depression. The most stable samples were those with 4% and 6% gluten (for white flour and those with 4% and 5% gluten (for whole-wheat flour. Gluten addition raised the freezing point of dough samples and preserved low molecular sugar generation after prolonged storage.

  11. Effect of Hydrocolloids and Emulsifiers on Baking Quality of Composite Cassava-Maize-Wheat Breads

    Directory of Open Access Journals (Sweden)

    Maria Eduardo

    2014-01-01

    Full Text Available Cassava is widely available worldwide but bread quality is impaired when cassava is used in the bread formulation. To overcome this problem, different improvers were tested in the preparation of composite cassava-maize-wheat (CMW breads. Emulsifiers, diacetyl tartic acid ester of monoglycerides (DATEM, sodium stearoyl-2-lactylate (SSL, and lecithin (LC; and hydrocolloids, carboxymethylcellulose (CMC and high-methylated pectin (HM pectin were added during dough preparation of the composite flours (cassava-maize-wheat, 40 : 10 : 50. Each emulsifier was tested in combination with the hydrocolloids at levels of 0.1, 0.3, and 0.5% while hydrocolloids were used at a level of 3%. Bread quality attributes such as specific loaf volume, crust colour, crumb moisture, and firmness were measured. The specific volume of the fresh breads significantly improved with the addition of hydrocolloids (7.5 and 13% and in combination with emulsifiers (from 7.9 to 27% compared with bread produced without improvers. A significant improvement of brownness index and firmness of the composite flours breads was achieved with the addition of hydrocolloids and emulsifiers. The results show that emulsifiers and hydrocolloids can significantly improve the baking quality of CMW breads and thereby enhance the potential for using locally produced flours in bread baking.

  12. Time Series Analysis of Wheat Futures Reward in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Different from the fact that the main researches are focused on single futures contract and lack of the comparison of different periods, this paper described the statistical characteristics of wheat futures reward time series of Zhengzhou Commodity Exchange in recent three years. Besides the basic statistic analysis, the paper used the GARCH and EGARCH model to describe the time series which had the ARCH effect and analyzed the persistence of volatility shocks and the leverage effect. The results showed that compared with that of normal one,wheat futures reward series were abnormality, leptokurtic and thick tail distribution. The study also found that two-part of the reward series had no autocorrelation. Among the six correlative series, three ones presented the ARCH effect. By using of the Auto-regressive Distributed Lag Model, GARCH model and EGARCH model, the paper demonstrates the persistence of volatility shocks and the leverage effect on the wheat futures reward time series. The results reveal that on the one hand, the statistical characteristics of the wheat futures reward are similar to the aboard mature futures market as a whole. But on the other hand, the results reflect some shortages such as the immatureness and the over-control by the government in the Chinese future market.

  13. Assessment of breadmaking performance of wheat flour dough by means of frequency dependent ultrasound

    International Nuclear Information System (INIS)

    Braunstein, D; Peressini, D; Page, J H; Strybulevych, A; Scanlon, M G

    2012-01-01

    Technological performance of wheat flour varies among different wheat varieties. Gluten plays a key role within the solid phase of dough in the formation and the retention of gas bubbles during breadmaking. Rheological tests are usually performed to predict breadmaking potential. The aim here was to investigate the ability of ultrasound to discriminate wheat doughs based on breadmaking qualities. The ultimate goal is the development of an online quality control system currently unavailable in the baked goods industry, rendering this work innovative. Samples were prepared from a strong wheat flour, with one control sample and one added with inulin and distilled monoglycerides, producing doughs of distinct breadmaking quality. Doughs were subjected to density determination, elongation tests, and ultrasound analysis. The ultrasound tests were performed in the frequency range of 300 kHz – 6 MHz. Ultrasonic phase velocity increased with increasing frequency to about 2 MHz, becoming constant and then decreasing from 3 MHz for the control sample. Distinct differences in attenuation coefficient between the fibre-enriched and control doughs were observed. Ultrasound can potentially add to a better understanding of dough quality and can discriminate between doughs of contrasting properties.

  14. Assessment of breadmaking performance of wheat flour dough by means of frequency dependent ultrasound

    Science.gov (United States)

    Braunstein, D.; Page, J. H.; Strybulevych, A.; Peressini, D.; Scanlon, M. G.

    2012-12-01

    Technological performance of wheat flour varies among different wheat varieties. Gluten plays a key role within the solid phase of dough in the formation and the retention of gas bubbles during breadmaking. Rheological tests are usually performed to predict breadmaking potential. The aim here was to investigate the ability of ultrasound to discriminate wheat doughs based on breadmaking qualities. The ultimate goal is the development of an online quality control system currently unavailable in the baked goods industry, rendering this work innovative. Samples were prepared from a strong wheat flour, with one control sample and one added with inulin and distilled monoglycerides, producing doughs of distinct breadmaking quality. Doughs were subjected to density determination, elongation tests, and ultrasound analysis. The ultrasound tests were performed in the frequency range of 300 kHz - 6 MHz. Ultrasonic phase velocity increased with increasing frequency to about 2 MHz, becoming constant and then decreasing from 3 MHz for the control sample. Distinct differences in attenuation coefficient between the fibre-enriched and control doughs were observed. Ultrasound can potentially add to a better understanding of dough quality and can discriminate between doughs of contrasting properties.

  15. Influence of irrigation and nitrogen fertilization on grain yield and some baking quality characteristics of spring wheat

    Directory of Open Access Journals (Sweden)

    Paavo Elonen

    1975-05-01

    Full Text Available In the years 1967—70 twelve irrigation experiments of spring wheat were carried out in southern Finland (60-62° N, 22-26° E. Sprinkler irrigation (2 X 30 mm increased the grain yields on an average by 1240±470kg/ha (from 2740 to 3980 kg or 45±17 %. The increases in yield were significant on clay soils (9 trials and loam (1 trial but insignificant on fines and (1 trial and mould (1 trial. Additional nitrogen fertilization (from 76 to 143kg/ha N increased the grain yields on an average by 350± 200 kg/ha or 11±6 %. The ripening of wheat was significantly promoted by irrigation in one year but slightly retarded in three years. Nitrogen fertilization slightly retarded ripening every year The falling number of grains tended to be slightly improved by irrigation (from 285 to 321, on an average, but in most trials irrigation and nitrogen fertilization had no significant influence on the falling number. Irrigation decreased the crude protein content of grains in all trials, on an average by 2.2 ± 0.7 %-units (from 16.3 to 14.1%. This unfavourable effect was, however, avoided with additional nitrogen which increased the protein content by 1.9±0.4%-units (from 14,3 to 16.2 %. The effects of irrigation and nitrogen fertilization on those characteristics of wheat that are correlated with protein, were similar to the effects on the protein content. Thus, irrigation decreased the zeleny value (from 64 to 53 ml, cold viscosity (from 214 to 114 seconds, water absorption (from 66.5 to 64.9 % and the valorimeter value (from 68 to 60, while these characteristics were improved by nitrogen fertilization. Irrigation did not decrease the Pelshenke value but increased significantly the ratio of the Pelshenke value/protein content (from 5,1 to 6.1. This indicates that the quality of protein was improved by irrigation, while the effect of nitrogen fertilization was the reverse. In fact, irrigation and additional nitrogen fertilization affected the quantity and

  16. Genome interplay in the grain transcriptome of hexaploid bread wheat.

    Science.gov (United States)

    Pfeifer, Matthias; Kugler, Karl G; Sandve, Simen R; Zhan, Bujie; Rudi, Heidi; Hvidsten, Torgeir R; Mayer, Klaus F X; Olsen, Odd-Arne

    2014-07-18

    Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome. Copyright © 2014, American Association for the Advancement of Science.

  17. Quality Evaluation of Chicken Nugget Formulated with Various Contents of Chicken Skin and Wheat Fiber Mixture

    Science.gov (United States)

    Kim, Hack-Youn; Kim, Kon-Joong; Lee, Jong-Wan; Kim, Gye-Woong; Choe, Ju-Hui; Kim, Hyun-Wook; Yoon, Yohan; Kim, Cheon-Jei

    2015-01-01

    This study aimed to investigate the effects of various mixtures of the chicken skin and wheat fiber on the properties of chicken nuggets. Two skin and fiber mixtures (SFM) were prepared using the following formulations; SFM-1: chicken skin (50%), wheat fiber (20%), and ice (30%); and SFM-2: chicken skin (30%), wheat fiber (20%), and ice (50%). Chicken nugget samples were prepared by adding the following amounts of either SFM-1 or SFM-2: 0%, 2.5%, 5%, 7.5%, and 10%. The water content for samples formulated with SFM-1 or SFM-2 was higher than in the control (pchicken nuggets was higher than that of cooked chicken nuggets for all the samples tested. Chicken nuggets formulated with SFM-1 and SFM-2 displayed higher cooking yields than the control sample. The hardness of the control sample was also lower than the samples containing SFM-1 and SFM-2. The sensory evaluation showed no significant differences between the control and the samples containing SFM. Therefore, the incorporation of a chicken skin and wheat fiber mixture improved the quality of chicken nuggets. PMID:26761796

  18. Quality Parameters Of Wheat Bread Enriched With Pumpkin (Cucurbita Moschata) By-Products

    OpenAIRE

    Kampuse Solvita; Ozola Liene; Straumite Evita; Galoburda Ruta

    2015-01-01

    Pumpkin processing into puree, juice, candied fruit and pumpkin seed oil results in large amount of by-products. Pumpkins are rich in carotenes, vitamins, minerals, pectin and dietary fibre. The aim of the current study was to evaluate effect of pumpkin pomace and pumpkin residue powder on wheat bread quality. The total content of carotenes was analyzed by spectrophotometric method. The initial increase of pumpkin residue addition indicated increase in loaf volume, which started to decrease a...

  19. Wheat in the Mediterranean revisited--tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers.

    Science.gov (United States)

    Oliveira, Hugo R; Hagenblad, Jenny; Leino, Matti W; Leigh, Fiona J; Lister, Diane L; Penã-Chocarro, Leonor; Jones, Martin K

    2014-05-08

    Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat.

  20. Analysis of the Gli-D2 locus identifies a genetic target for simultaneously improving the breadmaking and health-related traits of common wheat.

    Science.gov (United States)

    Li, Da; Jin, Huaibing; Zhang, Kunpu; Wang, Zhaojun; Wang, Faming; Zhao, Yue; Huo, Naxin; Liu, Xin; Gu, Yong Q; Wang, Daowen; Dong, Lingli

    2018-05-11

    Gliadins are a major component of wheat seed proteins. However, the complex homoeologous Gli-2 loci (Gli-A2, -B2 and -D2) that encode the α-gliadins in commercial wheat are still poorly understood. Here we analyzed the Gli-D2 locus of Xiaoyan 81 (Xy81), a winter wheat cultivar. A total of 421.091 kb of the Gli-D2 sequence was assembled from sequencing multiple bacterial artificial clones, and 10 α-gliadin genes were annotated. Comparative genomic analysis showed that Xy81 carried only eight of the α-gliadin genes of the D genome donor Aegilops tauschii, with two of them each experiencing a tandem duplication. A mutant line lacking Gli-D2 (DLGliD2) consistently exhibited better breadmaking quality and dough functionalities than its progenitor Xy81, but without penalties in other agronomic traits. It also had an elevated lysine content in the grains. Transcriptome analysis verified the lack of Gli-D2 α-gliadin gene expression in DLGliD2. Furthermore, the transcript and protein levels of protein disulfide isomerase were both upregulated in DLGliD2 grains. Consistent with this finding, DLGliD2 had increased disulfide content in the flour. Our work sheds light on the structure and function of Gli-D2 in commercial wheat, and suggests that the removal of Gli-D2 and the gliadins specified by it is likely to be useful for simultaneously enhancing the end-use and health-related traits of common wheat. Because gliadins and homologous proteins are widely present in grass species, the strategy and information reported here may be broadly useful for improving the quality traits of diverse cereal crops. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  1. The influence of cultivar, year and nitrogen supply on quality parameters of bread wheat (Triticum aestivum. L

    Directory of Open Access Journals (Sweden)

    Đurić Veselinka

    2006-01-01

    Full Text Available Field experiments with 3 winter wheat (Triticum, aestivum. L; Lasta, Sremica and Pobeda was applied nitrogen (rate N as follows: 0, 60, 120 and 180 kg Nha-1 from 2000 to 2002. The varieties differed in their biological and production characteristics as well as in technological quality. The analyzed samples belonged to the international ISDV (Internationale Stickstoff Dauer Versuche stationary field trial established at the Rimski Šančevi Experiment Field of the Institute of Field and Vegetable Crops in Novi Sad. Improvement of end use quality in winter wheat depends on thorough understanding of the influences of environment, variety, and their interaction. Grain protein content (GPC, sedimentation value (SED, energy dough, Hagberg falling number (HFN and bread crumb quality number were measured. Highly significant differences were detected among the environments (A, rate N (B and varieties (C for each of the quality variables. Both variety (V and environment (E had a significant effect on quality traits. Significant Vx E interactions indicated that quality trait evaluations must be undertaken for environments. The most influence on protein content and sedimentation value have been climatitic condition. According to lot of environment influence on falling number and dow energy the main part of variance it is genotype and phenotype variability. .

  2. Grain yield and agronomic characteristics of Romanian bread wheat ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... Wheat is adapted to diverse environments, between the ... international collaborative studies many new varieties ... Stability of grain yield and quality characteristics over locations ... grain yield capacity and yield components of twelve .... Analysis of variance for grain yield and yield-related traits over two ...

  3. Benchmark data set for wheat growth models

    DEFF Research Database (Denmark)

    Asseng, S; Ewert, F.; Martre, P

    2015-01-01

    The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, max...... analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario....

  4. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress.

    Science.gov (United States)

    Cui, Fa; Fan, Xiaoli; Chen, Mei; Zhang, Na; Zhao, Chunhua; Zhang, Wei; Han, Jie; Ji, Jun; Zhao, Xueqiang; Yang, Lijuan; Zhao, Zongwu; Tong, Yiping; Wang, Tao; Li, Junming

    2016-03-01

    QTLs for kernel characteristics and tolerance to N stress were identified, and the functions of ten known genes with regard to these traits were specified. Kernel size and quality characteristics in wheat (Triticum aestivum L.) ultimately determine the end use of the grain and affect its commodity price, both of which are influenced by the application of nitrogen (N) fertilizer. This study characterized quantitative trait loci (QTLs) for kernel size and quality and examined the responses of these traits to low-N stress using a recombinant inbred line population derived from Kenong 9204 × Jing 411. Phenotypic analyses were conducted in five trials that each included low- and high-N treatments. We identified 109 putative additive QTLs for 11 kernel size and quality characteristics and 49 QTLs for tolerance to N stress, 27 and 14 of which were stable across the tested environments, respectively. These QTLs were distributed across all wheat chromosomes except for chromosomes 3A, 4D, 6D, and 7B. Eleven QTL clusters that simultaneously affected kernel size- and quality-related traits were identified. At nine locations, 25 of the 49 QTLs for N deficiency tolerance coincided with the QTLs for kernel characteristics, indicating their genetic independence. The feasibility of indirect selection of a superior genotype for kernel size and quality under high-N conditions in breeding programs designed for a lower input management system are discussed. In addition, we specified the functions of Glu-A1, Glu-B1, Glu-A3, Glu-B3, TaCwi-A1, TaSus2, TaGS2-D1, PPO-D1, Rht-B1, and Ha with regard to kernel characteristics and the sensitivities of these characteristics to N stress. This study provides useful information for the genetic improvement of wheat kernel size, quality, and resistance to N stress.

  5. The Influence of Scalded Flour, Fermentation, and Plants Belonging to Lamiaceae Family on the Wheat Bread Quality and Acrylamide Content.

    Science.gov (United States)

    Bartkiene, Elena; Bartkevics, Vadims; Krungleviciute, Vita; Pugajeva, Iveta; Zadeike, Daiva; Juodeikiene, Grazina; Cizeikiene, Dalia

    2018-06-01

    The aim of this study was to investigate the influence of additives such as plants belonging to Lamiaceae family (Thymus vulgaris, Carum carvi, Origanum vulgare, Ocimum basilicum, and Coriandrum sativum), scalded flour (SF) or scalded flour fermented with Lactobacillus plantarum LUHS135 (SFFLp) on the quality and acrylamide formation in wheat bread. The formation of acrylamide and bread quality significantly depended on the king of plants used and the amount of SF and SFFLp used. The additives of T. vulgaris and SF increased the content of acrylamide by 3.4-fold in comparison with bread prepared without SF, whereas the addition of SFFLp significantly reduced the content of acrylamide in bread, especially using 5% of SFFLp supplemented with O. vulgare and 15% of SFFLp supplemented with C. sativum (respectively by 40% and 29.4%) therefore could be recommended for safer bread production. The addition of 5% (from total wheat flour content) of scalded wheat flour fermented with Lactobacillus plantarum LUHS135 strain (SFFLp) with Origanum vulgare addition, and 5% or 10% of SFFLp prepared with Ocimum basilicum, and 15% of SFFLp prepared with Coriandrum sativum significantly reduce the content of acrylamide in wheat bread, therefore could be recommended for safer bread production. © 2018 Institute of Food Technologists®.

  6. [Development of bakery products for greater adult consumption based on wheat and rice flour].

    Science.gov (United States)

    Reyes Aguilar, María José; Palomo, Patricia de; Bressani, Ricardo

    2004-09-01

    The present investigation was developed as a contribution to Guatemalan's elderly food and nutrition. Its main objective was to evaluate the chemical, nutritional and sensory quality of bread prepared from the partial substitution of wheat flour with rice flour. Wheat flour substitutions with rice flour in the order of 15, 20, 30, 40, 50 and 60% were evaluated. Differences with the control (100% wheat bread) were found during the process of preparation, as well as texture, volume, height, weight and specific volume. Important effects in dough handling were noted specifically in the 40, 50 and 60% rice bread. Thus, a sandy texture was found in breads of higher rice levels. The bread protein quality increased with the level of substitution; however the protein quality difference between the wheat bread and the bread with 60% rice flour did not achieve statistical significance. Based on a statistical analysis of the physical properties the bread with 30 and 40% rice flour was selected, and through a preference test between these last two, the 30% rice flour bread was selected as the sample best suited to the present study's purposes. This bread was not different to wheat bread in many nutritional parameters, although in others it showed to be superior. Each serving size of bread has a weight of 80 grams (2 slices) that contributes adequate quantity of calories, protein and sodium, although a little less dietary fiber than 100% wheat bread.

  7. Effect of kernel size and mill type on protein, milling yield, and baking quality of hard red spring wheat

    Science.gov (United States)

    Optimization of flour yield and quality is important in the milling industry. The objective of this study was to determine the effect of kernel size and mill type on flour yield and end-use quality. A hard red spring wheat composite sample was segregated, based on kernel size, into large, medium, ...

  8. Microwave fixation enhances gluten fibril formation in wheat endosperm

    Science.gov (United States)

    The wheat storage proteins, primarily glutenin and gliadin, contribute unique functional properties in food products and play a critical role in determining the end-use quality of wheat. In the wheat endosperm these proteins form a proteinaceous matrix deposited among starch granules only to be brou...

  9. Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population.

    Science.gov (United States)

    Carter, A H; Garland-Campbell, K; Morris, C F; Kidwell, K K

    2012-04-01

    Wheat is marketed based on end-use quality characteristics and better knowledge of the underlying genetics of specific quality parameters is essential to enhance the breeding process. A set of 188 recombinant inbred lines from a 'Louise' by 'Penawawa' mapping population was grown in two crop years at two locations in the Pacific Northwest region of the United States and data were collected on 17 end-use quality traits using established quality analysis protocols. Using an established genetic linkage map, composite interval mapping was used to identify QTL associated with 16 of the 17 quality traits. QTL were found on 13 of the 21 wheat chromosomes. A large number of QTL were located on chromosomes 3B and 4D and coincided with traits for milling quality and starch functionality. Chromosome 3B contained 10 QTL, which were localized to a 26.2 cM region. Chromosome 4D contained 7 QTL, all of which were located on an 18.8 cM region of this chromosome. The majority of the alleles for superior end-use quality were associated with the cultivar Louise. The identified QTL detected remained highly significant independent of grain yield and protein quantity. The identification of these QTL for end-use quality gives key insight into the relationship and complexity of end-use quality traits. It also improves our understanding of these relationships, thereby allowing plant breeders to make valuable gains from selection for these important traits.

  10. Quality Characteristics of Wholemeal Flour and Bread from Durum Wheat (Triticum turgidum L subsp. durum Desf.) after Field Treatment with Plant Water Extracts.

    Science.gov (United States)

    Carrubba, Alessandra; Comparato, Andrea; Labruzzo, Andrea; Muccilli, Serena; Giannone, Virgilio; Spina, Alfio

    2016-09-01

    The use of selected plant water extracts to control pests and weeds is gaining growing attention in organic and sustainable agriculture, but the effects that such extracts may exert on the quality aspects of durum wheat are still unexplored. In 2014, 5 plant water extracts (Artemisia arborescens, Euphorbia characias, Rhus coriaria, Thymus vulgaris, Lantana camara) were prepared and distributed on durum wheat cv Valbelice to evaluate their potential herbicidal effects. After crop harvesting, the major physicochemical and technological parameters of wholemeal flours obtained from each treatment were measured and compared with those from chemical weeding and untreated controls. A baking test was also performed to evaluate the breadmaking quality. In wholemeal flours obtained after the treatment with plant extracts protein and dry gluten content were higher than in control and chemical weeding. Wholemeal flours obtained after chemical weeding reached the highest Mixograph parameters, and that from durum wheat treated with R. coriaria extract demonstrated a very high α-amylase activity. We concluded that the treatments with plant water extracts may influence many quality traits of durum wheat. This occurrence must be taken into account in overall decisions concerning the use of plant extracts in pest and weed management practice. © 2016 Institute of Food Technologists®

  11. Health risk assessment of heavy metals in wheat using different water qualities: implication for human health.

    Science.gov (United States)

    Khan, Zafar Iqbal; Ahmad, Kafeel; Rehman, Sidrah; Siddique, Samra; Bashir, Humayun; Zafar, Asma; Sohail, Muhammad; Ali, Salem Alhajj; Cazzato, Eugenio; De Mastro, Giuseppe

    2017-01-01

    In the recent years, the use of sewage water for irrigation has attracted the attention of arid and semi-arid countries where the availability of fresh water is poor. Despite the potential use of sewage water in crop irrigation as effective and sustainable strategy, the environmental and human risks behind this use need to be deeply investigated. In this regard, an experiment was carried out under field conditions in Nursery, University College of Agriculture Sargodha, to evaluate the possible health risks of undesirable metals in wheat grains. Wheat variety Sarang was cultivated and irrigated with different combinations of ground (GW) and sewage water (SW). The concentrations of heavy metals (Cr, Cd, Ni, and Pb) and trace elements (Cu, Zn, and Fe) in wheat grains as well as in soil were determined. Moreover, the pollution load index (PLI), accumulation factor (AF), daily intake of metals (DIM), and health risk index (HRI) were calculated. Results showed that the concentration trend of heavy metals was Pbmetals, Cd concentration in wheat exceeded the permissible limits regardless water quality, whereas Pb concentration in grain was within the acceptable levels as suggested by World Health Organization, when 100 % of SW was used for irrigation. Similar observation was reported for Cd concentration in the soil when wheat was irrigated with 100 % SW. In comparison to soil, the edible part of wheat presented lower concentration of all studied metals, except for Zn which was much higher compared to the tested soil samples. The higher concentration of Zn was responsible for increasing the DIM of Zn where, in average, the highest value was reported, particularly in 75 % SW treatment. This was reflected also in HRI where the maximum value was reported for Zinc under the same treatment. Higher value of HRI for wheat cultivated on polluted soils suggested that appropriate management of cultivated area is necessary for food safety and thus for public health. The results

  12. Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhen, Shoumin; Dong, Kun; Deng, Xiong; Zhou, Jiaxing; Xu, Xuexin; Han, Caixia; Zhang, Wenying; Xu, Yanhao; Wang, Zhimin; Yan, Yueming

    2016-08-01

    Metabolites in wheat grains greatly influence nutritional values. Wheat provides proteins, minerals, B-group vitamins and dietary fiber to humans. These metabolites are important to human health. However, the metabolome of the grain during the development of bread wheat has not been studied so far. In this work the first dynamic metabolome of the developing grain of the elite Chinese bread wheat cultivar Zhongmai 175 was analyzed, using non-targeted gas chromatography/mass spectrometry (GC/MS) for metabolite profiling. In total, 74 metabolites were identified over the grain developmental stages. Metabolite-metabolite correlation analysis revealed that the metabolism of amino acids, carbohydrates, organic acids, amines and lipids was interrelated. An integrated metabolic map revealed a distinct regulatory profile. The results provide information that can be used by metabolic engineers and molecular breeders to improve wheat grain quality. The present metabolome approach identified dynamic changes in metabolite levels, and correlations among such levels, in developing seeds. The comprehensive metabolic map may be useful when breeding programs seek to improve grain quality. The work highlights the utility of GC/MS-based metabolomics, in conjunction with univariate and multivariate data analysis, when it is sought to understand metabolic changes in developing seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. [Analysis of diversity of Russian and Ukrainian bread wheat (Triticum aestivum L.) cultivars for high-molecular-weight glutenin subunits].

    Science.gov (United States)

    Dobrotvorskaia, T V; Martynov, S P

    2011-07-01

    The allelic diversity of high-moleculat-weght glutenin subunits (H WIGS) in Russian and Ukrainian bread wheat cultivars was analyzed. The diversity of spring wheat cultivars for alleles of the Glu-1 loci is characterized by medium values of the polymorphism index (polymorphism information content, PlC), and in winter wheats it varies from high at the Glu-A1 locus to low at the Glu-D1 locus. The spring and winter cultivars differ significantly in the frequencies of alleles of the glutenin loci. The combination of the Glu-A1b, Glu-B1c, and Glu-D1a alleles prevails among the spring cultivars, and the combination of the Glu-A1a, Glu-B1c, and Glu-D1d alleles prevails among the winter cultivars. The distribution of the Glu-1 alleles significantly depends on the moisture and heat supply in the region of origin of the cultivars. Drought resistance is associated with the Glu-D1a allele in the spring wheat and with the Glu-B1b allele in the winter wheat. The sources of the Glu-1 alleles were identified in the spring and wheat cultivars. The analysis of independence of the distribution of the spring and winter cultivars by the market classes and by the alleles of the HMWGS loci showed a highly significant association of the alleles of three Glu-1 loci with the market classes in foreign cultivars and independence or a weak association in the Russian and Ukrainian cultivars. This seems to be due to the absence of a statistically substantiated system of classification of the domestic cultivars on the basis of their quality.

  14. Rain-induced spring wheat harvest losses

    Science.gov (United States)

    Bauer, A.; Black, A. L. (Principal Investigator)

    1983-01-01

    When rain or a combination of rain and high humidity delay wheat harvest, losses can occur in grain yield and/or grain quality. Yield losses can result from shattering, from reduction in test weight, and in the case of windrowed grain, from rooting of sprouting grain at the soil: windrow contact. Losses in grain quality can result from reduction in test weight and from sprouting. Sprouting causes a degradation of grain proteins and starches, hence flour quality is reduced, and the grain price deteriorates to the value of feed grain. Although losses in grain yield and quality are rain-induced, these losses do not necessarily occur because a standing or windrowed crop is wetted by rain. Spike water concentration in hard red spring wheat must be increased to about 45-49% before sprouting is initiated in grain that has overcome dormancy. The time required to overcome this dormancy after the cultivar has dried to 12 to 14% water concentration differs with hard red spring cultivars. The effect of rain on threshing-ready standing and windrowed hard red spring wheat grain yeild and quality was evaluated. A goal was to develop the capability to forecast the extent of expected loss of grain yield and quality from specific climatic events that delay threshing.

  15. New durum wheat with soft kernel texture: milling performance and end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    Science.gov (United States)

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which preclude conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft white...

  16. Association of molecular markers with polyphenol oxidase activity in selected wheat genotypes

    International Nuclear Information System (INIS)

    Abbas, Z.; Javad, B.; Majeed, N.; Naqvi, S.

    2016-01-01

    Wheat (Triticum aestivum L.), a major staple food for the people of Pakistan and other Asian countries, is used as bread, chapatti, porridge, noodles and many other. It is established that color quality of wheat products depend on chemical and enzymatic factors especially the polyphenol oxidases (PPOs). These are copper containing enzymes which induce browning in wheat-based products. Various procedures for determining PPO activity available and differences in PPO activity among wheat genotypes have been documented. In present study, an attempt was made to establish the association of molecular markers with polyphenol oxidase activity in wheat genotypes having very high or very low PPO activities. Twelve pairs of markers were used out of which only three primer pairs viz. PPO43, PPO30 and WP2-2 yielded specific pattern discriminating high and low PPO genotypes. Cluster analysis for all 12 markers revealed that all the low PPO lline share the same sub cluster, but high PPO lines were dispersed in different clusters. (author)

  17. Genetic diversity of wheat grain quality and determination the best clustering technique and data type for diversity assessment

    Directory of Open Access Journals (Sweden)

    Khodadadi Mostafa

    2014-01-01

    Full Text Available Wheat is an important staple in human nutrition and improvement of its grain quality characters will have high impact on population's health. The objectives of this study were assessing variation of some grain quality characteristics in the Iranian wheat genotypes and identify the best type of data and clustering method for grouping genotypes. In this study 30 spring wheat genotypes were cultivated through randomized complete block design with three replications in 2009 and 2010 years. High significant difference among genotypes for all traits except for Sulfate, K, Br and Cl content, also deference among two years mean for all traits were no significant. Meanwhile there were significant interaction between year and genotype for all traits except Sulfate and F content. Mean values for crude protein, Zn, Fe and Ca in Mahdavi, Falat, Star, Sistan genotypes were the highest. The Ca and Br content showed the highest and the lowest broadcast heritability respectively. In this study indicated that the Root Mean Square Standard Deviation is efficient than R Squared and R Squared efficient than Semi Partial R Squared criteria for determining the best clustering technique. Also Ward method and canonical scores identified as the best clustering method and data type for grouping genotypes, respectively. Genotypes were grouped into six completely separate clusters and Roshan, Niknejad and Star genotypes from the fourth, fifth and sixth clusters had high grain quality characters in overall.

  18. Mycological and mycotoxicological quality of wheat and flour fractions

    Directory of Open Access Journals (Sweden)

    Stojanović Tatjana V.

    2005-01-01

    Full Text Available The seed infection is a result of complex factors influence: weather conditions, health conditions of used seed, quantity of infective potentila in soil, etc. By visual evaluation, initial wheat sample has been divided in four fractions: healthy, dark germed, slightly and very fusarious. Three varietes from two localities 1 and 2 have been included in analyses. Beside the wheat, the mycotoxicological contamination of flour produced by grounding of given samples was monitored, too. The representatives of genera Fusarium were dominating, and the most frequent was F. oxysporum. The wheat and flour samples have also been analysed on presence of aflatoxin B1 "AB1" and G1 "AG1", ochratoxin A "OA" and zearalenone "F-2" toxin. AG1 had the lowest representation (2,3 g/kg and the highest representation was of F-2 toxin (even 500 g/kg.

  19. Effects of water deficit on breadmaking quality and storage protein compositions in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhou, Jiaxing; Liu, Dongmiao; Deng, Xiong; Zhen, Shoumin; Wang, Zhimin; Yan, Yueming

    2018-03-12

    Water deficiency affects grain proteome dynamics and storage protein compositions, resulting in changes in gluten viscoelasticity. In this study, the effects of field water deficit on wheat breadmaking quality and grain storage proteins were investigated. Water deficiency produced a shorter grain-filling period, a decrease in grain number, grain weight and grain yield, a reduced starch granule size and increased protein content and glutenin macropolymer contents, resulting in superior dough properties and breadmaking quality. Reverse phase ultra-performance liquid chromatography analysis showed that the total gliadin and glutenin content and the accumulation of individual components were significantly increased by water deficiency. Two-dimensional gel electrophoresis detected 144 individual storage protein spots with significant accumulation changes in developing grains under water deficit. Comparative proteomic analysis revealed that water deficiency resulted in significant upregulation of 12 gliadins, 12 high-molecular-weight glutenin subunits and 46 low-molecular-weight glutenin subunits. Quantitative real-time polymerase chain reaction analysis revealed that the expression of storage protein biosynthesis-related transcription factors Dof and Spa was upregulated by water deficiency. The present results illustrated that water deficiency leads to increased accumulation of storage protein components and upregulated expression of Dof and Spa, resulting in an improvement in glutenin strength and breadmaking quality. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  20. Density separation as a strategy to reduce the enzyme load of preharvest sprouted wheat and enhance its bread making quality.

    Science.gov (United States)

    Olaerts, Heleen; De Bondt, Yamina; Courtin, Christophe M

    2018-02-15

    As preharvest sprouting of wheat impairs its use in food applications, postharvest solutions for this problem are required. Due to the high kernel to kernel variability in enzyme activity in a batch of sprouted wheat, the potential of eliminating severely sprouted kernels based on density differences in NaCl solutions was evaluated. Compared to higher density kernels, lower density kernels displayed higher α-amylase, endoxylanase, and peptidase activities as well as signs of (incipient) protein, β-glucan and arabinoxylan breakdown. By discarding lower density kernels of mildly and severely sprouted wheat batches (11% and 16%, respectively), density separation increased flour FN of the batch from 280 to 345s and from 135 to 170s and increased RVA viscosity. This in turn improved dough handling, bread crumb texture and crust color. These data indicate that density separation is a powerful technique to increase the quality of a batch of sprouted wheat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Genetic gains in wheat in Turkey: Winter wheat for dryland conditions

    Directory of Open Access Journals (Sweden)

    Mesut Keser

    2017-12-01

    Full Text Available Wheat breeders in Turkey have been developing new varieties since the 1920s, but few studies have evaluated the rates of genetic improvement. This study determined wheat genetic gains by evaluating 22 winter/facultative varieties released for rainfed conditions between 1931 and 2006. The study was conducted at three locations in Turkey during 2008–2012, with a total of 21 test sites. The experimental design was a randomized complete block with four replicates in 2008 and 2009 and three replicates in 2010–2012. Regression analysis was conducted to determine genetic progress over time. Mean yield across all 21 locations was 3.34 t ha−1, but varied from 1.11 t ha−1 to 6.02 t ha−1 and was highly affected by moisture stress. Annual genetic gain was 0.50% compared to Ak-702, or 0.30% compared to the first modern landmark varieties. The genetic gains in drought-affected sites were 0.75% compared to Ak-702 and 0.66% compared to the landmark varieties. Modern varieties had both improved yield potential and tolerance to moisture stress. Rht genes and rye translocations were largely absent in the varieties studied. The number of spikes per unit area decreased by 10% over the study period, but grains spike−1 and 1000-kernel weight increased by 10%. There were no significant increases in harvest index, grain size, or spike fertility, and no significant decrease in quality over time. Future use of Rht genes and rye translocations in breeding programs may increase yield under rainfed conditions. Keywords: Genetic gain, Rainfed wheat production, Winter wheat, Yield

  2. Baking quality parameters of wheat in relation to endosperm storage proteins

    Directory of Open Access Journals (Sweden)

    Daniela Horvat

    2012-01-01

    Full Text Available Wheat storage proteins of twelve winter wheat cultivars grown at the experimental field of the Agricultural Institute Osijek in 2009 were studied for their contribution to the baking quality. Composition of high molecular weight glutenin subunits (HMW-GS was analyzed by SDS-PAGE method, while the proportions of endosperm storage proteins were determined by RP-HPLC method. Regarding the proportion of storage proteins, results of the linear correlation (p<0.05 showed that protein (P and wet gluten (WG content were highly negatively correlated with albumins and globulins (AG and positively with α- gliadins (GLI. A strong negative correlation between AG and water absorption (WA capacity of flour was found, while α- GLI had positive influence on this property. Dough development time (DDT was positively significantly correlated with HMW-GS and negatively with AG. Degree of dough softening (DS was strongly positively affected by γ- GLI and gliadins to glutenins ratio (GLI/GLU and negatively by total GLU and HMW-GS. Dough energy (E and maximum resistance (RMAX were significantly positively affected by Glu-1 score and negatively by GLI/GLU ratio. Resistance to extensibility ratio (R/EXT was significantly negatively correlated with total GLI. Bread volume was significantly negatively influenced by AG.

  3. Quality and nutritional properties of pasta products enriched with immature wheat grain.

    Science.gov (United States)

    Casiraghi, Maria Cristina; Pagani, Maria Ambrogina; Erba, Daniela; Marti, Alessandra; Cecchini, Cristina; D'Egidio, Maria Grazia

    2013-08-01

    In this study, nutritional and sensory properties of pasta enriched with 30% immature wheat grain (IWG), a natural source of fructo-oligosaccharides (FOS), are evaluated. Colour and cooking quality, nutritional value and glycaemic index (GI) of pasta were assessed in comparison with commercially enriched inulin and 100% wholewheat pastas. IWG integration induced deep changes in colour, without negatively affecting the cooking quality of pasta, and promoted nutritional quality by increasing the fibre content; IWG pasta presented a remarkable leaching of FOS in cooking water, thus providing only 1 g of FOS per serving. IWG pastas showed a GI of 67 (dried) and 79 (fresh), not significantly different from commercial pasta products. IWG can be considered an interesting ingredient to obtain functional products 'naturally enriched' in FOS and fibre. Results about FOS leaching suggest that, in dealing with functional effects, the actual prebiotic content should be carefully considered on food 'as eaten'.

  4. Metagenomic Analysis of the Rumen Microbiome of Steers with Wheat-Induced Frothy Bloat.

    Science.gov (United States)

    Pitta, D W; Pinchak, W E; Indugu, N; Vecchiarelli, B; Sinha, R; Fulford, J D

    2016-01-01

    Frothy bloat is a serious metabolic disorder that affects stocker cattle grazing hard red winter wheat forage in the Southern Great Plains causing reduced performance, morbidity, and mortality. We hypothesize that a microbial dysbiosis develops in the rumen microbiome of stocker cattle when grazing on high quality winter wheat pasture that predisposes them to frothy bloat risk. In this study, rumen contents were harvested from six cannulated steers grazing hard red winter wheat (three with bloat score "2" and three with bloat score "0"), extracted for genomic DNA and subjected to 16S rDNA and shotgun sequencing on 454/Roche platform. Approximately 1.5 million reads were sequenced, assembled and assigned for phylogenetic and functional annotations. Bacteria predominated up to 84% of the sequences while archaea contributed to nearly 5% of the sequences. The abundance of archaea was higher in bloated animals (P bloated samples. Co-occurrence analysis revealed syntrophic associations between bacteria and archaea in non-bloated samples, however; such interactions faded in bloated samples. Functional annotations of assembled reads to Subsystems database revealed the abundance of several metabolic pathways, with carbohydrate and protein metabolism well represented. Assignment of contigs to CaZy database revealed a greater diversity of Glycosyl Hydrolases dominated by oligosaccharide breaking enzymes (>70%) in non-bloated samples. However, the abundance and diversity of CaZymes were greatly reduced in bloated samples indicating the disruption of carbohydrate metabolism. We conclude that mild to moderate frothy bloat results from tradeoffs both within and between microbial domains due to greater competition for substrates that are of limited availability as a result of biofilm formation.

  5. Improving Quality and Microbial Safety of Wheat Flour by Gamma Irradiation

    International Nuclear Information System (INIS)

    Hammad, A.A.; Hassan, M.F.; Soliman, S.M.; Abu-Shady, M.R.

    2017-01-01

    In the present study Egyptian wheat flour extracted from wheat (variety Seds 6 ) were irradiated at a dose of 5.0 kGy using Co-60 gamma source. The influence of this irradiation dose on the aerobic bacterial count, mold and yeast count, aflatoxins and major chemical composition of wheat flour was investigated. The influence of a 5.0 kGy gamma radiation dose on the rheological characteristics of wheat flour as well as on the sensory properties of Balady bread was also investigated. It was found that irradiation greatly reduced aerobic bacterial count and mold and yeast count as well as decreasing aflatoxin B1. The major chemical composition of wheat flour almost had no changes as a result of exposure to gamma radiation. An irradiation dose of 5.0 kGy caused a decrease in dough development time, dough stability time and deformation energy of dough as well as increasing dough water absorption which are all desirable in bread making. On the other hand, sensory properties of bread prepared from irradiated flour were almost similar to that of bread made from non-irradiated flour

  6. TECHNOLOGICAL CHARACTERIZATION AND CLASSIFICATION OF WHEAT LINEAGES CULTIVATED IN THE CERRADO MINEIRO

    Directory of Open Access Journals (Sweden)

    Raul Antônio Viana Madeira

    2015-06-01

    Full Text Available Farmers need highly productive wheat cultivars in order to reach better profitability. However, this alone is not enough, because, in order to serve the mills, the food industry, and more specifically, the bakers, wheat cultivars must present minimum quality requirements that result in final products of superior quality. This study was conducted with the goals of performing the technological characterization of wheat flour five lineages developed for cultivation in the Cerrado Mineiro; compare the flours of these lineages with the wheat flour of two commercial wheat cultivars, and classify the wheat lineages according to current Brazilian legislation. A completely randomized design was conducted with seven treatments and three replicates. Moisture, protein and ashes content, and the rheological characteristics of the flours were determined. The EP066066 lineage as rated was basic wheat. The EP066055, EP064021, EP062043 and EP063065 were rated as bread wheat. Among the studied lineages, the wheat flour from the EP062043 stood from the others, presenting considerable gluten contents, good level of mixing tolerance, good stability and good gluten strength.

  7. Effect of whole wheat flour on the quality, texture profile, and oxidation stability of instant fried noodles.

    Science.gov (United States)

    Cao, Xinlei; Zhou, Sumei; Yi, Cuiping; Wang, Li; Qian, Haifeng; Zhang, Hui; Qi, Xiguang

    2017-12-01

    The effects of whole wheat flour (WWF) on pasting properties of instant fried noodle dry mix and quality of final product were investigated in this research. Refined wheat flour in the recipe for instant-fried noodle was replaced by WWF at different levels. The peak and final viscosities were significantly and negatively correlated to WWF substitution level. With increasing WWF level, the hardness, cohesiveness, adhesiveness, and resilience values of instant fried noodles decreased by 11.63, 16.23, 16.67, 20.00%, respectively. WWF darkened noodle's surface color and increased its oil content (26.63%). A porous and less uniformed structure of the WWF instant fried noodles was observed by a scanning electron microscope. Moreover, the WWF incorporation lowered peroxide values of the instant fried noodles during storage. In conclusion, even though the oil content increased, WWF was helpful to inhibit the oil oxidation and produce instant fried noodles with softer texture and less sticky surface. Refined wheat flour in the recipe for instant-fried noodle was replaced by whole wheat flour (WWF), which is rich in dietary fibers, vitamins, and other bioactive compounds. The addition of WWF delayed the retrogradation tendency of starch in the dry mix. WWF-added instant noodles had softer texture, less sticky surface, and lower peroxide value. Based on the results of this study, the refined wheat flour in the recipe for instant-fried noodle could be partially replaced by WWF to make noodles with better texture profile and higher consumer acceptance. © 2017 Wiley Periodicals, Inc.

  8. Efficient induction of Wheat-agropyron cristatum 6P translocation lines and GISH detection.

    Directory of Open Access Journals (Sweden)

    Liqiang Song

    Full Text Available The narrow genetic background restricts wheat yield and quality improvement. The wild relatives of wheat are the huge gene pools for wheat improvement and can broaden its genetic basis. Production of wheat-alien translocation lines can transfer alien genes to wheat. So it is important to develop an efficient method to induce wheat-alien chromosome translocation. Agropyroncristatum (P genome carries many potential genes beneficial to disease resistance, stress tolerance and high yield. Chromosome 6P possesses the desirable genes exhibiting good agronomic traits, such as high grain number per spike, powdery mildew resistance and stress tolerance. In this study, the wheat-A. cristatum disomic addition was used as bridge material to produce wheat-A. cristatum translocation lines induced by (60Co-γirradiation. The results of genomic in situ hybridization showed that 216 plants contained alien chromosome translocation among 571 self-pollinated progenies. The frequency of translocation was 37.83%, much higher than previous reports. Moreover, various alien translocation types were identified. The analysis of M2 showed that 62.5% of intergeneric translocation lines grew normally without losing the translocated chromosomes. The paper reported a high efficient technical method for inducing alien translocation between wheat and Agropyroncristatum. Additionally, these translocation lines will be valuable for not only basic research on genetic balance, interaction and expression of different chromosome segments of wheat and alien species, but also wheat breeding programs to utilize superior agronomic traits and good compensation effect from alien chromosomes.

  9. Approximate bilateral symmetry in evaporation-induced polycrystalline structures from droplets of wheat grain leakages and fluctuating asymmetry as quality indicator

    Science.gov (United States)

    Kokornaczyk, Maria Olga; Dinelli, Giovanni; Betti, Lucietta

    2013-01-01

    The present paper reports on an observation that dendrite-like polycrystalline structures from evaporating droplets of wheat grain leakages exhibit bilateral symmetry. The exactness of this symmetry, measured by means of fluctuating asymmetry, varies depending on the cultivar and stress factor influence, and seems to correspond to the seed germination rate. In the bodies of plants, animals, and humans, the exactness of bilateral symmetry is known to reflect the environmental conditions of an organism's growth, its health, and its success in sexual selection. In polycrystalline structures, formed under the same conditions, the symmetry exactness depends on the properties of the crystallizing solution such as the composition and viscosity; however, it has never been associated with sample quality. We hypothesize here that, as in living nature, the exactness of approximate bilateral symmetry might be considered a quality indicator also in crystallographic methods applied to food quality analysis.

  10. Multivariate analysis of 2-DE protein patterns - Practical approaches

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Jacobsen, Susanne; Grove, H.

    2007-01-01

    Practical approaches to the use of multivariate data analysis of 2-DE protein patterns are demonstrated by three independent strategies for the image analysis and the multivariate analysis on the same set of 2-DE data. Four wheat varieties were selected on the basis of their baking quality. Two...... of the varieties were of strong baking quality and hard wheat kernel and two were of weak baking quality and soft kernel. Gliadins at different stages of grain development were analyzed by the application of multivariate data analysis on images of 2-DEs. Patterns related to the wheat varieties, harvest times...

  11. Quality characterization of wheat, maize and sorghum steamed breads from Lesotho.

    Science.gov (United States)

    Nkhabutlane, Pulane; du Rand, Gerrie E; de Kock, Henriëtte L

    2014-08-01

    In Lesotho, traditional bread covers different types of dumplings prepared with cereal flour, water, salt and sourdough. This study characterized eight steamed breads prepared from wheat, maize and sorghum. Breads were prepared from both commercial and self-milled flours according to the procedures followed in rural and urban areas of Lesotho. Descriptive sensory evaluation was conducted to profile sensory properties of the breads. Flour particle sizes, sourdough properties and bread colour, volume and texture were also characterized. The type of cereal and milling properties of the flour used had substantial effects on the physical and sensory properties of the bread. Steamed wheat breads had greater volume, softer crumb and more bland flavour compared with sorghum and maize breads. Both sorghum and maize steamed breads prepared according to traditional Basotho procedures were characterized by low loaf volume, denser crumb, more complex and strong flavours and aroma, notably sour, musty, malty, dairy sour and fermented aroma. The texture of the non-wheat bread types was heavy, chewy, dry, fibrous and more brittle and needed a higher compression force to deform. This study provided insight on the sensory properties of steamed bread as prepared in Lesotho. Further research is needed to optimize sensory properties of the non-wheat steamed breads by controlling the flour particle size, compositing non-wheat flours with different levels of wheat flour, addition of protein sources and gums, altering the amount of water, improving the pre-gelatinization process and optimizing the steaming method of cooking bread. © 2013 Society of Chemical Industry.

  12. QUALITY AND NUTRITIONAL VALUE OF WHEAT BREAD WITH A PREPARATION OF OAT PROTEINS

    OpenAIRE

    Renata Sabat; KrzysztofBuksa; Barbara Mickowska; Rafał Ziobro; Halina Gambuś; Dorota Pastuszka

    2012-01-01

    The aim of this study was to investigate possibilities and advisability of the use of oats insoluble protein preparation for the production of wheat bread, in order to increase the amount of protein and biological value of protein in this kind of bakery. Research material consisted of the preparation of insoluble oats protein, wheat flour and wheat bread made with the share of oat protein: 5%, 7.5% and 10%, by weight of wheat flour. AOAC methods (2006) were used to determine protein, β-D-gluc...

  13. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing

    Directory of Open Access Journals (Sweden)

    Peng Huiru

    2011-04-01

    Full Text Available Abstract Background Biotic and abiotic stresses, such as powdery mildew infection and high temperature, are important limiting factors for yield and grain quality in wheat production. Emerging evidences suggest that long non-protein coding RNAs (npcRNAs are developmentally regulated and play roles in development and stress responses of plants. However, identification of long npcRNAs is limited to a few plant species, such as Arabidopsis, rice and maize, no systematic identification of long npcRNAs and their responses to abiotic and biotic stresses is reported in wheat. Results In this study, by using computational analysis and experimental approach we identified 125 putative wheat stress responsive long npcRNAs, which are not conserved among plant species. Among them, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP 7S RNA variants, and three were characterized as U3 snoRNAs. We found that wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress. Conclusion Our results indicated that diverse sets of wheat long npcRNAs were responsive to powdery mildew infection and heat stress, and could function in wheat responses to both biotic and abiotic stresses, which provided a starting point to understand their functions and regulatory mechanisms in the future.

  14. Weed Dynamics and Management in Wheat

    DEFF Research Database (Denmark)

    Jabran, Khawar; Mahmood, Khalid; Melander, Bo

    2017-01-01

    ) chemical weed control; and (vi) integrated weed management strategy in wheat. A critical analysis of recent literature indicated that broadleaved weeds are the most common group of weeds in wheat fields followed by grass weeds, while sedges were rarely noted in wheat fields. Across the globe, the most...

  15. A White Paper on Global Wheat Health Based on Scenario Development and Analysis.

    Science.gov (United States)

    Savary, S; Djurle, A; Yuen, J; Ficke, A; Rossi, V; Esker, P D; Fernandes, J M C; Del Ponte, E M; Kumar, J; Madden, L V; Paul, P; McRoberts, N; Singh, P K; Huber, L; Pope de Vallavielle, C; Saint-Jean, S; Willocquet, L

    2017-10-01

    Scenario analysis constitutes a useful approach to synthesize knowledge and derive hypotheses in the case of complex systems that are documented with mainly qualitative or very diverse information. In this article, a framework for scenario analysis is designed and then, applied to global wheat health within a timeframe from today to 2050. Scenario analysis entails the choice of settings, the definition of scenarios of change, and the analysis of outcomes of these scenarios in the chosen settings. Three idealized agrosystems, representing a large fraction of the global diversity of wheat-based agrosystems, are considered, which represent the settings of the analysis. Several components of global changes are considered in their consequences on global wheat health: climate change and climate variability, nitrogen fertilizer use, tillage, crop rotation, pesticide use, and the deployment of host plant resistances. Each idealized agrosystem is associated with a scenario of change that considers first, a production situation and its dynamics, and second, the impacts of the evolving production situation on the evolution of crop health. Crop health is represented by six functional groups of wheat pathogens: the pathogens associated with Fusarium head blight; biotrophic fungi, Septoria-like fungi, necrotrophic fungi, soilborne pathogens, and insect-transmitted viruses. The analysis of scenario outcomes is conducted along a risk-analytical pattern, which involves risk probabilities represented by categorized probability levels of disease epidemics, and risk magnitudes represented by categorized levels of crop losses resulting from these levels of epidemics within each production situation. The results from this scenario analysis suggest an overall increase of risk probabilities and magnitudes in the three idealized agrosystems. Changes in risk probability or magnitude however vary with the agrosystem and the functional groups of pathogens. We discuss the effects of global

  16. An endogenous reference gene of common and durum wheat for detection of genetically modified wheat.

    Science.gov (United States)

    Imai, Shinjiro; Tanaka, Keiko; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Matsuoka, Yasuyuki; Arami, Shin-Ichiro; Sato, Megumi; Haraguchi, Hiroyuki; Kurimoto, Youichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2012-01-01

    To develop a method for detecting GM wheat that may be marketed in the near future, we evaluated the proline-rich protein (PRP) gene as an endogenous reference gene of common wheat (Triticum aestivum L.) and durum wheat (Triticum durum L.). Real-time PCR analysis showed that only DNA of wheat was amplified and no amplification product was observed for phylogenetically related cereals, indicating that the PRP detection system is specific to wheat. The intensities of the amplification products and Ct values among all wheat samples used in this study were very similar, with no nonspecific or additional amplification, indicating that the PRP detection system has high sequence stability. The limit of detection was estimated at 5 haploid genome copies. The PRP region was demonstrated to be present as a single or double copy in the common wheat haploid genome. Furthermore, the PRP detection system showed a highly linear relationship between Ct values and the amount of plasmid DNA, indicating that an appropriate calibration curve could be constructed for quantitative detection of GM wheat. All these results indicate that the PRP gene is a suitable endogenous reference gene for PCR-based detection of GM wheat.

  17. Effect of Protein Molecular Weight Distribution on Kernel and Baking Characteristics and Intra-varietal Variation in Hard Spring Wheats

    Science.gov (United States)

    Specific wheat protein fractions are known to have distinct associations with wheat quality traits. Research was conducted on 10 hard spring wheat cultivars grown at two North Dakota locations to identify protein fractions that affected wheat kernel characteristics and breadmaking quality. SDS ext...

  18. The transcriptome of the developing grain: a resource for understanding seed development and the molecular control of the functional and nutritional properties of wheat.

    Science.gov (United States)

    Rangan, Parimalan; Furtado, Agnelo; Henry, Robert J

    2017-10-11

    Wheat is one of the three major cereals that have been domesticated to feed human populations. The composition of the wheat grain determines the functional properties of wheat including milling efficiency, bread making, and nutritional value. Transcriptome analysis of the developing wheat grain provides key insights into the molecular basis for grain development and quality. The transcriptome of 35 genotypes was analysed by RNA-Seq at two development stages (14 and 30 days-post-anthesis, dpa) corresponding to the mid stage of development (stage Z75) and the almost mature seed (stage Z85). At 14dpa, most of the transcripts were associated with the synthesis of the major seed components including storage proteins and starch. At 30dpa, a diverse range of genes were expressed at low levels with a predominance of genes associated with seed defence and stress tolerance. RNA-Seq analysis of changes in expression between 14dpa and 30dpa stages revealed 26,477 transcripts that were significantly differentially expressed at a FDR corrected p-value cut-off at ≤0.01. Functional annotation and gene ontology mapping was performed and KEGG pathway mapping allowed grouping based upon biochemical linkages. This analysis demonstrated that photosynthesis associated with the pericarp was very active at 14dpa but had ceased by 30dpa. Recently reported genes for flour yield in milling and bread quality were found to influence wheat quality largely due to expression patterns at the earlier seed development stage. This study serves as a resource providing an overview of gene expression during wheat grain development at the early (14dpa) and late (30dpa) grain filling stages for use in studies of grain quality and nutritional value and in understanding seed biology.

  19. Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats

    Science.gov (United States)

    Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...

  20. Population genetic analysis and trichothecene profiling of Fusarium graminearum from wheat in Uruguay.

    Science.gov (United States)

    Pan, D; Mionetto, A; Calero, N; Reynoso, M M; Torres, A; Bettucci, L

    2016-03-11

    Fusarium graminearum sensu stricto (F. graminearum s.s.) is the major causal agent of Fusarium head blight of wheat worldwide, and contaminates grains with trichothecene mycotoxins that cause serious threats to food safety and animal health. An important aspect of managing this pathogen and reducing mycotoxin contamination of wheat is knowledge regarding its population genetics. Therefore, isolates of F. graminearum s.s. from the major wheat-growing region of Uruguay were analyzed by amplified fragment length polymorphism assays, PCR genotyping, and chemical analysis of trichothecene production. Of the 102 isolates identified as having the 15-ADON genotype via PCR genotyping, all were DON producers, but only 41 strains were also 15-ADON producers, as determined by chemical analysis. The populations were genotypically diverse but genetically similar, with significant genetic exchange occurring between them. Analysis of molecular variance indicated that most of the genetic variability resulted from differences between isolates within populations. Multilocus linkage disequilibrium analysis suggested that the isolates had a panmictic population genetic structure and that there is significant recombination occurs in F. graminearum s.s. In conclusion, tour findings provide the first detailed description of the genetic structure and trichothecene production of populations of F. graminearum s.s. from Uruguay, and expands our understanding of the agroecology of F. graminearum and of the correlation between genotypes and trichothecene chemotypes.

  1. Technological characteristics of yeast-containing cakes production using waxy wheat flour

    Directory of Open Access Journals (Sweden)

    K. Iorgachova

    2016-12-01

    Full Text Available This article shows the feasibility of using waxy wheat flour, the starch of which doesn`t contain amylose, in order to stabilize the quality of yeast-containing cakes. The influence of the waxy wheat flour mass fraction and the stage of its adding on the physical, chemical and organoleptic characteristics of the products are studied. According to the technological properties of a new type of wheat flour, two methods of its adding are proposed ‒ adding the maximum amount of waxy wheat flour at dough kneading stage or using the mixture of waxy and bakery wheat flours for kneading sourdough and dough. It is shown that the replacement of 60 % bakery wheat flour with waxy wheat flour in the recipe of yeast-containing cakes at the dough kneading stage contributes to the production of products with higher quality and organoleptic characteristics compared to both the control and cakes based on a mixture of different types of wheat flour. These samples are characterized by increased by 1.7 – 11.3 % specific volume, porosity – 2.6 – 5.5 % and the total deformation of the crumb – 6.5 – 41.4 %.

  2. STORAGE OF CHEMICALLY PRETREATED WHEAT STRAW – A MEANS TO ENSURE QUALITY RAW MATERIAL FOR PULP PREPARATION

    Directory of Open Access Journals (Sweden)

    Terttu Heikkilä

    2010-07-01

    Full Text Available The aim of this study was to evaluate effects of chemical pretreatment and storage on non-wood pulping and on pulp quality. The processes studied were hot water treatment followed by alkaline peroxide bleaching or soda cooking. The results showed that it is possible to store wheat straw outside for at least one year without significant changes in the raw material chemical composition and without adverse effects on the resulting pulp quality. The results are significant to the industry using non-woods to ensure the availability and the quality of the raw-material throughout the year in spite of the short harvesting time.

  3. Aroma of wheat porridge and bread-crumb is influenced by the wheat variety

    DEFF Research Database (Denmark)

    Starr, Gerrard; Hansen, Åse Solvej; Petersen, Mikael Agerlin

    2015-01-01

    evaluation, from these eight were selected for bread evaluation. Porridge and bread results were compared. Variations were found in both evaluations. Five odour- and nine flavour descriptors were found to be common to both wheat porridge and bread. The results for two descriptors: "cocoa" and "oat porridge......" were correlated between the wheat porridge and bread samples. Analysis of whole-meal and low-extraction samples revealed that the descriptors "malt", "oat-porridge", "øllebrød", "cocoa" and "grain" mostly characterized wheat bran, while descriptors for "maize", "bean-shoots", "chamomile", "umami...

  4. Identification of Fusarium damaged wheat kernels using image analysis

    Directory of Open Access Journals (Sweden)

    Ondřej Jirsa

    2011-01-01

    Full Text Available Visual evaluation of kernels damaged by Fusarium spp. pathogens is labour intensive and due to a subjective approach, it can lead to inconsistencies. Digital imaging technology combined with appropriate statistical methods can provide much faster and more accurate evaluation of the visually scabby kernels proportion. The aim of the present study was to develop a discrimination model to identify wheat kernels infected by Fusarium spp. using digital image analysis and statistical methods. Winter wheat kernels from field experiments were evaluated visually as healthy or damaged. Deoxynivalenol (DON content was determined in individual kernels using an ELISA method. Images of individual kernels were produced using a digital camera on dark background. Colour and shape descriptors were obtained by image analysis from the area representing the kernel. Healthy and damaged kernels differed significantly in DON content and kernel weight. Various combinations of individual shape and colour descriptors were examined during the development of the model using linear discriminant analysis. In addition to basic descriptors of the RGB colour model (red, green, blue, very good classification was also obtained using hue from the HSL colour model (hue, saturation, luminance. The accuracy of classification using the developed discrimination model based on RGBH descriptors was 85 %. The shape descriptors themselves were not specific enough to distinguish individual kernels.

  5. Influence of soft kernel texture on the flour and baking quality of durum wheat

    Science.gov (United States)

    Durum wheat is predominantly grown in semi-arid to arid environments where common wheat does not flourish, especially in the Middle East, North Africa, Mediterranean Basin, and portions of North America. Durum kernels are extraordinarily hard when compared to their common wheat counterparts. Due to ...

  6. Effects of Wheat Gluten Hydrolysate and Its Ultrafiltration Fractions on Dough Properties and Bread Quality

    Directory of Open Access Journals (Sweden)

    Mouming Zhao

    2007-01-01

    Full Text Available Two fractions (50-K and permeate from a proteolytic hydrolysate (degree of hydrolysis, DH=3.8 % of wheat gluten were separated using ultrafiltration (UF membrane with molecular mass cut-off of 50 kDa. The effects of the wheat gluten hydrolysate (WGH and its UF fractions on the mixing behaviour and viscoelastic properties of wheat dough were presented. The WGH and its UF fractions modified the mixing properties of dough. The addition of these fractions improved the viscoelastic characteristics of wheat dough. A significant (p<0.05 effect of 50-K fraction on these characteristics of wheat dough was observed. After adding these fractions, the bread was considered acceptable by the sensory panel. Also, 50-K fraction resulted in significant (p<0.05 increase in the crumb firmness, while the bread made with wheat flour with WGH and permeate (P fraction showed softer crumbs compared to that of wheat flour. Moreover, these fractions had anti-staling properties for bread during storage. Hence, the wheat gluten hydrolysate and its UF fractions are the products with promising potential in the baking products.

  7. Analysis of diallel crosses between six varieties of durum wheat in ...

    African Journals Online (AJOL)

    $$)9

    2014-01-08

    Jan 8, 2014 ... The study of morphological genetic determinism characteristics and production of durum wheat. (Triticum durum Desf.) ... analysis of variance for general combining ability (GCA) and specific combining ability (SCA) abilities and reciprocal ... increased and at the same time, these components results in an ...

  8. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture

    Science.gov (United States)

    Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in

  9. Optimization of Bread Preparation from Wheat Flour and Malted Rice Flour

    Directory of Open Access Journals (Sweden)

    Subajiny VELUPPILLAI

    2010-03-01

    Full Text Available The feasibility of partially replacing wheat flour with malted rice flour in bread making was evaluated in several formulations, aiming to find a formulation for the production of malted rice-wheat bread with better nutritional quality and consumer acceptance. The whole grains of a local rice variety (Oryza sativa L. subsp. indica var. Mottaikaruppan were steeped in distilled water (12 h, 30°C and germinated for 3 days to obtain high content of soluble materials and amylase activity in bread making. The quality of bread was evaluated by considering the physical and sensorial parameters. When the wheat flour was substituted with malted rice flour, 35% substitution level and the malted rice flour from 3 days of germination was the best according to the physical and sensory qualities of bread. The quality of bread was improved by the addition of 20 g of margarine, 20 g of baking powder and 20 g of yeast in 1 kg of flour. Among different ratios of yeast and baking powder, 2:1 was the best. Bread improver containing amylases and oxidizing agents at the concentration of 40 g/kg was selected as the best concentration. When comparing the final formulation made in the bakery with wheat bread, malted rice-wheat bread contains more soluble dietary fiber (0.62%, insoluble dietary fiber (3.95%, total dietary fiber (4.57% and free amino acid content (0.64 g/kg than those in wheat bread (0.5%, 2.73%, 3.23% and 0.36 g/kg, respectively.

  10. Biochemical and functional properties of wheat gliadins: a review.

    Science.gov (United States)

    Barak, Sheweta; Mudgil, Deepak; Khatkar, B S

    2015-01-01

    Gliadins account for 40-50% of the total storage proteins of wheat and are classified into four subcategories, α-, β-, γ-, and ω-gliadins. They have also been classified as ω5-, ω1, 2-, α/β-, and γ-gliadins on the basis of their primary structure and molecular weight. Cysteine residues of gliadins mainly form intramolecular disulfide bonds, although α-gliadins with odd numbers of cysteine residues have also been reported. Gliadins are generally regarded to possess globular protein structure, though recent studies report that the α/β-gliadins have compact globular structures and γ- and ω-gliadins have extended rod-like structures. Newer techniques such as Mass Spectrometry with the development of matrix-assisted laser desorption/ionization (MALDI) in combination with time-of-flight mass spectrometry (TOFMS) have been employed to determine the molecular weight of purified ω- gliadins and to carry out the direct analysis of bread and durum wheat gliadins. Few gliadin alleles and components, such as Gli-B1b, Gli-B2c and Gli-A2b in bread wheat cultivars, γ-45 in pasta, γ-gliadins in cookies, lower gliadin content for chapatti and alteration in Gli 2 loci in tortillas have been reported to improve the product quality, respectively. Further studies are needed in order to elucidate the precise role of gliadin subgroups in dough strength and product quality.

  11. Impacts of El Niño-Southern Oscillation on the wheat market: A global dynamic analysis.

    Science.gov (United States)

    Gutierrez, Luciano

    2017-01-01

    Although the widespread influence of the El Niño-Southern Oscillation (ENSO) occurrences on crop yields of the main agricultural commodities is well known, the global socio-economic consequences of ENSO still remain uncertain. Given the global importance of wheat for global consumption by providing 20% of global calories and nourishment, the monitoring and prediction of ENSO-induced variations in the worldwide wheat market are essential for allowing national governments to manage the associated risks and to ensure the supplies of wheat for consumers, including the underprivileged. To this end, we propose a global dynamic model for the analysis of ENSO impacts on wheat yield anomalies, export prices, exports and stock-to-use ratios. Our framework focuses on seven countries/regions: the six main wheat-exporting countries-the United States, Argentina, Australia, Canada, the EU, and the group of the main Black Sea export countries, i.e. Russia, Ukraine, and Kazakhstan-plus the rest of the world. The study shows that La Niña exerts, on average, a stronger and negative impact on wheat yield anomalies, exports and stock-to-use ratios than El Niño. In contrast, wheat export prices are positively related to La Niña occurrences evidencing, once again, its steady impact in both the short and long run. Our findings emphasize the importance of the two ENSO extreme phases for the worldwide wheat market.

  12. Infuence of gamma radiation on the rheological and functional properties of bread wheats

    International Nuclear Information System (INIS)

    Paredes-Lopez, O.; Covarrubias-Alvarez, M.M.

    1984-01-01

    The effects of gamma irradiation on some biochemical, rheological and functional properties of bread wheats were studied. Two wheat cultivars were selected to represent medium-strong and weak dough mixing strengths. Falling number values were severely depressed at doses of 500 and 1000 krad. Rheological dough properties, as assessed with the mixograph and farinograph, were also investigated. Radiation at medium doses produced an increase in the farinograph water absorption for both wheats. Radiation decreased the amount of bound water as compared to the control sample. For the medium-strong wheat low levels of radiation produced bread with volumes and overall bread quality equal to or slightly better than those of the control flour, whereas for the weak wheat an improvement of the baking performance was obtained at all the low doses of radiation. However, the overall bread quality of both wheats was highly reduced at medium doses of radiation. (author)

  13. Milling and Baking Test REsults for Eastern Soft Winter Wheats Harvested in 2010

    Science.gov (United States)

    The Soft Wheat Quality Council (SWQC) will provide an organization structure to evaluate the quality of soft wheat experimental lines and variety that may be grown in the traditional growing regions of the United States. The SWQC also will establish other activities as requested by the membership. ...

  14. Instrumental neutron activation analysis of wheat bunt spores

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y G; Schmitt, R A [Oregon State Univ., Corvallis (USA). Dept. of Chemistry; Oregon State Univ., Corvallis (USA). Radiation Center); Trione, E J [Oregon State Univ., Corvallis (USA). Dept. of Botany; Laul, J C [Battelle Pacific Northwest Labs., Richland, WA (USA)

    1982-01-01

    The concentrations of seventeen elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Zn, Br, Rb, La, Sm) in two species of fungus which cause wheat bunt disease, Tilletia caries (DC.) Tul. and Tilletia controversa Kuehn, were determined by instrumental neutron activation analysis. A standard sequential INAA procedure was used. Differences in the K and Cl concentrations between these two species of spores are large and therefore can be used as a criterion of distinguishing between the two species of fungus.

  15. Non-destructive, high-content analysis of wheat grain traits using X-ray micro computed tomography

    Directory of Open Access Journals (Sweden)

    Nathan Hughes

    2017-11-01

    Full Text Available Abstract Background Wheat is one of the most widely grown crop in temperate climates for food and animal feed. In order to meet the demands of the predicted population increase in an ever-changing climate, wheat production needs to dramatically increase. Spike and grain traits are critical determinants of final yield and grain uniformity a commercially desired trait, but their analysis is laborious and often requires destructive harvest. One of the current challenges is to develop an accurate, non-destructive method for spike and grain trait analysis capable of handling large populations. Results In this study we describe the development of a robust method for the accurate extraction and measurement of spike and grain morphometric parameters from images acquired by X-ray micro-computed tomography (μCT. The image analysis pipeline developed automatically identifies plant material of interest in μCT images, performs image analysis, and extracts morphometric data. As a proof of principle, this integrated methodology was used to analyse the spikes from a population of wheat plants subjected to high temperatures under two different water regimes. Temperature has a negative effect on spike height and grain number with the middle of the spike being the most affected region. The data also confirmed that increased grain volume was correlated with the decrease in grain number under mild stress. Conclusions Being able to quickly measure plant phenotypes in a non-destructive manner is crucial to advance our understanding of gene function and the effects of the environment. We report on the development of an image analysis pipeline capable of accurately and reliably extracting spike and grain traits from crops without the loss of positional information. This methodology was applied to the analysis of wheat spikes can be readily applied to other economically important crop species.

  16. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels.

    Science.gov (United States)

    Nguyen, Tran-Nguyen; Son, SeungHyun; Jordan, Mark C; Levin, David B; Ayele, Belay T

    2016-01-25

    Lignin is an important structural component of plant cell wall that confers mechanical strength and tolerance against biotic and abiotic stressors; however it affects the use of biomass such as wheat straw for some industrial applications such as biofuel production. Genetic alteration of lignin quantity and quality has been considered as a viable option to overcome this problem. However, the molecular mechanisms underlying lignin formation in wheat biomass has not been studied. Combining molecular and biochemical approaches, the present study investigated the transcriptional regulation of lignin biosynthesis in two wheat cultivars with varying lodging characteristics and also in response to waterlogging. It also examined the association of lignin level in tissues with that of plant hormones implicated in the control of lignin biosynthesis. Analysis of lignin biosynthesis in the two wheat cultivars revealed a close association of lodging resistance with internode lignin content and expression of 4-coumarate:CoA ligase1 (4CL1), p-coumarate 3-hydroxylase1 (C3H1), cinnamoyl-CoA reductase2 (CCR2), ferulate 5-hydroxylase2 (F5H2) and caffeic acid O-methyltransferase2 (COMT2), which are among the genes highly expressed in wheat tissues, implying the importance of these genes in mediating lignin deposition in wheat stem. Waterlogging of wheat plants reduced internode lignin content, and this effect is accompanied by transcriptional repression of three of the genes characterized as highly expressed in wheat internode including phenylalanine ammonia-lyase6 (PAL6), CCR2 and F5H2, and decreased activity of PAL. Expression of the other genes was, however, induced by waterlogging, suggesting their role in the synthesis of other phenylpropanoid-derived molecules with roles in stress responses. Moreover, difference in internode lignin content between cultivars or change in its level due to waterlogging is associated with the level of cytokinin. Lodging resistance, tolerance against

  17. Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase

    DEFF Research Database (Denmark)

    Bohn, Lisbeth; Josefsen, Lone; Meyer, Anne S.

    2007-01-01

    Wheat phytase was purified to investigate the action of the enzyme toward its pure substrate (phytic acid - myo-inositol hexakisphosphate) and its naturally occurring substrate (phytate globoids). Phytate globoids were purified to homogeneity from wheat bran, and their nutritionally relevant...... phytic acid was replaced with phytate globoids as substrate. Time course degradation of phytic acid or phytate globoids using purified wheat phytase was followed by HPIC identification of inositol phosphates appearing and disappearing as products. In both cases, enzymatic degradation initiated at both...

  18. Multi-location wheat stripe rust QTL analysis: genetic background and epistatic interactions.

    Science.gov (United States)

    Vazquez, M Dolores; Zemetra, Robert; Peterson, C James; Chen, Xianming M; Heesacker, Adam; Mundt, Christopher C

    2015-07-01

    Epistasis and genetic background were important influences on expression of stripe rust resistance in two wheat RIL populations, one with resistance conditioned by two major genes and the other conditioned by several minor QTL. Stripe rust is a foliar disease of wheat (Triticum aestivum L.) caused by the air-borne fungus Puccinia striiformis f. sp. tritici and is present in most regions around the world where commercial wheat is grown. Breeding for durable resistance to stripe rust continues to be a priority, but also is a challenge due to the complexity of interactions among resistance genes and to the wide diversity and continuous evolution of the pathogen races. The goal of this study was to detect chromosomal regions for resistance to stripe rust in two winter wheat populations, 'Tubbs'/'NSA-98-0995' (T/N) and 'Einstein'/'Tubbs' (E/T), evaluated across seven environments and mapped with diversity array technology and simple sequence repeat markers covering polymorphic regions of ≈1480 and 1117 cM, respectively. Analysis of variance for phenotypic data revealed significant (P located in chromosomes 2AS and 6AL, with epistatic interaction between them, were responsible for the main phenotypic response. For the T/N population, eight QTL were identified, with those in chromosomes 2AL and 2BL accounting for the largest percentage of the phenotypic variance.

  19. Unfolding the potential of wheat cultivar mixtures

    DEFF Research Database (Denmark)

    Borg, J.; Kiær, Lars Pødenphant; Lecarpentier, C.

    2018-01-01

    and they are not encouraged by advisory services. Based on the methodology developed by Kiær et al. (2009), we achieved a meta-analysis of cultivar mixtures in wheat. Among the 120 publications dedicated to wheat, we selected 32 studies to analyze various factors that may condition the success or failure of wheat mixtures...

  20. Agronomic factors related to the quality of wheat for the starch industry; part I: Sprout damage

    NARCIS (Netherlands)

    Kelfkens, M.; Hamer R.J.

    1991-01-01

    The wheat starch industry in the Netherlands processes about 300.000 t of wheat annually. However, only a small percentage of this wheat is grown in the Netherlands although it has been demonstrated that Dutch wheat varieties can also be successfully processed. Climatological and cultural aspects

  1. VARIABILITY OF AMYLOSE AND AMYLOPECTIN IN WINTER WHEAT AND SELECTION FOR SPECIAL PURPOSES

    Directory of Open Access Journals (Sweden)

    Nikolina Weg Krstičević

    2015-06-01

    Full Text Available The aim of this study was to investigate the variability of amylose and amylopectin in 24 Croatian and six foreign winter wheat varieties and to detect the potential of these varieties for special purposes. Starch composition analysis was based on the separation of amylose and amylopectin and the determination of their amounts and ratios. Analysis of the amount of amylose and amylopectin determined statistically highly significant differences between the varieties. The tested varieties are mostly bread wheat of different quality which have the usual content of amylose and amylopectin. Some varieties were identified among them with high amylopectin and low amylose content and one variety with high amylose content. They have the potential in future breeding programs and selection for special purposes.

  2. Biolistic- and Agrobacterium-mediated transformation protocols for wheat.

    Science.gov (United States)

    Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László

    2012-01-01

    After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

  3. Enhanced antioxidative responses of a salt-resistant wheat cultivar ...

    African Journals Online (AJOL)

    Enhanced antioxidative responses of a salt-resistant wheat cultivar facilitate its adaptation to salt stress. L Chen, H Yin, J Xu, X Liu. Abstract. Wheat cultivars capable of accumulating minerals under salt stress are of considerable interest for their potential to improve crop productivity and crop quality. This study addressed the ...

  4. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. II. Dough strength and pan bread quality

    Science.gov (United States)

    Durum wheat (Triticum turgidum ssp. durum) is considered unsuitable for the majority of commercial bread production because its weak gluten strength combined with flour particle size and flour starch damage after milling are not commensurate with hexaploid wheat flours. Recently a new durum cultivar...

  5. Application of calibrations to hyperspectral images of food grains: example for wheat falling number

    Directory of Open Access Journals (Sweden)

    Nicola Caporaso

    2017-04-01

    Full Text Available The presence of a few kernels with sprouting problems in a batch of wheat can result in enzymatic activity sufficient to compromise flour functionality and bread quality. This is commonly assessed using the Hagberg Falling Number (HFN method, which is a batch analysis. Hyperspectral imaging (HSI can provide analysis at the single grain level with potential for improved performance. The present paper deals with the development and application of calibrations obtained using an HSI system working in the near infrared (NIR region (~900–2500 nm and reference measurements of HFN. A partial least squares regression calibration has been built using 425 wheat samples with a HFN range of 62–318 s, including field and laboratory pre-germinated samples placed under wet conditions. Two different approaches were tested to apply calibrations: i application of the calibration to each pixel, followed by calculation of the average of the resulting values for each object (kernel; ii calculation of the average spectrum for each object, followed by application of the calibration to the mean spectrum. The calibration performance achieved for HFN (R2 = 0.6; RMSEC ~ 50 s; RMSEP ~ 63 s compares favourably with other studies using NIR spectroscopy. Linear spectral pre-treatments lead to similar results when applying the two methods, while non-linear treatments such as standard normal variate showed obvious differences between these approaches. A classification model based on linear discriminant analysis (LDA was also applied to segregate wheat kernels into low (250 s HFN groups. LDA correctly classified 86.4% of the samples, with a classification accuracy of 97.9% when using an HFN threshold of 150 s. These results are promising in terms of wheat quality assessment using a rapid and non-destructive technique which is able to analyse wheat properties on a single-kernel basis, and to classify samples as acceptable or unacceptable for flour production.

  6. Benchmark Data Set for Wheat Growth Models: Field Experiments and AgMIP Multi-Model Simulations.

    Science.gov (United States)

    Asseng, S.; Ewert, F.; Martre, P.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.J.; Rotter, R. P.

    2015-01-01

    The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, maximum and minimum temperature, precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure), soil characteristics, frequent growth, nitrogen in crop and soil, crop and soil water and yield components. Simulations include results from 27 wheat models and a sensitivity analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario.

  7. Baking properties of irradiated wheat flour and their effects on the quality of hard crust bread

    International Nuclear Information System (INIS)

    Alvarez, M.; Cuquerella, J.; Granado, R.; Silvestre, J.

    1987-01-01

    The effects of gamma irradiation on rheological characteristics and baking properties of hard wheat flour were studied in the range 0,5 kGy-2,0 kGy. Different quality parameters and the staling kinetics of hard bread produced with control and irradiated flours were also evaluated. Samples were stored before and after treatment at room temperature (16 0 C-30 0 C, 60%-98% R.H.). It is possible to make hard crust bread, the main bread consumed by the Cuban people, from irradiated flour (up to 2,0 kGy) two weeks after treatment. No changes due to irradiation of the flour in quality of bread were found. The Brabender maximum viscosity and the falling number of flour decreased in irradiated samples, but these results did not affect the quality of bread produced

  8. Influence of the addition of soy product and wheat fiber on rheological, textural, and other quality characteristics of pizza.

    Science.gov (United States)

    Glicerina, Virginia; Balestra, Federica; Capozzi, Francesco; Dalla Rosa, Marco; Romani, Santina

    2017-11-17

    The effect of partial replacement of wheat flour with soy paste and wheat fiber on rheological, textural, physicochemical, and organoleptic characteristics of an enriched pizza base (E) was investigated in comparison with those of a control pizza base (C). New ingredients (e.g., enriched cooked ham, whey cheese, and tomato sauce realized using food industry by-products) were also used in E pizza topping to further increase its nutritional properties. Enriched dough was developed first at a laboratory level. Large and small deformation, moisture, leavening activity, and metabolic heat were tested. On the final product, produced at the industrial level, textural, color, sensory, and nutritional analyses were performed. Preliminary rheological analysis was essential to evaluate the suitability of the new pizza to be processed at industrial level. Both pizza dough samples showed a solid elastic-like behavior; however, the addition of soy and fiber increased moisture content of E pizza, due to the water binding ability of soy protein and to the effect of fibers that also decreased E dough elasticity. No differences in extensibility between the two samples were observed, whereas significantly lower values of resistance to extension and dough force were shown in sample E. These differences were likely due to the presence of soy that interfere with gluten formation and to the dietary fibers that interact with water. Ingredients used in E pizza improved its nutritional quality increasing dietary fibers and protein, and decreasing saturated fatty acids and cholesterol content, which contributed to decrease energy value, in terms of kilocalorie reduction. In this work, the effects of using new ingredients (e.g., soy paste, wheat fiber) on the rheological, textural, physicochemical, nutritional, and organoleptic characteristics of an enriched pizza type were investigated both at laboratory and industrial levels. The new pizza provides a product that combines solid

  9. Investigation of rheological properties of winter wheat varieties during storage

    Directory of Open Access Journals (Sweden)

    Móré M.

    2015-01-01

    Full Text Available The paper shows the results of some experimental researches on the rheological characteristics of the dough obtained from the flour of three winter wheat varieties. We used valorigraph test to determine the rheological properties of wheat flour dough, because it determines the quality of the end-products. Winter wheat varieties (Lupus, Mv Toldi and GK Csillag were produced and their samples were collected on Látókép Research Farm of the University of Debrecen in the crop year of 2011/2012. We have carried out a short-term storage experiment (from July to August, 2012. We analysed the changes in water absorption capacity, dough stability time and valorigraph quality number for 3 times (24.07.2012, 31.07.2012, 21.08.2012 during short-term storage. Our results showed that the baking quality of Lupus, Mv Toldi and GK Csillag improved during the storage period.

  10. Environmental sustainability analysis of UK whole-wheat bioethanol and CHP systems

    International Nuclear Information System (INIS)

    Martinez-Hernandez, Elias; Ibrahim, Muhammad H.; Leach, Matthew; Sinclair, Phillip; Campbell, Grant M.; Sadhukhan, Jhuma

    2013-01-01

    The UK whole-wheat bioethanol and straw and DDGS-based combined heat and power (CHP) generation systems were assessed for environmental sustainability using a range of impact categories or characterisations (IC): cumulative primary fossil energy (CPE), land use, life cycle global warming potential over 100 years (GWP 100 ), acidification potential (AP), eutrophication potential (EP) and abiotic resources use (ARU). The European Union (EU) Renewable Energy Directive's target of greenhouse gas (GHG) emission saving of 60% in comparison to an equivalent fossil-based system by 2020 seems to be very challenging for stand-alone wheat bioethanol system. However, the whole-wheat integrated system, wherein the CHP from the excess straw grown in the same season and from the same land is utilised in the wheat bioethanol plant, can be demonstrated for potential sustainability improvement, achieving 85% emission reduction and 97% CPE saving compared to reference fossil systems. The net bioenergy from this system and from 172,370 ha of grade 3 land is 12.1 PJ y −1 providing land to energy yield of 70 GJ ha −1 y −1 . The use of DDGS as an animal feed replacing soy meal incurs environmental emission credit, whilst its use in heat or CHP generation saves CPE. The hot spots in whole system identified under each impact category are as follows: bioethanol plant and wheat cultivation for CPE (50% and 48%), as well as for ARU (46% and 52%). EP and GWP 100 are distributed among wheat cultivation (49% and 37%), CHP plant (26% and 30%) and bioethanol plant (25%, and 33%), respectively. -- Highlights: ► UK whole-wheat energy system can achieve 85% GHG emission reduction. ► UK whole-wheat energy system can achieve 97% primary energy saving. ► The land to energy yield of the UK whole-wheat system is 70 GJ ha −1 y −1 . ► Fertiliser production is the hotspot. ► DDGS and straw-based CHP system integration to wheat bioethanol is feasible

  11. Genetic diversity of bread wheat genotypes in Iran for some nutritional value and baking quality traits.

    Science.gov (United States)

    Amiri, Reza; Sasani, Shahryar; Jalali-Honarmand, Saeid; Rasaei, Ali; Seifolahpour, Behnaz; Bahraminejad, Sohbat

    2018-02-01

    Genetic variation among 78 irrigated bread wheat genotypes was studied for their nutritional value and baking quality traits as well as some agronomic traits. The experiment was conducted in a randomized complete block design with three replicates under normal and terminal drought stress conditions in Kermanshah, Iran during 2012-2013 cropping season. The results of combined ANOVA indicated highly significant genotypic differences for all traits. All studied traits except grain yield, hectoliter weight and grain fiber content were significantly affected by genotype × environment interaction. Drought stress reduced grain yield, thousand kernel weight, gluten index, grain starch content and hectoliter weight and slightly promoted grain protein and fiber contents, falling number, total gluten and ratio of wet gluten to grain protein content. Grain yield by 31.66% and falling number by 9.20% attained the highest decrease and increase due to drought stress. There were negative and significant correlations among grain yield with grain protein and fiber contents under both conditions. Results of cluster analysis showed that newer genotypes had more grain yield and gluten index than older ones, but instead, they had the lower grain protein and fiber contents. It is thought that wheat breeders have bred cultivars with high grain yield, low protein content, and improved bread-making attributes during last seven decades. While older genotypes indicated significantly higher protein contents, and some of them had higher gluten index. We concluded from this study that it is imperative for breeders to pay more attention to improve qualitative traits coordinated to grain yield.

  12. [Analysis of methylation-sensitive amplified polymorphism in wheat genome under the wheat leaf rust stress].

    Science.gov (United States)

    Fu, Sheng-Jie; Wang, Hui; Feng, Li-Na; Sun, Yi; Yang, Wen-Xiang; Liu, Da-Qun

    2009-03-01

    Intrinsic DNA methylation pattern is an integral component of the epigenetic network in many eukaryotes. DNA methylation plays an important role in regulating gene expression in eukaryotes. Biological stress in plant provides an inherent epigenetic driving force of evolution. Study of DNA methylation patterns arising from biological stress will help us fully understand the epigenetic regulation of gene expression and DNA methylation of biological functions. The wheat near-isogenic lines TcLr19 and TcLr41 were resistant to races THTT and TKTJ, respectively, and Thatcher is compatible in the interaction with Puccinia triticina THTT and TKTJ, respectively. By means of methylation-sensitive amplified polymorphism (MSAP) analysis, the patterns of cytosine methylation in TcLr19, TcLr41, and Thatcher inoculated with P. triticina THTT and TKTJ were compared with those of the untreated samples. All the DNA fragments, each representing a recognition site cleaved by each or both of isoschizomers, were amplified using 60 pairs of selective primers. The results indicated that there was no significant difference between the challenged and unchallenged plants at DNA methylation level. However, epigenetic difference between the near-isogenic line for wheat leaf rust resistance gene Lr41 and Thatcher was present.

  13. Triple test cross analysis for salinity tolerance in wheat

    International Nuclear Information System (INIS)

    Zafar, M.; Khan, A.S.; Chowdhry, M.A.

    2008-01-01

    Triple test cross analysis applied to study additive, dominance and epistatic components of genetic variation for five seedling traits namely shoot length, fresh shoot weight, root length, fresh root weight and root shoot ratio at two salinity levels 0 (control) and 10 dSm/sup -1/ in wheat. The results revealed that the epistatic component is an important element for salinity tolerance at seedling stage in wheat. Both additive and dominance gene effects were involved in the inheritance of shoot length, fresh shoot weight, root length fresh root weight and root shoot ratio Complete dominance was indicated for shoot length, fresh root weight and root/shoot ratio and partial dominance was observed for other traits at control and over dominance was observed for shoot length, fresh shoot weight and root/shoot ratio, complete dominance for fresh root weight and partial dominance for root length at 10 dSm/sup -1/ salinity level. Significant epitasis was observed for all the traits except shoot length at both the salinity treatments. (author)

  14. Expression of Pinellia pedatisecta Lectin Gene in Transgenic Wheat Enhances Resistance to Wheat Aphids

    Directory of Open Access Journals (Sweden)

    Xiaoliang Duan

    2018-03-01

    Full Text Available Wheat aphids are major pests during the seed filling stage of wheat. Plant lectins are toxic to sap-sucking pests such as wheat aphids. In this study, Pinellia pedatisecta agglutinin (ppa, a gene encoding mannose binding lectin, was cloned, and it shared 92.69% nucleotide similarity and 94% amino acid similarity with Pinellia ternata agglutinin (pta. The ppa gene, driven by the constitutive and phloem-specific ribulose bisphosphate carboxylase small subunit gene (rbcs promoter in pBAC-rbcs-ppa expression vector, was transferred into the wheat cultivar Baofeng104 (BF104 by particle bombardment transformation. Fifty-four T0 transgenic plants were generated. The inheritance and expression of the ppa gene were confirmed by PCR and RT-PCR analysis respectively, and seven homozygous transgenic lines were obtained. An aphid bioassay on detached leaf segments revealed that seven ppa transgenic wheat lines had lower aphid growth rates and higher inhibition rates than BF104. Furthermore, two-year aphid bioassays in isolated fields showed that aphid numbers per tiller of transgenic lines were significantly decreased, compared with wild type BF104. Therefore, ppa could be a strong biotechnological candidate to produce aphid-resistant wheat.

  15. Cloning and Functional Analysis of MADS-box Genes, TaAG-A and TaAG-B, from a Wheat K-type Cytoplasmic Male Sterile Line

    Directory of Open Access Journals (Sweden)

    Wenlong Yang

    2017-06-01

    Full Text Available Wheat (Triticum aestivum L. is a major crop worldwide. The utilization of heterosis is a promising approach to improve the yield and quality of wheat. Although there have been many studies on wheat cytoplasmic male sterility, its mechanism remains unclear. In this study, we identified two MADS-box genes from a wheat K-type cytoplasmic male sterile (CMS line using homology-based cloning. These genes were localized on wheat chromosomes 3A and 3B and named TaAG-A and TaAG-B, respectively. Analysis of TaAG-A and TaAG-B expression patterns in leaves, spikes, roots, and stems of Chinese Spring wheat determined using quantitative RT-PCR revealed different expression levels in different tissues. TaAG-A had relatively high expression levels in leaves and spikes, but low levels in roots, while TaAG-B had relatively high expression levels in spikes and lower expression in roots, stems, and leaves. Both genes showed downregulation during the mononucleate to trinucleate stages of pollen development in the maintainer line. In contrast, upregulation of TaAG-B was observed in the CMS line. The transcript levels of the two genes were clearly higher in the CMS line compared to the maintainer line at the trinucleate stage. Overexpression of TaAG-A and TaAG-B in Arabidopsis resulted in phenotypes with earlier reproductive development, premature mortality, and abnormal buds, stamens, and stigmas. Overexpression of TaAG-A and TaAG-B gives rise to mutants with many deformities. Silencing TaAG-A and TaAG-B in a fertile wheat line using the virus-induced gene silencing (VIGS method resulted in plants with green and yellow striped leaves, emaciated spikes, and decreased selfing seed set rates. These results demonstrate that TaAG-A and TaAG-B may play a role in male sterility in the wheat CMS line.

  16. Effect of high and low molecular weight glutenin subunits, and subunits of gliadin on physicochemical parameters of different wheat genotypes

    Directory of Open Access Journals (Sweden)

    Mariana Souza Costa

    2013-02-01

    Full Text Available Identification of functional properties of wheat flour by specific tests allows genotypes with appropriate characteristics to be selected for specific industrial uses. The objective of wheat breeding programs is to improve the quality of germplasm bank in order to be able to develop wheat with suitable gluten strength and extensibility for bread making. The aim of this study was to evaluate 16 wheat genotypes by correlating both glutenin subunits of high and low molecular weight and gliadin subunits with the physicochemical characteristics of the grain. Protein content, sedimentation volume, sedimentation index, and falling number values were analyzed after the grains were milled. Hectoliter weight and mass of 1000 seeds were also determined. The glutenin and gliadin subunits were separated using polyacrylamide gel in the presence of sodium dodecyl sulfate. The data were evaluated using variance analysis, Pearson's correlation, principal component analysis, and cluster analysis. The IPR 85, IPR Catuara TM, T 091015, and T 091069 genotypes stood out from the others, which indicate their possibly superior grain quality with higher sedimentation volume, higher sedimentation index, and higher mass of 1000 seeds; these genotypes possessed the subunits 1 (Glu-A1, 5 + 10 (Glu-D1, c (Glu-A3, and b (Glu-B3, with exception of T 091069 genotype that possessed the g allele instead of b in the Glu-B3.

  17. An optimized protocol for DNA extraction from wheat seeds and Loop-Mediated Isothermal Amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain.

    Science.gov (United States)

    Abd-Elsalam, Kamel; Bahkali, Ali; Moslem, Mohamed; Amin, Osama E; Niessen, Ludwig

    2011-01-01

    A simple, rapid, and efficient method for isolating genomic DNA from germinated seeds of wheat that is free from polysaccharides and polyphenols is reported. DNA was extracted, treated with RNase, measured and tested for completeness using agarose gel electrophoresis. DNA purification from wheat grains yielded abundant, amplifiable DNA with yields typically between 100 and 200 ng DNA/mg. The effectiveness and reliability of the method was tested by assessing quantity and quality of the isolated DNA using three PCR-based markers. Inter-simple sequence repeats (ISSRs) were used to assess the genetic diversity between different wheat varieties. Specific PCR primer pair Tox5-1/Tox5-2 and a loop-mediated isothermal amplification (LAMP) procedure were used to detect genomic DNA of Fusarium graminearum in contaminated wheat seeds. In this method there is no need to use liquid nitrogen for crushing germinated seedlings. The protocol takes approximately one hour to prepare high quality DNA. In combination with the LAMP assay it is a fast and cost-effective alternative to traditional diagnostic methods for the early detection of toxigenic fusaria in cereals.

  18. Identification of novel QTL for sawfly resistance in wheat

    Science.gov (United States)

    J. D. Sherman; D. K. Weaver; M. L. Hofland; S. E. Sing; M. Buteler; S. P. Lanning; Y. Naruoka; F. Crutcher; N. K. Blake; J. M. Martin; P. F. Lamb; G. R. Carlson; L. E. Talbert

    2010-01-01

    The wheat stem sawfly (WSS) (Cephus cinctus Nort.) is an important pest of wheat (Triticum aestivum L. em. Thell.) in the Northern Great Plains. This paper reports the genetic analysis of antixenosis for egg-laying WSS females in recombinant inbred lines (RIL) of hard red spring wheat. Female WSS preferentially choose certain wheat genotypes for egg-laying, with the...

  19. BreedWheat genotyping and phenotyping data in GnpIS information system

    OpenAIRE

    Laine, Marie; Letellier, Thomas; Flores, Raphaël-Gauthier; couderc, Loïc; Mohellibi, Nacer; Pommier, Cyril; Steinbach, Delphine; Quesneville, Hadi; Sapet, Frederic; Rivière, Nathalie; Paux, Etienne; Didier, Audrey; Balfourier, Francois; Charmet, Jean-Francois; Le Gouis, Jacques

    2015-01-01

    BreedWheat project aims to support the competitiveness of the French wheat breeding sector, answering to societal challenges for a sustainable and quality production. Moreover, the BreedWheat project will characterize yet poorly exploited genetic resources to expand the diversity of the elite germplasm. Finally, new breeding methods will be developed and evaluated for their socioeconomic impact. In this frame, bioinformatics goals are (i) to establish and maintain a centralized repository ...

  20. Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types

    OpenAIRE

    Eduardo, Maria; Svanberg, Ulf; Oliveira, Jorge; Ahrn?, Lilia

    2013-01-01

    Replacement of wheat flour by other kinds of flour in bread making is economically important in South East Africa as wheat is mainly an imported commodity. Cassava is widely available in the region, but bread quality is impaired when large amounts of cassava are used in the bread formulation. Effect of differently processed cassavas (sun-dried, roasted and fermented) on composite cassava-wheat-maize bread quality containing cassava levels from 20 to 40% (w/w) was evaluated in combination with...

  1. Path Analysis of Grain Yield and Yield Components and Some Agronomic Traits in Bread Wheat

    Directory of Open Access Journals (Sweden)

    Mohsen Janmohammadi

    2014-01-01

    Full Text Available Development of new bread wheat cultivars needs efficient tools to monitor trait association in a breeding program. This investigation was aimed to characterize grain yield components and some agronomic traits related to bread wheat grain yield. The efficiency of a breeding program depends mainly on the direction of the correlation between different traits and the relative importance of each component involved in contributing to grain yield. Correlation and path analysis were carried out in 56 bread wheat genotypes grown under field conditions of Maragheh, Iran. Observations were recorded on 18 wheat traits and correlation coefficient analysis revealed grain yield was positively correlated with stem diameter, spike length, floret number, spikelet number, grain diameter, grain length and 1000 seed weight traits. According to the variance inflation factor (VIF and tolerance as multicollinearity statistics, there are inconsistent relationships among the variables and all traits could be considered as first-order variables (Model I with grain yield as the response variable due to low multicollinearity of all measured traits. In the path coefficient analysis, grain yield represented the dependent variable and the spikelet number and 1000 seed weight traits were the independent ones. Our results indicated that the number of spikelets per spikes and leaf width and 1000 seed weight traits followed by the grain length, grain diameter and grain number per spike were the traits related to higher grain yield. The above mentioned traits along with their indirect causal factors should be considered simultaneously as an effective selection criteria evolving high yielding genotype because of their direct positive contribution to grain yield.

  2. Biological upgrading of wheat straw through solid-state fermentation with Streptomyces cyaneus

    Energy Technology Data Exchange (ETDEWEB)

    Berrocal, M.; Hernandez, M.; Perez-Leblie, M.I.; Arias, M.E. [Universidad de Alcala de Henares, Madrid (Spain). Dept. de Microbiologia y Parasitologia; Ball, A.S. [Essex Univ., Colchester (United Kingdom). Dept. of Biological Sciences; Huerta, S. [Universidad Autonoma Metropolitana Iztapalapa, Mexico (Mexico). Dept. de Biotecnologia; Barrasa, J.M. [Universidad de Alcala de Henares, Madrid (Spain). Dept. de Biologia Vegetal

    2000-07-01

    The biological upgrading of wheat straw with Streptomyces cyaneus was examined through the analysis of chemical and structural changes of the transformed substrate during solid-state fermentation. Analysis of enzymes produced during the growth of S. cyaneus showed that phenol oxidase was the predominant enzyme. The reduction in Klason lignin content (16.4%) in the transformed substrate indicated the ability of this strain to delignify lignocellulose residues and suggests a role for phenol oxidase in the bacterial delignification process. Microscopic examination of the transformed substrate showed that the initial attack occurred at the less lignified cell walls (phloem and parenchyma), while xylem and sclerenchyma were slowly degraded. The pattern of degradation of sclerenchymatic tissues by S. cyaneus showed delamination between primary and secondary walls and between S{sub 1} and S{sub 2} due to partial removal of lignin. In the later stages of the decay a disorganization of the secondary walls was detected on account of fibrillation of this layer. A comparison of the properties of the pulp from wheat straw transformed by S. cyaneus with untreated wheat straw showed that pretreatment improved the characteristics that determine the quality of pulp. This was indicated by an increase in pulp brightness and by a decrease in the kappa number. These changes occurred without significantly affecting the viscosity, a measure of the quality of the cellulose fibres. These results support the potential application of this organism or its oxidative enzymes in biopulping. (orig.)

  3. Evaluation of commercial a-amylase enzyme-linked immunosorbent assy (ELISA) test kits for wheat

    Science.gov (United States)

    a-Amylase enzyme is associated with preharvest sprouting (PHS) and late-maturity a amylase (LMA) in wheat, and reduces wheat and flour quality. Various means have been developed to measure the presence of a-amylase, thereby predicting end-use quality; most are based on enzyme activity. An alternativ...

  4. Identification and Phylogenetic Analysis of a CC-NBS-LRR Encoding Gene Assigned on Chromosome 7B of Wheat

    Directory of Open Access Journals (Sweden)

    Xiangqi Zhang

    2013-07-01

    Full Text Available Hexaploid wheat displays limited genetic variation. As a direct A and B genome donor of hexaploid wheat, tetraploid wheat represents an important gene pool for cultivated bread wheat. Many disease resistant genes express conserved domains of the nucleotide-binding site and leucine-rich repeats (NBS-LRR. In this study, we isolated a CC-NBS-LRR gene locating on chromosome 7B from durum wheat variety Italy 363, and designated it TdRGA-7Ba. Its open reading frame was 4014 bp, encoding a 1337 amino acid protein with a complete NBS domain and 18 LRR repeats, sharing 44.7% identity with the PM3B protein. TdRGA-7Ba expression was continuously seen at low levels and was highest in leaves. TdRGA-7Ba has another allele TdRGA-7Bb with a 4 bp deletion at position +1892 in other cultivars of tetraploid wheat. In Ae. speltoides, as a B genome progenitor, both TdRGA-7Ba and TdRGA-7Bb were detected. In all six species of hexaploid wheats (AABBDD, only TdRGA-7Bb existed. Phylogenic analysis showed that all TdRGA-7Bb type genes were grouped in one sub-branch. We speculate that TdRGA-7Bb was derived from a TdRGA-7Ba mutation, and it happened in Ae. speltoides. Both types of TdRGA-7B participated in tetraploid wheat formation. However, only the TdRGA-7Bb was retained in hexaploid wheat.

  5. IPR CATUARA TM – new cultivar of high gluten wheat

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Riede

    2015-03-01

    Full Text Available The wheat cultivar IPR Catuara TM, obtained from a cross between the line LD 975 and the cultivar IPR 85, exhibits high gluten strength, which will allow the milling industry to supplement flours from wheats with weaker gluten strength, resulting in better quality products for the final consumer.

  6. Evaluation of alternative planting strategies to reduce wheat stem sawfly (Hymenoptera: Cephidae) damage to spring wheat in the northern Great Plains.

    Science.gov (United States)

    Beres, B L; Cárcamo, H A; Bremer, E

    2009-12-01

    Wheat, Triticum aestivum L., producers are often reluctant to use solid-stemmed wheat cultivars resistant to wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), due to concerns regarding yield, efficacy or market opportunities. We evaluated the impact of several planting strategies on wheat yield and quality and wheat stem sawfly infestation at two locations over a three-year period. Experimental units consisted of large plots (50 by 200 m) located on commercial farms adjacent to wheat stem sawfly-infested fields. Compared with a monoculture of a hollow-stemmed cultivar ('AC Barrie'), planting a monoculture of a solid-stemmed cultivar ('AC Eatonia') increased yield by an average of 16% (0.4 mg ha(-1)) and increased the grade of wheat by one unit at the two most heavily infested site-years. Planting a 1:1 blend of AC Eatonia and AC Barrie increased yield by an average of 11%, whereas planting 20- or 40-m plot margins to AC Eatonia increased yield by an average of 8%. High wheat stem sawfly pressure limited the effectiveness of using resistant cultivars in field margins because plants were often infested beyond the plot margin, with uniform infestation down the length of the plots at the two most heavily infested site-years. The effectiveness of AC Eatonia to reduce wheat stem sawfly survivorship was modest in this study, probably due to weather-related factors influencing pith expression and to the high abundance of wheat stem sawfly. Greater benefits from planting field margins to resistant cultivars or planting a blend of resistant and susceptible cultivars might be achievable under lower wheat stem sawfly pressure.

  7. Hard Winter Wheat and Flour Properties in Relation to Breadmaking Quality of Straight-dough Bread: Flour Particle Size and Bread Crumb Grain

    Institute of Scientific and Technical Information of China (English)

    S H Park; O K Chung; P A Seib

    2006-01-01

    Samples of 12 hard winter wheats and their flours that produced breads varying in crumb grain scores were studied for 38 quality parameters including: wheat physical and chemical characteristics; flour ash and protein contents, starch damage,swelling power, pasting characteristics, and flour particle size distribution; dough properties determined by a mixograph; and breadmaking properties for pup loaves (100g flour). Only two parameters, the protein content of wheat and the granulation of flour, showed significant correlations with bread crumb grain scores. Protein content of wheat ranging 12.9%~ 14.5% determined by an NIR method showed a weak inverse relationship (r =-0.61, p < 0.05) with bread crumb grain score. Flour particle size distribution measured by both Alpine Air Jet Sieve and NIR methods revealed that the weight wt % of particles less than 38μ m in size and representing 9.6%~ 19.3% of the flour weights was correlated positively (r =0.78, p < 0.01) with crumb grain score, whereas wt % of flour particles larger than 125μm had an inverse relationship (r =-0.60, p<0.05) with crumb grain score.

  8. Effect of sorghum flour addition on in vitro starch digestibility, cooking quality, and consumer acceptability of durum wheat pasta.

    Science.gov (United States)

    Khan, Imran; Yousif, Adel M; Johnson, Stuart K; Gamlath, Shirani

    2014-08-01

    Whole grain sorghum is a valuable source of resistant starch and polyphenolic antioxidants and its addition into staple food like pasta may reduce the starch digestibility. However, incorporating nondurum wheat materials into pasta provides a challenge in terms of maintaining cooking quality and consumer acceptability. Pasta was prepared from 100% durum wheat semolina (DWS) as control or by replacing DWS with either wholegrain red sorghum flour (RSF) or white sorghum flour (WSF) each at 20%, 30%, and 40% incorporation levels, following a laboratory-scale procedure. Pasta samples were evaluated for proximate composition, in vitro starch digestibility, cooking quality, and consumer acceptability. The addition of both RSF and WSF lowered the extent of in vitro starch digestion at all substitution levels compared to the control pasta. The rapidly digestible starch was lowered in all the sorghum-containing pastas compared to the control pasta. Neither RSF or WSF addition affected the pasta quality attributes (water absorption, swelling index, dry matter, adhesiveness, cohesiveness, and springiness), except color and hardness which were negatively affected. Consumer sensory results indicated that pasta samples containing 20% and 30% RSF or WSF had acceptable palatability based on meeting one or both of the preset acceptability criteria. It is concluded that the addition of wholegrain sorghum flour to pasta at 30% incorporation level is possible to reduce starch digestibility, while maintaining adequate cooking quality and consumer acceptability. © 2014 Institute of Food Technologists®

  9. Canola-Wheat Rotation versus Continuous Wheat for the Southern Plains

    OpenAIRE

    Duke, Jason C.; Epplin, Francis M.; Vitale, Jeffrey D.; Peeper, Thomas F.

    2009-01-01

    Crop rotations are not common in the wheat belt of the Southern Plains. After years of continuous wheat, weeds have become increasingly difficult and expensive to manage. Yield data were elicited from farmers and used to determine if canola-wheat-wheat rotations are economically competitive with continuous wheat in the region.

  10. Classification of whole wheat flour using a dimensionless number.

    Science.gov (United States)

    Sehn, Georgia Ane Raquel; Steel, Caroline Joy

    2017-11-01

    The rheological standards currently used for classifying refined wheat flour for technological quality of bread are also used for whole wheat flours. The aim of this study was to evaluate the rheological and technological behavior of different whole wheat flours, as well as pre-mixes of refined wheat flour with different replacement levels of wheat bran, to develop a dimensionless number that assigns a numerical scale using results of rheological parameters to solve this problem. Through farinograph and extensograph results, most whole wheat flours evaluated presented parameters recommended for bread making, according to the current classification. However, the specific volume of breads elaborated with these flours was not suitable, that is, the rheological analyses were not able to predict the specific volume of pan bread. The development of the Sehn-Steel dimensionless number allowed establishing a classification of whole wheat flours as "suitable" (Sehn-Steel dimensionless number between 62 and 200) or "unsuitable" for the production of pan bread (Sehn-Steel dimensionless number lower than 62). Moreover, an equation that can predict the specific volume of whole pan bread through this dimensionless number was developed.

  11. Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types

    Directory of Open Access Journals (Sweden)

    Maria Eduardo

    2013-01-01

    Full Text Available Replacement of wheat flour by other kinds of flour in bread making is economically important in South East Africa as wheat is mainly an imported commodity. Cassava is widely available in the region, but bread quality is impaired when large amounts of cassava are used in the bread formulation. Effect of differently processed cassavas (sun-dried, roasted and fermented on composite cassava-wheat-maize bread quality containing cassava levels from 20 to 40% (w/w was evaluated in combination with high-methylated pectin (HM-pectin added at levels of 1 to 3% (w/w according to a full factorial design. Addition of pectin to cassava flour made it possible to bake bread with acceptable bread quality even at concentration as high as 40%. In addition to cassava concentration, the type of cassava flour had the biggest effect on bread quality. With high level of cassava, bread with roasted cassava had a higher volume compared with sun-dried and fermented. The pectin level had a significant effect on improving the volume in high level roasted cassava bread. Crumb firmness similar to wheat bread could be obtained with sun-dried and roasted cassava flours. Roasted cassava bread was the only bread with crust colour similar to wheat bread.

  12. Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types.

    Science.gov (United States)

    Eduardo, Maria; Svanberg, Ulf; Oliveira, Jorge; Ahrné, Lilia

    2013-01-01

    Replacement of wheat flour by other kinds of flour in bread making is economically important in South East Africa as wheat is mainly an imported commodity. Cassava is widely available in the region, but bread quality is impaired when large amounts of cassava are used in the bread formulation. Effect of differently processed cassavas (sun-dried, roasted and fermented) on composite cassava-wheat-maize bread quality containing cassava levels from 20 to 40% (w/w) was evaluated in combination with high-methylated pectin (HM-pectin) added at levels of 1 to 3% (w/w) according to a full factorial design. Addition of pectin to cassava flour made it possible to bake bread with acceptable bread quality even at concentration as high as 40%. In addition to cassava concentration, the type of cassava flour had the biggest effect on bread quality. With high level of cassava, bread with roasted cassava had a higher volume compared with sun-dried and fermented. The pectin level had a significant effect on improving the volume in high level roasted cassava bread. Crumb firmness similar to wheat bread could be obtained with sun-dried and roasted cassava flours. Roasted cassava bread was the only bread with crust colour similar to wheat bread.

  13. The influence of the forerunner plant and the irrigation on some quality indicators of the wheat plant (Triticum aestivum L. in their growth conditions on the acid soils in the North-Western Romania

    Directory of Open Access Journals (Sweden)

    Ileana ARDELEAN

    2010-05-01

    Full Text Available The paper sustains the importance of the forerunner plant concerning the quality of the wheat (Triticum aestivum L. and is based on the research carried out during 2006-2008 on a long term trial placed on the brown luvic (acid soils from Oradea in 1990. In non-irrigating and irrigating conditions as well the smallest protein, wet gluten and dry gluten values were obtained in wheat mono-crop; the values increased in the forerunner plant, wheat-maize and the biggest values were registered in the forerunner plant, wheat-maize-soybean.

  14. THE TYPE OF PACKAGING MATERIAL AND STORAGE CONDITIONS AS FACTORS FOR WHEAT SEED QUALITY

    Directory of Open Access Journals (Sweden)

    Josip Šimenić

    2000-12-01

    Full Text Available Seed of cereal is normally grown on 5-8% of the overall plots under cereals in the Republic of Croatia. The produced seed meets the needs for high quality seed of wheat, barley, oat and other cereals. Certain quantities of seed remain unsold every year and are kept at various storage conditions and in various packaging material. The objective of this paper was to find out which storage conditions and what sort of packaging material would provide for the best viability of wheat seed. The investigation was carried out at storage simulation and by using various packaging material. In addition to well-known packaging material, such as paper 2 and 4-layer bags, jute bags, and PPR bags, the seed was also packed in the PVC transparent and PVC black bags, as well as in bags made of Aluminium foil. The investigation lasted for two years and was carried out in three various storage conditions, such as in the "New Warehouse" - a warehouse of a new type with thermal isolation in the roof and with uncontrolled conditions, ii the "Old Warehouse" made of filled-in brick and with a roof made of asbestos board, and iii under the "Eaves". The results have shown that the best seed was obtained when packed in 2 and 4-layer paper bags, PVC transparent bags and those made of Aluminium foil. Poorer results were obtained with bags of jute, polypropeline bags and PVC black bags. The storage of seed at "Eaves" has attained the best results in both years of the investigation, as compared to all three types of storage and it can in our circumstances meet the needs for wheat seed storage during one year

  15. Characteristics of bread prepared from wheat flours blended with various kinds of newly developed rice flours.

    Science.gov (United States)

    Nakamura, S; Suzuki, K; Ohtsubo, K

    2009-04-01

    Characteristics of the bread prepared from wheat flour blended with the flour of various kinds of newly developed rice cultivars were investigated. Qualities of the bread made from wheat flour blended with rice flour have been reported to be inferior to those from 100% wheat flour bread. To improve its qualities, we searched for the new-characteristic rice flours among the various kinds of newly developed rice cultivars to blend with the wheat flour for the bread preparation. The most suitable new characteristic rices are combination of purple waxy rice, high-amylose rice, and sugary rice. Specific volume of the bread from the combination of wheat and these 3 kinds of rice flours showed higher specific volume (3.93) compared with the traditional wheat/rice bread (3.58). We adopted the novel method, continuous progressive compression test, to measure the physical properties of the dough and the bread in addition to the sensory evaluation. As a result of the selection of the most suitable rice cultivars and blending ratio with the wheat flour, we could develop the novel wheat/rice bread, of which loaf volume, physical properties, and tastes are acceptable and resistant to firming on even 4 d after the bread preparation. To increase the ratio of rice to wheat, we tried to add a part of rice as cooked rice grains. The specific volume and qualities of the bread were maintained well although the rice content of total flour increased from 30% to 40%.

  16. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat.

    Science.gov (United States)

    Placido, Dante F; Campbell, Malachy T; Folsom, Jing J; Cui, Xinping; Kruger, Greg R; Baenziger, P Stephen; Walia, Harkamal

    2013-04-01

    Root architecture traits are an important component for improving water stress adaptation. However, selection for aboveground traits under favorable environments in modern cultivars may have led to an inadvertent loss of genes and novel alleles beneficial for adapting to environments with limited water. In this study, we elucidate the physiological and molecular consequences of introgressing an alien chromosome segment (7DL) from a wild wheat relative species (Agropyron elongatum) into cultivated wheat (Triticum aestivum). The wheat translocation line had improved water stress adaptation and higher root and shoot biomass compared with the control genotypes, which showed significant drops in root and shoot biomass during stress. Enhanced access to water due to higher root biomass enabled the translocation line to maintain more favorable gas-exchange and carbon assimilation levels relative to the wild-type wheat genotypes during water stress. Transcriptome analysis identified candidate genes associated with root development. Two of these candidate genes mapped to the site of translocation on chromosome 7DL based on single-feature polymorphism analysis. A brassinosteroid signaling pathway was predicted to be involved in the novel root responses observed in the A. elongatum translocation line, based on the coexpression-based gene network generated by seeding the network with the candidate genes. We present an effective and highly integrated approach that combines root phenotyping, whole-plant physiology, and functional genomics to discover novel root traits and the underlying genes from a wild related species to improve drought adaptation in cultivated wheat.

  17. Protein modeling of yellow rust disease in wheat

    International Nuclear Information System (INIS)

    Aziz, S.E.; Bano, R.; Zayed, M.E.; Elshikh, M.S.; Khan, M.H.; Chaudhry, Z.

    2017-01-01

    Wheat production in Pakistan is affected by yellow rust disease caused by a fungus Puccinia striiformis. There is a need to broaden the genetic basis of wheat by identifying new resistance genes. The present study was aimed to identify an alternate resistance gene for yellow rust disease in wheat caused by Puccinia striiformis. Genome sequence was compared with databases and similar gene was identified for disease resistance in rye plant. Structural analysis of RGA1 gene (resistance gene in wheat) was carried out using different bioinformatics tools and an alternative gene having same structure was identified on the basis of structural and sequence homology. Rye plant is the proposed plant for the alternate new resistance gene. The result of pairwise alignment of RGA1 gene in wheat and gene of rye plant is 94.2% with accession DQ494535 .The secondary structures of both the genes was compared and found similar to each other. These comparisons between the wheat resistance gene and gene from rye plant depict structural similarities between the two genes. Results of RGA1 gene's structural analysis in wheat is as follow: Helices: 59, Extended sheets: 30, Turns: 12, Coils: 13 and for alternate resistance genes in Rye is as follow: Helices: 52, Extended sheets: 30, Turns: 14, Coils: 17. As structures are similar, the alternate identified gene could be used for resistance in wheat. (author)

  18. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance

    Science.gov (United States)

    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a costeffective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chrom...

  19. ATTEMPT TO APPLY STABILIZED WHEAT GERM FOR BREAD SUPPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Halina Gambuś

    2015-02-01

    Full Text Available The increased interest in rational nutrition causes, that from many years is observed a growing consumption of bread, and novel food supplemented with health promoting components. For the bread production in Poland mainly wheat and rye cake flours are used, depleted of a many valuable nutrients such as protein, dietary fibre, minerals and vitamins. Because of their unique chemical composition wheat germs are a particularly valuable resource, both for direct consumption and to enhance the nutritional value of food products. The aim of the study was to prepare wheat bread with a 10% addition of commercial stabilized wheat germs. Based on the obtained results, it was found that wheat germs, due to their unique chemical composition, were a particularly valuable resource to supplement the nutritional value of bread. However, germs had detrimental effect on mechanical properties of dough, and on bread quality. Texture of bread crumb and its chemical composition were analysed. It was shown, that germs subjected to fermentation process could be used in wheat bread production as dietary fibre and mineral compound supplement.

  20. Characterization of Brazilian wheat cultivars for specific technological applications

    Directory of Open Access Journals (Sweden)

    Patrícia Matos Scheuer

    2011-09-01

    Full Text Available Functional and technological properties of wheat depend on its chemical composition, which together with structural and microscopic characteristics, define flour quality. The aim of the present study was to characterize four Brazilian wheat cultivars (BRS Louro, BRS Timbauva, BRS Guamirim and BRS Pardela and their respective flours in order to indicate specific technological applications. Kernels were analyzed for test weight, thousand kernel weight, hardness, moisture, and water activity. Flours were analyzed for water activity, color, centesimal composition, total dietary fiber, amylose content and identification of high molecular weight glutenins. The rheological properties of the flours were estimated by farinography, extensography, falling number, rapid visco amylography, and glutomatic and glutork equipment. Baking tests and scanning electron microscopy were also performed. The data were subjected to analysis of variance and principal component analysis. BRS Timbauva and BRS Guamirim presented results that did not allow for specific technological application. On the other hand, BRS Louro presented suitable characteristics for the elaboration of products with low dough strength such as cakes, pies and biscuits, while BRS Pardela seemed suitable for bread and pasta products.

  1. CO2-Induced Changes in Wheat Grain Composition: Meta-Analysis and Response Functions

    Directory of Open Access Journals (Sweden)

    Malin C. Broberg

    2017-04-01

    Full Text Available Elevated carbon dioxide (eCO2 stimulates wheat grain yield, but simultaneously reduces protein/nitrogen (N concentration. Also, other essential nutrients are subject to change. This study is a synthesis of wheat experiments with eCO2, estimating the effects on N, minerals (B, Ca, Cd, Fe, K, Mg, Mn, Na, P, S, Zn, and starch. The analysis was performed by (i deriving response functions to assess the gradual change in element concentration with increasing CO2 concentration, (ii meta-analysis to test the average magnitude and significance of observed effects, and (iii relating CO2 effects on minerals to effects on N and grain yield. Responses ranged from zero to strong negative effects of eCO2 on mineral concentration, with the largest reductions for the nutritionally important elements of N, Fe, S, Zn, and Mg. Together with the positive but small and non-significant effect on starch concentration, the large variation in effects suggests that CO2-induced responses cannot be explained only by a simple dilution model. To explain the observed pattern, uptake and transport mechanisms may have to be considered, along with the link of different elements to N uptake. Our study shows that eCO2 has a significant effect on wheat grain stoichiometry, with implications for human nutrition in a world of rising CO2.

  2. Studies regarding the influence of brown flaxseed flour addition in wheat flour of a very good quality for bread making on bread quality

    Directory of Open Access Journals (Sweden)

    Georgiana Gabriela CODINA

    2016-11-01

    Full Text Available The aim of this study was to incorporate brown flaxseed into bread in order to improve it quality. For this purpose, different levels of whole ground brown flaxseed (5%, 10%, 15% and 20% were used to substitute wheat flour 650 type of a very good quality for bread making. The bread samples obtained were analyzed from the physical, colour, crumb cell, textural and sensory characteristics point of view. Samples containing 10% of brown flaxseed were with the highest values for loaf volume, porosity and elasticity. The control sample had lowerest redness and greenness value. The maximum hardness was found for bread with 20% brown flaxseed addition. With the increase level of brown flaxseed addition large cells can be noticed in crumb structure of bread. Samples containing 20% of flaxseed were rated poorest in tase, texture, overall acceptability, appearance. Our results indicated that brown flaxseed addition could be added to a typical bread formulation up to levels of 10% with a good overall acceptability offering promising healthy and nutritious alternative to consumers. Between bread flour characteristics at different brown flaxseed flour substitution levels principal component analysis shown significant correlations (p < 0.05 between bread physical characteristics (loaf volume, porosity, elasticity and bread  overall acceptability.

  3. Genetic resources as initial material for developing new soft winter wheat varieties

    Directory of Open Access Journals (Sweden)

    В. М. Кір’ян

    2016-12-01

    Full Text Available Purpose. To estimate genetic resources collection of soft winter wheat plants (new collection accessions of Ustymivka Experimental Station for Plant Production and select initial material for breeding of adaptive, productive and qualitative soft winter wheat varieties. Methods. Field experiment, laboratory testing. Results. The authors pre- sented results of study of over 1000 samples of gene pool of soft winter wheat from 25 countries during 2001–2005 in Ustymivka Experimental Station for Plant Production of Plant Production Institute nd. a. V. Ya. Yuriev, NAAS of Ukraine for a complex of economic traits. More than 400 new sources with high adaptive properties were selected that combine traits of high productivity and high quality of grain, early ripening, resistance to biotic and abiotic fac- tors (the assessment of samples for 16 valuable traits is given. The selected material comes from various agro-cli- matic zones, including zones of unsustainable agriculture. Conclusions. Recommended sources of traits that have breeding value will allow to enrich high-quality assortment of wheat and considerably accelerate breeding process du- ring development of new soft winter wheat varieties.

  4. Quality evaluation of irradiated wheat flours

    International Nuclear Information System (INIS)

    Cattani, M.M.; Mastro, N.L. del; Rigoni, V.H.

    1995-01-01

    Co-60 irradiated wheat flour samples in the range of 0.2-30 kGy have been analysed by the ESR technique. (Electron Spin Resonance). Tests of color, stability and Falling Number were also performed. The observed ESR signals showed complex but similar behavior for all samples. The intensity of the ESR signal showed a linear dependence with dose up to 30 kGy. Tests of color, stability and Falling Number showed that up to the dose recommended to destroy plagues (1 kGy), the intrinsic properties of flours are preserved being the product in perfect conditions to be commercialized. (author). 7 refs, 5 figs, 1 tab

  5. Physicochemical, rheological, thermal, and bread making properties of flour obtained from irradiated wheat;Propriedades fisico-quimicas, reologicas, entalpicas e de panificacao da farinha obtida de trigo irradiado

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Carolina Sobral

    2006-07-01

    Most of the methods that are nowadays used for food preservation derive from old times. Besides these methods, new non-thermal methods have been developed in order to improve food quality during its processing. Irradiation technology has a great contribution potential to improve preservation, storage and distribution of foods. Several studies from international literature have reported the efficiency of irradiation process on microbiological control of grains and their products. Due to the low technological quality of national wheat, Brazil depends on its import. Wheat is the main ingredient of bread which is one of the most important products of Brazilian people's diet. The objective of this work was to study the effect of ionizing radiation on wheat on physicochemical, rheological, and thermal properties of flour produced from this wheat, and consequently, its performance on bread making. All experiments were conducted on laboratory scale. Wheat was submitted to irradiation on different doses (0.0; 0.5; 1.0 and 2.0 kGy) and flour produced underwent physicochemical, rheological, thermal and microbiological analyses. Flour bread making performance was measured through quality of bread. None of the physicochemical, rheological or thermal parameters was influenced by irradiation, with the exception of Falling Number, which decreased significantly with the increase of irradiation dose, indicating the effect of irradiation on wheat starch, and consequently on dough's gelatinization. Bread quality parameters did also not show significant differences, and sensory analysis showed that bread produced from irradiated and non irradiated wheat did not present perceivable flavor. (author)

  6. Transcriptome Analysis for Abnormal Spike Development of the Wheat Mutant dms.

    Science.gov (United States)

    Zhu, Xin-Xin; Li, Qiao-Yun; Shen, Chun-Cai; Duan, Zong-Biao; Yu, Dong-Yan; Niu, Ji-Shan; Ni, Yong-Jing; Jiang, Yu-Mei

    2016-01-01

    Wheat (Triticum aestivum L.) spike development is the foundation for grain yield. We obtained a novel wheat mutant, dms, characterized as dwarf, multi-pistil and sterility. Although the genetic changes are not clear, the heredity of traits suggests that a recessive gene locus controls the two traits of multi-pistil and sterility in self-pollinating populations of the medium plants (M), such that the dwarf genotype (D) and tall genotype (T) in the progeny of the mutant are ideal lines for studies regarding wheat spike development. The objective of this study was to explore the molecular basis for spike abnormalities of dwarf genotype. Four unigene libraries were assembled by sequencing the mRNAs of the super-bulked differentiating spikes and stem tips of the D and T plants. Using integrative analysis, we identified 419 genes highly expressed in spikes, including nine typical homeotic genes of the MADS-box family and the genes TaAP2, TaFL and TaDL. We also identified 143 genes that were significantly different between young spikes of T and D, and 26 genes that were putatively involved in spike differentiation. The result showed that the expression levels of TaAP1-2, TaAP2, and other genes involved in the majority of biological processes such as transcription, translation, cell division, photosynthesis, carbohydrate transport and metabolism, and energy production and conversion were significantly lower in D than in T. We identified a set of genes related to wheat floral organ differentiation, including typical homeotic genes. Our results showed that the major causal factors resulting in the spike abnormalities of dms were the lower expression homeotic genes, hormonal imbalance, repressed biological processes, and deficiency of construction materials and energy. We performed a series of studies on the homeotic genes, however the other three causal factors for spike abnormal phenotype of dms need further study.

  7. Effects of nitrogen and irrigation on gluten protein composition and their relationship to yellow berry disorder in wheat (triticum aestivum)

    International Nuclear Information System (INIS)

    Wong, B.R.; Felix, F.R.; Chavez, T

    2014-01-01

    In Mexico and the rest of the world, the presence of yellow berry (YB) in wheat grains (Triticum aestivum) has been related with poor quality, this defect is associated with low protein content in the grains. However, the quality of the wheat depends not only on the protein content, but also on the composition of the gluten proteins. The effect of the various agronomic factors on the composition of wheat gluten has been a subject of study worldwide. However, in Mexico, wheat quality still remains an issue, as there is a lack of knowledge regarding the optimal agronomic conditions to produce wheat with good-quality gluten. For this reason, the effects of nitrogen (N) rates and irrigations on the amount of gliadin subclasses, glutenin subunits (two main groups) and grain protein content as well as the relation of these proteins to the YB content in wheat grains were investigated. The experiment was conducted on arable farmland in the Valley of Empalme, Sonora, Mexico (27 degree 58' N, 110 degree 49' W; 10 m altitude), during the fall-winter period of 2009-2010. Tarachi, the hard wheat cultivar studied, was selected for its relative susceptibility to the presence of elevated YB content in mature wheat kernels. Three levels of N (75, 150 or 250 kg ha-1) and three levels of irrigation (1, 2 or 3 auxiliary irrigations) were studied. Using a N rate of 150 kg ha-1 with 3 auxiliary irrigations, wheat with good-quality gluten was obtained. The results suggest that the YB disorder is primarily related to the amount of protein in the wheat grain. (author)

  8. Isolation and sequence analysis of the wheat B genome subtelomeric DNA.

    Science.gov (United States)

    Salina, Elena A; Sergeeva, Ekaterina M; Adonina, Irina G; Shcherban, Andrey B; Afonnikov, Dmitry A; Belcram, Harry; Huneau, Cecile; Chalhoub, Boulos

    2009-09-05

    Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome) clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119,737 bp was annotated. It is composed of 33% transposable elements (TEs), 8.2% Spelt52 (namely, the subfamily Spelt52.2) and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11,666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags) suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0). Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat chromosomes. It has been demonstrated for the first time

  9. Multi-element analysis of wheat flour and white bread by neutron activation

    International Nuclear Information System (INIS)

    Godinez A, M.A.

    1994-01-01

    One of the best source of feeding even for the human being as for animals are the Cereals. Although they are mainly energetic aliment, due to its composition in starch, they are a very important source of proteins and amino acids. They contribute mineral elements to the diet. Even those elements constitute a very small part of the total diet, they take a very important place in many human metabolic processes. To make a multielemental analysis of an aliment is very important that we are based on a very sensible analytic technique so we are able to find them, just as the Neutronic Activation. This Nuclear technique allows you to make a qualitative and quantitative analysis of the elements that are in a sample, but it does n't show the way in which the elements are presented. It is based in turning those elements into radioactive ones through its exposition to an uniform and constant fluid of neutrons, so then its radioactivity can be determined. The present work has as a main purpose to make a multielemental analysis of the wheat flour and white bread through the Neutronic Activation Technique, using the comparator method and establishing previously the most appropriate work conditions as much irradiation as digestion and measuring of the radioactivity of the sample. In this way, it was able to know that the wheat flour has potassium, chlorine, magnesium, sodium, iron, zinc, manganese, rubidium and selenium elements in a concentration of 2000, 700, 500, 25, 18, 13, 5.5, 0.9 and 0.01 - 0.3 mg/g respectively. In an other hand it was found that the white bread has the same elements than the wheat flour but its concentration was: 1700, 9000, 400, 7000, 52, 13, 6, 1 and 0.05 - 0.3 mg/g respectively. (Author)

  10. Comprehensive proteomic analysis of the wheat pathogenic fungus Zymoseptoria tritici

    DEFF Research Database (Denmark)

    Yang, Fen; Yin, Qi

    2016-01-01

    Zymoseptoria tritici causes Septoria tritici blotch disease of wheat. To obtain a comprehensive protein dataset of this fungal pathogen, proteomes of Z. tritici growing in nutrient-limiting and rich media and in vivo at a late stage of wheat infection were fractionated by 1D gel or strong cation...

  11. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat

    Directory of Open Access Journals (Sweden)

    Zhang Xiaofei

    2012-12-01

    Full Text Available Abstract Background Low-molecular-weight glutenin subunits (LMW-GS strongly influence the bread-making quality of bread wheat. These proteins are encoded by a multi-gene family located at the Glu-A3, Glu-B3 and Glu-D3 loci on the short arms of homoeologous group 1 chromosomes, and show high allelic variation. To characterize the genetic and protein compositions of LMW-GS alleles, we investigated 16 Aroona near-isogenic lines (NILs using SDS-PAGE, 2D-PAGE and the LMW-GS gene marker system. Moreover, the composition of glutenin macro-polymers, dough properties and pan bread quality parameters were determined for functional analysis of LMW-GS alleles in the NILs. Results Using the LMW-GS gene marker system, 14–20 LMW-GS genes were identified in individual NILs. At the Glu-A3 locus, two m-type and 2–4 i-type genes were identified and their allelic variants showed high polymorphisms in length and nucleotide sequences. The Glu-A3d allele possessed three active genes, the highest number among Glu-A3 alleles. At the Glu-B3 locus, 2–3 m-type and 1–3 s-type genes were identified from individual NILs. Based on the different compositions of s-type genes, Glu-B3 alleles were divided into two groups, one containing Glu-B3a, B3b, B3f and B3g, and the other comprising Glu-B3c, B3d, B3h and B3i. Eight conserved genes were identified among Glu-D3 alleles, except for Glu-D3f. The protein products of the unique active genes in each NIL were detected using protein electrophoresis. Among Glu-3 alleles, the Glu-A3e genotype without i-type LMW-GS performed worst in almost all quality properties. Glu-B3b, B3g and B3i showed better quality parameters than the other Glu-B3 alleles, whereas the Glu-B3c allele containing s-type genes with low expression levels had an inferior effect on bread-making quality. Due to the conserved genes at Glu-D3 locus, Glu-D3 alleles showed no significant differences in effects on all quality parameters. Conclusions This work

  12. Genetic analysis of rust resistance genes in global wheat cultivars: an overview

    International Nuclear Information System (INIS)

    Aktar-Uz-Zaman, Md; Tuhina-Khatun, Mst; Hanafi, Mohamed Musa; Sahebi, Mahbod

    2017-01-01

    Rust is the most devastating fungal disease in wheat. Three rust diseases, namely, leaf or brown rust caused by Puccinia triticina Eriks, stem or black rust caused by Puccinia graminis f. sp. tritici West, and stripe or yellow rust caused by Puccinia striiformis f. Tritici Eriks, are the most economically significant and common diseases among global wheat cultivars. Growing cultivars resistant to rust is the most sustainable, cost-effective and environmentally friendly approach for controlling rust diseases. To date, more than 187 rust resistance genes (80 leaf rust, 58 stem rust and 49 stripe rust) have been derived from diverse wheat or durum wheat cultivars and the related wild species using different molecular methods. This review provides a detailed discussion of the different aspects of rust resistance genes, their primitive sources, their distribution in global wheat cultivars and the importance of durable resistant varieties for controlling rust diseases. This information will serve as a foundation for plant breeders and geneticists to develop durable rust-resistant wheat varieties through marker-assisted breeding or gene pyramiding

  13. Comprehensive proteomic analysis of the wheat pathogenic fungus Zymoseptoria tritici.

    Science.gov (United States)

    Yang, Fen; Yin, Qi

    2016-01-01

    Zymoseptoria tritici causes Septoria tritici blotch disease of wheat. To obtain a comprehensive protein dataset of this fungal pathogen, proteomes of Z. tritici growing in nutrient-limiting and rich media and in vivo at a late stage of wheat infection were fractionated by 1D gel or strong cation exchange (SCX) chromatography and analyzed by LC-MS/MS. A total of 5731, 5376 and 3168 Z. tritici proteins were confidently identified from these conditions, respectively. Of these in vitro and in planta proteins, 9 and 11% were predicted to contain signal peptides, respectively. Functional classification analysis revealed the proteins were involved in the various cellular activities. Comparison of three distinct protein expression profiles demonstrates the elevated carbohydrate, lipid and secondary metabolisms, transport, protein processing and energy production specifically in the host environment, in contrast to the enhancement of signaling, defense, replication, transcription and cell division in vitro. The data provide useful targets towards a better understanding of the molecular basis of Z. tritici growth, development, stress response and pathogenicity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Characterization of cookies made from wheat flour blended with buckwheat flour and effect on antioxidant properties.

    Science.gov (United States)

    Jan, Ulfat; Gani, Adil; Ahmad, Mudasir; Shah, Umar; Baba, Waqas N; Masoodi, F A; Maqsood, Sajid; Gani, Asir; Wani, Idress Ahmed; Wani, S M

    2015-10-01

    Buckwheat flour was incorporated into wheat flour at different levels (0, 20, 40, 60, 80, and 100 %) and the physicochemical, functional and antioxidant properties of the blended flour were studied. This study also investigated the effect of buckwheat on the retention of antioxidant properties of cookies during baking. The results showed significant variation in physicochemical and functional properties of the blended flour. The addition of buckwheat flour into wheat flour also increased the antioxidant properties of blended flour proportionally, but metal chelating properties decreased. The incorporation of buckwheat in wheat flour helped in better retention of antioxidant potential of cookies during baking process as buckwheat cookies (100 % buckwheat) showed greater percentage increase in antioxidant properties than control (100 % wheat). Quality characteristics of cookies such as hardness and spread ratio decreased, while as non-enzymatic browning (NEB) increased significantly with increase in the proportion of buckwheat flour in wheat flour. The Overall acceptability of cookies by sensory analysis was highest at 40 % level of blending. This study concluded that addition of buckwheat in wheat flour, may not only improve the physico-chemical and functional properties of the blended flour but may also enhance the nutraceutical potential of the product prepared from it.

  15. Registration of 'Bolles' hard red spring wheat with high grain protein concentration and superior baking quality

    Science.gov (United States)

    The hard red spring wheat market class in the U.S. commands the highest prices on the worldwide wheat markets because of its high protein content, strong gluten, and good baking properties. ‘Bolles’ (PI 678430), a hard red spring wheat cultivar, was released by the University of Minnesota Agricultu...

  16. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties.

    Science.gov (United States)

    Amir, Rai Muhammad; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Khan, Moazzam Rafiq; Pasha, Imran; Nadeem, Muhammad

    2013-10-01

    Quality characteristics of wheat are determined by different physiochemical and rheological analysis by using different AACC methods. AACC methods are expensive, time consuming and cause destruction of samples. Fourier transforms infrared (FTIR) spectroscopy is one of the most important and emerging tool used for analyzing wheat for different quality parameters. This technique is rapid and sensitive with a great variety of sampling techniques. In the present study different wheat varieties were analyzed for quality assessment and were also characterized by using AACC methods and FTIR technique. The straight grade flour was analyzed for physical, chemical and rheological properties by standard methods and results were obtained. FTIR works on the basis of functional groups and provide information in the form of peaks. On basis of peaks the value of moisture, protein, fat, ash, carbohydrates and hardness of grain were determined. Peaks for water were observed in the range 1,640 cm(-1) and 3,300 cm(-1) on the basis of functional group H and OH. Protein was observed in the range from 1,600 cm(-1) to 1,700 cm(-1) and 1,550 cm(-1) to 1,570 cm(-1) on the basis of bond amide I and amide II respectively. Fat was also observed within these ranges but on the basis of C-H bond and also starch was observed in the range from 2,800 and 3,000 cm(-1) (C-H stretch region) and in the range 3,000 and 3,600 cm(-1) (O-H stretch region). As FTIR is a fast tool it can be easily emplyed for wheat varieties identification according to a set criterion.

  17. Isolation and purification of wheat germ agglutinin and analysis of its properties

    Science.gov (United States)

    Wang, Han

    2017-12-01

    In this paper, the wheat germ agglutinin was isolated and purified by affinity chromatography of chicken ovomucoid as ligand. The physicochemical properties were analyzed. The chicken ovomucoid was isolated from egg white and conjugated to affinity chromatography column agarose gel to prepare affinity adsorbent. The crude extract of wheat germ was freezedried by affinity chromatography. The physicochemical properties were analyzed by SDSpolyacrylamide gel electrophoresis and isoelectric focusing electrophoresis. And the relative molecular mass and isoelectric point of wheat germ agglutinin were obtained, and the high efficiency of purification of wheat germ agglutinin was proved by affinity chromatography.

  18. An Optimized Protocol for DNA Extraction from Wheat Seeds and Loop-Mediated Isothermal Amplification (LAMP to Detect Fusarium graminearum Contamination of Wheat Grain

    Directory of Open Access Journals (Sweden)

    Mohamed Moslem

    2011-06-01

    Full Text Available A simple, rapid, and efficient method for isolating genomic DNA from germinated seeds of wheat that is free from polysaccharides and polyphenols is reported. DNA was extracted, treated with RNase, measured and tested for completeness using agarose gel electrophoresis. DNA purification from wheat grains yielded abundant, amplifiable DNA with yields typically between 100 and 200 ng DNA/mg. The effectiveness and reliability of the method was tested by assessing quantity and quality of the isolated DNA using three PCR-based markers. Inter-simple sequence repeats (ISSRs were used to assess the genetic diversity between different wheat varieties. Specific PCR primer pair Tox5-1/Tox5-2 and a loop-mediated isothermal amplification (LAMP procedure were used to detect genomic DNA of Fusarium graminearum in contaminated wheat seeds. In this method there is no need to use liquid nitrogen for crushing germinated seedlings. The protocol takes approximately one hour to prepare high quality DNA. In combination with the LAMP assay it is a fast and cost-effective alternative to traditional diagnostic methods for the early detection of toxigenic fusaria in cereals.

  19. EKSTRAKSI DAN ANALISIS FITOSTEROL LEMBAGA GANDUM [Extraction and analysis of Phytosterol from wheat germ (Triticum sp.

    Directory of Open Access Journals (Sweden)

    Latifah K Darusman3

    2005-04-01

    Full Text Available Phytosterol may reduce the absorption of cholesterol, and used for preventing atherosclerosis. It is limited in soybean, but potentially abundant in wheat germ. Research on the utilization of wheat germ sterol had not been reported so far. Many aspects of germ sterol extraction from wheat germ and its characteristics were still unknown. In this research, the best extraction method, kinds and content of phytosterol from wheat germ were investigated.This research consisted of two steps: (1 extraction of phytosterol directly form whole germ and ground germ using hexane, and indirect extraction through germ oil using hexane and mixed solvent of hexane and ethanol, and direct extraction from ground germ using ethanol; (2 analysis of the type and content of phytosterol in the crude extract through the following steps: preparation of crude extract, fractionation, and analysis.Results showed that indirect extraction through germ oil was considered as the best method which yielded 1.37% of phytosterol. The highest yield was obtained when extracted using a mixed solvent of hexane – ethanol 82:18. However, the odor of ethanol and hexane (gasoline like odor was still detected. The solvent’s ratio of hexane to ethanol at 1:2 resulted better odor of the extract. Extraction of sterol using ethanol yielded 18.39% of sterol when the ratio of germ to ethanol at 1:10 (w/v was applied.Results of quantitative analysis on the main component of crude extract of wheat germ sterol showed that the total content of sterol extracted with mixed solvent was higher than those extracted with ethanol. The ratio of hexane to ethanol at 1:1 (v/v gave higher content of total sterol, stigmasterol and campesterol, whereas higher content of -sitosterol was produced at the solvent’s ratio of hexane to ethanol at 1:2 (v/v.

  20. Selenium supplementation of Portuguese wheat cultivars through foliar treatment in actual field conditions

    International Nuclear Information System (INIS)

    Catarina Galinha; Pacheco, A.M.G.; Maria do Carmo Freitas; Jose Coutinho; Benvindo Macas; Ana Sofia Almeida

    2013-01-01

    Selenium (Se) is a trace element essential to the well-being and health quality of humankind. Plant-derived foodstuffs, namely cereals, are the major dietary sources of Se in most countries throughout the world, even if Se contents are strongly dependent upon the corresponding levels in cereal-growing soils. Therefore, wheat is one of the staple crops that appears as an obvious candidate for Se biofortification, considering its gross-tonnage production and nutritional relevance worldwide. The present paper focuses on the ability of bread and durum wheat-Triticum aestivum L. and Triticum durum Desf., respectively-to accumulate Se after supplementation via a foliar-addition procedure. Two of the most representative wheat cultivars in Portugal - Jordao (bread) and Marialva (durum) - have been selected for supplementation trials, following the same agronomic practices and field schedules as the regular (non-supplemented) crops of those varieties (sowing: November 2010; harvesting: July 2011). Foliar additions were performed at the booting and grain-filling stages, using sodium selenate and sodium selenite solutions at three different Se concentrations-equivalent to field supplementation rates of 4, 20 and 100 g of Se per ha-with and without potassium iodide. Selenium contents in wheat grains obtained under foliar application are compared to data from regular wheat samples (field blanks) grown at the same soil/season, yet devoid of any Se supplementation. Total Se in all field samples was determined by cyclic neutron activation analysis (CNAA), via the short-lived nuclide 77m Se (half-life time: 17.5 s), in the Portuguese Research Reactor (RPI; CTN-IST, Sacavem). Quality control of the analytical procedure was asserted through concurrent analyses of NIST-SRM R 1567a (Wheat Flour). Results show that foliar additions can increase Se contents in mature grains up to 15 and 40 times for Marialva and Jordao, respectively, when compared to non-supplemented crops. Jordao and

  1. Prolamin proteins alteration in durum wheat by species of the genus Eurygaster and Aelia (Insecta, Hemiptera)

    International Nuclear Information System (INIS)

    Salis, L.; Goula, M.; Valero, J.; Gordun, E.

    2010-01-01

    Wheat bugs are widely distributed in various areas of Europe, Asia and North Africa. Species belonging to the genus Eurygaster and Aelia pierce wheat kernels affecting protein quality. The effects of these insects feeding activity have been studied mainly in bread wheat (Triticum aestivum L.). This study provides information on the degradation of prolamin proteins (glutenins and gliadins) of bug-damaged durum wheat (Triticum turgidum L. var durum) in six cultivars grown in Sardinia (Italy). Samples of whole flour mixture of 70% sound wheat and 30% damaged wheat were hydrated and incubated at two temperatures (45 and 4 degree centigrade), for different periods of time (0, 1 and 3 h). Glutenin and gliadin content was analysed using free zone capillary electrophoresis. The presence of bug-damaged kernels had influence on the quality of durum wheat proteins. Glutenins were rapidly degraded independently to incubation temperature. Gliadin degradation, however, took place with dependence on temperature and incubation time. Therefore glutenin degradation was possibly not due solely to the activity of proteolytic enzymes but also to some other as yet unknown factor linked to wheat bugs feeding activity. (Author) 35 refs.

  2. Prolamin proteins alteration in durum wheat by species of the genus Eurygaster and Aelia (Insecta, Hemiptera)

    Energy Technology Data Exchange (ETDEWEB)

    Salis, L.; Goula, M.; Valero, J.; Gordun, E.

    2010-07-01

    Wheat bugs are widely distributed in various areas of Europe, Asia and North Africa. Species belonging to the genus Eurygaster and Aelia pierce wheat kernels affecting protein quality. The effects of these insects feeding activity have been studied mainly in bread wheat (Triticum aestivum L.). This study provides information on the degradation of prolamin proteins (glutenins and gliadins) of bug-damaged durum wheat (Triticum turgidum L. var durum) in six cultivars grown in Sardinia (Italy). Samples of whole flour mixture of 70% sound wheat and 30% damaged wheat were hydrated and incubated at two temperatures (45 and 4 degree centigrade), for different periods of time (0, 1 and 3 h). Glutenin and gliadin content was analysed using free zone capillary electrophoresis. The presence of bug-damaged kernels had influence on the quality of durum wheat proteins. Glutenins were rapidly degraded independently to incubation temperature. Gliadin degradation, however, took place with dependence on temperature and incubation time. Therefore glutenin degradation was possibly not due solely to the activity of proteolytic enzymes but also to some other as yet unknown factor linked to wheat bugs feeding activity. (Author) 35 refs.

  3. The influence of soft kernel texture on the flour, water absorption, rheology, and baking quality of durum wheat

    Science.gov (United States)

    Durum (T. turgidum subsp. durum) wheat production worldwide is substantially less than that of common wheat (Triticum aestivum). Durum kernels are extremely hard; leading to most durum wheat being milled into semolina. Durum wheat production is limited in part due to the relatively limited end-user ...

  4. Effect of incorporation of corn byproducts on quality of baked and extruded products from wheat flour and semolina.

    Science.gov (United States)

    Sharma, Savita; Gupta, Jatinder Pal; Nagi, H P S; Kumar, Rakesh

    2012-10-01

    The effect of blending level (0, 5, 10, 15 and 20%) of corn bran, defatted germ and gluten with wheat flour on the physico-chemical properties (protein, crude fiber, phosphorus, iron and calcium), baking properties of bread, muffins and cookies, and extrusion properties of noodles and extruded snacks prepared from semolina were examined. Blending of wheat flour and corn byproducts significantly increased the protein, crude fiber, phosphorus, iron and calcium contents. Breads from gluten blends had higher loaf volume as compared to bran and germ breads. Among corn byproducts, gluten cookies were rated superior with respect to top grain. Muffins from germ blends and gluten blends had higher acceptability scores than the bran muffins. Blending of corn bran, defatted germ and gluten at 5 and 10% with wheat flour resulted in satisfactory bread, cookie, and muffin score. Quality of noodles was significantly influenced by addition of corn byproducts and their levels. Corn byproducts blending had significant influence on cooking time, however, gruel solid loss affected non-significantly in case of noodles. Expansion ratio and density of extruded snacks was affected non significantly by blending source and blending level. However, significant effect was observed on amperage, pressure, yield and overall acceptability of extruded snacks. Acceptable extruded products (noodles and extruded snacks) could be produced by blending corn byproducts with semolina upto 10% level.

  5. Assessment of adaptive evolution between wheat and rice as deduced from full-length common wheat cDNA sequence data and expression patterns

    Directory of Open Access Journals (Sweden)

    Hayashizaki Yoshihide

    2009-06-01

    Full Text Available Abstract Background Wheat is an allopolyploid plant that harbors a huge, complex genome. Therefore, accumulation of expressed sequence tags (ESTs for wheat is becoming particularly important for functional genomics and molecular breeding. We prepared a comprehensive collection of ESTs from the various tissues that develop during the wheat life cycle and from tissues subjected to stress. We also examined their expression profiles in silico. As full-length cDNAs are indispensable to certify the collected ESTs and annotate the genes in the wheat genome, we performed a systematic survey and sequencing of the full-length cDNA clones. This sequence information is a valuable genetic resource for functional genomics and will enable carrying out comparative genomics in cereals. Results As part of the functional genomics and development of genomic wheat resources, we have generated a collection of full-length cDNAs from common wheat. By grouping the ESTs of recombinant clones randomly selected from the full-length cDNA library, we were able to sequence 6,162 independent clones with high accuracy. About 10% of the clones were wheat-unique genes, without any counterparts within the DNA database. Wheat clones that showed high homology to those of rice were selected in order to investigate their expression patterns in various tissues throughout the wheat life cycle and in response to abiotic-stress treatments. To assess the variability of genes that have evolved differently in wheat and rice, we calculated the substitution rate (Ka/Ks of the counterparts in wheat and rice. Genes that were preferentially expressed in certain tissues or treatments had higher Ka/Ks values than those in other tissues and treatments, which suggests that the genes with the higher variability expressed in these tissues is under adaptive selection. Conclusion We have generated a high-quality full-length cDNA resource for common wheat, which is essential for continuation of the

  6. Genetic evolution and utilization of wheat germplasm resources in Huanghuai winter wheat region of China

    International Nuclear Information System (INIS)

    Xiyong, C.; Haixia, X.U.; Feng, C.

    2011-01-01

    To determine the genetic variation of wheat germplasm resources and improve their use in wheat breeding, 215 wheat cultivars and advanced lines from the Huanghuai Wheat Region of China were used to identify 14 agronomic traits and 7 quality traits, as well as the evolution and utilization of high molecular weight glutenin subunits (HMW-GS) and low molecular weight-glutenin subunits (LMW-GS). From land race cultivars to current cultivars there had been significant increases in grain numbers spike/sip -1/, grain weight spike/sup -1/, 1000-kernel weight, grain weight plant/sup -1/, spikelet number spike/sup -1/, sterile spikelet numbers spike/sup -1/, flag leaf width, and flag leaf area. There had been significant decreases in spike number plant/sup -1/, plant height, the first inter node length, flag leaf length, kernel protein content and wet gluten content. Based on Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results, a novel HMW-GS combination 20/8 was identified in 1B chromosome of Chinese landrace cultivar Heputou. Subunits 22, 20/8, 2.2+12, and GluB3a were only found in cultivars before the 1960s, and subunits 6+8, 13+16, 3+12, and 4+12 were only found in the cultivars after the 1980s. The average diversity index of 21 traits and allele variance of HMW-GS showed a decreasing-increasing-decreasing tendency. HMW-GS and LMW-GS combination-type cultivars showed an increasing-decreasing tendency. Before the 1980s, most parental strains were from foreign cultivars and landrace cultivars, while after the 1980s, most parental strains were from released cultivars and germplasm created by distant hybridization. This study provided useful information for improvement of wheat breeding in Huanghuai winter wheat region. (author)

  7. Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt

    Directory of Open Access Journals (Sweden)

    Amer F. Mahmoud

    2016-04-01

    Full Text Available Fusarium graminearum Schwabe causes Fusarium head blight (FHB, a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B isolates being more aggressive towards wheat than groups (A and (C. Furthermore, Trichoderma harzianum (Rifai and Bacillus subtilis (Ehrenberg which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt.

  8. Isolation and sequence analysis of the wheat B genome subtelomeric DNA

    Directory of Open Access Journals (Sweden)

    Huneau Cecile

    2009-09-01

    Full Text Available Abstract Background Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. Results The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119 737 bp was annotated. It is composed of 33% transposable elements (TEs, 8.2% Spelt52 (namely, the subfamily Spelt52.2 and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11 666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0. Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Conclusion Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat

  9. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Science.gov (United States)

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  10. A haplotype specific to North European wheat (Triticum aestivum L.)

    Czech Academy of Sciences Publication Activity Database

    Tsombalova, J.; Karafiátová, Miroslava; Vrána, Jan; Kubaláková, Marie; Peusa, H.; Jakobson, I.; Jarve, M.; Valárik, Miroslav; Doležel, Jaroslav; Jarve, K.

    2017-01-01

    Roč. 64, č. 4 (2017), s. 653-664 ISSN 0925-9864 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : bread wheat * genetic diversity * polyploid wheat * introgression lines * molecular analysis * tetraploid wheat * hexaploid wheat * powdery mildew * spelta l. * map * Common wheat * Triticum aestivum L * Spelt * Triticum spelta L * Chromosome 4A * Zero alleles * Haplotype * Linkage disequilibrium Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 1.294, year: 2016

  11. AgMIP wheat pilot data 4 release

    NARCIS (Netherlands)

    Asseng, S.; Ewert, F.; Martre, P.; Supit, I.; Wolf, J.

    2015-01-01

    The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation,

  12. The effect of feeding wheat varieties with different grain pigmentation on growth performance, texture, colour and meat sensory traits of broiler chickens

    Directory of Open Access Journals (Sweden)

    Ondřej Šťastník

    2017-01-01

    Full Text Available The feeding effect of of three spring wheat genotypes (Vánek, Konini and UC66049 with different grain colour on growth performance, body composition and meat quality parameters of broiler chickens was tested. Ninety chickens were divided into three groups (control, Konini and UC with 30 chickens in each. The tested genotypes were compares with standard variety Vánek (control with common (red grain colour. The two experimental groups received feed mixtures containing 38.2% of wheats with different grain colour: groups Konini (n = 30 and UC (n = 30 with. The third group (n = 30 had 38.2% of common wheat Vánek cultivar (Control group. The live weight of chickens between the experimental groups and control group was not significant different, as well as body composition and chemical analysis of breast and thigh meat of chickens. The feeding of wheat with different grain colour had no effect on performance parameters of broiler chickens. Breast meat tenderness according to the Razor Blade Shear Force was higher in control group against experimental groups. The colour change was not significantly different in all coordinates. pH values (measured after 1-hour post mortem were found significantly higher in the group fattening with Konini wheat than control and UC groups. Chickens meat from the experimental group was characterised by steady overall quality. The effect of various feeding had no effect on meat quality in terms of relevance to consumers.

  13. Characterization and glutenin diversity in tetraploid wheat varieties ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... Important methods applied for the breeding of bread-quality wheat (Triticum durum L.) consist of small- scale bread-quality tests for the determination of the grain protein content, SDS-sedimentation volume, thousand weight kernel and ... marked as a x and y – type subunits, based on their electrophoretic ...

  14. Wheat: The Whole Story.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  15. Classification of images of wheat, ryegrass and brome grass species at early growth stages using principal component analysis

    Directory of Open Access Journals (Sweden)

    Golzarian Mahmood R

    2011-09-01

    Full Text Available Abstract Wheat is one of the most important crops in Australia, and the identification of young plants is an important step towards developing an automated system for monitoring crop establishment and also for differentiating crop from weeds. In this paper, a framework to differentiate early narrow-leaf wheat from two common weeds from their digital images is developed. A combination of colour, texture and shape features is used. These features are reduced to three descriptors using Principal Component Analysis. The three components provide an effective and significant means for distinguishing the three grasses. Further analysis enables threshold levels to be set for the discrimination of the plant species. The PCA model was evaluated on an independent data set of plants and the results show accuracy of 88% and 85% in the differentiation of ryegrass and brome grass from wheat, respectively. The outcomes of this study can be integrated into new knowledge in developing computer vision systems used in automated weed management.

  16. Aminoacid composition of wheat grain gluten under microbe impact

    Directory of Open Access Journals (Sweden)

    Sokolova М. G.

    2012-11-01

    Full Text Available The study was focused on characteristics of gluten, protein and aminoacids content in wheat grain under the impact of microbe preparations including bacteria of Azotobacter and Bacillus geni, which inhabit plant rhizosphere. The increase of aminoacids leveland particularly the level of essential aminoacids in wheat grain under bacterization was demonstrated, this fact accounting for the quality of grain as an important protein source. Increase of aminoacids content with the use of biopreparations on low-fertile soil ensures acquisition of biologically valuable grain with the decrease of mineral fertilizers dosage and emphasizes the role of biopreparations in the production of ecologically pure high quality products. The latter is due to introdcution of environmentally safe agricultural methods.

  17. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Jiping Wang

    2017-09-01

    Full Text Available Calreticulin (CRT, an endoplasmic reticulum (ER-localized Ca2+-binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat (Triticum aestivum L., particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL population (114 lines developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.

  18. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Wang, Jiping; Li, Runzhi; Mao, Xinguo; Jing, Ruilian

    2017-01-01

    Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca 2+ -binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat ( Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.

  19. The experience in the development of a new soft wheat variety of Yangfumai 2 with good quality

    International Nuclear Information System (INIS)

    He Zhentian; Chen Xiulan; Han Yuepen; Wang Jinrong; Yang Hefeng; Liu Xueyu

    2004-01-01

    A new variety Yangfumai 2 derived from a combination, Yangmail 58 x 1-9012, was developed by the way of hybridization and irradiation. Its flour quality meets the standard of national soft wheat, and its agronomic characteristics are described as the high and steady yield, resistance to bad growth condition, the high value of 1000-grainweight and the good-looking at the late seed-filling stage. Yangfumai 2 is suitable to growth in the region of Huaihe canallying in the south along Yangtze River in the middle and lower area. (authors)

  20. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties.

    Science.gov (United States)

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  1. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L. varieties.

    Directory of Open Access Journals (Sweden)

    Nanna Hellum Nielsen

    Full Text Available Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT was used to characterize a population of 94 bread wheat (Triticum aestivum L. varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA. These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8 locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  2. Registration of 'Prevail' hard red spring wheat

    Science.gov (United States)

    Grower and end-user acceptance of new Hard Red Spring Wheat (HRSW; Triticum aestivum L.) cultivars is largely contingent upon satisfactory agronomic performance, end-use quality potential, and disease resistance levels. Additional characteristics, such as desirable plant height, can also contribute...

  3. Reduced Height (Rht) Alleles Affect Wheat Grain Quality.

    Science.gov (United States)

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (Pgrain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the strongest evidence for

  4. Molecular genetic studies on irradiated wheat plants

    International Nuclear Information System (INIS)

    Saleh, O.M.

    2002-01-01

    Composite genotype(octamer hybrid) was obtained from crossing among eight Egyptian hexaploid wheat cultivars differing in their tolerance to drought stress to produce a genotype, which can economize on the irrigation water requirements or can tolerate drought stress. Gamma irradiation with 10-Krad was used to induce mutations, which could improve drought tolerance for this composite. From eight Egyptian wheat cultivars, two were chosen as drought tolerant and drought sensitive genotypes (G-160 and Sk-61, respectively. They were evaluated along with their F1 and F2 for their relative drought tolerance for some yield-related traits. Bulked segregating analysis developed some RAPD and SSR markers with different primers, which were considered as molecular for drought tolerance in wheat. Hal 2-like gene was introduced into Egyptian wheat cultivar G-164 via micro projectile bombardment. Two putative transgenic plants were successfully detected by leaf painting with the herbicide basta. PCR/ Southern blotting analysis indicated the presence of both/either bar and/or Hal 2-like genes in the genomic background of the two transgenic plants

  5. [Effects of different fertilization regimes on weed communities in wheat fields under rice-wheat cropping system].

    Science.gov (United States)

    Yuan, Fang; Li, Yong; Li, Fen-hua; Sun, Guo-jun; Han, Min; Zhang, Hai-yan; Ji, Zhong; Wu, Chen-yu

    2016-01-01

    To reveal the effects of different fertilization regimes on weed communities in wheat fields under a rice-wheat rotation system, a survey was conducted before wheat harvest in 2014 after a 4-year long-term recurrent fertilization scheme. Weed species types, density, height and diversity index under different fertilization and straw-returning schemes in wheat fields were studied and complemented with a canonical correspondence analysis on weed community distribution and soil nutrient factors. Twenty weed species were recorded among 36 wheat fields belonging to 19 genera and 11 families. Beckmannia syzigachne, Hemistepta lyrata, Malachium aquaticum and Cnidium monnieri were widely distributed throughout the sampled area. Long-term fertilization appeared to reduce weed species richness and density, particularly for broadleaf weeds, but increased weed height. Diversity and evenness indices of weed communities were lower and dominance indices were higher in fields where chemical fertilizers were applied alone or combined with organic fertilizers, especially, where organic-inorganic compound fertilizer was used, in which it readily caused the outbreak of a dominant species and severe damage. Conversely, diversity and evenness indices of weed communities were higher and dominance indices were lower when the straw was returned to the field combined with chemical or organic fertilizers, in which weed community structures were complex and stable with lower weed density. Under these conditions weeds only caused slight reduction of wheat growth.

  6. High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes

    Directory of Open Access Journals (Sweden)

    Botticella Ermelinda

    2011-11-01

    Full Text Available Abstract Background Manipulation of the amylose-amylopectin ratio in cereal starch has been identified as a major target for the production of starches with novel functional properties. In wheat, silencing of starch branching enzyme genes by a transgenic approach reportedly caused an increase of amylose content up to 70% of total starch, exhibiting novel and interesting nutritional characteristics. In this work, the functionality of starch branching enzyme IIa (SBEIIa has been targeted in bread wheat by TILLING. An EMS-mutagenised wheat population has been screened using High Resolution Melting of PCR products to identify functional SNPs in the three homoeologous genes encoding the target enzyme in the hexaploid genome. Results This analysis resulted in the identification of 56, 14 and 53 new allelic variants respectively for SBEIIa-A, SBEIIa-B and SBEIIa-D. The effects of the mutations on protein structure and functionality were evaluated by a bioinformatic approach. Two putative null alleles containing non-sense or splice site mutations were identified for each of the three homoeologous SBEIIa genes; qRT-PCR analysis showed a significant decrease of their gene expression and resulted in increased amylose content. Pyramiding of different single null homoeologous allowed to isolate double null mutants showing an increase of amylose content up to 21% compared to the control. Conclusion TILLING has successfully been used to generate novel alleles for SBEIIa genes known to control amylose content in wheat. Single and double null SBEIIa genotypes have been found to show a significant increase in amylose content.

  7. Bread in the Economy of Qualities: The Creative Reconstitution of the Canada-UK Commodity Chain for Wheat

    Science.gov (United States)

    Magnan, Andre

    2011-01-01

    This article traces the creative reconstitution of the Canada-UK wheat-bread commodity chain since the 1990s. In the mid-1990s, the Canadian Wheat Board (CWB) and a British bakery, Warburtons, pioneered an innovative identity-preserved sourcing relationship that ties contracted prairie wheat growers to consumers of premium bread in the United…

  8. Association studies for agro-physiological and quality traits of triticale x bread wheat derivatives in relation to drought and cold stress.

    Science.gov (United States)

    Gupta, Dorin; Mittal, R K; Kant, Anil; Singh, Mohar

    2007-04-01

    Correlation coefficient analysis conducted on 22 triticale x bread wheat derivatives along with six checks to select true- breeding derivative(s) for future hybridization programme with tolerance to drought and cold stress conditions as well as better quality traits revealed significant correlation of grain yield with spikelets per spike, biological yield, harvest index, leaf area index. Interestingly, the grain yield and drought susceptibility index showed no association. However, with cold tolerance it showed significant positive correlation indicating the desirability of certain plant traits under cold stress. The grain yield exhibited no association with quality traits which might assist in the predictability of high yielding varieties with high protein, total sugars, reducing sugars and non-reducing sugars. Path coefficient analysis revealed that biological yield had the highest positive direct effect on grain yield followed by harvest index, specific leaf weight, stomatal number, 1000 grain weight, stomatal size, spikelets per spike and days to heading. Therefore, indirect selection for these plant traits in order should be exercised in selecting drought tolerant genotypes. Two genotypes (RL-124-2P2 and RL 111P2) were found to be drought and cold tolerant with high grain yield, spikes per plant, spikelets per spike and leaf area index.

  9. Chemical Composition and Quality Characteristics of Wheat Bread Supplemented with Leafy Vegetable Powders

    Directory of Open Access Journals (Sweden)

    T. V. Odunlade

    2017-01-01

    Full Text Available The study investigated the effect of supplementation of the leaf powders of Telfairia occidentalis, Amaranthus viridis, and Solanum macrocarpon on the chemical composition and the quality characteristics of wheat bread. The bread samples were supplemented with each of the vegetable leaf powders at 1%, 2%, and 3% during preparation. The bread samples were assayed for proximate composition, mineral composition, physical, sensory, and antioxidant properties using standard methods. The addition of vegetable powders significantly increased the protein (9.50 to 13.93%, fibre (1.81 to 4.00%, ash (1.05 to 2.38%, and fat (1.27 to 2.00%. Supplementation with vegetable powder however significantly decreased (p<0.05 the carbohydrate and moisture contents. Significant (p<0.05 increases were recorded for all evaluated minerals as the level of vegetable powder increased. Supplementation with vegetable powder caused significant decrease in total phenolic content, percentage DPPH inhibition, metal chelating ability, ferric reducing antioxidant power, and total antioxidant capacity. Sensory results showed that there was significant decrease in sensory qualities with increasing supplementation. This therefore suggests that bread supplemented with vegetable powder could have more market penetration if awareness is highly created.

  10. Identification methods for irradiated wheat

    International Nuclear Information System (INIS)

    Zhu Shengtao; Kume, Tamikazu; Ishigaki, Isao.

    1992-02-01

    The effect of irradiation on wheat seeds was examined using various kinds of analytical methods for the identification of irradiated seeds. In germination test, the growth of sprouts was markedly inhibited at 500Gy, which was not affected by storage. The decrease in germination percentage was detected at 3300Gy. The results of enzymatic activity change in the germ measured by Vita-Scope germinator showed that the seeds irradiated at 10kGy could be identified. The content of amino acids in ungerminated and germinated seeds were analyzed. Irradiation at 10kGy caused the decrease of lysine content but the change was small which need very careful operation to detect it. The chemiluminescence intensity increased with radiation dose and decreased during storage. The wheat irradiated at 10kGy could be identified even after 3 months storage. In the electron spin resonance (ESR) spectrum analysis, the signal intensity with the g value f 2.0055 of skinned wheat seeds increased with radiation dose. Among these methods, germination test was the most sensitive and effective for identification of irradiated wheat. (author)

  11. Prediction of bread-making quality using size exclusion high ...

    African Journals Online (AJOL)

    Variation in the distribution of protein molecular weight in wheat (Triticum aestivum), influences breadmaking quality of wheat cultivars, resulting in either poor or good bread. The objective of this study was to predict breadmaking quality of wheat cultivars using size exclusion high performance liquid chromatography.

  12. Biochar: a novel tool to enhance wheat productivity and soil fertility on sustainable basis under wheat-maize-wheat cropping pattern

    International Nuclear Information System (INIS)

    Ali, K.; Jan, M.T.; Munsif, F.

    2015-01-01

    The application of organic matter is an important element for preserving long-term soil fertility because it is the reservoir of metabolic energy, which drives soil biological processes involved in nutrient availability. Two years field experiments were conducted for the assessment of the interactive effect of biochar with synthetic fertilizer and farmyard manure. Biochar application at the rate of 25 t ha-1 increased spikes m-2 by 6.64%, grains spike-1 by 5.6%, thousand grain weight by 3.73, grain yield by 9.96%, biological yield by 15.36%, phosphorus use efficiency by 29.03% and grain phosphorus uptake by 19.67% in comparison with no biochar treated plots. Likewise, biochar application significantly increased soil carbon (C), phosphorus (P) and potassium (K) by 54.02, 61.39 and 18.41%, respectively. Similarly, farmyard manure at the rate of 10 t ha-1 resulted in significantly higher yield components, grain yield, soil C, P and K than 5 t ha-1. Likewise, mineral nitrogen application at the rate of 120 kg ha-1 improved wheat yield and yield components with no significant effect on soil C, P and K contents. It is concluded that application biochar either alone or in combination with FYM or mineral nitrogen improved yield and yield components of wheat and soil quality in wheat-maize cropping pattern. (author)

  13. Simulating the effect of emex australis densities and sowing dates on agronomic traits of wheat

    International Nuclear Information System (INIS)

    Abbas, R.N.; Tanveer, A.; Ali, A.; Zaheer, Z.A.

    2010-01-01

    Reduction in yield and quality of wheat is major problem caused by the delayed sowing and interference of weeds. The effects of sowing dates (Nov 8, Nov 16, and Nov 24) and Emex australis Steinh. density (0, 1, 2, 3, 4 plants per pot) on growth and yield of wheat were evaluated over two seasons (2005-06, 2006-07). The statistical analysis of data exhibited non-significant effect of weed density on number of days taken to initiate flowering by E. australis. Highest values for E. australis plant height, dry biomass, number of seed per plant and seed weight were recorded by sowing wheat on November 8, at E. australis density of one plant per pot in both years. Maximum number of spike bearing tillers per pot, plant height, number of grains per spike, 1000-grain weight and grain yield were observed in November 8, sowing with zero E. australis density and minimum values for these parameters were recorded in late sowing ( November 24) at maximum weed density of 4 plants per pot. Early sowing ( Nov. 8) and weed free pots increased wheat grain yield compared to later sowings (Nov. 16 and Nov. 24) and higher weed density. (author)

  14. Perspectives to breed for improved baking quality wheat varieties adapted to organic growing conditions.

    Science.gov (United States)

    Osman, Aart M; Struik, Paul C; van Bueren, Edith T Lammerts

    2012-01-30

    Northwestern European consumers like their bread to be voluminous and easy to chew. These attributes require a raw material that is rich in protein with, among other characteristics, a suitable ratio between gliadins and glutenins. Achieving this is a challenge for organic growers, because they lack cultivars that can realise high protein concentrations under the relatively low and variable availability of nitrogen during the grain-filling phase common in organic farming. Relatively low protein content in wheat grains thus needs to be compensated by a high proportion of high-quality protein. Organic farming therefore needs cultivars with genes encoding for optimal levels of glutenins and gliadins, a maximum ability for nitrogen uptake, a large storage capacity of nitrogen in the biomass, an adequate balance between vegetative and reproductive growth, a high nitrogen translocation efficiency for the vegetative parts into the grains during grain filling and an efficient conversion of nitrogen into high-quality proteins. In this perspective paper the options to breed and grow such varieties are discussed. Copyright © 2011 Society of Chemical Industry.

  15. Effects of pretreatment of wheat bran on the quality of protein-rich residue for animal feeding and on monosaccharide release for ethanol production

    NARCIS (Netherlands)

    Borne, van den J.J.G.C.; Kabel, M.A.; Briens, M.; Poel, van der A.F.B.; Hendriks, W.H.

    2012-01-01

    The effects of hydrothermal conditions for pretreating wheat bran on the quality of residual protein for animal feeding, and on monosaccharide release for ethanol production were studied according to a 4 × 2 × 2 design with the factors, temperature (120, 140, 160, and 180 °C), acidity (pH 2.3 and

  16. Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. II. Durum wheat

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Nachit, M.M.; Oweis, T.

    2005-01-01

    Seven varieties of durum wheat (Triticum turgidum), provided by ICARDA, were tested in a greenhouse experiment for their salt tolerance. Afterwards two varieties, differing in salt tolerance, were irrigated with waters of three different salinity levels in a lysimeter experiment to analyse their

  17. Quantitative and qualitative differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplican sequencing

    NARCIS (Netherlands)

    Salentijn, E.M.J.; Esselink, D.G.; Goryunova, S.V.; Meer, van der I.M.; Gilissen, L.J.W.J.; Smulders, M.J.M.

    2013-01-01

    Background - Wheat gluten is important for the industrial quality of bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum L.). Gluten proteins are also the source of immunogenic peptides that can trigger a T cell reaction in celiac disease (CD) patients, leading to inflammatory responses

  18. New spring wheat varieties ‘Panianka’ and ‘Diana’

    Directory of Open Access Journals (Sweden)

    О. А. Демидов

    2016-12-01

    Full Text Available Purpose. To create new competitive spring wheat varieties. Methods. Field study, laboratory test. Results. Based on the competitive variety trial, bread spring wheat line ‘Lutescens 07-26’ has been selected due to high values of such traits as resistance to fungal diseases, grain qua­lity(protein content accounted for 15.0%, 1000 kernel weight (44.6 g productivity (3.92 t/ha and lodging resistance (9 points. In 2011, it was submitted to the State variety testing as ‘Panianka’ variety. Durum spring wheat line ‘Leukurum 08-11’ was characterized by a number of positive traits: quite a high productivity (3.05 t/ha, short stem (79 cm, resistance to fungal diseases and lodging(9 points, and in 2011 it was submitted to the State variety testing as ‘Diana’ variety. According to the results of the State variety testing in 2012–2014, spring wheat varieties ‘Panianka’ and ‘Diana’ in 2015 were put on the State Register of plant varieties suitable for dissemination in Ukraine. Conclusions. For farms in Forest-Steppe and Polissia zones of Ukraine, bread and durum spring wheat varieties were bred by V. M.Remeslo Myronivka Institute of Wheat of NAAS of Ukraine that demonstrated rather high potential of productivity and adaptability to stress conditions. This goes to prove that cultivation of domestic spring wheat varieties will promote formation of high and quality grain yields.

  19. Evaluation of genetic diversity in different Pakistani wheat land races

    International Nuclear Information System (INIS)

    Mahmood, T.; Siddiqua, A.; Rasheed, A.; Nazar, N.

    2011-01-01

    Wheat is one of the main sources of nutrition worldwide. Genetic improvement of the seed makes wheat a source of high quality flour for human consumption and for other industrial uses. With the help of molecular markers, the available germplasm of wheat can be assessed for future breeding programs. Therefore, the aim of the present work was to analyze the genetic diversity among 15 Pakistani wheat land races based on Random Amplified Polymorphism DNA (RAPD) markers. A total of 284 DNA fragments were amplified, ranging in size from 200bp to 1100bp by using six primers. The number of DNA fragments for each primer varied from 2 (OPC-6) to 9 (OPC-8) with an average of 6 fragments per primer. Out of 284 amplified products, 120 were monomorphic and 137 were polymorphic showing an average of 7.8% polymorphism per primer. One specific marker was detected both for OPC-1 and OPC-8, two for OPC-5, while no RAPD specific marker was detected for the remaining primers. The genetic similarity index values ranged from 0.36 to 0.93, with an average of 0.64. Maximum genetic similarity (91%) was observed between Sur bej and Khushkawa. On the contrary, minimum genetic similarity (32%) was observed in Khushkaba-1 and Khushkawa. The dendrogram resulting from the NTSYS cluster analysis showed that the studied genotypes are divided into two main clusters from the same node. The first cluster contained 13 land races, while the second cluster contained only 2 land races. The dendrogram clustered the genotypes into 5 groups and showed efficiency in identifying genetic variability. These results indicated the usefulness of RAPD technique in estimating the genetic diversity among wheat genetic resources. (author)

  20. Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat

    Directory of Open Access Journals (Sweden)

    Reem Joukhadar

    2017-12-01

    Full Text Available Since the introduction of wheat into Australia by the First Fleet settlers, germplasm from different geographical origins has been used to adapt wheat to the Australian climate through selection and breeding. In this paper, we used 482 cultivars, representing the breeding history of bread wheat in Australia since 1840, to characterize their diversity and population structure and to define the geographical ancestral background of Australian wheat germplasm. This was achieved by comparing them to a global wheat collection using in-silico chromosome painting based on SNP genotyping. The global collection involved 2,335 wheat accessions which was divided into 23 different geographical subpopulations. However, the whole set was reduced to 1,544 accessions to increase the differentiation and decrease the admixture among different global subpopulations to increase the power of the painting analysis. Our analysis revealed that the structure of Australian wheat germplasm and its geographic ancestors have changed significantly through time, especially after the Green Revolution. Before 1920, breeders used cultivars from around the world, but mainly Europe and Africa, to select potential cultivars that could tolerate Australian growing conditions. Between 1921 and 1970, a dependence on African wheat germplasm became more prevalent. Since 1970, a heavy reliance on International Maize and Wheat Improvement Center (CIMMYT germplasm has persisted. Combining the results from linkage disequilibrium, population structure and in-silico painting revealed that the dependence on CIMMYT materials has varied among different Australian States, has shrunken the germplasm effective population size and produced larger linkage disequilibrium blocks. This study documents the evolutionary history of wheat breeding in Australia and provides an understanding for how the wheat genome has been adapted to local growing conditions. This information provides a guide for industry to

  1. Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat.

    Science.gov (United States)

    Joukhadar, Reem; Daetwyler, Hans D; Bansal, Urmil K; Gendall, Anthony R; Hayden, Matthew J

    2017-01-01

    Since the introduction of wheat into Australia by the First Fleet settlers, germplasm from different geographical origins has been used to adapt wheat to the Australian climate through selection and breeding. In this paper, we used 482 cultivars, representing the breeding history of bread wheat in Australia since 1840, to characterize their diversity and population structure and to define the geographical ancestral background of Australian wheat germplasm. This was achieved by comparing them to a global wheat collection using in-silico chromosome painting based on SNP genotyping. The global collection involved 2,335 wheat accessions which was divided into 23 different geographical subpopulations. However, the whole set was reduced to 1,544 accessions to increase the differentiation and decrease the admixture among different global subpopulations to increase the power of the painting analysis. Our analysis revealed that the structure of Australian wheat germplasm and its geographic ancestors have changed significantly through time, especially after the Green Revolution. Before 1920, breeders used cultivars from around the world, but mainly Europe and Africa, to select potential cultivars that could tolerate Australian growing conditions. Between 1921 and 1970, a dependence on African wheat germplasm became more prevalent. Since 1970, a heavy reliance on International Maize and Wheat Improvement Center (CIMMYT) germplasm has persisted. Combining the results from linkage disequilibrium, population structure and in-silico painting revealed that the dependence on CIMMYT materials has varied among different Australian States, has shrunken the germplasm effective population size and produced larger linkage disequilibrium blocks. This study documents the evolutionary history of wheat breeding in Australia and provides an understanding for how the wheat genome has been adapted to local growing conditions. This information provides a guide for industry to assist with

  2. Mutation induction in durum wheat

    International Nuclear Information System (INIS)

    Senay, A.; Sekerci, S.

    2009-01-01

    The aim of this research was to determine the separate and combine effects of different doses of gamma rays and EMS concentrations on some characteristics of M1 plants of durum wheat, cv. Kunduru 1149. The seeds of durum wheat, cv. Kunduru 1149 which were irradiated with 50 Gy, 150 Gy and 250 Gy gamma rays and/or treated EMS for 6 hours at 30 C in 0,2 % and 0,4 % concentrated. According to the results of this research; separate and combine treatments of different doses of gamma rays and EMS have shown significant difference all of the observed traits at M1 plants of durum wheat cv. Kunduru 1149. The negative effects of increasing doses of mutagens on all plant characteristics for M1 plants were found statistically significant. Combined treatments were found to be more efficient than the sum of effects of the single treatments. In followed generation 3 mutant lines were selected according to plant height, spike height, number of seed, leaf relative water lost, and some quality traits. In M6 generation 3 desirable lines have been sown for preliminary field yield tests.

  3. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    Science.gov (United States)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  4. The analysis of protein variation of wheat implanted by ion beam

    International Nuclear Information System (INIS)

    Qin Guangyong; Cao Gangqiang; Huo Yuping; Su Mingjie; Zhang Yanfeng; Wang Weidong

    2002-05-01

    Other total DNA was transducted into wheat grain by ion beam. The results show that the protein content of transgenic wheat changes obviously, and two new types with high and low protein content extreme variation are obtained. On the basis of it, we analysed the affection of the ways about transduction on protein content

  5. Plasma-Assisted Pretreatment of Wheat Straw

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Leipold, Frank; Bindslev, Henrik

    2011-01-01

    O3 generated in a plasma at atmospheric pressure and room temperature, fed with dried air (or oxygen-enriched dried air), has been used for the degradation of lignin in wheat straw to optimize the enzymatic hydrolysis and to get more fermentable sugars. A fixed bed reactor was used combined...... with a CO2 detector and an online technique for O3 measurement in the fed and exhaust gas allowing continuous measurement of the consumption of O3. This rendered it possible for us to determine the progress of the pretreatment in real time (online analysis). The process time can be adjusted to produce wheat...... straw with desired lignin content because of the online analysis. The O3 consumption of wheat straw and its polymeric components, i.e., cellulose, hemicellulose, and lignin, as well as a mixture of these, dry as well as with 50% water, were studied. Furthermore, the process parameters dry matter content...

  6. Interactions between Glu-1 and Glu-3 loci and associations of selected molecular markers with quality traits in winter wheat (Triticum aestivum L.) DH lines.

    Science.gov (United States)

    Krystkowiak, Karolina; Langner, Monika; Adamski, Tadeusz; Salmanowicz, Bolesław P; Kaczmarek, Zygmunt; Krajewski, Paweł; Surma, Maria

    2017-02-01

    The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.

  7. Influence of a Phospho-Potassic fertilizer solution on yield and quality of Wheat Crops

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, C.; Tejada, M.; Gonzalez, J. L.; Benitez, C.

    2009-07-01

    There is currently interest in the use of industrial by-products to reduce the use of synthetic fertilizers. For this reason, in this paper the influence of a phospho-potassic fertilizer solution obtained from a aminoacid production process on wheat crops is studied. The positive influence on leaf potassium contents was most significant when the dosage of phospho-potassic fertilizer solution was applied to bread wheat. (Author)

  8. Organic Bread Wheat Production and Market in Europe

    DEFF Research Database (Denmark)

    David, C.; Abecassis, J.; Carcea, M.

    2012-01-01

    yield under organic production. The choice of cultivar, green manure, fertilization and intercropping legumes – grain or forage – are efficient ways to obtain high grain quality and quantity. The economic viability of wheat production in Europe is also affected by subsidies from European Union agri......This chapter is a first attempt to analyse bottlenecks and challenges of European organic bread wheat sector involving technical, political and market issues. From 2000, the organic grain market has largely increased in Western Europe. To balance higher consumer demand there is a need to increase...... organic production by a new transition and technical improvement. Bread wheat is grown in a variety of crop rotations and farming systems where four basic organic crop production systems have been defined. Weeds and nitrogen deficiency are considered to be the most serious threat inducing lowest grain...

  9. Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines

    Directory of Open Access Journals (Sweden)

    Lina Maria Aguirre-Rojas

    2017-11-01

    Full Text Available The wheat curl mite, Aceria toschiella (Keifer, and a complex of viruses vectored by A. toschiella substantially reduce wheat yields in every wheat-producing continent in the world. The development of A. toschiella-resistant wheat cultivars is a proven economically and ecologically viable method of controlling this pest. This study assessed A. toschiella resistance in wheat genotypes containing the H13, H21, H25, H26, H18 and Hdic genes for resistance to the Hessian fly, Mayetiola destructor (Say and in 94M370 wheat, which contains the Dn7 gene for resistance to the Russian wheat aphid, Diuraphis noxia (Kurdjumov. A. toschiella populations produced on plants containing Dn7 and H21 were significantly lower than those on plants of the susceptible control and no different than those on the resistant control. Dn7 resistance to D. noxia and H21 resistance to M. destructor resulted from translocations of chromatin from rye into wheat (H21—2BS/2RL, Dn7—1BL/1RS. These results provide new wheat pest management information, indicating that Dn7 and H21 constitute resources that can be used to reduce yield losses caused by A. toschiella, M. destructor, D. noxia, and wheat streak mosaic virus infection by transferring multi-pest resistance to single sources of germplasm.

  10. Co-operation and economic relationship as determinants for competitiveness in the food sector: the Spanish wheat to bread chain

    OpenAIRE

    de Magistris, Tiziana; Gracia, Azucena

    2008-01-01

    The objective of the paper is to investigate the impact of co-operation amongst stakeholders of the food chain on enterprise competitiveness. The analysis focuses on the Spanish wheat to bread chain. A theoretical model is developed which covers the main components that define competitiveness (profitability, turnover, market share, customer loyalty and product quality), quality supply chain relationship (trust, commitment and satisfaction) and the main factors explaining supply chain relation...

  11. Natural variation in grain composition of wheat and related cereals.

    Science.gov (United States)

    Shewry, Peter R; Hawkesford, Malcolm J; Piironen, Vieno; Lampi, Ann-Maija; Gebruers, Kurt; Boros, Danuta; Andersson, Annica A M; Åman, Per; Rakszegi, Mariann; Bedo, Zoltan; Ward, Jane L

    2013-09-04

    The wheat grain comprises three groups of major components, starch, protein, and cell wall polysaccharides (dietary fiber), and a range of minor components that may confer benefits to human health. Detailed analyses of dietary fiber and other bioactive components were carried out under the EU FP6 HEALTHGRAIN program on 150 bread wheat lines grown on a single site, 50 lines of other wheat species and other cereals grown on the same site, and 23-26 bread wheat lines grown in six environments. Principal component analysis allowed the 150 bread wheat lines to be classified on the basis of differences in their contents of bioactive components and wheat species (bread, durum, spelt, emmer, and einkorn wheats) to be clearly separated from related cereals (barley, rye, and oats). Such multivariate analyses could be used to define substantial equivalence when novel (including transgenic) cereals are considered.

  12. Spectroscopic analysis of essential elements in different varieties of wheat grown in Sindh

    International Nuclear Information System (INIS)

    Shar, G.Q.; Kazi, T.G.; Jakhrani, M.A.; Sahito, S.R.

    2002-01-01

    Atomic absorption spectrometry (AAS) has been used to characterize essential elements in wheat. The procedure has been validated by analyzing a certified sample obtained from the Federal Seed Certification and Registration Department. Several wheat samples of known origin, variety and crop year have been analysed to determine the content of sodium, potassium, calcium, magnesium, iron and zinc by means of Atomic Absorption Spectrophotometric. Considerable amount of essential elements was to be found in each variety of wheat. The values of each element were compared with certified samples, which is at the 95 to 98 % confidence limit. The resulting compositions of the different samples have been used to assess species, origin and variety of the examined wheat. (author)

  13. Optimization of mold wheat bread fortified with soy flour, pea flour and whey protein concentrate.

    Science.gov (United States)

    Erben, Melina; Osella, Carlos A

    2017-07-01

    The objective of this work was to study the effect of replacing a selected wheat flour for defatted soy flour, pea flour and whey protein concentrate on both dough rheological characteristics and the performance and nutritional quality of bread. A mixture design was used to analyze the combination of the ingredients. The optimization process suggested that a mixture containing 88.8% of wheat flour, 8.2% of defatted soy flour, 0.0% of pea flour and 3.0% of whey protein concentrate could be a good combination to achieve the best fortified-bread nutritional quality. The fortified bread resulted in high protein concentration, with an increase in dietary fiber content and higher calcium levels compared with those of control (wheat flour 100%). Regarding protein quality, available lysine content was significantly higher, thus contributing with the essential amino acid requirement.

  14. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality.

    Directory of Open Access Journals (Sweden)

    Shaoxia Wang

    Full Text Available Although application of Zn combined with macronutrients (K, P, and N can be used to fortify wheat grain with Zn, little is known about their interactions when foliar application is employed or the influences of common soil fertility management practices (e.g. N and straw management on their efficiency. Therefore, the effects of foliar-applied Zn and N, P, or K on grain nutritional quality (especially Zn were investigated in wheat grown under different soil N rates at two sites with (Sanyuan or without (Yangling employing straw return. A 4-year-long field experiment was also conducted to evaluate the environmental stability of the foliar formulations. Across 6 site-years, foliar Zn application alone or combined with N, P, or K fertilizers resulted in 95.7%, 101%, 67.9% and 121% increases in grain Zn concentration, respectively. In terms of increasing grain Zn concentration, foliar-applied Zn positively interacted with N (at Sanyuan and K (at Yangling, but negatively interacted with P at any condition tested, suggesting depressive effects of foliarly-applied P on physiological availability of Zn. Although these interaction effects were the major factor that governing the efficiency of foliar-applied Zn combined with N, P, or K on grain Zn concentration, the magnitude of the increase/decrease in grain Zn (-3.96~5.71 mg kg-1 due to these interactions was much less than the average increases following Zn+K (31.3, Zn+P (18.7, and Zn+N (26.5 mg kg-1 treatments relative to that observed in foliar Zn-only treatment. The combined foliar application of Zn with N, P, or K did not cause any adverse impact on grain yield and other nutritional quality and in some cases slightly increased grain yield and macronutrient concentrations. Grain phytic acid:Zn molar ratios were respectively 52.0%, 53.1%, 43.4% and 63.5% lower in the foliar Zn, Zn+N, Zn+P and Zn+K treatments than in the control treatment. These effects were consistent over four years and across three

  15. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality.

    Science.gov (United States)

    Wang, Shaoxia; Li, Meng; Liu, Ke; Tian, Xiaohong; Li, Shuo; Chen, Yanlong; Jia, Zhou

    2017-01-01

    Although application of Zn combined with macronutrients (K, P, and N) can be used to fortify wheat grain with Zn, little is known about their interactions when foliar application is employed or the influences of common soil fertility management practices (e.g. N and straw management) on their efficiency. Therefore, the effects of foliar-applied Zn and N, P, or K on grain nutritional quality (especially Zn) were investigated in wheat grown under different soil N rates at two sites with (Sanyuan) or without (Yangling) employing straw return. A 4-year-long field experiment was also conducted to evaluate the environmental stability of the foliar formulations. Across 6 site-years, foliar Zn application alone or combined with N, P, or K fertilizers resulted in 95.7%, 101%, 67.9% and 121% increases in grain Zn concentration, respectively. In terms of increasing grain Zn concentration, foliar-applied Zn positively interacted with N (at Sanyuan) and K (at Yangling), but negatively interacted with P at any condition tested, suggesting depressive effects of foliarly-applied P on physiological availability of Zn. Although these interaction effects were the major factor that governing the efficiency of foliar-applied Zn combined with N, P, or K on grain Zn concentration, the magnitude of the increase/decrease in grain Zn (-3.96~5.71 mg kg-1) due to these interactions was much less than the average increases following Zn+K (31.3), Zn+P (18.7), and Zn+N (26.5 mg kg-1) treatments relative to that observed in foliar Zn-only treatment. The combined foliar application of Zn with N, P, or K did not cause any adverse impact on grain yield and other nutritional quality and in some cases slightly increased grain yield and macronutrient concentrations. Grain phytic acid:Zn molar ratios were respectively 52.0%, 53.1%, 43.4% and 63.5% lower in the foliar Zn, Zn+N, Zn+P and Zn+K treatments than in the control treatment. These effects were consistent over four years and across three soil N

  16. Identification of Leaf Promoters for Use in Transgenic Wheat

    Directory of Open Access Journals (Sweden)

    Saqer S. Alotaibi

    2018-03-01

    Full Text Available Wheat yields have plateaued in recent years and given the growing global population there is a pressing need to develop higher yielding varieties to meet future demand. Genetic manipulation of photosynthesis in elite wheat varieties offers the opportunity to significantly increase yields. However, the absence of a well-defined molecular tool-box of promoters to manipulate leaf processes in wheat hinders advancements in this area. Two promoters, one driving the expression of sedoheptulose-1,7-bisphosphatase (SBPase and the other fructose-1,6-bisphosphate aldolase (FBPA from Brachypodium distachyon were identified and cloned into a vector in front of the GUS reporter gene. Both promoters were shown to be functionally active in wheat in both transient assays and in stably transformed wheat plants. Analysis of the stable transformants of wheat (cv. Cadenza showed that both promoters controlled gus expression throughout leaf development as well as in other green tissues. The availability of these promoters provides new tools for the expression of genes in transgenic wheat leaves and also paves the way for multigene manipulation of photosynthesis to improve yields.

  17. Prehaustorial and posthaustorial resistance to wheat leaf rust in diploid wheat

    NARCIS (Netherlands)

    Anker, C.C.

    2001-01-01

    In modern wheat cultivars, resistance to wheat leaf rust, Puccinia triticina , is either based on hypersensitivity resistance or on partial resistance. Hypersensitivity resistance in wheat is monogenic, often complete and posthaustorial: it is induced after the

  18. Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition.

    Science.gov (United States)

    Basati, Zahra; Jamshidi, Bahareh; Rasekh, Mansour; Abbaspour-Gilandeh, Yousef

    2018-05-30

    The presence of sunn pest-damaged grains in wheat mass reduces the quality of flour and bread produced from it. Therefore, it is essential to assess the quality of the samples in collecting and storage centers of wheat and flour mills. In this research, the capability of visible/near-infrared (Vis/NIR) spectroscopy combined with pattern recognition methods was investigated for discrimination of wheat samples with different percentages of sunn pest-damaged. To this end, various samples belonging to five classes (healthy and 5%, 10%, 15% and 20% unhealthy) were analyzed using Vis/NIR spectroscopy (wavelength range of 350-1000 nm) based on both supervised and unsupervised pattern recognition methods. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) as the unsupervised techniques and soft independent modeling of class analogies (SIMCA) and partial least squares-discriminant analysis (PLS-DA) as supervised methods were used. The results showed that Vis/NIR spectra of healthy samples were correctly clustered using both PCA and HCA. Due to the high overlapping between the four unhealthy classes (5%, 10%, 15% and 20%), it was not possible to discriminate all the unhealthy samples in individual classes. However, when considering only the two main categories of healthy and unhealthy, an acceptable degree of separation between the classes can be obtained after classification with supervised pattern recognition methods of SIMCA and PLS-DA. SIMCA based on PCA modeling correctly classified samples in two classes of healthy and unhealthy with classification accuracy of 100%. Moreover, the power of the wavelengths of 839 nm, 918 nm and 995 nm were more than other wavelengths to discriminate two classes of healthy and unhealthy. It was also concluded that PLS-DA provides excellent classification results of healthy and unhealthy samples (R 2  = 0.973 and RMSECV = 0.057). Therefore, Vis/NIR spectroscopy based on pattern recognition techniques

  19. Characterization of the Wheat Leaf Metabolome during Grain Filling and under Varied N-Supply

    Directory of Open Access Journals (Sweden)

    Elmien Heyneke

    2017-11-01

    Full Text Available Progress in improving crop growth is an absolute goal despite the influence multifactorial components have on crop yield and quality. An Avalon × Cadenza doubled-haploid wheat mapping population was used to study the leaf metabolome of field grown wheat at weekly intervals during the time in which the canopy contributes to grain filling, i.e., from anthesis to 5 weeks post-anthesis. Wheat was grown under four different nitrogen supplies reaching from residual soil N to a luxury over-fertilization (0, 100, 200, and 350 kg N ha−1. Four lines from a segregating doubled haploid population derived of a cross of the wheat elite cvs. Avalon and Cadenza were chosen as they showed pairwise differences in either N utilization efficiency (NUtE or senescence timing. 108 annotated metabolites of primary metabolism and ions were determined. The analysis did not provide genotype specific markers because of a remarkable stability of the metabolome between lines. We speculate that the reason for failing to identify genotypic markers might be due to insufficient genetic diversity of the wheat parents and/or the known tendency of plants to keep metabolome homeostasis even under adverse conditions through multiple adaptations and rescue mechanism. The data, however, provided a consistent catalogue of metabolites and their respective responses to environmental and developmental factors and may bode well for future systems biology approaches, and support plant breeding and crop improvement.

  20. Anatomy and Cytogenetic Identification of a Wheat-Psathyrostachys huashanica Keng Line with Early Maturation.

    Directory of Open Access Journals (Sweden)

    Liangming Wang

    Full Text Available In previous studies, our research team successfully transferred the Ns genome from Psathyrostachys huashanica Keng into Triticum aestivum (common wheat cv. 7182 using embryo culture. In the present study, one of these lines, i.e., hybrid progeny 25-10-3, which matured about 10-14 days earlier than its wheat parent, was assessed using sequenced characterized amplified region (SCAR analysis, EST-SSR and EST-STS molecular markers, and genomic in situ hybridization (GISH. We found that this was a stable wheat-P. huashanica disomic addition line (2n = 44 = 22 II and the results demonstrated that it was a 6Ns disomic chromosome addition line, but it exhibited many different features compared with previously characterized lines, i.e., a longer awn, early maturation, and no twin spikelets. It was considered to be an early-maturing variety based on the early stage of inflorescence initiation in field experiments and binocular microscope observations over three consecutive years. This characteristic was distinct, especially from the single ridge stage and double ridge stage until the glume stage. In addition, it had a higher photosynthesis rate and economic values than common wheat cv. 7182, i.e., more spikelets per spike, more florets per spikelet, more kernels per spike, and a higher thousand-grain weight. These results suggest that this material may comprise a genetic pool of beneficial genes or chromosome segments, which are suitable for introgression to improve the quality of common wheat.

  1. Quantitative analysis of total starch content in wheat flour by reaction headspace gas chromatography.

    Science.gov (United States)

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2017-09-01

    This paper proposed a new reaction headspace gas chromatographic (HS-GC) method for efficiently quantifying the total starch content in wheat flours. A certain weight of wheat flour was oxidized by potassium dichromate in an acidic condition in a sealed headspace vial. The results show that the starch in wheat flour can be completely transferred to carbon dioxide at the given conditions (at 100 °C for 40 min) and the total starch content in wheat flour sample can be indirectly quantified by detecting the CO 2 formed from the oxidation reaction. The data showed that the relative standard deviation of the reaction HS-GC method in the precision test was less than 3.06%, and the relative differences between the new method and the reference method (titration method) were no more than 8.90%. The new reaction HS-GC method is automated, accurate, and can be a reliable tool for determining the total starch content in wheat flours in both laboratory and industrial applications. Graphical abstract The total starch content in wheat flour can be indirectly quantified by the GC detection of the CO 2 formed from the oxidation reaction between wheat flour and potassium dichromate in an acidic condition.

  2. Wheat bread aroma compounds in crumb and crust: A review.

    Science.gov (United States)

    Pico, Joana; Bernal, José; Gómez, Manuel

    2015-09-01

    Bread is one of the most widely consumed foods in the world. Among the different properties that define its quality, the aroma of bread is considered essential to its approval by consumers. Knowing what the compounds found in bread are, as well as the most important ones in crumb and crust, and understanding their biological sources and how they affect the final aroma of bread, could make it possible to modify the steps of bread manufacturing in order to enhance those with a positive impact and reduce those with a negative impact. The aim of this review is to provide a guideline correlating a great deal of the information now available regarding wheat bread aroma. For this purpose, a total of 326 volatile compounds reported in the literature have been included. The sensorial correlation of these compounds with the final aroma of wheat bread has also been explained, as well as the biological sources that generate them. Finally, it is shown how modifying the production stages of wheat bread could also affect the odour quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Stability of wheat germ oil obtained by supercritical carbon dioxide ...

    African Journals Online (AJOL)

    심정은

    accumulated gas volume passing through the apparatus were measured using a gas flow meter. Wheat germ oil was ..... of rancidity in wheat germ analyzed by headspace gas chromatography and sensory analysis. J. Agric. Food Chem.

  4. Transfer of HMW glutenin subunits from Aegilops kotschyi to wheat through radiation hybridization

    International Nuclear Information System (INIS)

    Singh, Jasmeet; Sheikh, Imran; Sharma, Prachi

    2016-01-01

    High molecular weight glutenin subunits (HMWGS) are responsible for dough elasticity and bread making quality of bread wheat. Related wild non-progenitor species, Aegilops kotschyi possesses higher molecular weight x and y glutenin subunits than the bread wheat cultivars. A wheat-Aegilops substitution line with 1U chromosome was used for the transfer of (HMWGS) of 1U to wheat by using pollen radiation hybridization approach. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiling showed different patterns of allelic variations with either the presence or absence of HMWGS, Glu-1A (1, null), Glu-1B (7, 7 + 8, 17 + 18) and Glu-1D (5 + 10, 2 + 12, null). The pollen irradiated wheat-Aegilops derivatives, B-56-1-4-2, B-56-1-4-3, B-14-1 and B-14-2 with Glu1Ux and 1Uy and absence or presence of some Glu-1A and Glu-1B HMWGS showed high micro SDS sedimentation test (MST) values while B-16-1 and B-16-2 had moderate MST values and high protein content. However, B-58-3 with transfer of Glu-1Ux + 1Uy for Glu-1D showed very low MST values indicating that Glu-1Ux + 1Uy enhance MST value only in the presence of Glu1D HMWGS. The transfer/substitution of alien HMW-GS for Glu-1A and or Glu-1B loci only can lead to improved bread making quality of wheat. (author)

  5. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  6. Differential representation of albumins and globulins during grain development in durum wheat and its possible functional consequences.

    Science.gov (United States)

    Arena, Simona; D'Ambrosio, Chiara; Vitale, Monica; Mazzeo, Fiorella; Mamone, Gianfranco; Di Stasio, Luigia; Maccaferri, Marco; Curci, Pasquale Luca; Sonnante, Gabriella; Zambrano, Nicola; Scaloni, Andrea

    2017-06-06

    Durum wheat (Triticum turgidum ssp. durum (Desf.) Husn.) is an economically important crop used for the production of semolina, which is the basis of pasta and other food products. Its grains provide proteins and starch for human consumption. Grain development is a key process in wheat physiology; it is highly affected by a number of enzymes that control the metabolic processes governing accumulation of starch and storage proteins and ultimately grain weight. Most of these enzymes are present in the albumin/globulin grain fraction, which represents about a quarter of total seed proteins. With the aim to describe the dynamic profile of the albumin/globulin fraction during durum wheat grain development, we performed a proteomic analysis of this subproteome using a two-dimensional differential gel electrophoresis (2D-DIGE)-based approach and compared six developmental stages. A total of 285 differentially (237 over- and 48 under-) represented spots was identified by nanoLC-ESI-LIT-MS/MS, which were associated with 217 non-redundant Triticum sequence entries. Quantitative protein dynamics demonstrated that carbon metabolism, energy, protein destination/storage, disease/defense and cell growth/division functional categories were highly affected during grain development, concomitantly with progressive grain size increase and starch/protein reserve accumulation. Bioinformatic interaction prediction revealed a complex network of differentially represented proteins mainly centered at enzymes involved in carbon and protein metabolism. A description of 18 proteins associated with wheat flour human allergies was also obtained; these components showed augmented levels at the last developmental stages. By providing a comprehensive understanding of the molecular basis of durum wheat grain development, yield and quality formation, this study provides the foundation and reveals potential biomarkers for further investigations of durum wheat breeding and semolina quality. A 2D

  7. Thermal transitions of the amorphous polymers in wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2011-01-01

    The thermal transitions of the amorphous polymers in wheat straw were investigated using dynamic mechanical thermal analysis (DMTA). The study included both natural and solvent extracted wheat straw, in moist (8–9% water content) and dry conditions, and was compared to spruce samples. Under...

  8. Structural equation models based on multivariate diversity assessment of diploid and tetraploid hulled wheat species

    Science.gov (United States)

    Hulled wheats are largely untapped genetic resources with >10,000 years of genetic memory and diversity that can be used for wheat quality improvement, development of healthy products, and adaptation to climate change. Multivariate diversity was assessed in the diploid Triticum monococcum L. var mon...

  9. Mapping quantitative trait loci for a unique 'super soft' kernel trait in soft white wheat

    Science.gov (United States)

    Wheat (Triticum sp.) kernel texture is an important factor affecting milling, flour functionality, and end-use quality. Kernel texture is normally characterized as either hard or soft, the two major classes of texture. However, further variation is typically encountered in each class. Soft wheat var...

  10. Colour characteristics of winter wheat grits of different grain size

    Directory of Open Access Journals (Sweden)

    Horváth Zs. H.

    2015-01-01

    Full Text Available Nowadays, wheat has spread all over the world due to its extensive usability. The colour of wheat grits is very important for the milling and baking industry because it determines the colour of the products made from it. The instrumental colour measuring is used, first of all, for durum wheat. We investigated the relationship between colour characteristics and grain size in the case of different hard aestivum wheats. We determined the colour using the CIE (Commission Internationale de l’Eclairage 1976 L*, a*, b* colour system measured by MINOLTA CR-300 tristimulus colorimeter. After screening the colour of the wheat fractions of different grain size, grits was measured wet and dry. We determined the L*, a*, b* colour co-ordinates and the whiteness index, too. To evaluate the values we had obtained, we used analysis of variance and regression analysis. We pointed out that the colour of wheat grits of different grain size is dependent on the hardness index of wheat. The lightness co-ordinate (L* of grits of the harder wheat is smaller, while a* and b* co-ordinates are higher. We also found that while grain size rises, the L* co-ordinate decreases and a*, b* values increase in the case of every type of wheat. The colour of grits is determined by the colour of fractions of 250-400 μm in size, independently from the average grain size. The whiteness index and the L* colour co-ordinate have a linear relation (R2 = 0.9151; so, the determination of whiteness index is not necessary. The L* value right characterizes the whiteness of grits.

  11. Genetic diversity analysis of the durum wheat Graziella Ra, Triticum turgidum L. subsp. durum (Desf. Husn. (Poales, Poaceae

    Directory of Open Access Journals (Sweden)

    M. Stella Colomba

    2011-06-01

    Full Text Available For the first time, the durum wheat Graziella Ra was compared to four Italian durum wheat varieties (Cappelli,Grazia, Flaminio and Svevo and to Kamut in order to preliminary characterize its genome and to investigategenetic diversity among and within the accessions by Amplified Fragment Length Polymorphisms (AFLPs,Simple Sequence Repeats (SSRs and α-gliadin gene sequence analysis. The main aim of the study was anattempt to determine the relationship between the historic accession Graziella Ra and Kamut which isconsidered an ancient relative of the durum subspecies. In addition, nutritional factors of Graziella Ra werereported. Obtained results showed that (i both AFLP and SSR molecular markers detected highly congruentpatterns of genetic diversity among the accessions showing nearly similar efficiency; (ii for AFLPs,percentage of polymorphic loci within accession ranged from 6.57% to 19.71% (mean 12.77% and, for SSRs,from 0% to 57.14% (mean 28.57%; (iii principal component analysis (PCA of genetic distance amongaccessions showed the first two axes accounting for 58.03% (for AFLPs and 61.60% (for SSRs of the totalvariability; (iv for AFLPs, molecular variance was partitioned into 80% (variance among accessions and 20%(within accession and, for SSRs, into 73% (variance among accessions and 27% (within accession; (vcluster analysis of AFLP and SSR datasets displayed Graziella Ra and Kamut into the same cluster; and (vimolecular comparison of α-gliadin gene sequences showed Graziella Ra and Kamut in separate clusters. Allthese findings indicate that Graziella Ra, although being very similar to Kamut, at least in the little part of thegenome herein investigated by molecular markers, may be considered a distinct accession showing appreciablelevels of genetic diversity and medium-high nutritional qualities.

  12. Substituting Normal and Waxy-Type Whole Wheat Flour on Dough and Baking Properties

    Science.gov (United States)

    Choi, Induck; Kang, Chun-Sik; Cheong, Young-Keun; Hyun, Jong-Nae; Kim, Kee-Jong

    2012-01-01

    Normal (cv. Keumkang, KK) and waxy-type (cv. Shinmichal, SMC) whole wheat flour was substituted at 20 and 40% for white wheat flour (WF) during bread dough formulation. The flour blends were subjected to dough and baking property measurement in terms of particle size distribution, dough mixing, bread loaf volume and crumb firmness. The particle size of white wheat flour was the finest, with increasing coarseness as the level of whole wheat flour increased. Substitution of whole wheat flour decreased pasting viscosity, showing all RVA parameters were the lowest in SMC40 composite flour. Water absorption was slightly higher with 40% whole wheat flour regardless of whether the wheat was normal or waxy. An increased mixing time was observed when higher levels of KK flour were substituted, but the opposite reaction occurred when SMC flour was substituted at the same levels. Bread loaf volume was lower in breads containing a whole wheat flour substitution compared to bread containing only white wheat flour. No significant difference in bread loaf volume was observed between normal and waxy whole flour, but the bread crumb firmness was significantly lower in breads containing waxy flour. The results of these studies indicate that up to 40% whole wheat flour substitution could be considered a practical option with respect to functional qualities. Also, replacing waxy whole flour has a positive effect on bread formulation over normal whole wheat flour in terms of improving softness and glutinous texture. PMID:24471084

  13. Wheat grain mechanical vulnerability to mechanical damage in light of the recent agrophysical research

    International Nuclear Information System (INIS)

    Grundas, S.

    1995-01-01

    The paper contains basic information on mechanical damage to wheat grains. The most important causes of mechanical damage and some of its effects in manufacturing are discussed. Grain material included 5 varieties of winter wheat and 2 varieties of spring wheat. Internal mechanical damage was examined by X-ray technique; external damage was examined with the colorimeter method. The results obtained were compared with the estimation results of more important processing features of the grain: gluten quantity and quality and grain hardness. (author)

  14. Options and potentials to mitigate N2O emissions from wheat and maize fields in China: a meta-analysis

    Science.gov (United States)

    Sun, W.; Li, X.

    2017-12-01

    Upland croplands are the main source of N2O emission. Mitigation of N2O emissions from upland croplands will greatly contribute to an overall reduction of greenhouse gases from agriculture. We performed a meta-analysis to investigate the mitigation options and potential of N2O emissions from wheat and maize fields in China. Results showed that application of inhibitors in wheat and maize fields reduced36‒46% of the N2O emissions with an increase in crop yield. Cutting the application rates of nitrogen fertilizers by no more than 30% could reduce N2O emissions by 10‒18%without crop yield loss. Applications of slow (controlled-) release fertilizer fertilizers and incorporations of crop residues can significantly mitigate N2O emission from wheat fields, but this mitigation is not statistically significant in maize fields. The gross N2O emission could be reduced by 9.3‒13.9Gg N2O-N per wheat season and 10.5‒23.2 Gg N2O-N per maize season when different mitigation options are put into practices. The mitigation potential (MP) in wheat cultivation is particularly notable for Henan, Shandong, Hebei and Anhui Province, contributing 53% to the total MP in wheat fields. Heilongjiang, Jilin, Shandong, Hebei and Henan Province showed high MP in maize cultivation, accounting for approximately 50% of the total MP in maize fields.

  15. The Determination of Bromine in Wheat, Flour and Bread by Neutron Activation Analysis. RCN Report

    International Nuclear Information System (INIS)

    Das, H.A.; Hoede, D.; Zonderhuis, J.

    1969-07-01

    Gaseous germicides are commonly used to improve the tenability of wheat. The bulk material is exposed to a gas which is highly poisonous to fungi. Methylene and ethylene dibromide are often used for this purpose. Traces of these compounds in wheat, flour and bread are dangerous. Consequently, the persistence of these gases should be determined experimentally. This implies that sensitive methods to detect traces of methylene and ethylene dibromide must be available. Neutron activation analysis can be used to determine the total amount of bromine present in the sample. This datum is a useful addition to the gaschromato-graphic determinations of the compounds involved. A routine method for the determination of bromine in corn, flour and bread has been developed and is described in the text

  16. Effects legumes, Fallow and wheat on subsequent wheat production in Central Anatolia

    International Nuclear Information System (INIS)

    Halitligil, M. B.; Akin, A.; Aydin, M.

    1996-01-01

    In order to determine the Nsub 2- fixation capacities of lentil, vetch, chickpea and fodderpea in a legume-wheat rotation by using the A-value method of N 15 technique, and to assess the amount of carry-over of N to wheat from the previous legume as well as water contribution of fallow, wheat and legumes to the following wheat under rainfed Central Anatolia conditions field experiments were conducted in 1992 and 1993 at three different provinces using completely randomized block design with 5 replications. Results we obtained showed that %Ndff values among legumesdid not differ significantly neither within or between locations. Legumesvaried significantly (P<0.05) in their %Ndfa values at each location and highest values of %Ndfa were obtained at Eskisehir. In general, %Ndfa varied from59-84, and 36-85 for chickpea,lentils and vetchs. The evaluation of the yield and N data obtained in 1993 indicated that lentil (winter or summer) -wheat rotation at Ankara and Eskisehir conditions and chickpea-wheat rotation at Konya conditions should be prefered, due to the higher seed and total yields, higher N yields and higher %NUE values obtained from these rotations in comparison to the others. In order to estimate the carry-over of nitrogen from legumes to the succeeding wheat crop, % nitrogen derived from unknown (%Ndfu) were also calculated. Highest amount of carry-over from the legumesto the succeeding wheat were 31.1 kgN/ha from summer lentil at Ankara; 16.9 kgN/ha from summer lentil at Eskisehir; and 8.0 kgN/ha from chickpea at Konya. These results obtined showed that a lentil-wheat rotation at Ankara and Eskisehir and a chickpea-wheat rotation at Konya. Mean while, the evaluation of the soil and WUE data at both Eskisehir and Ankara indicated that winter lentil-wheat rotation should be prefered in these areas due to more efficient use of water by wheat crop after this rotation system

  17. Detailed Analysis of the Expression of an Alpha-gliadin Promoter and the Deposition of Alpha-gliadin Protein During Wheat Grain Development

    NARCIS (Netherlands)

    Herpen, van T.W.J.M.; Riley, M.; Sparks, C.; Jones, H.D.; Gritsch, C.; Dekking, E.H.; Hamer, R.J.; Bosch, H.J.; Salentijn, E.M.J.; Smulders, M.J.M.; Shewry, P.R.; Gilissen, L.J.W.J.

    2008-01-01

    Background and Aims: Alpha-gliadin proteins are important for the industrial quality of bread wheat flour, but they also contain many epitopes that can trigger celiac (c¿liac) disease (CD). The B-genome-encoded -gliadin genes, however, contain very few epitopes. Controlling -gliadin gene expression

  18. Proteomic analysis of the compatible interaction of wheat and powdery mildew (Blumeria graminis f. sp. tritici).

    Science.gov (United States)

    Li, Jie; Yang, Xiwen; Liu, Xinhao; Yu, Haibo; Du, Congyang; Li, Mengda; He, Dexian

    2017-02-01

    Proteome characteristics of wheat leaves with the powdery mildew pathogen Blumeria graminis f. sp. tritici (Bgt) infection were investigated by two-dimensional electrophoresis and tandem MALDI-TOF/TOF-MS. We identified 46 unique proteins which were differentially expressed at 24, 48, and 72 h post-inoculation. The functional classification of these proteins showed that most of them were involved in photosynthesis, carbohydrate and nitrogen metabolism, defense responses, and signal transduction. Upregulated proteins included primary metabolism pathways and defense responses, while proteins related to photosynthesis and signal transduction were mostly downregulated. As expected, more antioxidative proteins were activated at the later infection stage than the earlier stage, suggesting that the antioxidative system of host plays a role in maintaining the compatible interaction between wheat and powdery mildew. A high accumulation of 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase in infected leaves indicated the regulation of the TCA cycle and pentose phosphate pathway in parallel to the activation of host defenses. The downregulation of MAPK5 could be facilitated for the compatible interaction of wheat plants and Bgt. qRT-PCR analysis supported the data of protein expression profiles. Our results reveal the relevance of primary plant metabolism and defense responses during compatible interaction, and provide new insights into the biology of susceptible wheat in response to Bgt infection. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. New advances of wheat mutation breeding in Heilongjiang Province

    International Nuclear Information System (INIS)

    Sun Guangzu

    1991-09-01

    Five wheat varieties have been released between 1980 and 1990, these varieties possess early maturity, high yield, good quality, disease resistance and wide adaptability. They have been cultivated on 373 330 ha. Some of them are proved to be very valuable germ plasma for cross breeding. Technique of induced wheat mutation have been studied. Since selecting adaptable irradiation conditions, using combination of radiation with hybridization, irradiating male gamete, female gamete and zygote, soaking treatment with KH+2 32 PO 4 , etc., the efficiency of induced mutation have been increased. By combining radiation with distant hybridization, F 0 unfruitfulness and F 1 sterility have been overcome, and 21 wheat-rye translocation lines have been selected. One of them, 6BS/6RL translocation line, which is called Longfumai No. 4, was released in 1987. The procedure of inducting and identifying translocation lines has been raised already. Mature embryos, anthers and young embryos of wheat were irradiated and inoculated as explants. The rude toxin of Bipoloris sorokiniana, as a screening factor, was added to different medi and finally 3 lines with resistance to Bipoloris sorokiniana were selected. It was established that technical system for in-vitro radiation induced mutation and screening wheat mutants of resistance to disease. The biochemical identify methods for mutants have been studied already

  20. Technological parameters and oxidative stability of irradiated wheat and corn flour

    International Nuclear Information System (INIS)

    Silva, Roberta Claro da

    2003-01-01

    Cereals are susceptible to the attack of insects and microorganisms development during storage. Researches have demonstrated the viability of the use of the irradiation technology for the preservation and reduction of these losses. The objective of this work was to evaluate the effect of different irradiation doses (0; 3; 4,5 and 6 kGy) on wheat and corn flour oxidative stability and technological quality. Physicochemical and sensory analyses were performed on the flours. The technological parameters evaluated on the wheat flour were farinogram, alveogram, falling number, and a baking experiment. The packed samples were irradiated in a commercial irradiator and stored under ambient conditions. The oxidative quality of both flours was not affected in any of the treatments, within the commercial shelf life period guaranteed by the manufacturers for non irradiated products. However, flours acid value was the analytical parameter that reflected the irradiation effect. The higher flour initial acid values were the larger the increments with storage. The 4.5 and 6 kGy treatments ha a negative effect on the technological quality of the wheat flour. The irradiated flours had their viscoelastic properties affected the higher the irradiation dose, the stronger the effect. None of the treatments affected the sensorial quality of the samples, although a metallic odor was perceived by some tasters. (author)

  1. Short-term storage evaluation of quality and antioxidant capacity in chestnut-wheat bread.

    Science.gov (United States)

    Rinaldi, Massimiliano; Paciulli, Maria; Dall'Asta, Chiara; Cirlini, Martina; Chiavaro, Emma

    2015-01-01

    Bread traditionally made from wheat is now often supplemented with alternative functional ingredients as chestnut flours; no data have been previously published about the staling of chestnut-containing bread. Thus short-term storage (3 days) for chestnut flour-supplemented soft wheat bread is evaluated by means of selected physicochemical properties (i.e. water dynamics, texture, colour, crumb grain characteristic, total antioxidant capacity). Bread prepared with a 20:80 ratio of chestnut:soft wheat flours maintained its moisture content in both crust and crumb. Crumb hardness, after baking, was found to be significantly higher than that of the soft wheat bread; it did not change during storage, whereas it significantly increased in the control bread until the end of the shelf life. The supplemented bread presented a heterogeneous crumb structure, with a significant decrease in the largest pores during shelf life, relative to the shrinkage of crumb grain. The control exhibited a significant redistribution of crumb holes, with a decrease in the smallest grain classes and an increase in the intermediate ones, most likely caused by cell wall thickening. The colour of the crumb remained unaltered in both breads. The crust of the control presented a significant decrease of a* (redness) and that of the supplemented bread exhibited a decrease of b* (yellowness). The antioxidant capacity was detected after day 1 of storage in the chestnut flour bread only. Chestnut flour supplementation could represent a feasible way of producing bread with improved characteristics, not only just after baking but also during shelf life. © 2014 Society of Chemical Industry.

  2. Wheat Allergy

    Science.gov (United States)

    ... of reactions. Learn more here. Milk Egg Peanut Tree Nuts Soy Wheat Fish Shellfish Sesame Other Food ... federal law. Download our resource on how to identify wheat on food labels. Avoid foods that contain ...

  3. Reduced Height (Rht Alleles Affect Wheat Grain Quality.

    Directory of Open Access Journals (Sweden)

    Richard Casebow

    Full Text Available The effects of dwarfing alleles (reduced height, Rht in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c as well as those that retained GA-sensitivity (rht(tall, Rht8, Rht8 + Ppd-D1a, Rht12. Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05 reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there

  4. Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru

    2011-08-01

    Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley straw Jaya Shankar Tumuluru*, L. G. Tabil, Y. Song, K. L. Iroba and V. Meda Biomass is a renewable energy source and environmentally friendly substitute for fossil fuels such as coal and petroleum products. Major limitation of biomass for successful energy application is its low bulk density, which makes it very difficult and costly to transport and handle. To overcome this limitation, biomass has to be densified. The commonly used technologies for densification of biomass are pelletization and briquetting. Briquetting offers many advantages at it can densify larger particles sizes of biomass at higher moisture contents. Briquetting is influenced by a number of feedstock and process variables such as moisture content, particle size distribution, and some operating variables such as temperature and densification pressure. In the present study, experiments were designed and conducted based on Box-Behnken design to produce briquettes using barley, wheat, canola and barley straws. A laboratory scale hydraulic briquette press was used for the present study. The experimental process variables and their levels used in the present study were pressure levels (7.5, 10, 12.5 MPa), three levels of temperature (90, 110, 130 C), at three moisture content levels (9, 12, 15% w.b.), and three levels of particle size (19.1, 25.04, 31.75 mm). The quality variables studied includes moisture content, initial density and final briquette density after two weeks of storage, size distribution index and durability. The raw biomass was initially chopped and size reduced using a hammer mill. The ground biomass was conditioned at different moisture contents and was further densified using laboratory hydraulic press. For each treatment combination, ten briquettes were manufactured at a residence time of about 30 s after compression pressure setpoint was achieved. After compression, the initial

  5. Impact of grazing dairy steers on winter rye (Secale cereale versus winter wheat (Triticum aestivum and effects on meat quality, fatty acid and amino acid profiles, and consumer acceptability of organic beef.

    Directory of Open Access Journals (Sweden)

    Hannah N Phillips

    Full Text Available Meat from Holstein and crossbred organic dairy steers finished on winter rye and winter wheat pastures was evaluated and compared for meat quality, fatty acid and amino acid profiles, and consumer acceptability. Two adjacent 4-ha plots were established with winter rye or winter wheat cover crops in September 2015 at the University of Minnesota West Central Research and Outreach Center (Morris, MN. During spring of 2015, 30 steers were assigned to one of three replicate breed groups at birth. Breed groups were comprised of: Holstein (HOL; n = 10, crossbreds comprised of Montbéliarde, Viking Red, and HOL (MVH; n = 10, and crossbreds comprised of Normande, Jersey, and Viking Red (NJV; n = 10. Dairy steers were maintained in their respective replicate breed group from three days of age until harvest. After weaning, steers were fed an organic total mixed ration of organic corn silage, alfalfa silage, corn, soybean meal, and minerals until spring 2016. Breed groups were randomly assigned to winter rye or winter wheat and rotationally grazed from spring until early summer of 2016. For statistical analysis, independent variables were fixed effects of breed, forage, and the interaction of breed and forage, with replicated group as a random effect. Specific contrast statements were used to compare HOL versus crossbred steers. Fat from crossbreds had 13% greater omega-3 fatty acids than HOL steers. Furthermore, the omega-6/3 ratio was 14% lower in fat from crossbreds than HOL steers. For consumer acceptability, steaks from steers grazed on winter wheat had greater overall liking than steers grazed on winter rye. Steak from crossbreeds had greater overall liking than HOL steers. The results suggest improvement in fatty acids and sensory attributes of beef from crossbred dairy steers compared to HOL steers, as well as those finished on winter wheat compared to winter rye.

  6. Impact of grazing dairy steers on winter rye (Secale cereale) versus winter wheat (Triticum aestivum) and effects on meat quality, fatty acid and amino acid profiles, and consumer acceptability of organic beef.

    Science.gov (United States)

    Phillips, Hannah N; Heins, Bradley J; Delate, Kathleen; Turnbull, Robert

    2017-01-01

    Meat from Holstein and crossbred organic dairy steers finished on winter rye and winter wheat pastures was evaluated and compared for meat quality, fatty acid and amino acid profiles, and consumer acceptability. Two adjacent 4-ha plots were established with winter rye or winter wheat cover crops in September 2015 at the University of Minnesota West Central Research and Outreach Center (Morris, MN). During spring of 2015, 30 steers were assigned to one of three replicate breed groups at birth. Breed groups were comprised of: Holstein (HOL; n = 10), crossbreds comprised of Montbéliarde, Viking Red, and HOL (MVH; n = 10), and crossbreds comprised of Normande, Jersey, and Viking Red (NJV; n = 10). Dairy steers were maintained in their respective replicate breed group from three days of age until harvest. After weaning, steers were fed an organic total mixed ration of organic corn silage, alfalfa silage, corn, soybean meal, and minerals until spring 2016. Breed groups were randomly assigned to winter rye or winter wheat and rotationally grazed from spring until early summer of 2016. For statistical analysis, independent variables were fixed effects of breed, forage, and the interaction of breed and forage, with replicated group as a random effect. Specific contrast statements were used to compare HOL versus crossbred steers. Fat from crossbreds had 13% greater omega-3 fatty acids than HOL steers. Furthermore, the omega-6/3 ratio was 14% lower in fat from crossbreds than HOL steers. For consumer acceptability, steaks from steers grazed on winter wheat had greater overall liking than steers grazed on winter rye. Steak from crossbreeds had greater overall liking than HOL steers. The results suggest improvement in fatty acids and sensory attributes of beef from crossbred dairy steers compared to HOL steers, as well as those finished on winter wheat compared to winter rye.

  7. COMPARATIVE CHARACTERISTICS BETWEEN CULTURES: COMMON WHEAT, EINKORN AND SPELT

    Directory of Open Access Journals (Sweden)

    Goryana Yonkova

    2016-09-01

    Full Text Available Over the past few years in Bulgaria there is an increasing interest in organic production of healthy cereals einkorn and spelt. Typical for them is that they are unpretentious to the soil, resistant to major diseases and pests occurring in cereals. Einkorn and spelt are considered the most ancient types of wheat today and now they are perceived as healthy food. They are distinguished from ordinary wheat in the following parameters: higher percentage of protein; greater amount of fiber, minerals and vitamins /twice higher contents of Vitamin A; vitamins B; calcium, phosphorus, iron, zinc and others/; they do not contain cholesterol. They outmach the common wheat in the content of selenium and antioxidants, the amount of gluten is minimized. It does not cause allergic reactions in people suffering from celiac disease /in which the specific protein is not digested, in this case - gluten/. The reason for this property is the content of only 14 chromosomes as opposed to 28 in the common wheat and 42 in the modern types of wheat, which makes it easy to assimilate. Because of the hard shell flakes the grain of einkorn does not absorb harmful substances from soil /eg heavy metals/ which is a problem in modern wheat varieties. This article examines the energy and nutritional qualities of those cereals and the possibility einkorn and spelled to be an alternative in agricultural production - both in crop and animal husbandry.

  8. Compositional Study for Improving Wheat Flour with Functional Ingredients

    Directory of Open Access Journals (Sweden)

    Livia Apostol

    2015-11-01

    Full Text Available Helianthus tuberosus L. is cultivated widely across for its edible tuber. As a source of inulin with aperient, cholagogue and tonic effects, its tubers have been used for the treatment of diabetes. Also, the leaves of Helianthus tuberosus L. show antipyretic, analgesic effects and are therefore used for the treatment of bone fracture, skin wound and pain. The main aim of this study is to establish the optimum dose from rheological and nutritional point of view of Helianthus tuberosus L. tuber flour and leaves flour used as functional ingredient in bakery products industry. The types of mixtures of flours used in this study was: P1–100% wheat flour; P2-93% wheat flour + 7% Helianthus tuberosus (5% tuber + 2% leaves; P3-92% wheat flour + 8% Helianthus tuberosus (5% tuber + 3% leaves; P4- 90% wheat flour + 10%  Helianthus tuberosus (5% tuber + 5% leaves; P5 -100% Helianthus tuber; P6- Helianthus leaves. The potential functional of wheat flour enriched with the Helianthus tuberosus, in different proportions, was evaluated concerning chemical composition and rheological behaviour of the doughs. Adding of the Helianthus tuberosus L. tuber and leaves provoked an effect increasing the levels of inulin, minerals and fiber in wheat flour. The rheological properties of dough showed that P2, kept the rheological parameters for the technological behavior in order to obtain an acceptable quality of the bakery products. 

  9. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Peng, Fred Y; Yang, Rong-Cai

    2017-06-20

    The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for

  10. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties.

    Directory of Open Access Journals (Sweden)

    Rohit Kumar

    Full Text Available Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH and transition temperature (ΔT, showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have

  11. Wheat Yield Trend and Soil Fertility Status in Long Term Rice-Rice-Wheat Cropping System

    Directory of Open Access Journals (Sweden)

    Nabin Rawal

    2015-12-01

    Full Text Available A long-term soil fertility experiment under rice-rice-wheat system was performed to evaluate the long term effects of inorganic fertilizer and manure applications on soil properties and grain yield of wheat. The experiment began since 1978 was laid out in randomized complete block design with 9 treatments replicated 3 times. From 1990 onwards, periodic modifications have been made in all the treatments splitting the plots in two equal halves of 4 x 3 m2 leaving one half as original. In the original treatments, recent data revealed that the use of Farm Yard Manure (FYM @10 t ha-1 gave significantly (P≤0.05 higher yield of 2.3 t ha-1 in wheat, whereas control plot gave the lowest grain yield of 277 kg ha-1. Similarly, in the modified treatments, the use of FYM @10 t ha-1 along with inorganic Nitrogen (N and Potassium oxide (K2O @ 50 kg ha-1 produced significantly (P≤0.05 the highest yield of 2.4 t/ha in wheat. The control plot with an indigenous nutrient supply only produced wheat yield of 277 kg ha-1 after 35th year completion of rice-rice-wheat system. A sharp decline in wheat yields was noted in minus N, phosphorus (P, Potassium (K treatments during recent years. Yields were consistently higher in the N:P2O5:K2O and FYM treatments than in treatments, where one or more nutrients were lacking. The application of P2O5 and K2O caused a partial recovery of yield in P and K deficient plots. There was significant (P≤0.05 effect of use of chemical fertilizers and manure on soil properties. The soil analysis data showed an improvement in soil pH (7.8, soil organic matter (4.1%, total N content (0.16%, available P (503.5 kg P2O5 ha-1 and exchangeable K (137.5 kg K2O ha-1 in FYM applied treatments over all other treatments. The findings showed that the productivity of the wheat can be increased and sustained by improving nutrient through the integrated use of organic and inorganic manures in long term.

  12. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI.

    Science.gov (United States)

    Wang, Cheng; Zeng, Jian; Li, Yin; Hu, Wei; Chen, Ling; Miao, Yingjie; Deng, Pengyi; Yuan, Cuihong; Ma, Cheng; Chen, Xi; Zang, Mingli; Wang, Qiong; Li, Kexiu; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2014-06-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g(-1) of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g(-1) of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g(-1) of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Proteomic analysis of the defense response of wheat to the powdery mildew fungus, Blumeria graminis f. sp. tritici.

    Science.gov (United States)

    Mandal, Md Siddikun Nabi; Fu, Ying; Zhang, Sheng; Ji, Wanquan

    2014-12-01

    Powdery mildew of wheat is caused by Blumeria graminis f. sp. tritici (Bgt). Although many wheat cultivars resistant to this disease have been developed, little is known about their resistance mechanisms. The aim of this study was to identify proteins showing changes in abundance during the resistance response of the wheat line N0308 infected by Bgt. In two-dimensional electrophoresis analyses, 45 spots on the gels showed significant changes in abundance at 24, 48, and 72 h after inoculation, as compared to non-inoculated plants. Of these 45 proteins, 44 were identified by mass spectrometry analysis using the NCBInr database of Triticum aestivum (26 spots) and closely related species in the Triticum genus (18 spots). These proteins were associated with the defense response, photosynthesis, metabolism, and other cellular processes in wheat. Most of the up-regulated proteins were identified as stress- and defense-related proteins. In particular, the product of a specific powdery mildew resistance gene (Pm3b and its homolog) and some other defense- and pathogenesis-related proteins were overexpressed. The resistance gene product mediates the immune response and coordinates other cellular processes during the resistance response to Bgt.

  14. Eighteen cases of wheat allergy and wheat-dependent exercise-induced urticaria/anaphylaxis sensitized by hydrolyzed wheat protein in soap.

    Science.gov (United States)

    Kobayashi, Tomoko; Ito, Tomonobu; Kawakami, Hiroshi; Fuzishiro, Kanzan; Hirano, Hirofumi; Okubo, Yukari; Tsuboi, Ryoji

    2015-08-01

    Glupearl 19S, an acid-hydrolyzed wheat protein (HWP), is used widely in Japan as a moisturizing ingredient in facial soaps. Since 2010, there has been an increasing number of reports of contact urticaria and wheat allergy resulting from the use of products containing this substance. Sixty-one patients who had used HWP-containing facial soap visited our hospital. Thirty-five of these experienced urticaria or anaphylaxis after consuming wheat-containing food. Eighteen of the 35 patients tested positive to 0.01% Glupearl 19S solution. Wheat-specific IgE and serum gluten-specific IgE were higher in the patients with HWP allergy than in non-HWP allergy patients. Among the patients who tested positive to Glupearl 19S on the skin prick test, nine experienced HWP-wheat-dependent exercise-induced anaphylaxis, and four experienced food-dependent anaphylaxis. Moreover, four of these patients not only experienced food-dependent anaphylaxis but also a worsening of the symptoms during exercise. The clinical symptomology was so variable that the patients were classified into six groups. We found that patients with HWP allergy tended to manifest symptoms of both HWP-wheat-dependent exercise-induced anaphylaxis and contact urticaria. The etiology of hydrolyzed wheat protein allergy is unknown. Patients with a history of these symptoms need to be informed about the risk of consuming wheat-containing foods and the importance of excluding such items from their diet. © 2015 The International Society of Dermatology.

  15. Economics of wheat based cropping systems in rainfed areas of pakistan

    International Nuclear Information System (INIS)

    Khaliq, P.; Cheema, N.M.; Malik, A.; Umair, M.

    2012-01-01

    The Pothwar tract of rainfed area has enormous potential to meet incremental food grain needs of the country. However, a significant yield gap in wheat has been reported between yields of substantive and the progressive growers mainly due to poor management of soil, water and fertility issues. A field study was conducted at National Agricultural Research Centre (NARC), Islamabad and the traditional wheat-fallow-wheat (W-F-W) cropping system was evaluated with the improved wheat-maize fodder-wheat (W-MF-W) and wheat-mungbean-wheat (W-MB-W) cropping systems. Two tillage practices, i.e. shallow tillage with cultivator and deep tillage with moldboard; and four fertilizer treatments viz., control (C), recommended dose of fertilizer for each crop (F), farmyard manure (FYM) at the rate -15 tha . The recommended doses of fertilizer for individual crop with FYM (F+FYM) were also included in the study to know their impact on the crops yield in the cropping systems. Economic analysis of the data revealed that the traditional wheat-fallow-wheat cropping system could be economically replaced with wheat-maize fodder-wheat cropping system even under drought condition and there will be no economical loss of wheat yield when planted after maize fodder. Application of recommended dose of fertilizer -1 along with FYM at the rate 5 tha will enhance the yield of wheat and maize fodder. The improved cropping system of wheat-maize fodder-wheat will help the farmers to sustain productivity of these crops, stable economic benefits and improvement in soil nutrients and organic matter over time. (author)

  16. Disease Impact on Wheat Yield Potential and Prospects of Genetic Control

    DEFF Research Database (Denmark)

    Singh, Ravi P.; Singh, Pawan K.; Rutkoski, Jessica

    2016-01-01

    Wheat is grown worldwide in diverse geographical regions, environments, and production systems. Although many diseases and pests are known to reduce grain yield potential and quality, the three rusts and powdery mildew fungi have historically caused major crop losses and continue to remain...... economically important despite the widespread use of host resistance and fungicides. The evolution and fast spread of virulent and more aggressive race lineages of rust fungi have only worsened the situation. Fusarium head blight, leaf spotting diseases, and, more recently, wheat blast (in South America...... for most diseases; their selection through phenotyping reinforced with molecular strategies offers great promise in achieving more durable resistance and enhancing global wheat productivity....

  17. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat

    OpenAIRE

    Chen, Liang; Zhang, ZengYan; Liang, HongXia; Liu, HongXia; Du, LiPu; Xu, Huijun; Xin, Zhiyong

    2008-01-01

    Wheat sharp eyespot, primarily caused by a soil-borne fungus Rhizoctonia cerealis, has become one of the most serious diseases of wheat in China. In this study, an ethylene response factor (ERF) gene from a wheat relative Thinopyrum intermedium, TiERF1, was characterized further, transgenic wheat lines expressing TiERF1 were developed, and the resistance of the transgenic wheat lines against R. cerealis was investigated. Southern blotting analysis indicated that at least two copies of the TiE...

  18. 21 CFR 137.195 - Crushed wheat.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Crushed wheat. 137.195 Section 137.195 Food and... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the method...

  19. Microbiological, proximate analysis and sensory evaluation of baked ...

    African Journals Online (AJOL)

    The possibility of making bread of good nutritional, microbiological and sensory qualities from blends of wheat-breadfruit flours was examined. Blends of wheat flour (WF) with percentages of 0, 5, 10, 15, 20 and 25 of breadfruits flour (BF) were used in the production process. The proximate analysis, sensory evaluation and ...

  20. Competitive Expression of Endogenous Wheat CENH3 May Lead to Suppression of Alien ZmCENH3 in Transgenic Wheat × Maize Hybrids.

    Science.gov (United States)

    Chen, Wei; Zhu, Qilin; Wang, Haiyan; Xiao, Jin; Xing, Liping; Chen, Peidu; Jin, Weiwei; Wang, Xiu-E

    2015-11-20

    Uniparental chromosome elimination in wheat × maize hybrid embryos is widely used in double haploid production of wheat. Several explanations have been proposed for this phenomenon, one of which is that the lack of cross-species CENH3 incorporation may act as a barrier to interspecies hybridization. However, it is unknown if this mechanism applies universally. To study the role of CENH3 in maize chromosome elimination of wheat × maize hybrid embryos, maize ZmCENH3 and wheat αTaCENH3-B driven by the constitutive CaMV35S promoter were transformed into wheat variety Yangmai 158. Five transgenic lines for ZmCENH3 and six transgenic lines for αTaCENH3-B were identified. RT-PCR analysis showed that the transgene could be transcribed at a low level in all ZmCENH3 transgenic lines, whereas transcription of endogenous wheat CENH3 was significantly up-regulated. Interestingly, the expression levels of both wheat CENH3 and ZmCENH3 in the ZmCENH3 transgenic wheat × maize hybrid embryos were higher than those in the non-transformed Yangmai 158 × maize hybrid embryos. This indicates that the alien ZmCENH3 in wheat may induce competitive expression of endogenous wheat CENH3, leading to suppression of ZmCENH3 over-expression. Eliminations of maize chromosomes in hybrid embryos of ZmCENH3 transgenic wheat × maize and Yangmai 158 × maize were compared by observations on micronuclei presence, by marker analysis using maize SSRs (simple sequence repeats), and by FISH (fluorescence in situ hybridization) using 45S rDNA as a probe. The results indicate that maize chromosome elimination events in the two crosses are not significantly different. Fusion protein ZmCENH3-YFP could not be detected in ZmCENH3 transgenic wheat by either Western blotting or immnunostaining, whereas accumulation and loading of the αTaCENH3-B-GFP fusion protein was normal in αTaCENH3-B transgenic lines. As ZmCENH3-YFP did not accumulate after AM114 treatment, we speculate that low levels of Zm

  1. Effect of different iron compounds on wheat and gluten-free breads.

    Science.gov (United States)

    Kiskini, Alexandra; Kapsokefalou, Maria; Yanniotis, Stavros; Mandala, Ioanna

    2010-05-01

    Iron fortification of bread often results in sub-optimal quality of the final product due to undesirable changes in the physical characteristics and sensory properties of the bread. In this study both the form of iron (soluble, insoluble or encapsulated) and the type of bread (wheat or gluten-free) were varied in order to investigate the effect of iron and gluten on the product characteristics. The effect of iron on the quality characteristics of the breads investigated depended on iron type, but not on iron solubility. Colour, crust firmness, specific volume, cell number and uniformity as well as aroma were the attributes that were mainly affected in iron-enriched wheat bread. In some cases, specific volume was 30% lower than that of the control sample, while cell uniformity was significantly lower, as low as 50% of the control sample in some fortified samples. In gluten-free breads, differences between unfortified and fortified samples included colour, crust firmness, cell number, 'moisture' odour, metallic taste and stickiness. In some cases, the sensory scores were better for fortified samples. Differences due to iron fortification were less pronounced in gluten-free compared to wheat breads. The choice of the appropriate iron compound which will not cause adverse quality changes is still a challenge.

  2. Comparison of winter wheat growth with multi-temporal remote sensing imagery

    International Nuclear Information System (INIS)

    Xiaoyu, Song; Bei, Cui; Guijun, Yang; Haikuan, Feng

    2014-01-01

    Leaf area index (LAI) is an important index for crop growth monitoring. This paper focused on estimation of winter wheat LAI dynamics in different growth stages based on Landsat TM data. In order to retrieve wheat LAI from remote sensing data, LAI measurements were initiated when Landsat satellite pass over the study region. Three Landsat5 TM images were acquired on April 15, May 17, and June 2, 2009, corresponding to jointing stage, flowering stage and milking stage of wheat. LAI was measured at each stage in thirty wheat fields distributed in Beijing suburb. Based on the TM images, spectral indices including NDVI, MSAVI, SAVI, RDVI, SR, ISR, MSR and NLI were calculated. Univariate correlation analysis was then conducted between LAI data and corresponding TM spectral variables. The analysis results indicated that TM ISR on April 15, TM Band4 on May17, and TM ISR on June 2 were very significantly correlated with LAI, and the coefficient values were 0.736, 0.548 and 0.493, respectively. LAI map of winter wheat for whole study area was produced based on optimal non-linear correlation models. The three LAI maps were used to winter wheat growth analysis and comparison of different growth stages. Study results indicated that from April 15 to May 17, LAI value for 14.88% of winter wheat fields (9131ha) increased less than 1, 64.43 % (39421 ha) increased between 1 to 2, 20.67 % (12685 ha) increased more than 2. LAI decreased from May 17 to June 2. 45.34% of winter wheat fields (27828 ha) decreased less than1, 45.20 % (27738 ha) decreased between 1 to 2, 9.33% (5725.42 ha) decreased more than 2

  3. Determination of phosphorus in wheat grass samples by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Kulkarni, S.D.; Rajurkar, N.S.; Acharya, R.; Nair, A.G.C.; Reddy, A.V.R.

    2005-01-01

    An instrumental neutron activation analysis (INAA) method using β-counting was used to determine phosphorus in wheat grass; grown in three different conditions. The phosphorus concentration was found to be in the range of 950-23000 mg/g in the samples grown in different conditions. The accuracy of the method was evaluated by determining phosphorus in three reference materials and the % deviations were within 10%. Reliability of the method was checked by following the half-life of the 32 P. (author)

  4. Genetic characterization of Moroccan and the exotic bread wheat cultivars using functional and random DNA markers linked to the agronomic traits for genomics-assisted improvement.

    Science.gov (United States)

    Henkrar, Fatima; El-Haddoury, Jamal; Ouabbou, Hassan; Bendaou, Najib; Udupa, Sripada M

    2016-06-01

    Genetic characterization, diversity analysis and estimate of the genetic relationship among varieties using functional and random DNA markers linked to agronomic traits can provide relevant guidelines in selecting parents and designing new breeding strategies for marker-assisted wheat cultivar improvement. Here, we characterize 20 Moroccan and 19 exotic bread wheat (Triticum aestivum L.) cultivars using 47 functional and 7 linked random DNA markers associated with 21 loci of the most important traits for wheat breeding. The functional marker analysis revealed that 35, 45, and 10 % of the Moroccan cultivars, respectively have the rust resistance genes (Lr34/Yr18/Pm38), dwarfing genes (Rht1b or Rht2b alleles) and the leaf rust resistance gene (Lr68). The marker alleles for genes Lr37/Yr17/Sr38, Sr24 and Yr36 were present only in the exotic cultivars and absent in Moroccan cultivars. 25 % of cultivars had 1BL.1RS translocation. 70 % of the wheat cultivars had Ppo-D1a and Ppo-A1b associated with low polyphenol oxidase activity. 10 % of cultivars showed presence of a random DNA marker allele (175 bp) linked to Hessian fly resistance gene H22. The majority of the Moroccan cultivars were carrying alleles that impart good bread making quality. Neighbor joining (NJ) and principal coordinate analysis based on the marker data revealed a clear differentiation between elite Moroccan and exotic wheat cultivars. The results of this study are useful for selecting suitable parents for making targeted crosses in marker-assisted wheat breeding and enhancing genetic diversity in the wheat cultivars.

  5. Qualidade industrial do trigo em resposta à adubação verde e doses de nitrogênio Baking quality of wheat in response to green manure and nitrogen rates

    Directory of Open Access Journals (Sweden)

    Cilas Pinnow

    2013-01-01

    Full Text Available O objetivo deste estudo foi avaliar os efeitos de adubos verdes cultivados entre a cultura do milho e a do trigo e da adubação nitrogenada sobre a qualidade industrial do trigo. Os tratamentos consistiram de quatro níveis de adubação nitrogenada: sem adição de nitrogênio, 40, 80 e 120 kg ha-1 e seis manejos outonais: quatro com o cultivo de espécies de cobertura (ervilha forrageira, ervilhaca comum, nabo forrageiro e tremoço, um cultivo de feijoeiro com fins comerciais e outro com a permanência em pousio no período compreendido entre a colheita do milho e a semeadura do trigo. O delineamento experimental foi o de blocos ao acaso em esquema fatorial, com três repetições. O rendimento de proteína aumentou linearmente com a aplicação de nitrogênio mineral. As doses de 80 e 120 kg ha-1 de nitrogênio afetaram positivamente o desempenho dos parâmetros indicativos da qualidade industrial. A ervilha forrageira, o nabo forrageiro e a ervilhaca comum permitem combinar indíces de qualidade tecnológica ideais para panificação e satisfatórios patamares de produtividade de grãos, reduzindo a demanda de adubação nitrogenada mineral.The objective this study was to investigate the effects of green manures cultivated between the maize and wheat crop and nitrogen rates on baking quality of spring wheat. Treatments consisted of four nitrogen fertilization rates: without N addition, 40, 80 and 120 kg ha-1 using the amidic form, and six managements before wheat crop: four green manures forage pea, common pea, oilseed radish and lupine, common bean grown for commercial purposes, and the fallow between the corn harvest and wheat cropping. The experimental design was in randomized blocks and factorial scheme, with three replicates. The protein yield increased linearly with the application of mineral N rates. The nitrogen rates of 80 and 120 kg ha-1 improved the baking wheat quality. The forage pea, oilseed radish and common pea allowed ideal

  6. Qualidade industrial do trigo em resposta à adubação verde e doses de nitrogênio Baking quality of wheat in response to green manure and nitrogen rates

    Directory of Open Access Journals (Sweden)

    Cilas Pinnow

    2013-03-01

    Full Text Available O objetivo deste estudo foi avaliar os efeitos de adubos verdes cultivados entre a cultura do milho e a do trigo e da adubação nitrogenada sobre a qualidade industrial do trigo. Os tratamentos consistiram de quatro níveis de adubação nitrogenada: sem adição de nitrogênio, 40, 80 e 120 kg ha-1 e seis manejos outonais: quatro com o cultivo de espécies de cobertura (ervilha forrageira, ervilhaca comum, nabo forrageiro e tremoço, um cultivo de feijoeiro com fins comerciais e outro com a permanência em pousio no período compreendido entre a colheita do milho e a semeadura do trigo. O delineamento experimental foi o de blocos ao acaso em esquema fatorial, com três repetições. O rendimento de proteína aumentou linearmente com a aplicação de nitrogênio mineral. As doses de 80 e 120 kg ha-1 de nitrogênio afetaram positivamente o desempenho dos parâmetros indicativos da qualidade industrial. A ervilha forrageira, o nabo forrageiro e a ervilhaca comum permitem combinar indíces de qualidade tecnológica ideais para panificação e satisfatórios patamares de produtividade de grãos, reduzindo a demanda de adubação nitrogenada mineral.The objective this study was to investigate the effects of green manures cultivated between the maize and wheat crop and nitrogen rates on baking quality of spring wheat. Treatments consisted of four nitrogen fertilization rates: without N addition, 40, 80 and 120 kg ha-1 using the amidic form, and six managements before wheat crop: four green manures forage pea, common pea, oilseed radish and lupine, common bean grown for commercial purposes, and the fallow between the corn harvest and wheat cropping. The experimental design was in randomized blocks and factorial scheme, with three replicates. The protein yield increased linearly with the application of mineral N rates. The nitrogen rates of 80 and 120 kg ha-1 improved the baking wheat quality. The forage pea, oilseed radish and common pea allowed ideal

  7. Impact of bran components on the quality of whole wheat bread

    Science.gov (United States)

    Whole grains contain components, such as dietary fiber, starch, fat, antioxidant nutrients, minerals, vitamin, lignans, and phenolic compounds, which are beneficial to human health. Most of the beneficial components are found in the germ and bran as part of a wheat kernel, which are reduced in the ...

  8. Wheat crown rot pathogens Fusarium graminearum and F. pseudograminearum lack specialization.

    Science.gov (United States)

    Chakraborty, Sukumar; Obanor, Friday; Westecott, Rhyannyn; Abeywickrama, Krishanthi

    2010-10-01

    This article reports a lack of pathogenic specialization among Australian Fusarium graminearum and F. pseudograminearum causing crown rot (CR) of wheat using analysis of variance (ANOVA), principal component and biplot analysis, Kendall's coefficient of concordance (W), and κ statistics. Overall, F. pseudograminearum was more aggressive than F. graminearum, supporting earlier delineation of the crown-infecting group as a new species. Although significant wheat line-pathogen isolate interaction in ANOVA suggested putative specialization when seedlings of 60 wheat lines were inoculated with 4 pathogen isolates or 26 wheat lines were inoculated with 10 isolates, significant W and κ showed agreement in rank order of wheat lines, indicating a lack of specialization. The first principal component representing nondifferential aggressiveness explained a large part (up to 65%) of the variation in CR severity. The differential components were small and more pronounced in seedlings than in adult plants. By maximizing variance on the first two principal components, biplots were useful for highlighting the association between isolates and wheat lines. A key finding of this work is that a range of analytical tools are needed to explore pathogenic specialization, and a statistically significant interaction in an ANOVA cannot be taken as conclusive evidence of specialization. With no highly resistant wheat cultivars, Fusarium isolates mostly differ in aggressiveness; however, specialization may appear as more resistant cultivars become widespread.

  9. Collinearity Analysis and High-Density Genetic Mapping of the Wheat Powdery Mildew Resistance Gene Pm40 in PI 672538

    Science.gov (United States)

    Fatima, Syeda Akash; Yang, Jiezhi; Chen, Wanquan; Liu, Taiguo; Hu, Yuting; Li, Qing; Guo, Jingwei; Zhang, Min; Lei, Li; Li, Xin; Tang, Shengwen; Luo, Peigao

    2016-01-01

    The wheat powdery mildew resistance gene Pm40, which is located on chromosomal arm 7BS, is effective against nearly all prevalent races of Blumeria graminis f. sp tritici (Bgt) in China and is carried by the common wheat germplasm PI 672538. A set of the F1, F2 and F2:3 populations from the cross of the resistant PI 672538 with the susceptible line L1034 were used to conduct genetic analysis of powdery mildew resistance and construct a high-density linkage map of the Pm40 gene. We constructed a high-density linkage genetic map with a total length of 6.18 cM and average spacing between markers of 0.48 cM.Pm40 is flanked by Xwmc335 and BF291338 at genetic distances of 0.58 cM and 0.26 cM, respectively, in deletion bin C-7BS-1-0.27. Comparative genomic analysis based on EST-STS markers established a high level of collinearity of the Pm40 genomic region with a 1.09-Mbp genomic region on Brachypodium chromosome 3, a 1.16-Mbp genomic region on rice chromosome 8, and a 1.62-Mbp genomic region on sorghum chromosome 7. We further anchored the Pm40 target intervals to the wheat genome sequence. A putative linear index of 85 wheat contigs containing 97 genes on 7BS was constructed. In total, 9 genes could be considered as candidates for the resistances to powdery mildew in the target genomic regions, which encoded proteins that were involved in the plant defense and response to pathogen attack. These results will facilitate the development of new markers for map-based cloning and marker-assisted selection of Pm40 in wheat breeding programs. PMID:27755575

  10. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew.

    Science.gov (United States)

    Fu, Ying; Zhang, Hong; Mandal, Siddikun Nabi; Wang, Changyou; Chen, Chunhuan; Ji, Wanquan

    2016-01-01

    Powdery mildew (Pm), caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important crop diseases, causing severe economic losses to wheat production worldwide. However, there are few reports about the proteomic response to Bgt infection in resistant wheat. Hence, quantitative proteomic analysis of N9134, a resistant wheat line, was performed to explore the molecular mechanism of wheat in defense against Bgt. Comparing the leaf proteins of Bgt-inoculated N9134 with that of mock-inoculated controls, a total of 2182 protein-species were quantified by iTRAQ at 24, 48 and 72h postinoculation (hpi) with Bgt, of which 394 showed differential accumulation. These differentially accumulated protein-species (DAPs) mainly included pathogenesis-related (PR) polypeptides, oxidative stress responsive proteins and components involved in primary metabolic pathways. KEGG enrichment analysis showed that phenylpropanoid biosynthesis, phenylalanine metabolism and photosynthesis-antenna proteins were the key pathways in response to Bgt infection. InterProScan 5 and the Gibbs Motif Sampler cluster 394 DAPs into eight conserved motifs, which shared leucine repeats and histidine sites in the sequence motifs. Moreover, eight separate protein-protein interaction (PPI) networks were predicted from STRING database. This study provides a powerful platform for further exploration of the molecular mechanism underlying resistant wheat responding to Bgt. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive pathogenic disease in wheat-producing regions worldwide, resulting in severe yield reductions. Although many resistant wheat varieties have been cultivated, there are few reports about the proteomic response to Bgt infection in resistant wheat. Therefore, an iTRAQ-based quantitative proteomic analysis of a resistant wheat line (N9134) in response to Bgt infection has been performed. This paper provides new insights into the underlying molecular

  11. Evaluation of Model Wheat/Hemp Composites

    Directory of Open Access Journals (Sweden)

    Ivan Švec

    2014-02-01

    Full Text Available Model cereal blends were prepared from commercial wheat fine flour and 5 samples of hemp flour (HF, including fine (2 of conventional form, 1 of organic form and wholemeal type (2 of conventional form. Wheat flour was substituted in 4 levels (5, 10, 15, 20%. HF addition has increased protein content independently on tested hemp flour form or type. Partial model cereal blends could be distinguished according to protein quality (Zeleny test values, especially between fine and wholemeal HF type. Both flour types affected also amylolytic activity, for which a relationship between hemp addition and determined level of Falling Number was confirmed for all five model cereal blends. Solvent retention capacity profiles (SRC of partial models were influenced by both HF form and type, as well as by its addition level. Between both mentioned groups of quality features, significant correlation were proved - relationships among protein content/quality and lactic acid SRC were verifiable on p <0.01 (-0.58, 0.91, respectively. By performed ANOVA, a possibility to distinguish the HF form used in model cereal blend according to the lactic acid SRC and the water SRC was demonstrated. Comparing partial cereal models containing fine and wholemeal hemp type, HF addition level demonstrated its impact on the sodium carbonate SRC and the water acid SRC. Normal 0 21 false false false CS JA X-NONE

  12. PCR-Based EST Mapping in Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    J. PERRY GUSTAFSON

    2009-04-01

    Full Text Available Mapping expressed sequence tags (ESTs to hexaploid wheat is aimed to reveal the structure and function of the hexaploid wheat genome. Sixty eight ESTs representing 26 genes were mapped into all seven homologous chromosome groups of wheat (Triticum aestivum L using a polymerase chain reaction technique. The majority of the ESTs were mapped to homologous chromosome group 2, and the least were mapped to homologous chromosome group 6. Comparative analysis between the EST map from this study and the EST map based on RFLPs showed 14 genes that have been mapped by both approaches were mapped to the same arm of the same homologous chromosome, which indicated that using PCR-based ESTs was a reliable approach in mapping ESTs in hexaploid wheat.

  13. Fermented Dough Characteristics of Wheat-barley-hemp Composites. Comparison of Two Dosages of Barley and Hemp Wholemeal/Flour

    Directory of Open Access Journals (Sweden)

    Marie Hrušková

    2016-01-01

    Full Text Available Wheat flour substitution by barley one led to shortening of fermentation and leavening times (about 14–57% and 35–83%, respectively as well as to lessening of dough volumes (about 25–75%, based on lowered protein quality (Zeleny value. Addition of barley flour affected specific bread volume; diminishing for wheat-barley blends 70:30 and 50:50 reached 30% and 43%, respectively. Volume of bread prepared from wheat-barley blend 70:30 enhanced by dehulled hemp wholemeal was the highest within the tested tri-composites set, achieving 130% of wheat-barley control; other hemp products caused the parameter decrease (from 8 to 33%. Within a group of bakery products containing 50% of barley flour, hulled hemp wholemeal partially supressed negative effect of barley flour – specific bread volumes increased about ca 15%. Commercial fine hemp flour samples demonstrated a reversal influence – its addition resulted into lower buns size than wheat-barley control (about 3–34%. Between wheat flour and both groups of flour tri-composites, PCA confirmed differences in dough and bread technological quality. Specific bread volume could be predicted according to maturograph dough elasticity, dough or bread OTG volumes.

  14. Feasibility and market potential of protein determination of wheat using californium-252

    International Nuclear Information System (INIS)

    Roberts, T.C. Jr.; Eckhoff, N.D.; Clack, R.W.; Roberts, T.C. Sr.

    1976-01-01

    To evaluate the feasibility of protein determination by capture gamma-ray analysis using californium-252 neutrons, an in-situ protein analysis system for use by grain handlers has been examined. Three 227 kilogram (approximately) lots of wheat were used to determine the amount of nitrogen present. Protein analyses by the Kjeldahl method were obtained from samples taken before and after the capture gamma-ray analyses. The 5.267-MeV gamma-ray was selected for use in this study as a compromise between efficiency and interference from other elements. The associated counting equipment was a multichannel analyzer with pulse shaping electronic and analysis computing equipment. A linear regression program was used to compare the regions of interest to the Kjeldahl protein averages. The counts composing each peak were summed and normalized using the total count of the hydrogen peak. The normalized nitrogen percentages indicate a significant correlation between the spectral regions and the Kjeldahl analyses. To a first approximation, the value of wheat is the wheat protein. At the present time, protein testing of wheat is destructive, cumbersome, and time-consuming as compared to the potential for capture gamma-ray analysis testing. Assuming that such a protein analysis unit can analyze 42 tonne of wheat per hour, over 120 units would be needed to monitor one-half the U.S. annual wheat production. A 0.5% improvement in processor realizations and grain throughput value of $167.00 per tonne will result in a projected savings of $150,000 per year per unit

  15. COMPETITIVENESS OF CROATIAN PRODUCTION AND PROCESSING OF WHEAT ON THE EU MARKET

    Directory of Open Access Journals (Sweden)

    Davor Balaž

    2016-06-01

    Full Text Available Analysis of competitiveness is a demanding process that includes data collection and comparison on the macro and micro economic basis. For the purposes of this study, an analysis the available data on the production and processing of wheat in the Republic of Croatia and the European Union (desk research, 5 Region of eastern Croatian (130 samples of producers, and processors of wheat 18 samples was conducted. Based on the collected data, an analysis of the samples structure was conducted according to different variables in accordance with the performed descriptive statistical analysis for ordinal variables and quantitative (the metering and interval. The data analysis resulted in calculations using the cost competitiveness of domestic resources (DRC, and making analytical matrix (PAM. The calculation of separated coefficient (DRC has not confirmed the competitiveness of Croatian wheat production for the reference year. Possible necessary adjustments to business standards, foreign trade, foreign trade protection and domestic support under the Common Agricultural Policy (CAP have been identified. The study was conducted to evaluate the economic performance of Croatian production and processing of wheat in simulated conditions, using the method calculating the coefficient of DRC. The performed calculations showed mutual diseconomic interdependence of production and processing of wheat in the Republic of Croatia, with a positive impact on the stability and sustainability of the business in rural areas. Based on the research it was found out that there are conditions for the quantitative and qualitative increase in the production and processing of wheat in the Republic of Croatia.

  16. Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4.

    Science.gov (United States)

    Lee, Tong Geon; Lee, Yong Jin; Kim, Dae Yeon; Seo, Yong Weon

    2010-12-01

    Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35 Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.

  17. Wheat for Kids! [and] Teacher's Guide.

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    "Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the…

  18. A Comparative Study of Partial Replacement of Wheat Flour with Whey and Soy Protein on Rheological Properties of Dough and Cookie Quality

    Directory of Open Access Journals (Sweden)

    Xiaozhi Tang

    2017-01-01

    Full Text Available The development of wheat-based foods that are enriched with proteins is increasingly popular. The purpose of this study was to compare the effects of partial replacement of wheat flour with whey and soy proteins (0–30% on the rheological properties of dough and cookie-making quality. The incorporation of whey protein (WP diluted the concentration of gluten, leading to an increase in dough development time (MDT and breakdown torque and a decrease in stability time (MST and minimum torque (MMT. The gelation of WP during the heat treatment increased dough peak torque (MPT, G′, and G′′. As a contrast, the addition of soy protein (SP increased dough MST, MDT, and MMT. The aggregation of SP helped increase G′ and decrease tan δ of the dough in oscillatory shear tests. The weak gelling effects and higher water absorption of SP decreased MPT, G′, and G′′ of the dough during heat treatment. With SP, the spread ratio of cookies first decreased from 6.39 to 5.66 and then increased to 6.86, and the overall acceptability scores ranged from 6.62 to 7.02, indicating that the formed soy protein network helped maintain the dough structure for obtaining an improvement in the quality of bakery products.

  19. Nitrogen fertilisation of durum wheat: a case study in Mediterranean area during transition to conservation agriculture

    Directory of Open Access Journals (Sweden)

    Angelica Galieni

    2016-03-01

    CA systems. Principal component analysis summarised properly the obtained results: analysing the N-rates at 150 kg N ha–1, it was confirmed that yields and quality characteristics of durum wheat were optimised in the wettest year (2011 with calcium nitrate. Moreover, the scarce amount of residues characterising the transition phase to CA, requires N application rates not lower than 150 kg ha–1 in order to ensure stable yields and important quality traits. These N rates should be modulated as the accumulation of crop residues increases over time, thanks to long-term effects of CA on soil chemical, physical and biological properties.

  20. Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.

    Science.gov (United States)

    Kumar, Dhananjay; Dutta, Summi; Singh, Dharmendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal

    2017-01-01

    Deep sequencing identified 497 conserved and 559 novel miRNAs in wheat, while degradome analysis revealed 701 targets genes. QRT-PCR demonstrated differential expression of miRNAs during stages of leaf rust progression. Bread wheat (Triticum aestivum L.) is an important cereal food crop feeding 30 % of the world population. Major threat to wheat production is the rust epidemics. This study was targeted towards identification and functional characterizations of micro(mi)RNAs and their target genes in wheat in response to leaf rust ingression. High-throughput sequencing was used for transcriptome-wide identification of miRNAs and their expression profiling in retort to leaf rust using mock and pathogen-inoculated resistant and susceptible near-isogenic wheat plants. A total of 1056 mature miRNAs were identified, of which 497 miRNAs were conserved and 559 miRNAs were novel. The pathogen-inoculated resistant plants manifested more miRNAs compared with the pathogen infected susceptible plants. The miRNA counts increased in susceptible isoline due to leaf rust, conversely, the counts decreased in the resistant isoline in response to pathogenesis illustrating precise spatial tuning of miRNAs during compatible and incompatible interaction. Stem-loop quantitative real-time PCR was used to profile 10 highly differentially expressed miRNAs obtained from high-throughput sequencing data. The spatio-temporal profiling validated the differential expression of miRNAs between the isolines as well as in retort to pathogen infection. Degradome analysis provided 701 predicted target genes associated with defense response, signal transduction, development, metabolism, and transcriptional regulation. The obtained results indicate that wheat isolines employ diverse arrays of miRNAs that modulate their target genes during compatible and incompatible interaction. Our findings contribute to increase knowledge on roles of microRNA in wheat-leaf rust interactions and could help in rust

  1. Polymorphism of proteins in selected slovak winter wheat genotypes using SDS-PAGE

    Directory of Open Access Journals (Sweden)

    Dana Miháliková

    2016-12-01

    Full Text Available Winter wheat is especially used for bread-making. The specific composition of the grain storage proteins and the representation of individual subunits determines the baking quality of wheat. The aim of this study was to analyze 15 slovak varieties of the winter wheat (Triticum aestivum L. based on protein polymorphism and to predict their technological quality. SDS-PAGE method by ISTA was used to separate glutenin protein subunits. Glutenins were separated into HMW-GS (15.13% and LMW-GS (65.89% on the basis of molecular weight in SDS-PAGE. At the locus Glu-A1 was found allele Null (53% of genotypes and allele 1 (47% of genotypes. The locus Glu-B1 was represented by the HMW-GS subunits 6+8 (33% of genotypes, 7+8 (27% of genotypes, 7+9 (40% of genotypes. At the locus Glu-D1 were detected two subunits, 2+12 (33% of genotypes and 5+10 (67% of genotypes which is correlated with good bread-making properties. The Glu – score was ranged from 4 (genotype Viglanka to 10 (genotypes Viola, Vladarka. According to the representation of individual glutenin subunits in samples, the dendrogram of genetic similarity was constructed. By the prediction of quality the results showed that the best technological quality was significant in the varieties Viola and Vladarka which are suitable for use in food processing.

  2. THE OLD GENOTYPES OF WHEAT, THE SOURCE OF IMPORTANT QUALITATIVE CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    H FRANČÁKOVÁ

    2002-05-01

    Full Text Available Technological quality of 35 chosen genotypes of wheat was analysed during two years. The genotypes included 4 standards (Astella, Ilona, Samanta, Šárka and the old European Land varietes of wheat. A large amount of various genetic material was evaluated for various use. It is possible to choice the best genotypes which are exceptional for certain characteristic. Obtained results can be applied for further breeding process. Data of technological parameters are included in tables 1 and 2.

  3. Studies on Production of Arabic Bread From Irradiated and Stored Potato Flour as Partial Substitute of Wheat Flour

    International Nuclear Information System (INIS)

    Al-Kuraieef, A.N.

    2012-01-01

    The present study was carried out to evaluate Arabic bread produced from potato flour and wheat flour. Potato flour was prepared from Diamont cultivar of potato tubers after irradiation with 50 and 150 Gy. The ratios of potato flour were 5, 10 and 15% and the flour was stored for six months and taken for analysis every three months. Amino acids, protein, carbohydrate, baking and staling tests were applied to study the effect of adding potato flour extracts from tubers of non-irradiated and irradiated potato to wheat flour in Arabic bread making. Amino acids in potato and wheat were studied. The flour of wheat was found to be poor in lysine while potato flour contained about twice of these amino acids. Protein content was decreased with increasing the ratios of potato flour. The addition of potato flour to the Arabic bread increased the percentage of essential amino acids. Moreover, the addition of potato flour during storage periods had an improving effect on the quality of Arabic bread. Water retention capacity (the staling rate) was increased progressively with increasing the percentage as potato flour in the bread which was effective in keeping bread fresh and organoleptic properties

  4. Wheat yield vulnerability: relation to rainfall and suggestions for adaptation

    Directory of Open Access Journals (Sweden)

    Khalid Tafoughalti

    2018-04-01

    Full Text Available Wheat production is of paramount importance in the region of Meknes, which is mainly produced under rainfed conditions. It is the dominant cereal, the greater proportion being the soft type. During the past few decades, rainfall flaws have caused a number of cases of droughts. These flaws have seriously affecting wheat production. The main objective of this study is the assessment of rainfall variability at monthly, seasonal and annual scales and to determine their impact on wheat yields. To reduce this impact we suggested some mechanisms of adaptation. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model to evaluate the impact of rainfall on wheat yields. Data analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that soft wheat and hard wheat are strongly correlated with the period of January to March than with the whole growing-season. While they are adversely correlated with the mid-spring. This investigation concluded that synchronizing appropriate adaptation with the period of January to March was crucial to achieving success yield of wheat.

  5. Evaluation of the protein quality of cereal mutants

    International Nuclear Information System (INIS)

    Eggum, B.O.

    1984-01-01

    Protein content, true protein digestibility, biological value, net protein utilization, and utilizable protein in several varieties of barley, wheat and rice were determined in nitrogen-balance trials with rats. It appeared that protein quality varied significantly between these three cereal grains, with the lowest values for wheat. However, the protein content was markedly higher in wheat; consequently, utilizable protein was highest in this cereal grain. The different varieties within barley, wheat and rice varied considerably in protein quality. This demonstrates a large variation in the potential for protein synthesis. The main problem with rice and barley is the low protein concentration, whereas with wheat the biggest problem seems to be the quality of the protein. As the lysine level in all cereal grains, expressed in percentage of the protein, cannot meet the requirements for either man or domestic animals efforts should be made to increase the lysine concentration in these food sources. (author)

  6. 21 CFR 137.190 - Cracked wheat.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested by...

  7. Analysis of the Genetic Diversity and Population Structure of Austrian and Belgian Wheat Germplasm within a Regional Context Based on DArT Markers

    Directory of Open Access Journals (Sweden)

    Mohamed A. El-Esawi

    2018-01-01

    Full Text Available Analysis of crop genetic diversity and structure provides valuable information needed to broaden the narrow genetic base as well as to enhance the breeding and conservation strategies of crops. In this study, 95 Austrian and Belgian wheat cultivars maintained at the Centre for Genetic Resources (CGN in the Netherlands were characterised using 1052 diversity array technology (DArT markers to evaluate their genetic diversity, relationships and population structure. The rarefacted allelic richness recorded in the Austrian and Belgian breeding pools (A25 = 1.396 and 1.341, respectively indicated that the Austrian germplasm contained a higher genetic diversity than the Belgian pool. The expected heterozygosity (HE values of the Austrian and Belgian pools were 0.411 and 0.375, respectively. Moreover, the values of the polymorphic information content (PIC of the Austrian and Belgian pools were 0.337 and 0.298, respectively. Neighbour-joining tree divided each of the Austrian and Belgian germplasm pools into two genetically distinct groups. The structure analyses of the Austrian and Belgian pools were in a complete concordance with their neighbour-joining trees. Furthermore, the 95 cultivars were compared to 618 wheat genotypes from nine European countries based on a total of 141 common DArT markers in order to place the Austrian and Belgian wheat germplasm in a wider European context. The rarefacted allelic richness (A10 varied from 1.224 (Denmark to 1.397 (Austria. Cluster and principal coordinates (PCoA analyses divided the wheat genotypes of the nine European countries into two main clusters. The first cluster comprised the Northern and Western European wheat genotypes, whereas the second included the Central European cultivars. The structure analysis of the 618 European wheat genotypes was in a complete concordance with the results of cluster and PCoA analyses. Interestingly, a highly significant difference was recorded between regions (26.53%. In

  8. Effect of different rates of nitrogen fertilizer on durum wheat (Triticum ...

    African Journals Online (AJOL)

    Dr Asefa

    2012-05-03

    May 3, 2012 ... The result showed that nitrogen rates and cultivars had significant effect on yield, yield related traits, nitrogen uptake ... cooking quality [8]. Durum wheat grain protein functionality can be influenced by N fertilization, particularly in the varieties of relatively with less gluten strength [9]. Information on the quality ...

  9. Multi-wheat-model ensemble responses to interannual climatic variability

    DEFF Research Database (Denmark)

    Ruane, A C; Hudson, N I; Asseng, S

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and ......-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.......We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and we...... evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal...

  10. Trend Analysis of Nitrogen Use and Productivity in Wheat (Triticum aestivum L. Production Systems of Iran

    Directory of Open Access Journals (Sweden)

    M. Nassiri

    2017-10-01

    Full Text Available Introduction At global level nitrogen (N fertilizers had drastic effects on crop yields increment during the last century. However, high application rates of this input have resulted to environmental pollution all around the world in addition decreased yields per unit of applied N is also reported in some countries. To fulfill increasing demands for agricultural crops with conservative application of N fertilizers, increasing N use efficiencies is recognized as a sustainable management. This calls for systematic studies on N use efficiency and its components at crop, field and regional levels. However, N efficiencies of agricultural crops at national level are not fully analyzed in Iran. In this research, forty years (1960-2010 data on yield and N application rate were analyzed for yield trend, N efficiencies and its related components for wheat (Triticum aestivum L. production systems of Iran. Materials and Methods Required data of wheat yield and nitrogen fertilizer application rates during the 40 years study period was obtained from official web sites of national agricultural statistics as well as Ministry of Jihad Agriculture. Using these data partial nitrogen productivity (kg yield kg N-1; nitrogen use efficiency (kg yield kg-1 N, ignoring soil N, nitrogen uptake efficiency (%; nitrogen utilization efficiency (kg yield kg-1 absorbed N; and relative contribution of Nitrogen to grain yield (% was estimated based on previously reported methods. Yield and N fertilizer application rate were subjected to time series analysis and fertilizer rates were predicted for the next decade over the studied period. Results and Discussion The results indicated that during the studied period mean annual growth rate of wheat yield and nitrogen application were 2.9 and 6.9%, respectively leading to 3.4 fold increase in yield and 9.5 fold increase in N fertilizers so that fertilize application rate was changed from 25 to 240 kg ha-1. However, N fertilizer

  11. Wheat flour dough Alveograph characteristics predicted by Mixolab regression models.

    Science.gov (United States)

    Codină, Georgiana Gabriela; Mironeasa, Silvia; Mironeasa, Costel; Popa, Ciprian N; Tamba-Berehoiu, Radiana

    2012-02-01

    In Romania, the Alveograph is the most used device to evaluate the rheological properties of wheat flour dough, but lately the Mixolab device has begun to play an important role in the breadmaking industry. These two instruments are based on different principles but there are some correlations that can be found between the parameters determined by the Mixolab and the rheological properties of wheat dough measured with the Alveograph. Statistical analysis on 80 wheat flour samples using the backward stepwise multiple regression method showed that Mixolab values using the ‘Chopin S’ protocol (40 samples) and ‘Chopin + ’ protocol (40 samples) can be used to elaborate predictive models for estimating the value of the rheological properties of wheat dough: baking strength (W), dough tenacity (P) and extensibility (L). The correlation analysis confirmed significant findings (P 0.70 for P, R²(adjusted) > 0.70 for W and R²(adjusted) > 0.38 for L, at a 95% confidence interval. Copyright © 2011 Society of Chemical Industry.

  12. OPPORTUNITIES TO USE PEA - WHEAT MIXES IN ORGANIC FARMING

    Directory of Open Access Journals (Sweden)

    Grigori Ivanov

    2015-12-01

    Full Text Available This article presented the results of productivity and quality of the green mass of pea-wheat mixes grown in conditions of organic farming. Are explored 5 wheat varieties - Sadovo 1, Geia 1, Guinness, Farmer, Liusil and 4 varieties of winter peas -Mir, Vesela, №11, L12AB, at different ratio between them - 50:50 and 30:70%. The selection of varieties is made based on previous studies of their complex characteristics – ripening, yield, chemistry (Angelova S., T.Georgieva, M.Sabeva, 2011. Setting up and raising the experimental mixture of seeds has been made in a medium free of organic and mineral fertilizers. We have studied the changes in green mass yield and the biochemistry of surface biomass. The cultivation of pea–wheat mixtures under conditions of organic farming leads to increased yields of green mass in comparison with the self-seeding of wheat and peas. According to the results obtained at early ripening and the highest crude protein content average of three years is the mixture Sadovo1–Mir 30:70%. The most productive is the mixture Sadovo1-Mir 50-50%.

  13. De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Chu, Zongli; Chen, Junying; Sun, Junyan; Dong, Zhongdong; Yang, Xia; Wang, Ying; Xu, Haixia; Zhang, Xiaoke; Chen, Feng; Cui, Dangqun

    2017-12-19

    During asexual reproduction the embryogenic callus can differentiate into a new plantlet, offering great potential for fostering in vitro culture efficiency in plants. The immature embryos (IMEs) of wheat (Triticum aestivum L.) are more easily able to generate embryogenic callus than mature embryos (MEs). To understand the molecular process of embryogenic callus formation in wheat, de novo transcriptome sequencing was used to generate transcriptome sequences from calli derived from IMEs and MEs after 3d, 6d, or 15d of culture (DC). In total, 155 million high quality paired-end reads were obtained from the 6 cDNA libraries. Our de novo assembly generated 142,221 unigenes, of which 59,976 (42.17%) were annotated with a significant Blastx against nr, Pfam, Swissprot, KOG, KEGG, GO and COG/KOG databases. Comparative transcriptome analysis indicated that a total of 5194 differentially expressed genes (DEGs) were identified in the comparisons of IME vs. ME at the three stages, including 3181, 2085 and 1468 DEGs at 3, 6 and 15 DC, respectively. Of them, 283 overlapped in all the three comparisons. Furthermore, 4731 DEGs were identified in the comparisons between stages in IMEs and MEs. Functional analysis revealed that 271transcription factor (TF) genes (10 overlapped in all 3 comparisons of IME vs. ME) and 346 somatic embryogenesis related genes (SSEGs; 35 overlapped in all 3 comparisons of IME vs. ME) were differentially expressed in at least one comparison of IME vs. ME. In addition, of the 283 overlapped DEGs in the 3 comparisons of IME vs. ME, excluding the SSEGs and TFs, 39 possessed a higher rate of involvement in biological processes relating to response to stimuli, in multi-organism processes, reproductive processes and reproduction. Furthermore, 7 were simultaneously differentially expressed in the 2 comparisons between the stages in IMEs, but not MEs, suggesting that they may be related to embryogenic callus formation. The expression levels of genes, which

  14. Application of fluorescence-based semi-automated AFLP analysis in barley and wheat

    DEFF Research Database (Denmark)

    Schwarz, G.; Herz, M.; Huang, X.Q.

    2000-01-01

    of semi-automated codominant analysis for hemizygous AFLP markers in an F-2 population was too low, proposing the use of dominant allele-typing defaults. Nevertheless, the efficiency of genetic mapping, especially of complex plant genomes, will be accelerated by combining the presented genotyping......Genetic mapping and the selection of closely linked molecular markers for important agronomic traits require efficient, large-scale genotyping methods. A semi-automated multifluorophore technique was applied for genotyping AFLP marker loci in barley and wheat. In comparison to conventional P-33...

  15. Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens.

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    Full Text Available Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs and differentially expressed proteins (DEPs were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq and two-dimensional electrophoresis (2-DE in conjunction with mass spectrometry (MS. A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops.

  16. Global Analysis of Differentially Expressed Genes and Proteins in the Wheat Callus Infected by Agrobacterium tumefaciens

    Science.gov (United States)

    Zhou, Xiaohong; Wang, Ke; Lv, Dongwen; Wu, Chengjun; Li, Jiarui; Zhao, Pei; Lin, Zhishan; Du, Lipu; Yan, Yueming; Ye, Xingguo

    2013-01-01

    Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq) and two-dimensional electrophoresis (2-DE) in conjunction with mass spectrometry (MS). A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO) analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops. PMID:24278131

  17. Physiological response of soybean and wheat to gamma radiation and gibberellin

    International Nuclear Information System (INIS)

    Maghraby, G. M.

    1997-01-01

    The main objective of this work is to study and evaluate physiological effects of gamma radiation and/or GA 3 on plant growth, nutritional status of plants, yield and some quality of seeds of soybean and wheat. Two field experiments were conducted under the condition of clay loam soil at kaliobia governorate during 1993 and 1994 and 1992/1993 and 1993/1994 for soybean and wheat, respectively. Growth of soybean and wheat plants was considerably stimulated by irradiation seeds before sowing with low gamma doses and/or concentration of Ga 3. Maximum growth of both plants was obtained by the combined treatment of 2 0 Gy x 25 ppm GA 3 and 1 0 Gy x 100 ppm GA 3 for soybean and wheat, respectively. On the contrary high gamma doses and/or high rates of GA 3 depressed growth of both plants. Low gamma doses and/or GA 3 at low concentration greatly encouraged nutrients uptake by soybean and wheat plants, i.e., N, Fe, Mn and Zn which seemed to be positively related to plant growth. Whereas, high doses and/or high concentrations of GA 3 reduced these nutrients in plant. 53 tabs., 5 figs., 91 refs

  18. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat.

    Science.gov (United States)

    Muthusamy, Senthilkumar K; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C

    2017-04-01

    Small Heat Shock Proteins (sHSPs)/HSP20 are molecular chaperones that protect plants by preventing protein aggregation during abiotic stress conditions, especially heat stress. Due to global climate change, high temperature is emerging as a major threat to wheat productivity. Thus, the identification of HSP20 and analysis of HSP transcriptional regulation under different abiotic stresses in wheat would help in understanding the role of these proteins in abiotic stress tolerance. We used sequences of known rice and Arabidopsis HSP20 HMM profiles as queries against publicly available wheat genome and wheat full length cDNA databases (TriFLDB) to identify the respective orthologues from wheat. 163 TaHSP20 (including 109 sHSP and 54 ACD) genes were identified and classified according to the sub-cellular localization and phylogenetic relationship with sequenced grass genomes (Oryza sativa, Sorghum bicolor, Zea mays, Brachypodium distachyon and Setaria italica). Spatio-temporal, biotic and abiotic stress-specific expression patterns in normalized RNA seq and wheat array datasets revealed constitutive as well as inductive responses of HSP20 in different tissues and developmental stages of wheat. Promoter analysis of TaHSP20 genes showed the presence of tissue-specific, biotic, abiotic, light-responsive, circadian and cell cycle-responsive cis-regulatory elements. 14 TaHSP20 family genes were under the regulation of 8 TamiRNA genes. The expression levels of twelve HSP20 genes were studied under abiotic stress conditions in the drought- and heat-tolerant wheat genotype C306. Of the 13 TaHSP20 genes, TaHSP16.9H-CI showed high constitutive expression with upregulation only under salt stress. Both heat and salt stresses upregulated the expression of TaHSP17.4-CI, TaHSP17.7A-CI, TaHSP19.1-CIII, TaACD20.0B-CII and TaACD20.6C-CIV, while TaHSP23.7-MTI was specifically induced only under heat stress. Our results showed that the identified TaHSP20 genes play an important role under

  19. Genome-wide Association Analysis of Powdery Mildew Resistance in U.S. Winter Wheat

    Science.gov (United States)

    Wheat powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, is a major fungal disease of wheat worldwide. It can cause considerable yield losses when epidemics occur. Use of genetic resistance is the most effective approach to control the disease. To determine the genomic regions responsi...

  20. Wheat straw as ruminant feed : effect of supplementation and ammonia treatment on voluntary intake and nutrient availability

    NARCIS (Netherlands)

    Oosting, S.J.

    1993-01-01

    This thesis describes the results of experiments with goats, sheep and cattle fed untreated or ammonia-treated wheat straw. Aim of the experiments was to identify factors limiting voluntary intake and digestion of these low-quality feeds. Supplementation of urea to untreated wheat straw

  1. Effects of Molasses on the Fermentation Quality of Wheat Straw and Poultry Litter Ensiled with Citrus Pulp

    International Nuclear Information System (INIS)

    Migwi, P.K; Gallanga, J.R; Barneveld, R.J

    1999-01-01

    Studies were conducted to find out whether inclusion of molasses had any effect on the fermentation quality and potential nutritive value of silage when wheat straw and poultry litter were ensiled with citrus pulp. A 4 x 2 factorial experiment in a randomized complete block design with four treatments (T) containing wheat straw, poultry litter and citrus pulp respectively on DM basis with 0 and 5% molasses, were prepared as follows-: T1 (75:25:0); T2 (60:25:15); T3 (45:25:30) and T4 (30:25:45). For each treatment in triplicate between 5-10 kg of thoroughly mixed material were ensiled for for a period of 60 days in 20-l hard plastic container laboratory silos, lined with a double layer of polythene bags. Inclusion of 5% molasses when ensiling wheat straw and poultry litter with 0, 15, 30 and 45% citrus pulp had no significant effect on pH, neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL) and in vitro OM digestibility. However, molasses resulted in a significant decrease in volatile fatty acids including N-butyric acid. There was a complete elimination of coliforms in all treatments, except in the silage that had neither molasses nor citrus pulp. There was a significant difference in titratable acidity levels between silage with 0 and 5% molasses, but this was only in silage with 30% citrus pulp. As the proportion of citrus pulp in silage increased from 0 to 45%, there was significant increase in silage acidity and also an increase in pH. However, there was no significant difference in pH between silage with 30 and 45% citrus pulp. There was a significant (P < 0.001) increase in in vitro OM digestibility from 0.33 to about 0.56 for silage with 0 and 45% citrus pulp respectively. It is concluded that when wheat straw and poultry litter are ensiled with citrus pulp, use of molasses offers no significant benefit inspite of the cost associated with its use. However, when no citrus pulp is included in the pre-mix, addition of some

  2. Wheat and barley seed systems in Ethiopia and Syria

    NARCIS (Netherlands)

    Bishaw, Z.

    2004-01-01

    Keywords: Wheat,Triticumspp., Barley,Hordeumvulgare L., Seed Systems, Formal Seed Sector, Informal Seed Sector, National Seed Program, Seed Source, Seed Selection, Seed Management, Seed Quality,

  3. Genetic analysis of a novel broad-spectrum powdery mildew resistance gene from the wheat-Agropyron cristatum introgression line Pubing 74.

    Science.gov (United States)

    Lu, Yuqing; Yao, Miaomiao; Zhang, Jinpeng; Song, Liqiang; Liu, Weihua; Yang, Xinming; Li, Xiuquan; Li, Lihui

    2016-09-01

    A novel broad-spectrum powdery mildew resistance gene PmPB74 was identified in wheat- Agropyron cristatum introgression line Pubing 74. Development of wheat cultivars with broad-spectrum, durable resistance to powdery mildew has been restricted by lack of superior genetic resources. In this study, a wheat-A. cristatum introgression line Pubing 74, originally selected from a wide cross between the common wheat cultivar Fukuhokomugi (Fukuho) and Agropyron cristatum (L.) Gaertn (2n = 4x = 28; genome PPPP), displayed resistance to powdery mildew at both the seedling and adult stages. The putative alien chromosomal fragment in Pubing 74 was below the detection limit of genomic in situ hybridization (GISH), but evidence for other non-GISH-detectable introgressions was provided by the presence of three STS markers specific to A. cristatum. Genetic analysis indicated that Pubing 74 carried a single dominant gene for powdery mildew resistance, temporarily designated PmPB74. Molecular mapping showed that PmPB74 was located on wheat chromosome arm 5DS, and flanked by markers Xcfd81 and HRM02 at genetic distances of 2.5 and 1.7 cM, respectively. Compared with other lines with powdery mildew resistance gene(s) on wheat chromosome arm 5DS, Pubing 74 was resistant to all 28 Blumeria graminis f. sp tritici (Bgt) isolates from different wheat-producing regions of northern China. Allelism tests indicated that PmPB74 was not allelic to PmPB3558 or Pm2. Our work showed that PmPB74 is a novel gene with broad resistance to powdery mildew, and hence will be helpful in broadening the genetic basis of powdery mildew resistance in wheat.

  4. Empirical Study on the Sustainability of China's Grain Quality Improvement: The Role of Transportation, Labor, and Agricultural Machinery.

    Science.gov (United States)

    Zhang, Ming; Duan, Fang; Mao, Zisen

    2018-02-05

    As a major part of farming sustainability, the issues of grain production and its quality improvement have been important in many countries. This paper aims to address these issues in China. Based on the data from the main production provinces and by applying the stochastic frontier analysis methodology, we find that the improvement of transportation and the use of agricultural machinery have become the main driving forces for grain quality improvement in China. After further studying different provinces' potentials of grain quality improvement, we show that grain quality has increased steadily. Therefore, we can conclude China's grain quality improvement is indeed sustainable. Furthermore, different grains like rice, wheat, and corn share similar characteristics in terms of quality improvement, but the improvement rate for rice is relatively low, while those of corn and wheat are relatively high. Moreover, the overall change of efficiency gain of grain quality improvement is not significant for different provinces. The efficiency gains of the quality improvements for rice and wheat even decrease slightly. In addition, we find that only expanding grain quality improvement potential can simultaneously achieve the dual objectives of improving grain quality and increasing yield.

  5. Identification and Preliminary Analysis of Several Centromere-associated Bacterial Artificial Chromosome Clones from a Diploid Wheat Library

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Although the centromeres of some plants have been investigated previously, our knowledge of the wheat centromere is still very limited. To understand the structure and function of the wheat centromere, we used two centromeric repeats (RCS1 and CCS1-5ab) to obtain some centromere-associated bacterial artificial chromosome (BAC) clones in 32 RCS1-related BAC clones that had been screened out from a diploid wheat (Triticum boeoticum Boiss.; 2n=2x=14) BAC library. Southern hybridization results indicated that, of the 32 candidates,there were 28 RCS1-positive clones. Based on gel blot patterns, the frequency of RCS1 was approximately one copy every 69.4 kb in these 28 RCS1-positive BAC clones. More bands were detected when the same filter was probed with CCS1-5ab. Furthermore, the CCS1 bands covered all the bands detected by RCS1, which suggests that some CCS1 repeats were distributed together with RCS1. The frequency of CCS1 families was once every 35.8 kb, nearly twice that of RCS1. Fluorescence in situ hybridization (FISH) analysis indicated that the five BAC clones containing RCS1 and CCS1 sequences all detected signals at the centromeric regions in hexaploid wheat, but the signal intensities on the A-genome chromosomes were stronger than those on the B- and/or D-genome chromosomes. The FISH analysis among nine Triticeae cereals indicated that there were A-genomespecific (or rich) sequences dispersing on chromosome arms in the BAC clone TbBAC5. In addition, at the interphase cells, the centromeres of diploid species usually clustered at one pole and formed a ring-like allocation in the period before metaphase.

  6. Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat.

    Science.gov (United States)

    Liu, Samuel S; Arthur, Frank H; VanGundy, Douglas; Phillips, Thomas W

    2016-06-17

    A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner), the Indian meal moth Tribolium castaneum (Herbst), the red flour beetle, Cryptolestes ferrugineus (Stephens), the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel), the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L.), the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.

  7. Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat

    Directory of Open Access Journals (Sweden)

    Samuel S. Liu

    2016-06-01

    Full Text Available A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner, the Indian meal moth Tribolium castaneum (Herbst, the red flour beetle, Cryptolestes ferrugineus (Stephens, the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel, the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L., the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.

  8. Variation in Susceptibility to Wheat dwarf virus among Wild and Domesticated Wheat

    Science.gov (United States)

    Nygren, Jim; Shad, Nadeem; Kvarnheden, Anders; Westerbergh, Anna

    2015-01-01

    We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp.) and domesticated wheat (Triticum spp.) and Wheat dwarf virus (WDV). The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes) and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus) in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i) continuous reduction in growth over time, ii) weak response at an early stage of plant development but a much stronger response at a later stage, and iii) remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in wheat. PMID

  9. Variation in susceptibility to Wheat dwarf virus among wild and domesticated wheat.

    Directory of Open Access Journals (Sweden)

    Jim Nygren

    Full Text Available We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp. and domesticated wheat (Triticum spp. and Wheat dwarf virus (WDV. The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i continuous reduction in growth over time, ii weak response at an early stage of plant development but a much stronger response at a later stage, and iii remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in

  10. Wheat-Dependent Exercise-Induced Anaphylaxis Sensitized with Hydrolyzed Wheat Protein in Soap

    Directory of Open Access Journals (Sweden)

    Yuko Chinuki

    2012-01-01

    Full Text Available Wheat-dependent exercise-induced anaphylaxis (WDEIA is a specific form of wheat allergy typically induced by exercise after ingestion of wheat products. Wheat ω-5 gliadin is a major allergen associated with conventional WDEIA, and detection of serum immunoglobulin E (IgE specific to recombinant ω-5 gliadin is a reliable method for its diagnosis. Recently, an increased incidence of a new subtype of WDEIA, which is likely to be sensitized via a percutaneous and/or rhinoconjunctival route to hydrolyzed wheat protein (HWP, has been observed. All of the patients with this new subtype had used the same brand of soap, which contained HWP. Approximately half of these patients developed contact allergy several months later and subsequently developed WDEIA. In each of these patients, contact allergy with soap exposure preceded food ingestion-induced reactions. Other patients directly developed generalized symptoms upon ingestion of wheat products. The predominant observed symptom of the new WDEIA subtype was angioedema of the eyelids; a number of patients developed anaphylaxis. This new subtype of WDEIA has little serum ω-5 gliadin-specific serum IgE.

  11. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    Science.gov (United States)

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Near infrared hyperspectral imaging of blends of conventional and waxy hard wheats

    Directory of Open Access Journals (Sweden)

    Stephen R. Delwiche

    2018-02-01

    Full Text Available Recent development of hard winter waxy (amylose-free wheat adapted to the North American climate has prompted the quest to find a rapid method that will determine mixture levels of conventional wheat in lots of identity preserved waxy wheat. Previous work documented the use of conventional near infrared (NIR reflectance spectroscopy to determine the mixture level of conventional wheat in waxy wheat, with an examined range, through binary sample mixture preparation, of 0–100% (weight conventional / weight total. The current study examines the ability of NIR hyperspectral imaging of intact kernels to determine mixture levels. Twenty-nine mixtures (0, 1, 2, 3, 4, 5, 10, 15, …, 95, 96, 97, 98, 99, 100% were formed from known genotypes of waxy and conventional wheat. Two-class partial least squares discriminant analysis (PLSDA and statistical pattern recognition classifier models were developed for identifying each kernel in the images as conventional or waxy. Along with these approaches, conventional PLS1 regression modelling was performed on means of kernel spectra within each mixture test sample. Results indicated close agreement between all three approaches, with standard errors of prediction for the better preprocess transformations (PLSDA models or better classifiers (pattern recognition models of approximately 9 percentage units. Although such error rates were slightly greater than ones previously published using non-imaging NIR analysis of bulk whole kernel wheat and wheat meal, the HSI technique offers an advantage of its potential use in sorting operations.

  13. Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.)

    Science.gov (United States)

    The low-molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins that play a critical role in the determination of wheat flour bread-making quality. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and Glu-D3), on t...

  14. Pasta production: complexity in defining processing conditions for reference trials and quality assessment models

    Science.gov (United States)

    Pasta is a simple food made from water and durum wheat (Triticum turgidum subsp. durum) semolina. As pasta increases in popularity, studies have endeavored to analyze the attributes that contribute to high quality pasta. Despite being a simple food, the laboratory scale analysis of pasta quality is ...

  15. Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage

    Directory of Open Access Journals (Sweden)

    Iduna Arduini

    2016-06-01

    Full Text Available Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (Triticum durum Desf., bread wheat (T. aestivum L. and barley (Hordeum vulgare L. were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley >durum wheat >bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.

  16. Applicability of Mixolab test with local wheat flours

    Directory of Open Access Journals (Sweden)

    Daniel Vazquez

    2015-04-01

    Full Text Available Several types of equipment have been used to predict dough behaviour during breadmaking. The complexity of requirements means that no device is able to predict all the properties, and therefore, new tests are released continuously. The Chopin Mixolab mixes the dough at different temperatures, allowing the study of dough mixing properties, weakening, gelatinization, gel stability and retrogradation in one test. The objective of this work was to study the suitability of the Mixolab to predict rheological properties and breadmaking quality of local wheats. Flour was obtained from 29 wheat samples  from different genotypes and environments. The correlation of results from traditional analyses  (test weight, protein content, sedimentation volume, wet gluten, Falling Number, Alveograph and Farinograph  with Mixolab parameters was studied. The properties of two different bread types were compared with all these parameters. Stability and water absorption values from the Farinograph were highly correlated with the respective Mixolab parameters. It was concluded that wheat samples could be sorted by mixing properties in similar order independently of which method was used. Beyond that, gluten strength estimators obtained from these three rheological methods and the sedimentation volume test were highly correlated. Whilst the correlation of Mixolab parameters with pan loaf volume was not as high as traditional ones, Mixolab developing time, stability and C5 were the best correlated with the most important hearth bread characteristics. Studies performed by other researchers, using wheats from diverse origins, found different results. The need for empirical rheology evaluation with local wheat samples was proved.

  17. Australian wheat production expected to decrease by the late 21st century.

    Science.gov (United States)

    Wang, Bin; Liu, De L; O'Leary, Garry J; Asseng, Senthold; Macadam, Ian; Lines-Kelly, Rebecca; Yang, Xihua; Clark, Anthony; Crean, Jason; Sides, Timothy; Xing, Hongtao; Mi, Chunrong; Yu, Qiang

    2017-12-28

    Climate change threatens global wheat production and food security, including the wheat industry in Australia. Many studies have examined the impacts of changes in local climate on wheat yield per hectare, but there has been no assessment of changes in land area available for production due to changing climate. It is also unclear how total wheat production would change under future climate when autonomous adaptation options are adopted. We applied species distribution models to investigate future changes in areas climatically suitable for growing wheat in Australia. A crop model was used to assess wheat yield per hectare in these areas. Our results show that there is an overall tendency for a decrease in the areas suitable for growing wheat and a decline in the yield of the northeast Australian wheat belt. This results in reduced national wheat production although future climate change may benefit South Australia and Victoria. These projected outcomes infer that similar wheat-growing regions of the globe might also experience decreases in wheat production. Some cropping adaptation measures increase wheat yield per hectare and provide significant mitigation of the negative effects of climate change on national wheat production by 2041-2060. However, any positive effects will be insufficient to prevent a likely decline in production under a high CO 2 emission scenario by 2081-2100 due to increasing losses in suitable wheat-growing areas. Therefore, additional adaptation strategies along with investment in wheat production are needed to maintain Australian agricultural production and enhance global food security. This scenario analysis provides a foundation towards understanding changes in Australia's wheat cropping systems, which will assist in developing adaptation strategies to mitigate climate change impacts on global wheat production. © 2017 John Wiley & Sons Ltd.

  18. Genetic analysis of amino acid content in wheat grain

    Indian Academy of Sciences (India)

    2014-08-22

    Aug 22, 2014 ... High general heritability of tyrosine (36.3%), arginine. (45.8%), lysine ... especially improving the amino acid composition of protein. Contents of wheat ...... or Triticale, low-protein diets for growing-finishing swine. Anim. Sci.

  19. [Wheat anaphylaxis or wheat-dependent exercise-induced anaphylaxis caused by use of a soap product which contains hydrolyzed wheat proteins. -a report of 12 cases-].

    Science.gov (United States)

    Sugiyama, Akiko; Kishikawa, Reiko; Nishie, Haruko; Takeuchi, Satoshi; Shimoda, Terufumi; Iwanaga, Tomoaki; Nishima, Sankei; Furue, Masutaka

    2011-11-01

    Recently, it has become a social problem that hydrolyzed wheat protein in facial soap can induce wheat allergy including wheat-dependent exercise-induced anaphylaxis (WDEIA). We described the clinical characteristics of the patients related. We collected 12 cases who had had a medical examination from January to October in 2010. All the patients were female and mean age was 36.0± 9.9 years. All of them had had no prior symptoms history of wheat allergy, they gradually developed wheat anaphylaxis or WDEIA in an average of 2 years after they started to use a soap product in question which contains hydrolyzed wheat proteins. Most patients suffered immediate contact allergic reactions after or at the time of washing their face with the soap product. 10 of 12 patients showed a low level of IgE to CAP-recombinant ω-5-gliadin. Episodes of anaphylaxis were prevented by avoiding both intake of wheat-containing foods and usage of the soap product. We concluded that their wheat anaphylaxis is likely to be caused by epicutaneous sensitization of the hydrolyzed wheat proteins in the soap product. It was important that physicians should know the possibility of sensitization from non-dietary antigen.

  20. Fibres and energy from wheat straw by simple practice

    Energy Technology Data Exchange (ETDEWEB)

    Leponiemi, A.

    2011-06-15

    The overall purpose of this work is to evaluate the possibilities of wheat straw for fibre and energy production and address the question of whether or not it is possible to develop a cost-effective process for producing good quality pulp from wheat straw for current paper or paperboard products. In addition, in light of the green energy boom, the question of whether fibre production could give added value to energy production using wheat straw is addressed. Due to the logistics of the bulky raw material, the process should be applied on a small scale that determines the requirements for the process. The process should be simple, have low chemical consumption and be environmentally safe. The processes selected for the study were based on an initial hot water treatment. Actual defibration in the 'chemical' approach was then performed using a subsequent alkaline peroxide bleaching process or in the 'mechanical' approach through mechanical refining. In both approaches, energy can be produced from lower quality material such as dissolved solids or fines. In this work, one of the primary aims besides the development of the above-mentioned process is to investigate the chemical storage of wheat straw which decays easily between harvesting periods and examine its effects on pulping and pulp properties. In addition, the aim of this work is to determine the market potential for non-wood pulp and evaluate non-wood pulp production. The results showed that the 'chemical' approach produced fibres for printing and writing. The quality of the pulp was relatively good, but the chemical consumption at the target brightness of 75% was high, indicating that a chemical recovery would be needed unless the brightness target could be significantly reduced. The 'mechanical' approach produced unbleached fibres for fluting and the energy production from fines and dissolved solids generated additional income. The results also showed that it is possible

  1. Comparative characteristics of grain classifications of soft wheat of Kazakhstan and major grain-producing countries

    Directory of Open Access Journals (Sweden)

    D. A. Shaimerdenova

    2018-01-01

    Full Text Available Soft wheat is one of the most important crops, grown in more than 130 countries. To date, one-fifth of the world's wheat, or about 150 million tons a year, is sold on international markets. In the world trade traditionally dominated by the US, Australia, Canada and Argentina. Kazakhstan, being on the 15th place in the production of wheat grain, is among the first ten exporters - in 2017 the country exported about 8 million tons to the amount of 1.5 billion dollars. USA, then, as potential export opportunities are much higher, as evidenced by annual carryover stocks at 3 million tons. According to experts, considerable differences in the classification of wheat grain used in Kazakhstan and in other countries participating in the grain market and the methods for assessing the technological dignity indicators (TDs laid down in the classifications are a significant obstacle to increasing the export potential of wheat grains. In view of this, an analysis was made of grain classifications of wheat grains used in the most important grain producing countries, TD indicators were determined, methods for their evaluation, and differences were revealed. It is established that in countries that are stable in the quantitative and qualitative characteristics of grain, an insignificant list of TD indicators is adopted, while they characterize the physical quality and state of the grain, which may indicate a general suitability for grinding. It is determined that in Russia and Kazakhstan, in determining the contamination, such an indicator as dockage is not taken into account. Comparative tests of different methods of sampling and determination of contamination have been carried out, and correlation coefficients have been established between indicators of contamination determined by different methods.

  2. Agriproteomics of Bread Wheat: Comparative Proteomics and Network Analyses of Grain Size Variation.

    Science.gov (United States)

    Dawkar, Vishal V; Dholakia, Bhushan B; Gupta, Vidya S

    2015-07-01

    Agriproteomics signifies the merging of agriculture research and proteomics systems science and is impacting plant research and societal development. Wheat is a frequently consumed foodstuff, has highly variable grain size that in effect contributes to wheat grain yield and the end-product quality. Very limited information is available on molecular basis of grain size due to complex multifactorial nature of this trait. Here, using liquid chromatography-mass spectrometry, we investigated the proteomics profiles from grains of wheat genotypes, Rye selection 111 (RS111) and Chinese spring (CS), which differ in their size. Significant differences in protein expression were found, including 33 proteins uniquely present in RS111 and 32 only in CS, while 54 proteins were expressed from both genotypes. Among differentially expressed proteins, 22 were upregulated, while 21 proteins were downregulated in RS111 compared to CS. Functional classification revealed their role in energy metabolism, seed storage, stress tolerance and transcription. Further, protein interactive network analysis was performed to predict the targets of identified proteins. Significantly different interactions patterns were observed between these genotypes with detection of proteins such as Cyp450, Sus2, and WRKY that could potentially affect seed size. The present study illustrates the potentials of agriproteomics as a veritable new frontier of plant omics research.

  3. Durum Wheat Cover Analysis in the Scope of Policy and Market Price Changes: A Case Study in Southern Italy

    Directory of Open Access Journals (Sweden)

    Si Mokrane Siad

    2017-02-01

    Full Text Available Agricultural land systems are the result of human interactions with the natural environment, and subjective evidence of socio-economic and environmental interactions has been demonstrated. Nevertheless, it is still difficult to analyze empirically the link between agricultural market and policy, as well as the environmental response due to changes in crop management by local stakeholders. In this study, we propose a cross investigation and analysis to bring the link between vegetation cover, policy, market and farmer’s behavior to light. Our methodology is a combination of a rational positive and analogical approach between the quantifiable and non-quantifiable agents on a temporal basis. The method is applied to a dominant mono-crop agricultural watershed in Southern Italy that has been dedicated to durum wheat cultivation. In this region, we studied the relationship between the Common Agricultural Policy (CAP, durum wheat market price, vegetation cover and land allocation. As a first step, we conducted a separate analysis for each factor, exploiting Moderate Resolution Imaging Spectroradiometer (MODIS satellite observed Leaf Area Index (LAI to analyze the land vegetation space–time distribution over the period 2000–2014 and three Land Satellite (Landsat validated images as check-points for the agricultural pattern and CAP’s reforms. We used the Farm Accountancy Data Network (FADN and Eurostat data to investigate the on-farm accountancy and the durum wheat market price changes, respectively. Based on the study period, we developed a storyline of the major relevant CAP’s policy changes. In a second step, we conducted a comparative analysis where the CAP’s reforms were used as interpretational support, the land allocation and the on-farm accountability for CAP’s implementation, the price of durum wheat and the LAI for analytical comparison. We found interesting insights regarding the non-agronomic driving forces of LAI dynamics. The

  4. Relationship between the dough quality and content of specific glutenin proteins in wheat mill streams, and its application to making flour suitable for instant Chinese noodles.

    Science.gov (United States)

    Yahata, Eriko; Maruyama-Funatsuki, Wakako; Nishio, Zenta; Yamamoto, Yoshihiko; Hanaoka, Akihiro; Sugiyama, Hisashi; Tanida, Masatoshi; Saruyama, Haruo

    2006-04-01

    The content of specific proteins such as high-molecular-weight glutenin subunits HMW-GS 5+10 and low-molecular-weight glutenin subunits LMW-GS KS2 in wheat mill streams of extra-strong Kachikei 33 wheat was quantified by SDS-PAGE and 2D-PAGE. The mill streams showed varied quantities of HMW-GS 5+10 (0.077 to 2.007 mg/g of mill stream), LMW-GS KS2 (0.018 to 0.586 mg/g of mill stream) and total protein (9.42% to 18.98%). The contents of these specific proteins in the mill streams were significantly correlated with the SDS sedimentation volume and the mixing properties, which are respective indices of specific loaf volume and dough strength. The contents of these specific glutenin proteins in the mill streams were therefore found to be significantly important for improving the dough quality suitable for bread and Chinese noodles. Accordingly, we present here the application of this information to the development of an effective method for producing mill streams with high quality and yield that are suitable for instant Chinese noodles.

  5. Empirical Study on the Sustainability of China’s Grain Quality Improvement: The Role of Transportation, Labor, and Agricultural Machinery

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2018-02-01

    Full Text Available As a major part of farming sustainability, the issues of grain production and its quality improvement have been important in many countries. This paper aims to address these issues in China. Based on the data from the main production provinces and by applying the stochastic frontier analysis methodology, we find that the improvement of transportation and the use of agricultural machinery have become the main driving forces for grain quality improvement in China. After further studying different provinces’ potentials of grain quality improvement, we show that grain quality has increased steadily. Therefore, we can conclude China’s grain quality improvement is indeed sustainable. Furthermore, different grains like rice, wheat, and corn share similar characteristics in terms of quality improvement, but the improvement rate for rice is relatively low, while those of corn and wheat are relatively high. Moreover, the overall change of efficiency gain of grain quality improvement is not significant for different provinces. The efficiency gains of the quality improvements for rice and wheat even decrease slightly. In addition, we find that only expanding grain quality improvement potential can simultaneously achieve the dual objectives of improving grain quality and increasing yield.

  6. Empirical Study on the Sustainability of China’s Grain Quality Improvement: The Role of Transportation, Labor, and Agricultural Machinery

    Science.gov (United States)

    Zhang, Ming; Duan, Fang; Mao, Zisen

    2018-01-01

    As a major part of farming sustainability, the issues of grain production and its quality improvement have been important in many countries. This paper aims to address these issues in China. Based on the data from the main production provinces and by applying the stochastic frontier analysis methodology, we find that the improvement of transportation and the use of agricultural machinery have become the main driving forces for grain quality improvement in China. After further studying different provinces’ potentials of grain quality improvement, we show that grain quality has increased steadily. Therefore, we can conclude China’s grain quality improvement is indeed sustainable. Furthermore, different grains like rice, wheat, and corn share similar characteristics in terms of quality improvement, but the improvement rate for rice is relatively low, while those of corn and wheat are relatively high. Moreover, the overall change of efficiency gain of grain quality improvement is not significant for different provinces. The efficiency gains of the quality improvements for rice and wheat even decrease slightly. In addition, we find that only expanding grain quality improvement potential can simultaneously achieve the dual objectives of improving grain quality and increasing yield. PMID:29401727

  7. Shelf life extension of whole-wheat breadsticks: Formulation and packaging strategies.

    Science.gov (United States)

    Alamprese, Cristina; Cappa, Carola; Ratti, Simona; Limbo, Sara; Signorelli, Marco; Fessas, Dimitrios; Lucisano, Mara

    2017-09-01

    The aim of this study was the shelf life extension of whole-wheat breadsticks through the addition of a rosemary extract and packaging under nitrogen. Shelf life was studied at four temperatures (20, 27, 35, 48°C) for up to 200 storage days. The minimal changes observed in moisture, water activity and texture of the samples, coupled with the high peroxide values (13-539meqO 2 /kg fat ) measured at the end of storage, and the exponential increase of hexanal concentrations (up to 13-34mg/kg) confirmed that quality decay of whole-wheat breadsticks is mainly associated to lipid oxidation. The kinetic study of oxidation development and the consumer sensory acceptance determined by the survival analysis demonstrated that the rosemary extract addition yields a 42% shelf life extension, higher than that observed using nitrogen in the package (24-29%). The combination of the formulation and packaging strategies gave the best result (83% shelf life extension at 25°C). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Influence of wheat kernel physical properties on the pulverizing process.

    Science.gov (United States)

    Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula

    2014-10-01

    The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.

  9. NS Pudarka: A new winter wheat cultivar

    Directory of Open Access Journals (Sweden)

    Hristov Nikola

    2014-01-01

    Full Text Available The high-yielding, medium late winter wheat cultivar NS Pudarka was developed by crossing genetic divergent parents: line NMNH-07 and cv. NS 40S and Simonida. In cultivar NS Pudarka genes responsible for high yield potential, very good technological quality, resistance to lodging, low temperature and diseases, were successfully combined. It was registered by Ministry of agriculture, forestry and water management of Serbia Republic in 2013. This cultivar has wide adaptability and stability of yield that enable growing in different environments with optimal agricultural practice. On the base of technological quality this cultivar belongs to the second quality class, A2 farinograph subgroup and second technological group.

  10. Genetic control of wheat quality: interactions between chromosomal regions determining protein content and composition, dough rheology, and sponge and dough baking properties.

    Science.gov (United States)

    Mann, Gulay; Diffey, Simon; Cullis, Brian; Azanza, Fermin; Martin, David; Kelly, Alison; McIntyre, Lynne; Schmidt, Adele; Ma, Wujun; Nath, Zena; Kutty, Ibrahim; Leyne, P Emmett; Rampling, Lynette; Quail, Ken J; Morell, Matthew K

    2009-05-01

    While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.

  11. Study on Spectrum Estimation in Biophoton Emission Signal Analysis of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Yitao Liang

    2014-01-01

    Full Text Available The photon emission signal in visible range (380 nm–630 nm was measured from various wheat kernels by means of a low noise photomultiplier system. To study the features of the photon emission signal, the spectrum estimation method of the photon emission signal is described for the first time. The biophoton emission signal, belonging to four varieties of wheat, is analyzed in time domain and frequency domain. It shows that the intensity of the biophoton emission signal for four varieties of wheat kernels is relatively weak and has dramatic changes over time. Mean and mean square value are obviously different in four varieties; the range was, respectively, 3.7837 and 74.8819. The difference of variance is not significant. The range is 1.1764. The results of power spectrum estimation deduced that the biophoton emission signal is a low frequency signal, and its power spectrum is mostly distributed in the frequency less than 0.1 Hz. Then three parameters, which are spectral edge frequency, spectral gravity frequency, and power spectral entropy, are adopted to explain the features of the kernels’ spontaneous biophoton emission signal. It shows that the parameters of the spontaneous biophoton emission signal for different varieties of wheat are similar.

  12. 21 CFR 184.1322 - Wheat gluten.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is obtained...

  13. Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes.

    Science.gov (United States)

    Singh, Nagendra K; Dalal, Vivek; Batra, Kamlesh; Singh, Binay K; Chitra, G; Singh, Archana; Ghazi, Irfan A; Yadav, Mahavir; Pandit, Awadhesh; Dixit, Rekha; Singh, Pradeep K; Singh, Harvinder; Koundal, Kirpa R; Gaikwad, Kishor; Mohapatra, Trilochan; Sharma, Tilak R

    2007-01-01

    The high-quality rice genome sequence is serving as a reference for comparative genome analysis in crop plants, especially cereals. However, early comparisons with bread wheat showed complex patterns of conserved synteny (gene content) and colinearity (gene order). Here, we show the presence of ancient duplicated segments in the progenitor of wheat, which were first identified in the rice genome. We also show that single-copy (SC) rice genes, those representing unique matches with wheat expressed sequence tag (EST) unigene contigs in the whole rice genome, show more than twice the proportion of genes mapping to syntenic wheat chromosome as compared to the multicopy (MC) or duplicated rice genes. While 58.7% of the 1,244 mapped SC rice genes were located in single syntenic wheat chromosome groups, the remaining 41.3% were distributed randomly to the other six non-syntenic wheat groups. This could only be explained by a background dispersal of genes in the genome through transposition or other unknown mechanism. The breakdown of rice-wheat synteny due to such transpositions was much greater near the wheat centromeres. Furthermore, the SC rice genes revealed a conserved primordial gene order that gives clues to the origin of rice and wheat chromosomes from a common ancestor through polyploidy, aneuploidy, centromeric fusions, and translocations. Apart from the bin-mapped wheat EST contigs, we also compared 56,298 predicted rice genes with 39,813 wheat EST contigs assembled from 409,765 EST sequences and identified 7,241 SC rice gene homologs of wheat. Based on the conserved colinearity of 1,063 mapped SC rice genes across the bins of individual wheat chromosomes, we predicted the wheat bin location of 6,178 unmapped SC rice gene homologs and validated the location of 213 of these in the telomeric bins of 21 wheat chromosomes with 35.4% initial success. This opens up the possibility of directed mapping of a large number of conserved SC rice gene homologs in wheat

  14. Drought Tolerance in Modern and Wild Wheat

    Science.gov (United States)

    Budak, Hikmet; Kantar, Melda; Yucebilgili Kurtoglu, Kuaybe

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance. PMID:23766697

  15. Drought Tolerance in Modern and Wild Wheat

    Directory of Open Access Journals (Sweden)

    Hikmet Budak

    2013-01-01

    Full Text Available The genus Triticum includes bread (Triticum aestivum and durum wheat (Triticum durum and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides, which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.

  16. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    Science.gov (United States)

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  17. Effects of gamma irradiation on wheat quality

    International Nuclear Information System (INIS)

    Ozkaya, B.; Koksel, H.; Ozkaya, H.; Tutluer, H.

    1994-01-01

    Effect of gamma irradiation at the doses of 2.5,5.0,7.5,10.0 and 12.5 kGy on two bread wheat samples (Bezostaya and Gerek) with distinct physical and technological properties was investigated in this study.Irradiation at the levels used had no significant effect on the flour yields of both varieties.No apparent changes were observed in ash,protein and wet gluten contents of the irradiated samples and control.However,as the radiation level was increased the falling number and sedimentation values of the irradiated samples showed a steady decrease.Thiamine and riboflavin contents also decreased significantly with irradiation.Farinograph absorption increased with increasing radiation exposure.However, dough development time,stability and valorimeter values decreased as radiation levels increased.Maximum resistance to extension(Rm), resistance at constant deformation (R 5) and area(A) values of extensograms decreased in both varieties as radiation levels increased

  18. The fatty acid profile in different wheat cultivars depending on the level of contamination with microscopic fungi.

    Science.gov (United States)

    Stuper-Szablewska, Kinga; Buśko, Maciej; Góral, Tomasz; Perkowski, Juliusz

    2014-06-15

    Analyses were conducted on 30 winter wheat samples growing under controlled conditions and following inoculation with fungi Fusarium culmorum. In inoculated samples the mean concentration of 30 analysed fatty acids was significantly higher in relation to the control and amounted to 1,396 mg/kg vs. 1,046 mg/kg in the control kernels. Recorded concentrations for individual cultivars were significantly correlated with the concentration of fungal biomass. Higher concentration in the control was recorded only for the acid trans C18:2n-6. It was also found that the acid profiles are characteristic of individual cultivars. Statistical analysis showed that trans C18:2n-6, C18:1, C18:3n-3 and C18:3n-6 were the acids with the greatest discriminatory power in distinguishing inoculated samples from the control. Discriminatory analysis separated individual cultivars into quality classes of winter wheat cultivars depending on the presence of a specific fatty acid profile. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Calidad panadera de nuevos genotipos de trigo pan Bread-making quality of new genotypes of bread wheat

    Directory of Open Access Journals (Sweden)

    M. E. Dubois

    2006-12-01

    Full Text Available Se evaluó la calidad panadera de los dos mejores genotipos de trigo pan obtenidos por selección recurrente por rendimiento (C1-00-83 y C3-00-42 y seis cultivares comerciales, cultivados en la región semiárida central argentina. Se utilizó un diseño de bloques completamente aleatorizado con cuatro repeticiones. Se determinó peso hectolítrico, peso de mil semillas, contenido proteico, rendimiento en harina, gluten húmedo, parámetros alveográficos y panificación experimental. Las variables de calidad del genotipo C3-00-42 corresponden a un trigo de gran fuerza, muy tenaz, alta absorción de agua y buen volumen de pan, por consiguiente puede usarse como corrector de harinas débiles o para elaboraciones que requieran trigos fuertes. El genotipo C1-00-83 presentó los mejores valores de proteína, gluten y volumen del pan de todos los analizados, conjuntamente con un alto rendimiento en harina y gluten muy fuerte y bastante equilibrado. Los dos nuevos genotipos presentan excelentes características panaderas y ofrecen calidades industriales diferenciales.The bread- making quality of the two best genotypes of bread wheat obtained by recurrent selection by yield (C1-00-83 and C3-00-42 vs. six commercial cultivars from the Argentine central semiarid region were evaluated. A completely randomized block design with 4 repetitions was utilized. The parameters measured were: test weight, thousand kernel weight, grain proteins, yield flour, gluten test, alveograph parameters and baking test. The quality parameters of the C3-00-42 genotype corresponded to very tenacious strong gluten, with high water absorption and which produces good loaf volume. Therefore, it can be used to compensate weaker flours or to manufacture products that require strong wheat. The C1-00-83 genotype presented high yield in flour, very strong and almost balanced gluten and the best values in protein content, gluten and loaf volume of all those Trianalyzed. The two new

  20. Genealogical Analysis of the North-American Spring Wheat Varieties with Different Resistance to Pre-harvest Sprouting

    Directory of Open Access Journals (Sweden)

    Martynov Sergey

    2016-12-01

    Full Text Available A comparative analysis of genetic diversity of North American spring wheat varieties differing in resistance to pre-harvest sprouting was carried out. For identification of sources of resistance the genealogical profiles of 148 red-grained and 63 white-grained North-American spring wheat varieties with full pedigrees were calculated and estimates were made of pre-harvest sprouting. The cluster structure of the populations of red-grained and white-grained varieties was estimated. Analysis of variance revealed significant differences between the average contributions of landraces in the groups of resistant and susceptible varieties. Distribution of the putative sources of resistance in the clusters indicated that varieties having different genetic basis may have different sources of resistance. For red-grained varieties the genetic sources of resistance to pre-harvest sprouting are landraces Crimean, Hard Red Calcutta, and Iumillo, or Button, Kenya 9M-1A-3, and Kenya-U, or Red Egyptian and Kenya BF4-3B-10V1. Tracking of pedigrees showed these landraces contributed to the pedigrees, respectively, via Thatcher, Kenya-Farmer, and Kenya-58, which were likely donors of resistance for red-grained varieties. For white-grained varieties the sources of resistance were landraces Crimean, Hard Red Calcutta, Ostka Galicyjska, Iumillo, Akakomugi, Turco, Hybrid English, Rough Chaff White and Red King, and putative donors of resistance — Thatcher, RL2265, and Frontana. The genealogical profile of accession RL4137, the most important donor of resistance to pre-harvest sprouting in North American spring wheat breeding programmes, contains almost all identified sources of resistance.