WorldWideScience

Sample records for wheat mutant lines

  1. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    Science.gov (United States)

    Wang, Tiegu; Huang, Qunce; Feng, Weisen

    2007-10-01

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.

  2. A Mutant with Expression Deletion of Gene Sec-1 in a 1RS.1BL Line and Its Effect on Production Quality of Wheat.

    Directory of Open Access Journals (Sweden)

    Zhi Li

    Full Text Available The chromosome arm 1RS of rye (Secale cereal L. has been used worldwide as a source of genes for agronomic and resistant improvement. However, the 1RS arm in wheat has end-use quality defects that are partially attributable to the presence of ω-secalins, which are encoded by genes at the Sec-1 locus. Various attempts in removing the Sec-1 genes from the 1RS.1BL translocation chromosome have been made. In the present study, two new primary 1RS.1BL translocation lines, T917-26 and T917-15, were developed from a cross between wheat variety "A42912" and Chinese local rye "Weining." The lines T917-15 and T917-26 carried a pair of intact and homogeneous 1RS.1BL chromosomes. The line T917-26 also harbored an expression deletion of some genes at the Sec-1 locus, which originated from a mutation that occurred simultaneously with wheat-rye chromosome translocations. These results suggest that the accompanying mutations of the evolutionarily significant translocations are remarkable resources for plant improvement. Comparison of translocation lines with its wheat parent showed improvements in the end-use quality parameters, which included protein content (PC, water absorption (WA, sodium dodecyl sulfate sedimentation (SDSS, wet gluten (WG, dry gluten (DG and dough stickiness (DS, whereas significant reduction in gluten index (GI and stability time (ST were observed. These findings indicate that 1RS in wheat has produced a higher amount of protein, although these comprised worse compositions. However, in the T917-26 line that harbored an expression deletion mutation in the Sec-1 genes, the quality parameters were markedly improved relative to its sister line, T917-15, especially for GI and DS (P < 0.05. These results indicated that expression deletion of Sec-1 genes significantly improves the end-use quality of wheat cultivars harboring the 1RS.1BL translocation. Strategies to remove the Sec-1 genes from the 1RS.1BL translocation in wheat improvement are

  3. Wheat ABA-insensitive mutants result in reduced grain dormancy

    Science.gov (United States)

    Schramm, Elizabeth C.; Nelson, Sven K.

    2014-01-01

    This paper describes the isolation of wheat mutants in the hard red spring Scarlet resulting in reduced sensitivity to the plant hormone abscisic acid (ABA) during seed germination. ABA induces seed dormancy during embryo maturation and inhibits the germination of mature seeds. Wheat sensitivity to ABA gradually decreases with dry after-ripening. Scarlet grain normally fails to germinate when fully dormant, shows ABA sensitive germination when partially after-ripened, and becomes ABA insensitive when after-ripened for 8–12 months. Scarlet ABA-insensitive (ScABI) mutants were isolated based on the ability to germinate on 5 µM ABA after only 3 weeks of after-ripening, a condition under which Scarlet would fail to germinate. Six independent seed-specific mutants were recovered. ScABI 1, ScABI2, ScABI3 and ScABI4 are able to germinate more efficiently than Scarlet at up to 25 µM ABA. The two strongest ABA insensitive lines, ScABI3 and ScABI4, both proved to be partly dominant suggesting that they result from gain-of-function mutations. The ScABI1, ScABI2, ScABI3, ScABI4, and ScABI5 mutants after-ripen more rapidly than Scarlet. Thus, ABA insensi-tivity is associated with decreased grain dormancy in Scarlet wheat. This suggests that ABA sensitivity is an important factor controlling grain dormancy in wheat, a trait that impacts seedling emergence and pre-harvest sprouting resistance. PMID:25431501

  4. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    Science.gov (United States)

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  5. A dwarf wheat mutant is associated with increased drought ...

    African Journals Online (AJOL)

    ... was significantly higher than Jingdong 6. Most of the s-dwarf seedlings survived in recovering experiement after water loss. The stalk of s-dwarf seedling also showed reduced gravitropism. This is the first report about a new dwarf wheat mutant associated with increased drought resistance and altered stalk gravitropism.

  6. Boron tolerance in NS wheat lines

    Directory of Open Access Journals (Sweden)

    Brdar Milka

    2006-01-01

    Full Text Available Boron is an essential micronutrient for higher plants. Present in excessive amounts boron becomes toxic and can limit plant growth and yield. Suppression of root growth is one of the symptoms of boron toxicity in wheat. This study was undertaken to investigate the response of 10 perspective NS lines of wheat to high concentrations of boron. Analysis of root growth was done on young plants, germinated and grown in the presence of different concentrations of boric acid (0, 50,100 and 150 mg/1. Significant differences occurred between analyzed genotypes and treatments regarding root length. Average suppression of root growth was between 11,6 and 34,2%, for line NS 252/02 are even noted 61,4% longer roots at treatments in relation to the control. Lines with mean suppression of root growth less than 20% (NS 101/02, NS 138/01, NS 53/03 and NS 73/02 may be considered as boron tolerant. Spearmans coefficients showed high level of agreement regarding rang of root length for genotypes treated with 100 and 150 mg H3BO3/l.

  7. Modified Starch of Sorghum Mutant Line Zh-30 for High Fiber Muffin Products

    Directory of Open Access Journals (Sweden)

    D.D.S. Santosa

    2009-01-01

    Full Text Available Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30 has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour.

  8. A large-scale mutant panel in wheat developed using heavy-ion beam mutagenesis and its application to genetic research

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Koji, E-mail: murai@fpu.ac.jp [Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195 (Japan); Nishiura, Aiko [Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195 (Japan); Kazama, Yusuke [RIKEN, Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Abe, Tomoko [RIKEN, Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); RIKEN, Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2013-11-01

    Mutation analysis is a powerful tool for studying gene function. Heavy-ion beam mutagenesis is a comparatively new approach to inducing mutations in plants and is particularly efficient because of its high linear energy transfer (LET). High LET radiation induces a higher rate of DNA double-strand breaks than other mutagenic methods. Over the last 12 years, we have constructed a large-scale mutant panel in diploid einkorn wheat (Triticum monococcum) using heavy-ion beam mutagenesis. Einkorn wheat seeds were exposed to a heavy-ion beam and then sown in the field. Selfed seeds from each spike of M{sub 1} plants were used to generate M{sub 2} lines. Every year, we obtained approximately 1000 M{sub 2} lines and eventually developed a mutant panel with 10,000 M{sub 2} lines in total. This mutant panel is being systematically screened for mutations affecting reproductive growth, and especially for flowering-time mutants. To date, we have identified several flowering-time mutants of great interest: non-flowering mutants (mvp: maintained vegetative phase), late-flowering mutants, and early-flowering mutants. These novel mutations will be of value for investigations of the genetic mechanism of flowering in wheat.

  9. The wheat mutant DELLA-encoding gene (Rht-B1c) affects plant photosynthetic responses to cadmium stress.

    Science.gov (United States)

    Dobrikova, Anelia G; Yotsova, Ekaterina K; Börner, Andreas; Landjeva, Svetlana P; Apostolova, Emilia L

    2017-05-01

    Тhe sensitivity to cadmium (Cd) stress of two near-isogenic wheat lines with differences at the Rht-B1 locus, Rht-B1a (tall wild type, encoding DELLA proteins) and Rht-B1c (dwarf mutant, encoding modified DELLA proteins), was investigated. The effects of 100 μM CdCl2 on plant growth, pigment content and functional activity of the photosynthetic apparatus of wheat seedlings grown on a nutrient solution were evaluated through a combination of PAM chlorophyll fluorescence, oxygen evolution, oxidation-reduction kinetics of P700 and 77 K fluorescence. The results showed that the wheat mutant (Rht-B1c) was more tolerant to Cd stress compared to the wild type (Rht-B1a), as evidenced by the lower reductions in plant growth and pigment content, lower inhibition of photosystem I (PSI) and photosystem II (PSII) photochemistry and of the oxygen evolution measured with Clark-type and Joliot-type electrodes. Furthermore, the enhanced Cd tolerance was accompanied by increased Cd accumulation within mutant plant tissues. The molecular mechanisms through which the Rht-B1c mutation improves plant tolerance to Cd stress involve structural alterations in the mutant photosynthetic membranes leading to better protection of the Mn cluster of oxygen-evolving complex and increased capacity for PSI cyclic electron transport, protecting photochemical activity of the photosynthetic apparatus under stress. This study suggests a role for the Rht-B1c-encoded DELLA proteins in protective mechanisms and tolerance of the photosynthetic apparatus in wheat plants exposed to heavy metals stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. 'Overgrowth' mutants in barley and wheat: new alleles and phenotypes of the 'Green Revolution' DELLA gene.

    Science.gov (United States)

    Chandler, Peter Michael; Harding, Carol Anne

    2013-04-01

    A suppressor screen using dwarf mutants of barley (Hordeum vulgare L.) led to the isolation of 'overgrowth' derivatives, which retained the original dwarfing gene but grew at a faster rate because of a new mutation. The new mutations were in the Slender1 (Sln1) gene (11/13 cases), which encodes the DELLA protein central to gibberellin (GA) signalling, showed 100% genetic linkage to Sln1 (1/13), or were in the Spindly1 (Spy1) gene (1/13), which encodes another protein involved in GA signalling. The overgrowth mutants were characterized by increased GA signalling, although the extent still depended on the background GA biosynthesis capacity, GA receptor function, and DELLA activity. A comparison between two GA responses, α-amylase production and leaf growth rate, revealed degrees of specificity for both the overgrowth allele and the GA response under consideration. Many overgrowth mutants were also isolated in a dwarf line of bread wheat (Triticum aestivum L.) and 19 new alleles were identified in the Rht-B1 gene, one of the 'Green Revolution' semi-dwarfing genes and the orthologue of Sln1. The sites of amino acid substitutions in the DELLA proteins of both species provide insight into DELLA function, and included examples where identical but independent substitutions were observed. In both species, the starting lines were too dwarfed to be directly useful in breeding programmes, but new overgrowth derivatives with semidwarf heights have now been characterized. The variation they exhibit in GA-influenced traits identifies novel alleles with perfect markers that are of potential use in breeding.

  11. Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. METHODOLOGY/PRINCIPAL FINDINGS: Octoploid triticale was derived from common wheat T. aestivum L. 'Mianyang11'×rye S. cereale L. 'Kustro' and some progeny were obtained by the controlled backcrossing of triticale with 'Mianyang11' followed by self-fertilization. Genomic in situ hybridization (GISH using rye genomic DNA and fluorescence in situ hybridization (FISH using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in 'Mianyang11'. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. CONCLUSIONS/SIGNIFICANCE: These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat.

  12. An Ethylmethane Sulfonate Mutant Resource in Pre-Green Revolution Hexaploid Wheat.

    Science.gov (United States)

    Dhaliwal, Amandeep K; Mohan, Amita; Sidhu, Gaganjot; Maqbool, Rizwana; Gill, Kulvinder S

    2015-01-01

    Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L.) were developed in post-green revolution cultivars. Besides the identification and isolation of agronomically important alleles in the mutant population of pre-green revolution cultivar, this population can be a vital resource for expanding the genetic diversity for wheat breeding. Here we report an Ethylmethane Sulfonate (EMS) generated mutant population consisting of 4,180 unique mutant plants in a pre-green revolution spring wheat cultivar 'Indian'. Released in early 1900s, 'Indian' is devoid of any known height-reducing mutations. Unique mutations were captured by proceeding with single M2 seed from each of the 4,180 M1 plants. Mutants for various phenotypic traits were identified by detailed phenotyping for altered morphological and agronomic traits on M2 plants in the greenhouse and M3 plants in the field. Of the 86 identified mutants, 75 (87%) were phenotypically stable at the M4 generation. Among the observed phenotypes, variation in plant height was the most frequent followed by the leaf morphology. Several mutant phenotypes including looped peduncle, crooked plant morphology, 'gritty' coleoptiles, looped lower internodes, and burnt leaf tips are not reported in other plant species. Considering the extent and diversity of the observed mutant phenotypes, this population appears to be a useful resource for the forward and reverse genetic studies. This resource is available to the scientific community.

  13. An Ethylmethane Sulfonate Mutant Resource in Pre-Green Revolution Hexaploid Wheat.

    Directory of Open Access Journals (Sweden)

    Amandeep K Dhaliwal

    Full Text Available Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L. were developed in post-green revolution cultivars. Besides the identification and isolation of agronomically important alleles in the mutant population of pre-green revolution cultivar, this population can be a vital resource for expanding the genetic diversity for wheat breeding. Here we report an Ethylmethane Sulfonate (EMS generated mutant population consisting of 4,180 unique mutant plants in a pre-green revolution spring wheat cultivar 'Indian'. Released in early 1900s, 'Indian' is devoid of any known height-reducing mutations. Unique mutations were captured by proceeding with single M2 seed from each of the 4,180 M1 plants. Mutants for various phenotypic traits were identified by detailed phenotyping for altered morphological and agronomic traits on M2 plants in the greenhouse and M3 plants in the field. Of the 86 identified mutants, 75 (87% were phenotypically stable at the M4 generation. Among the observed phenotypes, variation in plant height was the most frequent followed by the leaf morphology. Several mutant phenotypes including looped peduncle, crooked plant morphology, 'gritty' coleoptiles, looped lower internodes, and burnt leaf tips are not reported in other plant species. Considering the extent and diversity of the observed mutant phenotypes, this population appears to be a useful resource for the forward and reverse genetic studies. This resource is available to the scientific community.

  14. A dwarf wheat mutant is associated with increased drought ...

    African Journals Online (AJOL)

    Owner

    'Green revolution' genes encode mutant gibberellin response modulators. Nature 400 (6741):. 256-61. Zhang et al. 1057. Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP,. Harberd NP (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses Genes Dev.

  15. Transcriptome analysis for the restrained stem development of the wheat mutant dms

    Directory of Open Access Journals (Sweden)

    Ruishi He

    2017-11-01

    Full Text Available ABSTRACT: Wheat (Triticum aestivum L. stem development significantly affects grain yield. The dwarf plants (D of wheat mutant dms was less than 30cm. Here, we were to explore the molecular basis for the restrained stem development of the dwarf plants. The results were reached by compare the young spikes and stems transcriptomes of the tall (T and D plants of mutant dms. We identified 663 genes highly expressed in stem tips. We identified 997 differentially expressed genes (DEGs in stem tips between T and D, 403 DEGs were significantly related with stem development. Most biological processes in stem tips on dwarf plants were significantly suppressed, such as phytohormone signaling etc. The sequencing analysis results were confirmed by quantitatively analysis the expression profiles of fourteen key DEGs via real-time QRT-PCR. We identified a group genes related to wheat stem development, identified a group DEGs related to the restrained stem development of D plants of dms. The suppressed phytohormone signaling, carbohydrate transport and metabolism were the major causal factors leading to dwarf plants of D. Our dataset provides a useful resource for investigating wheat stem development.

  16. An Ethylmethane Sulfonate Mutant Resource in Pre-Green Revolution Hexaploid Wheat

    OpenAIRE

    Dhaliwal, Amandeep K.; Amita Mohan; Gaganjot Sidhu; Rizwana Maqbool; Kulvinder S. Gill

    2015-01-01

    Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L.) were developed in post-green revolution cultivars. Bes...

  17. Hyperspectral imaging to identify salt-tolerant wheat lines

    Science.gov (United States)

    Moghimi, Ali; Yang, Ce; Miller, Marisa E.; Kianian, Shahryar; Marchetto, Peter

    2017-05-01

    In order to address the worldwide growing demand for food, agriculture is facing certain challenges and limitations. One of the important threats limiting crop productivity is salinity. Identifying salt tolerate varieties is crucial to mitigate the negative effects of this abiotic stress in agricultural production systems. Traditional measurement methods of this stress, such as biomass retention, are labor intensive, environmentally influenced, and often poorly correlated to salinity stress alone. In this study, hyperspectral imaging, as a non-destructive and rapid method, was utilized to expedite the process of identifying relatively the most salt tolerant line among four wheat lines including Triticum aestivum var. Kharchia, T. aestivum var. Chinese Spring, (Ae. columnaris) T. aestivum var. Chinese Spring, and (Ae. speltoides) T. aestivum var. Chinese Spring. To examine the possibility of early detection of a salt tolerant line, image acquisition was started one day after stress induction and continued on three, seven, and 12 days after adding salt. Simplex volume maximization (SiVM) method was deployed to detect superior wheat lines in response to salt stress. The results of analyzing images taken as soon as one day after salt induction revealed that Kharchia and (columnaris)Chinese Spring are the most tolerant wheat lines, while (speltoides) Chinese Spring was a moderately susceptible, and Chinese Spring was a relatively susceptible line to salt stress. These results were confirmed with the measuring biomass performed several weeks later.

  18. High-molecular-weight glutenin subunit-deficient mutants induced by ion beam and the effects of Glu-1 loci deletion on wheat quality properties.

    Science.gov (United States)

    Zhang, Lujun; Chen, Qiufang; Su, Mingjie; Yan, Biao; Zhang, Xiangqi; Jiao, Zhen

    2016-03-15

    High-molecular-weight glutenin subunits (HMW-GSs) play a critical role in determining the viscoelastic properties of wheat. Mutations induced by ion beam radiation have been applied to improve the yield and quality of crop. In this study, HMW-GS-deficient mutant lines were selected and the effects of Glu-1 loci deletion on wheat quality properties were illustrated according to the analysis of dry seeds of common wheat (Triticum aestivum L.) Xiaoyan 81 treated with a nitrogen ion beam. Three HMW-GS-deficient mutant lines were obtained and then detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Large-chromosome-fragment deletion resulted in specific deficiencies, and the deleted region sizes were determined using molecular markers. Agronomic characters, quantity and proportion of glutenins and dough microstructure of the deletion lines all proved to be quite different from those of wild-type Xiaoyan 81. Analysis of quality properties suggested that GluA1(-) had superior property parameters, while GluB1(-) and GluD1(-) both showed a significant decrease in quality properties compared with Xiaoyan 81. The effects of the three Glu-1 loci on flour and dough quality-related parameters should be Glu-D1 > Glu-B1 > Glu-A1. Ion beam radiation can be used as a mutagen to create new crop mutants. © 2015 Society of Chemical Industry.

  19. Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat.

    Science.gov (United States)

    Guo, Huijun; Liu, Yunchuan; Li, Xiao; Yan, Zhihui; Xie, Yongdun; Xiong, Hongchun; Zhao, Linshu; Gu, Jiayu; Zhao, Shirong; Liu, Luxiang

    2017-05-08

    Transient starch provides carbon and energy for plant growth, and its synthesis is regulated by the joint action of a series of enzymes. Starch synthesis IV (SSIV) is one of the important starch synthase isoforms, but its impact on wheat starch synthesis has not yet been reported due to the lack of mutant lines. Using the TILLING approach, we identified 54 mutations in the wheat gene TaSSIVb-D, with a mutation density of 1/165 Kb. Among these, three missense mutations and one nonsense mutation were predicted to have severe impacts on protein function. In the mutants, TaSSIVb-D was significantly down-regulated without compensatory increases in the homoeologous genes TaSSIVb-A and TaSSIVb-B. Altered expression of TaSSIVb-D affected granule number per chloroplast; compared with wild type, the number of chloroplasts containing 0-2 granules was significantly increased, while the number containing 3-4 granules was decreased. Photosynthesis was affected accordingly; the maximum quantum yield and yield of PSII were significantly reduced in the nonsense mutant at the heading stage. These results indicate that TaSSIVb-D plays an important role in the formation of transient starch granules in wheat, which in turn impact the efficiency of photosynthesis. The mutagenized population created in this study allows the efficient identification of novel alleles of target genes and could be used as a resource for wheat functional genomics.

  20. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering.

    Directory of Open Access Journals (Sweden)

    Andrew Chen

    Full Text Available Most of the natural variation in wheat vernalization response is determined by allelic differences in the MADS-box transcription factor VERNALIZATION1 (VRN1. Extended exposures to low temperatures during the winter (vernalization induce VRN1 expression and promote the transition of the apical meristem to the reproductive phase. In contrast to its Arabidopsis homolog (APETALA1, which is mainly expressed in the apical meristem, VRN1 is also expressed at high levels in the leaves, but its function in this tissue is not well understood. Using tetraploid wheat lines with truncation mutations in the two homoeologous copies of VRN1 (henceforth vrn1-null mutants, we demonstrate that a central role of VRN1 in the leaves is to maintain low transcript levels of the VRN2 flowering repressor after vernalization. Transcript levels of VRN2 were gradually down-regulated during vernalization in both mutant and wild-type genotypes, but were up-regulated after vernalization only in the vrn1-null mutants. The up-regulation of VRN2 delayed flowering by repressing the transcription of FT, a flowering-integrator gene that encodes a mobile protein that is transported from the leaves to the apical meristem to induce flowering. The role of VRN2 in the delayed flowering of the vrn1-null mutant was confirmed using double vrn1-vrn2-null mutants, which flowered two months earlier than the vrn1-null mutants. Both mutants produced normal flowers and seeds demonstrating that VRN1 is not essential for wheat flowering, which contradicts current flowering models. This result does not diminish the importance of VRN1 in the seasonal regulation of wheat flowering. The up-regulation of VRN1 during winter is required to maintain low transcript levels of VRN2, accelerate the induction of FT in the leaves, and regulate a timely flowering in the spring. Our results also demonstrate the existence of redundant wheat flowering genes that may provide new targets for engineering wheat

  1. Anther and isolated microspore culture of wheat lines from northwestern and eastern Europe

    DEFF Research Database (Denmark)

    Holme, I B; Olesen, A; Hansen, N J P

    1999-01-01

    Hexaploid wheat genotypes from north-western Europe show low responses to current anther culture techniques. This phenomenon was investigated on 145 north-western European wheat lines. Twenty-seven lines from eastern Europe were included to observe the response pattern of wheat from an area, wher...

  2. Selecting winter wheat lines from a composite cross population

    OpenAIRE

    Fradgley, Nick; Wolfe, Martin; Howlett, Sally; Creissen, Henry; Girling, Robbie

    2014-01-01

    The extremely diverse genetic variation in wheat Composite Cross Populations (CCP) represents a valuable source of breeding material. Such material could be selected as part of a participatory breeding programme with the potential advantage of selecting adaptation targeted for particular environments. For example, selections could be made aimed at producing lines that would thrive under the wide range of management practices conducted as part of organic and low input farming systems. Ear...

  3. Isolation of a Wheat Cell Line with Altered Membrane Properties

    Science.gov (United States)

    Erdei, László; Vigh, László; Dudits, Dénes

    1982-01-01

    A spontaneous dimethylsulfoxide (DMSO)-tolerant cell line was isolated from a cell culture of wheat (Triticum monococcum L.). The tolerant cells were able to grow in the presence of 4% DMSO. Cells formed from protoplasts of the tolerant line required DMSO for division in culture medium of high osmotic value. Fatty acid composition and the molar ratio of phospholipids/sterols suggest a more ordered membrane structure in the tolerant line. Accordingly, a lower K+ influx rate was detected in the tolerant cells in comparison with the original line. These characteristics were maintained after 6 months' cultivation of the cells in DMSO-free growth medium. This suggested that genetic changes could be responsible for differences between the two cell lines. PMID:16662251

  4. Evaluation of Drought Tolerance of Bread Wheat Recombinant Inbred Lines

    Directory of Open Access Journals (Sweden)

    N Zafar Naderi

    2014-10-01

    Full Text Available To evaluateresponse of bread wheat recombinant inbred lines to water deficit, a split plot experiment arranged in randomized complete block design (CRBD was conducted using eight recombinant inbred lines and their parental cultivars (Roshan and Super Head with three replications under three irrigation levels (80, 120 and 160 mm evaporation from class A pan at the Agriculture Research Station of Islamic Azad University, Tabriz Branch during 2009. The results of analysis of variance data collected revealed significant difference among lines and irrigation levels for grain yield. While line × irrigation level interaction was non significant for grain yield. Based on SSI and TOL, drought tolerance indices lines number 1, 7, 41 and Roshan cultivar under 120 mm evaporation, and lines number 7 and 19 under 160 mm evaporation were the tolerant lines. Under both stress conditions according to STI, MP and GMP indices, lines number 37, 38 and Roshan cultivar were recognized as the tolerant lines to water deficiet. Cluster analyses based on grain yield and drought tolerance indices recognized the lines number 1, 30, 32, 37, 38, 41 and Roshan cultivar under 120 mm and lines number 30, 37 and 38 and Roshan under 160 mm evaporation as the most drought tolerants and higher producers.

  5. Registration of Durum Wheat Germplasm Lines with Combined Mutations in SBEIIa and SBEIIb Genes Conferring Increased Amylose and Resistant Starch.

    Science.gov (United States)

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Dubcovsky, Jorge

    2014-08-25

    Durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.], used in pasta, couscous, and flatbread production, is an important source of starch food products worldwide. The amylose portion of the starch forms resistant starch complexes that resist digestion and contribute to dietary fiber. Increasing the amount of amylose and resistant starch in wheat by mutating the STARCH BRANCHING ENZYME II (SBEII) genes has potential to provide human health benefits. Ethyl methane sulfonate mutations in the linked SBEIIa and SBEIIb paralogs were combined on chromosomes 2A (SBEIIa/b-A; Reg. No. GP-968, PI 670159), 2B (SBEIIa/b-B; Reg. No. GP-970, PI 670161), and on both chromosomes (SBEIIa/b-AB; Reg. No. GP-969, PI 670160) in the tetraploid wheat cultivar Kronos, a semidwarf durum wheat cultivar that has high yield potential and excellent pasta quality. These three double and quadruple SBEII-mutant lines were compared with a control sib line with no SBEII mutations in two field locations in California. The SBEIIa/b-AB line with four mutations showed dramatic increases in amylose (average 66%) and resistant starch (average 753%) relative to the control. However, the SBEIIa/b-AB line also showed an average 7% decrease in total starch and an 8% decrease in kernel weight. The release by the University of California-Davis of the durum wheat germplasm combining four SBEIIa and SBEIIb mutations will accelerate the deployment of these mutations in durum wheat breeding programs and the development of durum wheat varieties with increased resistant starch.

  6. Performance of dihaploid wheat lines obtained via anther culture

    Directory of Open Access Journals (Sweden)

    Salomon Marcus Vinicius

    2003-01-01

    Full Text Available The anther culture technique has been used in breeding programs to obtain haploid plants from hybrid plants of F1 generation and to develop more efficiently wheat cultivars. To study the behavior of dihaploid wheat lines and two check cultivars, IAC-24 and IAC-289, experiments were carried out under sprinkler irrigation at Monte Alegre do Sul, SP, Brazil, in an Haplic Acrisol and at Tatuí, SP, Brazil, in a Rhodic Ferrasol, during the years 1999 and 2000. Genotypes were evaluated for grain yield, 100 grain weight, plant height, resistance to leaf rust (Puccinia recondita f. sp. tritici Rob. Desm. and lodging. The genotypes were also evaluated under laboratory conditions for their Al+3 toxicity tolerance using nutrient solutions. The line 8, originated from ANA/IAC-24 cross, presented high grain yield, semidwarf plant type, heavy grain, leaf rust resistance and tolerance to Al+3 toxicity. The lines 4, 11, 12 and 14, also presented high tolerance to Al+3 toxicity in association to grain yield above 3.000 kg ha-1. These lines are suitable to be used in breeding programs to develop cultivars for acid soils.

  7. Efficient induction of Wheat-agropyron cristatum 6P translocation lines and GISH detection.

    Directory of Open Access Journals (Sweden)

    Liqiang Song

    Full Text Available The narrow genetic background restricts wheat yield and quality improvement. The wild relatives of wheat are the huge gene pools for wheat improvement and can broaden its genetic basis. Production of wheat-alien translocation lines can transfer alien genes to wheat. So it is important to develop an efficient method to induce wheat-alien chromosome translocation. Agropyroncristatum (P genome carries many potential genes beneficial to disease resistance, stress tolerance and high yield. Chromosome 6P possesses the desirable genes exhibiting good agronomic traits, such as high grain number per spike, powdery mildew resistance and stress tolerance. In this study, the wheat-A. cristatum disomic addition was used as bridge material to produce wheat-A. cristatum translocation lines induced by (60Co-γirradiation. The results of genomic in situ hybridization showed that 216 plants contained alien chromosome translocation among 571 self-pollinated progenies. The frequency of translocation was 37.83%, much higher than previous reports. Moreover, various alien translocation types were identified. The analysis of M2 showed that 62.5% of intergeneric translocation lines grew normally without losing the translocated chromosomes. The paper reported a high efficient technical method for inducing alien translocation between wheat and Agropyroncristatum. Additionally, these translocation lines will be valuable for not only basic research on genetic balance, interaction and expression of different chromosome segments of wheat and alien species, but also wheat breeding programs to utilize superior agronomic traits and good compensation effect from alien chromosomes.

  8. Butyric acid fermentation from pre-treated wheat straw by a mutant clostridium tyrobutyricum strain

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Baumann, Ivan; Westermann, Peter

    ’s platform for a variety of products for industrial use. Butyric acid is considered as a potential chemical building-block for the production of chemicals for e.g. polymeric compounds and the aim of this work was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces less acetic......Only little research on butyric acid fermentation has been carried out in relationship to bio-refinery perspectives involving strain selection, development of adapted strains, physiological analyses for higher yield, productivity and selectivity. However, a major step towards the development...... acid (higher selectivity), has a higher yield and a higher productivity of butyric acid from pre-treated lignocellulosic biomass. Pre-treated wheat straw was used as the main carbon source. After one year of serial adaptation and selection a mutant strain of C. tyrobutyricum was developed. This new...

  9. QTL mapping of adult-plant resistance to stripe rust in wheat line P9897

    Science.gov (United States)

    Stripe rust (or yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease of common wheat. Wheat line P9897 showed adult-plant resistance (APR) to stripe rust for several years. To map resistance quantitative trait loci (QTL), F2:3 lines from a cross of P9897...

  10. Molecular cytogenetic identification of a novel dwarf wheat line with ...

    Indian Academy of Sciences (India)

    2012-01-08

    Jan 8, 2012 ... It is known to possess a number of valuable genes for wheat improvement, such as tolerance to abiotic stresses, salinity and drought, and good resistance to leaf rust, yellow rust, stem rust, wheat curl mite, wheat streak mosaic virus (WSMV), barley yellow dwarf virus. (BYDV) resistance and tan spot (Jiang ...

  11. Chromatin Structure of Wheat Breeding Lines Resistant to Wheat Streak Mosaic Virus.

    Science.gov (United States)

    Wheat Streak Mosaic Virus (WSMV) is an important disease limiting wheat production, however no WSMV resistance effective above 18°C is present within the primary genetic pool of wheat (Triticum aestivum L.). In contrast, the wild relative Thinopyrum intermedium (2n=6x=42) shows good resistance to WS...

  12. The stay-green phenotype of wheat mutant tasg1 is associated with altered cytokinin metabolism.

    Science.gov (United States)

    Wang, Wenqiang; Hao, Qunqun; Tian, Fengxia; Li, Qinxue; Wang, Wei

    2016-03-01

    By measuring the cytokinin content directly and testing the sensitivity to the cytokinin inhibitor lovastatin, we demonstrated that tasg1 cytokinin metabolism is different from wild-type. Our previous studies have indicated that compared with wild-type (WT) plants, a wheat stay-green mutant tasg1 exhibited delayed senescence. In this study, we found that the root development of tasg1 occurred later than that of WT. The number of lateral roots was fewer, but the lateral root length was longer in tasg1 than in WT, which resulted in a lower root to shoot ratio in tasg1 than WT. The levels of cytokinin (CK), CK activity, and expression of CK metabolic genes were measured. We found that the total CK content in the root tips and leaf of tasg1 was greater than in WT. The accumulation of mRNA of the CK synthetic gene (TaIPT) in tasg1 was higher than in WT at 9 and 11 days during seedling growth, but the expression of CK oxidase gene (TaCKX) was significantly lower in tasg1. Furthermore, the CK inhibitor lovastatin was used to inhibit CK activity. When treated with lovastatin, both the chlorophyll content and thylakoid membrane protein stability were significantly lower in tasg1 than WT, consistent with the inhibited expression of senescence-associated genes (TaSAGs) in tasg1. Lovastatin treatment also inhibited the antioxidative capability of wheat seedlings, and tasg1 was more sensitive to lovastatin than WT, as indicated by the MDA content, protein carbonylation, and antioxidant enzyme activity. The decreased antioxidative capability after lovastatin treatment may be related to the down-regulation of some antioxidase genes. These results suggest that the CK metabolism was altered in tasg1, which may play an important role in its ability to delay senescence.

  13. Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines

    Directory of Open Access Journals (Sweden)

    Lina Maria Aguirre-Rojas

    2017-11-01

    Full Text Available The wheat curl mite, Aceria toschiella (Keifer, and a complex of viruses vectored by A. toschiella substantially reduce wheat yields in every wheat-producing continent in the world. The development of A. toschiella-resistant wheat cultivars is a proven economically and ecologically viable method of controlling this pest. This study assessed A. toschiella resistance in wheat genotypes containing the H13, H21, H25, H26, H18 and Hdic genes for resistance to the Hessian fly, Mayetiola destructor (Say and in 94M370 wheat, which contains the Dn7 gene for resistance to the Russian wheat aphid, Diuraphis noxia (Kurdjumov. A. toschiella populations produced on plants containing Dn7 and H21 were significantly lower than those on plants of the susceptible control and no different than those on the resistant control. Dn7 resistance to D. noxia and H21 resistance to M. destructor resulted from translocations of chromatin from rye into wheat (H21—2BS/2RL, Dn7—1BL/1RS. These results provide new wheat pest management information, indicating that Dn7 and H21 constitute resources that can be used to reduce yield losses caused by A. toschiella, M. destructor, D. noxia, and wheat streak mosaic virus infection by transferring multi-pest resistance to single sources of germplasm.

  14. Molecular mapping of a stripe rust resistance gene in wheat line C51

    Indian Academy of Sciences (India)

    Stripe rust, a major disease in areas where cool temperatures prevail, can strongly influence grain yield. To control this disease, breeders have incorporated seedling resistance genes from a variety of sources outside the primary wheat gene pool. The wheat line C51, introduced from the International Center for Agricultural ...

  15. Genetic rearrangements of six wheat-agropyron cristatum 6P addition lines revealed by molecular markers.

    Directory of Open Access Journals (Sweden)

    Haiming Han

    Full Text Available Agropyron cristatum (L. Gaertn. (2n = 4x = 28, PPPP not only is cultivated as pasture fodder but also could provide many desirable genes for wheat improvement. It is critical to obtain common wheat-A. cristatum alien disomic addition lines to locate the desired genes on the P genome chromosomes. Comparative analysis of the homoeologous relationships between the P genome chromosome and wheat genome chromosomes is a key step in transferring different desirable genes into common wheat and producing the desired alien translocation line while compensating for the loss of wheat chromatin. In this study, six common wheat-A. cristatum disomic addition lines were produced and analyzed by phenotypic examination, genomic in situ hybridization (GISH, SSR markers from the ABD genomes and STS markers from the P genome. Comparative maps, six in total, were generated and demonstrated that all six addition lines belonged to homoeologous group 6. However, chromosome 6P had undergone obvious rearrangements in different addition lines compared with the wheat chromosome, indicating that to obtain a genetic compensating alien translocation line, one should recombine alien chromosomal regions with homoeologous wheat chromosomes. Indeed, these addition lines were classified into four types based on the comparative mapping: 6PI, 6PII, 6PIII, and 6PIV. The different types of chromosome 6P possessed different desirable genes. For example, the 6PI type, containing three addition lines, carried genes conferring high numbers of kernels per spike and resistance to powdery mildew, important traits for wheat improvement. These results may prove valuable for promoting the development of conventional chromosome engineering techniques toward molecular chromosome engineering.

  16. Comparative proteomic analysis of two transgenic low-gliadin wheat lines and non-transgenic wheat control.

    Science.gov (United States)

    García-Molina, María Dolores; Muccilli, Vera; Saletti, Rosaria; Foti, Salvatore; Masci, Stefania; Barro, Francisco

    2017-08-08

    Gluten proteins are major determinants of the bread making quality of wheat, but also of important wheat-related disorders, including coeliac disease (CD), and allergies. We carried out a proteomic study using the total grain proteins from two low-gliadin wheat lines, obtained by RNAi, and the untransformed wild type as reference. The impact of silencing on both target and on non-target proteins was evaluated. Because of the great protein complexity, we performed separate analyses of four kernel protein fractions: gliadins and glutenin subunits, and metabolic and CM-like proteins, by using a classical 2D electrophoresis gel based approach followed by RP-HPLC/nESI-MS/MS. As a result of the strong down-regulation of gliadins, the HMW-GS, metabolic and chloroform/methanol soluble proteins were over-accumulated in the transgenic lines, especially in the line D793, which showed the highest silencing of gliadins. Basing on these data, and considering that metabolic proteins and chloroform/methanol soluble proteins (CM-like), such as the α-amylase/trypsin inhibitor family, β-amylase and serpins, were related to wheat allergens, further in vivo analysis will be needed, especially those related to clinical trials in controlled patients, to determine if these lines could be used for food preparation for celiac or other gluten intolerant groups. Several enteropathies and allergies are related to wheat proteins. Biotechnological techniques such as genetic transformation and RNA interference have allowed the silencing of gliadin genes, providing lines with very low gliadin content in the grains. We report a proteomic-based approach to characterize two low-gliadin transgenic wheat lines obtained by RNAi technology. These lines harbor the same silencing fragment, but driven by two different endosperm specific promoters (γ-gliadin and D-hordein). The comprehensive proteome analysis of these transgenic lines, by combining two-dimensional electrophoresis and RP

  17. Assessment of Genetic diversity in mutant cowpea lines using ...

    African Journals Online (AJOL)

    FKOLADE

    2016-11-09

    Nov 9, 2016 ... for crop improvement, hence the need to broaden the genetic base of any crop. This study was done in order to further enhance this in cowpea. While assessing diversity and phylogenetic relationship with other mutants and their parents, each unique mutant was also characterized. Randomly amplified ...

  18. Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants

    Science.gov (United States)

    2013-01-01

    Background Wheat and rice are important food crops with enormous biomass residues for biofuels. However, lignocellulosic recalcitrance becomes a crucial factor on biomass process. Plant cell walls greatly determine biomass recalcitrance, thus it is essential to identify their key factors on lignocellulose saccharification. Despite it has been reported about cell wall factors on biomass digestions, little is known in wheat and rice. In this study, we analyzed nine typical pairs of wheat and rice samples that exhibited distinct cell wall compositions, and identified three major factors of wall polymer features that affected biomass digestibility. Results Based on cell wall compositions, ten wheat accessions and three rice mutants were classified into three distinct groups each with three typical pairs. In terms of group I that displayed single wall polymer alternations in wheat, we found that three wall polymer levels (cellulose, hemicelluloses and lignin) each had a negative effect on biomass digestibility at similar rates under pretreatments of NaOH and H2SO4 with three concentrations. However, analysis of six pairs of wheat and rice samples in groups II and III that each exhibited a similar cell wall composition, indicated that three wall polymer levels were not the major factors on biomass saccharification. Furthermore, in-depth detection of the wall polymer features distinctive in rice mutants, demonstrated that biomass digestibility was remarkably affected either negatively by cellulose crystallinity (CrI) of raw biomass materials, or positively by both Ara substitution degree of non-KOH-extractable hemicelluloses (reverse Xyl/Ara) and p-coumaryl alcohol relative proportion of KOH-extractable lignin (H/G). Correlation analysis indicated that Ara substitution degree and H/G ratio negatively affected cellulose crystallinity for high biomass enzymatic digestion. It was also suggested to determine whether Ara and H monomer have an interlinking with cellulose chains

  19. Genetic characterization of glossy-leafed mutant broccoli lines

    Science.gov (United States)

    Glossy mutants of Brassica oleracea L. have reduced or altered epicuticular wax on the surface of their leaves as compared to wild-type plants, conveying a shiny green appearance. Mutations conferring glossiness are common and have been found in most B. oleracea crop varieties, including cauliflower...

  20. Grain product of 34 soya mutant lines;Rendimiento de grano de 34 lineas mutantes de soya

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron E, J.; Mastache L, A. A.; Valencia E, F.; Diaz V, G. E. [Colegio Superior Agropecuario del Estado de Guerrero, Vicente Guerrero No. 81, Col. Centro, 40000 Iguala, Guerrero (Mexico); Cervantes S, T. [Instituto de Recursos Geneticos y Productividad, Colegio de Posgraduados, Carretera Mexico-Texcoco Km. 36.5, Montecillo, 56230 Texcoco, Estado de Mexico (Mexico); De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.; Gatica T, M. A. [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R{sub 4}M{sub 18}) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co{sup 60} gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L{sub 25} and L{sub 32} produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  1. Molecular cytogenetic identification of a novel dwarf wheat line with ...

    Indian Academy of Sciences (India)

    ... Tai'an Subcenter of the National Wheat Improvement Center, Agronomy College, Shandong Agricultural University, Taian 271018, Shandong, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China ...

  2. Evaluation of Mungbean Mutant Lines to Drought Stress and Their Genetic Relationships Using SSR Markers

    Directory of Open Access Journals (Sweden)

    Yuliasti

    2015-12-01

    Full Text Available Development of mungbean cultivarstolerant to drought stress through mutation breeding approach would enable us to anticipate the crop yield-reducing effects of climate changes. The objective of this research was to evaluate the yield performance of mungbean mutant lines that showed tolerance to drought stress, and to analyze their genetic diversity and relationship among mutant lines using SSR markers. The study was conducted during the dry season of 2012 in the Muneng experimental farm, Probolinggo, East Java. The experiment was laid out in a randomized block design with four replications. Five mutant lines and two parental lines as control were tested for evaluation of yield and drought tolerance under twoenvironments of two irrigation systems as treatment. The two environmental conditions consisted of optimal irrigation (at least three times: at planting, flowering and during pod filling and suboptimal irrigation (two times at planting and flowering. To evaluate genetic variation among selected mutant lines and their discrimination from parental lines in molecular level, a cluster analysis was performed using Unweighted Pair Group Method with Arithmetic Mean (UPGMA in the NTSYS software. The results showed that three mutant lines, including PsJ30, PsJ31, PsJ32 produced the highest grain yields of 1.17, 1.01, and 1.04 ton/ha, respectively, compared to the other mutant lines and the parents Gelatik (0.85 ton/ha and Perkutut (0.87 ton/ha as control check. Of those mutant lines, PSJ31 was the most tolerant to drought with sensitivity index value of 0.47. The PSJ31 has now been officially released as a new variety ( 2013, named as Muri which was identified to have high yield and tolerant to drought. Based on 23 SSR markers used for clustering analysis of those 3 selected mutant lines,9SSR markers (MBSS R033; satt137; MBSSR008; MBSSR203; MBSSR013; MBSSR021; MBSSR016; MBSSR136; and DMBSSR013 were successfully identified the three mungbean mutant

  3. PHENOTYPIC ANALYSIS OF OsTPKb LOSS OF FUNCTION MUTANT RICE LINES

    Directory of Open Access Journals (Sweden)

    Isayenkov S. V.

    2015-08-01

    Full Text Available The results of screen and analysis of two OsTPKb rice mutant lines were described. The phenotypes and growth rate level of homozygous mutant plants of both rice lines were estimated. The electron microscopy of aleurone layer from forming seeds was performed. The OsTPKb mutant plants demonstrate lower growth rate in comparison with wild type plants. The loss of function OsTPKb mutations invariably led to (semisterile rice plants. The functional disruption of OsTPKb channel has negative impact on plant growth and development. It might completely change the cell morphology of aleurone layer.

  4. Wheat streak mosaic virus Coat Protein Deletion Mutants Elicit More Severe Symptoms Than Wild-Type Virus in Multiple Cereal Hosts.

    Science.gov (United States)

    Tatineni, Satyanarayana; Elowsky, Christian; Graybosch, Robert A

    2017-12-01

    Previously, we reported that coat protein (CP) of Wheat streak mosaic virus (WSMV) (genus Tritimovirus, family Potyviridae) tolerates deletion of amino acids 36 to 84 for efficient systemic infection of wheat. In this study, we demonstrated that WSMV mutants with deletion of CP amino acids 58 to 84 but not of 36 to 57 induced severe chlorotic streaks and spots, followed by acute chlorosis in wheat, maize, barley, and rye compared with mild to moderate chlorotic streaks and mosaic symptoms by wild-type virus. Deletion of CP amino acids 58 to 84 from the WSMV genome accelerated cell-to-cell movement, with increased accumulation of genomic RNAs and CP, compared with the wild-type virus. Microscopic examination of wheat tissues infected by green fluorescent protein-tagged mutants revealed that infection by mutants lacking CP amino acids 58 to 84 caused degradation of chloroplasts, resulting in acute macroscopic chlorosis. The profile of CP-specific proteins was altered in wheat infected by mutants causing acute chlorosis, compared with mutants eliciting wild-type symptoms. All deletion mutants accumulated CP-specific major protein similarly to that in wild-type virus; however, mutants that elicit acute chlorosis failed to accumulate a 31-kDa minor protein compared with wild-type virus or mutants lacking amino acids 36 to 57. Taken together, these data suggest that deletion of CP amino acids 58 to 84 from the WSMV genome enhanced accumulation of CP and genomic RNA, altered CP-specific protein profiles, and caused severe symptom phenotypes in multiple cereal hosts.

  5. Evaluation of Durum Wheat Lines for Tolerance to Early Season Cold via Early Planting

    Directory of Open Access Journals (Sweden)

    V. Rashidi

    2010-10-01

    Full Text Available Cold stress is one of the environmental factors that affect planting date of durum wheat in mountainous North West areas of Iran. To study tolerance of 36 Durum wheat lines for cold, an experiment was conducted in mid winter (mid of February at the Agricultural Research Station of Islamic Azad University, Tabriz Branch, in 2007. Experimental design used was simple lattice. The results of analysis of variance showed that the lines under study responded differently to cold as to traits like percentage of survival, yield and its components. This indicates existence of genetic diversity among durum wheat lines. Percentage of survival of the lines 30, 5, 16, 27, 31 and 35 were for higher than those at other lines. Thus, they can be considered to be tolerant to early season cold. Comparison of means showed that lines 35, 31, 16 and 5 possessed higher percentage of survival and other percent survival also correlated positive with plant height, number of fertile spike seed yield and 1000 grain weight. As a whole line 35 was found to be more tolerant to early season cold than the others were. Cluster analysis was divided 36 lines into three groups. Lines in the third group possessed higher percentage of survival, plant height, number of fertile spike, biomass and high yield than their over all means.

  6. Genetic characteristic of high molecular weight glutenin subunits in somatic hybrid wheat lines -- potential application to wheat breeding.

    Science.gov (United States)

    Heng, Liu; Lei, Shi; Junsheng, Zhao; Guangmin, Xia

    2006-07-12

    Analysis of 17 derivatives from a somatic fusion between common wheat (Triticum aestivum) and tall wheat grass (Thinopyrum ponticum) showed a diversity of high molecular weight glutenin subunit (HMW-GS) compositions. On the basis of the inheritance of HMW-GS patterns, the derivatives were either (i) bred true over four successive generations, (ii) generated a few novel HMW-GS combinations at each generation, or (iii) showed highly unstable HMW-GS compositions. HMW-GS analysis of F(5) seed and each single seed-generated F(6) progenies further revealed that most of the HMW-GS had genetic stability. The variations of HMW-GS were inferred to occur in early generations and were maintained thereafter. Low molecular weight glutenin subunits (LMW-GS) in hybrid lines with high or low bread-making quality, classified into the first pattern, were compared. The result showed that hybrid lines with the uniform HMW-GS patterns also have identical LMW-GS patterns. The Glu-1 quality score was inferred to be relatively significant to the sodium dodecyl dulfate sedimentation value, as well as to correlate with the gluten exponent and contents of dry gluten and proteins. Sexual hybridization between high-quality somatic hybrid progeny II-12 and Chinese Spring (CS) showed that these high-quality HMW-GS genes could entail progenies. There was not subunit variation in the progenies of II-12 x CS. Therefore, sexual hybridization between somatic hybrid line and cultivars can transfer novel high-quality HMW-GS of somatic hybrids and benefit wheat breeding.

  7. Identification of Mutant K-Ras-dependent Phenotypes Using a Panel of Isogenic Cell Lines*

    Science.gov (United States)

    Vartanian, Steffan; Bentley, Carolyn; Brauer, Matthew J.; Li, Li; Shirasawa, Senji; Sasazuki, Takehiko; Kim, Jung-Sik; Haverty, Pete; Stawiski, Eric; Modrusan, Zora; Waldman, Todd; Stokoe, David

    2013-01-01

    To assess the consequences of endogenous mutant K-Ras, we analyzed the signaling and biological properties of a small panel of isogenic cell lines. These include the cancer cell lines DLD1, HCT116, and Hec1A, in which either the WT or mutant K-ras allele has been disrupted, and SW48 colorectal cancer cells and human mammary epithelial cells in which a single copy of mutant K-ras was introduced at its endogenous genomic locus. We find that single copy mutant K-Ras causes surprisingly modest activation of downstream signaling to ERK and Akt. In contrast, a negative feedback signaling loop to EGFR and N-Ras occurs in some, but not all, of these cell lines. Mutant K-Ras also had relatively minor effects on cell proliferation and cell migration but more dramatic effects on cell transformation as assessed by growth in soft agar. Surprisingly, knock-out of the wild type K-ras allele consistently increased growth in soft agar, suggesting tumor-suppressive properties of this gene under these conditions. Finally, we examined the effects of single copy mutant K-Ras on global gene expression. Although transcriptional programs triggered by mutant K-Ras were generally quite distinct in the different cell lines, there was a small number of genes that were consistently overexpressed, and these could be used to monitor K-Ras inhibition in a panel of human tumor cell lines. We conclude that there are conserved components of mutant K-Ras signaling and phenotypes but that many depend on cell context and environmental cues. PMID:23188824

  8. Evaluation of wheat chromosome translocation lines for high temperature stress tolerance at grain filling stage.

    Directory of Open Access Journals (Sweden)

    Gautam Prasad Pradhan

    Full Text Available High temperature (HT, heat stress is detrimental to wheat (Triticum aestivum L. production. Wild relatives of bread wheat may offer sources of HT stress tolerance genes because they grow in stressed habitats. Wheat chromosome translocation lines, produced by introgressing small segments of chromosome from wild relatives to bread wheat, were evaluated for tolerance to HT stress during the grain filling stage. Sixteen translocation lines and four wheat cultivars were grown at optimum temperature (OT of 22/14°C (day/night. Ten days after anthesis, half of the plants were exposed to HT stress of 34/26°C for 16 d, and other half remained at OT. Results showed that HT stress decreased grain yield by 43% compared with OT. Decrease in individual grain weight (by 44% was the main reason for yield decline at HT. High temperature stress had adverse effects on leaf chlorophyll content and Fv/Fm; and a significant decrease in Fv/Fm was associated with a decline in individual grain weight. Based on the heat response (heat susceptibility indices, HSIs of physiological and yield traits to each other and to yield HSI, TA5594, TA5617, and TA5088 were highly tolerant and TA5637 and TA5640 were highly susceptible to HT stress. Our results suggest that change in Fv/Fm is a highly useful trait in screening genotypes for HT stress tolerance. This study showed that there is genetic variability among wheat chromosome translocation lines for HT stress tolerance at the grain filling stage and we suggest further screening of a larger set of translocation lines.

  9. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum lines

    Directory of Open Access Journals (Sweden)

    Qi Bao

    2012-01-01

    Full Text Available Abstract Background Alteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat. Results Multi-color GISH (genomic in situ hybridization was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n = 4x = 28; genome BBAA and Aegilops tauschii (2n = 2x = 14; genome DD, which had a stable chromosomal constitution analogous to that of common wheat (2n = 6x = 42; genome BBAADD. Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO

  10. MARKER ASSISTED SELECTION (MAS FOR DEVELOPMENT OF BARLEY AND WHEAT LINES WITH REQUESTED TRAITS

    Directory of Open Access Journals (Sweden)

    M. Hudcovicová

    2008-09-01

    Full Text Available Molecular markers closely linked to interesting genes enable early, proper and fast detection of plant individuals with desired allele during backcross breeding, what can make plant breeding faster and cheaper. We are focused on molecular breeding of barley and wheat lines for disease resistance and some important quality traits. As acceptors of interesting genes we use especially elite Slovak and Czech cultivars and lines. After five backcross generations with the help of MAS new created lines carrying markers linked to desired genes undergo resistance, agronomic and technological tests. In breeding of winter barley for resistance to BaYMV/BaMMV viruses we use codominant STS and SSR markers linked to rym4 and rym11 resistance genes. Cultivar Romanze has been used as a donor of rym4 gene and landrace Russia57 as gene rym11 donor. In spring barley we are focused on transfer of Yd2 gene from landraces Shannon and Sutter resistant to BYDV by use of dominant ASPCR marker. We are also working on transfer of effective leaf rust resistance genes Lr19, Lr24 derived from Thinopyrum ponticum and gene Lr35 from Aegilops speltoides into hexaploid wheat by use of dominant STS and SCAR markers. Near isogenic lines with these genes are used in gene pyramiding to develop a single line with all three genes. By use of protein markers we develop near isogenic wheat lines for higher sedimentation values, higher dough strength and better breadmaking quality. These are lines with new combination of HMW glutenin subunits (21*, 7+8, 5+10 as well as wheat lines with new unknown HMW-GS and with new HMW-GS pair.

  11. Stability Test For Sorghum Mutant Lines Derived From Induced Mutations with Gamma-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    S. Human

    2011-12-01

    Full Text Available Sorghum breeding program had been conducted at the Center for the Application of Isotopes and Radiation Technology, BATAN. Plant genetic variability was increased through induced mutations using gamma-ray irradiation. Through selection process in successive generations, some promising mutant lines had been identified to have good agronomic characteristics with high grain yield. These breeding lines were tested in multi location trials and information of the genotypic stability was obtained to meet the requirements for officially varietal release by the Ministry of Agriculture. A total of 11 sorghum lines and varieties consisting of 8 mutant lines derived from induced mutations (B-100, B-95, B-92, B-83, B-76, B-75, B-69 and Zh-30 and 3 control varieties (Durra, UPCA-S1 and Mandau were included in the experiment. All materials were grown in 10 agro-ecologically different locations namely Gunungkidul, Bantul, Citayam, Garut, Lampung, Bogor, Anyer, Karawaci, Cianjur and Subang. In each location, the local adaptability test was conducted by randomized block design with 3 replications. Data of grain yield was used for evaluating genotypic stability using AMMI approach. Results revealed that sorghum mutation breeding had generated 3 mutant lines (B-100, B-76 and Zh-30 exhibiting grain yield significantly higher than the control varieties. These mutant lines were genetically stable in all locations so that they would be recommended for official release as new sorghum varieties to the Ministry of Agriculture

  12. Responses of Soybean Mutant Lines to Aluminium under In Vitro and In Vivo Condition

    Directory of Open Access Journals (Sweden)

    Yuliasti

    2011-12-01

    Full Text Available The main limited factors of soybean plants expansion in acid soil are Aluminium (Al toxicity and low pH. The best approach to solve this problem is by using Al tolerance variety. In vitro or in vivo selections using selective media containing AlCl3 and induced callus embryonic of mutant lines are reliable methods to develop a new variety. The objectives of this research are to evaluate response of soybean genotypes against AlCl3 under in vitro and in vivo condition. Addition of 15 part per million (ppm AlCl3 into in vitro and in vivo media severely affected plant growth. G3 soybean mutant line was identified as more tolerant than the control soybean cultivar Tanggamus. This mutant line was able to survive under more severe AlCl3 concentrations (15 ppm under in vitro conditions. Under in vivo conditions, G1 and G4 mutants were also identified as more tolerant than Tanggamus since they produced more pods and higher dry seed weigh per plant. Moreover, G4 mutant line also produced more dry seed weight per plant than Tanggamus when they were grown on soil containing high Al concentration 8.1 me/100gr = 81 ppm. Al+3

  13. Molecular cytogenetic identification of a wheat - Thinopyrum ponticum substitution line with stripe rust resistance.

    Science.gov (United States)

    Zhu, Chen; Wang, Yanzhen; Chen, Chunhuan; Wang, Changyou; Zhang, Aicen; Peng, Nana; Wang, Yajuan; Zhang, Hong; Liu, Xinlun; Ji, Wanquan

    2017-10-01

    Thinopyrum ponticum (Th. ponticum) (2n = 10x = 70) is an important breeding material with excellent resistance and stress tolerance. In this study, we characterized the derivative line CH1113-B13-1-1-2-1 (CH1113-B13) through cytological, morphological, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), expressed sequence tag (EST), and PCR-based landmark unique gene (PLUG) marker analysis. The GISH analysis revealed that CH1113-B13 contained 20 pairs of common wheat chromosomes and one pair of JSt genomic chromosomes. Linkage analysis of Th. ponticum using seven EST and seven PLUG markers indicated that the pair of alien chromosomes belonged to the seventh homeologous group. Nulli-tetrasomic and FISH analysis revealed that wheat 7B chromosomes were absent in CH1113-B13; thus, CH1113-B13 was identified as a 7JSt (7B) substitution line. Finally, adult-stage CH1113-B13 exhibited immunity to wheat stripe rust. This substitution line is therefore a promising germplasm resource for wheat breeding.

  14. Inheritance of polyphenol oxidase activity in wheat breeding lines derived from matings of low polyphenol oxidase parents

    Science.gov (United States)

    Polyphenol oxidase (PPO) in grain plays a major role in time-dependent discoloration of wheat (Triticum aestivum L.) products, especially fresh noodles. Breeding wheat cultivars with low or nil PPO activity can reduce the undesirable product darkening. The low PPO line PI 117635 was crossed to two...

  15. Detecting benzoyl peroxide in wheat flour by line-scan macro-scale Raman chemical imaging

    Science.gov (United States)

    Qin, Jianwei; Kim, Moon S.; Chao, Kuanglin; Gonzalez, Maria; Cho, Byoung-Kwan

    2017-05-01

    Excessive use of benzoyl peroxide (BPO, a bleaching agent) in wheat flour can destroy flour nutrients and cause diseases to consumers. A macro-scale Raman chemical imaging method was developed for direct detection of BPO mixed in the wheat flour. A 785 nm line laser was used in a line-scan Hyperspectral Raman imaging system. Raman images were collected from wheat flour mixed with BPO at eight concentrations (w/w) from 50 to 6,400 ppm. A sample holder (150×100×2 mm3) was used to present a thin layer (2 mm thick) of the powdered sample for image acquisition. A baseline correction method was used to correct the fluctuating fluorescence signals from the wheat flour. To isolate BPO particles from the flour background, a simple thresholding method was applied to the single-band fluorescence-free images at a unique Raman peak wavenumber (i.e., 1001 cm-1) preselected for the BPO detection. Chemical images were created to detect and map the BPO particles. Limit of detection for the BPO was estimated in the order of 50 ppm, which is on the same level with regulatory standards.

  16. Genotypic variability in sesame mutant lines in Kenya | Ong'injo ...

    African Journals Online (AJOL)

    Sesame (Sesamum indicum L) is one of the major oil crops with potential for production by small- scale holders in the marginal agro-ecological zones of Kenya. Variability studies on yield and yield components of sesame mutant lines now in M7generation was carried out in two locations for two seasons in Kenya.

  17. Quality characteristics of soybean pasted (Doenjang) manufactured with 2 soybean mutant lines derived from cv. baekwon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Jun; Kang, Si Yong; Choi, Hong Il; Kim, Jin Baek [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2016-11-15

    In order to identification of the possibility of manufacturing soybean paste (doenjang) with soybean mutant lines induced from gamma-ray mutagenesis, this study was performed to investigate the quality characteristics of doenjang using two soybean mutant lines, Baekwon-1 (BW-1) and Baekwon-2 (BW-2) and their original cultivar (cv. Baekwon, BW) for 8 weeks. The BW and two mutant lines (BW-1 and BW-2) were showed higher content of amino type nitrogen than control (cv. Taegwang). The pH decreased and the titratable acidity increased all the samples during aging period. The lightness, redness and yellowness of doenjang were the lowest in BW. Total free sugar content of doenjang was the highest in control (10.43%) after 4 weeks and composed mainly fructose and glucose. The order of the free amino acid content was Glutamic acid>Leucine>Lysine>Phenylalanine>Aspartic acid in control, Glutamic acid>Leucine >Arginine>Lysine>Phenylalanine in BW, Glutamic acid>Lysine>Phenylalanine>Aspartic acid>Valine in BW-1 and Glutamic acid>Arginine>Lysine>Phenylalanine>Aspartic acid in BW-2, respectively. Our results showed that it is possible to increase the quality of doenjang using soybean mutant lines in manufacturing soybean paste.

  18. Molecular characterization of a wheat -Thinopyrum ponticum partial amphiploid and its derived substitution line for resistance to stripe rust.

    Science.gov (United States)

    Hu, Li-Jun; Li, Guang-Rong; Zeng, Zi-Xian; Chang, Zhi-Jian; Liu, Cheng; Yang, Zu-Jun

    2011-08-01

    Stripe rust (caused by Puccinia striiformis) occurs annually in most wheat-growing areas of the world. Thinopyrum ponticum has provided novel rust resistance genes to protect wheat from this fungal disease. Wheat - Th. ponticum partial amphiploid line 7430 and a substitution line X005 developed from crosses between wheat and 7430 were resistant to stripe rust isolates from China. Genomic in situ hybridization (GISH) analysis using Pseudoroegneria spicata genomic DNA as a probe demonstrated that the partial amphiploid line 7430 contained ten J(s) and six J genome chromosomes, and line X005 had a pair of J(s)-chromosomes. Giemsa-C banding further revealed that both lines 7430 and X005 were absent of wheat chromosomes 6B. The EST based PCR confirmed that the introduced J(s) chromosomes belonging to linkage group 6, indicating that line X005 was a 6J(s)/6B substitution line. Both resistance observation and sequence characterized amplified region (SCAR) markers displayed that the introduced chromosomes 6J(s) were responsible for the stripe rust resistances. Therefore, lines 7430 and X005 can be used as a donor in wheat breeding for stripe rust resistance.

  19. Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS line and its maintainer line

    Directory of Open Access Journals (Sweden)

    Liu Dongcheng

    2011-03-01

    Full Text Available Abstract Background Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS, a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA, and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line. Results The complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi CMS line, Ks3, was assembled into a master circle (MC molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs, and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38% and repeats (> 100 bp, 29 units as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants. Conclusion The complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of

  20. Water-deficit tolerant classification in mutant lines of indica rice

    Directory of Open Access Journals (Sweden)

    Suriyan Cha-um

    2012-04-01

    Full Text Available Water shortage is a major abiotic stress for crop production worldwide, limiting the productivity of crop species, especially in dry-land agricultural areas. This investigation aimed to classify the water-deficit tolerance in mutant rice (Oryza sativa L. spp. indica genotypes during the reproductive stage. Proline content in the flag leaf of mutant lines increased when plants were subjected to water deficit. Relative water content (RWC in the flag leaf of different mutant lines dropped in relation to water deficit stress. A decrease RWC was positively related to chlorophyll a degradation. Chlorophyll a , chlorophyll b , total chlorophyll , total carotenoids , maximum quantum yield of PSII , stomatal conductance , transpiration rate and water use efficiency in mutant lines grown under water deficit conditions declined in comparison to the well-watered, leading to a reduction in net-photosynthetic rate. In addition, when exposed to water deficit, panicle traits, including panicle length and fertile grains were dropped. The biochemical and physiological data were subjected to classify the water deficit tolerance. NSG19 (positive control and DD14 were identified as water deficit tolerant, and AA11, AA12, AA16, BB13, BB16, CC12, CC15, EE12, FF15, FF17, G11 and IR20 (negative control as water deficit sensitive, using Ward's method.

  1. Genetic and epigenetic changes in somatic hybrid introgression lines between wheat and tall wheatgrass.

    Science.gov (United States)

    Liu, Shuwei; Li, Fei; Kong, Lina; Sun, Yang; Qin, Lumin; Chen, Suiyun; Cui, Haifeng; Huang, Yinghua; Xia, Guangmin

    2015-04-01

    Broad phenotypic variations were induced in derivatives of an asymmetric somatic hybridization of bread wheat (Triticum aestivum) and tall wheatgrass (Thinopyrum ponticum Podp); however, how these variations occurred was unknown. We explored the nature of these variations by cytogenetic assays and DNA profiling techniques to characterize six genetically stable somatic introgression lines. Karyotyping results show the six lines similar to their wheat parent, but GISH analysis identified the presence of a number of short introgressed tall wheatgrass chromatin segments. DNA profiling revealed many genetic and epigenetic differences, including sequences deletions, altered regulation of gene expression, changed patterns of cytosine methylation, and the reactivation of retrotransposons. Phenotypic variations appear to result from altered repetitive sequences combined with the epigenetic regulation of gene expression and/or retrotransposon transposition. The extent of genetic and epigenetic variation due to the maintenance of parent wheat cells in tissue culture was assessed and shown to be considerably lower than had been induced in the introgression lines. Asymmetric somatic hybridization provides appropriate material to explore the nature of the genetic and epigenetic variations induced by genomic shock. Copyright © 2015 by the Genetics Society of America.

  2. Chromosomal Location and Comparative Genomics Analysis of Powdery Mildew Resistance Gene Pm51 in a Putative Wheat-Thinopyrum ponticum Introgression Line: e113455

    National Research Council Canada - National Science Library

    Haixian Zhan; Guangrong Li; Xiaojun Zhang; Xin Li; Huijuan Guo; Wenping Gong; Juqing Jia; Linyi Qiao; Yongkang Ren; Zujun Yang; Zhijian Chang

    2014-01-01

      Powdery mildew (PM) is a very destructive disease of wheat (Triticum aestivum L.). Wheat-Thinopyrum ponticum introgression line CH7086 was shown to possess powdery mildew resistance possibly originating from Th...

  3. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line

    National Research Council Canada - National Science Library

    Zhan, Haixian; Li, Guangrong; Zhang, Xiaojun; Li, Xin; Guo, Huijuan; Gong, Wenping; Jia, Juqing; Qiao, Linyi; Ren, Yongkang; Yang, Zujun; Chang, Zhijian

    2014-01-01

    Powdery mildew (PM) is a very destructive disease of wheat (Triticum aestivum L.). Wheat-Thinopyrum ponticum introgression line CH7086 was shown to possess powdery mildew resistance possibly originating from Th. ponticum...

  4. Hyperactive mutant of a wheat plasma membrane Na+/H+ antiporter improves the growth and salt tolerance of transgenic tobacco.

    Science.gov (United States)

    Zhou, Yang; Lai, Zesen; Yin, Xiaochang; Yu, Shan; Xu, Yuanyuan; Wang, Xiaoxiao; Cong, Xinli; Luo, Yuehua; Xu, Haixia; Jiang, Xingyu

    2016-12-01

    Wheat SOS1 (TaSOS1) activity could be relieved upon deletion of the C-terminal 168 residues (the auto-inhibitory domain). This truncated form of wheat SOS1 (TaSOS1-974) was shown to increase compensation (compared to wild-type TaSOS1) for the salt sensitivity of a yeast mutant strain, AXT3K, via increased Na+ transportation out of cells during salinity stress. Expression of the plasma membrane proteins TaSOS1-974 or TaSOS1 improved the growth of transgenic tobacco plants compared with wild-type plants under normal conditions. However, plants expressing TaSOS1-974 grew better than TaSOS1-transformed plants. Upon salinity stress, Na+ efflux and K+ influx rates in the roots of transgenic plants expressing TaSOS1-974 or TaSOS1 were greater than those of wild-type plants. Furthermore, compared to TaSOS1-transgenic plants, TaSOS1-974-expressing roots showed faster Na+ efflux and K+ influx, resulting in less Na+ and more K+ accumulation in TaSOS1-974-transgenic plants compared to TaSOS1-transgenic and wild-type plants. TaSOS1-974-expressing plants had the lowest MDA content and electrolyte leakage among all tested plants, indicating that TaSOS1-974 might protect the plasma membrane against oxidative damage generated by salt stress. Overall, TaSOS1-974 conferred higher salt tolerance in transgenic plants compared to TaSOS1. Consistent with this result, transgenic plants expressing TaSOS1-974 showed a better growth performance than TaSOS1-expressing and wild-type plants under saline conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Xiaojun Li

    Full Text Available Agropyron elongatum (Host. Neviski (synonym, Thinopyrum ponticum Podp., 2n = 70 has been used extensively as a valuable source for wheat breeding. Numerous chromosome fragments containing valuable genes have been successfully translocated into wheat from A. elongatum. However, reports on the transfer of powdery mildew resistance from A. elongatum to wheat are rare. In this study, a novel wheat-A. elongatum translocation line, 11-20-1, developed and selected from the progenies of a sequential cross between wheat varieties (Lankaoaizaoba, Keyu 818 and BainongAK 58 and A. elongatum, was evaluated for disease resistance and characterized using molecular cytogenetic methods. Cytological observations indicated that 11-20-1 had 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genomic in situ hybridization analysis using whole genomic DNA from A. elongatum as a probe showed that the short arms of a pair of wheat chromosomes were replaced by a pair of A. elongatum chromosome arms. Fluorescence in situ hybridization, using wheat D chromosome specific sequence pAs1 as a probe, suggested that the replaced chromosome arms of 11-20-1 were 5DS. This was further confirmed by wheat SSR markers specific for 5DS. EST-SSR and EST-STS multiple loci markers confirmed that the introduced A. elongatum chromosome arms belonged to homoeologous group 5. Therefore, it was deduced that 11-20-1 was a wheat-A. elongatum T5DL∙5AgS translocation line. Both resistance observation and molecular marker analyses using two specific markers (BE443538 and CD452608 of A. elongatum in a F2 population from a cross between line 11-20-1 and a susceptible cultivar Yannong 19 verified that the A. elongatum chromosomes were responsible for the powdery mildew resistance. This work suggests that 11-20-1 likely contains a novel resistance gene against powdery mildew. We expect this line to be useful for the genetic improvement of wheat.

  6. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance.

    Science.gov (United States)

    Li, Xiaojun; Jiang, Xiaoling; Chen, Xiangdong; Song, Jie; Ren, Cuicui; Xiao, Yajuan; Gao, Xiaohui; Ru, Zhengang

    2017-01-01

    Agropyron elongatum (Host.) Neviski (synonym, Thinopyrum ponticum Podp., 2n = 70) has been used extensively as a valuable source for wheat breeding. Numerous chromosome fragments containing valuable genes have been successfully translocated into wheat from A. elongatum. However, reports on the transfer of powdery mildew resistance from A. elongatum to wheat are rare. In this study, a novel wheat-A. elongatum translocation line, 11-20-1, developed and selected from the progenies of a sequential cross between wheat varieties (Lankaoaizaoba, Keyu 818 and BainongAK 58) and A. elongatum, was evaluated for disease resistance and characterized using molecular cytogenetic methods. Cytological observations indicated that 11-20-1 had 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genomic in situ hybridization analysis using whole genomic DNA from A. elongatum as a probe showed that the short arms of a pair of wheat chromosomes were replaced by a pair of A. elongatum chromosome arms. Fluorescence in situ hybridization, using wheat D chromosome specific sequence pAs1 as a probe, suggested that the replaced chromosome arms of 11-20-1 were 5DS. This was further confirmed by wheat SSR markers specific for 5DS. EST-SSR and EST-STS multiple loci markers confirmed that the introduced A. elongatum chromosome arms belonged to homoeologous group 5. Therefore, it was deduced that 11-20-1 was a wheat-A. elongatum T5DL∙5AgS translocation line. Both resistance observation and molecular marker analyses using two specific markers (BE443538 and CD452608) of A. elongatum in a F2 population from a cross between line 11-20-1 and a susceptible cultivar Yannong 19 verified that the A. elongatum chromosomes were responsible for the powdery mildew resistance. This work suggests that 11-20-1 likely contains a novel resistance gene against powdery mildew. We expect this line to be useful for the genetic improvement of wheat.

  7. Agropyron elongatum chromatin localization on the wheat chromosomes in an introgression line.

    Science.gov (United States)

    Wang, Jing; Xiang, Fengning; Xia, Guangmin

    2005-05-01

    The introgressed small-chromosome segment of Agropyron elongatum (Host.) Neviski (Thinopyrum ponticum Podp.) in F5 line II-1-3 of somatic hybrid between common wheat (Triticum aestivum L.) and A. elongatum was localized by sequential fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and karyotype data. Karyotype analysis offered basic data of arm ratios and relative lengths of 21 pairs of chromosomes in parent wheat Jinan177 and hybrid II-1-3. Using special high repetitive sequences pSc119.2 and pAs1 for FISH, the entire B- and D-genome chromosomes were detected. The FISH pattern of hybrid II-1-3 was the same as that of parent wheat. GISH using whole genomic DNA from A. elongatum as probe determined the alien chromatin. Sequential GISH and FISH, in combination with some of the karyotype data, localized the small chromosome segments of A. elongatum on the specific sites of wheat chromosomes 2AL, 1BL, 5BS, 1DL, 2DL and 6DS. FISH with probe OPF-03(1296) from randomly amplified polymorphic DNA (RAPD) detected E-genome chromatin of A. elongatum, which existed in all of the small chromosome segments introgressed. Microsatellite primers characteristic for the chromosome arms above were used to check the localization and reveal the genetic identity. These methods are complementary and provide comprehensive information about the genomic constitution of the hybrid. The relationship between hybrid traits and alien chromatin was discussed.

  8. Comparative effects of wild type Stenotrophomonas maltophilia and its indole acetic acid-deficient mutants on wheat.

    Science.gov (United States)

    Hassan, T U; Bano, A

    2016-09-01

    The present investigation evaluated the role of Stenotrophomonas maltophilia and its IAA-deficient mutant on soil health and plant growth under salinity stress in the presence of tryptophan. In the first phase, S. maltophilia isolated from roots of the halo- phytic herb, Cenchrus ciliaris was used as bio-inoculant on wheat grown in saline sodic soil. A field experiment was conducted at Soil Salinity Research Institute during 2010-2011. Treatments included seed inoculation with S. maltophilia with or without tryptophan; uninoculated untreated plants were taken as control. An aqueous solution of tryptophan was added to rhizosphere soil at 1 μg l(_1) after seed germination. Inoculation with S. maltophilia significantly increased soil organic matter, enhanced (20-30%) availability of P, K, Ca and NO3 -N and decreased Na content and electrical conductivity of rhizosphere soil. Plant height, fresh weight, proline and phytohormone content of leaves were increased 30-40% over the control. Activities of superoxide dismutase (SOD) and peroxidase (POD) were 40-50% higher than control. Addition of tryptophan further augmented (10-15%) growth parameters, whereas NO3 -N, P, K and Ca content, proline content and SOD and POD increased 20-30%. In a second phase, indoleacetic acid (IAA)-deficient mutants of S. maltophilia were constructed and evaluated for conversion of tryptophan to IAA at the University of Calgary, Canada, during 2013-2014. About 1800 trans-conjugants were constructed that were unable to produce IAA in the presence of tryptophan. The results suggest that tryptophan assisted S. maltophilia in the amelioration of salt stress, and that IAA played positive role in induction of salt tolerance. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin.

    Science.gov (United States)

    Chen, Guiling; Zheng, Qi; Bao, Yinguang; Liu, Shubing; Wang, Honggang; Li, Xingfeng

    2012-03-01

    Novel dwarfing germplasms and dwarfing genes are valuable for the wheat breeding. A novel semi-dwarf line, 31505-1, with reduced height compared with its common wheat parent, was derived from a cross between common wheat and Thinopyrum ponticum. Cytological studies demonstrated that 31505-1 contained 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genomic in situ hybridization (GISH) analysis showed that 31505-1 had no large Th. ponticum chromosome fragments. Fluorescence in situ hybridization (FISH) results revealed the absence of a pAs1 hybridization band on 2DL chromosome of 31505-1. Two SSR markers (Xwmc41 and Xcfd168) and two STS markers (Xmag4059 and Xmag3596), which were located on 2D chromosome, amplified unique bands of Th. Ponticum in 31505-1. These revealed presence of an introgressed Th. ponticum segment in 2DL chromosome of dwarf line 31505-1, although the alien segment could not be detected by GISH.

  10. Mapping of a rice thermosensitive genic male sterility gene from a TGMS mutant line

    Energy Technology Data Exchange (ETDEWEB)

    Vu Duc Quang; Nguyen Van Dong; Pham Ngoc Luong; Tran Duy Quy [Argicultural Genetics Institute, Hanoi (Viet Nam); Nguyen, Henry T. [Texas Tech Univ., Department of Plant and Soil Science, Lubbock TX (United States)

    2001-03-01

    At the Agricultural Genetics Institute (AGI), Hanoi, Vietnam, a number of thermo-sensitive genic male sterility (TGMS) homozygous rice lines have been developed by means of experimental mutagenesis followed by anther culture techniques. One of them (TGMS-1 indica mutant line) was used in this research. The critical temperature (at the period from pollen mother cell formation to the beginning of meiotic division) for TGMS-1 sterility was 24-25degC, below which the plants were fertile and above which the plants became sterile. Segregation analysis showed that the TGMS trait of the TGMS-1 mutant line was controlled by a single recessive gene. An F{sub 2} mapping population from a cross between TGMS-1 mutant line and CH1 (a fertile indica line) was developed for tagging and mapping the TGMS gene. From survey of 200 AFLP primer combinations in a bulked segregant analysis, 4 AFLP markers (E2/M5-200, E3/M16-400, E5/M12-600 and E5/M12-200) linked to TGMS-1 gene were identified and cloned. All except E2/M5-200 were found to be low-copy number sequences. The marker E5/M12-600 showed polymorphism in RFLP analysis and was closely linked to the TGMS gene at a distance of 3.3cM. This marker was subsequently mapped on chromosome 2 using doubled-haploid mapping populations derived from the crosses IR64xAzucena and CT9993xIR62666. Linkage of microsatellite marker RM27 with the TGMS gene further confirmed its location on chromosome 2. The closest marker, E5/M12-600, was sequenced so that a PCR marker can be developed for the use in marker-assisted breeding. The application of TGMS genes to the commercial two-line hybrid rice breeding system was discussed. (author)

  11. Quantitative Detection of Benzoyl Peroxide in Wheat Flour Using Line-Scan Macroscale Raman Chemical Imaging.

    Science.gov (United States)

    Qin, Jianwei; Kim, Moon S; Chao, Kuanglin; Gonzalez, Maria; Cho, Byoung-Kwan

    2017-11-01

    A high-throughput Raman chemical imaging method was developed for direct inspection of benzoyl peroxide (BPO) mixed in wheat flour. A 5 W, 785 nm line laser (240 mm long and 1 mm wide) was used as a Raman excitation source in a push-broom Raman imaging system. Hyperspectral Raman images were collected in a wavenumber range of 103-2881 cm-1 from dry wheat flour mixed with BPO at eight concentrations (w/w) from 50 to 6400 ppm. A sample holder with a sampling volume of 150 × 100 × 2 mm3 was used to present a thin layer (2 mm thick) of the powdered sample for line-scan image acquisition with a spatial resolution of 0.2 mm. A baseline correction method based on adaptive iteratively reweighted penalized least squares was used to remove the fluctuating fluorescence signals from the wheat flour. To isolate BPO particles from the flour background, a simple thresholding method was applied to the single-band fluorescence-free images at a unique Raman peak wavenumber (i.e., 1001 cm-1) preselected for the BPO detection. Chemical images were created to detect and map the BPO particles. Limit of detection for the BPO was estimated in the order of 50 ppm, which is on the same level with regulatory standards. Pixel concentrations were calculated from the percentages of the BPO pixels in the chemical images. High correlation was found between the pixel concentrations and the mass concentrations of the BPO, indicating that the Raman chemical imaging method can be used for quantitative detection of the BPO mixed in the wheat flour.

  12. Evaluation of some advanced wheat lines (F7 in normal and drought stress conditions

    Directory of Open Access Journals (Sweden)

    R. Nikseresht

    2016-05-01

    Full Text Available For assessment of drought stress effects on agro characteristics of 30 lines and 6 wheat cultivars and for introducing of drought tolerant and susceptible ones one trial were established using split plot base of randomized complete block design with two replications, main plots were stress and non-stress condition and sub plots contain 30 lines and six wheat cultivars in the check trial, irrigation the farm was done with the normal regime, but in stress trial for germination of seeds and one irrigation in Isfand to the end of rooting the farm was irrigated. Within and end of growth season we measured some agronomic and morphological characters such as yield and its component, height, peduncle length, and etc. Responses of cultivars under stress and non-stress conditions were' different, for example drought stress reduced yield. In spite of this general yield reducing, we found some line, such as 2, 29, 23 had relatively high yield (in tree levels. In order to final evaluate using Factor Analysis, Principal Component, Cluster Analysis .Factor Analysis indicated that four important factors accounted for about 80.245 and 79.624 percent of the total variation among traits in normal and drought stress conditions. With cluster analysis of 36 lines and cultivar using Ward procedure based on Euclidean distance were grouped in 4 distance cluster.

  13. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance

    Science.gov (United States)

    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a costeffective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chrom...

  14. Molecular cytogenetic identification of a wheat-Thinopyrum ponticum translocation line resistant to powdery mildew.

    Science.gov (United States)

    He, Fang; Bao, Yinguang; Qi, Xiaolei; Ma, Yingxue; Li, Xingfeng; Wang, Honggang

    2017-03-01

    Thinopyrum ponticum (2n = 70) serves as a valuable gene pool for wheat improvement. Line SN0224, derived from crosses between Th. ponticum and the common wheat cultivar Yannong15, was identified in the present study. Cytogenetic observations showed that SN0224 contains 42 chromosomes in the root-tip cells and 21 bivalents in the pollen mother cells, thereby demonstrating its cytogenetic stability. Genomic in situ hybridization, probed with the total genomic DNA of Th. ponticum, produced hybridization signals in the distal region of two wheat chromosome arms. After inoculation with the Blumeria graminis f. sp. tritici (Bgt) isolates, SN0224 exhibited immunity. Segregation in F1s and F2s from the cross SN0224/cv. Huixianhong indicated that SN0224 carries a single dominant gene for powdery mildew (Pm) resistance, which was temporarily designated PmSn0224. Three markers Barc212, Xwmc522 and Xbarc1138 were detected to be linked with PmSn0224. Based on the locations of the markers, PmSn0224 was located on the chromosome 2A. None of the three markers above is linked with the previously reported PM resistance genes on chromosome 2A, and none of the previously reported PM resistance genes on chromosome 2A is related to Th. ponticum. Therefore, PmSn0224 is likely a novel gene putatively from Th. ponticum.

  15. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line

    Science.gov (United States)

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  16. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations.

    Science.gov (United States)

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K H; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L; Sandholzer, Michael; Lisse, Thomas S; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-12-07

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1-3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3 In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. Copyright © 2016 Fuchs et al.

  17. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Helmut Fuchs

    2016-12-01

    Full Text Available The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K, which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC. Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB, associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function.

  18. Physiological basis and transcriptional profiling of three salt-tolerant mutant lines of rice

    Directory of Open Access Journals (Sweden)

    Concha Domingo

    2016-09-01

    Full Text Available Salinity is a complex trait that affects growth and productivity in many crops, including rice. Mutation induction, a useful tool to generate salt tolerant plants, enables the analysis of plants with similar genetic background, facilitating the understanding of the salt tolerance mechanisms. In this work, we generated three salt tolerant mutant lines by irradiation of a salt-sensitive cultivar plants and screened M2 plants at seedling stage in the presence of high salinity. These three lines, SaT20, SaS62 and SaT58, showed different responses to salinity, but exhibited similar phenotype to wild type plants, except SaT20 that displayed shorter height when grown in the absence of salt. Under salt conditions, all three mutants and the parental line showed similar reduction in yield, although relevant differences in other physiological parameters, such as Na+ accumulation in healthy leaves of SaT20, were registered. Microarray analyses of gene expression profiles in roots revealed the occurrence of common and specific responses in the mutants. The three mutants showed up-regulation of responsive genes, the activation of oxido-reduction process and the inhibition of ion transport. The participation of jasmonate in the plant response to salt was evident by down-regulation of a gene coding for a jasmonate O-methyltransferase. Genes dealing with lipid transport and metabolism were, in general, up-regulated except in SaS62, that also exhibited down-regulation of genes involved in ion transport and Ca2+ signal transduction. The two most tolerant varieties, SaS62 and SaT20, displayed lower levels of transcripts involved in K+ uptake. The physiological study and the description of the expression analysis evidenced that the three lines showed different responses to salt: SaT20 showed a high Na+ content in leaves, SaS62 presented an inhibition of lipid metabolism and ion transport and SaT58 differs in both features in the response to salinity. The analysis of

  19. Evaluating Genetic Variability of Sorghum Mutant Lines Tolerant to Acid Soil

    Directory of Open Access Journals (Sweden)

    W. Puspitasari

    2012-08-01

    Full Text Available High rainfall in some parts in Indonesia causes soil become acidic. The main constraint of acid soil is phosphor (P deficiency and aluminum (Al toxicity which decrease plant productivity. To overcome this problem, it is important to develop a crop variety tolerant to such conditions. Sorghum is probably one of the potential crops to meet that objective. Sorghum has been reported to have wide adaptability to various agro-ecology and can be used as food and animal feed. Unfortunately, sorghum is not Indonesian origin so its genetic variability is still low. From previous breeding works with induced mutation, some promising mutant lines have been developed. These mutant lines were included in the experiment carried out in Tenjo with soil condition was classified as acid soil with pH 4.8 and exchangeable-Al content 2.43 me/100 g. The objectives of this experiment were to study the magnitude of genetic variability of agronomy and grain quality characters in sorghum in order to facilitate the breeding improvement of the species. Plant materials used in this study were ten genotypes, including 6 mutant lines and 4 control varieties. The randomized block design with three replications was used in the experiment. The genetic variabilities of agronomic and grain quality characters existed among genotypes, such as plant height, number of leaves, stalk diameter, biomass weight, panicle length, grain yield per plant, 100 seed weight and tannin content in the grain. The broad sense heritabilities of agronomic characters were estimated ranging from medium to high. Grain yield showed significantly positive correlation with agronomic characters observed, but it was negatively correlated with protein content

  20. Evaluating Genetic Variability of Sorghum Mutant Lines Tolerant to Acid Soil

    Directory of Open Access Journals (Sweden)

    W. Puspitasari

    2012-12-01

    Full Text Available High rainfall in some parts in Indonesia causes soil become acidic. The main constraint of acid soil is phosphor (P deficiency and aluminum (Al toxicity which decrease plant productivity. To overcome this problem, it is important to develop a crop variety tolerant to such conditions. Sorghum is probably one of the potential crops to meet that objective. Sorghum has been reported to have wide adaptability to various agro-ecology and can be used as food and animal feed. Unfortunately, sorghum is not Indonesian origin so its genetic variability is still low. From previous breeding works with induced mutation, some promising mutant lines have been developed. These mutant lines were included in the experiment carried out in Tenjo with soil condition was classified as acid soil with pH 4.8 and exchangeable-Al content 2.43 me/100 g. The objectives of this experiment were to study the magnitude of genetic variability of agronomy and grain quality characters in sorghum in order to facilitate the breeding improvement of the species. Plant materials used in this study were ten genotypes, including 6 mutant lines and 4 control varieties. The randomized block design with three replications was used in the experiment. The genetic variabilities of agronomic and grain quality characters existed among genotypes, such as plant height, number of leaves, stalk diameter, biomass weight, panicle length, grain yield per plant, 100 seed weight and tannin content in the grain. The broad sense heritabilities of agronomic characters were estimated ranging from medium to high. Grain yield showed significantly positive correlation with agronomic characters observed, but it was negatively correlated with protein content

  1. Melatonin alleviates low PS I-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat

    DEFF Research Database (Denmark)

    Li, Xiangnan; Brestic, Marian; Tan, Dun-xian

    2018-01-01

    Melatonin is involved in the regulation of carbohydrate metabolism and induction of cold tolerance in plants. The objective of this study was to investigate the roles of melatonin in modulation of carbon assimilation of wild-type wheat and the Chl b-deficient mutant ANK32B in response to elevated...... CO2 concentration ([CO2]) and the transgenerational effects of application of exogenous melatonin (hereafter identified as melatonin priming) on the cold tolerance in offspring. The results showed that the melatonin priming enhanced the carbon assimilation in ANK32B under elevated [CO2], via boosting...

  2. Dynamic QTL analysis of protein content and glutamine synthetase activity in recombinant inbred wheat lines.

    Science.gov (United States)

    Li, H M; Liang, H; Li, Z; Tang, Z X; Fu, S L; Geng, Y Y; Yan, B J; Ren, Z L

    2015-07-31

    Protein content (PC) is a crucial factor that determines the end-use and nutritional quality of wheat (Triticum aestivum). Glutamine synthetase (GS), which is a major participant in nitrogen metabolism, can convert inorganic nitrogen into organic nitrogen. Although many studies have been conducted on PC and GS, a dynamic analysis of all of the filling stages has not been conducted. Therefore, 115 F9-10 recombinant inbred wheat lines of 'R131/R142' were used to analyze PC and GS activity during different developmental stages, using the conditional quantitative trait loci (QTL) mapping method. Twenty-two and six conditional QTL were detected for PC and GS activily, respectively. More QTL in leaf PC were detected during the early filling stages than in the later filling stages. Grain PC QTL displayed different dynamic variations to leaf PC QTL during the entire grain-filling stages. All of the QTL were expressed differently over time, and nine conditional QTL were detected across two filling stages. QTL with similar functions may have tended to group in specific locales. This study provides dynamic genetic information on protein accumulation during grain-filling stages.

  3. Genome-Wide QTL Mapping for Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant Inbred Line Population

    Science.gov (United States)

    Jin, Hui; Wen, Weie; Liu, Jindong; Zhai, Shengnan; Zhang, Yan; Yan, Jun; Liu, Zhiyong; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat. PMID:27486464

  4. Efficient production of a gene mutant cell line through integrating TALENs and high-throughput cell cloning.

    Science.gov (United States)

    Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff

    2015-02-01

    Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.

  5. Relative contributions of allelopathy and competitive traits to the weed suppressive ability of winter wheat lines against Italian ryegrass

    Science.gov (United States)

    Allelopathy and competitive ability have been identified as independent factors contributing to the weed suppressive ability of crop cultivars; however, it is not clear whether these factors have equal influence on weed suppression outcomes of winter wheat (Triticum aestivum L.) lines in the field. ...

  6. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium

    Science.gov (United States)

    The chromosome painting is an efficient tool for chromosome research. However, plant chromosome painting is relatively underdeveloped. In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and chromosomes of...

  7. Yield of two mutant lines of soybean for human consumption;Rendimiento de dos lineas mutantes de soya para consumo humano

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron E, J.; Mastache L, A. A.; Diaz V, G. E.; Valencia E, F.; Ranfla C, R.; Melendez P, M. [Colegio Superior Agropecuario del Estado de Guerrero, Vicente Guerrero No. 81, Col. Centro, 40000 Iguala, Guerrero (Mexico); Cervantes S, T. [Instituto de Recursos Geneticos y Productividad, Colegio de Postgraduados, Carretera Mexico-Texcoco Km. 36.5, Montecillo, 56230 Texcoco, Estado de Mexico (Mexico); De la Cruz T, E.; Garcia A, J. M.; Falcon B, T., E-mail: csaegro@prodigy.net.m [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2009-07-01

    The present work has the objective of to evaluate the yield and the agronomic behavior of 2 mutant lines of soybean for human consumption, obtained by means of a process of recurrent irradiation of soybean seed ISAAEG-BM{sub 2} with gammas of Co{sup 60} and selection in the generation R{sub 4}M{sub 18}. For the variable yield significant statistical differences were not observed, but considering the rest of the evaluated agronomic characteristics the mutant lines L{sub 6} and Bombona they were excellent with values of 3,934.6 and 3,806.8 Kg ha-{sup 1} to 15% of grain humidity, they also possess excellent genetic characteristics result of the irradiations and selections of these new genetic materials. (Author)

  8. Sources of stem rust resistance in wheat-alien introgression lines

    Science.gov (United States)

    Stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most devastating diseases of wheat and the novel highly virulent race of TTKSK and its lineage are threatening wheat production worldwide. The objective of the study was to identify new sources of resistance in wheat-alien introgre...

  9. Heritability and Relationship among Durum Wheat Quality Traits Using a Recombinant Inbred Lines Population

    Directory of Open Access Journals (Sweden)

    M. Khazaei

    2013-10-01

    Full Text Available Traits related to seed quality have an important role in production of durum wheat. To estimate the heritability of protein content, semolina content, Zeleny number, seed hardness, SDS, dry and fresh gluten content, gluten index, and also to investigate the relationship of these traits in durum wheat, a recombinant inbred lines (RILs population including 94 recombinant inbred lines (F10, two parents (Ac. Navigator and G9580B-FE1C and four controls (Diper, Preion and PI10235 varieties and a local variety “Ajr” were evaluated. This experiment was carried out in the Research Farm of Shahrekord University, Shahrekord, Iran, using a triple lattice design.. Results showed that frequency distribution for gluten index was bimodal and for the rest of the traits was normal. This indicated the two-genes control and quantitative inheritance of these traits in the population,respectively. Transgressive segregation was observed for all the traits. The calculated heritability for protein content, seed hardness, SDS and semolina content was in the low range of 11.4-24.7%. For fresh and dry gluten and Zeleny number, it was 45, 36.2 and 37.1%, respectively. For gluten index, it was high (76.6%. The genetic correlation coefficient between protein content and Zeleny number was positive and high (r= 0.98, which indicates the suitability of this trait as a criterion for protein content. The results of path analysis for semolina, as the main feature in pasta production, based on genetic correlation coefficients, showed that the highest negative direct effect was related to Zeleny number the highest positive effect was related to protein content, which indicated the importance of these traits in explaining the semolina yield.

  10. Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum.

    Science.gov (United States)

    Niu, Z; Klindworth, D L; Yu, G; L Friesen, T; Chao, S; Jin, Y; Cai, X; Ohm, J-B; Rasmussen, J B; Xu, Steven S

    2014-04-01

    Wheat lines carrying Ug99-effective stem rust resistance gene Sr43 on shortened alien chromosome segments were produced using chromosome engineering, and molecular markers linked to Sr43 were identified for marker-assisted selection. Stem rust resistance gene Sr43, transferred into common wheat (Triticum aestivum) from Thinopyrum ponticum, is an effective gene against stem rust Ug99 races. However, this gene has not been used in wheat breeding because it is located on a large Th. ponticum 7el(2) chromosome segment, which also harbors genes for undesirable traits. The objective of this study was to eliminate excessive Th. ponticum chromatin surrounding Sr43 to make it usable in wheat breeding. The two original translocation lines KS10-2 and KS24-1 carrying Sr43 were first analyzed using simple sequence repeat (SSR) markers and florescent genomic in situ hybridization. Six SSR markers located on wheat chromosome arm 7DL were identified to be associated with the Th. ponticum chromatin in KS10-2 and KS24-1. The results confirmed that KS24-1 is a 7DS·7el(2)L Robertsonian translocation as previously reported. However, KS10-2, which was previously designated as a 7el(2)S·7el(2)L-7DL translocation, was identified as a 7DS-7el(2)S·7el(2)L translocation. To reduce the Th. ponticum chromatin carrying Sr43, a BC(2)F(1) population (Chinese Spring//Chinese Spring ph1bph1b*2/KS10-2) containing ph1b-induced homoeologous recombinants was developed, tested with stem rust, and genotyped with the six SSR markers identified above. Two new wheat lines (RWG33 and RWG34) carrying Sr43 on shortened alien chromosome segments (about 17.5 and 13.7 % of the translocation chromosomes, respectively) were obtained, and two molecular markers linked to Sr43 in these lines were identified. The new wheat lines with Sr43 and the closely linked markers provide new resources for improving resistance to Ug99 and other races of stem rust in wheat.

  11. Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation

    Directory of Open Access Journals (Sweden)

    Taylor Gregory J

    2004-04-01

    Full Text Available Abstract Background Cadmium (Cd concentrations in durum wheat (Triticum turgidum L. var durum grain grown in North American prairie soils often exceed proposed international trade standards. To understand the physiological processes responsible for elevated Cd accumulation in shoots and grain, Cd uptake and translocation were studied in seedlings of a pair of near-isogenic durum wheat lines, high and low for Cd accumulation in grain. Results In short-term studies (109Cd-labelled nutrient solutions, there were no differences between lines in time- or concentration-dependent 109Cd accumulation by roots. In contrast, rates of 109Cd translocation from roots to shoots following longer exposure (48–60 h were 1.8-fold higher in the high Cd-accumulating line, despite equal whole-plant 109Cd accumulation in the lines. Over the same period, the 109Cd concentration in root-pressure xylem exudates was 1.7 to 1.9-fold higher in the high Cd-accumulating line. There were no differences between the lines in 65Zn accumulation or partitioning that could account for the difference between lines in 109Cd translocation. Conclusion These results suggest that restricted root-to-shoot Cd translocation may limit Cd accumulation in durum wheat grain by directly controlling Cd translocation from roots during grain filling, or by controlling the size of shoot Cd pools that can be remobilised to the grain.

  12. Establishment and mitotic characterization of new Drosophila acentriolar cell lines from DSas-4 mutant

    Directory of Open Access Journals (Sweden)

    Nicolas Lecland

    2013-01-01

    In animal cells the centrosome is commonly viewed as the main cellular structure driving microtubule (MT assembly into the mitotic spindle apparatus. However, additional pathways, such as those mediated by chromatin and augmin, are involved in the establishment of functional spindles. The molecular mechanisms involved in these pathways remain poorly understood, mostly due to limitations inherent to current experimental systems available. To overcome these limitations we have developed six new Drosophila cell lines derived from Drosophila homozygous mutants for DSas-4, a protein essential for centriole biogenesis. These cells lack detectable centrosomal structures, astral MT, with dispersed pericentriolar proteins D-PLP, Centrosomin and γ-tubulin. They show poorly focused spindle poles that reach the plasma membrane. Despite being compromised for functional centrosome, these cells could successfully undergo mitosis. Live-cell imaging analysis of acentriolar spindle assembly revealed that nascent MTs are nucleated from multiple points in the vicinity of chromosomes. These nascent MTs then grow away from kinetochores allowing the expansion of fibers that will be part of the future acentriolar spindle. MT repolymerization assays illustrate that acentriolar spindle assembly occurs “inside-out” from the chromosomes. Colchicine-mediated depolymerization of MTs further revealed the presence of a functional Spindle Assembly Checkpoint (SAC in the acentriolar cells. Finally, pilot RNAi experiments open the potential use of these cell lines for the molecular dissection of anastral pathways in spindle and centrosome assembly.

  13. Generation of a Collection of Mutant Tomato Lines Using Pooled CRISPR Libraries.

    Science.gov (United States)

    Jacobs, Thomas B; Zhang, Ning; Patel, Dhruv; Martin, Gregory B

    2017-08-01

    The high efficiency of clustered regularly interspaced short palindromic repeats (CRISPR)-mediated mutagenesis in plants enables the development of high-throughput mutagenesis strategies. By transforming pooled CRISPR libraries into tomato ( Solanum lycopersicum ), collections of mutant lines were generated with minimal transformation attempts and in a relatively short period of time. Identification of the targeted gene(s) was easily determined by sequencing the incorporated guide RNA(s) in the primary transgenic events. From a single transformation with a CRISPR library targeting the immunity-associated leucine-rich repeat subfamily XII genes, heritable mutations were recovered in 15 of the 54 genes targeted. To increase throughput, a second CRISPR library was made containing three guide RNAs per construct to target 18 putative transporter genes. This resulted in stable mutations in 15 of the 18 targeted genes, with some primary transgenic plants having as many as five mutated genes. Furthermore, the redundancy in this collection of plants allowed for the association of aberrant T0 phenotypes with the underlying targeted genes. Plants with mutations in a homolog of an Arabidopsis ( Arabidopsis thaliana ) boron efflux transporter displayed boron deficiency phenotypes. The strategy described here provides a technically simple yet high-throughput approach for generating a collection of lines with targeted mutations and should be applicable to any plant transformation system. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Effect of physicochemical parameters on the polygalacturonase of an Aspergillus sojae mutant using wheat bran, an agro-industrial waste, via solid-state fermentation.

    Science.gov (United States)

    Demir, Hande; Tari, Canan

    2016-08-01

    Polygalacturonases (PGs) are valuable enzymes of the food industry; therefore it is of great importance to discover new and GRAS PG-producing microbial strains. In this study, PG enzyme produced from a high PG activity producer mutant Aspergillus sojae using wheat bran at the flask scale under pre-optimized conditions of solid-state fermentation (SSF) was biochemically characterized. The crude PG enzyme showed optimum activity in the pH range 4.0-5.0 and was stable in the pH range 3.0-7.0. The optimum temperature for the PG was 40 °C and it retained 99% of its activity at 50 °C. The mutant A. sojae PG could preserve more than 50% of its stability between 25 and 50 °C, both for 30 and 60 min, and was found to be stable in the presence of most of the tested compounds and metal ions. The inactivation energy (Ed ) was determined as 125.3 kJ mol(-1) . The enthalpy (ΔH*), free energy (ΔG*) and entropy (ΔS*) of inactivation were found to be stable with increasing temperature. The mutant A. sojae PG could be suitable for the clarification (depectinization) of orange and grape juices and wine. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Reaction of wheat cultivars and differential lines to Puccinia triticina races in detached leaves

    Directory of Open Access Journals (Sweden)

    Camila Turra

    2014-12-01

    Full Text Available The method of preserving detached wheat leaves in Petri dish was used for the inoculation and development of the fungus Puccinia triticina, the causal agent of wheat leaf rust. The reaction of 26 wheat cultivars was compared by using seedlings cultivated in pots (in vivo and detached leaves (in vitro inoculated with four physiological races of the pathogen. After inoculation, the material was kept in a growth chamber for 15 days. The reaction was evaluated on the 15th day after inoculation. Results for each race in the evaluated genotypes confirmed the efficiency of the detached leaf method in assessing the reaction of wheat cultivars.

  16. Nonsense mediated decay resistant mutations are a source of expressed mutant proteins in colon cancer cell lines with microsatellite instability.

    Directory of Open Access Journals (Sweden)

    David S Williams

    Full Text Available BACKGROUND: Frameshift mutations in microsatellite instability high (MSI-High colorectal cancers are a potential source of targetable neo-antigens. Many nonsense transcripts are subject to rapid degradation due to nonsense-mediated decay (NMD, but nonsense transcripts with a cMS in the last exon or near the last exon-exon junction have intrinsic resistance to nonsense-mediated decay (NMD. NMD-resistant transcripts are therefore a likely source of expressed mutant proteins in MSI-High tumours. METHODS: Using antibodies to the conserved N-termini of predicted mutant proteins, we analysed MSI-High colorectal cancer cell lines for examples of naturally expressed mutant proteins arising from frameshift mutations in coding microsatellites (cMS by immunoprecipitation and Western Blot experiments. Detected mutant protein bands from NMD-resistant transcripts were further validated by gene-specific short-interfering RNA (siRNA knockdown. A genome-wide search was performed to identify cMS-containing genes likely to generate NMD-resistant transcripts that could encode for antigenic expressed mutant proteins in MSI-High colon cancers. These genes were screened for cMS mutations in the MSI-High colon cancer cell lines. RESULTS: Mutant protein bands of expected molecular weight were detected in mutated MSI-High cell lines for NMD-resistant transcripts (CREBBP, EP300, TTK, but not NMD-sensitive transcripts (BAX, CASP5, MSH3. Expression of the mutant CREBBP and EP300 proteins was confirmed by siRNA knockdown. Five cMS-bearing genes identified from the genome-wide search and without existing mutation data (SFRS12IP1, MED8, ASXL1, FBXL3 and RGS12 were found to be mutated in at least 5 of 11 (45% of the MSI-High cell lines tested. CONCLUSION: NMD-resistant transcripts can give rise to expressed mutant proteins in MSI-High colon cancer cells. If commonly expressed in primary MSI-High colon cancers, MSI-derived mutant proteins could be useful as cancer specific

  17. Perennial wheat lines have highly admixed population structure and elevated rates of outcrossing.

    Science.gov (United States)

    Perennial wheat has been proposed to alleviate long standing issues with soil erosion in annual cropping systems, while supporting rural communities and providing grain farmers with a marketable climate-resilient crop. The Washington State University perennial wheat breeding program has created sev...

  18. Assesment of winter wheat advanced lines by use of multivariate statistical analyses

    Directory of Open Access Journals (Sweden)

    Boshev Dane

    2016-01-01

    Full Text Available This study was conducted to evaluate 49 advanced lines of winter wheat (Triticum aestivum L. for their morphoagronomic traits and to determine best criteria for selection of lines to be included in future breeding program. The material was assessed in two years experiment at two locations, using RCBD design with three replications. Ten quantitative traits: plant height, number of fertile tillers, spike length, number of spikelets per spike, number of grains per spike, weight of grain per spike and per plant, fertility, biological yield and harvest index were evaluated by PCA and two-way cluster analysis. Three main principal components were determined explaining 71.391% of the total variation among the genotypes. One third of the variation is explained by PC1 which reflects the genotype yield potential. PC2 and PC3 explained 25.22% and 15.49% of the total variance, mostly in relation to the plant height and spike components, respectively. Biplot graph revealed strongest positive association between spike length, number of spikelets and biological yield and between number of tillers, weight of grains per spike and per plant. Two-way cluster analysis resulted with a dendrogram with one solely separated genotype, superior for all traits and two main clusters of genotypes defined with wide genetic diversity especially between the groups within the second cluster. Genotypes with high values for specific traits will be included in the future breeding programmes. Classification of genotypes and the extend of variation among them illustrated on the heatmap has proved to be practical tool for selecting genotypes with desired traits in the early stages of the breeding process.

  19. QTL Characterization of Fusarium Head Blight Resistance in CIMMYT Bread Wheat Line Soru#1.

    Directory of Open Access Journals (Sweden)

    Xinyao He

    Full Text Available Fusarium head blight (FHB resistant line Soru#1 was hybridized with the German cultivar Naxos to generate 131 recombinant inbred lines for QTL mapping. The population was phenotyped for FHB and associated traits in spray inoculated experiments in El Batán (Mexico, spawn inoculated experiments in Ås (Norway and point inoculated experiments in Nanjing (China, with two field trials at each location. Genotyping was performed with the Illumina iSelect 90K SNP wheat chip, along with a few SSR and STS markers. A major QTL for FHB after spray and spawn inoculation was detected on 2DLc, explaining 15-22% of the phenotypic variation in different experiments. This QTL remained significant after correction for days to heading (DH and plant height (PH, while another QTL for FHB detected at the Vrn-A1 locus on 5AL almost disappeared after correction for DH and PH. Minor QTL were detected on chromosomes 2AS, 2DL, 4AL, 4DS and 5DL. In point inoculated experiments, QTL on 2DS, 3AS, 4AL and 5AL were identified in single environments. The mechanism of resistance of Soru#1 to FHB was mainly of Type I for resistance to initial infection, conditioned by the major QTL on 2DLc and minor ones that often coincided with QTL for DH, PH and anther extrusion (AE. This indicates that phenological and morphological traits and flowering biology play important roles in resistance/escape of FHB. SNPs tightly linked to resistance QTL, particularly 2DLc, could be utilized in breeding programs to facilitate the transfer and selection of those QTL.

  20. Preferência de Bemisia tabaci biótipo B em linhagens mutantes de algodoeiro Bemisia tabaci biotype B preference in mutant cotton lines

    Directory of Open Access Journals (Sweden)

    Francisco das Chagas Vidal Neto

    2008-02-01

    Full Text Available Os efeitos de caracteres mutantes morfológicos do algodoeiro (Gossypium hirsutum L. r. latifolium Hutch.: folha okra, bráctea frego e planta vermelha, em relação à resistência à mosca-branca (Bemisia tabaci biótipo B Hemiptera: Aleyrodidae, foram avaliados em experimentos com ou sem chance de escolha. Os experimentos foram conduzidos em casa-de-vegetação, no delineamento de blocos ao acaso, em fatorial 23 + 1, com quatro repetições. O mutante com a característica planta vermelha foi menos atrativo e menos preferido para oviposição, em relação à planta verde, em ambos os ensaios, com ou sem escolha. Não houve preferência quanto à forma da folha e ao tipo de bráctea.The effects of cotton lines (Gossypium hirsutum L. r. latifolium Hutch. with mutants morphologic characteristics: okra leaf, frego bract and red plant in relation to host plant resistance to whitefly (Bemisia tabaci bioyipe B Hemiptera: Aleyrodidae, were evaluated in choice or no choice assays. The assays were carried out in the greenhouse conditions, according to a completely randomized block design, in a 23 + 1 in a factorial arrangement with four replications. The mutant with red plant characteristic was less attractive and less preferred for oviposition than the normal green plant does, in both, whit or without choice tests. It did not have preference in relation to the form of the leaf and bract type.

  1. Characteristics of Hydroxypropyl Starch of Sorghum Mutant Line ZH-30 and its Potential use in Paper Industry

    Directory of Open Access Journals (Sweden)

    S. Human

    2006-01-01

    Full Text Available Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induced plant genetic variability. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher yield than the original variety. Research on starch quality of this mutant line was done to identify its potential use in a paper industry. Hydroxypropyl starch derivatives of this sorghum lines were prepared by varying alkalinity of the reaction mixtures using propylene oxide to reach Molar of Substitution (MS of 0–0.180. Its pasting behavior, paste properties and application in wet end paper processing were evaluated. The optimal amount of addition of hydroxypropyl starch was 1-2 %. At this level, drainage time was lower, so that it decreased paper machine speed. At higher level, it did not improve the burst and tensile strengths but tended to decrease the tear strength of handsheets. The properties of lower pasting temperature, higher water holding capacity lower retrogradation susceptibility, increased viscosity and stability of pastes suggested that hydroxypropyl starch of sorghum ZH-30 was suitable for use in wet end paper processing. Comparing to the original starch, the hydroxypropyl starch of sorghum Zh-30 could significantly improve the strength of handsheets.

  2. Inhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines.

    Science.gov (United States)

    Suijker, Johnny; Oosting, Jan; Koornneef, Annemarie; Struys, Eduard A; Salomons, Gajja S; Schaap, Frank G; Waaijer, Cathelijn J F; Wijers-Koster, Pauline M; Briaire-de Bruijn, Inge H; Haazen, Lizette; Riester, Scott M; Dudakovic, Amel; Danen, Erik; Cleton-Jansen, Anne-Marie; van Wijnen, Andre J; Bovée, Judith V M G

    2015-05-20

    Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found in a subset of benign and malignant cartilage tumors, gliomas and leukaemias. The mutant enzyme causes the production of D-2-hydroxyglutarate (D-2-HG), affecting CpG island and histone methylation. While mutations in IDH1/2 are early events in benign cartilage tumors, we evaluated whether these mutations play a role in malignant chondrosarcomas. Compared to IDH1/2 wildtype cell lines, chondrosarcoma cell lines harboring an endogenous IDH1 (n=3) or IDH2 mutation (n=2) showed up to a 100-fold increase in intracellular and extracellular D-2-HG levels. Specific inhibition of mutant IDH1 using AGI-5198 decreased levels of D-2-HG in a dose dependent manner. After 72 hours of treatment one out of three mutant IDH1 cell lines showed a moderate decrease in viability , while D-2-HG levels decreased >90%. Likewise, prolonged treatment (up to 20 passages) did not affect proliferation and migration. Furthermore, global gene expression, CpG island methylation as well as histone H3K4, -9, and -27 trimethylation levels remained unchanged. Thus, while IDH1/2 mutations cause enchondroma, malignant progression towards central chondrosarcoma renders chondrosarcoma growth independent of these mutations. Thus, monotherapy based on inhibition of mutant IDH1 appears insufficient for treatment of inoperable or metastasized chondrosarcoma patients.

  3. Considerations When Deploying Canopy Temperature to Select High Yielding Wheat Breeding Lines under Drought and Heat Stress

    Directory of Open Access Journals (Sweden)

    R. Esten Mason

    2014-04-01

    Full Text Available Developing cultivars with improved adaptation to drought and heat stressed environments is a priority for plant breeders. Canopy temperature (CT is a useful tool for phenotypic selection of tolerant genotypes, as it integrates many physiological responses into a single low-cost measurement. The objective of this study was to determine the ability of CT to predict grain yield within the flow of a wheat breeding program and assess its utility as a tool for indirect selection. CT was measured in both heat and drought stressed field experiments in northwest Mexico on 18 breeding trials totaling 504 spring wheat lines from the International Maize and Wheat Improvement Center (CIMMYT Irrigated Bread Wheat program. In the heat treatment, CT was significantly correlated with yield (r = −0.26 across all trials, with a maximum coefficient of determination within the individual trials of R2 = 0.36. In the drought treatment, a significant correlation across all trials was only observed when days to heading or plant height was used as a covariate. However, the coefficient of determination within individual trials had a maximum of R2 = 0.54, indicating that genetic background may impact the ability of CT to predict yield. Overall a negative slope in the heat treatment indicated that a cooler canopy provided a yield benefit under stress, and implementing selection strategies for CT may have potential for breeding tolerant genotypes.

  4. Genome-wide QTL mapping for wheat processing quality parameters in a Gaocheng 8901/Zhoumai 16 recombinant inbred line population

    Directory of Open Access Journals (Sweden)

    Hui Jin

    2016-07-01

    Full Text Available Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.. In the present study, a recombinant inbred line (RIL population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA and Mixolab parameters using 90K and 660K single nucleotide polymorphism (SNP chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90K and 660K SNP assays spanned a total length of 4,121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6,596 new SNP markers were anchored to the bread wheat linkage map, with 1,046 and 5,550 markers from the 90K and 660K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP technique for improvement of processing quality in bread wheat.

  5. Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400.

    Science.gov (United States)

    Erdei, Borbála; Frankó, Balázs; Galbe, Mats; Zacchi, Guido

    2013-03-10

    Wheat straw was pretreated and fermented to ethanol. Two strains, which had been mutated from the genetically modified Saccharomyces cerevisiae TMB3400, KE6-12 and KE6-13i, have been used in this study and the results of performance were compared to that of the original strain. The glucose and xylose co-fermentation ability was investigated in batch fermentation of steam-pretreated wheat straw (SPWS) liquid (undiluted, and diluted 1.5 and 2 times). Both strains showed improved xylose uptake in diluted SPWS liquid, and increased ethanol yields compared with the original TMB3400 strain, although xylitol formation also increased slightly. In undiluted SPWS liquid, however, only KE6-13i performed better than the original strain regarding xylose utilization. Fed-batch fermentation of 1.5 and 2 times diluted liquid was performed by adding the glucose-rich hydrolysates from enzymatic hydrolysis of the solid fraction of SPWS at a constant feed rate after 5 h of fermentation, when the glucose had been depleted. The modified strains showed improved xylose conversion; however, the ethanol yield was not significantly improved due to increased glycerol production. Fed-batch fermentation resulted in faster xylose utilization than in the batch cases. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Comprehensive Identification and Bread-Making Quality Evaluation of Common Wheat Somatic Variation Line AS208 on Glutenin Composition.

    Directory of Open Access Journals (Sweden)

    Huiyun Liu

    Full Text Available High molecular weight glutenin subunits (HMW-GSs are important seed storage proteins in wheat (Triticum aestivum that determine wheat dough elasticity and processing quality. Clarification of the defined effectiveness of HMW-GSs is very important to breeding efforts aimed at improving wheat quality. To date, there have no report on the expression silencing and quality effects of 1Bx20 and 1By20 at the Glu-B1 locus in wheat. A wheat somatic variation line, AS208, in which both 1Bx20 and 1By20 at Glu-B1 locus were silenced, was developed recently in our laboratory. Evaluation of agronomic traits and seed storage proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE and reversed-phase high performance liquid chromatography (RP-HPLC indicated that AS208 was highly similar to its parental cultivar Lunxuan987 (LX987, with the exception that the composition and expression of HMW-GSs was altered. The 1Bx20 and 1By20 in AS208 were further identified to be missing by polymerase chain reaction (PCR and quantitative real-time RT-PCR (qRT-PCR assays. Based on the PCR results for HMW-GS genes and their promoters in AS208 compared with LX987, 1Bx20 and 1By20 were speculated to be deleted in AS208 during in vitro culture. Quality analysis of this line with Mixograph, Farinograph, and Extensograph instruments, as well as analysis of bread-making quality traits, demonstrated that the lack of the genes encoding 1Bx20 and 1By20 caused various negative effects on dough processing and bread-making quality traits, including falling number, dough stability time, mixing tolerance index, crude protein values, wet gluten content, bread size, and internal cell structure. AS208 can potentially be used in the functional dissection of other HMW-GSs as a plant material with desirable genetic background, and in biscuit making industry as a high-quality weak gluten wheat source.

  7. Comprehensive Identification and Bread-Making Quality Evaluation of Common Wheat Somatic Variation Line AS208 on Glutenin Composition

    Science.gov (United States)

    Du, Lipu; Cao, Xinyou; Zhang, Xiaoxiang; Zhou, Yang; Yan, Yueming; Ye, Xingguo

    2016-01-01

    High molecular weight glutenin subunits (HMW-GSs) are important seed storage proteins in wheat (Triticum aestivum) that determine wheat dough elasticity and processing quality. Clarification of the defined effectiveness of HMW-GSs is very important to breeding efforts aimed at improving wheat quality. To date, there have no report on the expression silencing and quality effects of 1Bx20 and 1By20 at the Glu-B1 locus in wheat. A wheat somatic variation line, AS208, in which both 1Bx20 and 1By20 at Glu-B1 locus were silenced, was developed recently in our laboratory. Evaluation of agronomic traits and seed storage proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and reversed-phase high performance liquid chromatography (RP-HPLC) indicated that AS208 was highly similar to its parental cultivar Lunxuan987 (LX987), with the exception that the composition and expression of HMW-GSs was altered. The 1Bx20 and 1By20 in AS208 were further identified to be missing by polymerase chain reaction (PCR) and quantitative real-time RT-PCR (qRT-PCR) assays. Based on the PCR results for HMW-GS genes and their promoters in AS208 compared with LX987, 1Bx20 and 1By20 were speculated to be deleted in AS208 during in vitro culture. Quality analysis of this line with Mixograph, Farinograph, and Extensograph instruments, as well as analysis of bread-making quality traits, demonstrated that the lack of the genes encoding 1Bx20 and 1By20 caused various negative effects on dough processing and bread-making quality traits, including falling number, dough stability time, mixing tolerance index, crude protein values, wet gluten content, bread size, and internal cell structure. AS208 can potentially be used in the functional dissection of other HMW-GSs as a plant material with desirable genetic background, and in biscuit making industry as a high-quality weak gluten wheat source. PMID:26765256

  8. Enhanced bioethanol production from wheat straw hemicellulose by mutant strains of pentose fermenting organisms Pichia stipitis and Candida shehatae

    National Research Council Canada - National Science Library

    Koti, Sravanthi; Govumoni, Sai Prashanthi; Gentela, Jahnavi; Venkateswar Rao, L

    2016-01-01

    ... % dilute sulphuric acid and enzymatic hydrolysis by crude xylanase separately. Among all the mutant strains, PSUV9 and CSEB7 showed enhanced ethanol production (12.15 ± 0.57, 9.55 ± 0.47 g/L and yield 0.450 ± 0.009, 0.440 ± 0.001 g/g...

  9. Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant.

    Science.gov (United States)

    Tian, Fengxia; Gong, Jiangfeng; Zhang, Jin; Zhang, Meng; Wang, Guokun; Li, Aixiu; Wang, Wei

    2013-04-01

    A wheat stay-green mutant, tasg1, was previously generated via mutation breeding of HS2, a common wheat cultivar (Triticum aestivum L.). Compared with wild-type (WT) plants, tasg1 exhibited delayed senescence indicated by the slower degradation of chlorophyll. In this study, the stability of proteins in thylakoid membranes was evaluated in tasg1 under drought stress compared with WT plants in the field as well as in seedlings in the laboratory. Drought stress was imposed by controlling irrigation and sheltering the plants from rain in the field, and by polyethylene glycol (PEG)-6000 in the laboratory. The results indicated that tasg1 plants could maintain higher Hill activity, actual efficiency (ΦPSII), maximal photochemical efficiency of PSII (Fv/Fm), and Ca(2+)-ATPase and Mg(2+)-ATPase activities than the WT plants under drought stress. Furthermore, the abundance of some polypeptides in thylakoid membranes of tasg1 was greater than that in the WT under drought stress. Expression levels of TaLhcb4 and TaLhcb6 were higher in tasg1 compared with the WT. Under drought stress, the accumulation of superoxide radical (O2·(-)) and hydrogen peroxide (H2O2) was lower in tasg1 compared with the WT not only at the senescence stage but also at the seedling stages. These results suggest greater functional stability of thylakoid membrane proteins in tasg1 compared with the WT, and the higher antioxidant competence of tasg1 may play an important role in the enhanced drought tolerance of tasg1.

  10. Proteomic and genetic analysis of wheat endosperm albumins and globulins using deletion lines of cultivar Chinese Spring

    DEFF Research Database (Denmark)

    Merlino, Marielle; Bousbata, Sabrina; Svensson, Birte

    2012-01-01

    identified using mass spectrometry and data mining. Salt-soluble endosperm proteins from 67 CS deletion lines were also separated by 2DE (four gels per line). Image analysis of the 268 2DE gels as compared to the CS reference proteome allowed the detection of qualitative and quantitative variations...... in endosperm proteins due to chromosomal deletions. This differential analysis of spots allowed structural or regulatory genes, encoding 211 proteins, to be located on segments of the 21 wheat chromosomes. In addition, variance analysis of quantitative variations in spot volume showed that the expression....... Quantitative or qualitative variation in a total of 386 proteins was influenced by genes assigned to at least one chromosomal region, while 66 % of all stained proteins were not found to be influenced by chromosome bins. Proteomics of deletion lines can, therefore, be used to simultaneously analyse...

  11. Identification of Cephalosporium stripe resistance quantitative trait loci in two recombinant inbred line populations of winter wheat.

    Science.gov (United States)

    Vazquez, M Dolores; Zemetra, Robert; Peterson, C James; Mundt, Christopher C

    2015-02-01

    Identification of genome regions linked to Cephalosporium stripe resistance across two populations on chromosome 3BS, 4BS, 5AL, C5BL. Results were compared to a similar previous study. Cephalosporium stripe is a vascular wilt disease of winter wheat (Triticum aestivum L.) caused by the soil-borne fungus Cephalosporium gramineum Nisikado & Ikata. In the USA it is known to be a recurring disease when susceptible cultivars are grown in the wheat-growing region of Midwest and Pacific Northwest. There is no complete resistance in commercial wheat cultivars, although the use of moderately resistant cultivars reduces the disease severity and the amount of inoculum in subsequent seasons. The goal of this study was to detect and to compare chromosomal regions for resistance to Cephalosporium stripe in two winter wheat populations. Field inoculation was performed and Cephalosporium stripe severity was visually scored as percent of prematurely ripening heads (whiteheads) per plot. 'Tubbs'/'NSA-98-0995' and 'Einstein'/'Tubbs', each comprising a cross of a resistant and a susceptible cultivar, with population sizes of 271 and 259 F (5:6) recombinant inbred lines, respectively, were genotyped and phenotyped across four environments. In the quantitative trait loci (QTL) analysis, six and nine QTL were found, explaining in total, around 30 and 50 % of the phenotypic variation in 'Tubbs'/'NSA-98-0995' and 'Einstein'/'Tubbs', respectively. The QTL with the largest effect from both 'NSA-98-0995' and 'Einstein' was on chromosome 5AL.1 and linked to marker gwm291. Several QTL with smaller effects were identified in both populations on chromosomes 5AL, 6BS, and 3BS, along with other QTL identified in just one population. These results indicate that resistance to Cephalosporium stripe in both mapping populations was of a quantitative nature.

  12. Genetic and epigenetic changes in somatic hybrid introgression lines between wheat and tall wheatgrass

    Science.gov (United States)

    Broad phenotypic variations were induced in derivatives of an asymmetric somatic hybridization of bread wheat (Triticum aestivum) and tall wheatgrass (Thinopyrum ponticum Podp); however, how did these variations happened was unknown. We explored the nature of these variations by cytogenetic assays ...

  13. ATM mutants

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. ATM mutants. ATM (Ataxia Telangiectasia Mutated). AT2BE and AT5B1 cells – fibroblast cell lines from Ataxia telangiectasia patients. Deletion mutants expressing truncated ATM protein which is inactive. Have been used in studies looking at the role of ATM in DNA damage ...

  14. Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines

    Directory of Open Access Journals (Sweden)

    Jianmin Song

    2016-11-01

    Full Text Available Previous studies have shown that wheat grain yield is seriously affected by drought stress, and leaf cuticular wax is reportedly associated with drought tolerance. However, most studies have focused on cuticular wax biosynthesis and model species. The effects of cuticular wax on wheat drought tolerance have rarely been studied. The aims of the current study were to study the effects of leaf cuticular wax on wheat grain yield under drought stress using the above-mentioned wheat NILs and to discuss the possible physiological mechanism of cuticular wax on high grain yield under drought stress. Compared to water-irrigated (WI conditions, the cuticular wax content (CWC in glaucous and non-glaucous NILs under drought-stress (DS conditions both increased; mean increase values were 151.1% and 114.4%, respectively, which was corroborated by scanning electronic microscopy images of large wax particles loaded on the surfaces of flag leaves. The average yield of glaucous NILs was higher than that of non-glaucous NILs under DS conditions in 2014 and 2015; mean values were 7368.37 kg·ha-1 and 7103.51 kg·ha-1. This suggested that glaucous NILs were more drought-tolerant than non-glaucous NILs (P = 0.05, which was supported by the findings of drought tolerance indices TOL and SSI in both years, the relatively high water potential and relative water content, and the low ELWL. Furthermore, the photosynthesis rate (Pn of glaucous and non-glaucous wheat NILs under DS conditions decreased by 7.5% and 9.8%, respectively; however, glaucous NILs still had higher mean values of Pn than those of non-glaucous NILs, which perhaps resulted in the higher yield of glaucous NILs. This could be explained by the fact that glaucous NILs had a smaller Fv/Fm reduction, a smaller PI reduction and a greater ABS/RC increase than non-glaucous NILs under DS conditions. This is the first report to show that wheat cuticular wax accumulation is associated with drought tolerance. Moreover

  15. Generation of a clonal induced pluripotent stem cell (iPSC line expressing the mutant MECP2 allele from a Rett Syndrome patient fibroblast line

    Directory of Open Access Journals (Sweden)

    Lisa Hunihan

    2017-04-01

    Full Text Available Human fibroblast cells collected from a 3-year old, female Rett Syndrome patient with a 32 bp deletion in the X-linked MECP2 gene were obtained from the Coriell Institute. Fibroblasts were reprogrammed to iPSC cells using a Sendai-virus delivery system expressing human KOSM transcription factors. Cell-line pluripotency was demonstrated by gene expression, immunocytochemistry, in-vitro differentiation trilineage capacity and was of normal karyotype. Interestingly, subsequent clones retained the epigenetic memory of the parent fibroblasts allowing for the segregation of wild-type and mutant expressing clones. This MECP2 mutant expressing clone may serve as a model for investigating MECP2 reactivation in Rett's Syndrome.

  16. Pore mutants of HERG and KvLQT1 downregulate the reciprocal currents in stable cell lines

    Science.gov (United States)

    Ren, Xiao-Qin; Liu, Gong Xin; Organ-Darling, Louise E.; Zheng, Renjian; Roder, Karim; Jindal, Hitesh K.; Centracchio, Jason; McDonald, Thomas V.

    2010-01-01

    We previously reported a transgenic rabbit model of long QT syndrome based on overexpression of pore mutants of repolarizing K+ channels KvLQT1 (LQT1) and HERG (LQT2).The transgenes in these rabbits eliminated the slow and fast components of the delayed rectifier K+ current (IKs and IKr, respectively), as expected. Interestingly, the expressed pore mutants of HERG and KvLQT1 downregulated the remaining reciprocal repolarizing currents, IKs and IKr, without affecting the steady-state levels of the native polypeptides. Here, we sought to further explore the functional interactions between HERG and KvLQT1 in heterologous expression systems. Stable Chinese hamster ovary (CHO) cell lines expressing KvLQT1-minK or HERG were transiently transfected with expression vectors coding for mutant or wild-type HERG or KvLQT1. Transiently expressed pore mutant or wild-type KvLQT1 downregulated IKr in HERG stable CHO cell lines by 70% and 44%, respectively. Immunostaining revealed a severalfold lower surface expression of HERG, which could account for the reduction in IKr upon KvLQT1 expression. Deletion of the KvLQT1 NH2-terminus did not abolish the downregulation, suggesting that the interactions between the two channels are mediated through their COOH-termini. Similarly, transiently expressed HERG reduced IKs in KvLQT1-minK stable cells. Coimmunoprecipitations indicated a direct interaction between HERG and KvLQT1, and surface plasmon resonance analysis demonstrated a specific, physical association between the COOH-termini of KvLQT1 and HERG. Here, we present an in vitro model system consistent with the in vivo reciprocal downregulation of repolarizing currents seen in transgenic rabbit models, illustrating the importance of the transfection method when studying heterologous ion channel expression and trafficking. Moreover, our data suggest that interactions between KvLQT1 and HERG are mediated through COOH-termini. PMID:20833965

  17. The in silico identification and characterization of a bread wheat/Triticum militinae introgression line

    Czech Academy of Sciences Publication Activity Database

    Abrouk, Michael; Balcárková, Barbora; Šimková, Hana; Komínková, Eva; Martis, M.M.; Jakobson, I.; Timofejeva, L.; Rey, Elodie; Vrána, Jan; Kilian, A.; Jarve, K.; Doležel, Jaroslav; Valárik, Miroslav

    2017-01-01

    Roč. 15, č. 2 (2017), s. 249-256 ISSN 1467-7644 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : crop improvement * powdery mildew * common wheat * chromosomes * genome * resistance * plant * recombination * evolution * barley * GenomeZipper * alien introgression * comparative analysis * chromosome rearrangement * chromosome translocation * linkage drag Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.443, year: 2016

  18. Molecular Cytogenetic Characterization of Novel Wheat-rye T1RS.1BL Translocation Lines with High Resistance to Diseases and Great Agronomic Traits

    Directory of Open Access Journals (Sweden)

    Tianheng Ren

    2017-05-01

    Full Text Available Rye has been used worldwide as a source for the genetic improvement of wheat. In this study, two stable wheat-rye primary T1RS.1BL translocation lines were selected from the progeny of the crossing of the wheat cultivar Mianyang11-1 and a Chinese local rye variety, Weining. These two novel translocation lines were identified by molecular cytogenetic analysis. PCR results, multi-color fluorescence in situ hybridization (MC-FISH, and acid polyacrylamide gel electrophoresis (A-PAGE indicated that both new translocation lines harbor a pair of T1RS.1BL translocation chromosomes, and have been named RT828-10 and RT828-11, respectively. The cytogenetic results also indicated that the pSc119.2 signals of 5AL were absent in both lines along with the pSc119.2 signals of 4AL of RT828-11. When inoculated with different stripe rust and powdery mildew isolates, both lines expressed high resistance to Puccinia striiformis f. sp. tritici and Blumeria graminis f. sp. tritici pathotypes, which are prevalent in China and are virulent on Yr9 and Pm8. The line RT828-11 also exhibited excellent agronomic traits in the field. The present study indicates that this rye variety may carry untapped variations that could potentially be used for wheat improvement.

  19. Seed coat color, weight and eye pattern inheritance in gamma-rays induced cowpea M2-mutant line

    Directory of Open Access Journals (Sweden)

    Reda M. Gaafar

    2016-06-01

    Full Text Available Gamma radiation is a very effective tool for inducing genetic variation in characters of many plants. Black seeds of M2 mutant were obtained after exposure of an Egyptian cowpea cultivar (Kaha 1 to a low dose of gamma rays. Segregation of seed coat color, weight of 100 seeds and seed eye pattern of the black seeds of this mutant line were further examined in this study. Four colors were observed for seed coat in the M3 plants ranging from cream to reddish brown and three eye patterns were distinguished from each other. SDS–PAGE of the seed storage proteins showed 18 protein bands; five of these bands disappeared in the seeds of M3 plants compared to M2 and M0 controls while other 5 protein bands were specifically observed in seeds of M3 plants. PCR analysis using twelve ISSR primers showed 47 polymorphic and 8 unique amplicons. The eight unique amplicons were characteristic of the cream coat color and brown wide eye pattern (M03-G10 while the polymorphic bands were shared by 6 coat-color groups. A PCR fragment of 850 bp was amplified, using primer HB-12, in M3-G04 which showed high-100 seed weight. These results demonstrated the mutagenic effects of gamma rays on seed coat color, weight of 100 seeds and eye pattern of cowpea M3 mutant plants.

  20. Characterization of the endosperm starch and the pleiotropic effects of biosynthetic enzymes on their properties in novel mutant rice lines with high resistant starch and amylose content.

    Science.gov (United States)

    Itoh, Yuuki; Crofts, Naoko; Abe, Misato; Hosaka, Yuko; Fujita, Naoko

    2017-05-01

    Resistant starch (RS) is beneficial to human health. In order to reduce the current prevalence of diabetes and obesity, several transgenic and mutant crops containing high RS content are being developed. RS content of steamed rice with starch-branching enzyme (BE)IIb-deficient mutant endosperms is considerably high. To understand the mechanisms of RS synthesis and to increase RS content, we developed novel mutant rice lines by introducing the gene encoding starch synthase (SS)IIa and/or granule-bound starch synthase (GBSS)I from an indica rice cultivar into a japonica rice-based BEIIb-deficient mutant line, be2b. Introduction of SSIIa from an indica rice cultivar produced higher levels of amylopectin chains with degree of polymerization (DP) 11-18 than those in be2b; the extent of the change was slight due to the shortage of donor chains for SSIIa (DP 6-12) owing to BEIIb deficiency. The introduction of GBSSI from an indica rice cultivar significantly increased amylose content (by approximately 10%) in the endosperm starch. RS content of the new mutant lines was the same as or slightly higher than that of the be2b parent line. The relationship linking starch structure, RS content, and starch biosynthetic enzymes in the new mutant lines has also been discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Quantifying transduction efficiencies of unmodified and tyrosine capsid mutant AAV vectors in vitro using two ocular cell lines.

    Science.gov (United States)

    Ryals, Renee C; Boye, Sanford L; Dinculescu, Astra; Hauswirth, William W; Boye, Shannon E

    2011-04-29

    moderate efficiency in both ARPE19 and 661W cells. scAAV8 was moderately efficient in 661W cells and was by comparison less so in ARPE19 cells; however, transduction was still apparent. scAAV9 performed poorly in both cell types. With some exceptions, the Y-F capsid mutations generally increased the efficiency of scAAV vector transduction, with the increasing number of mutated residues improving efficiency. Results for single scAAV1 and scAAV8 capsid mutants were mixed. In some cases, efficiency improved; in others, it was unchanged or marginally reduced. Retinal-specific promoters were also active in both cell lines, with the 661W cells showing a pattern consistent with the in vivo activity of the respective promoters tested. The prediction based on in vitro data that AAV2 sextuple Y-F mutants would show higher transduction efficiency in RPE relative to AAV2 triple Y-F capsid mutants was validated by evaluating the transduction characteristics of the two mutant vectors in mouse retina. Our results suggest that this rapid and quantifiable cell-based assay using two biologically relevant ocular cell lines will prove useful in screening and optimizing AAV vectors for application in retina-targeted gene therapies.

  2. Dysfunctional p53 deletion mutants in cell lines derived from Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Feuerborn, Alexander; Moritz, Constanze; von Bonin, Frederike

    2006-01-01

    Classical Hodgkin's lymphoma (cHL) is a distinct malignancy of the immune system. Despite the progress made in the understanding of the pathology of cHL, the transforming events remain to be elucidated. It has been proposed that mutations in the TP53 gene in biopsy material as well as cell lines...... derived from cHL are rare and therefore not notably involved in the pathogenesis of the malignant H&RS cells. Re-evaluating the expression in cHL-derived cell lines, we found that in 3/6 of these cell lines, TP53 transcripts are characterized by deletions within exon 4 (L428 cells) and nearly a complete...

  3. A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line.

    Science.gov (United States)

    Liu, Chun; Li, Shuo; Wang, Mengcheng; Xia, Guangmin

    2012-01-01

    The bread wheat cultivar Shanrong No.3 (SR3) is a salinity tolerant derivative of an asymmetric somatic hybrid between cultivar Jinan 177 (JN177) and tall wheatgrass (Thinopyrum ponticum). To reveal some of the mechanisms underlying its elevated abiotic stress tolerance, both SR3 and JN177 were exposed to iso-osmotic NaCl and PEG stress, and the resulting gene expression was analysed using a customized microarray. Some genes associated with stress response proved to be more highly expressed in SR3 than in JN177 in non-stressed conditions. Its unsaturated fatty acid and flavonoid synthesis ability was also enhanced, and its pentose phosphate metabolism was more active than in JN177. These alterations in part accounted for the observed shift in the homeostasis related to reactive oxygen species (ROS). The specific down-regulation of certain ion transporters after a 0.5 h exposure to 340 mM NaCl demonstrated that Na(+) uptake occurred rapidly, so that the early phase of salinity stress imposes more than simply an osmotic stress. We discussed the possible effect of the introgression of new genetic materials in wheat genome on stress tolerance.

  4. Development and Molecular Cytogenetic Identification of a Novel Wheat-Leymus mollis Lm#7Ns (7D Disomic Substitution Line with Stripe Rust Resistance.

    Directory of Open Access Journals (Sweden)

    Xiaofei Yang

    Full Text Available Leymus mollis (2n = 4x = 28, NsNsXmXm possesses novel and important genes for resistance against multi-fungal diseases. The development of new wheat-L. mollis introgression lines is of great significance for wheat disease resistance breeding. M11003-3-1-15-8, a novel disomic substitution line of common wheat cv. 7182 -L. mollis, developed and selected from the BC1F5 progeny between wheat cv. 7182 and octoploid Tritileymus M47 (2n = 8x = 56, AABBDDNsNs, was characterized by morphological and cytogenetic identification, analysis of functional molecular markers, genomic in situ hybridization (GISH, sequential fluorescence in situ hybridization (FISH-genomic in situ hybridization (GISH and disease resistance evaluation. Cytological observations suggested that M11003-3-1-15-8 contained 42 chromosomes and formed 21 bivalents at meiotic metaphase I. The GISH investigations showed that line contained 40 wheat chromosomes and a pair of L. mollis chromosomes. EST-STS multiple loci markers and PLUG (PCR-based Landmark Unique Gene markers confirmed that the introduced L. mollis chromosomes belonged to homoeologous group 7, it was designated as Lm#7Ns. While nulli-tetrasomic and sequential FISH-GISH analysis using the oligonucleotide Oligo-pSc119.2 and Oligo-pTa535 as probes revealed that the wheat 7D chromosomes were absent in M11003-3-1-15-8. Therefore, it was deduced that M11003-3-1-15-8 was a wheat-L. mollis Lm#7Ns (7D disomic substitution line. Field disease resistance demonstrated that the introduced L. mollis chromosomes Lm#7Ns were responsible for the stripe rust resistance at the adult stage. Moreover, M11003-3-1-15-8 had a superior numbers of florets. The novel disomic substitution line M11003-3-1-15-8, could be exploited as an important genetic material in wheat resistance breeding programs and genetic resources.

  5. Promising cytotoxic activity profile of fermented wheat germ extract (Avemar® in human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Voigt Wieland

    2011-04-01

    Full Text Available Abstract Fermented wheat germ extract (FWGE is currently used as nutrition supplement for cancer patients. Limited recent data suggest antiproliferative, antimetastatic and immunological effects which were at least in part exerted by two quinones, 2-methoxy benzoquinone and 2,6-dimethoxybenzquinone as ingredients of FWGE. These activity data prompted us to further evaluate the in vitro antiproliferative activity of FWGE alone or in combination with the commonly used cytotoxic drugs 5-FU, oxaliplatin or irinotecan in a broad spectrum of human tumor cell lines. We used the sulforhodamine B assay to determine dose response relationships and IC50-values were calculated using the Hill equation. Drug interaction of simultaneous and sequential drug exposure was estimated using the model of Drewinko and potential clinical activity was assessed by the model of relative antitumor activity (RAA. Apoptosis was detected by DNA gel electrophoresis. FWGE induced apoptosis and exerted significant antitumor activity in a broad spectrum of 32 human cancer cell lines. The highest activity was found in neuroblastoma cell lines with an average IC50 of 0.042 mg/ml. Furthermore, IC50-range was very narrow ranging from 0.3 mg/ml to 0.54 mg/ml in 8 colon cancer cell lines. At combination experiments in colon cancer cell lines when FWGE was simultaneously applied with either 5-FU, oxaliplatin or irinotecan we observed additive to synergistic drug interaction, particularly for 5-FU. At sequential drug exposure with 5-FU and FWGE the observed synergism was abolished. Taken together, FWGE exerts significant antitumor activity in our tumor model. Simultaneous drug exposure with FWGE and 5-FU, oxaliplatin or irinotecan yielded in additive to synergistic drug interaction. However, sequential drug exposure of 5-FU and FWGE in colon cancer cell lines appeared to be schedule-dependent (5-FU may precede FWGE. Further evaluation of FWGE as a candidate for clinical combination drug

  6. Differential angiogenic gene expression in TP53 wild-type and mutant ovarian cancer cell lines

    Directory of Open Access Journals (Sweden)

    Brittany Anne Davidson

    2014-06-01

    Full Text Available Objectives: Underlying mechanisms regulating angiogenesis in ovarian cancer have not been completely elucidated. Evidence suggests that the TP53 tumor suppressor pathway and tumor microenvironment play integral roles. We utilized microarray technology to study the interaction between TP53 mutational status & hypoxia on angiogenic gene expression.Methods: Affymetrix U133A arrays were analyzed for angiogenic gene expression in 19 ovarian cancer cell lines stratified both by TP53 mutation status and A2780 wild-type (wt TP53 vs. mutated (m TP53 cell lines after treatment under hypoxic conditions or with ionizing radiation. Results: Twenty-eight differentially expressed angiogenic genes were identified in the mTP53 cell lines compared to wtTP53 lines. Five genes were upregulated in mTP53 cells: 40% involved in extracellular matrix (ECM degradation (MMP10/15 and 60% in angiogenesis (FGFR3/VEGFA/EPHB4. Twenty-three genes were upregulated in wtTP53: nearly 22% were ECM constituents or involved in ECM degradation; over 40% were growth factors or mediators of angiogenesis. Five genes were upregulated in the A2780mTP53 cells: 40% involved in ECM remodeling (MMP10, ADAMTS1, 40% with pro-angiogenic activity (EFNB2, F2R, and 20% with anti-angiogenic properties (ADAMTS1. Three genes were upregulated in hypoxia treated cells compared to controls: 1 with anti-angiogenic activity (ANGPTL4 and 2 with pro-angiogenic activity (VEGFA, EFNA3. No significant gene fold changes were noted after exposure to radiation.Four genes continued to demonstrate significant differential expression (p≤0.05 after adjusting for multiple comparisons. These genes included ENG upregulation in wild-type lines and upregulation of FGF-20, ADAMTS1 & MMP10 in mTP53 lines.Conclusions: Our exploratory findings indicate that non-overlapping angiogenic pathways may be altered by TP53 mutations and hypoxic conditions in ththe tumor microenvironment. Further evaluation is needed for confirmation.

  7. Inhibition of Cell Proliferation in an NRAS Mutant Melanoma Cell Line by Combining Sorafenib and α-Mangostin.

    Directory of Open Access Journals (Sweden)

    Yun Xia

    Full Text Available α-Mangostin is a natural product commonly used in Asia for cosmetic and medicinal applications including topical treatment of acne and skin cancer. Towards finding new pharmacological strategies that overcome NRAS mutant melanoma, we performed a cell proliferation-based combination screen using a collection of well-characterized small molecule kinase inhibitors and α-Mangostin. We found that α-Mangostin significantly enhances Sorafenib pharmacological efficacy against an NRAS mutant melanoma cell line. The synergistic effects of α-Mangostin and Sorafenib were associated with enhanced inhibition of activated AKT and ERK, induced ER stress, and reduced autophagy, eventually leading to apoptosis. The structure of α-Mangostin resembles several inhibitors of the Retinoid X receptor (RXR. MITF expression, which is regulated by RXR, was modulated by α-Mangostin. Molecular docking revealed that α-Mangostin can be accommodated by the ligand binding pocket of RXR and may thereby compete with RXR-mediated control of MITF expression. In summary, these data demonstrate an unanticipated synergy between α-Mangostin and sorafenib, with mechanistic actions that convert a known safe natural product to a candidate combinatorial therapeutic agent.

  8. Line differences in Cor/Lea and fructan biosynthesis-related gene transcript accumulation are related to distinct freezing tolerance levels in synthetic wheat hexaploids.

    Science.gov (United States)

    Yokota, Hirokazu; Iehisa, Julio C M; Shimosaka, Etsuo; Takumi, Shigeo

    2015-03-15

    In common wheat, cultivar differences in freezing tolerance are considered to be mainly due to allelic differences at two major loci controlling freezing tolerance. One of the two loci, Fr-2, is coincident with a cluster of genes encoding C-repeat binding factors (CBFs), which induce downstream Cor/Lea genes during cold acclimation. Here, we conducted microarray analysis to study comprehensive changes in gene expression profile under long-term low-temperature (LT) treatment and to identify other LT-responsive genes related to cold acclimation in leaves of seedlings and crown tissues of a synthetic hexaploid wheat line. The microarray analysis revealed marked up-regulation of a number of Cor/Lea genes and fructan biosynthesis-related genes under the long-term LT treatment. For validation of the microarray data, we selected four synthetic wheat lines that contain the A and B genomes from the tetraploid wheat cultivar Langdon and the diverse D genomes originating from different Aegilops tauschii accessions with distinct levels of freezing tolerance after cold acclimation. Quantitative RT-PCR showed increased transcript levels of the Cor/Lea, CBF, and fructan biosynthesis-related genes in more freezing-tolerant lines than in sensitive lines. After a 14-day LT treatment, a significant difference in fructan accumulation was observed among the four lines. Therefore, the fructan biosynthetic pathway is associated with cold acclimation in development of wheat freezing tolerance and is another pathway related to diversity in freezing tolerance, in addition to the CBF-mediated Cor/Lea expression pathway. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Genome-wide DNA methylation analysis in cohesin mutant human cell lines

    Science.gov (United States)

    Liu, Jinglan; Zhang, Zhe; Bando, Masashige; Itoh, Takehiko; Deardorff, Matthew A.; Li, Jennifer R.; Clark, Dinah; Kaur, Maninder; Tatsuro, Kondo; Kline, Antonie D.; Chang, Celia; Vega, Hugo; Jackson, Laird G.; Spinner, Nancy B.; Shirahige, Katsuhiko; Krantz, Ian D.

    2010-01-01

    The cohesin complex has recently been shown to be a key regulator of eukaryotic gene expression, although the mechanisms by which it exerts its effects are poorly understood. We have undertaken a genome-wide analysis of DNA methylation in cohesin-deficient cell lines from probands with Cornelia de Lange syndrome (CdLS). Heterozygous mutations in NIPBL, SMC1A and SMC3 genes account for ∼65% of individuals with CdLS. SMC1A and SMC3 are subunits of the cohesin complex that controls sister chromatid cohesion, whereas NIPBL facilitates cohesin loading and unloading. We have examined the methylation status of 27 578 CpG dinucleotides in 72 CdLS and control samples. We have documented the DNA methylation pattern in human lymphoblastoid cell lines (LCLs) as well as identified specific differential DNA methylation in CdLS. Subgroups of CdLS probands and controls can be classified using selected CpG loci. The X chromosome was also found to have a unique DNA methylation pattern in CdLS. Cohesin preferentially binds to hypo-methylated DNA in control LCLs, whereas the differential DNA methylation alters cohesin binding in CdLS. Our results suggest that in addition to DNA methylation multiple mechanisms may be involved in transcriptional regulation in human cells and in the resultant gene misexpression in CdLS. PMID:20448023

  10. Uncovering Male Fertility Transition Responsive miRNA in a Wheat Photo-Thermosensitive Genic Male Sterile Line by Deep Sequencing and Degradome Analysis

    Directory of Open Access Journals (Sweden)

    Jian-Fang Bai

    2017-08-01

    Full Text Available MicroRNAs (miRNAs are endogenous small RNAs which play important negative regulatory roles at both the transcriptional and post-transcriptional levels in plants. Wheat is the most commonly cultivated plant species worldwide. In this study, RNA-seq analysis was used to examine the expression profiles of miRNA in the spikelets of photo-thermosenisitive genic male sterile (PTGMS wheat line BS366 during male fertility transition. Through mapping on their corresponding precursors, 917–7,762 novel miRNAs were found in six libraries. Six novel miRNAs were selected for examination of their secondary structures and confirmation by stem-loop RT-PCR. In a differential expression analysis, 20, 22, and 58 known miRNAs exhibited significant differential expression between developmental stages 1 (secondary sporogenous cells had formed, 2 (all cells layers were present and mitosis had ceased, and 3 (meiotic division stage, respectively, of fertile and sterile plants. Some of these differential expressed miRNAs, such as tae-miR156, tae-miR164, tae-miR171, and tae-miR172, were shown to be associated with their targets. These targets were previously reported to be related to pollen development and/or male sterility, indicating that these miRNAs and their targets may be involved in the regulation of male fertility transition in the PTGMS wheat line BS366. Furthermore, target genes of miRNA cleavage sites were validated by degradome sequencing. In this study, a possible signal model for the miRNA-mediated signaling pathway during the process of male fertility transition in the PTGMS wheat line BS366 was developed. This study provides a new perspective for understanding the roles of miRNAs in male fertility in PTGMS lines of wheat.

  11. Genetic characterization and expression analysis of wheat (Triticum aestivum) line 07OR1074 exhibiting very low polyphenol oxidase (PPO) activity

    Science.gov (United States)

    Wheat (Triticum aestivum) polyphenol oxidase (PPO) contributes to the time dependent discoloration of Asian noodles. Wheat contains multiple paralogous and orthologous PPO genes , Ppo-A1, Ppo-D1, Ppo-A2, Ppo-D2, and Ppo-B2, expressed in wheat kernels, Ppo-A1, Ppo-D1, Ppo-A2, Ppo-D2, and Ppo-B2. To d...

  12. Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R).

    Science.gov (United States)

    Schneider, Annamária; Rakszegi, Marianna; Molnár-Láng, Márta; Szakács, Éva

    2016-05-01

    Wheat-Secale cereanum addition lines with yellow rust resistance (6R) and increased arabinoxylan content (1R, 4R, 6R) have been selected and identified in order to increase biodiversity of wheat. Perennial rye (Secale cereanum, 2n = 2x = 14, RR) cultivar Kriszta has a large gene pool that can be exploited in wheat breeding. It has high protein and dietary fibre content, carries several resistance genes, tolerant to frost and drought, and adapts well to disadvantageous soil and weather conditions. In order to incorporate agronomically useful features from this perennial rye into cultivated wheat, backcross progenies derived from a cross between the wheat line Mv9kr1 and perennial rye 'Kriszta' have been produced, and addition lines disomic for 1R, 4R and 6R chromosomes have been selected using GISH, FISH and SSR markers. Quality measurements showed that addition of 'Kriszta' chromosomes 4R and 6R to the wheat genome had increased the total protein content. The 4R addition line contained slightly, while 1R and 6R additions significantly higher amount of arabinoxylan than the parental wheat line. Besides this, the 6R addition line appeared to be resistant to yellow rust in highly infected nurseries, consequently it may carry a new effective gene different from that harboured in the 1RS.1BL translocation for resistance to this disease.

  13. Evaluation of grain dimension and weight using backcross recombinant inbred lines (BRILs) between wild and domesticated emmer wheat

    Science.gov (United States)

    Emmer wheat (Triticum turgidum ssp. dicoccum) represents the primitive situation in the domestication of AABB tetraploid wheat. As one of the earliest domesticated grain species, it was a principal crop in the development and spread of Neolithic agriculture in the Old World. Grain weight and dimensi...

  14. Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines

    Directory of Open Access Journals (Sweden)

    Diallo Amadou

    2008-08-01

    Full Text Available Abstract Background Aluminum is considered the most limiting factor for plant productivity in acidic soils, which cover large areas of the world's potential arable lands. The inhibition of root growth is recognized as the primary effect of Al toxicity. To identify genes associated with Al stress and tolerance, transcriptome analyses of four different wheat lines (2 Al-tolerant and 2 Al sensitive that differ in their response to Al were performed. Results Microarray expression profiling revealed that 83 candidate genes are associated with Al stress and 25 are associated with tolerance. The stress-associated genes include important enzymes such as pyruvate dehydrogenase, alternative oxidase, and galactonolactone oxidase, ABC transporter and ascorbate oxido-reducatase. The Al tolerance-associated genes include the ALMT-1 malate transporter, glutathione S-transferase, germin/oxalate oxidase, fructose 1,6-bisphosphatase, cysteine-rich proteins, cytochrome P450 monooxygenase, cellulose synthase, zinc finger transcription factor, disease resistance response protein and F-box containing domain protein. Conclusion In this survey, we identified stress- and tolerance-associated genes that may be involved in the detoxification of Al and reactive oxygen species. Alternative pathways could help maintain the supply of important metabolites (H2O2, ascorbate, NADH, and phosphate needed for Al tolerance and root growth. The Al tolerance-associated genes may be key factors that regulate these pathways.

  15. The genetic characteristics in cytology and plant physiology of two wheat (Triticum aestivum) near isogenic lines with different freezing tolerances.

    Science.gov (United States)

    Wang, Wenqiang; Hao, Qunqun; Wang, Wenlong; Li, Qinxue; Wang, Wei

    2017-11-01

    Freezing tolerance in taft plants relied more upon an ABA-independent- than an ABA-dependent antifreeze signaling pathway. Two wheat (Triticum aestivum) near isogenic lines (NIL) named tafs (freezing sensitivity) and taft (freezing tolerance) were isolated in the laboratory and their various cytological and physiological characteristics under freezing conditions were studied. Proplastid, cell membrane, and mitochondrial ultrastructure were less damaged by freezing treatment in taft than tafs plants. Chlorophyll, ATP, and thylakoid membrane protein contents were significantly higher, but malondialdehyde content was significantly lower in taft than tafs plants under freezing condition. Antioxidant capacity, as indicated by reactive oxygen species accumulation and antioxidant enzyme activity, and the relative gene expression were significantly greater in taft than tafs plants. Soluble sugars and abscisic acid (ABA) contents were significantly higher in taft plants than in tafs plants under both normal and freezing conditions. The upregulated expression levels of certain freezing tolerance-related genes were greater in taft than tafs plants under freezing treatment. The addition of sodium tungstate, an ABA synthesis inhibitor, led to only partial freezing tolerance inhibition in taft plants and the down-regulated expression of some ABA-dependent genes. Thus, both ABA-dependent and ABA-independent signaling pathways are involved in the freezing tolerance of taft plants. At the same time, freezing tolerance in taft plants relied more upon an ABA-independent- than an ABA-dependent antifreeze signaling pathway.

  16. Characterization and Mapping of Leaf Rust and Stripe Rust Resistance Loci in Hexaploid Wheat Lines UC1110 and PI610750 under Mexican Environments

    Directory of Open Access Journals (Sweden)

    Caixia Lan

    2017-08-01

    Full Text Available Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by the globally important wheat leaf rust (LR and stripe rust (YR diseases. In this study, a population of 186 F8 recombinant inbred lines (RILs derived from a cross between a synthetic wheat derivative (PI610750 and an adapted common wheat line (cv. “UC1110” were phenotyped for LR and YR response at both seedling and adult plant stages over multiple seasons. Using a genetic linkage map consisting of single sequence repeats and diversity arrays technology markers, in combination with inclusive composite interval mapping analysis, we detected a new LR adult plant resistance (APR locus, QLr.cim-2DS, contributed by UC1110. One co-located resistance locus to both rusts, QLr.cim-3DC/QYr.cim-3DC, and the known seedling resistance gene Lr26 were also mapped. QLr.cim-2DS and QLr.cim-3DC showed a marginally significant interaction for LR resistance in the adult plant stage. In addition, two previously reported YR APR loci, QYr.ucw-3BS and Yr48, were found to exhibit stable performances in rust environments in both Mexico and the United States and showed a highly significant interaction in the field. Yr48 was also observed to confer intermediate seedling resistance against Mexican YR races, thus suggesting it should be re-classified as an all-stage resistance gene. We also identified 5 and 2 RILs that possessed all detected YR and LR resistance loci, respectively. With the closely linked molecular markers reported here, these RILs could be used as donors for multiple resistance loci to both rusts in wheat breeding programs.

  17. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line.

    Science.gov (United States)

    Zhan, Haixian; Li, Guangrong; Zhang, Xiaojun; Li, Xin; Guo, Huijuan; Gong, Wenping; Jia, Juqing; Qiao, Linyi; Ren, Yongkang; Yang, Zujun; Chang, Zhijian

    2014-01-01

    Powdery mildew (PM) is a very destructive disease of wheat (Triticum aestivum L.). Wheat-Thinopyrum ponticum introgression line CH7086 was shown to possess powdery mildew resistance possibly originating from Th. ponticum. Genomic in situ hybridization and molecular characterization of the alien introgression failed to identify alien chromatin. To study the genetics of resistance, CH7086 was crossed with susceptible genotypes. Segregation in F2 populations and F2:3 lines tested with Chinese Bgt race E09 under controlled conditions indicated that CH7086 carries a single dominant gene for powdery mildew resistance. Fourteen SSR and EST-PCR markers linked with the locus were identified. The genetic distances between the locus and the two flanking markers were 1.5 and 3.2 cM, respectively. Based on the locations of the markers by nullisomic-tetrasomic and deletion lines of 'Chinese Spring', the resistance gene was located in deletion bin 2BL-0.89-1.00. Conserved orthologous marker analysis indicated that the genomic region flanking the resistance gene has a high level of collinearity to that of rice chromosome 4 and Brachypodium chromosome 5. Both resistance specificities and tests of allelism suggested the resistance gene in CH7086 was different from previously reported powdery mildew resistance genes on 2BL, and the gene was provisionally designated PmCH86. Molecular analysis of PmCH86 compared with other genes for resistance to Bgt in the 2BL-0.89-1.00 region suggested that PmCH86 may be a new PM resistance gene, and it was therefore designated as Pm51. The closely linked flanking markers could be useful in exploiting this putative wheat-Thinopyrum translocation line for rapid transfer of Pm51 to wheat breeding programs.

  18. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line.

    Directory of Open Access Journals (Sweden)

    Haixian Zhan

    Full Text Available Powdery mildew (PM is a very destructive disease of wheat (Triticum aestivum L.. Wheat-Thinopyrum ponticum introgression line CH7086 was shown to possess powdery mildew resistance possibly originating from Th. ponticum. Genomic in situ hybridization and molecular characterization of the alien introgression failed to identify alien chromatin. To study the genetics of resistance, CH7086 was crossed with susceptible genotypes. Segregation in F2 populations and F2:3 lines tested with Chinese Bgt race E09 under controlled conditions indicated that CH7086 carries a single dominant gene for powdery mildew resistance. Fourteen SSR and EST-PCR markers linked with the locus were identified. The genetic distances between the locus and the two flanking markers were 1.5 and 3.2 cM, respectively. Based on the locations of the markers by nullisomic-tetrasomic and deletion lines of 'Chinese Spring', the resistance gene was located in deletion bin 2BL-0.89-1.00. Conserved orthologous marker analysis indicated that the genomic region flanking the resistance gene has a high level of collinearity to that of rice chromosome 4 and Brachypodium chromosome 5. Both resistance specificities and tests of allelism suggested the resistance gene in CH7086 was different from previously reported powdery mildew resistance genes on 2BL, and the gene was provisionally designated PmCH86. Molecular analysis of PmCH86 compared with other genes for resistance to Bgt in the 2BL-0.89-1.00 region suggested that PmCH86 may be a new PM resistance gene, and it was therefore designated as Pm51. The closely linked flanking markers could be useful in exploiting this putative wheat-Thinopyrum translocation line for rapid transfer of Pm51 to wheat breeding programs.

  19. Line × Tester Mating Design Analysis for Grain Yield and Yield Related Traits in Bread Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Zine El Abidine Fellahi

    2013-01-01

    Full Text Available Nine bread wheat (Triticum aestivum L. genotypes were crossed in a line × tester mating design. The 20 F1's and their parents were evaluated in a randomized complete block design with three replications at the Field Crop Institute-Agricultural Experimental Station of Setif (Algeria during the 2011/2012 cropping season. The results indicated that sufficient genetic variability was observed for all characters studied. A899 × Rmada, A899 × Wifak, and A1135 × Wifak hybrids had greater grain yield mean than the parents. A901 line and the tester Wifak were good combiners for the number of grains per spike. MD is a good combiner for 1000-kernel weight and number of fertile tillers. HD1220 is a good general combiner to reduce plant height; Rmada is a good general combiner to shorten the duration of the vegetative growth period. A901 × Wifak is a best specific combiner to reduce plant height, to increase 1000-kernel weight and number of grains per spike. AA × MD is a best specific combiner to reduce duration of the vegetative period, plant height and to increase the number of kernels per spike. A899 × Wifak showed the highest heterosis for grain yield, accompanied with positive heterosis for the number of fertile tillers and spike length, and negative heterosis for 1000-kernel weight and the number of days to heading. σgca2/σsca2,  (σD2/σA21/2 low ratios and low to intermediate estimates of h2ns supported the involvement of both additive and nonadditive gene effects. The preponderance of non-additive type of gene actions clearly indicated that selection of superior plants should be postponed to later generation.

  20. Combining Ability in Wheat for Seedling Traits by Line X Tester Analysis Under Saline Conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Osaf

    Full Text Available A line × tester analysis involving five varieties SQ-26, SQ-77, GH-10, 8670, PARC-N2 (lines and three varieties 8721, SARC-5 and DN-4 (testers were crossed to study some hydroponics growing characters. In controlled conditions SQ-26 exhibited the highest positive GCA effects on Shoot length, Shoot fresh weight, Na+ and K+ concentrations, while SQ-77 showed maximum GCA effects on Root length, Root fresh weight and Shoot dry weight in females and in males and both DN-4 and SARC-5 showed the highest GCA effects. Under high saline concentration female SQ-77 showed the maximum positive effects on all characters but on shoot length and Na concentration while male SARC-5 exhibited the highest positive GCA effects on all characters. Under high saline level, the cross combination SQ-26 × 8721 showed SCA effects for shoot length, whereas 8670 x 8721 showed the same effects for shoot fresh weight, root fresh weight and root dry weight. For Na+ and K+ concentrations, the cross combination GH-10 × DN-4 showed then highest SCA effects, whereas for shoot dry weight and root length, the cross combinations GH-10 × SARC-5 and PARC-N2 × 8721 showed the highest SCA effects, respectively.

  1. [Determination of 34 pesticide residues in rice, proso millet and wheat with QuEChERS-on line gel permeation chromatography-gas chromatography-mass spectrometry].

    Science.gov (United States)

    Ruan, Hua; Rong, Weiguang; Ma, Yongjian; Ji, Wenlian; Liu, Hualiang; Song, Ninghui

    2013-12-01

    A method for the simultaneous determination of 34 pesticides in rice, proso millet and wheat by QuEChERS coupled with on line gel permeation chromatography-gas chromatography-mass spectrometry (GPC-GC-MS) was developed. The effects of the sample weight, extraction solvent, sorbent for purification were investigated. The matrix effect and the usefulness of analyte protectant were also studied. The identification and quantification were performed by GPC-GC-MS in selected ion monitoring (SIM) mode and exrternal standard method. The calibration curves of the 34 pesticides showed good linearity in th range of 0.0125-0.2 mg/L with thea correlations coefficients (r2) between 0.968 and 0.999. The average recoveries were 94.5%-117.1%, 83.1%-121.7% and 93.1%-120.2% with the relative standard deviations (RSDs, n = 6) no more than 14.5%, 15.1% and 15.2% in rice, proso millet and wheat samples, respectively. The LODs of this method were 0.0281-5.31, 0.0282-4.82 and 0.0273 -5.13 microg/kg (S/N = 3) for rice, proso millet and wheat samples, respectively. The low cost and less consumption of reagents of this method are in accordance with the concept of green chemistry. The convenient operation and versatility of this method are suitable for the fast screening and detection of the 34 pesticide residues in rice, proso millet and wheat.

  2. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat

    Directory of Open Access Journals (Sweden)

    Zhang Xiaofei

    2012-12-01

    Full Text Available Abstract Background Low-molecular-weight glutenin subunits (LMW-GS strongly influence the bread-making quality of bread wheat. These proteins are encoded by a multi-gene family located at the Glu-A3, Glu-B3 and Glu-D3 loci on the short arms of homoeologous group 1 chromosomes, and show high allelic variation. To characterize the genetic and protein compositions of LMW-GS alleles, we investigated 16 Aroona near-isogenic lines (NILs using SDS-PAGE, 2D-PAGE and the LMW-GS gene marker system. Moreover, the composition of glutenin macro-polymers, dough properties and pan bread quality parameters were determined for functional analysis of LMW-GS alleles in the NILs. Results Using the LMW-GS gene marker system, 14–20 LMW-GS genes were identified in individual NILs. At the Glu-A3 locus, two m-type and 2–4 i-type genes were identified and their allelic variants showed high polymorphisms in length and nucleotide sequences. The Glu-A3d allele possessed three active genes, the highest number among Glu-A3 alleles. At the Glu-B3 locus, 2–3 m-type and 1–3 s-type genes were identified from individual NILs. Based on the different compositions of s-type genes, Glu-B3 alleles were divided into two groups, one containing Glu-B3a, B3b, B3f and B3g, and the other comprising Glu-B3c, B3d, B3h and B3i. Eight conserved genes were identified among Glu-D3 alleles, except for Glu-D3f. The protein products of the unique active genes in each NIL were detected using protein electrophoresis. Among Glu-3 alleles, the Glu-A3e genotype without i-type LMW-GS performed worst in almost all quality properties. Glu-B3b, B3g and B3i showed better quality parameters than the other Glu-B3 alleles, whereas the Glu-B3c allele containing s-type genes with low expression levels had an inferior effect on bread-making quality. Due to the conserved genes at Glu-D3 locus, Glu-D3 alleles showed no significant differences in effects on all quality parameters. Conclusions This work

  3. Linhagens diaplóides de trigo obtidas via cultura de antera Dihaploid wheat lines developed via anther culture

    Directory of Open Access Journals (Sweden)

    Luis Carlos da Silva Ramos

    2000-03-01

    Full Text Available Realizaram-se quatro experimentos de campo no Estado de São Paulo, tanto em condição de sequeiro como de irrigação por aspersão, empregando o delineamento experimental de blocos casualizados, visando a comparação de 20 genótipos de trigo, sendo 18 linhagens diaplóides obtidas e dois cultivares, IAC-24 e Anahuac, quanto à produção de grãos, características agronômicas, resistência à ferrugem-da-folha e outros componentes da produção. Também estudou-se a tolerância ao alumínio em soluções nutritivas em condição de laboratório. As linhagens diaplóides 11, 12, 14, 17 e 18, originárias do cruzamento IAS-63/ALDAN "S"//GLEN/3/IAC-24, de porte baixo, com resistência ao acamamento, com ciclo precoce da emergência ao florescimento e da emergência à maturação e tolerância à toxicidade de alumínio, destacaram-se quanto à produção de grãos, considerando a média dos quatro experimentos. A linhagem 8 mostrou ser fonte genética de espiga comprida; a 15, de maior número de espiguetas por espiga; o cultivar Anahuac de maior número de grãos por espiga e por espigueta, e as linhagens 10, 11, 13, 15, 16 e 18 de grãos mais pesados. Todos os genótipos foram tolerantes à toxicidade de Al3+, exceto a linhagem 5, sendo que o cultivar Anahuac exibiu elevada sensibilidade. A técnica de obtenção de linhagens diaplóides via cultura de anteras de plantas em geração F1 de cruzamentos de trigo foi eficiente originando genótipos produtivos, com características agronômicas desejáveis e com tolerância à toxicidade de alumínio, num menor período de tempo em relação ao método convencional de melhoramento genético do Instituto Agronômico.Four field experiments were carried out at two locations in the State of São Paulo, Brazil, under upland and sprinkler irrigation conditions, using a randomized block design, to evaluate 18 dihaploid wheat lines and the cultivars IAC-24 and Anahuac for grain yield, with respect to

  4. Effective Identification of Low-Gliadin Wheat Lines by Near Infrared Spectroscopy (NIRS: Implications for the Development and Analysis of Foodstuffs Suitable for Celiac Patients.

    Directory of Open Access Journals (Sweden)

    María Dolores García-Molina

    Full Text Available The aim of this work was to assess the ability of Near Infrared Spectroscopy (NIRS to distinguish wheat lines with low gliadin content, obtained by RNA interference (RNAi, from non-transgenic wheat lines. The discriminant analysis was performed using both whole grain and flour. The transgenic sample set included 409 samples for whole grain sorting and 414 samples for flour experiments, while the non-transgenic set consisted of 126 and 156 samples for whole grain and flour, respectively.Samples were scanned using a Foss-NIR Systems 6500 System II instrument. Discrimination models were developed using the entire spectral range (400-2500 nm and ranges of 400-780 nm, 800-1098 nm and 1100-2500 nm, followed by analysis of means of partial least square (PLS. Two external validations were made, using samples from the years 2013 and 2014 and a minimum of 99% of the flour samples and 96% of the whole grain samples were classified correctly.The results demonstrate the ability of NIRS to successfully discriminate between wheat samples with low-gliadin content and wild types. These findings are important for the development and analysis of foodstuff for celiac disease (CD patients to achieve better dietary composition and a reduction in disease incidence.

  5. Grain quality characteristics and dough rheological properties in Langdon durum-wild emmer wheat chromosome substitution lines under nitrogen and water deficits.

    Science.gov (United States)

    Salmanowicz, Bolesław P; Langner, Monika; Mrugalska, Beata; Ratajczak, Dominika; Górny, Andrzej G

    2017-05-01

    Wild emmer wheat could serve as a source of novel variation in grain quality and stress resistance for wheat breeding. A set of Triticum durum-T. dicoccoides chromosome substitution lines [LDN(DIC)] and the parental recipient cv. Langdon grown under contrasting water and nitrogen availability in the soil was examined in this study to identify differences in grain quality traits and dough rheological properties. Significant genotypic variation was found among the materials for studied traits. This variation was also considerably affected by soil treatments and G × E interactions. The substitutions LDN(DIC-1A) and LDN(DIC-1B) showed separate differentiation in the composition of glutenin sub-units. The results indicated that primarily chromosome DIC-6B is stable source of an enhanced grain protein content and advantageous dough rheological properties. Similar features seem to be shown by the substitutions with the DIC-1A, DIC-2A and DIC-6A, but not under nitrogen shortage, when generally a considerable decrease was noticed in the range of genotypic variation in grain quality. The substitution lines, particularly those with DIC-6B and DIC-6A and to a lesser extent DIC-1A and DIC-2A, were distinguished by advantageous grain quality traits, mixing properties and dough functionality and appear to be the most promising sources of innovative genes for wheat breeding. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    2017-11-01

    Full Text Available As model organism-based research shifts from forward to reverse genetics approaches, largely due to the ease of genome editing technology, a low frequency of abnormal phenotypes is being observed in lines with mutations predicted to lead to deleterious effects on the encoded protein. In zebrafish, this low frequency is in part explained by compensation by genes of redundant or similar function, often resulting from the additional round of teleost-specific whole genome duplication within vertebrates. Here we offer additional explanations for the low frequency of mutant phenotypes. We analyzed mRNA processing in seven zebrafish lines with mutations expected to disrupt gene function, generated by CRISPR/Cas9 or ENU mutagenesis methods. Five of the seven lines showed evidence of altered mRNA processing: one through a skipped exon that did not lead to a frame shift, one through nonsense-associated splicing that did not lead to a frame shift, and three through the use of cryptic splice sites. These results highlight the need for a methodical analysis of the mRNA produced in mutant lines before making conclusions or embarking on studies that assume loss of function as a result of a given genomic change. Furthermore, recognition of the types of adaptations that can occur may inform the strategies of mutant generation.

  7. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats.

    Science.gov (United States)

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M Kristina; Rust, Bret; Raybould, Helen E; Newman, John W; Martin, Roy; Dubcovsky, Jorge

    2015-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch.

  8. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats

    Science.gov (United States)

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M. Kristina; Rust, Bret; Raybould, Helen E.; Newman, John W.; Martin, Roy; Dubcovsky, Jorge

    2016-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch. PMID:27134286

  9. A diploid wheat TILLING resource for wheat functional genomics

    Directory of Open Access Journals (Sweden)

    Rawat Nidhi

    2012-11-01

    Full Text Available Abstract Background Triticum monococcum L., an A genome diploid einkorn wheat, was the first domesticated crop. As a diploid, it is attractive genetic model for the study of gene structure and function of wheat-specific traits. Diploid wheat is currently not amenable to reverse genetics approaches such as insertion mutagenesis and post-transcriptional gene silencing strategies. However, TILLING offers a powerful functional genetics approach for wheat gene analysis. Results We developed a TILLING population of 1,532 M2 families using EMS as a mutagen. A total of 67 mutants were obtained for the four genes studied. Waxy gene mutation frequencies are known to be 1/17.6 - 34.4 kb DNA in polyploid wheat TILLING populations. The T. monococcum diploid wheat TILLING population had a mutation frequency of 1/90 kb for the same gene. Lignin biosynthesis pathway genes- COMT1, HCT2, and 4CL1 had mutation frequencies of 1/86 kb, 1/92 kb and 1/100 kb, respectively. The overall mutation frequency of the diploid wheat TILLING population was 1/92 kb. Conclusion The mutation frequency of a diploid wheat TILLING population was found to be higher than that reported for other diploid grasses. The rate, however, is lower than tetraploid and hexaploid wheat TILLING populations because of the higher tolerance of polyploids to mutations. Unlike polyploid wheat, most mutants in diploid wheat have a phenotype amenable to forward and reverse genetic analysis and establish diploid wheat as an attractive model to study gene function in wheat. We estimate that a TILLING population of 5, 520 will be needed to get a non-sense mutation for every wheat gene of interest with 95% probability.

  10. The introgression of RNAi silencing of γ-gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough.

    Directory of Open Access Journals (Sweden)

    Javier Gil-Humanes

    Full Text Available In the present work the effects on dough quality by the down-regulation of γ-gliadins in different genetic backgrounds of bread wheat were investigated. RNAi-mediated silencing of γ-gliadins was introgressed by conventional crossing into three commercial bread wheat lines (namely 'Gazul', 'Podenco' and 'Arpain', and along with the transgenic line A1152 (cv. Bobwhite compared with their respective wild types. The protein fractions were quantified by RP-HPLC, whereas the technological and mixing properties were assessed by SDSS test and by the Mixograph instrument. Principal component analysis (PCA was carried out for both the wild types and the transgenic lines, showing differences in the factors affecting the technological and mixing properties of the dough as a consequence of the reduction of the γ-gliadins. In transgenic lines, the α- and ω-gliadins, and total gliadins negatively affected the dough strength and tolerance to over-mixing, whereas the L/H ratio showed the opposite effect, positively influencing the dough quality. The increase of the SDSS volume in the transgenic lines of 'Gazul', 'Podenco' and 'Arpain' indicates increased gluten strength and quality respect to the wild types. SDSS volume was found to be positively influenced by the amount of glutenins, which were also increased in the transgenic lines. In addition, a positive effect was observed in the MT, PR1 and RBD in some of the transgenic lines of 'Podenco' and 'Arpain'. In conclusion, the down-regulation of γ-gliadins resulted in stronger doughs and a better tolerance to over-mixing in some transgenic lines. Although the reduction of γ-gliadins seems not to have a direct effect on the mixing and bread-making properties, the compensatory effect on the synthesis of the other prolamins may result in stronger doughs with improved over-mixing resistance.

  11. Mutants of nonproducer cell lines transformed by murine sarcoma virus. II. Relationship of tumorigenicity to presence of viral markers and rescuable sarcoma genome.

    Science.gov (United States)

    Hatanaka, M; Klein, R; Lomg, C W; Gilden, R

    1973-08-01

    Tumorigenic and nontumorigenic mutants induced by a single 5'-bromodeoxyuridine (BrdU) treatment of a nonproducer (NP) tumorigenic cell line were isolated and characterized. Among the cloned derivatives were examples of virus-free and sarcoma virus-producing cell lines. Oncogenicity did not correlate with production of virus or ease of rescue of the sarcoma genome. All lines, including nononcogenic derivatives, retained the sarcoma genome. Phenotypic reversion of some cell mutants was observed after in vivo inoculation or long term in vitro cultivation. The M-50T cell line, obtained from a tumor induced by M-50 cells, had a sarcoma genome rescuable by direct superinfection; this was only achieved with parental M-50 cells by a cell fusion rescue technique. The M-43-2T cell, obtained from a single small static tumor induced by otherwise nononcogenic M-43-2 cells, shed sarcoma virus and became tumorigenic. M-58-4-48 became tumorigenic after passage 48 of the M-58-4 line, which was originally nontumorigenic. These observations of phenotypic reversion demonstrate that the presence of the sarcoma gene in cells is an essential but not sufficient condition of tumorigenesis.

  12. Molecular cytogenetic identification of a wheat (Triticum aestivum)-American dune grass (Leymus mollis) translocation line resistant to stripe rust.

    Science.gov (United States)

    Bao, Y; Wang, J; He, F; Ma, H; Wang, H

    2012-05-22

    Leymus mollis, a perennial allotetraploid (2n = 4x = 28), known as American dune grass, is a wild relative of wheat that could be useful for cultivar improvement. Shannong0096, developed from interspecific hybridization between common wheat cv. Yannong15 and L. mollis, was analyzed with cytological procedures, genomic in situ hybridization, stripe-rust resistance screening and molecular marker analysis. We found that Shannong0096 has 42 chromosomes in the root-tip cells at mitotic metaphase and 21 bivalents in the pollen mother cells at meiotic metaphase I, demonstrating cytogenetic stability. Genomic in situ hybridization probed with total genomic DNA from L. mollis gave strong hybridization signals in the distal region of two wheat chromosome arms. A single dominant Yr gene, derived from L. mollis and temporarily designated as YrSn0096, was found on the long arm of chromosome 4A of Shannong0096. YrSn0096 should be a novel Yr gene because none of the previously reported Yr genes on chromosome 4A are related to L. mollis. This gene was found to be closely linked to the loci Xbarc236 and Xksum134 with genetic distances of 5.0 and 4.8 cM, respectively. Based on data from 267 F(2) plants of Yannong15/Huixianhong, the linkage map of YrSn0096, using the two molecular markers, was established in the order Xbarc236-YrSn0096-Xksum134. Shannong0096 appeared to be a unique wheat-L. mollis translocation with cryptic alien introgression. Cytogenetic stability, a high level of stripe-rust resistance, the common wheat background, and other positive agronomic traits make it a desirable donor for introducing novel alien resistance genes in wheat breeding programs, with the advantage of molecular markers that can be used to confirm introgression.

  13. Genome wide association study of seedling and adult plant leaf rust resistance in elite spring wheat breeding lines

    Science.gov (United States)

    Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resista...

  14. Wheat Allergy

    Science.gov (United States)

    ... Soy sauce Starch (gelatinized starch, modified starch, modified food starch, vegetable starch) Surimi Some Unexpected Sources of Wheat Ale Asian dishes can feature wheat flour flavored and shaped ...

  15. Interactions between Glu-1 and Glu-3 loci and associations of selected molecular markers with quality traits in winter wheat (Triticum aestivum L.) DH lines.

    Science.gov (United States)

    Krystkowiak, Karolina; Langner, Monika; Adamski, Tadeusz; Salmanowicz, Bolesław P; Kaczmarek, Zygmunt; Krajewski, Paweł; Surma, Maria

    2017-02-01

    The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.

  16. Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines

    Directory of Open Access Journals (Sweden)

    Bosch Dirk

    2009-04-01

    Full Text Available Abstract Background Gluten proteins can induce celiac disease (CD in genetically susceptible individuals. In CD patients gluten-derived peptides are presented to the immune system, which leads to a CD4+ T-cell mediated immune response and inflammation of the small intestine. However, not all gluten proteins contain T-cell stimulatory epitopes. Gluten proteins are encoded by multigene loci present on chromosomes 1 and 6 of the three different genomes of hexaploid bread wheat (Triticum aestivum (AABBDD. Results The effects of deleting individual gluten loci on both the level of T-cell stimulatory epitopes in the gluten proteome and the technological properties of the flour were analyzed using a set of deletion lines of Triticum aestivum cv. Chinese Spring. The reduction of T-cell stimulatory epitopes was analyzed using monoclonal antibodies that recognize T-cell epitopes present in gluten proteins. The deletion lines were technologically tested with respect to dough mixing properties and dough rheology. The results show that removing the α-gliadin locus from the short arm of chromosome 6 of the D-genome (6DS resulted in a significant decrease in the presence of T-cell stimulatory epitopes but also in a significant loss of technological properties. However, removing the ω-gliadin, γ-gliadin, and LMW-GS loci from the short arm of chromosome 1 of the D-genome (1DS removed T-cell stimulatory epitopes from the proteome while maintaining technological properties. Conclusion The consequences of these data are discussed with regard to reducing the load of T-cell stimulatory epitopes in wheat, and to contributing to the design of CD-safe wheat varieties.

  17. Targeting of prolamins by RNAi in bread wheat: effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins.

    Science.gov (United States)

    Barro, Francisco; Iehisa, Julio C M; Giménez, María J; García-Molina, María D; Ozuna, Carmen V; Comino, Isabel; Sousa, Carolina; Gil-Humanes, Javier

    2016-03-01

    Gluten proteins are responsible for the viscoelastic properties of wheat flour but also for triggering pathologies in susceptible individuals, of which coeliac disease (CD) and noncoeliac gluten sensitivity may affect up to 8% of the population. The only effective treatment for affected persons is a strict gluten-free diet. Here, we report the effectiveness of seven plasmid combinations, encompassing RNAi fragments from α-, γ-, ω-gliadins, and LMW glutenin subunits, for silencing the expression of different prolamin fractions. Silencing patterns of transgenic lines were analysed by gel electrophoresis, RP-HPLC and mass spectrometry (LC-MS/MS), whereas gluten immunogenicity was assayed by an anti-gliadin 33-mer monoclonal antibody (moAb). Plasmid combinations 1 and 2 downregulated only γ- and α-gliadins, respectively. Four plasmid combinations were highly effective in the silencing of ω-gliadins and γ-gliadins, and three of these also silenced α-gliadins. HMW glutenins were upregulated in all but one plasmid combination, while LMW glutenins were downregulated in three plasmid combinations. Total protein and starch contents were unaffected regardless of the plasmid combination used. Six plasmid combinations provided strong reduction in the gluten content as measured by moAb and for two combinations, this reduction was higher than 90% in comparison with the wild type. CD epitope analysis in peptides identified in LC-MS/MS showed that lines from three plasmid combinations were totally devoid of CD epitopes from the highly immunogenic α- and ω-gliadins. Our findings raise the prospect of breeding wheat species with low levels of harmful gluten, and of achieving the important goal of developing nontoxic wheat cultivars. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Gene expression analysis of a panel of cell lines that differentially restrict HIV-1 CA mutants infection in a cyclophilin a-dependent manner.

    Directory of Open Access Journals (Sweden)

    Vaibhav B Shah

    Full Text Available HIV-1 replication is dependent on binding of the viral capsid to the host protein cyclophilin A (CypA. Interference with cyclophilin A binding, either by mutations in the HIV-1 capsid protein (CA or by the drug cyclosporine A (CsA, inhibits HIV-1 replication in cell culture. Resistance to CsA is conferred by A92E or G94D substitutions in CA. The mutant viruses are also dependent on CsA for their replication. Interestingly, infection of some cell lines by these mutants is enhanced by CsA, while infection of others is not affected by the drug. The cells are thus termed nonpermissive and permissive, respectively, for infection by CsA-dependent mutants. The mechanistic basis for the cell type dependence is not well understood, but has been hypothesized to result from a dominant-acting host factor that blocks HIV-1 infection by a mechanism that requires CypA binding to the viral capsid. In an effort to identify a CypA-dependent host restriction factor, we adopted a strategy involving comparative gene expression analysis in three permissive and three non-permissive cell types. We ranked the genes based on their relative overexpression in non-permissive cell types compared to the permissive cell types. Based on specific selection criteria, 26 candidate genes were selected and targeted using siRNA in nonpermissive (HeLa cells. Depletion of none of the selected candidate genes led to the reversal of CsA-dependent phenotype of the A92E mutant. Our data suggest that none of the 26 genes tested is responsible for the dependence of the A92E mutant on CsA. Our study provides gene expression data that may be useful for future efforts to identify the putative CypA-dependent HIV-1 restriction factor and in studies of other cell-specific phenotypes.

  19. Cytogenetic analysis of human hepatocarcinoma cell line PLC-PRF-5 and its mutant clones with different degrees of cell differentiation.

    Science.gov (United States)

    Grabovskaya, I L; Tugizov, S M; Glukhova, L A; Kushch, A A

    1993-02-01

    A detailed analysis was made of the karyotype of human hepatocarcinoma cell line PLC-PRF-5 containing an integrated hepatitis B viral genome and 10 mutant clones derived from the line. These clones are drug resistant and display features of cell differentiation. Cytogenetic manifestations of gene amplification common to many cells resistant to drugs were not observed in these clones, but certain tendencies of karyotype evolution involving material from chromosomes 7 and 11, as well as chromosomes 5 and 15, were recorded for a group of cytostatic-resistant clones. An increase in polyploid cell number and number of cells with chromosome pulverization as compared with the original line was noted in the clones. This phenomenon may be related to the cytopathic effect of the hepatitis B viral proteins, which have a higher expression in the clones.

  20. The influence of Glu-1 and Glu-3 loci on dough rheology and bread-making properties in wheat (Triticum aestivum L.) doubled haploid lines.

    Science.gov (United States)

    Langner, Monika; Krystkowiak, Karolina; Salmanowicz, Bolesław P; Adamski, Tadeusz; Krajewski, Paweł; Kaczmarek, Zygmunt; Surma, Maria

    2017-12-01

    The major determinants of wheat quality are Glu-1 and Glu-3 glutenin loci and environmental factors. Additive effects of alleles at the Glu-1 and Glu-3 loci, as well as their interactions, were evaluated for dough rheology and baking properties in four groups of wheat doubled haploid lines differing in high- and low-molecular-weight glutenin composition. Flour quality, Reomixer (Reologica Instruments, Lund, Sweden), dough extension, Farinograph (Brabender GmbH, Duisburg, Germany) and baking parameters were determined. Groups of lines with the alleles Glu-A3b and Glu-B3d were characterized by higher values of dough and baking parameters compared to those with the Glu-A3e and Glu-B3a alleles. Effects of interactions between allelic variants at the Glu-1 and Glu-3 loci on Reomixer parameters, dough extension tests and baking parameters were significant, although additive effects of individual alleles were not always significant. The allelic variants at Glu-B3 had a much greater effect on dough rheological parameters than the variants at Glu-A3 or Glu-D3 loci. The effect of allelic variations at the Glu-D3 loci on rheological parameters and bread-making quality was non-significant, whereas their interactions with a majority of alleles at the other Glu-1 × Glu-3 loci were significant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Ting-Wei Mu

    2008-02-01

    Full Text Available A lysosomal storage disease (LSD results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum-associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil-both US Food and Drug Administration-approved hypertension drugs-partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient-derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely alpha-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.

  2. Evaluation on the resistance to aphids of wheat germplasm ...

    African Journals Online (AJOL)

    A collection of more than 200 wheat lines from the main wheat-producing areas of China was evaluated for resistance to wheat aphids, using fuzzy recognition technique in five field experiments over 2 years. The results show that susceptibility to wheat aphids was exhibited in most of the lines tested, and no immune and ...

  3. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’

    Science.gov (United States)

    Schramm, Elizabeth C.; Nelson, Sven K.; Kidwell, Kimberlee K.

    2014-01-01

    As a strategy to increase the seed dormancy of soft white wheat, mutants with increased sensitivity to the plant hormone abscisic acid (ABA) were identified in mutagenized grain of soft white spring wheat “Zak”. Lack of seed dormancy is correlated with increased susceptibility to preharvest sprouting in wheat, especially those cultivars with white kernels. ABA induces seed dormancy during embryo maturation and inhibits the germination of mature grain. Three mutant lines called Zak ERA8, Zak ERA19A, and Zak ERA19B (Zak ENHANCED RESPONSE to ABA) were recovered based on failure to germinate on 5 µM ABA. All three mutants resulted in increased ABA sensitivity over a wide range of concentrations such that a phenotype can be detected at very low ABA concentrations. Wheat loses sensitivity to ABA inhibition of germination with extended periods of dry after-ripening. All three mutants recovered required more time to after-ripen sufficiently to germinate in the absence of ABA and to lose sensitivity to 5 µM ABA. However, an increase in ABA sensitivity could be detected after as long as 3 years of after-ripening using high ABA concentrations. The Zak ERA8 line showed the strongest phenotype and segregated as a single semi-dominant mutation. This mutation resulted in no obvious decrease in yield and is a good candidate gene for breeding preharvest sprouting tolerance. PMID:23212773

  4. High prevalence of quintuple mutant dhps/dhfr genes in Plasmodium falciparum infections seven years after introduction of sulfadoxine and pyrimethamine as first line treatment in Malawi.

    Science.gov (United States)

    Bwijo, B; Kaneko, A; Takechi, M; Zungu, I L; Moriyama, Y; Lum, J K; Tsukahara, T; Mita, T; Takahashi, N; Bergqvist, Y; Björkman, A; Kobayakawa, T

    2003-03-01

    Malawi changed its national policy for malaria treatment in 1993, becoming the first country in Africa to replace chloroquine by sulfadoxine and pyrimethamine combination (SP) as the first-line drug for uncomplicated malaria. Seven years after this change, we investigated the prevalence of dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr) mutations, known to be associated with decreased sensitivity to SP, in 173 asymptomatic Plasmodium falciparum infections from Salima, Malawi. A high prevalence rate (78%) of parasites with triple Asn-108/Ile-51/Arg-59 dhfr and double Gly-437/Glu-540 dhps mutations was found. This 'quintuple mutant' is considered as a molecular marker for clinical failure of SP treatment of P. falciparum malaria. A total of 11 different dhfr and dhps combinations were detected, 3 of which were not previously reported. Nineteen isolates contained the single Glu-540 mutant dhps, while no isolate contained the single Gly-437 mutant dhps, an unexpected finding since Gly-437 are mostly assumed to be one of the first mutations commonly selected under sulfadoxine pressure. Two isolates contained the dhps single or double mutant coupled with dhfr wild-type. The high prevalence rates of the three dhfr mutations in our study were consistent with a previous survey in 1995 in Karonga, Malawi, whereas the prevalences of dhps mutations had increased, most probably as a result of the wide use of SP. A total of 52 P. falciparum isolates were also investigated for pyrimethamine and sulfadoxine/pyrimethamine activity against parasite growth according to WHO in vitro standard protocol. A pyrimethamine resistant profile was found. When pyrimethamine was combined with sulfadoxine, the mean EC(50) value decreased to less than one tenth of the pyrimethamine alone level. This synergistic activity may be explained by sulfadoxine inhibition of dhps despite the double mutations in the dhps genes, which would interact with pyrimethamine acting to block the

  5. Molecular Mechanism of Erlotinib Resistance in Epidermal Growth Factor Receptor 
Mutant Non-small cell Lung Cancer Cell Line H1650

    Directory of Open Access Journals (Sweden)

    Ruili HAN

    2012-12-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR overexpression and mutations were existed in more than 40% of the lung cancer, and it’s the one of molecular targets in clinical treatment. But the EGFR tyrosine kinase inhibitors (TKI-resistance is becoming a challenging clinical problem as following the application of EGFR-TKIs, Gefitinib or Erlotinib. However, the mechanistic explanation for resistance in the some cases is still lacking. Here we researched the resistance mechanism of H1650 cells. Methods Using real-time RT-PCR to analyze the EGFR mRNA expression level in EGFR wild-type non-small cell lung cancer (NSCLC cells; MTT analysis detected the cytotoxicity for NSCLC cells to Erlotinib; Western blot analysis examined the mutant situations and the downstream signaling protein phosphorylation level in EGFR-mutant NSCLC cells with the treatment of Erlotinib or/and PI3K inhibitor, LY294002. Results In the EGFR wild-type NSCLC cells, the expression level of EGFR mRNA varied dramatically and all the cells showed resistant to Erlotinib; In the EGFR-mutant cells, HCC827 and H1650 (the same activating-mutation type, HCC827 cells were Erlotinib-sensitive as well as H1650 demonstrated primary relative resistance. Western blot analysis showed the loss of PTEN and the p-AKT level was not inhibited with the treatment of Erlotinib or/and LY294002 in H1650 cells, while HCC827 cells were no PTEN loss and definitively decrease of p-AKT level. Conclusion EGFR wild-type NSCLC cells were resistant to Erlotinib no matter of how EGFR mRNA expression level. EGFR-activating mutations correlated with responses to Erlotinib. The PTEN loss and activation of AKT signaling pathway contributed to Erlotinib resistance in EGFR-mutant NSCLC cell line H1650.

  6. Lessons from the use of genetically modified Drosophila melanogaster in ecological studies: Hsf mutant lines show highly trait-specific performance in field and laboratory thermal assays

    DEFF Research Database (Denmark)

    Sørensen, Jesper Givskov; Loeschcke, Volker; Kristensen, Torsten Nygård

    2009-01-01

    . 2.  We have tested the importance of inducible heat shock proteins (Hsps) under different thermal conditions using two heat shock factor (Hsf) mutant lines (either able (Hsf+) or unable (Hsf0) to mount a heat stress response) and an outbred laboratory adapted wild-type line of Drosophila...... melanogaster under both laboratory and field conditions.3.  In the field, there was a tendency towards better performance of Hsf+ flies relative to Hsf0 flies, but as compared with wild-type the performance of both mutant lines was very low.4.  In the laboratory tests, Hsf+ flies had higher heat knock......-down resistance relative to Hsf0 flies but in other assays on heat, cold and desiccation resistance there was either no difference between the two mutant lines or the Hsf0 line had higher performance. Also, the superiority of the wild-type flies under field conditions was trait specific.5.  The results emphasize...

  7. Spectra of spontaneous and X-ray-induced mutations at the hprt locus in related human lymphoblast cell lines that express wild-type or mutant p53

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, E.N.; Xia, F.; Kelsey, K.T.; Liber, H.L. [Harvard School of Public Health, Boston, MA (United States)

    1995-09-01

    Previous work showed that WTK1 human lymphoblastoid cells are radioresistant but more sensitive to X-ray-induced mutation than the closely related line TK6. In addition, WTK1 cells contain a mutant p53 while in TK6 cells p53 is wild-type. In this work, we examined the spectra of 68 X-ray-induced and 56 spontaneous mutants at the hemizygous hprt locus in WTK1 cells. The induced spectra were classified by Southern blot and multiplex polymerase chain reaction (PCR); there were 19 point mutations (28%) with an unaltered Southern blot or PCR pattern, 26 (38%) partial deletions or rearrangements and 23 (34%) complete gene deletions. The spontaneous spectrum included 25 (45%) point mutations, 22 (39%) partial deletions and 9 (16%) complete gene deletions. These spectra of mutations were compared to those of TK6 cells. Although distinct differences in the spectra of mutations at the tk locus were reported previously, overall there is no significant difference in the spectra of X-ray-induced or spontaneous mutations at the hprt locus in these two cell lines. While there was an increase in the proportion of large-scale changes that occurred at tk after X irradiation, the spectrum of mutations at the hprt locus shows all classes of mutations increasing proportionately in WTK1 cells. However, the proportion of internal partial deletion mutations at the hprt locus was about 2 times more frequent in WTK1 than in TK6 cells. 39 refs., 2 figs., 2 tabs.

  8. Single Marker and Haplotype-Based Association Analysis of Semolina and Pasta Colour in Elite Durum Wheat Breeding Lines Using a High-Density Consensus Map.

    Directory of Open Access Journals (Sweden)

    Amidou N'Diaye

    Full Text Available Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP markers were generated and used to assess the population structure and the linkage disequilibrium (LD patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average and the allelic effect (33.7% on average when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of

  9. Single Marker and Haplotype-Based Association Analysis of Semolina and Pasta Colour in Elite Durum Wheat Breeding Lines Using a High-Density Consensus Map.

    Science.gov (United States)

    N'Diaye, Amidou; Haile, Jemanesh K; Cory, Aron T; Clarke, Fran R; Clarke, John M; Knox, Ron E; Pozniak, Curtis J

    2017-01-01

    Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype

  10. Auxin Transport and Ribosome Biogenesis Mutant/Reporter Lines to Study Plant Cell Growth and Proliferation under Altered Gravity

    Science.gov (United States)

    Valbuena, Miguel A.; Manzano, Ana I.; van Loon, Jack JWA.; Saez-Vasquez, Julio; Carnero-Diaz, Eugenie; Herranz, Raul; Medina, F. J.

    2013-02-01

    We tested different Arabidopsis thaliana strains to check their availability for space use in the International Space Station (ISS). We used mutants and reporter gene strains affecting factors of cell proliferation and cell growth, to check variations induced by an altered gravity vector. Seedlings were grown either in a Random Positioning Machine (RPM), under simulated microgravity (μg), or in a Large Diameter Centrifuge (LDC), under hypergravity (2g). A combination of the two devices (μgRPM+LDC) was also used. Under all gravity alterations, seedling roots were longer than in control 1g conditions, while the levels of the nucleolar protein nucleolin were depleted. Alterations in the pattern of expression of PIN2, an auxin transporter, and of cyclin B1, a cell cycle regulator, were shown. All these alterations are compatible with previous space data, so the use of these strains will be useful in the next experiments in ISS, under real microgravity.

  11. Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L. presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes, a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M(2 mutants in a common wheat cultivar 'Jinmai 47'. Numerous phenotypes with altered morphological and agronomic traits were observed from the M(2 and M(3 lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic

  12. Mice lacking Ras-GRF1 show contextual fear conditioning but not spatial memory impairments: convergent evidence from two independently generated mouse mutant lines

    Directory of Open Access Journals (Sweden)

    Raffaele ed'Isa

    2011-12-01

    Full Text Available Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning the Brambilla’s mice with a third mouse line (GENA53 in which a nonsense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in the Brambilla’s mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdalar functions but possibly to some distinct hippocampal connections specific to

  13. Combination of vorinostat and flavopiridol is selectively cytotoxic to multidrug-resistant neuroblastoma cell lines with mutant TP53.

    Science.gov (United States)

    Huang, Jen-Ming; Sheard, Michael A; Ji, Lingyun; Sposto, Richard; Keshelava, Nino

    2010-12-01

    As p53 loss of function (LOF) confers high-level drug resistance in neuroblastoma, p53-independent therapies might have superior activity in recurrent neuroblastoma. We tested the activity of vorinostat, a histone deacetylase inhibitor, and flavopiridol, a pan-Cdk inhibitor, in a panel of multidrug-resistant neuroblastoma cell lines that included lines with wild-type (wt) and transcriptionally active TP53 (n = 3), mutated (mt), and LOF TP53 (n = 4) or p14(ARF) deletion (n = 1). The combination of vorinostat and flavopiridol was synergistic and significantly more cytotoxic (P flavopiridol combination in CHLA-90. The combination caused reduction in the expression of G(2)/M proteins (cyclin B1, Mad2, MPM2) in 2 cell lines with mt TP53 but not in those with wt TP53. Plk1 expression was reduced in all treated lines. Small interfering RNA knockdown of Mad2 and cyclin B1 or Plk1 synergistically reduced the clonogenicity of CHLA-90 cells. The combination of HDAC inhibitor and flavopiridol may be a unique approach to treating neuroblastomas with p53 LOF, one that evokes induction of mitotic failure. ©2010 AACR.

  14. Stay-green trait-antioxidant status interrelationship in durum wheat (Triticum durum) flag leaf during post-flowering.

    Science.gov (United States)

    De Simone, Vanessa; Soccio, Mario; Borrelli, Grazia Maria; Pastore, Donato; Trono, Daniela

    2014-01-01

    Three independent durum wheat mutant lines that show delayed leaf senescence or stay-green (SG) phenotype, SG196, SG310 and SG504, were compared to the parental genotype, cv. Trinakria, with respect to the photosynthetic parameters and the cellular redox state of the flag leaf in the period from flowering to senescence. The SG mutants maintained their chlorophyll content and net photosynthetic rate for longer than Trinakria, thus revealing a functional SG phenotype. They also showed a better redox state as demonstrated by: (1) a lower rate of superoxide anion production due to generally higher activity of the antioxidant enzymes superoxide dismutase and catalase in all of the SG mutants and also of the total peroxidase in SG196; (2) a higher thiol content that can be ascribed to a higher activity of the NADPH-providing enzyme glucose-6-phosphate dehydrogenase in all of the SG mutants and also of the NADP(+)-dependent malic enzyme in SG196; (3) a lower pro-oxidant activity of lipoxygenase that characterises SG196 and SG504 mutants close to leaf senescence. Overall, these results show a general relationship in durum wheat between the SG phenotype and a better redox state. This relationship differs across the different SG mutants, probably as a consequence of the different set of altered genes underlying the SG trait in these independent mutant lines.

  15. MYH9-siRNA and MYH9 mutant alleles: expression in cultured cell lines and their effects upon cell structure and function.

    Science.gov (United States)

    Li, Yan; Friedmann, David R; Mhatre, Anand N; Lalwani, Anil K

    2008-05-01

    MYH9 encodes a class II nonmuscle myosin heavy chain-A (NMHC-IIA), a widely expressed 1960 amino acid polypeptide, with translated molecular weight of 220 kDa. From studies of type II myosin in invertebrates and analogy with the skeletal and smooth muscle myosin II, NMHC-IIA is considered to be involved in diverse cellular functions, including cell shape, motility and division. The current study assessed the consequences of two separate, naturally occurring MYH9 dominant mutant alleles, MYH9(R702C) and MYH9(R705H) linked to syndromic and nonsyndromic hearing loss, respectively, upon diverse NMHC-IIA related functions in two separate cultured cell lines. MYH9-siRNA-induced inhibition of NMHC-IIA in HeLa cells or HEK293 cells resulted in alterations in their shape, actin cytoskeleton and adhesion properties. However, HeLa or HEK293 cells transfected with naturally occurring MYH9 mutant alleles, MYH9(R702C) or MYH9(R705H), as well as in vitro generated deletion derivatives, MYH9(DeltaN592) or MYH9(DeltaC570), were unaffected. The effects of MYH9-siRNA-induced suppression underline the critical role of NMHC-IIA in maintenance of cell shape and adhesion. However, the results also indicate that the NMHC-IIA mutants, R702C and R705H do not inactivate or suppress the endogenous wild type NMHC-IIA within the HeLa or HEK293 cell assay system. Copyright 2008 Wiley-Liss, Inc.

  16. Wheat Allergy

    Science.gov (United States)

    ... References Wheat allergy. American College of Allergy, Asthma & Immunology. http://www.acaai.org/allergist/allergies/Types/food- ... http://www.mayoclinic.org/diseases-conditions/wheat-allergy/basics/definition/CON-20031834 . Mayo Clinic Footer Legal Conditions ...

  17. Characterization of a new synthetic wheat – Aegilops biuncialis ...

    African Journals Online (AJOL)

    The aim of the experiments was to identify the synthetic wheat – Aegilops biuncialis germplasm Line 15-3-2 with 42 chromosomes. Morphologically, the spike of line 15-3-2 is intermediate to those of its wheat and Aegilops parents. Line 15-3-2 displays stable fertility and immunity to wheat powdery mildew and stripe rust.

  18. Identification of novel QTL for sawfly resistance in wheat

    Science.gov (United States)

    J. D. Sherman; D. K. Weaver; M. L. Hofland; S. E. Sing; M. Buteler; S. P. Lanning; Y. Naruoka; F. Crutcher; N. K. Blake; J. M. Martin; P. F. Lamb; G. R. Carlson; L. E. Talbert

    2010-01-01

    The wheat stem sawfly (WSS) (Cephus cinctus Nort.) is an important pest of wheat (Triticum aestivum L. em. Thell.) in the Northern Great Plains. This paper reports the genetic analysis of antixenosis for egg-laying WSS females in recombinant inbred lines (RIL) of hard red spring wheat. Female WSS preferentially choose certain wheat genotypes for egg-laying, with the...

  19. Determination of fusarium mycotoxins in wheat, maize and animal feed using on-line clean-up with high resolution mass spectrometry.

    Science.gov (United States)

    Ates, E; Mittendorf, K; Stroka, J; Senyuva, H

    2013-01-01

    An automated method involving on-line clean-up and analytical separation in a single run using TurboFlow™ reversed phase liquid chromatography coupled to a high resolution mass spectrometer has been developed for the simultaneous determination of deoxynivalenol, T2 toxin, HT2 toxin, zearalenone and fumonisins B1 and B2 in maize, wheat and animal feed. Detection was performed in full scan mode at a resolution of R = 100,000 full width at half maximum with high energy collision cell dissociation for the determination of fragment ions with a mass accuracy below 5 ppm. The extract from homogenised samples, after blending with a 0.1% aqueous mixture of 0.1% formic acid/acetonitrile (43:57) for 45 min, was injected directly onto the TurboFlow™ (TLX) column for automated on-line clean-up followed by analytical separation and accurate mass detection. The TurboFlow™ column enabled specific binding of target mycotoxins, whereas higher molecular weight compounds, like fats, proteins and other interferences with different chemical properties, were removed to waste. Single laboratory method validation was performed by spiking blank materials with mycotoxin standards. The recovery and repeatability was determined by spiking at three concentration levels (50, 100 and 200% of legislative limits) with six replicates. Average recovery, relative standard deviation and intermediate precision values were 71 to 120%, 1 to 19% and 4 to 19%, respectively. The method accuracy was confirmed with certified reference materials and participation in proficiency testing.

  20. Establishment of PSEN1 mutant induced pluripotent stem cell (iPSC line from an Alzheimer's disease (AD female patient

    Directory of Open Access Journals (Sweden)

    Csilla Nemes

    2016-07-01

    Full Text Available Peripheral blood mononuclear cells (PBMCs were collected from a clinically characterised, early onset Alzheimer's disease patient, carries a heterozygous, pathogenic single nucleotide variation (SNV in Presenilin1 (PSEN1 gene (NM_000021.3(PSEN1:c.265G>C; ClinVar ID: 21r027. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus delivery system. The transgene-free iPSC showed pluripotency verified by immunocytochemistry for pluripotency markers and differentiated spontaneously towards the 3 germ layers in vitro. Furthermore, the iPSC line showed normal karyotype. Our model might offer a good platform to study the pathomechanism of familial AD, to identify early biomarkers and also for drug testing.

  1. Canopy architectural and physiological characterisation of near-isogenic wheat lines differing in the tiller inhibition gene tin

    Directory of Open Access Journals (Sweden)

    Carina eMoeller

    2014-12-01

    Full Text Available Tillering is a core constituent of plant architecture, and influences light interception to affect plant performance. Near-isogenic lines (NILs varying for a tiller inhibition (tin gene were investigated for tillering dynamics, organ size distribution, leaf area, light interception, red : far-red ratio, and chlorophyll content. Tillering ceased earlier in the tin lines to reduce the frequencies of later primary and secondary tillers, and demonstrated the genetically lower tillering plasticity of tin compared to free-tillering NILs. The distribution of organ sizes along shoots varied between NILs. In tin lines, internode elongation commenced at a lower phytomer, the peduncles were shorter, the flag leaves were larger, and the longest leaf blades were observed at higher phytomers. Total leaf area was reduced in tin lines. The tiller economy (ratio of seed-bearing shoots to numbers of shoots produced was 10% greater in the tin lines (0.73-0.76 compared to the free-tillering sisters (0.62-0.63. At maximum tiller number, the red: far-red ratio (light quality stimulus that is thought to induce the cessation of tillering at the plant-base was 0.18-0.22 in tin lines and 0.09-0.11 in free-tillering lines at levels of photosynthetic active radiation of 49-53% and 30-33%, respectively. The tin lines intercepted less radiation compared to their free-tillering sisters once genotypic differences in tiller numbers had established, and maintained green leaf area in the lower canopy later into the season. Greater light extinction coefficients (k in tin lines prior to, but reduced k after, spike emergence indicated that differences in light interception between NILs cannot be explained by leaf area alone but that geometric and optical canopy properties contributed. The characterisation of specifically-developed NILs is refining the development of a physiology-based model for tillering to enhance understanding of the value of architectural traits for use in cereal

  2. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat.

    Science.gov (United States)

    Zheng, Qi; Li, Bin; Mu, Sumei; Zhou, Hanping; Li, Zhensheng

    2006-09-01

    The original blue-grained wheat, Blue 58, was a substitution line derived from hybridization between common wheat (Triticum aestivum L., 2n=6x=42, ABD) and tall wheatgrass (Thinopyrum ponticum Liu & Wang=Agropyron elongatum, 2n=10x=70, StStEeEbEx), in which one pair of 4D chromosomes was replaced by a pair of alien 4Ag chromosomes (unknown group 4 chromosome from A. ponticum). Blue aleurone might be a useful cytological marker in chromosome engineering and wheat breeding. Cytogenetic analysis showed that blue aleurone was controlled by chromosome 4Ag. GISH analysis proved that the 4Ag was a recombination chromosome; its centromeric and pericentromeric regions were from an E-genome chromosome, but the distal regions of its two arms were from an St-genome chromosome. On its short arm, there was a major pAs1 hybridization band, which was very close to the centromere. GISH and FISH analysis in a set of translocation lines with different seed colors revealed that the gene(s) controlling the blue pigment was located on the long arm of 4Ag. It was physically mapped to the 0.71-0.80 regions (distance measured from the centromere of 4Ag). The blue color is a consequence of dosage of this small chromosome region derived from the St genome. We speculate that the blue-grained gene(s) could activate the anthocyanin biosynthetic pathway of wheat.

  3. A high-throughput method for the detection of homoeologous gene deletions in hexaploid wheat

    Directory of Open Access Journals (Sweden)

    Li Zhongyi

    2010-11-01

    4500 M2 mutant wheat lines generated by heavy ion irradiation, we detected multiple mutants with deletions of each TaPFT1 homoeologue, and confirmed these deletions using a CAPS method. We have subsequently designed, optimized, and applied this method for the screening of homoeologous deletions of three additional wheat genes putatively involved in plant disease resistance. Conclusions We have developed a method for automated, high-throughput screening to identify deletions of individual homoeologues of a wheat gene. This method is also potentially applicable to other polyploidy plants.

  4. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9.

    Science.gov (United States)

    Sánchez-León, Susana; Gil-Humanes, Javier; Ozuna, Carmen V; Giménez, María J; Sousa, Carolina; Voytas, Daniel F; Barro, Francisco

    2017-09-18

    Coeliac disease is an autoimmune disorder triggered in genetically predisposed individuals by the ingestion of gluten proteins from wheat, barley and rye. The α-gliadin gene family of wheat contains four highly stimulatory peptides, of which the 33-mer is the main immunodominant peptide in patients with coeliac. We designed two sgRNAs to target a conserved region adjacent to the coding sequence for the 33-mer in the α-gliadin genes. Twenty-one mutant lines were generated, all showing strong reduction in α-gliadins. Up to 35 different genes were mutated in one of the lines of the 45 different genes identified in the wild type, while immunoreactivity was reduced by 85%. Transgene-free lines were identified, and no off-target mutations have been detected in any of the potential targets. The low-gluten, transgene-free wheat lines described here could be used to produce low-gluten foodstuff and serve as source material to introgress this trait into elite wheat varieties. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach.

    Science.gov (United States)

    Acevedo-Garcia, Johanna; Spencer, David; Thieron, Hannah; Reinstädler, Anja; Hammond-Kosack, Kim; Phillips, Andrew L; Panstruga, Ralph

    2017-03-01

    Wheat is one of the most widely grown cereal crops in the world and is an important food grain source for humans. However, wheat yields can be reduced by many abiotic and biotic stress factors, including powdery mildew disease caused by Blumeria graminis f.sp. tritici (Bgt). Generating resistant varieties is thus a major effort in plant breeding. Here, we took advantage of the non-transgenic Targeting Induced Lesions IN Genomes (TILLING) technology to select partial loss-of-function alleles of TaMlo, the orthologue of the barley Mlo (Mildew resistance locus o) gene. Natural and induced loss-of-function alleles (mlo) of barley Mlo are known to confer durable broad-spectrum powdery mildew resistance, typically at the expense of pleiotropic phenotypes such as premature leaf senescence. We identified 16 missense mutations in the three wheat TaMlo homoeologues, TaMlo-A1, TaMlo-B1 and TaMlo-D1 that each lead to single amino acid exchanges. Using transient gene expression assays in barley single cells, we functionally analysed the different missense mutants and identified the most promising candidates affecting powdery mildew susceptibility. By stacking of selected mutant alleles we generated four independent lines with non-conservative mutations in each of the three TaMlo homoeologues. Homozygous triple mutant lines and surprisingly also some of the homozygous double mutant lines showed enhanced, yet incomplete, Bgt resistance without the occurrence of discernible pleiotropic phenotypes. These lines thus represent an important step towards the production of commercial non-transgenic, powdery mildew-resistant bread wheat varieties. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. [Construction and analysis of the SSH library with the resistant wheat near-isogenic line and its susceptible parent infected by Puccinia striiformis Westend. f. sp. tritici].

    Science.gov (United States)

    Shu, Wei; Chen, Xiao-Hong; Niu, Yong-Chun

    2011-09-01

    To analyze the differentially expressed genes between resistant and susceptible wheat near-isogenic lines infected by Puccinia striiformis Westend. f. sp. tritici, a subtractive library containing about 1300 clones was constructed using suppression subtractive hybridization (SSH) in which the cDNA from resistant Yr4/6 × Taichung 29 seedlings inoculated with race CY26 was used as the tester, and the corresponding cDNA from susceptible Taichung 29 as the driver. Six hundred clones from the library were analyzed with reverse Northern blot. The positive clones were further tested by Northern blotting analysis. Twelve clones were verified and showed significant difference. By means of sequencing and BlastX analysis, six function-known differentially expressed sequences were detected, and their putative products were leucine-rich repeat protein, catalase, thioredoxin H-type, RNA binding protein, ascorbate peroxidase, and heat shock protein, respectively. Among them, leucine-rich repeat protein belongs to signal transduction protein, and others belong to defense response protein.

  7. Biolistics Transformation of Wheat

    Science.gov (United States)

    Sparks, Caroline A.; Jones, Huw D.

    We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).

  8. leaf and stripe rust resistance among ethiopian grown wheat ...

    African Journals Online (AJOL)

    ADMIN

    ABSTRACT: Ethiopian grown wheat varieties and lines were studied to identify germplasm sources possessing resistance to leaf rust caused by Puccinia triticina and stripe rust (P. striiformis). Sixty-four lines were included of which 38 were bread wheat (Triticum aestivum, 2n=6x=42, AABBDD) and 26 durum wheat (T.

  9. A change in temperature modulates defence to yellow (stripe) rust in wheat line UC1041 independently of resistance gene Yr36.

    Science.gov (United States)

    Bryant, Ruth R M; McGrann, Graham R D; Mitchell, Alice R; Schoonbeek, Henk-Jan; Boyd, Lesley A; Uauy, Cristobal; Dorling, Steve; Ridout, Christopher J

    2014-01-08

    Rust diseases are of major importance in wheat production worldwide. With the constant evolution of new rust strains and their adaptation to higher temperatures, consistent and durable disease resistance is a key challenge. Environmental conditions affect resistance gene performance, but the basis for this is poorly understood. Here we show that a change in day temperature affects wheat resistance to Puccinia striiformis f. sp tritici (Pst), the causal agent of yellow (or stripe) rust. Using adult plants of near-isogenic lines UC1041 +/- Yr36, there was no significant difference between Pst percentage uredia coverage in plants grown at day temperatures of 18°C or 25°C in adult UC1041 + Yr36 plants. However, when plants were transferred to the lower day temperature at the time of Pst inoculation, infection increased up to two fold. Interestingly, this response was independent of Yr36, which has previously been reported as a temperature-responsive resistance gene as Pst development in adult UC1041 -Yr36 plants was similarly affected by the plants experiencing a temperature reduction. In addition, UC1041 -Yr36 plants grown at the lower temperature then transferred to the higher temperature were effectively resistant and a temperature change in either direction was shown to affect Pst development up to 8 days prior to inoculation. Results for seedlings were similar, but more variable compared to adult plants. Enhanced resistance to Pst was observed in seedlings of UC1041 and the cultivar Shamrock when transferred to the higher temperature. Resistance was not affected in seedlings of cultivar Solstice by a temperature change in either direction. Yr36 is effective at 18°C, refining the lower range of temperature at which resistance against Pst is conferred compared to previous studies. Results reveal previously uncharacterised defence temperature sensitivity in the UC1041 background which is caused by a change in temperature and independently of Yr36. This novel

  10. Eat Wheat!

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  11. Segregation ratios of colored grains in F1 hybrid wheat

    Directory of Open Access Journals (Sweden)

    Zifeng Guo

    2012-01-01

    Full Text Available Nutritious and functional foods from wheat have received great attention in recent years. Colored-grain wheat contains a large number of nutrients such as anthocyanins and hence the breeding is interesting. In this work, colored-grained wheat lines of mixed pollination of einkorn wheat (Triticum boeoticum, AA and French rye (French Secale cereale, RR were used as male parents and wheat line Y1642 (derived from common wheat and Agropyron elongatum, AABBDD was used as the female parent. These colored wheat were used for diallel cross to study the segregation ratios of F1 colored grains. Results show that the color inheritance of purple-grained wheat follows a maternal inheritance pattern and that the blue-grained wheat expresses xenia in most cases. In some circumstances, the grains with different color shades appear in the same spike.

  12. Estimation of genetic variability, mutagenic effectiveness and efficiency in M2 flower mutant lines of Capsicum annuum L. treated with caffeine and their analysis through RAPD

    Directory of Open Access Journals (Sweden)

    Rumana Aslam

    2017-07-01

    Full Text Available In the present investigation healthy and certified seeds of Capsicum annuum were treated with five concentrations of caffeine i.e. 0.10%, 0.25%, 0.50%, 0.75% and 1.0%. Germination percentage, plants survival and pollen fertility were decreased with the increase of caffeine concentrations. Similarly root length and shoot length were decreased as the concentrations increased in M1 generation. Different mutants were isolated in M1 generation. In M2 generation, various flower mutants with changes in number of sepals, petals, anther size colour i.e. Trimerous, tetramerous, pentamerous with fused petals, hexamerous etc were segregated. Heptamerous and anther change was not observed in lower concentration viz. 0.1%. All these mutants showed significant changes in morphological characters and good breeding values at lower and intermediate concentrations. Mutagenic effectiveness and efficiency was observed on the basis of M2 flower mutant frequency. It was generally decreased with the increase of mutagen concentrations. Cytological aberrations in mutants showed the decreasing trend at meiotic final stages. These mutants were further analysed through RAPD method and on the basis of appearance of polymorphic DNA bands, they distinguished these flower mutants genotypically. Among 93 bands 44 bands were polymorphic which showed great genetic variation produced by caffeine. As an outcome of that the above caffeine concentrations are good for the induction of genetic variability in Capsicum genotype.

  13. Wheat Allergy

    Science.gov (United States)

    ... Watery eyes Wheat allergy Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  14. Wheat: The Whole Story.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  15. Natural variation in grain composition of wheat and related cereals.

    Science.gov (United States)

    Shewry, Peter R; Hawkesford, Malcolm J; Piironen, Vieno; Lampi, Ann-Maija; Gebruers, Kurt; Boros, Danuta; Andersson, Annica A M; Åman, Per; Rakszegi, Mariann; Bedo, Zoltan; Ward, Jane L

    2013-09-04

    The wheat grain comprises three groups of major components, starch, protein, and cell wall polysaccharides (dietary fiber), and a range of minor components that may confer benefits to human health. Detailed analyses of dietary fiber and other bioactive components were carried out under the EU FP6 HEALTHGRAIN program on 150 bread wheat lines grown on a single site, 50 lines of other wheat species and other cereals grown on the same site, and 23-26 bread wheat lines grown in six environments. Principal component analysis allowed the 150 bread wheat lines to be classified on the basis of differences in their contents of bioactive components and wheat species (bread, durum, spelt, emmer, and einkorn wheats) to be clearly separated from related cereals (barley, rye, and oats). Such multivariate analyses could be used to define substantial equivalence when novel (including transgenic) cereals are considered.

  16. MicroRNA172 plays a critical role in wheat spike morphogenesis and grain threshability

    Science.gov (United States)

    Wheat domestication from wild species involved mutations in the Q gene. The q allele (wild wheats) is associated with elongated spikes and hulled grains, whereas the mutant Q allele (domesticated wheats) confers subcompact spikes and free-threshing grains. Previous studies showed that Q encodes an ...

  17. Sustainable use of winter Durum wheat landraces under ...

    African Journals Online (AJOL)

    This research expected to determine new durum wheat germplasm resistant to biotic and abiotic stress factors. Eighty durum wheat lines selected from eighteen diverse landraces were tested together with eight durum wheat cultivars under reliable yellow rust epidemic during two successive years. Average infection ...

  18. Pushing Wheat

    DEFF Research Database (Denmark)

    Sharp, Paul Richard

    This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between these varia......This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between...

  19. Comparison of cell death and accumulation of reactive oxygen species in wheat lines with or without Yr36 responding to Puccinia striiformis f. sp. tritici under low and high temperatures at seedling and adult-plant stages.

    Science.gov (United States)

    Li, Hui; Ren, Bin; Kang, Zhensheng; Huang, Lili

    2016-05-01

    Yr36 is an important gene conferring resistance to stripe rust of wheat caused by Puccinia striiformis f. sp. tritici (Pst). To determine if the Yr36 resistance is correlated to reactive oxygen species (ROS) burst and cell death, wheat near-isogenic lines with (UC1041 + Yr36) and without (UC1041) the gene were histologically characterized for response to Pst infection. Yr36 conferred stripe rust resistance at both seedling and adult-plant stages when the gene line was tested with Pst race CYR29 at a high-temperature (HT) cycle (12 °C at night and 33 °C during the day). At the HT cycle, the growth of secondary hyphae was obviously suppressed in both seedlings and adult plants of UC1041 + Yr36 compared with those of UC1041. The percentages of infection sites with necrotic host cells in UC1041 + Yr36 were significantly higher than UC1041 60 hours after inoculation (hai) at both seedling and adult-plant stages. Mesophyll cell death in the inoculated UC1041 + Yr36 leaves at the HT cycle was stronger than at a low-temperature (LT) cycle (12 °C at night and 18 °C during the day). At the HT cycle, the level of ROS burst started increasing in the inoculated leaves of UC1041 + Yr36 when Pst hyphae started differentiating and extending, and simultaneously, the number of penetration sites with hypersensitive cell death was also increasing. The results indicate that Yr36 product affects the ROS accumulation and cell death of the host in interaction of wheat with Pst.

  20. LINES

    Directory of Open Access Journals (Sweden)

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  1. Marker-Assisted Development and Evaluation of Near-Isogenic Lines for Broad-Spectrum Powdery Mildew Resistance Gene Pm2b Introgressed into Different Genetic Backgrounds of Wheat

    Directory of Open Access Journals (Sweden)

    Hongxing Xu

    2017-07-01

    Full Text Available At present, most of released wheat cultivars or breeding lines in China are susceptible to powdery mildew (Pm (caused by Blumeria graminis f. sp. tritici, Bgt, so there is an urgent need to rapidly transfer effective and broad-spectrum Pm resistance genes into elite cultivars/lines. Near-isogenic lines (NILs with short target gene region are very important in molecular breeding and map-based cloning and can be developed by combining marker-assisted selection and conventional phenotypic identification. However, no Pm gene NILs were reported by using this method in the previous studies. A new broad-spectrum dominant resistance gene Pm2b, derived from the Chinese wheat breeding line KM2939, conferred high resistance to Pm at both the seedling and adult stages. In this study, with the aid of forward and background selection (FS and BS using molecular markers, the Pm2b gene was introgressed into three elite susceptible commercial cultivars Shimai 15, Shixin 828, and Kenong 199 through the back-crossing procedure. With the appropriate backcrossing generations, selected population sizes and marker number for BS, the homozygous resistant BC3F2:3 NILs of Pm2b gene in the three genetic backgrounds with the highest recipient genome composition of about 99%, confirmed by simple sequence repeat markers and 660K single nucleotide polymorphic array, were developed and evaluated for the powdery mildew resistance and agronomic traits. The different resistance and similar or improved agronomic performance between Pm2b NILs and their corresponding recurrent parents indicated their potential value in the marker-assisted breeding of the Pm2b gene. Moreover, the development of four flanked diagnostic markers (CFD81, BWM25, BWM20, and BWM21 of the Pm2 gene can effectively assist the forward selection and accelerate the transfer and use of this resistance gene.

  2. Drought tolerant wheat varieties developed through mutation ...

    African Journals Online (AJOL)

    In search for higher yielding drought tolerant wheat varieties, one of the Kenyan high yielding variety 'Pasa' was irradiated with gamma rays (at 150, 200, and 250gy) in 1997 so as to induce variability and select for drought tolerance. Six mutants ((KM10, KM14, KM15, KM18, KM20 and KM21) were selected at M4 for their ...

  3. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    Energy Technology Data Exchange (ETDEWEB)

    Yezzi, M.J.

    1985-04-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, has been compared to the wild-type cell, CHO-sC1, in single- and split-radiation-dose schemes. When the exponentially growing TS mutant and the wild-type cells were treated at 40/sub 0/C for up to 2 hrs prior to graded doses of x rays, the survival curves were identical and were the same as those obtained without heat treatment. If the cultures were incubated at 40/sup 0/C for 2 hrs before a first dose and maintained at 40/sup 0/C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal x-ray damage. However, if repair was measured by the alkaline-unwinding technique under the same time and temperature schemes, no difference in the kientics of DNA strand rejoining was observed. Misrepair processes may permit restoration of DNA strand integrity but not allow functional repair. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Treatment of cell populations in the middle of G/sub 1/-phase yielded repair inhibition comparable to that observed with the asynchronous cells. Splitdose experiments were done using pre-incubation with cycloheximide to chemically inhibit protein synthesis. WT cells and TS cells were treated with cycloheximide at 35/sup 0/C for 2 hrs before a first dose and during a 2 hr dose fractionation interval. 23 figs., 7 tabs.

  4. Characterization of FLOWERING LOCUS T1 (FT1 gene in Brachypodium and wheat.

    Directory of Open Access Journals (Sweden)

    Bo Lv

    Full Text Available The phase transition from vegetative to reproductive growth is a critical event in the life cycle of flowering plants. FLOWERING LOCUS T (FT plays a central role in the regulation of this transition by integrating signals from multiple flowering pathways in the leaves and transmitting them to the shoot apical meristem. In this study, we characterized FT homologs in the temperate grasses Brachypodium distachyon and polyploid wheat using transgenic and mutant approaches. Downregulation of FT1 by RNAi was associated with a significant downregulation of the FT-like genes FT2 and FT4 in Brachypodium and FT2 and FT5 in wheat. In a transgenic wheat line carrying a highly-expressed FT1 allele, FT2 and FT3 were upregulated under both long and short days. Overexpression of FT1 caused extremely early flowering during shoot regeneration in both Brachypodium and hexaploid wheat, and resulted in insufficient vegetative tissue to support the production of viable seeds. Downregulation of FT1 transcripts by RNA interference (RNAi resulted in non-flowering Brachypodium plants and late flowering plants (2-4 weeks delay in wheat. A similar delay in heading time was observed in tetraploid wheat plants carrying mutations for both FT-A1 and FT-B1. Plants homozygous only for mutations in FT-B1 flowered later than plants homozygous only for mutations in FT-A1, which corresponded with higher transcript levels of FT-B1 relative to FT-A1 in the early stages of development. Taken together, our data indicate that FT1 plays a critical role in the regulation of flowering in Brachypodium and wheat, and that this role is associated with the simultaneous regulation of other FT-like genes. The differential effects of mutations in FT-A1 and FT-B1 on wheat heading time suggest that different allelic combinations of FT1 homoeologs could be used to adjust wheat heading time to improve adaptation to changing environments.

  5. Impact of epidermal growth factor receptor gene expression level on clinical outcomes in epidermal growth factor receptor mutant lung adenocarcinoma patients taking first-line epidermal growth factor receptor-tyrosine kinase inhibitors.

    Science.gov (United States)

    Chang, Huang-Chih; Chen, Yu-Mu; Tseng, Chia-Cheng; Huang, Kuo-Tung; Wang, Chin-Chou; Chen, Yung-Che; Lai, Chien-Hao; Fang, Wen-Feng; Kao, Hsu-Ching; Lin, Meng-Chih

    2017-03-01

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are first-choice treatments for advanced non-small-cell lung cancer patients harboring EGFR mutations. Although EGFR mutations are strongly predictive of patients' outcomes and their response to treatment with EGFR-TKIs, early failure of first-line therapy with EGFR-TKIs in patients with EGFR mutations is not rare. Besides several clinical factors influencing EGFR-TKI efficacies studied earlier such as the Eastern Cooperative Oncology Group performance status or uncommon mutation, we would like to see whether semi-quantify EGFR mutation gene expression calculated by 2(-ΔΔct) was a prognostic factor in EGFR-mutant non-small cell lung cancer patients receiving first-line EGFR-TKIs. This retrospective study reviews 926 lung cancer patients diagnosed from January 2011 to October 2013 at the Kaohsiung Chang Gung Memorial Hospital in Taiwan. Of 224 EGFR-mutant adenocarcinoma patients, 148 patients who had 2(-ΔΔct) data were included. The best cutoff values of 2(-ΔΔct) for in-frame deletions in exon 19 (19 deletion) and a position 858 substituted from leucine (L) to an arginine (R) in exon 21 (L858R) were determined using receiver operating characteristic curves. Patients were divided into high and low 2(-ΔΔct) expression based on the above cutoff level. The best cutoff point of 2(-ΔΔct) value of 19 deletion and L858R was 31.1 and 104.7, respectively. In all, 92 (62.1%) patients showed high 2(-ΔΔct) expression and 56 patients (37.9%) low 2(-ΔΔct) expression. The mean age was 65.6 years. Progression-free survival of 19 deletion mutant patients with low versus high expression level was 17.07 versus 12.04 months (P = 0.004), respectively. Progression-free survival of L858 mutant patients was 13.75 and 7.96 months (P = 0.008), respectively. EGFR-mutant lung adenocarcinoma patients with lower EGFR gene expression had longer progression-free survival duration without

  6. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance

    Science.gov (United States)

    Although several wheat genes differentially expressed during the Russian wheat aphid resistance response have recently been identified, their requirement for and specific role in resistance remain unclear. Progress in wheat-aphid interaction research is hampered by inadequate collections of mutant g...

  7. Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa.

    Science.gov (United States)

    Chen, Yuanyuan; Brooks, Matthew J; Gieser, Linn; Swaroop, Anand; Palczewski, Krzysztof

    2017-01-01

    Mammalian cells are commonly employed in screening assays to identify active compounds that could potentially affect the progression of different human diseases including retinitis pigmentosa (RP), a class of inherited diseases causing retinal degeneration with compromised vision. Using transcriptome analysis, we compared NIH3T3 cells expressing wildtype (WT) rod opsin with a retinal disease-causing single P23H mutation. Surprisingly, heterologous expression of WT opsin in NIH3T3 cells caused more than a 2-fold change in 783 out of 16,888 protein coding transcripts. The perturbed genes encoded extracellular matrix proteins, growth factors, cytoskeleton proteins, glycoproteins and metalloproteases involved in cell adhesion, morphology and migration. A different set of 347 transcripts was either up- or down-regulated when the P23H mutant opsin was expressed suggesting an altered molecular perturbation compared to WT opsin. Transcriptome perturbations elicited by drug candidates aimed at mitigating the effects of the mutant protein revealed that different drugs targeted distinct molecular pathways that resulted in a similar phenotype selected by a cell-based high-throughput screen. Thus, transcriptome profiling can provide essential information about the therapeutic potential of a candidate drug to restore normal gene expression in pathological conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Generation of an ASGR1 homozygous mutant human embryonic stem cell line WAe001-A-6 using CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Yingying Xu

    2017-07-01

    Full Text Available The gene asialoglycoprotein receptor 1 (ASGR1 encodes a subunit of the asialoglycoprotein receptor. Here we report the generation of a human embryonic stem cell line WAe001-A-6 harbouring homozygous ASGR1 mutations using CRISPR/Cas9. The mutation involves a 37 bp deletion, resulting in a frame shift. The homozygous knockout WA01 cell line maintains a normal karyotype, typical stem cell morphology, pluripotency and differentiation potential in vitro.

  9. Wheat genomics comes of age.

    Science.gov (United States)

    Uauy, Cristobal

    2017-04-01

    Advances in wheat genomics have lagged behind other major cereals (e.g., rice and maize) due to its highly repetitive and large polyploid genome. Recent technological developments in sequencing and assembly methods, however, have largely overcome these barriers. The community now moves to an era centred on functional characterisation of the genome. This includes understanding sequence and structural variation as well as how information is integrated across multiple homoeologous genomes. This understanding promises to uncover variation previously hidden from natural and human selection due to the often observed functional redundancy between homoeologs. Key functional genomic resources will enable this, including sequenced mutant populations and gene editing technologies which are now available in wheat. Training the next-generation of genomics-enabled researchers will be essential to ensure these advances are quickly translated into farmers' fields. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Monitoring wheat growth with radar

    Science.gov (United States)

    Bush, T. F.

    1976-01-01

    The scattering properties of wheat in the 8-18 GHz band were studied as a function of frequency, polarization, incidence angle, and crop maturity. Supporting ground truth was collected at the time of measurement. The data indicate the radar backscattering coefficient is sensitive to both radar system parameters and crop characteristics, particularly at incidence angles near nadir. Linear regression analysis of the backscattering coefficient (dB) on both time and plant moisture content result in rather good correlation, as high as 0.9, with the slope of these regression lines being 0.55 dB/day and -0.275 dB% plant moisture at 9.4 GHz at nadir. It is found that the coefficient undergoes rapid variations shortly before and after the wheat is harvested. Both of these analyses suggest methods for estimating wheat maturity and for monitoring the progress of harvest.

  11. The impact of the SSIIa null mutations on grain traits and composition in durum wheat

    Science.gov (United States)

    Botticella, Ermelinda; Sestili, Francesco; Ferrazzano, Gianluca; Mantovani, Paola; Cammerata, Alessandro; D’Egidio, Maria Grazia; Lafiandra, Domenico

    2016-01-01

    Starch represents a major nutrient in the human diet providing essentially a source of energy. More recently the modification of its composition has been associated with new functionalities both at the nutritional and technological level. Targeting the major starch biosynthetic enzymes has been shown to be a valuable strategy to manipulate the amylose-amylopectin ratio in reserve starch. In the present work a breeding strategy aiming to produce a set of SSIIa (starch synthases IIa) null durum wheat is described. We have characterized major traits such as seed weight, total starch, amylose, protein and β-glucan content in a set of mutant families derived from the introgression of the SSIIa null trait into Svevo, an elite Italian durum wheat cultivar. A large degree of variability was detected and used to select wheat lines with either improved quality traits or agronomic performances. Semolina of a set of two SSIIa null lines showed new rheological behavior and an increased content of all major dietary fiber components, namely arabinoxylans, β-glucans and resistant starch. Furthermore the investigation of gene expression highlighted important differences in some genes involved in starch and β-glucans biosynthesis. PMID:27795682

  12. Using of AFLP to evaluate gamma-irradiated amaranth mutants

    Directory of Open Access Journals (Sweden)

    Labajová Mária

    2013-01-01

    Full Text Available To determine which of several gamma-irradiated mutants of amaranth Ficha cultivar and K-433 hybrid are most genetically similar to their non-irradiated control genotypes, we performed amplified fragment length polymorphism (AFLP based analysis. A total of 40 selective primer combinations were used in reported analyses. First analyses of gamma-irradiated amaranth mutant lines were done used the AFLP. In the study, primers with the differentiation ability for all analysed mutant lines are reported. The very specific changes in the mutant lines´ non-coding regions based on AFLP length polymorphism were analysed. Mutant lines of the Ficha cultivar (C15, C26, C27, C82, C236 shared a genetic dissimilarity of 0,11 and their ISSR profiles are more similar to the Ficha than those of K-433 hybrid mutant lines. The K-433 mutant lines (D54, D279, D282 shared genetic dissimilarity of 0,534 but are more distinct to their control plant as a whole, as those of the Ficha mutant lines. Different AFLP fingerprints patters of the mutant lines when compared to the Ficha cultivar and K-433 hybrid AFLP profiles may be a consequence of the complex response of the intergenic space of mutant lines to the gamma-radiance. Although a genetic polymorphism was detected within accessions, the AFLP markers successfully identified all the accessions. The AFLP results are discussed by a combination of biochemical characteristics of mutant lines and their control genotypes.

  13. How fast was wild wheat domesticated?

    Science.gov (United States)

    Tanno, Ken-Ichi; Willcox, George

    2006-03-31

    Prehistoric cultivation of wild wheat in the Fertile Crescent led to the selection of mutants with indehiscent (nonshattering) ears, which evolved into modern domestic wheat. Previous estimates suggested that this transformation was rapid, but our analyses of archaeological plant remains demonstrate that indehiscent domesticates were slow to appear, emerging approximately 9500 years before the present, and that dehiscent (shattering) forms were still common in cultivated fields approximately 7500 years before the present. Slow domestication implies that after cultivation began, wild cereals may have remained unchanged for a long period, supporting claims that agriculture originated in the Near East approximately 10,500 years before the present.

  14. Connexin mutants and cataracts

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2013-04-01

    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  15. Potential new sources of wheat curl mite resistance in wheat to prevent the spread of yield-reducing pathogens.

    Science.gov (United States)

    Richardson, Kelly; Miller, Adam D; Hoffmann, Ary A; Larkin, Philip

    2014-01-01

    The wheat curl mite (WCM), Aceria tosichella Keifer (Trombidiformes: Eriophyidae), is a major pest in cropping regions of the world and is recognised as the primary vector of several yield-reducing pathogens, primarily affecting wheat. Management of WCM is complicated due to several aspects of the mite's biology and ecology; however, commercially viable mite resistant wheat varieties may offer practical long-term management options. Unfortunately, mite populations have adapted to previously identified sources of resistance, highlighting the need for further sources of resistance and the value of stacking different resistances to give greater degrees and longevity of control. In this study we assessed the susceptibility of 42 wheat-derived genotypes to mite population growth using a new experimental method that overcomes methodological limitations of previous studies. Experimental wheat lines included a variety of wheat genotypes, related Triticeae species, wheat-alien chromosome amphiploids, and chromosome addition or substitution lines. From these we identify new promising sources of WCM resistance associated with Thinopyrum intermedium, Th. ponticum and Hordeum marinum chromosomes. More specifically we identify group 1J and 5J chromosomes of the L3 and L5 wheat-Th. intermedium addition lines as new sources of resistance that could be exploited to transfer resistance onto homoeologous wheat chromosomes. This study offers new methods for reliable in situ estimations of mite abundance on cereal plants, and new sources of WCM resistance that may assist management of WCM and associated viruses in wheat.

  16. Aphid resistance in wheat varieties.

    Science.gov (United States)

    Elek, Henriett; Werner, Peter; Smart, Lesley; Gordon-Weeks, Ruth; Nádasy, Miklós; Pickett, John

    2009-01-01

    As an environmentally compatible alternative to the use of conventional insecticides to control cereal aphids, we have investigated the possibility to exploit natural resistance to insect pests in wheat varieties. We have tested a wide range of hexaploid (Triticum aestivum), tetraploid (T. durum) and diploid (T. boeoticum and T. monococcum) wheat lines for resistance to the bird cherry oat aphid (Rhopalosiphum padi). Lines tested included Russian wheat aphid (Diuraphis noxia), greenbug (Schizaphis graminum), hessian fly (Mayetiola destructor) and orange wheat blossom midge (Sitodiplosis mosellana) resistant varieties. Antixenosis and antibiosis were determined in the settling and fecundity tests respectively. Since hydroxamic acids (Hx), including the most generally active, 2,4-dihidroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), are biosynthesised in many cereal plants and are implicated in resistance against insects, leaf tissue was analysed for Hx and the glucosides from which they are produced. The hexaploid varieties, which contained relatively low levels of the DIMBOA glucoside, did not deter aphid feeding or reduce nymph production significantly. Reduced settlement and nymph production were recorded on the diploid varieties, but they contained no detectable level of the glucoside or the toxic aglucone.

  17. Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib.

    Directory of Open Access Journals (Sweden)

    Darrell C Bessette

    Full Text Available Basal-like and triple negative breast cancer (TNBC share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown.Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed.Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer.Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non

  18. Plant regeneration of Korean wild ginseng (Panax ginseng Meyer) mutant lines induced by γ-irradiation (60Co) of adventitious roots

    Science.gov (United States)

    Zhang, Jun-Ying; Sun, Hyeon-Jin; Song, In-Ja; Bae, Tae-Woong; Kang, Hong-Gyu; Ko, Suk-Min; Kwon, Yong-Ik; Kim, Il-Woung; Lee, Jaechun; Park, Shin-Young; Lim, Pyung-Ok; Kim, Yong Hwan; Lee, Hyo-Yeon

    2014-01-01

    An efficient in vitro protocol has been established for somatic embryogenesis and plantlet conversion of Korean wild ginseng (Panax ginseng Meyer). Wild-type and mutant adventitious roots derived from the ginseng produced calluses on Murashige and Skoog (MS) medium supplemented with 0.5 mg/L 2,4-dichlorophenoxyacetic acid and 0.3 mg/L kinetin; 53.3% of the explants formed callus. Embryogenic callus proliferation and somatic embryo induction occurred on MS medium containing 0.5 mg/L 2,4-dichlorophenoxyacetic acid. The induced somatic embryos further developed to maturity on MS medium with 5 mg/L gibberellic acid, and 85% of them germinated. The germinated embryos were developed to shoots and elongated on MS medium with 5 mg/L gibberellic acid. The shoots developed into plants with well-developed taproots on one-third strength Schenk and Hildebrandt basal medium supplemented with 0.25 mg/L 1-naphthaleneacetic acid. When the plants were transferred to soil, about 30% of the regenerated plants developed into normal plants. PMID:25378998

  19. Plant regeneration of Korean wild ginseng (Panax ginseng Meyer) mutant lines induced by γ-irradiation ((60)Co) of adventitious roots.

    Science.gov (United States)

    Zhang, Jun-Ying; Sun, Hyeon-Jin; Song, In-Ja; Bae, Tae-Woong; Kang, Hong-Gyu; Ko, Suk-Min; Kwon, Yong-Ik; Kim, Il-Woung; Lee, Jaechun; Park, Shin-Young; Lim, Pyung-Ok; Kim, Yong Hwan; Lee, Hyo-Yeon

    2014-07-01

    An efficient in vitro protocol has been established for somatic embryogenesis and plantlet conversion of Korean wild ginseng (Panax ginseng Meyer). Wild-type and mutant adventitious roots derived from the ginseng produced calluses on Murashige and Skoog (MS) medium supplemented with 0.5 mg/L 2,4-dichlorophenoxyacetic acid and 0.3 mg/L kinetin; 53.3% of the explants formed callus. Embryogenic callus proliferation and somatic embryo induction occurred on MS medium containing 0.5 mg/L 2,4-dichlorophenoxyacetic acid. The induced somatic embryos further developed to maturity on MS medium with 5 mg/L gibberellic acid, and 85% of them germinated. The germinated embryos were developed to shoots and elongated on MS medium with 5 mg/L gibberellic acid. The shoots developed into plants with well-developed taproots on one-third strength Schenk and Hildebrandt basal medium supplemented with 0.25 mg/L 1-naphthaleneacetic acid. When the plants were transferred to soil, about 30% of the regenerated plants developed into normal plants.

  20. Plant regeneration of Korean wild ginseng (Panax ginseng Meyer mutant lines induced by γ-irradiation (60Co of adventitious roots

    Directory of Open Access Journals (Sweden)

    Jun-Ying Zhang

    2014-07-01

    Full Text Available An efficient in vitro protocol has been established for somatic embryogenesis and plantlet conversion of Korean wild ginseng (Panax ginseng Meyer. Wild-type and mutant adventitious roots derived from the ginseng produced calluses on Murashige and Skoog (MS medium supplemented with 0.5 mg/L 2,4-dichlorophenoxyacetic acid and 0.3 mg/L kinetin; 53.3% of the explants formed callus. Embryogenic callus proliferation and somatic embryo induction occurred on MS medium containing 0.5 mg/L 2,4-dichlorophenoxyacetic acid. The induced somatic embryos further developed to maturity on MS medium with 5 mg/L gibberellic acid, and 85% of them germinated. The germinated embryos were developed to shoots and elongated on MS medium with 5 mg/L gibberellic acid. The shoots developed into plants with well-developed taproots on one-third strength Schenk and Hildebrandt basal medium supplemented with 0.25 mg/L 1-naphthaleneacetic acid. When the plants were transferred to soil, about 30% of the regenerated plants developed into normal plants.

  1. Characterization of derivatives from wheat-Thinopyrum wide crosses.

    Science.gov (United States)

    Fedak, G; Han, F

    2005-01-01

    Partial amphiploids are lines that contain 42 (38-42) wheat and 14 (14-18) alien chromosomes. They are derived by backcrossing wheat onto hybrids between wheat and either Thinopyrum intermedium (6x) or Th. ponticum (10x). GISH analysis has shown that, with possibly one exception, the alien genomes (chromosome sets) in partial amphiploids are found to be hybrids i.e. composed of chromosomes from more than one alien genome. The individual partial amphiploids are meiotically stable and nearly perfectly fertile, but hybrids between different lines were characterized by varying numbers of unpaired chromosomes and consequently variable degrees of sterility. Translocated chromosomes involving different Thinopyrum genomes or Thinopyrum and wheat genomes were found in partial amphiploids and consequently in the addition lines derived from them. Partial amphiploids have proven to be an excellent tertiary gene pool for wheat improvement, containing resistance to biotic stresses not present in wheat itself. Resistance to Barley Yellow Dwarf Virus (BYDV) and Wheat Streak Mosaic Virus (WSMV) have been found in partial amphiploids and addition lines derived from both Th. intermedium and Th. ponticum. Excellent resistance to Fusarium head blight has been found on a Th. intermedium chromosome that had substituted for chromosome 2D in wheat. Genes for resistance to leaf rust and stem rust have already been incorporated into wheat and tagged with molecular markers. Copyright 2005 S. Karger AG, Basel.

  2. DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population.

    Science.gov (United States)

    Colasuonno, Pasqualina; Incerti, Ornella; Lozito, Maria Luisa; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2016-02-17

    Durum wheat (Triticum turgidum L.) is a cereal crop widely grown in the Mediterranean regions; the amber grain is mainly used for the production of pasta, couscous and typical breads. Single nucleotide polymorphism (SNP) detection technologies and high-throughput mutation induction represent a new challenge in wheat breeding to identify allelic variation in large populations. The TILLING strategy makes use of traditional chemical mutagenesis followed by screening for single base mismatches to identify novel mutant loci. Although TILLING has been combined to several sensitive pre-screening methods for SNP analysis, most rely on expensive equipment. Recently, a new low cost and time saving DHPLC protocol has been used in molecular human diagnostic to detect unknown mutations. In this work, we developed a new durum wheat TILLING population (cv. Marco Aurelio) using 0.70-0.85% ethyl methane sulfonate (EMS). To investigate the efficiency of the mutagenic treatments, a pilot screening was carried out on 1,140 mutant lines focusing on two target genes (Lycopene epsilon-cyclase, ε-LCY, and Lycopene beta-cyclase, β-LCY) involved in carotenoid metabolism in wheat grains. We simplify the heteroduplex detection by two low cost methods: the enzymatic cleavage (CelI)/agarose gel technique and the denaturing high-performance liquid chromatography (DHPLC). The CelI/agarose gel approach allowed us to identify 31 mutations, whereas the DHPLC procedure detected a total of 46 mutations for both genes. All detected mutations were confirmed by direct sequencing. The estimated overall mutation frequency for the pilot assay by the DHPLC methodology resulted to be of 1/77 kb, representing a high probability to detect interesting mutations in the target genes. We demonstrated the applicability and efficiency of a new strategy for the detection of induced variability. We produced and characterized a new durum wheat TILLING population useful for a better understanding of key gene functions

  3. Screening of plant and fungal metabolites in wheat, maize and animal feed using automated on-line clean-up coupled to high resolution mass spectrometry.

    Science.gov (United States)

    Ates, Ebru; Godula, Michal; Stroka, Joerg; Senyuva, Hamide

    2014-01-01

    A wide range of plant and fungal metabolites can occur in cereals and feed but only a limited number of target compounds are sought. This screening method is using a database of over 600 metabolites to establish contamination profiles in food and feed. Extracts were injected directly into an automated turbulent flow sample clean-up system, coupled to a liquid-chromatography-high-resolution-mass-spectrometer (Orbitrap). Compound identification criteria for database searching were defined and the approach was validated by spiking plant and fungal metabolites into cereals and feed. A small survey of market samples (15) and quality control materials (9) of maize, wheat and feed was conducted using this method. Besides regulated and known secondary metabolites, fumiquinazoline F, fusarochromanone and dihydrofusarubin were identified for the first time in samples of maize and oats. This method enables clean-up of crude extracts within 18min and screening and confirmation of a wide range of different compound classes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants

    Directory of Open Access Journals (Sweden)

    Katherine Maringer

    2014-08-01

    Full Text Available Small molecular weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and required for protein transport from the ER to the Golgi complex, however, the function of Rab2 in Dictyostelium has yet to be fully characterized. Using cell lines that over-express DdRab2, as well as cell lines over-expressing constitutively active (CA, and dominant negative (DN forms of the GTPase, we report a functional role in vesicular transport specifically phagocytosis, and endocytosis. Furthermore, Rab2 like other GTPases cycles between an active GTP-bound and an inactive GDP-bound state. We found that this GTP/GDP cycle for DdRab2 is crucial for normal Dictyostelium development and cell–cell adhesion. Similar to Rab5 and Rab7 in C. elegans, we found that DdRab2 plays a role in programmed cell death, possibly in the phagocytic removal of apoptotic corpses.

  5. Melhoramento do trigo: XXI. Avaliação de linhagens em diferentes regiões paulistas Wheat breeding: XXI. Evaluation of inbred lines in different regions of the state of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1989-01-01

    the Instituto Agronômico from the wheat breeding program plus the cultivars BH-1146 and Alondra-S-46 were evaluated in field experiments carried out at Campinas Experiment Center, Capão Bonito and Tietê Experiment Stations, and at two farms located in the Paranapanema Valley, during the period 1984-86. Grain yield, plant height, number of days from emergence to flowering and from emergence to maturation, percentage of lodged plants, head length, number of grain per spike and per spikelet, number of spikelets per spike, weight of 100 grains, and resistance to stem and leaf rusts were evaluated under field conditions. The resistance to stem and leaf rusts was tested in the greenhouse, and tolerance to aluminum toxicity was tested in the laboratory. Considering the experiments carried out at Capão Bonito the line 19 presented good productivity showing moderate resistance to Helminthosporium sp. and high tolerance to aluminum toxicity. This line was early in maturity and exhibited tall type of plant but it was resistant to lodging. The cultivars BH-1146 and the line 16 showed high grain yield at the Paranapanema Valley. The line 16 presented a semidwarf type, early maturity, field resistance to leaf rust, resistance to lodging and tolerance to Al toxicity. At Tietê the line 16 showed high productivity. There were no differences among the lines at Campinas. The lines 1, 3, 9, 10, 11, 15, 16, 22, 23 and the cultivars Alondra-S-46 exhibited semidwarf type when compared to the tall cultivars BH-1146. The lines 9, 10, 11 and the cultivars Alondra-S-46 were resistant to stem rust, presenting at seedling stage, resistance to six races under greenhouse conditions. The lines 11, 16, 18 and the cultivars BH-1146 presented low levels of the leaf rust from natural infection out in the field. The line 7 with long heads, the lines 7 and 8 with large number of spikelets per spike, the line 2 presenting high head fertility and the line 21 exhibiting heavy grains were considered as

  6. Biotype differences for resistance to Russian wheat aphid in barley

    Science.gov (United States)

    Russian wheat aphid (RWA) is a worldwide insect pest of barley, causing crop losses each year. Previously identified resistant barley lines do not show variable reactions to the eight USA RWA biotypes identified by wheat reactions. However, additional RWA isolates have been identified outside the ...

  7. Effects of the compact mutant myostatin allele Mstn (Cmpt-dl1Abc) introgressed into a high growth mouse line on skeletal muscle cellularity.

    Science.gov (United States)

    Rehfeldt, Charlotte; Ott, Gerhard; Gerrard, David E; Varga, László; Schlote, Werner; Williams, John L; Renne, Ulla; Bünger, Lutz

    2005-01-01

    The murine myostatin mutation Mstn(Cmpt-dl1Abc) (Compact; C) was introduced into an inbred mouse line with extreme growth (DUHi) by marker-assisted introgression. To study the allelic effects on muscle fibre hyperplasia and hypertrophy, myonuclear proliferation, protein accretion, capillary density, and muscle fibre metabolism, samples from M. rectus femoris (RF) and M. longissimus dorsi (LD) muscles of animals wild-type (+/+), heterozygous (C/+), and homozygous (C/C) for the Mstn(Cmpt-dl1Abc) allele were examined by histological and biochemical analyses. Homozygous C/C mice exhibited lower body (-12%) but higher muscle weights (+38%) than ++ mice. Total muscle fibre number was increased (+24%), whereas fibre size was not significantly affected. Protein and DNA concentrations and DNA:protein ratios as well as specific CK activity remained unchanged for higher mass muscle implying increases in the total contents of DNA and muscle specific protein. Fibre type distribution was markedly shifted to the white glycolytic muscle fibres (+16-17% units) at the expense of red oxidative fibres. Capillary density was substantially lower in C/C than in ++ mice as seen by lower number of capillaries per fibre (-35%) and larger fibre area per capillary (+77%). However, the Mstn(Cmpt-dl1Abc) allele was partially recessive in heterozygous C/+ mice for both fibre type frequencies and capillary density. The results show that hypermuscularity caused by mutations in the myostatin gene results from muscle fibre hyperplasia rather than hypertrophy, and from balanced increases in myonuclear proliferation and protein accretion. However, capillary supply is adversely affected and muscle metabolism shifted towards glycolysis, which could have negative consequences for physical fitness.

  8. IL-8 and eNOS polymorphisms predict bevacizumab-based first line treatment outcomes in RAS mutant metastatic colorectal cancer patients.

    Science.gov (United States)

    Di Salvatore, Mariantonietta; Pietrantonio, Filippo; Orlandi, Armando; Del Re, Marzia; Berenato, Rosa; Rossi, Ernesto; Caporale, Marta; Guarino, Donatella; Martinetti, Antonia; Basso, Michele; Mennitto, Roberta; Santonocito, Concetta; Mennitto, Alessia; Schinzari, Giovanni; Bossi, Ilaria; Capoluongo, Ettore; Danesi, Romano; de Braud, Filippo; Barone, Carlo

    2017-03-07

    Predictive biomarkers of efficacy and toxicity of bevacizumab have not yet been validated. This study assessed the influence of IL-8, eNOS and VEGF-A polymorphisms in RAS mutated metastatic colorectal cancer patients receiving bevacizumab-based chemotherapy. 120 patients treated with first-line combination FOLFOX6 plus bevacizumab were included. A historical cohort of 112 RAS mutated colorectal cancer patients treated with FOLFOX6 alone served as control group. The following SNPs were analyzed: IL-8 c.-251T>A; eNOS c.-786T>C and c.-894G>T; VEGF-A c.936C>T, c.958T>C, c.1154A>G and c.2578C>A. Correlation of SNPs, baseline IL-8 serum levels and bevacizumab-efficacy was done. In the bevacizumab group, carriers of the IL-8 alleles c.-251TA+AA showed a shorter PFS (P=0.002) and OS (P=0.03) compared to TT alleles. Patients with pre-treatment IL-8 8.25 pg/ml showed significantly longer median PFS and OS (PFS: 10.9 vs 7.6 months, P=0.005; OS: 30.7 vs 18.2 months, P18,25 pg/ml). IL-8 c.-251TA+AA carriers had significantly higher IL-8 levels (PT was found associated with higher severe toxicity (P=0.0002) in patients carrying the c.-894TT genotype. Although our data need prospective validation, IL-8 and eNOS SNPs may be have a role as predictive biomarkers for bevacizumab efficacy and toxicity.

  9. Proteomics of wheat flour

    Science.gov (United States)

    Wheat is a major food crop grown on more than 215 million hectares of land throughout the world. Wheat flour provides an important source of protein for human nutrition and is used as a principal ingredient in a wide range of food products, largely because wheat flour, when mixed with water, has un...

  10. Wheat and gluten intolerance

    NARCIS (Netherlands)

    Busink-van den Broeck, Hetty; Gilissen, L.J.W.J.; Brouns, F.

    2016-01-01

    With this White Paper, the current state of scientific knowledge on human disorders related to gluten and wheat is presented, with reference to other grains such as spelt, barley, rye, and oats. Backgrounds are described of coeliac disease (gluten intolerance), wheat allergies and any kind of wheat

  11. Influence of Gene Expression on Hardness in Wheat.

    Science.gov (United States)

    Nirmal, Ravi C; Furtado, Agnelo; Wrigley, Colin; Henry, Robert J

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences.

  12. In chronic myeloid leukemia patients on second-line tyrosine kinase inhibitor therapy, deep sequencing of BCR-ABL1 at the time of warning may allow sensitive detection of emerging drug-resistant mutants.

    Science.gov (United States)

    Soverini, Simona; De Benedittis, Caterina; Castagnetti, Fausto; Gugliotta, Gabriele; Mancini, Manuela; Bavaro, Luana; Machova Polakova, Katerina; Linhartova, Jana; Iurlo, Alessandra; Russo, Domenico; Pane, Fabrizio; Saglio, Giuseppe; Rosti, Gianantonio; Cavo, Michele; Baccarani, Michele; Martinelli, Giovanni

    2016-08-02

    Imatinib-resistant chronic myeloid leukemia (CML) patients receiving second-line tyrosine kinase inhibitor (TKI) therapy with dasatinib or nilotinib have a higher risk of disease relapse and progression and not infrequently BCR-ABL1 kinase domain (KD) mutations are implicated in therapeutic failure. In this setting, earlier detection of emerging BCR-ABL1 KD mutations would offer greater chances of efficacy for subsequent salvage therapy and limit the biological consequences of full BCR-ABL1 kinase reactivation. Taking advantage of an already set up and validated next-generation deep amplicon sequencing (DS) assay, we aimed to assess whether DS may allow a larger window of detection of emerging BCR-ABL1 KD mutants predicting for an impending relapse. a total of 125 longitudinal samples from 51 CML patients who had acquired dasatinib- or nilotinib-resistant mutations during second-line therapy were analyzed by DS from the time of failure and mutation detection by conventional sequencing backwards. BCR-ABL1/ABL1%(IS) transcript levels were used to define whether the patient had 'optimal response', 'warning' or 'failure' at the time of first mutation detection by DS. DS was able to backtrack dasatinib- or nilotinib-resistant mutations to the previous sample(s) in 23/51 (45 %) pts. Median mutation burden at the time of first detection by DS was 5.5 % (range, 1.5-17.5 %); median interval between detection by DS and detection by conventional sequencing was 3 months (range, 1-9 months). In 5 cases, the mutations were detectable at baseline. In the remaining cases, response level at the time mutations were first detected by DS could be defined as 'Warning' (according to the 2013 ELN definitions of response to 2nd-line therapy) in 13 cases, as 'Optimal response' in one case, as 'Failure' in 4 cases. No dasatinib- or nilotinib-resistant mutations were detected by DS in 15 randomly selected patients with 'warning' at various timepoints, that later turned into optimal

  13. Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars

    Directory of Open Access Journals (Sweden)

    Lianne eMerchuk-Ovnat

    2016-04-01

    Full Text Available Wild emmer wheat (Triticum turgidum ssp. dicoccoides is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum and bread (T. aestivum wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4 were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm and water-limited (290–320 mm conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS, and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS. In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass - specifically under drought (7AS QTL in cv. Bar Nir background, under both treatments (2BS QTL, and a greater stability across treatments (1BL QTL. The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.

  14. Ancestral QTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars

    Science.gov (United States)

    Merchuk-Ovnat, Lianne; Barak, Vered; Fahima, Tzion; Ordon, Frank; Lidzbarsky, Gabriel A.; Krugman, Tamar; Saranga, Yehoshua

    2016-01-01

    Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm) and water-limited (290–320 mm) conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass—specifically under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS QTL), and a greater stability across treatments (1BL QTL). The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance. PMID:27148287

  15. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  16. Clearance of mutant huntingtin.

    Science.gov (United States)

    Li, Xiao-Jiang; Li, He; Li, Shihua

    2010-07-01

    Mutant huntingtin (htt) carries an expanded polyglutamine (polyQ) repeat (> 36 glutamines) in its N-terminal region, which leads htt to become misfolded and kill neuronal cells in Huntington disease (HD). The cytotoxicity of N-terminal mutant htt fragments is evident by severe neurological phenotypes of transgenic mice that express these htt fragments. Clearance of mutant htt is primarily mediated by the ubiquitin-proteasomal sysmtem (UPS) and autophagy. However, the relative efficiency of these two systems to remove toxic forms of mutant htt has not been rigorously compared. Using cellular and mouse models of HD, we found that inhibiting the UPS leads to a greater accumulation of mutant htt than inhibiting autophagy. Moreover, N-terminal mutant htt fragments, but not full-length mutant htt, accumulate in the HD mouse brains after inhibiting the UPS. These findings suggest that the UPS is more efficient than autophagy to remove N-terminal mutant htt.

  17. Variation in genome composition of blue-aleurone wheat.

    Science.gov (United States)

    Burešová, Veronika; Kopecký, David; Bartoš, Jan; Martinek, Petr; Watanabe, Nobuyoshi; Vyhnánek, Tomáš; Doležel, Jaroslav

    2015-02-01

    Different blue-aleurone wheats display major differences in chromosome composition, ranging from disomic chromosome additions, substitutions, single chromosome arm introgressions and chromosome translocation of Thinopyrum ponticum. Anthocyanins are of great importance for human health due to their antioxidant, anti-inflammatory, anti-microbial and anti-cancerogenic potential. In common wheat (Triticum aestivum L.) their content is low. However, elite lines with blue aleurone exhibit significantly increased levels of anthocyanins. These lines carry introgressed chromatin from wild relatives of wheat such as Thinopyrum ponticum and Triticum monococcum. The aim of our study was to characterize genomic constitutions of wheat lines with blue aleurone using genomic and fluorescence in situ hybridization. We used total genomic DNA of Th. ponticum and two repetitive DNA sequences (GAA repeat and the Afa family) as probes to identify individual chromosomes. This enabled precise localization of introgressed Th. ponticum chromatin. Our results revealed large variation in chromosome constitutions of the blue-aleurone wheats. Of 26 analyzed lines, 17 carried an introgression from Th. ponticum; the remaining nine lines presumably carry T. monococcum chromatin undetectable by the methods employed. Of the Th. ponticum introgressions, six different types were present, ranging from a ditelosomic addition (cv. Blue Norco) to a disomic substitution (cv. Blue Baart), substitution of complete (homologous) chromosome arms (line UC66049) and various translocations of distal parts of a chromosome arm(s). Different types of introgressions present support a hypothesis that the introgressions activate the blue aleurone trait present, but inactivated, in common wheat germplasm.

  18. Comportamento agronômico de linhagens de trigo no Estado de São Paulo Agronomic performance of wheat hybrid lines in the State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    CARLOS EDUARDO DE OLIVEIRA CAMARGO

    2001-01-01

    Full Text Available Compararam-se 18 linhagens de trigo e os cultivares IAC-24 e IAC-289 em seis ensaios instalados em condições de irrigação por aspersão e de sequeiro. Foram analisadas a produção de grãos, a resistência a doenças e outras características agronômicas Em condições de laboratório estudou-se a tolerância ao alumínio em soluções nutritivas. A linhagem L9 e o cultivar IAC-289 destacaram-se quanto à produção de grãos, considerando a média dos seis experimentos. A linhagem L8 exibiu porte baixo associado à resistência ao acamamento e ciclo precoce da emergência à maturação. Em relação à ferrugem-da-folha, as linhagens L1, L17 e L20 revelaram características de resistência. Todos os genótipos mostraram-se sensíveis aos agentes causais das manchas foliares e de oídio. A linhagem L7 apresentou espigas mais compridas e maior número de espiguetas por espiga; o cultivar IAC-289, maior número de grãos por espiga; a linhagem L17, maior número de grãos por espigueta; e a linhagem L11, grãos mais pesados. Todos os genótipos avaliados mostraram-se tolerantes à toxicidade de Al3+, com exceção do cultivar-controle Anahuac e das linhagens L15 e L20, que exibiram elevada sensibilidade.Eighteen wheat lines and the check cultivars IAC-24 and IAC-289 were evaluated in six trials carried out at different locations under dryland and sprinkler irrigation conditions, for grain yield, agronomic characteristics and disease resistance. In laboratory conditions, the germplasms were evaluated for their Al toxicity tolerance in nutrient solutions. The line L9 and the cultivar IAC-289 were superior in grain yield, considering the average of the six trials. The line L8 exhibited short stature associated to lodging resistance and early maturity. In relation to leaf rust the lines L1, L17 and L20 were resistant. All genotypes were susceptible to the causal agents of leaf spot and mildew. The line L7, showed long heads with the highest

  19. WheatGenome.info: A Resource for Wheat Genomics Resource.

    Science.gov (United States)

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .

  20. Características físicas e fisiológicas na qualidade industrial de cultivares e linhagens de trigo e triticale Physiological and physical characteristics in the industrial quality of cultivars and lines of wheat and triticale

    Directory of Open Access Journals (Sweden)

    Adriana Smanhotto

    2006-12-01

    Full Text Available Estudaram-se as características físicas, fisiológicas e reológicas de cultivares e linhagens de trigo - cultivares CD (COODETEC 103, 104, 105, 107, 108, 109, 110, 111, linhagens CD 2017 e CDFAPA 2036 e triticale (EMBRAPA 53, para qualidade de farinha destinada à panificação. Foram analisados: peso do hectolitro (PH, peso de mil grãos (PMG, porcentagem de germinação, proteína total e farinografia, em delineamento experimental inteiramente casualizado, com quatro repetições, com exceção da farinografia, com duas repetições. As médias obtidas foram comparadas pelo teste de Scott Knott ao nível de 5% de probabilidade. As cultivares diferiram entre si quanto aos parâmetros testados, atenderam ao valor de PH para comercialização mas nem sempre o maior PH correspondeu ao maior PMG; apenas as cultivares CD 108 e 111 poderiam ser destinadas à fabricação de pão francês quanto ao parâmetro estabilidade. Em relação ao índice de tolerância à mistura, as cultivares e linhagens não diferiram entre si, porém, a farinha da linhagem 2017 atenderia aos valores estabelecidos para fabricação de pão francês e biscoitos fermentados. As cultivares CD 104, 108, 111 e as linhagens CD 2017 e CDFAPA 2036 apresentaram índices ideais também para biscoitos fermentados. Cultivares que apresentaram menor PMG forneceram melhor índice de tolerância à mistura. Não houve correspondência entre a porcentagem de proteína total e a farinografia.The physical, physiological and rheological characteristics of cultivars and lines of wheat CD (COODETEC 103, 104, 105, 107, 108, 109, 110, 111 and CD 2017 and CDFAPA 2036 lines and triticale (EMBRAPA 53, for quality of flour for bread making were studied. The weight of hectliter (HW, weight of thousand grains (WTG, percentage of germination, total protein and farinography, in a completely randomized experimental design, with four repetitions, except the farinography (with two repetitions were

  1. Quality of synthetic hexaploid wheat containing null alleles at Glu-A1 ...

    Indian Academy of Sciences (India)

    Quality tests showed that most quality parameters in two T. turgidum ssp. dicoccon parents were very low due to the lack of HMW-GSs. However, incorporation of HMW-GS from Ae. tauschii in six synthetic hexaploid wheat lines significantly increased most quality related parameters. The potential values of these wheat lines ...

  2. Desempenho per se e parâmetros genéticos de linhagens de trigo com expressão do caráter "stay‑green" Per se performance and genetic parameters of wheat lines expressing the "stay‑green" character

    Directory of Open Access Journals (Sweden)

    Henrique de Souza Luche

    2013-02-01

    Full Text Available O objetivo deste trabalho foi determinar o desempenho per se e os parâmetros genéticos de caracteres de interesse, em linhagens de trigo que expressam ou não o caráter "stay‑green". O experimento foi conduzido em 2003, 2004 e 2005, em delineamento experimental de blocos ao acaso, com três repetições. Foram avaliadas 32 linhagens irmãs de trigo, 15 com e 17 sem o caráter "stay‑green". As linhagens portadoras desse caráter apresentaram maior produtividade de grãos, maior número de grãos por espiga e menor massa de mil grãos. Além disso, as herdabilidades da produtividade e da massa de grãos foram maiores nessas linhagens, o que revelou menor influência de variações ambientais sobre a expressão desses caracteres. O caráter "stay‑green" contribui para o aumento da produtividade e da estabilidade produtiva do trigo.The objective of this work was to determine the per se performance and the genetic parameters of traits of interest in wheat inbred lines expressing or not the "stay‑green" character. The experiment was carried out in 2003, 2004, and 2005 in a randomized complete block design with three replicates. Thirty‑two sister‑lines of wheat, 15 with and 17 without the stay‑green character, were evaluated. The lines carrying this character showed higher grain yield, higher average number of kernels per ear, and lower weight of a thousand grains. Moreover, grain yield and grain mass heritabilities were higher in these lines, which reveled lower influence of environmental variation on the expression of these characters. The "stay‑green" character contributes to increase productivity and productive stability of wheat.

  3. Melhoramento do trigo: XVIII. Comportamento de linhagens em cinco regiões paulistas Wheat breeding. XVIII: evaluation on inbred lines for the State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1988-01-01

    Full Text Available Avaliaram-se vinte e duas linhagens e três cultivares de trigo em ensaios instalados em cinco regiões paulistas, em 1984-86, analisando-se os seguintes parâmetros: rendimento de grãos, altura de plantas, ciclo, em dias, da emergência ao florescimento e da emergência à maturação, porcentagem de plantas acamadas, comprimento da espiga, número de grãos por espiga e por espigueta, número de espiguetas por espiga, peso de cem grãos, resistência à ferrugem-do-colmo e da-folha em condições de campo e de casa de vegetação, resistência à helmintosporiose e ao oídio em condições de campo. Em laboratório, foram realizados estudos da tolerância ao alumínio, em soluções nutritivas. Em sequeiro, nos ensaios conduzidos em Capão Bonito e no Vale do Paranapanema (Maracaí e Cruzália, destacaram-se, quanto à produção de grãos, respectivamente, o cultivar BH-1146 e a linhagem 12. As linhagens 4, 9 e 13, em Campinas, e a 8, em Tatuí, evidenciaram alta produção de grãos em condição de irrigação por aspersão. Na média de nove experimentos, destacaram-se em produção de grãos, por ordem decrescente, o cultivar BH-1146 e as linhagens 13, 20 e 14. As linhagens 2, 7, 8, 17 e 18 e o 'Alondra-S-46' mostraram plantas significativamente mais baixas que o 'BH-1146' e 'IAC-5'. As linhagens 7 e 8 e o cultivar Alondra-S-46 mostraram resistência às seis raças e as linhagens 17 e 18 a cinco raças testadas do agente causal de ferrugem-do-colmo em estádio de plântula, em casa de vegetação. Em campo, no estádio de planta adulta, apresentaram menor área infectada por essa doença as linhagens 1, 2, 7, 8, 12 e 17 e o cultivar Alondra-S-46. Nas mesmas condições, as linhagens 1, 5, 8 e 18 exibiram menor área infectada por ferrugem-da-folha. As linhagens 11, 12, 13, 19, 20 e 21 e o cultivar BH-1146 mostraram tolerância à presença de 10mg/litro de Al3+ na solução nutritiva.Twenty two inbred lines from the wheat breeding

  4. Melhoramento do trigo: XVI. Comportamento de novas linhagens em diferentes regiões do Estado de São Paulo Wheat breeding: XVI. Evaluation of new inbred lines for the State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1987-01-01

    , IAC-167 e ISWYN-31 /82, as mais sensíveis.Twenty two inbred lines obtained at the Instituto Agronômico, from the wheat breeding program plus the cultivars BH-1146, IAC-18 and Alondra-S-46 were evaluated in field experiments carried out at Campinas Experimental Center, at Tietê and Capão Bonito Experimental Stations and at Santa Inês Farm, Maracaí, State of São Paulo, Brazil, during the years of 1983, 1984 and 1985. Grain yield, plant height, number of days from emergence to flowering and from emergence to maturation, percentage of lodging, head lenght, number of grain per spike and per spikelet, number of spikelets, weight of 100 grains, and resistance to the powdery mildew and to the stem and leaf rust agents, were evaluated under field conditions. Tests of resistance to stem and leaf and to aluminum tolerance were also made, respectively, in greenhouse and in laboratory. In relation to grain yield the lines IAC-103, IAC-104, IAC-107, IAC-167 and PAT-73121 showed good performance, but they did not differ from the control cultivars, BH-1146, IAC-18 and Alondra-S-46. The lines IAC-104, IAC-107, IAC-111, IAC-167, ISWYN-31/82 and Kenya Kifaru exhibited the semidwarf type when compared to the tall cultivars BH-1146 and IAC-18. In relation to the powdery mildew disease, the lines IAC-108 and ISWYN-31/82 showed high resistance under field conditions. The line IAC-167 and the cultivar Alondra-S-46 were resistant to eight races and IAC-103 and Kenya Kifaru were resistant to seven races of P. graminis tritici, causal agent of stem rust under greenhouse conditions. The lines IAC-104, IAC-108, IAC-110, IAC-111, IAC-167, ISWYN-31/82 and Kenya Kifaru showed high resistance to stem rust under natural conditions of plant infection. The line IAC-1 67 was resistant to three races of P. recondita at the seedling stage under greenhouse conditions. The lines IAC-100, IAC-101, IAC-111, IAC-167 and PAT-73121 presented good resistance to this disease under natural infection out in

  5. Saccharomyces cerevisiae aldolase mutants.

    OpenAIRE

    Lobo, Z

    1984-01-01

    Six mutants lacking the glycolytic enzyme fructose 1,6-bisphosphate aldolase have been isolated in the yeast Saccharomyces cerevisiae by inositol starvation. The mutants grown on gluconeogenic substrates, such as glycerol or alcohol, and show growth inhibition by glucose and related sugars. The mutations are recessive, segregate as one gene in crosses, and fall in a single complementation group. All of the mutants synthesize an antigen cross-reacting to the antibody raised against yeast aldol...

  6. Comportamento de linhagens diaplóides de trigo em dois locais do Estado de São Paulo Performance of wheat dihaploid lines at two locations of the State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    2003-01-01

    Full Text Available Compararam-se 20 genótipos (18 linhagens diaplóides e as cultivares IAC-24 e IAC-289 de trigo em experimentos instalados em condição de sequeiro e solo ácido de Capão Bonito (1997-1999, e em condição de irrigação por aspersão e solo ácido com aplicação de calcário de Tatuí (1997-2000. Analisaram-se produção de grãos, outros componentes da produção, características agronômicas e resistência às doenças. Estudou-se também a tolerância ao alumínio em soluções nutritivas, em laboratório. As linhagens diaplóides 10 e 11 e a cultivar IAC-24, em Capão Bonito, e a cultivar IAC-24 e a linhagem diaplóide 19, em Tatuí, destacaram-se quanto à produção de grãos. A linhagem diaplóide 5 foi resistente ao acamamento, a 20 apresentou porte baixo e ciclo precoce para maturar, e a cultivar IAC-289 exibiu maior número de espiguetas por espiga e grãos mais pesados. Todos os genótipos avaliados mostraram-se suscetíveis à mancha-da-folha. Em relação à ferrugem-da-folha, todas as linhagens foram resistentes, exceto a 20 que foi moderadamente resistente. A cultivar IAC-24 e todas as linhagens diaplóides avaliadas apresentaram-se tolerantes à toxicidade de alumínio. Os genótipos mais produtivos em solo ácido e em cultivo de sequeiro apresentaram-se associados às plantas altas, com espigas compridas, maior número de grãos por espiga e por espigueta e tolerância ao alumínio. Em solo ácido, com aplicação de calcário e condição de irrigação por aspersão, os genótipos mais produtivos estavam associados às plantas altas (porte semi-anão com os grãos pesados, não se correlacionando com a tolerância ao alumínio.Twenty wheat genotypes (18 dihaploid lines and the IAC-24 and IAC-289 cultivars were evaluated in experiments carried out under dryland and acid soil conditions in Capão Bonito (1997-99, and under sprinkler irrigation and acid soil conditions with lime application in Tatuí (1997-2000. Grain yield

  7. Melhoramento do trigo: XII. Comportamento de novas linhagens e cultivares no Estado de São Paulo Wheat breeding: XII. Evaluation of new inbred lines for the State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1985-01-01

    -18',foram tolerantes à presença de 10mg/litro de Al3+ na solução nutritiva.Twenty one inbred lines obtained at the Instituto Agronômico from the wheat breeding program plus the cultivars BH-1146, IAC-18, IAC-17, and Alondra-S-46 were evaluated in field experiments carried out at Campinas Experiment Center and Capão Bonito Experiment Station, during the years of 1982 and 1983, at Tietê Experiment Station, in 1982 and at Floresta Negra Farm, Maracaí, in 1983. Grain yield, plant height, number of days from emergence to flowering and from emergente to maturation, percentage of layed plants, head length, number of grain per spike and per spikelet, number of spikelets, weight of 100 grains, and resistance to stem and leaf rusts were evaluated under field conditions and tests of resistance to stem and leal rusts and to aluminum were also made, respectively, in greenhouse and in laboratory. Considering the trials planted under sprinkler irrigation, at Campinas, the lines IAC-60 and IAC-67 showed good performance regarding to grain yield. In Capão Bonito, represented by acid soils, the lnes IAC-66, IAC-60 and IAC-69 showed high grain yield. The lines IAC-64, IAC-68, IAC-71 and IAC-60 presented good productivity at Tietê Experiment Station and IAC-67, IAC-63 and IAC-64 were more adapted to high soil fertility showing the best grain yields at Maracaí. The lines IAC-52, IAC-53, IAC-54, IAC-55, IAC-56, IAC-57, IAC-58, IAC-60, IAC-64, IAC-65, IAC-67, IAC-71 and the cultivar Alondra-S-46 exhibited semi-dwarf type when compared to the tall cultivar BH-1146. In relation to stem rust, the lines IAC-62 and IAC-65 and the cultivar Alondra-S-46 showed very good resistance presenting at seedling stage, resistance to seven rates under both greenhouse and field conditions. The line IAC-64 was resistant to four and IAC-52 and IAC-55 to three races of leaf rust in the seedling stage under greenhouse condition. The lines IAC-51, IAC-56, IAC-61, IAC-62, IAC-63 and IAC-67 presented

  8. Complementation of a defect in the asparagine-linked glycosylation of a mouse FM3A mutant G258 cell line by spheroplast fusion of a human mega YAC clone 923f5.

    Science.gov (United States)

    Masuda, Takahisa; Moriya, Masayuki; Kataoka, Kensuke; Nishikawa, Yoshihisa

    2012-01-01

    Mouse G258 mutant stopped both cell growth and the synthesis of lipid-linked oligosaccharide at the Man(3)GlcNAc(2)-P-P-Dolichol at a restricted temperature with a single gene mutation. To clarify the lesion in the G258 mutant, we isolated human genomic DNA transformants of the G258 mutant, which recovered from both defects by way of cell hybridization with X-ray irradiated HeLa cells. We detected a common 1.3-kb product by inter-human specific sequence in the L1 (L1Hs) PCR in the transformants (Kataoka et al., Somat. Cell Mol. Genet., 24, 235-243 (1998)). In the present study, we screened a human mega yeast artificial chromosome (YAC) library by PCR with primers designed according to the 1.3-kb DNA, and selected YAC clone 923f5. Moreover, we found by spheroplast fusion that YAC clone 923f5 complemented both defects of the G258 mutant. Since the human counterpart of the yeast ALG11 gene is localized in the region, the G258 mutant might have a defect in the mouse ALG11 gene.

  9. Selection of mutants of capsicum annuum induced by gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. I.; Lee, Y. B. [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of); Lee, E. K. [Chungnam National Univ., Taejeon (Korea, Republic of)

    1998-06-01

    For induction and selection of mutations of Capsicum annuum L., dry seeds of pure lines No.1 and No.2 were irradiated with gamma ray of 150Gy, 200Gy and 250Gy. Various mutants were selected such as showing early maturity, short plant height, long fruit and chlorophyll mutations. Mutation frequency of No.1 line was 3.4% in the dose of 150Gy, while the frequency of No.2 line was 2.7% in the dose of 250Gy. For selection of resistant mutant to amino acid analog, the optimum concentration of 5-methyltryptophan (5-MT) and S-(2-aminoethyl)-L-cysteine were 25 ppm and 30 ppm, respectively. Four resistant mutant lines to 5-MT were selected among 400 mutant lines.

  10. Wheat for Kids! [and] Teacher's Guide.

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    "Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the…

  11. The wheat chloroplastic proteome.

    Science.gov (United States)

    Kamal, Abu Hena Mostafa; Cho, Kun; Choi, Jong-Soon; Bae, Kwang-Hee; Komatsu, Setsuko; Uozumi, Nobuyuki; Woo, Sun Hee

    2013-11-20

    With the availability of plant genome sequencing, analysis of plant proteins with mass spectrometry has become promising and admired. Determining the proteome of a cell is still a challenging assignment, which is convoluted by proteome dynamics and convolution. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. In this review, an overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. In recent years, we and other groups have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during vegetative stage. Those studies provide interesting results leading to better understanding of the photosynthesis and identifying the stress-responsive proteins. Indeed, recent studies aimed at resolving the photosynthesis pathway in wheat. Proteomic analysis combining two complementary approaches such as 2-DE and shotgun methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be focused. In this review we discussed the identification of the most abundant protein in wheat chloroplast and stress-responsive under salt and water stress in chloroplast of wheat seedlings, thus providing the proteomic view of the events during the development of this seedling under stress conditions. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. An overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. We have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during seedling stage. Those studies

  12. Epistatic determinism of durum wheat resistance to the wheat spindle streak mosaic virus.

    Science.gov (United States)

    Holtz, Yan; Bonnefoy, Michel; Viader, Véronique; Ardisson, Morgane; Rode, Nicolas O; Poux, Gérard; Roumet, Pierre; Marie-Jeanne, Véronique; Ranwez, Vincent; Santoni, Sylvain; Gouache, David; David, Jacques L

    2017-07-01

    The resistance of durum wheat to the Wheat spindle streak mosaic virus (WSSMV) is controlled by two main QTLs on chromosomes 7A and 7B, with a huge epistatic effect. Wheat spindle streak mosaic virus (WSSMV) is a major disease of durum wheat in Europe and North America. Breeding WSSMV-resistant cultivars is currently the only way to control the virus since no treatment is available. This paper reports studies of the inheritance of WSSMV resistance using two related durum wheat populations obtained by crossing two elite cultivars with a WSSMV-resistant emmer cultivar. In 2012 and 2015, 354 recombinant inbred lines (RIL) were phenotyped using visual notations, ELISA and qPCR and genotyped using locus targeted capture and sequencing. This allowed us to build a consensus genetic map of 8568 markers and identify three chromosomal regions involved in WSSMV resistance. Two major regions (located on chromosomes 7A and 7B) jointly explain, on the basis of epistatic interactions, up to 43% of the phenotypic variation. Flanking sequences of our genetic markers are provided to facilitate future marker-assisted selection of WSSMV-resistant cultivars.

  13. Variation in concentrations of high-molecular-weight glutenin subunits and macropolymers in wheat grains of a recombinant inbred lines population and in two contrasting eco-sites in China

    DEFF Research Database (Denmark)

    Li, Xiangnan; Cai, Jian; Liu, Fulai

    2012-01-01

    BACKGROUND: Concentrations of high-molecular-weight glutenin subunits andmacropolymers in wheat grains are important indicators of grain quality, which are genetically determined and affected by environmental factors. The 6 VS·6AL translocation chromosome segment is reported to own high powdery m...... wheat cultivars for high resistence to powdery mildew and yellow rust with less risk of undesirable effects on grain quality. c 2012 Society of Chemical Industry Supporting information may be found in the online version of this article.......BACKGROUND: Concentrations of high-molecular-weight glutenin subunits andmacropolymers in wheat grains are important indicators of grain quality, which are genetically determined and affected by environmental factors. The 6 VS·6AL translocation chromosome segment is reported to own high powdery...... mildew and yellow rust resistance genes of Pm21 and Yr26. This study investigated the variation in concentrations of high-molecular-weight glutenin subunits (HMW-GS) and gluteninmacropolymer (GMP) in response to the 6 VS·6AL translocation segment and the two contrasting sites. RESULTS: Large variations...

  14. Behavioural responses of wheat stem sawflies to wheat volatiles

    Science.gov (United States)

    D. Piesik; D. K. Weaver; J. B. Runyon; M. Buteler; G. E. Peck; W. L. Morrill

    2008-01-01

    1) Adult wheat stem sawflies Cephus cinctus, pests of cultivated cereals that also infests wild grasses, migrate into wheat fields where they oviposit in elongating, succulent stems. 2) Volatiles released by wheat plants at susceptible stages were analyzed to determine potential semiochemical compounds. Seven major compounds were identified and...

  15. EFFECT OF PLANTITNG PATTERN OF WINTER WHEAT ON AGRODIVERSITY

    Directory of Open Access Journals (Sweden)

    Моskalets Т. Z.

    2015-08-01

    Full Text Available We studied the introductions of cultivars and lines of wheat soft winter wheat that are adaptive to specific physical and climatic conditions ecotopes regards forest-steppe and Polissia ecotypes by ecological and biological characteristics. We also determined their influence on formation of the diversity and productivity of agricultural ecosystems. It was established that mosaic planting pattern of winter wheat allows to get a high yield (up to 9 t/ha and of strong and superstrong wheat (Ariivka, L 4696/96, KC-5, KC-7, KC-14, KC-22, Yuvivata 60, etc. in comparison to monocultivar technology. Some genotypes, namely Yuvivata 60, Ariiivka KC-22, KC-7 have moderate and high resistance towards complex diseases. The mosaic planting pattern of cultivars is the important factor of increasing the diversity and strengthening the links in agricultural ecosystems. Based on the long-term ecological research of genetic forms of winter soft wheat in different ecotopes and comparing them by major agronomic features with cultivar-standards we selected some promising cultivars and lines. We suggested the semi dwarf, medium-grown productive, and high adaptive genotypes of wheat soft winter, like Prydesnianska, Ariiivka, Nosshpa 100, КС-5, КС-7, КС-14, КС-21, КС-22, Yuvivata 60, Zoriana Nosivska, КС-16, КС-17, Л9646/96.

  16. Detection of wheat stem rust race RRTTF in Ecuador in 2016

    Science.gov (United States)

    Wheat stem rust is a devastating disease that has incited numerous severe epidemics resulting in extreme yield losses over the past century. Stem rust infection in plots of wheat line UC11075, known to carry the Sr38 resistance gene, was severe in February 2016 in a nursery at the Instituto Nacional...

  17. Effect of soil water stress on yield and proline content of four wheat ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-04

    Jan 4, 2010 ... This field study was conducted to evaluate the effect of drought stress after anthesis on proline accumulation and wheat yield during 2008 at Moghan region. Four lines of bread wheat (N-82-9, N-83-5,. N-84-12 and N-85-20) were evaluated into contrasting water regimes (well-watered and drought stressed.

  18. Effect of soil water stress on yield and proline content of four wheat ...

    African Journals Online (AJOL)

    This field study was conducted to evaluate the effect of drought stress after anthesis on proline accumulation and wheat yield during 2008 at Moghan region. Four lines of bread wheat (N-82-9, N-83-5, N-84-12 and N-85-20) were evaluated into contrasting water regimes (well-watered and drought stressed after anthesis).

  19. Identification of leaf rust resistant gene Lr10 in Pakistani wheat ...

    African Journals Online (AJOL)

    Leaf (brown) rust is the major disease of wheat in Pakistan and other countries. The disease is more effectively controlled when several rust resistance genes are pyramided into a single line. Molecular survey was conducted to screen 25 Pakistan wheat germplasm for the presence of leaf rust resistance gene Lr10 using ...

  20. Mutant Resources for the Functional Analysis of the Rice Genome

    National Research Council Canada - National Science Library

    Nili Wang Tuan Long Wen Yao Lizhong Xiong Qifa Zhang Changyin Wu

    2013-01-01

    .... In order to systematically assign functions to all predicted genes in the rice genome, a large number of rice mutant lines, including those created by T-DNA insertion, Ds/dSpm tagging, Tos17 tagging...

  1. Distribution of soluble amino acids in maize endosperm mutants

    Directory of Open Access Journals (Sweden)

    Toro Alejandro Alberto

    2003-01-01

    Full Text Available For human nutrition the main source of vegetable proteins are cereal and legume seeds. The content of total soluble amino acids in mature endosperm of wild-type, opaque and floury maize (Zea mays L. mutants were determined by HPLC. The total absolute concentration of soluble amino acids among the mutants varied depending on the mutant. The o11 and o13 mutants exhibited the highest average content, whereas o10, fl3 and fl1 exhibited the lowest average content. In general, the mutants exhibited similar concentrations of total soluble amino acids when compared to the wild-type lines, with the clear exception of mutants o11 and fl1, with the o11 mutant exhibiting a higher concentration of total soluble amino acids when compared to its wild-type counterpart W22 and the fl1 mutant a lower concentration when compared to its wild-type counterpart Oh43. For methionine, the mutants o2 and o11 and wild-type Oh43 exhibited the highest concentrations of this amino acid. Significant differences were not observed between mutants for other amino acids such as lysine and threonine. The high lysine concentrations obtained originally for these mutants may be due to the amino acids incorporated into storage proteins, but not those present in the soluble form.

  2. Thinopyrum ponticum Chromatin-Integrated Wheat Genome Shows Salt-Tolerance at Germination Stage

    OpenAIRE

    Wen-Ye Yuan; Motonori Tomita

    2015-01-01

    A wild wheatgrass, Thinopyrum ponticum (2n = 10x = 70), which exhibits substantially higher levels of salt tolerance than cultivated wheat, was employed to transfer its salt tolerance to common wheat by means of wide hybridization. A highly salt-tolerant wheat line S148 (2n = 42) was obtained from the BC3F2 progenies between Triticum aestivum (2n = 42) and Th. ponticum. In the cross of S148 × salt-sensitive wheat variety Chinese Spring, the BC4F2 seeds at germination stage segregated into a ...

  3. Genome-wide characterization of JASMONATE-ZIM DOMAIN transcription repressors in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Wang, Yukun; Qiao, Linyi; Bai, Jianfang; Wang, Peng; Duan, Wenjing; Yuan, Shaohua; Yuan, Guoliang; Zhang, Fengting; Zhang, Liping; Zhao, Changping

    2017-02-13

    The JASMONATE-ZIM DOMAIN (JAZ) repressor family proteins are jasmonate co-receptors and transcriptional repressor in jasmonic acid (JA) signaling pathway, and they play important roles in regulating the growth and development of plants. Recently, more and more researches on JAZ gene family are reported in many plants. Although the genome sequencing of common wheat (Triticum aestivum L.) and its relatives is complete, our knowledge about this gene family remains vacant. Fourteen JAZ genes were identified in the wheat genome. Structural analysis revealed that the TaJAZ proteins in wheat were as conserved as those in other plants, but had structural characteristics. By phylogenetic analysis, all JAZ proteins from wheat and other plants were clustered into 11 sub-groups (G1-G11), and TaJAZ proteins shared a high degree of similarity with some JAZ proteins from Aegliops tauschii, Brachypodium distachyon and Oryza sativa. The Ka/Ks ratios of TaJAZ genes ranged from 0.0016 to 0.6973, suggesting that the TaJAZ family had undergone purifying selection in wheat. Gene expression patterns obtained by quantitative real-time PCR (qRT-PCR) revealed differential temporal and spatial regulation of TaJAZ genes under multifarious abiotic stress treatments of high salinity, drought, cold and phytohormone. Among these, TaJAZ7, 8 and 12 were specifically expressed in the anther tissues of the thermosensitive genic male sterile (TGMS) wheat line BS366 and normal control wheat line Jing411. Compared with the gene expression patterns in the normal wheat line Jing411, TaJAZ7, 8 and 12 had different expression patterns in abnormally dehiscent anthers of BS366 at the heading stage 6, suggesting that specific up- or down-regulation of these genes might be associated with the abnormal anther dehiscence in TGMS wheat line. This study analyzed the size and composition of the JAZ gene family in wheat, and investigated stress responsive and differential tissue-specific expression profiles of each

  4. Melhoramento do trigo: XXIX. Avaliação de linhagens da espécie Triticum durum L. no estado de São Paulo Wheat breeding: XXIX. Evaluation of Triticum durum L. inbred lines for the state of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1995-01-01

    Full Text Available Compararam-se 23 linhagens de trigo duro (Triticum durum L. e dois cultivares de trigo (T. aestivum L., em 16 ensaios, tanto em condição de irrigação por aspersão como de sequeiro, analisando-se a produção de grãos, componentes da produção e resistência às doenças. As linhagens de trigo duro L3 (Gallareta "S", L4 (Yavaros "S", L12 [CI 14955 x (Yavaros "S" x Gediz] x Tropic Bird e L19 {{[(61150 x Leeds x Gallo "S"] x Garza "S"} x Mexicali "S"} x S15, resistentes às ferrugens-do-colmo e da-folha, suscetíveis ao oídio e à mancha foliar, de porte baixo (com exceção da L12, de ciclo precoce, destacaram-se quanto à produção de grãos, em solos com baixa acidez, não diferindo dos cultivares de trigo IAC-60 e IAC-24, os mais cultivados atualmente no Estado de São Paulo. A linhagem de trigo duro L22 (Sacaba-81 apresentou-se, ao mesmo tempo, imune ao agente causal das ferrugens-do-colmo e da-folha e moderadamente resistente ao de oídio. Todos os genótipos estudados foram suscetíveis ao agente causal das manchas foliares. A linhagem de trigo duro L3 mostrou ser fonte genética para grande número de grãos por espiga e por espigueta; os cultivares de trigo IAC-60 e IAC-24 possuem genes para maior comprimento da espiga e número de espiguetas por espiga; as linhagens de trigo duro L14 (Gediz "S" x Cocorit-71 e L19 têm genes para grãos mais pesados.Twenty-three durum wheat (Triticum durum L. inbred lines and two bread wheat (T. aestivum L. cultivars were evaluated in sixteen trials carried out under sprinkler irrigation and in upland conditions, taking into account the grain yield, yield components and disease resistance. The durum wheat lines L3 (Gallareta"S", L4 (Yavaros "S", L12 [CI 14955 x (Yavaros "S" x Gediz "S"] x Tropic Bird and L19 {{[61150 x Leeds x Gallo "S"}x Garza "S"} x Mexicali "S"} x S15 presented resistance to stem and leaf rusts, susceptibility to powdery mildew and leaf spot, short stature (with exception of

  5. Combining ability and heterosis effect in hexaploid wheat group

    Directory of Open Access Journals (Sweden)

    Titan Primož

    2012-01-01

    Full Text Available The main goal of hybrid wheat breeding is the identification of parents with high specific combining ability for grain yield and other agronomic traits. This kind of data facilitate the development of hybrid combinations with high level of heterosis in first filial generation (F1 generation. The use of species from the hexaploid wheat group (e.g. Triticum spelta L. Triticum compactum HOST... is representing an opportunity for the increase of heterosis level in the germplasm of common wheat (Triticum aestivum L.. The study of combining ability and heterosis effect in hexaploid wheat group was carried out using crosses between thirteen inbred lines of common wheat (6 lines x 7 testers and inter-species crosses (T. aestivum L. × T. spelta L., T. aestivum L. × T. compactum HOST, T. aestivum L. × T. sphaerococcum PERCIV., T. aestivum L. × T. macha DEKAPR. et MENABDE, T. aestivum L. × T. petropavlovskyi UDACZ. et MIGUSCH, T. aestivum L. × T. vavilovii (THUM. JAKUBZ.. The 42 common wheat F1 hybrids were tested during two seasons (2010/11 and 2011/12 on the Selection center Ptuj. The experiment was carried out in a randomized block design with four replications. The 43 interspecies F1 hybrids were tested on the same location in the season 2011/12 and the experiment was designed as an randomized block with three replications. The results were analyzed using statistical package AGROBASE generation II and STATGRAPHICS Centurion XVI. The analysis of variance was significant for both, GCA and SCA variances (P < 0,01. Generally, SCA variances were lower than GCA variances. We could state, that the improvement of heterosis level in the common wheat germplasm through the use of relatives with the same genome (genome BAD is possible. As an example we can point out the interspecies F1 hybrid between common wheat variety Garcia and an accession of the Triticum sphaerococcum PERCIV. species (accession number 01C0201227.

  6. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    Science.gov (United States)

    Leach, Lindsey J; Belfield, Eric J; Jiang, Caifu; Brown, Carly; Mithani, Aziz; Harberd, Nicholas P

    2014-04-11

    Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  7. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    KAUST Repository

    Leach, Lindsey J

    2014-04-11

    BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution \\'nullisomic-tetrasomic\\' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  8. Competitive Expression of Endogenous Wheat CENH3 May Lead to Suppression of Alien ZmCENH3 in Transgenic Wheat × Maize Hybrids.

    Science.gov (United States)

    Chen, Wei; Zhu, Qilin; Wang, Haiyan; Xiao, Jin; Xing, Liping; Chen, Peidu; Jin, Weiwei; Wang, Xiu-E

    2015-11-20

    Uniparental chromosome elimination in wheat × maize hybrid embryos is widely used in double haploid production of wheat. Several explanations have been proposed for this phenomenon, one of which is that the lack of cross-species CENH3 incorporation may act as a barrier to interspecies hybridization. However, it is unknown if this mechanism applies universally. To study the role of CENH3 in maize chromosome elimination of wheat × maize hybrid embryos, maize ZmCENH3 and wheat αTaCENH3-B driven by the constitutive CaMV35S promoter were transformed into wheat variety Yangmai 158. Five transgenic lines for ZmCENH3 and six transgenic lines for αTaCENH3-B were identified. RT-PCR analysis showed that the transgene could be transcribed at a low level in all ZmCENH3 transgenic lines, whereas transcription of endogenous wheat CENH3 was significantly up-regulated. Interestingly, the expression levels of both wheat CENH3 and ZmCENH3 in the ZmCENH3 transgenic wheat × maize hybrid embryos were higher than those in the non-transformed Yangmai 158 × maize hybrid embryos. This indicates that the alien ZmCENH3 in wheat may induce competitive expression of endogenous wheat CENH3, leading to suppression of ZmCENH3 over-expression. Eliminations of maize chromosomes in hybrid embryos of ZmCENH3 transgenic wheat × maize and Yangmai 158 × maize were compared by observations on micronuclei presence, by marker analysis using maize SSRs (simple sequence repeats), and by FISH (fluorescence in situ hybridization) using 45S rDNA as a probe. The results indicate that maize chromosome elimination events in the two crosses are not significantly different. Fusion protein ZmCENH3-YFP could not be detected in ZmCENH3 transgenic wheat by either Western blotting or immnunostaining, whereas accumulation and loading of the αTaCENH3-B-GFP fusion protein was normal in αTaCENH3-B transgenic lines. As ZmCENH3-YFP did not accumulate after AM114 treatment, we speculate that low levels of Zm

  9. Wheat allergy: diagnosis and management

    Directory of Open Access Journals (Sweden)

    Cianferoni A

    2016-01-01

    Full Text Available Antonella Cianferoni Department of Pediatrics, Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, PA, USA Abstract: Triticum aestivum (bread wheat is the most widely grown crop worldwide. In genetically predisposed individuals, wheat can cause specific immune responses. A food allergy to wheat is characterized by T helper type 2 activation which can result in immunoglobulin E (IgE and non-IgE mediated reactions. IgE mediated reactions are immediate, are characterized by the presence of wheat-specific IgE antibodies, and can be life-threatening. Non-IgE mediated reactions are characterized by chronic eosinophilic and lymphocytic infiltration of the gastrointestinal tract. IgE mediated responses to wheat can be related to wheat ingestion (food allergy or wheat inhalation (respiratory allergy. A food allergy to wheat is more common in children and can be associated with a severe reaction such as anaphylaxis and wheat-dependent, exercise-induced anaphylaxis. An inhalation induced IgE mediated wheat allergy can cause baker’s asthma or rhinitis, which are common occupational diseases in workers who have significant repetitive exposure to wheat flour, such as bakers. Non-IgE mediated food allergy reactions to wheat are mainly eosinophilic esophagitis (EoE or eosinophilic gastritis (EG, which are both characterized by chronic eosinophilic inflammation. EG is a systemic disease, and is associated with severe inflammation that requires oral steroids to resolve. EoE is a less severe disease, which can lead to complications in feeding intolerance and fibrosis. In both EoE and EG, wheat allergy diagnosis is based on both an elimination diet preceded by a tissue biopsy obtained by esophagogastroduodenoscopy in order to show the effectiveness of the diet. Diagnosis of IgE mediated wheat allergy is based on the medical history, the detection of specific IgE to wheat, and oral food challenges. Currently, the main treatment of a

  10. Screening for spontaneous virulent mutants of erysiphe-graminis-f-sp-hordei on barley hordeum-vulgare lines with resistance genes ml-a-1 ml-a-6 ml-a-12 and ml-g

    DEFF Research Database (Denmark)

    Torp, J.; Jensen, Hans Peter

    1985-01-01

    Seedlings of 4 barley lines with powdery mildew resistance genes Ml-al, Ml-a6, Mla12 or Ml-g were inoculated with powdery mildew culture CR3 which is avirulent to the 4 host lines. Inoculation density was 1.2 infectious conidia/mm2, and in total 50 million conidia were screened for the occurrence...

  11. Hirschsprung disease is associated with an L286P mutation in the fifth transmembrane domain of the endothelin-B receptor in the N-ethyl-N-nitrosourea-induced mutant line.

    Science.gov (United States)

    Chen, Bing; Ouyang, Hui-Ling; Wang, Wen-Hua; Yin, Yi-Heng; Yan, Lin-Na; Yang, Bin; Xue, Zheng-Feng

    2016-07-29

    Hirschsprung disease (HSCR), or colonic aganglionosis, is a congenital disorder characterized by the absence of intramural ganglia along variable lengths of the colon, resulting in intestinal obstruction. It is the most common cause of congenital intestinal obstruction, with an incidence of 1 in 5,000 live births. N-ethyl-N-nitrosourea (ENU)-induced mutagenesis is a powerful tool for the study of gene function and the generation of human disease models. In the current study, a novel mutant mouse with aganglionic megacolon and coat color spotting was generated by ENU-induced mutagenesis. Histological and acetylcholinesterase (AChE) whole-mount staining analysis showed a lack of ganglion cells in the colon in mutant mice. The mutation was mapped to chromosome 14 between markers rs30928624 and D14Mit205 (Chr 14 positions 103723921 bp and 105054651 bp). The Ednrb (Chr 14 position 103814625-103844173 bp) was identified as a potential candidate gene in this location. Mutation analysis revealed a T>C missense mutation at nucleotide 857 of the cDNA encoding endothelin receptor B (EDNRB) in which a proline was substituted for the highly conserved Lys-286 residue (L286P) in the fifth transmembrane (TM V) domain of this G protein-coupled receptor. The mutant mouse was named Ednrb(m1yzcm) (Ednrb; mutation 1, Yangzhou University Comparative Medicine Center). The results of the present study implicate the structural importance of the TM V domain in Ednrb function, and the Ednrb(m1yzcm) mouse represents a valuable model for the study of HSCR in humans.

  12. Molecular cytogenetic characterization and stem rust resistance of five wheat-Thinopyrum ponticum partial amphiploids.

    Science.gov (United States)

    Zheng, Qi; Lv, Zhenling; Niu, Zhixia; Li, Bin; Li, Hongwei; Xu, Steven S; Han, Fangpu; Li, Zhensheng

    2014-11-20

    Partial amphiploids created by crossing common wheat (Triticum aestivum L.) and Thinopyrum ponticum (Podp.) Barkworth & D. R. Dewey are important intermediates in wheat breeding because of their resistance to major wheat diseases. In this study, we examined the chromosome compositions of five Xiaoyan-series wheat-Th. ponticum partial amphiploids (Xiaoyan 68, Xiaoyan 693, Xiaoyan 784, Xiaoyan 7430, and Xiaoyan 7631) using GISH, multicolor-GISH, and multicolor-FISH. We found several chromosome changes in these lines. For example, wheat chromosomes 1B and 2B were added in Xiaoyan 68 and Xiaoyan 7430, respectively, while wheat chromosome 6B was eliminated from Xiaoyan 693 and Xiaoyan 7631. Chromosome rearrangements were also detected in these amphiploids, including an interspecific translocation involving chromosome 4D and some intergenomic translocations, such as A-B and A-D translocations, among wheat genomes. Analysis of the Th. ponticum chromosomes in the amphiploids showed that some lines shared the same alien chromosomes. We also evaluated these partial amphiploids for resistance to nine races of stem rust, including TTKSK (commonly known as Ug99). Three lines, Xiaoyan 68, Xiaoyan 784, and Xiaoyan 7430, exhibited excellent resistance to all nine races, and could therefore be valuable sources of stem rust resistance in wheat breeding. Copyright © 2014 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  13. Wheat 2003 outdoor

    NARCIS (Netherlands)

    Evers, J.B.; Vos, J.; Fournier, C.; Andrieu, B.; Struik, P.C.

    2013-01-01

    This dataset containts the underlying data for the study: Evers JB, Vos J, Fournier C, Andrieu B, Chelle M, Struik PC. 2005. Towards a generic architectural model of tillering in Gramineae, as exemplified by spring wheat (Triticum aestivum). New Phytologist, 166: 801-812,

  14. Durum wheat modeling

    DEFF Research Database (Denmark)

    Toscano, P.; Ranieri, R.; Matese, A.

    2012-01-01

    growth and yield of durum wheat in the major Italian supply basins (Basilicata, Capitanata, Marche, Tuscany). The model was validated and evaluated for three years (1995–1997) at 11 experimental fields and then used in operational mode for eleven years (1999–2009), showing an excellent/good accuracy...

  15. Wheat 2012 outdoor

    NARCIS (Netherlands)

    Brufau Segues, Eduard; Vos, J.; Evers, J.B.; Anten, Niels

    2013-01-01

    This dataset contains the underlying data for the MSc thesis: Effects of population density on tillering in wheat and barley. Tillering is the formation of lateral shoots from the base of the stem which is produced specially in grasses and cereals. It is an important property in crops (cereals and

  16. BRS 277: Wheat cultivar

    Directory of Open Access Journals (Sweden)

    Eduardo Caierão

    2009-01-01

    Full Text Available The wheat cultivar ‘BRS 277’ was developed by Embrapa (Empresa Brasileira de Pesquisa Agropecuária,resulting from a cross between OR1 and Coker 97-33. The plant height of ‘BRS 277’ is short, frost resistance in the vegetativestage is good and resistance to leaf rust moderate.

  17. Registration of 'Tiger' wheat

    Science.gov (United States)

    ‘Tiger’ hard white winter wheat (Triticum aestivum L.) was developed at Research Center-Hays, Kansas State University and released by Kansas Agricultural Experiment Station in 2010. Tiger was selected from a three-way cross KS98H245/’Trego’//KS98HW518 made in 1999 at Hays, KS. The objective of this ...

  18. 21 CFR 184.1322 - Wheat gluten.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is obtained...

  19. A proteomic approach to study protein variation in GM durum wheat in relation to technological properties of semolina.

    Science.gov (United States)

    Di Luccia, Aldo; Lamacchia, Carmela; Fares, Clara; Padalino, Lucia; Mamone, Gianfranco; La Gatta, Barbara; Gambacorta, Giuseppe; Faccia, Michele; Di Fonzo, Natale; La Notte, Ennio

    2005-06-01

    Genetic manipulation of durum wheats by tobacco rab-1 genes influence the trafficking of gluten proteins through the secretory system by up- or down-regulating the transport step from the ER to the Golgi apparatus which may in turn modify functional performance of the grain. Gluten proteins were extracted from two genetically manipulated lines - Svevo B730 1-1 and Ofanto B688 1-2 - and their control lines and were analyzed by two dimensional gel electrophoresis. When the two-dimensional maps were compared by image analysis no significant differences between the GM line with an up-regulated trafficking containing the wild type tobacco rab1 (Svevo B730 1-1) and its control (Svevo control). By contrast, significant differences were found between the GM line with a down-regulated trafficking due to the tobacco rab1 mutant form (Ofanto B688 1-2) and its control (Ofanto control). Of the new protein spots detected in the down-regulated Ofanto B688 1-2 map, only a beta-amylase was identified. The remaining spots were susceptible to chymotripsin action but not to trypsin one, as in the case of the gluten protein. Rheological measurements showed that gluten quality was enhanced in the down-regulated Ofanto B688 1-2 without an increase in the amount of gluten. Proteomics is a useful and powerful tool for investigating protein changes in GMOs and in understanding events in food science and technology.

  20. Isolation, characterization, and expression analyses of tryptophan aminotransferase genes in a maize dek18 mutant

    Science.gov (United States)

    The dek18 mutant of maize has decreased auxin content in kernels. Molecular and functional characterization of this mutant line offers the possibility to better understand auxin biology in maize seed development. Seeds of the dek18 mutants are smaller compared to wild type seeds and the vegetative d...

  1. Wheat allergy: diagnosis and management

    Science.gov (United States)

    Cianferoni, Antonella

    2016-01-01

    Triticum aestivum (bread wheat) is the most widely grown crop worldwide. In genetically predisposed individuals, wheat can cause specific immune responses. A food allergy to wheat is characterized by T helper type 2 activation which can result in immunoglobulin E (IgE) and non-IgE mediated reactions. IgE mediated reactions are immediate, are characterized by the presence of wheat-specific IgE antibodies, and can be life-threatening. Non-IgE mediated reactions are characterized by chronic eosinophilic and lymphocytic infiltration of the gastrointestinal tract. IgE mediated responses to wheat can be related to wheat ingestion (food allergy) or wheat inhalation (respiratory allergy). A food allergy to wheat is more common in children and can be associated with a severe reaction such as anaphylaxis and wheat-dependent, exercise-induced anaphylaxis. An inhalation induced IgE mediated wheat allergy can cause baker’s asthma or rhinitis, which are common occupational diseases in workers who have significant repetitive exposure to wheat flour, such as bakers. Non-IgE mediated food allergy reactions to wheat are mainly eosinophilic esophagitis (EoE) or eosinophilic gastritis (EG), which are both characterized by chronic eosinophilic inflammation. EG is a systemic disease, and is associated with severe inflammation that requires oral steroids to resolve. EoE is a less severe disease, which can lead to complications in feeding intolerance and fibrosis. In both EoE and EG, wheat allergy diagnosis is based on both an elimination diet preceded by a tissue biopsy obtained by esophagogastroduodenoscopy in order to show the effectiveness of the diet. Diagnosis of IgE mediated wheat allergy is based on the medical history, the detection of specific IgE to wheat, and oral food challenges. Currently, the main treatment of a wheat allergy is based on avoidance of wheat altogether. However, in the near future immunotherapy may represent a valid way to treat IgE mediated reactions to

  2. Wheat allergy: diagnosis and management.

    Science.gov (United States)

    Cianferoni, Antonella

    2016-01-01

    Triticum aestivum (bread wheat) is the most widely grown crop worldwide. In genetically predisposed individuals, wheat can cause specific immune responses. A food allergy to wheat is characterized by T helper type 2 activation which can result in immunoglobulin E (IgE) and non-IgE mediated reactions. IgE mediated reactions are immediate, are characterized by the presence of wheat-specific IgE antibodies, and can be life-threatening. Non-IgE mediated reactions are characterized by chronic eosinophilic and lymphocytic infiltration of the gastrointestinal tract. IgE mediated responses to wheat can be related to wheat ingestion (food allergy) or wheat inhalation (respiratory allergy). A food allergy to wheat is more common in children and can be associated with a severe reaction such as anaphylaxis and wheat-dependent, exercise-induced anaphylaxis. An inhalation induced IgE mediated wheat allergy can cause baker's asthma or rhinitis, which are common occupational diseases in workers who have significant repetitive exposure to wheat flour, such as bakers. Non-IgE mediated food allergy reactions to wheat are mainly eosinophilic esophagitis (EoE) or eosinophilic gastritis (EG), which are both characterized by chronic eosinophilic inflammation. EG is a systemic disease, and is associated with severe inflammation that requires oral steroids to resolve. EoE is a less severe disease, which can lead to complications in feeding intolerance and fibrosis. In both EoE and EG, wheat allergy diagnosis is based on both an elimination diet preceded by a tissue biopsy obtained by esophagogastroduodenoscopy in order to show the effectiveness of the diet. Diagnosis of IgE mediated wheat allergy is based on the medical history, the detection of specific IgE to wheat, and oral food challenges. Currently, the main treatment of a wheat allergy is based on avoidance of wheat altogether. However, in the near future immunotherapy may represent a valid way to treat IgE mediated reactions to

  3. A TRIM insertion in the promoter of Ms2 causes male sterility in wheat

    Science.gov (United States)

    The male sterile ms2 mutant has been known for 40 years and has become extremely important in the commercial production of wheat. However, the gene responsible for this phenotype has remained unknown. We here report the map-based-cloning of the Ms2 gene. The Ms2 locus is remarkable in several ways ...

  4. Morphological mutants of garlic

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, A.D.; Dnyansagar, V.R. (Nagpur Univ. (India). Dept. of Botany)

    1982-01-01

    Cloves of garlic (Allium sativuum Linn.) were exposed to gamma rays with various doses and different concentrations of ethylmethane sulphonate (EMS), diethyl sulphate (dES) and ethylene imine (EI). In the second and third generations, 16 types of morphological mutants were recorded with varied frequencies. Of all the mutagens used, gamma rays were found to be the most effective in inducing the maximum number of mutations followed EI, EMS and dES in that order.

  5. Screening of Wheat Genotypes for Boron Efficiency in Bangladesh

    Science.gov (United States)

    A number of Bangladeshi wheat genotypes (varieties and advanced lines) have been tested for boron efficiency through sand culture experiments over two years (2007-08 & 2008-09) against two Thai check varieties ‘Fang 60’ (boron efficient) and ‘SW41’ (boron inefficient). Performances of the genotypes ...

  6. Allelic variation of HMW glutenin subunits of Ethiopian bread wheat ...

    African Journals Online (AJOL)

    High molecular weight glutenins are often effective in identifying wheat (Triticum aestivum) genotypes with good baking quality. The high molecular weight glutenin subunit composition of Ethiopian cultivars and advanced lines was investigated to determine their influence on quality. Three alleles at Glu-A1, five at Glu-B1 ...

  7. Accelerating resistance breeding in wheat by integrating marker ...

    African Journals Online (AJOL)

    Genetic resistance is the simplest and most cost-effective way to guard against disease in plants. The pyramiding of resistance genes is a useful practice in bringing about durable resistance. This study aimed to develop a series of doubled haploid (DH) wheat lines containing combinations of wild species genes for rust ...

  8. Assessment of genetic diversity among wheat somaclonal variants ...

    African Journals Online (AJOL)

    use

    2011-10-26

    Oct 26, 2011 ... variant lines obtained through in vitro selection for yellow rust disease among cells under different levels of p-fluorophenylalanine. (PFP) (Abouzied, 2004) as well as two check varieties (Sakha-94 and Giza-168) were used to establish the experimental materials for this investigation. All wheat varieties ...

  9. Optimization of the Protein Nutritive Value of Wheat/Cassava ...

    African Journals Online (AJOL)

    This study was carried out in line with the National policy on bread to incorporate 10% cassava flour into wheat flour for all bread baked in Nigeria. The objective of this study was to investigate if the addition of 10% cassava flour or more could be accommodated without compromising the nutritive value of bread. The effect of ...

  10. Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4.

    Science.gov (United States)

    Lee, Tong Geon; Lee, Yong Jin; Kim, Dae Yeon; Seo, Yong Weon

    2010-12-01

    Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35 Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.

  11. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    climate, wheat is sensitive to heat stress. We need to understand how our crops will perform in these changing climatic conditions and how we can develop varieties, which are more tolerant. The PhD study focussed on understanding heat tolerance in wheat with a combined approach of plant physiology...... and quantitative genetics in particular, plant phenotyping based quantitative trait loci (QTL) discovery for a physiological trait under heat stress. Chlorophyll a fluorescence trait, Fv/Fm was used as a phenotyping tool, as it reflects the effect of heat stress on maximum photochemical efficiency of photosystem...... among cultivars due to heat stress as the GD of most of them remained similar in control and stress. The second study investigated if it was possible to use detached leaves to screen for heat tolerance instead of intact plants. The previously selected 41 cultivars, known to differ in v/Fm, were used...

  12. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    genetic determination (GD). An initial mass screening of 1,274 wheat cultivars (diverse origin) showed a GD of 8.5%. A stronger heat treatment was given in the second screening with 138 selected cultivars resulting in larger differentiation of cultivars (GD 15.4%). The GD further increased to 27....../Fm and dry matter accumulation during heat stress is a step forward to document that phenotypic differences measured by phenomic approaches can be translated into overall plant performance under heat stress. The fourth study focussed on associating phenotypic variations identified by Fv/Fm to genetic......As a consequence of global climate change, heat stress together with other abiotic stresses will remain an important determinant of future food security. Wheat (Triticum aestivum L.) is the third most important crop of the world feeding one third of the world population. Being a crop of temperate...

  13. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum).

    Science.gov (United States)

    Allen, Alexandra M; Winfield, Mark O; Burridge, Amanda J; Downie, Rowena C; Benbow, Harriet R; Barker, Gary L A; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; Griffiths, Simon; Bentley, Alison R; Alda, Mark; Jack, Peter; Phillips, Andrew L; Edwards, Keith J

    2017-03-01

    Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology

    OpenAIRE

    Lopes, Marta S.; Reynolds, Matthew P.

    2012-01-01

    The green area displayed by a crop is a good indicator of its photosynthetic capacity, while chlorophyll retention or ‘stay-green’ is regarded as a key indicator of stress adaptation. Remote-sensing methods were tested to estimate these parameters in diverse wheat genotypes under different growing conditions. Two wheat populations (a diverse set of 294 advanced lines and a recombinant inbred line population of 169 sister lines derived from the cross between Seri and Babax) were grown in Mexic...

  15. NS Pudarka: A new winter wheat cultivar

    Directory of Open Access Journals (Sweden)

    Hristov Nikola

    2014-01-01

    Full Text Available The high-yielding, medium late winter wheat cultivar NS Pudarka was developed by crossing genetic divergent parents: line NMNH-07 and cv. NS 40S and Simonida. In cultivar NS Pudarka genes responsible for high yield potential, very good technological quality, resistance to lodging, low temperature and diseases, were successfully combined. It was registered by Ministry of agriculture, forestry and water management of Serbia Republic in 2013. This cultivar has wide adaptability and stability of yield that enable growing in different environments with optimal agricultural practice. On the base of technological quality this cultivar belongs to the second quality class, A2 farinograph subgroup and second technological group.

  16. Chlorophyll a fluorescence to phenotype wheat genotypes for heat tolerance

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto

    Wheat (Triticum aestivum L.) is a heat-susceptible crop throughout its phenological stages, flowering phase being the most sensitive stage. Early stress detection method with advanced physiological measurements may provide new dimensions to establish a high throughput phenotyping technique....... Initial phenotyping of 1300 wheat genotypes in a milder stress at 38oC for 2 h showed a heritability of 7% for Fv/Fm. However, a stronger stress at 40oC for 72 h in repeated experiments on 138 extreme performing lines resulted in a genotype dependent drop in Fv/Fm and an increased genetic component of 15...

  17. Induction and characterization of Arabidopsis mutants by Ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S. [Gyeongbuk Institute for Bio Industry, Andong (Korea, Republic of)

    2008-03-15

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and {gamma}-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  18. Evaluation of the quality attributes of wheat composite (wheat ...

    African Journals Online (AJOL)

    plantain and wheat-rice) flours in bread making. ... The bulk density of the samples ranged between 0.48 and 0.88 g/ml while pH values ranged from 6.57 to 6.70. The sensory analysis reflected that bread produced from 100% wheat flour was ...

  19. Wheat ferritins: Improving the iron content of the wheat grain

    DEFF Research Database (Denmark)

    Borg, Søren; Brinch-Pedersen, Henrik; Tauris, Birgitte

    2012-01-01

    The characterization of the full complement of wheat ferritins show that the modern hexaploid wheat genome contains two ferritin genes, TaFer1 and TaFer2, each represented by three homeoalleles and placed on chromosome 5 and 4, respectively. The two genes are differentially regulated and expresse...

  20. Genome-wide mapping of spike-related and agronomic traits in a common wheat population derived from a supernumerary parent and an elite parent

    Science.gov (United States)

    In wheat (Triticum aestivum L), exotic genotypes express a broad range of spike-related traits and could be used as a source of new genes to enrich the germplasm for wheat breeding programs. In the present study, a population of 163 recombinant inbred lines derived from a cross between an elite line...

  1. The distal portion of wheat (Triticum aestivum L.) chromosome 5D short arm controls endosperm vitreosity and grain hardness

    Science.gov (United States)

    Kernel vitreosity is an important trait of wheat grain, but its complete developmental control is not known. We developed back-cross seven (BC7) near isogenic lines in the soft white spring wheat cultivar Alpowa that possess or lack the distal portion of chromosome 5D short arm. This deletion was de...

  2. Thinopyrum ponticum Chromatin-Integrated Wheat Genome Shows Salt-Tolerance at Germination Stage

    Directory of Open Access Journals (Sweden)

    Wen-Ye Yuan

    2015-02-01

    Full Text Available A wild wheatgrass, Thinopyrum ponticum (2n = 10x = 70, which exhibits substantially higher levels of salt tolerance than cultivated wheat, was employed to transfer its salt tolerance to common wheat by means of wide hybridization. A highly salt-tolerant wheat line S148 (2n = 42 was obtained from the BC3F2 progenies between Triticum aestivum (2n = 42 and Th. ponticum. In the cross of S148 × salt-sensitive wheat variety Chinese Spring, the BC4F2 seeds at germination stage segregated into a ratio of 3 salt tolerant to 1 salt sensitive, indicating that the salt tolerance was conferred by a dominant gene block. Genomic in situ hybridization analysis revealed that S148 had a single pair of Th. ponticum–T. aestivum translocated chromosomes bearing the salt-tolerance. This is an initial step of molecular breeding for salt-tolerant wheat.

  3. Thinopyrum ponticum chromatin-integrated wheat genome shows salt-tolerance at germination stage.

    Science.gov (United States)

    Yuan, Wen-Ye; Tomita, Motonori

    2015-02-26

    A wild wheatgrass, Thinopyrum ponticum (2n = 10x = 70), which exhibits substantially higher levels of salt tolerance than cultivated wheat, was employed to transfer its salt tolerance to common wheat by means of wide hybridization. A highly salt-tolerant wheat line S148 (2n = 42) was obtained from the BC3F2 progenies between Triticum aestivum (2n = 42) and Th. ponticum. In the cross of S148 × salt-sensitive wheat variety Chinese Spring, the BC4F2 seeds at germination stage segregated into a ratio of 3 salt tolerant to 1 salt sensitive, indicating that the salt tolerance was conferred by a dominant gene block. Genomic in situ hybridization analysis revealed that S148 had a single pair of Th. ponticum-T. aestivum translocated chromosomes bearing the salt-tolerance. This is an initial step of molecular breeding for salt-tolerant wheat.

  4. Thinopyrum ponticum translocation line resistant to powdery mildew

    Indian Academy of Sciences (India)

    FANG HE

    Abstract. Thinopyrum ponticum (2n = 70) serves as a valuable gene pool for wheat improvement. Line SN0224, derived from crosses between Th. ponticum and the common wheat cultivar Yannong15, was identified in the present study. Cytogenetic observa- tions showed that SN0224 contains 42 chromosomes in the ...

  5. Functional Properties of Wheat Gluten

    OpenAIRE

    筒井, 知己; ツツイ, トモミ; TOMOMI, TSUTSUI

    1989-01-01

    Glutens were obtained from nine varieties of wheat. These glutens diffred in amino acid composition. Gluten of american durum and Canadian western No 1 wheat indicated higher emulsifying properties. On the contrary, gluten of hard winter indicated higher forming properties. But these functional properties were not correrated to the content of hydrophobic amino acid of gluten.

  6. Registration of 'LCS Wizard' wheat

    Science.gov (United States)

    The objective of this research was to develop widely adapted hard winter wheat (Triticum aestivum L.) varieties to meet the needs of mills, bakeries, and consumers in the eastern and Great Plains regions of the United States. ‘LCS Wizard’ (Reg. No. CV-1111, PI 669574), a hard red winter (HRW) wheat,...

  7. Resistance of Some Iraqi Bread Wheat Cultivars to Puccinia triticina

    Directory of Open Access Journals (Sweden)

    E.M. Al-Maaroof

    2005-12-01

    Full Text Available Brown rust (leaf rust caused by Puccinia triticina is one of the most serious diseases of wheat worldwide. In Iraq the occurrence and distribution of brown rust is more regular and uniform than that of other wheat rusts. with yield losses as high as 44% on susceptible wheat cultivars in commercial fields. Recently several promising wheat (Triticum aestivum cultivars with different levels of rust resistance have been released in Iraq. The present work was conducted to postulate the resistance genes in twenty-two Iraqi bread wheat cultivars by testing them with thirteen Mexican races of P. triticina. ‘Thatcher’ near-isogenic lines were used as testers for known resistance genes. Ten day old seedling sets were artificially inoculated with each race, and the infection type was recorded ten days later. Field reactions of the cultivars with the predominantly Iraqi races were determined under field conditions for three years. Results revealed that the Iraqi wheat cultivars possessed brown rust resistance genes Lr1, 3, 10, 13, 16, 17, 23 and 26, either alone or in various combinations. The presence of unknown resistance genes was also postulated in some cultivars. Lr23, derived from Triticum turgidum var. durum, was present in 23% of tested cultivars, whereas Lr13 was present in 18%. The presence of Lr26 in ‘Al-Nour’ and ‘Hashemia’ indicated that they carried the 1BL.1RS wheat-rye translocation. ‘Al-Melad’ displayed resistant reactions to all races used in the study. ‘Tamuz 3’ and ‘Al- Nour’ displayed high adult-plant resistance to P. triticina in the field.

  8. Canola-Wheat Rotation versus Continuous Wheat for the Southern Plains

    OpenAIRE

    Duke, Jason C.; Epplin, Francis M.; Vitale, Jeffrey D.; Peeper, Thomas F.

    2009-01-01

    Crop rotations are not common in the wheat belt of the Southern Plains. After years of continuous wheat, weeds have become increasingly difficult and expensive to manage. Yield data were elicited from farmers and used to determine if canola-wheat-wheat rotations are economically competitive with continuous wheat in the region.

  9. THE IMPACT OF REFORMING WHEAT IMPORTING STATE-TRADING ENTERPRISES ON THE QUALITY OF WHEAT IMPORTED

    OpenAIRE

    Lavoie, Nathalie

    2003-01-01

    Recent surveys of wheat importers indicate that countries that import wheat via a state trader are less sensitive to quality issues in import decision making than countries that import wheat through private traders. This study examines conceptually and empirically the impact of the deregulation of wheat imports on the quality and source of wheat imports.

  10. Involvement of Fungal Pectin Methylesterase Activity in the Interaction Between Fusarium graminearum and Wheat.

    Science.gov (United States)

    Sella, Luca; Castiglioni, Carla; Paccanaro, Maria Chiara; Janni, Michela; Schäfer, Wilhelm; D'Ovidio, Renato; Favaron, Francesco

    2016-04-01

    The genome of Fusarium graminearum, the causal agent of Fusarium head blight of wheat, contains two putative pectin methylesterase (PME)-encoding genes. However, when grown in liquid culture containing pectin, F. graminearum produces only a single PME, which was purified and identified. Its encoding gene, expressed during wheat spike infection, was disrupted by targeted homologous recombination. Two Δpme mutant strains lacked PME activity but were still able to grow on highly methyl-esterified pectin even though their polygalacturonase (PG) activity showed a reduced capacity to depolymerize this substrate. The enzymatic assays performed with purified F. graminearum PG and PME demonstrated an increase in PG activity in the presence of PME on highly methyl-esterified pectin. The virulence of the mutant strains was tested on Triticum aestivum and Triticum durum spikes, and a significant reduction in the percentage of symptomatic spikelets was observed between 7 and 12 days postinfection compared with wild type, demonstrating that the F. graminearum PME contributes to fungal virulence on wheat by promoting spike colonization in the initial and middle stages of infection. In contrast, transgenic wheat plants with increased levels of pectin methyl esterification did not show any increase in resistance to the Δpme mutant, indicating that the infectivity of the fungus relies only to a certain degree on pectin degradation.

  11. Addition of rye chromosome 4R to wheat increases anther length and pollen grain number.

    Science.gov (United States)

    Nguyen, Vy; Fleury, Delphine; Timmins, Andy; Laga, Hamid; Hayden, Matthew; Mather, Diane; Okada, Takashi

    2015-05-01

    The research identified rye chromosome 4R arms associated with good pollinator traits, and demonstrated possible use of rye genetic resources to develop elite pollinators for hybrid wheat breeding. Bread wheat (Triticum aestivum) is a predominantly self-pollinating plant which has relatively small-sized anthers and produces a low number of pollen grains. These features limit the suitability of most wheat lines as pollinators for hybrid seed production. One strategy for improving the pollination ability of wheat is to introgress cross-pollination traits from related species. One such species is rye (Secale cereale L.), which has suitable traits such as high anther extrusion, long anthers containing large amounts of pollen and long pollen viability. Therefore, introducing these traits into wheat is of great interest in hybrid wheat breeding. Here, we investigated wheat-rye chromosome addition lines for the effects of rye chromosomes on anther and pollen development in wheat. Using a single nucleotide polymorphism genotyping array, we detected 984 polymorphic markers that showed expected syntenic relationships between wheat and rye. Our results revealed that the addition of rye chromosomes 1R or 2R reduced pollen fertility, while addition of rye chromosome 4R increased anther size by 16% and pollen grain number by 33%. The effect on anther length was associated with increases in both cell size and the number of endothecium cells and was attributed to the long arm of chromosome 4R. In contrast, the effect on pollen grain number was attributed to the short arm of chromosome 4R. These results indicate that rye chromosome 4R contains at least two genetic factors associated with increased anther size and pollen grain number that can favourably affect pollination traits in wheat.

  12. Leaf Rust of Wheat: Pathogen Biology, Variation and Host Resistance

    Directory of Open Access Journals (Sweden)

    James Kolmer

    2013-01-01

    Full Text Available Rusts are important pathogens of angiosperms and gymnosperms including cereal crops and forest trees. With respect to cereals, rust fungi are among the most important pathogens. Cereal rusts are heteroecious and macrocyclic requiring two taxonomically unrelated hosts to complete a five spore stage life cycle. Cereal rust fungi are highly variable for virulence and molecular polymorphism. Leaf rust, caused by Puccinia triticina is the most common rust of wheat on a worldwide basis. Many different races of P. triticina that vary for virulence to leaf rust resistance genes in wheat differential lines are found annually in the US. Molecular markers have been used to characterize rust populations in the US and worldwide. Highly virulent races of P. triticina are selected by leaf rust resistance genes in the soft red winter wheat, hard red winter wheat and hard red spring wheat cultivars that are grown in different regions of the US. Cultivars that only have race-specific leaf rust resistance genes that are effective in seedling plants lose their effective resistance and become susceptible within a few years of release. Cultivars with combinations of race non-specific resistance genes have remained resistant over a period of years even though races of the leaf rust population have changed constantly.

  13. Gene flow in genetically modified wheat.

    Directory of Open Access Journals (Sweden)

    Silvan Rieben

    Full Text Available Understanding gene flow in genetically modified (GM crops is critical to answering questions regarding risk-assessment and the coexistence of GM and non-GM crops. In two field experiments, we tested whether rates of cross-pollination differed between GM and non-GM lines of the predominantly self-pollinating wheat Triticum aestivum. In the first experiment, outcrossing was studied within the field by planting "phytometers" of one line into stands of another line. In the second experiment, outcrossing was studied over distances of 0.5-2.5 m from a central patch of pollen donors to adjacent patches of pollen recipients. Cross-pollination and outcrossing was detected when offspring of a pollen recipient without a particular transgene contained this transgene in heterozygous condition. The GM lines had been produced from the varieties Bobwhite or Frisal and contained Pm3b or chitinase/glucanase transgenes, respectively, in homozygous condition. These transgenes increase plant resistance against pathogenic fungi. Although the overall outcrossing rate in the first experiment was only 3.4%, Bobwhite GM lines containing the Pm3b transgene were six times more likely than non-GM control lines to produce outcrossed offspring. There was additional variation in outcrossing rate among the four GM-lines, presumably due to the different transgene insertion events. Among the pollen donors, the Frisal GM line expressing a chitinase transgene caused more outcrossing than the GM line expressing both a chitinase and a glucanase transgene. In the second experiment, outcrossing after cross-pollination declined from 0.7-0.03% over the test distances of 0.5-2.5 m. Our results suggest that pollen-mediated gene flow between GM and non-GM wheat might only be a concern if it occurs within fields, e.g. due to seed contamination. Methodologically our study demonstrates that outcrossing rates between transgenic and other lines within crops can be assessed using a phytometer

  14. Characterization of a Legionella micdadei mip mutant

    DEFF Research Database (Denmark)

    O'Connell, W A; Bangsborg, Jette Marie; Cianciotto, N P

    1995-01-01

    The pathogenesis of Legionella micdadei is dependent upon its ability to infect alveolar phagocytes. To better understand the basis of intracellular infection by this organism, we examined the importance of its Mip surface protein. In Legionella pneumophila, Mip promotes infection of both human m...... Mip. Although unimpaired in its ability to grow in bacteriologic media, this Mip mutant was defective in its capacity to infect U937 cells, a human macrophage-like cell line. Most significantly, the Mip- organism displayed a 24-fold reduction in survivability immediately after its entry...... into the phagocyte. Similarly, the mutant was less able to parasitize Hartmannella amoebae. Taken together, these data argue that Mip specifically potentiates intracellular growth by L. micdadei....

  15. Path Through the Wheat

    Directory of Open Access Journals (Sweden)

    David Middleton

    2005-01-01

    Full Text Available The hillside’s tidal waves of yellow-green Break downward into full-grown stalks of wheat In which a peasant, shouldering his hoe Passes along a snaking narrow path -- A teeming place through which his hard thighs press And where his head just barely stays above The swaying grain, drunken in abundance, Farm buildings almost floating on the swells Beyond which sea gulls gliding white in air Fly down on out of sight to salty fields, Taking the channel fish off Normandy, A surfeit fit for Eden i...

  16. The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat.

    Science.gov (United States)

    Li, Hongjie; Conner, Robert L; Chen, Qin; Li, Haiyan; Laroche, André; Graf, Robert J; Kuzyk, Allan D

    2004-02-01

    Common root rot, caused by Cochliobolus sativus (Ito and Kurib) Drechs. ex Dastur, is a major soil-borne disease of spring and winter wheat (Triticum aestivum L. em Thell.) on the Canadian prairies. Resistance to common root rot from Thinopyrum ponticum (Podp.) Liu and Wang was transferred into wheat via crossing with Agrotana, a resistant wheat - Th. ponticum partial amphiploid line. Evaluation of common root rot reactions showed that selected advanced lines with blue kernel color derived from a wheat x Agrotana cross expressed more resistance than the susceptible T. aestivum 'Chinese Spring' parent and other susceptible wheat check cultivars. Cytological examination revealed 41 to 44 chromosomes in the advanced lines. Genomic in situ hybridization, using total genomic DNA from Pseudoroegneria strigosa (M. Bieb) A. Löve (St genome) as a probe, demonstrated that the blue kernel plants had two pairs of spontaneously translocated J-Js and Js-J chromosomes derived from the J and Js genome of Th. ponticum. The presence of these translocated chromosomes was associated with increased resistance of wheat to common root rot. The lines with blue aleurone color always had a subcentromeric Js-J translocated chromosome. The subtelocentric J-Js translocated chromosome was not responsible for the blue kernel color. The genomic in situ hybridization analysis on meiosis revealed that the two spontaneous translocations were not reciprocal translocations.

  17. Structuring an Efficient Organic Wheat Breeding Program

    Directory of Open Access Journals (Sweden)

    P. Stephen Baenziger

    2011-08-01

    Full Text Available Our long-term goal is to develop wheat cultivars that will improve the profitability and competitiveness of organic producers in Nebraska and the Northern Great Plains. Our approach is to select in early generations for highly heritable traits that are needed for both organic and conventional production (another breeding goal, followed by a targeted organic breeding effort with testing at two organic locations (each in a different ecological region beginning with the F6 generation. Yield analyses from replicated trials at two organic breeding sites and 7 conventional breeding sites from F6 through F12 nurseries revealed, using analyses of variance, biplots, and comparisons of selected lines that it is inappropriate to use data from conventional testing for making germplasm selections for organic production. Selecting and testing lines under organic production practices in different ecological regions was also needed and cultivar selections for organic production were different than those for conventional production. Modifications to this breeding protocol may include growing early generation bulks in an organic cropping system. In the future, our selection efforts should also focus on using state-of-the-art, non-transgenic breeding technologies (genomic selection, marker-assisted breeding, and high throughput phenotyping to synergistically improve organic and conventional wheat breeding.

  18. Drought Tolerance in Wheat

    Science.gov (United States)

    Prodhan, Zakaria Hossain; Faruq, Golam

    2013-01-01

    Drought is one of the most important phenomena which limit crops' production and yield. Crops demonstrate various morphological, physiological, biochemical, and molecular responses to tackle drought stress. Plants' vegetative and reproductive stages are intensively influenced by drought stress. Drought tolerance is a complicated trait which is controlled by polygenes and their expressions are influenced by various environmental elements. This means that breeding for this trait is so difficult and new molecular methods such as molecular markers, quantitative trait loci (QTL) mapping strategies, and expression patterns of genes should be applied to produce drought tolerant genotypes. In wheat, there are several genes which are responsible for drought stress tolerance and produce different types of enzymes and proteins for instance, late embryogenesis abundant (lea), responsive to abscisic acid (Rab), rubisco, helicase, proline, glutathione-S-transferase (GST), and carbohydrates during drought stress. This review paper has concentrated on the study of water limitation and its effects on morphological, physiological, biochemical, and molecular responses of wheat with the possible losses caused by drought stress. PMID:24319376

  19. Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat

    DEFF Research Database (Denmark)

    Ci, Dunwei; Jiang, Dong; Li, Sishen

    2012-01-01

    Quantitative trait loci (QTL) for Cadmium (Cd) tolerance and accumulation in wheat (Triticum aestivum L.) were identified, using 103 recombinant inbred lines (RILs) derived from a cross of Ch×Sh at germination and seedling stages. The traits of germination, growth and physiology were measured. Cd....... Therefore, in this study, the properties of Cd tolerance and accumulation showed to be independent traits in wheat.......Quantitative trait loci (QTL) for Cadmium (Cd) tolerance and accumulation in wheat (Triticum aestivum L.) were identified, using 103 recombinant inbred lines (RILs) derived from a cross of Ch×Sh at germination and seedling stages. The traits of germination, growth and physiology were measured. Cd...... effects coming from Ch) while the remaining 12 QTLs were negative (with the additive effects contributed by Sh). No QTL were detected in the same region on the chromosomes of wheat. The results indicated that genetic mechanisms controlling the traits of Cd tolerance were independent from each other...

  20. Forward and reverse genetics: The LORE1 retrotransposon insertion mutants

    DEFF Research Database (Denmark)

    Fukai, Eigo; Malolepszy, Anna; Sandal, Niels Nørgaard

    2014-01-01

    The endogenous Lotus retrotransposon 1 (LORE1) transposes in the germ line of Lotus japonicus plants that carry an active element. This feature of LORE1 has been exploited for generation of a large non-transgenic insertion mutant population, where insertions have been annotated using next......-generation sequencing approaches. The LORE1 mutant lines are freely available and can be ordered online. Endogenous retrotransposons are also active in many other plant species. Based on the methods developed for LORE1 mutagenesis, it should be simple to establish similar systems in other species, once an appropriate...

  1. Mapping the glaucousness suppressor Iw1 from wild emmer wheat “PI 481521”

    OpenAIRE

    Xu, Zongchang; Yuan, Cuiling; Wang, Jirui; Fu, Daolin; Wu, Jiajie

    2015-01-01

    Many species of Triticeae display a glaucous phenotype. In wheat, glaucousness/waxiness on spikes, leaves and shoots is controlled by wax production genes (W loci) and epistatic inhibitors (Iw loci). In this study, a suppressor of glaucousness from wild emmer wheat (Triticum turgidum ssp. dicoccoides) accession “PI 481521” was investigated in a pair of durum (T. turgidum ssp. durum cv. “Langdon”, LDN)—wild emmer wheat chromosome substitution lines, LDN and “LDNDIC521-2B”. Genetic analysis rev...

  2. Efficient strategies to assess yield stability in winter wheat.

    Science.gov (United States)

    Liu, Guozheng; Zhao, Yusheng; Mirdita, Vilson; Reif, Jochen Christoph

    2017-08-01

    Selecting contrasting environments allows decreasing phenotyping intensity but still maintaining high accuracy to assess yield stability. Improving yield stability of wheat varieties is important to cope with enhanced abiotic stresses caused by climate change. The objective of our study was to (1) develop and implement an improved heritability estimate to examine the required scale of phenotyping for assessing yield stability in wheat, (2) compare yield performance and yield stability of wheat hybrids and inbred lines, (3) investigate the association of agronomic traits with yield stability, and (4) explore the possibility of selecting subsets of environments allowing to portray large proportion of the variation of yield stability. Our study is based on phenotypic data from five series of official winter wheat registration trials in Germany each including 119-132 genotypes evaluated in up to 50 environments. Our findings suggested that phenotyping in at least 40 environments is required to reliably estimate yield stability to guarantee heritability estimates above 0.7. Contrasting the yield stability of hybrids versus lines revealed no significant differences. Absence of stable associations between yield stability and further agronomic traits suggested low potential of indirect selection to improve yield stability. Selecting posteriori contrasting environments based on the genotype-by-environment interaction effects allowed decreasing phenotyping intensity, but still maintaining high accuracy to assess yield stability. The huge potential of the developed strategy to select contrasting and informative environments has to be validated as a next step in an a priori scenario based on genotype-by-location interaction effects.

  3. PRODUCTION OF A NOVEL ROBERTSONIAN TRANSLOCATION FROM THINOPYRUM BESSARABICUM INTO BREAD WHEAT.

    Science.gov (United States)

    Ghazali, S; Mirzaghaderi, G; Majdi, M

    2015-01-01

    Development of wheat-alien translocation lines will facilitate its practical utilization in wheat improvement. The objective of the present study was to produce compensating wheat--Thinopyrum bessarabicum whole arm Robertsonian translocations (RobTs) involving chromosomes 2B of wheat and 2E(b) of Th. bessarabicum through the mechanism of centric breakage-fusion. F2 population from crosses between DS2E(b)(2B) substitution line and bread wheat 'Roushan' (2n = 6x = 42, AABBDD) as female parent were made. Forty one F2 lines (L1 to L41) were screened for their chromosome composition. Three 2E(b) specific PCR-based Landmark Unique Gene (PLUG) markers were used for screening F2 progeny derived from plants double-monosomic for chromosome 2B and 2E(b). Two Rob Ts (-5%) were observed among F2 plants. Homozygous translocation (T2E(b)S.2BL) with good plant vigor and full fertility were selected from F3 families. The T2E(b)S.2BL stock has longer awn than that of its parents. It is cytogenetically stable, and may be useful in wheat improvement.

  4. Ancestral QTL Alleles from Wild Emmer Wheat Enhance Root Development under Drought in Modern Wheat.

    Science.gov (United States)

    Merchuk-Ovnat, Lianne; Fahima, Tzion; Ephrath, Jhonathan E; Krugman, Tamar; Saranga, Yehoshua

    2017-01-01

    A near-isogenic line (NIL-7A-B-2), introgressed with a quantitative trait locus (QTL) on chromosome 7AS from wild emmer wheat (Triticum turgidum ssp. dicoccoides) into the background of bread wheat (T. aestivum L.) cv. BarNir, was recently developed and studied in our lab. NIL-7A-B-2 exhibited better productivity and photosynthetic capacity than its recurrent parent across a range of environments. Here we tested the hypothesis that root-system modifications play a major role in NIL-7A-B-2's agronomical superiority. Root-system architecture (dry matter and projected surface area) and shoot parameters of NIL-7A-B-2 and 'BarNir' were evaluated at 40, 62, and 82 days after planting (DAP) in a sand-tube experiment, and root tip number was assessed in a 'cigar-roll' seedling experiment, both under well-watered and water-limited (WL) treatments. At 82 DAP, under WL treatment, NIL-7A-B-2 presented greater investment in deep roots (depth 40-100 cm) than 'BarNir,' with the most pronounced effect recorded in the 60-80 cm soil depth (60 and 40% increase for root dry matter and surface area, respectively). NIL-7A-B-2 had significantly higher root-tip numbers (∼48%) per plant than 'BarNir' under both treatments. These results suggest that the introgression of 7AS QTL from wild emmer wheat induced a deeper root system under progressive water stress, which may enhance abiotic stress resistance and productivity of domesticated wheat.

  5. Ancestral QTL Alleles from Wild Emmer Wheat Enhance Root Development under Drought in Modern Wheat

    Science.gov (United States)

    Merchuk-Ovnat, Lianne; Fahima, Tzion; Ephrath, Jhonathan E.; Krugman, Tamar; Saranga, Yehoshua

    2017-01-01

    A near-isogenic line (NIL-7A-B-2), introgressed with a quantitative trait locus (QTL) on chromosome 7AS from wild emmer wheat (Triticum turgidum ssp. dicoccoides) into the background of bread wheat (T. aestivum L.) cv. BarNir, was recently developed and studied in our lab. NIL-7A-B-2 exhibited better productivity and photosynthetic capacity than its recurrent parent across a range of environments. Here we tested the hypothesis that root-system modifications play a major role in NIL-7A-B-2’s agronomical superiority. Root-system architecture (dry matter and projected surface area) and shoot parameters of NIL-7A-B-2 and ‘BarNir’ were evaluated at 40, 62, and 82 days after planting (DAP) in a sand-tube experiment, and root tip number was assessed in a ‘cigar-roll’ seedling experiment, both under well-watered and water-limited (WL) treatments. At 82 DAP, under WL treatment, NIL-7A-B-2 presented greater investment in deep roots (depth 40–100 cm) than ‘BarNir,’ with the most pronounced effect recorded in the 60–80 cm soil depth (60 and 40% increase for root dry matter and surface area, respectively). NIL-7A-B-2 had significantly higher root-tip numbers (∼48%) per plant than ‘BarNir’ under both treatments. These results suggest that the introgression of 7AS QTL from wild emmer wheat induced a deeper root system under progressive water stress, which may enhance abiotic stress resistance and productivity of domesticated wheat. PMID:28536586

  6. Ancestral QTL Alleles from Wild Emmer Wheat Enhance Root Development under Drought in Modern Wheat

    Directory of Open Access Journals (Sweden)

    Lianne Merchuk-Ovnat

    2017-05-01

    Full Text Available A near-isogenic line (NIL-7A-B-2, introgressed with a quantitative trait locus (QTL on chromosome 7AS from wild emmer wheat (Triticum turgidum ssp. dicoccoides into the background of bread wheat (T. aestivum L. cv. BarNir, was recently developed and studied in our lab. NIL-7A-B-2 exhibited better productivity and photosynthetic capacity than its recurrent parent across a range of environments. Here we tested the hypothesis that root-system modifications play a major role in NIL-7A-B-2’s agronomical superiority. Root-system architecture (dry matter and projected surface area and shoot parameters of NIL-7A-B-2 and ‘BarNir’ were evaluated at 40, 62, and 82 days after planting (DAP in a sand-tube experiment, and root tip number was assessed in a ‘cigar-roll’ seedling experiment, both under well-watered and water-limited (WL treatments. At 82 DAP, under WL treatment, NIL-7A-B-2 presented greater investment in deep roots (depth 40–100 cm than ‘BarNir,’ with the most pronounced effect recorded in the 60–80 cm soil depth (60 and 40% increase for root dry matter and surface area, respectively. NIL-7A-B-2 had significantly higher root-tip numbers (∼48% per plant than ‘BarNir’ under both treatments. These results suggest that the introgression of 7AS QTL from wild emmer wheat induced a deeper root system under progressive water stress, which may enhance abiotic stress resistance and productivity of domesticated wheat.

  7. SNP Discovery for mapping alien introgressions in wheat

    Science.gov (United States)

    2014-01-01

    Background Monitoring alien introgressions in crop plants is difficult due to the lack of genetic and molecular mapping information on the wild crop relatives. The tertiary gene pool of wheat is a very important source of genetic variability for wheat improvement against biotic and abiotic stresses. By exploring the 5Mg short arm (5MgS) of Aegilops geniculata, we can apply chromosome genomics for the discovery of SNP markers and their use for monitoring alien introgressions in wheat (Triticum aestivum L). Results The short arm of chromosome 5Mg of Ae. geniculata Roth (syn. Ae. ovata L.; 2n = 4x = 28, UgUgMgMg) was flow-sorted from a wheat line in which it is maintained as a telocentric chromosome. DNA of the sorted arm was amplified and sequenced using an Illumina Hiseq 2000 with ~45x coverage. The sequence data was used for SNP discovery against wheat homoeologous group-5 assemblies. A total of 2,178 unique, 5MgS-specific SNPs were discovered. Randomly selected samples of 59 5MgS-specific SNPs were tested (44 by KASPar assay and 15 by Sanger sequencing) and 84% were validated. Of the selected SNPs, 97% mapped to a chromosome 5Mg addition to wheat (the source of t5MgS), and 94% to 5Mg introgressed from a different accession of Ae. geniculata substituting for chromosome 5D of wheat. The validated SNPs also identified chromosome segments of 5MgS origin in a set of T5D-5Mg translocation lines; eight SNPs (25%) mapped to TA5601 [T5DL · 5DS-5MgS(0.75)] and three (8%) to TA5602 [T5DL · 5DS-5MgS (0.95)]. SNPs (gsnp_5ms83 and gsnp_5ms94), tagging chromosome T5DL · 5DS-5MgS(0.95) with the smallest introgression carrying resistance to leaf rust (Lr57) and stripe rust (Yr40), were validated in two released germplasm lines with Lr57 and Yr40 genes. Conclusion This approach should be widely applicable for the identification of species/genome-specific SNPs. The development of a large number of SNP markers will facilitate the precise introgression and

  8. Color of whole-wheat foods prepared from a bright-white hard winter wheat and the phenolic acids in its coarse bran.

    Science.gov (United States)

    Jiang, Hongxin; Martin, Joe; Okot-Kotber, Moses; Seib, Paul A

    2011-08-01

    The color of wheat kernels often impacts the color and thereby the value of wheat-based foods. A line of hard white winter wheat (B-W HW) with bright appearing kernels has been developed at the Kansas State Agricultural Research Center. The objective of this study was to compare the color of several foods made from the B-W HW wheat with those of 2 hard white wheat cultivars, Trego and Lakin. The B-W HW kernels showed higher lightness (L*, 57.6) than Trego (55.5) and Lakin (56.8), and the increased lightness was carried over to its bran and whole-wheat flour. Alkaline noodle and bread crumb made from the B-W HW whole-wheat flour showed slightly higher lightness (L*) than those made from Trego and Lakin. The sum of soluble and bound phenolics extracted from the 3 wheat brans, which had not been preextracted to remove lipids, was found to be 17.22 to 18.98 mg/g. The soluble phenolic acids in the brans were principally vanillic, ferulic, and syringic. The bound phenolic acids in the brans were dominated by ferulic, which accounted for 50.1% to 82.2% of total identified bound phenolic acids. Other bound phenolic acids were protocatechuic, caffeic, syringic, trans-cinnamic, p-hydroxybenzoic, p-coumaric, and vanillic. The lightness (L*) values of coarse wheat brans correlated positively with their levels of bound protocatechuic (r = 0.72, P < 0.01) and p-hydroxybenzoic acids (r = 0.75, P < 0.01). © 2011 Institute of Food Technologists®

  9. Stamena winter wheat variety

    Directory of Open Access Journals (Sweden)

    Mišić Todor

    2001-01-01

    Full Text Available Stamena is a winter wheat variety developed at the Institute of Field and Vegetable Crops in Novi Sad, Yugoslavia. It was released by the Federal Commission for varietals Approval in 1999. Stamena was developed by crossing genetically divergent and highly productive parents Lasta and Rodna (Breeders: T. Mišić. N. Mladenov, Z. Jerković and R. Jevtić. Spike is white, smooth, awn less, medium compact with 18-21 spike lets. The grain is vitreous and dark red (Triticum aestivum L. ssp. vulgar e var. lutescens. Stamena is a medium early variety, 1 day earlier than Partizanka and 3 days earlier than Jugoslavija (Table 4. It has excellent resistance to winterkilling, as in very winter hardy Partizanka. The average stem height is 78 cm, with a good resistance to lodging. Stamena has field resistance to leaf rust (Pucce, recondita tritict, horizontal resistance, which is the type of resistance that modern wheat breeding is interested in. The resistance to stem rust (Pucce, graminis tritict is good and to powdery mildew (Erysiphegraminis tritici very good. The 1000 grain mass is about 32 g and volume grain mass 81.3 kg/hi. (Table 2. Stamena is classified in the subgroup A-l. It has excellent milling and baking quality and it belong to the 1st technological group (quality enhancer. The quantity of dry gluten is about 9%. The variety Stamena is a very productive, with the genetic potential for grain above 11 t/ha suitable for growing on fertile and less fertile soils. It has started to be grown commercially in 2000.

  10. Mapping of common bunt resistance gene Bt9 in wheat.

    Science.gov (United States)

    Steffan, Philipp Matthias; Torp, Anna Maria; Borgen, Anders; Backes, Gunter; Rasmussen, Søren K

    2017-05-01

    The Bt9 resistance locus was mapped and shown to be distinct from the Bt10 locus. New markers linked to Bt9 have been identified and may be used to breed for resistance towards the seed-borne disease. Increasing organic wheat production in Denmark, and in other wheat-producing areas, in conjunction with legal requirements for organic seed production, may potentially lead to a rise in common bunt occurrence. As systemic pesticides are not used in organic farming, organic wheat production systems may benefit from genetic resistances. However, little is known about the underlying genetic mechanisms and locations of the resistance factors for common bunt resistance in wheat. A double haploid (DH) population segregating for common bunt resistance was used to identify the chromosomal location of common bunt resistance gene Bt9. DH lines were phenotyped in three environments and genotyped with DArTseq and SSR markers. The total length of the resulting linkage map was 2882 cM distributed across all 21 wheat chromosomes. Bt9 was mapped to the distal end of chromosome 6DL. Since wheat common bunt resistance gene Bt10 is also located on chromosome 6D, the possibility of their co-location was investigated. A comparison of marker sequences linked to Bt9 and Bt10 on physical maps of chromosome 6D confirmed that Bt9 and Bt10 are two distinct resistance factors located at the distal (6DL) and proximal (6DS) end, respectively, of chromosome 6D. Five new SSR markers Xgpw4005-1, Xgpw7433, Xwmc773, Xgpw7303 and Xgpw362 and many SNP and PAV markers flanking the Bt9 resistance locus were identified and they may be used in the future for marker-assisted selection.

  11. Progress in breeding of Novi Sad spring wheat cultivars

    Directory of Open Access Journals (Sweden)

    Rončević Petar

    2006-01-01

    Full Text Available The Institute of Field and Vegetable Crops in Novi Sad began working on spring wheat breeding in 1979 in order to develop cultivars that could be grown in conditions and years unfavorable for winter wheat cultivation. At the start of the program, a collection of spring wheat cultivars from all over the world was assembled for hybridization purposes, with cultivars from Mexico being the most numerous group. Parental pairs were first chosen based on the concept of cultivar, then trait, and, finally and most recently, the concept of gene. After the selection of parental pairs, the hybridization process began and a total 1,700 combinations have been made since. The material was bred using pedigree selection. A large number of lines were developed by positive selection and the best among them were tested in variety trials of the State Variety Commission. Based on the results of those trials, 31 spring wheat cultivars from the Novi Sad program have been released so far. Among them, the cultivars Jarka, Nevesinjka (a facultative variety, Venera, and, more recently Nataša have proven particularly successful in commercial production. Some of these varieties have also been released in foreign countries or are presently being tested for registration abroad. In order to assess the progress of spring wheat breeding at the Institute of Field and Vegetable Crops in Novi Sad, a trial with all the cultivars released by the Institute thus far was set up. Statistical analysis after the trial has confirmed that significant progress towards better wheat cultivars has been made since the program was founded.

  12. The effect of feeding wheat with purple pericarp on the growth of carp

    Directory of Open Access Journals (Sweden)

    Jan Mareš

    2015-08-01

    Full Text Available This study assessed and compared the influence of feeding wheat with purple pericarp (variety Konini and standard coloured wheat (red variety Bohemia on the growth characteristics of fingerling carp (Cyprinus carpio L. of the "Amurský lysec" line. The total content of anthocyanins converted to cyanidin 3-glucoside in the control Bohemia wheat was 24.95 mg.kg-1 and in the Konini purple wheat 41.70 mg.kg-1. Two experimental variants for feed were evaluated: dipped wheat grain and crushed wheat grain. The feed dose for wheat was 1.5% of the fish stock weight and for natural food (frozen Chironomid larvae was 0.2% of fish stock weight to all variants. Growth parameters (body length, body weight, Fulton's condition factor and feed conversion ratio of the fish were evaluated after one month of administration. The feed consumption and physico-chemical parameters (temperature, oxygen saturation, pH, N-NH4 +, N-NO2-, N-NO3- and Cl- of the environment were observed. During the feeding test, no major differences in food consumption among variations feeding on either wheat and on Chironomid larvae were noted. Satisfying results for mas and length gain were achieved in V2 wheat with purple pericarp (Konini variety - dipped grain, where the average total body length was 156.56 mm and the average unit mass was 60.81 g. In this variant, higher values of the parameters were achieved compared to the control group (100.6%, resp. 104.2%. A positive impact of wheat with purple pericarp on the evaluated parameter of fish condition factor was demonstrated. This trend was confirmed in all variants. No effect was demonstrated for mechanical disruption of kernels on the level of utilization of nutrients. In further experiments on growth characteristics we would like to determine antioxidant parameters in the blood and liver of fry.

  13. Processing Quality of Organic Wheat

    OpenAIRE

    Alföldi, Thomas; Dierauer, Hansueli; Stoecklin, Milo

    2015-01-01

    In the past, the quality of organic wheat has led to some controversy in the grain industry. The focus lies on the protein content, which is generally lower in organic wheat due to lower nitrogen supply. The Swiss organic sector has agreed on a new protein payment model, which was implemented in 2016. In the video, representatives of the value chain present their points of view.

  14. Molecular characterization of a wheat--Thinopyrum ponticum partial amphiploid and its derivatives for resistance to leaf rust.

    Science.gov (United States)

    Li, Hongjie; Chen, Qin; Conner, Robert L; Guo, Beihai; Zhang, Yanmin; Graf, Robert J; Laroche, André; Jia, Xu; Liu, Gongshe; Chu, Chihching

    2003-10-01

    Leaf rust (caused by Puccinia triticina Eriks.) occurs annually in most wheat-growing areas of the world. Thinopyrum ponticum (Podp.) Z.-W. Liu & R.-C. Wang has provided several leaf rust resistance genes to protect wheat from this fungal disease. Three chromosome substitution lines, Ji806, Ji807, and Ji859, and two chromosome addition lines, Ji791 and Ji924, with a winter growing habit were developed from crosses between wheat (Triticum aestivum L. em Thell.) and the wheat - Th. ponticum partial amphiploid line 693. These lines were resistant to leaf rust isolates from China. Sequence-tagged site (STS) analysis with the J09-STS marker, which is linked to the gene Lr24, revealed that the partial amphiploid line 693 and all of the substitution and addition lines carried gene Lr24. Genomic in situ hybridization (GISH) analysis was carried out on chromosome preparations using total genomic DNA from Pseudoroegneria strigosa (M. Bieb) A. Löve (St genome, 2n = 14) as a probe in the presence of total genomic DNA from T. aestivum 'Chinese Spring' wheat (ABD genomes, 2n = 42). The GISH analysis demonstrated that these lines had a pair of chromosomes displaying the typical pattern of a Js genome chromosome. This indicates that the chromosome that carries gene Lr24 belonged to the Js genome of Th. ponticum. In addition to 40 wheat chromosomes, eight Js and eight J genome chromosomes were also differentiated by GISH in the partial amphiploid line 693. Since most sources of Lr24 have a red grain color, the white-colored seeds in all of these substitution and addition lines, together with high protein content in some of the lines, make them very useful as a donor source for winter wheat breeding programs.

  15. Characterization of resistant tomato mutants to bacterial canker ...

    African Journals Online (AJOL)

    Yomi

    2012-04-19

    Apr 19, 2012 ... A small scale ethylmethanesulfonate (EMS) mutation was used to obtain resistant mutant plants to bacterial canker disease caused by Clavibacter michiganensis subsp. michiganensis isolate 2 (Cmm2). Susceptible EBR3 tomato line (200) seeds were mutagenised with the chemical EMS. Of the ...

  16. Characterization of mutant cowpea [ Vigna unguiculata (L) Walp ...

    African Journals Online (AJOL)

    Phylogenetic relationship and polymorphism was detected in 10 cowpea lines comprising of leaf, flower and stem mutants, their putative parents and an exotic accession using 10 random ... Genetic distance ranged from 0.05 to 0.30 based on AFLP markers, while it ranged between 0.13 and 0.44 for RAPD markers. Cluster ...

  17. Characterization of resistant tomato mutants to bacterial canker ...

    African Journals Online (AJOL)

    A small scale ethylmethanesulfonate (EMS) mutation was used to obtain resistant mutant plants to bacterial canker disease caused by Clavibacter michiganensis subsp. michiganensis isolate 2 (Cmm2). Susceptible EBR3 tomato line (200) seeds were mutagenised with the chemical EMS. Of the constructed M2 population, ...

  18. A wheat cinnamyl alcohol dehydrogenase TaCAD12 contributes to host resistance to the sharp eyespot disease

    Directory of Open Access Journals (Sweden)

    Wei Rong

    2016-11-01

    Full Text Available Sharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, is a destructive disease in hexaploid wheat (Triticum aestivum L.. In Arabidopsis, certain cinnamyl alcohol dehydrogenases (CADs have been implicated in monolignol biosynthesis and in defense response to bacterial pathogen infection. However, little is known about CADs in wheat defense responses to necrotrophic or soil-borne pathogens. In this study, we isolate a wheat CAD gene TaCAD12 in response to R. cerealis infection through microarray-based comparative transcriptomics, and study the enzyme activity and defense role of TaCAD12 in wheat. The transcriptional levels of TaCAD12 in sharp eyespot-resistant wheat lines were significantly higher compared with those in susceptible wheat lines. The sequence and phylogenetic analyses revealed that TaCAD12 belongs to IV group in CAD family. The biochemical assay proved that TaCAD12 protein is an authentic CAD enzyme and possesses catalytic efficiencies towards both coniferyl aldehyde and sinapyl aldehyde. Knock-down of TaCAD12 transcript significantly repressed resistance of the gene-silenced wheat plants to sharp eyespot caused by R. cerealis, whereas TaCAD12 overexpression markedly enhanced resistance of the transgenic wheat lines to sharp eyespot. Furthermore, certain defense genes (Defensin, PR10, PR17c, and Chitinase1 and monolignol biosynthesis-related genes (TaCAD1, TaCCR, and TaCOMT1 were up-regulated in the TaCAD12-overexpressing wheat plants but down-regulated in TaCAD12-silencing plants. These results suggest that TaCAD12 positively contributes to resistance against sharp eyespot through regulation of the expression of certain defense genes and monolignol biosynthesis-related genes in wheat.

  19. Cadmium minimization in wheat: A critical review.

    Science.gov (United States)

    Rizwan, Muhammad; Ali, Shafaqat; Abbas, Tahir; Zia-Ur-Rehman, Muhammad; Hannan, Fakhir; Keller, Catherine; Al-Wabel, Mohammad I; Ok, Yong Sik

    2016-08-01

    Cadmium (Cd) accumulation in wheat (Triticum aestivum L.) and its subsequent transfer to food chain is a major environmental issue worldwide. Understanding wheat response to Cd stress and its management for aiming to reduce Cd uptake and accumulation in wheat may help to improve wheat growth and grain quality. This paper reviewed the toxic effects, tolerance mechanisms, and management of Cd stress in wheat. It was concluded that Cd decreased germination, growth, mineral nutrients, photosynthesis and grain yield of wheat and plant response to Cd toxicity varies with cultivars, growth conditions and duration of stress applied. Cadmium caused oxidative stress and genotoxicity in wheat plants. Stimulation of antioxidant defense system, osmoregulation, ion homeostasis and over production of signalling molecules are important adaptive strategies of wheat under Cd stress. Exogenous application of plant growth regulators, inorganic amendments, proper fertilization, silicon, and organic, manures and biochar, amendments are commonly used for the reduction of Cd uptake in wheat. Selection of low Cd-accumulating wheat cultivars, crop rotation, soil type, and exogenous application of microbes are among the other agronomic practices successfully employed in reducing Cd uptake by wheat. These management practices could enhance wheat tolerance to Cd stress and reduce the transfer of Cd to the food chain. However, their long-term sustainability in reducing Cd uptake by wheat needs further assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Chenfang Wang

    2011-12-01

    Full Text Available As in other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of many plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 protein kinases (PK genes. Although twenty of them appeared to be essential, we generated deletion mutants for the other 96 PK genes, including 12 orthologs of essential genes in yeast. All of the PK mutants were assayed for changes in 17 phenotypes, including growth, conidiation, pathogenesis, stress responses, and sexual reproduction. Overall, deletion of 64 PK genes resulted in at least one of the phenotypes examined, including three mutants blocked in conidiation and five mutants with increased tolerance to hyperosmotic stress. In total, 42 PK mutants were significantly reduced in virulence or non-pathogenic, including mutants deleted of key components of the cAMP signaling and three MAPK pathways. A number of these PK genes, including Fg03146 and Fg04770 that are unique to filamentous fungi, are dispensable for hyphal growth and likely encode novel fungal virulence factors. Ascospores play a critical role in the initiation of wheat scab. Twenty-six PK mutants were blocked in perithecia formation or aborted in ascosporogenesis. Additional 19 mutants were defective in ascospore release or morphology. Interestingly, F. graminearum contains two aurora kinase genes with distinct functions, which has not been reported in fungi. In addition, we used the interlog approach to predict the PK-PK and PK-protein interaction networks of F. graminearum. Several predicted interactions were verified with yeast two-hybrid or co-immunoprecipitation assays. To our knowledge, this is the first functional characterization of the kinome in plant pathogenic fungi. Protein kinase genes important for various aspects of growth, developmental, and infection processes in F. graminearum were

  1. Ethanol production from mixtures of wheat straw and wheat meal

    Directory of Open Access Journals (Sweden)

    Galbe Mats

    2010-07-01

    Full Text Available Abstract Background Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G or lignocellulosic (second generation; 2G raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilization of the biomass can be achieved. It would, furthermore, decrease the energy demand of 2G ethanol production and also provide both 1G and 2G plants with heat and electricity. In the current study, steam-pretreated wheat straw (SPWS was mixed with presaccharified wheat meal (PWM and converted to ethanol in simultaneous saccharification and fermentation (SSF. Results Both the ethanol concentration and the ethanol yield increased with increasing amounts of PWM in mixtures with SPWS. The maximum ethanol yield (99% of the theoretical yield, based on the available C6 sugars was obtained with a mixture of SPWS containing 2.5% water-insoluble solids (WIS and PWM containing 2.5% WIS, resulting in an ethanol concentration of 56.5 g/L. This yield was higher than those obtained with SSF of either SPWS (68% or PWM alone (91%. Conclusions Mixing wheat straw with wheat meal would be beneficial for both 1G and 2G ethanol production. However, increasing the proportion of WIS as wheat straw and the possibility of consuming the xylose fraction with a pentose-fermenting yeast should be further investigated.

  2. Ethanol production from mixtures of wheat straw and wheat meal.

    Science.gov (United States)

    Erdei, Borbála; Barta, Zsolt; Sipos, Bálint; Réczey, Kati; Galbe, Mats; Zacchi, Guido

    2010-07-02

    Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G) or lignocellulosic (second generation; 2G) raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilization of the biomass can be achieved. It would, furthermore, decrease the energy demand of 2G ethanol production and also provide both 1G and 2G plants with heat and electricity. In the current study, steam-pretreated wheat straw (SPWS) was mixed with presaccharified wheat meal (PWM) and converted to ethanol in simultaneous saccharification and fermentation (SSF). Both the ethanol concentration and the ethanol yield increased with increasing amounts of PWM in mixtures with SPWS. The maximum ethanol yield (99% of the theoretical yield, based on the available C6 sugars) was obtained with a mixture of SPWS containing 2.5% water-insoluble solids (WIS) and PWM containing 2.5% WIS, resulting in an ethanol concentration of 56.5 g/L. This yield was higher than those obtained with SSF of either SPWS (68%) or PWM alone (91%). Mixing wheat straw with wheat meal would be beneficial for both 1G and 2G ethanol production. However, increasing the proportion of WIS as wheat straw and the possibility of consuming the xylose fraction with a pentose-fermenting yeast should be further investigated.

  3. An Na+/H+ antiporter gene from wheat plays an important role in ...

    Indian Academy of Sciences (India)

    A vacuole Na+/H+ antiporter gene TaNHX2 was obtained by screening the wheat cDNA library and by the 5′-RACE method. The expression of TaNHX2 was induced in roots and leaves by treatment with NaCl, polyethylene glycol (PEG), cold and abscisic acid (ABA). When expressed in a yeast mutant (nhx1), TaNHX2 ...

  4. Methylglyoxal alleviates cadmium toxicity in wheat (Triticum aestivum L).

    Science.gov (United States)

    Li, Zhong-Guang; Duan, Xiang-Qiu; Xia, Yan-Mei; Wang, Yue; Zhou, Zhi-Hao; Min, Xiong

    2017-02-01

    Methylglyoxal alleviates cadmium toxicity in wheat (Triticum aestivum L) by improving plant growth. For a long time, the reactive α, β-carbonyl ketoaldehyde methylglyoxal (CH3COCHO; MG) has been regarded as merely a toxic metabolite in plants, but, now, emerging as a signal molecule in plants. In this study, cadmium (Cd) stress decreased plant height, root length, fresh weight (FW), and dry weight (DW) in a concentration-dependent manner, indicating that Cd had toxic effects on the growth of wheat seedlings. The toxic effects of Cd were alleviated by exogenously applied MG in a dosage dependent fashion, and 700 mM MG reached significant differences, but this alleviating effect was eliminated by the treatment with N-acetyl-L-cysteine (NAC, MG scavenger), suggesting that MG could mitigate Cd toxicity in wheat. This study reported for the first time that MG could alleviate Cd toxicity in wheat, uncovering a new possible physiological function for MG, and opening a novel line of research in plant stress biology.

  5. Anatomical and chemical characteristics associated with lodging resistance in wheat

    Directory of Open Access Journals (Sweden)

    Eryan Kong

    2013-10-01

    Full Text Available Anatomical and chemical characteristics of stems affect lodging in wheat (Triticum aestivum L. cultivars. Traits associated with lodging resistance, such as plant height, stem strength, culm wall thickness, pith diameter, and stem diameter, were extensively investigated in earlier studies. However, the solid stem trait was rarely considered. In this study, we measured a range of anatomical and chemical characteristics on solid and hollow stemmed wheat cultivars. Significant correlations were detected between resistance to lodging and several anatomical features, including width of mechanical tissue, weight of low internodes, and width of stem walls. Morphological features that gave the best indication of improved lodging resistance were increased stem width, width of mechanical tissue layer, and stem density. Multiple linear regression analysis showed that 99% of the variation in lodging resistance could be explained by the width of the mechanical tissue layer, suggesting that solid stemmed wheat has several anatomical features for increasing resistance to lodging. In addition, microsatellite markers GWM247 and GWM340 were linked to a single solid stem QTL on chromosome 3BL in a population derived from the cross Xinongshixin (solid stem/Line 3159 (hollow stem. These markers should be valuable in breeding wheat for solid stem.

  6. Aequorin mutants with increased thermostability.

    Science.gov (United States)

    Qu, Xiaoge; Rowe, Laura; Dikici, Emre; Ensor, Mark; Daunert, Sylvia

    2014-09-01

    Bioluminescent labels can be especially useful for in vivo and live animal studies due to the negligible bioluminescence background in cells and most animals, and the non-toxicity of bioluminescent reporter systems. Significant thermal stability of bioluminescent labels is essential, however, due to the longitudinal nature and physiological temperature conditions of many bioluminescent-based studies. To improve the thermostability of the bioluminescent protein aequorin, we employed random and rational mutagenesis strategies to create two thermostable double mutants, S32T/E156V and M36I/E146K, and a particularly thermostable quadruple mutant, S32T/E156V/Q168R/L170I. The double aequorin mutants, S32T/E156V and M36I/E146K, retained 4 and 2.75 times more of their initial bioluminescence activity than wild-type aequorin during thermostability studies at 37 °C. Moreover, the quadruple aequorin mutant, S32T/E156V/Q168R/L170I, exhibited more thermostability at a variety of temperatures than either double mutant alone, producing the most thermostable aequorin mutant identified thus far.

  7. Image texture analysis of crushed wheat kernels

    Science.gov (United States)

    Zayas, Inna Y.; Martin, C. R.; Steele, James L.; Dempster, Richard E.

    1992-03-01

    The development of new approaches for wheat hardness assessment may impact the grain industry in marketing, milling, and breeding. This study used image texture features for wheat hardness evaluation. Application of digital imaging to grain for grading purposes is principally based on morphometrical (shape and size) characteristics of the kernels. A composite sample of 320 kernels for 17 wheat varieties were collected after testing and crushing with a single kernel hardness characterization meter. Six wheat classes where represented: HRW, HRS, SRW, SWW, Durum, and Club. In this study, parameters which characterize texture or spatial distribution of gray levels of an image were determined and used to classify images of crushed wheat kernels. The texture parameters of crushed wheat kernel images were different depending on class, hardness and variety of the wheat. Image texture analysis of crushed wheat kernels showed promise for use in class, hardness, milling quality, and variety discrimination.

  8. Genomic prediction for grain zinc and iron concentrations in spring wheat.

    Science.gov (United States)

    Velu, Govindan; Crossa, Jose; Singh, Ravi P; Hao, Yuanfeng; Dreisigacker, Susanne; Perez-Rodriguez, Paulino; Joshi, Arun K; Chatrath, Ravish; Gupta, Vikas; Balasubramaniam, Arun; Tiwari, Chhavi; Mishra, Vinod K; Sohu, Virinder Singh; Mavi, Gurvinder Singh

    2016-08-01

    Predictability estimated through cross-validation approach showed moderate to high level; hence, genomic selection approach holds great potential for biofortification breeding to enhance grain zinc and iron concentrations in wheat. Wheat (Triticum aestivum L.) is a major staple crop, providing 20 % of dietary energy and protein consumption worldwide. It is an important source of mineral micronutrients such as zinc (Zn) and iron (Fe) for resource poor consumers. Genomic selection (GS) approaches have great potential to accelerate development of Fe- and Zn-enriched wheat. Here, we present the results of large-scale genomic and phenotypic data from the HarvestPlus Association Mapping (HPAM) panel consisting of 330 diverse wheat lines to perform genomic predictions for grain Zn (GZnC) and Fe (GFeC) concentrations, thousand-kernel weight (TKW) and days to maturity (DTM) in wheat. The HPAM lines were phenotyped in three different locations in India and Mexico in two successive crop seasons (2011-12 and 2012-13) for GZnC, GFeC, TKW and DTM. The genomic prediction models revealed that the estimated prediction abilities ranged from 0.331 to 0.694 for Zn and from 0.324 to 0.734 for Fe according to different environments, whereas prediction abilities for TKW and DTM were as high as 0.76 and 0.64, respectively, suggesting that GS holds great potential in biofortification breeding to enhance grain Zn and Fe concentrations in bread wheat germplasm.

  9. Studies on the production of indole-3-acetic acid with auxin-heterotrophic mutants derived from cultured crown gall cells

    OpenAIRE

    Shigeaki, Atsumi; Department of Biology, College of General Education, University of Tokyo

    1980-01-01

    Mutants in the indole-3-acetic acid metabolism derived from cultured crown gall cells were tested to see whether they could utilize any one of eight indolic compounds in place of indole-3-acetic acid. Two auxin-heterotrophic mutant cell lines could not utilize indolepyruvic acid, but growth recovered when there was a supplement of indole-3-acetic acid. Indoleacetonitril and indoleacetaldoxime inhibited the growth of mutant cell lines and their parental crown gall cells. Cultured crown gall ce...

  10. The morphogenesis of herpes simplex virus type 1 in infected parental mouse L fibroblasts and mutant gro29 cells

    DEFF Research Database (Denmark)

    Jensen, Helle Lone; Norrild, Bodil

    2003-01-01

    Mutants of cell lines and viruses are important biological tools. The pathway of herpesvirus particle maturation and egress are contentious issues. The mutant gro29 line of mouse L cells is defective for egress of herpes simplex virus type 1 (HSV-1) virions, and a candidate for studies of virus...

  11. Mildew-resistant mutants induced in North American two- and six-rowed malting barley cultivars

    DEFF Research Database (Denmark)

    Molina-Cano, J.L.; Simiand, J.P.; Sopena, A.

    2003-01-01

    and were shown to have two new alleles at the mlo locus; these were designated, respectively, mlo31 and mlo32. Mutant URS2, showing partial resistance, was inherited as a dominant gene, but was not an allele at the Mla locus. The mean yield of each mutant was higher than that of its parental line...

  12. Molecular mapping of three nuclear male sterility mutant genes in cultivated sunflower (Helianthus annuus L.)

    Science.gov (United States)

    The nuclear male sterility (NMS) trait is a useful tool for sunflower (Helianthus annuus L.) breeding and genetic programs. Previously, we induced NMS mutants in cultivated line HA 89. The mutants possessed single recessive genes, ms6, ms7, and ms8, respectively, in NMS HA 89-872, NMS HA 89-552, and...

  13. Differences in alcohol-soluble protein from genetically altered wheat using capillary zone electrophoresis, one- and two-dimensional electrophoresis and a novel gluten matrix association factor analysis

    Science.gov (United States)

    Wheat protein composition and organization play interrelated roles in determining physical properties for technological purposes. In prior research, a number of isogenic wheat lines of Bobwhite that have high levels of expression of the native Dx5 and/or Dy10 high molecular weight subunits (HMW-GS)...

  14. History of wheat cultivars released by Embrapa in forty years of research

    Directory of Open Access Journals (Sweden)

    Eduardo Caierão

    2014-11-01

    Full Text Available In forty years of genetic breeding of wheat, Embrapa (Brazilian Agricultural Research Corporation has developed over a hundred new cultivars for different regions of Brazil. Information regarding identification of these cultivars is often requested from Embrapa breeders. Data on year of release, name of pre-commercial line, the cross made, and the company unit responsible for indication of the cultivar are not always easily accessible and are often scattered throughout different documents. The aim of this study was to conduct a historical survey of all the wheat cultivars released by Embrapa, aggregating the information in a single document. Since 1974, Embrapa has released 112 wheat cultivars, including 12 by Embrapa Soybean - CNPSo (Londrina, PR, 14 by Embrapa Cerrado - CPAC (Brasília, DF, 9 by Embrapa Agropecuária Oeste - CPAO (Dourados, MS, and 77 by Embrapa Wheat - CNPT (Passo Fundo, RS.

  15. Systems responses to progressive water stress in durum wheat.

    Directory of Open Access Journals (Sweden)

    Dimah Z Habash

    Full Text Available Durum wheat is susceptible to terminal drought which can greatly decrease grain yield. Breeding to improve crop yield is hampered by inadequate knowledge of how the physiological and metabolic changes caused by drought are related to gene expression. To gain better insight into mechanisms defining resistance to water stress we studied the physiological and transcriptome responses of three durum breeding lines varying for yield stability under drought. Parents of a mapping population (Lahn x Cham1 and a recombinant inbred line (RIL2219 showed lowered flag leaf relative water content, water potential and photosynthesis when subjected to controlled water stress time transient experiments over a six-day period. RIL2219 lost less water and showed constitutively higher stomatal conductance, photosynthesis, transpiration, abscisic acid content and enhanced osmotic adjustment at equivalent leaf water compared to parents, thus defining a physiological strategy for high yield stability under water stress. Parallel analysis of the flag leaf transcriptome under stress uncovered global trends of early changes in regulatory pathways, reconfiguration of primary and secondary metabolism and lowered expression of transcripts in photosynthesis in all three lines. Differences in the number of genes, magnitude and profile of their expression response were also established amongst the lines with a high number belonging to regulatory pathways. In addition, we documented a large number of genes showing constitutive differences in leaf transcript expression between the genotypes at control non-stress conditions. Principal Coordinates Analysis uncovered a high level of structure in the transcriptome response to water stress in each wheat line suggesting genome-wide co-ordination of transcription. Utilising a systems-based approach of analysing the integrated wheat's response to water stress, in terms of biological robustness theory, the findings suggest that each durum

  16. Ozone-Sensitive Arabidopsis Mutants with Deficiencies in Photorespiratory Enzymes.

    Science.gov (United States)

    Saji, Shoko; Bathula, Srinivas; Kubo, Akihiro; Tamaoki, Masanori; Aono, Mitsuko; Sano, Tomoharu; Tobe, Kazuo; Timm, Stefan; Bauwe, Hermann; Nakajima, Nobuyoshi; Saji, Hikaru

    2017-05-01

    An ozone-sensitive mutant was isolated from T-DNA-tagged lines of Arabidopsis thaliana. The T-DNA was inserted at a locus on chromosome 3, where two genes encoding glycolate oxidases, GOX1 and GOX2, peroxisomal enzymes involved in photorespiration, reside contiguously. The amounts of the mutant's foliar transcripts for these genes were reduced, and glycolate oxidase activity was approximately 60% of that of the wild-type plants. No difference in growth and appearance was observed between the mutant and the wild-type plants under normal conditions with ambient air under a light intensity of 100 µmol photons m-2 s-1. However, signs of severe damage, such as chlorosis and ion leakage from the tissue, rapidly appeared in mutant leaves in response to ozone treatment at a concentration of 0.2 µl l-1 under a higher light intensity of 350 µmol photons m-2 s-1 that caused no such symptoms in the wild-type plant. The mutant also exhibited sensitivity to sulfur dioxide and long-term high-intensity light. Arabidopsis mutants with deficiencies in other photorespiratory enzymes such as glutamate:glyoxylate aminotransferase and hydroxypyruvate reductase also exhibited ozone sensitivities. Therefore, photorespiration appears to be involved in protection against photooxidative stress caused by ozone and other abiotic factors under high-intensity light. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Biotechnology Assisted Wheat Breeding for Organic Agriculture

    DEFF Research Database (Denmark)

    Steffan, Philipp Matthias

    Common bunt of wheat is a major seed borne disease of wheat worldwide. It is of particular importance to organic farming, where systemic fungicides cannot be applied. The knowledge about location and mechanisms of common bunt resistance in wheat is limited, and only three race specific genes have...

  18. SODIUM HYDROXIDE TREATED WHEAT STRAW FOR SHEEP

    African Journals Online (AJOL)

    . Schwab & Satter (1976). Diets were fed twice daily at 08h30 and 15h30 at a level of ad lib + lO%. The untreated wheat straw wfuch ... A comparison of NaOH treated wheat straw iraed and not rinsed and untreated wheat strow fed to sheep.

  19. Growing Wheat. People on the Farm.

    Science.gov (United States)

    Department of Agriculture, Washington, DC. Office of Governmental and Public Affairs.

    This booklet, one in a series about life on modern farms, describes the daily life of the Don Riffel family, wheat farmers in Kansas. Beginning with early morning, the booklet traces the family's activities through a typical harvesting day in July, while explaining how a wheat farm is run. The booklet also briefly describes the wheat growing…

  20. Variation in Asparagine Concentration in Nebraska Wheat

    Science.gov (United States)

    The concentration of asparagine in wheat grain depends on both genetics and environmental factors, therefore study of different wheat cultivars, growing locations and crops years is needed for proper evaluation of potential risks of acrylamide formation in baked products made from Nebraska wheats. T...

  1. Soft durum wheat - a paradigm shift

    Science.gov (United States)

    Two traits define most aspects of wheat quality and utilization: kernel texture (hardness) and gluten. The former is far simpler genetically and is controlled by two genes, Puroindoline a and Puroindoline b. Durum wheat lacks puroindolines and has very hard kernels. As such, durum wheat when milled ...

  2. 21 CFR 137.195 - Crushed wheat.

    Science.gov (United States)

    2010-04-01

    ... the method prescribed in “Official Methods of Analysis of the Association of Official Analytical Chemists,” 13th Ed. (1980), section 7.002 under “Preparation of Sample—Official Final Action,” and section... crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the method...

  3. IMPROVING WHEAT TRITICUM AESTIVUM L. BY INTERSPECIFIC AND INTERGENERIC HYBRIDIZATION WITH POACEAE FAMILY SPECIES

    Directory of Open Access Journals (Sweden)

    Czaplicki A.Z.

    2012-08-01

    Full Text Available The related species of the family Poaceae (Triticeae are the source of unprecedented new genes that allow the extension of genetic variation of common wheat Triticum aestivum L. These species have similar homoeologous chromosomes and rDNA sequences very similar to T. aestivum L. [1-3]. This allows the introgression of alien genes and their incorporation into the genomes A, B and D of wheat, where they can function permanently in the wheat genetic systems. Many of them have already been transferred to the varieties of T. aestivum L. [4].The experimental material consisted of 28 lines of winter wheat obtained using the interspecific and intergeneric hybridization of T. aestivum L. with alien species T. durum Desf., T. timopheevii Zhuk., Lolium perenne L. and Aegilops speltoides Taush. Among them, 15 lines were developed from the cross-combination with tetraploid species (AABB T. durum Desf., 4 lines from the combination with other tetraploid species of different genome composition (AAGG T. timopheevii Zhuk., 4 lines from cross with L. perenne L. and 5 lines were the double hybrids (three-generic derived with two related species, T. durum Desf. (AABB and Ae. speltoides Taush (BB.The anther culture method was used for obtaining DH lines from these interspecific and intergeneric hybrids. In in vitro culture 124 green plants were regenerated. The method of cluster analysis grouped hybrids in terms of comprehensive general similarity of the studied traits.

  4. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.

    Science.gov (United States)

    Pislariu, Catalina I; Murray, Jeremy D; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; Benedito, Vagner A; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Chen, Rujin; Udvardi, Michael K

    2012-08-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.

  5. Genes for resistance to wheat powdery mildew in derivatives of Triticum Timopheevi and T. Carthlicum

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms; Jensen, C. J.

    1972-01-01

    and/or Ml designated genes; a temporary designation, Ml f ,is proposed for this gene. Gene Ml f is closely associated with a gene conditioning resistance to the stem rust fungus (Puccinia graminis f. sp. tritici), probably gene Sr9c. The winter wheat line TP 229 derived from Triticum carthlicum has......The winter wheat line TP 114 derived from CI 12633, a Triticum timopheevi derivative, has two unlinked dominant genes conditioning resistance to the powdery mildew fungus (Erysiphe graminis f. sp. tritici). One of the genes is identical to gene Pm2 (Ml u ). The other gene differs from the eleven Pm...

  6. Melhoramento do trigo: XVII. comportamento de linhagens de origem mexicana no estado de São Paulo Wheat breeding: XVII. evaluation of mexican inbred lines for the State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1988-01-01

    Full Text Available Em ensaios instalados nas Estações Experimentais de Monte Alegre do Sul e Tatuí e no município de Maracaí, de 1984 a 1986, estudaram-se 23 linhagens de trigo introduzidas do Centro Internacional de Melhoramento de Milho e Trigo (CIMMYT, México, juntamente com os cultivares IAC-24 e Anahuac. Analisaram-se os seguintes parâmetros: rendimento de grãos, altura de plantas, ciclo em dias da emergência ao florescimento e da emergência à maturação, porcentagem de plantas acamadas, comprimento da espiga, número de grãos por espiga e por espigueta e de espiguetas por espiga, resistência às ferrugens do colmo e da folha em condições de campo e de casa de vegetação, tolerância à toxicidade de Al3+ empregando-se soluções nutritivas, em laboratório. As linhas mexicanas, nominadas como IAC-215, IAC-216, IAC-217 e IAC-219, destacaram-se quanto à produção de grãos, porém não diferiram do cultivar controle IAC-24. As linhagens Festiguay-Tecolote 363.30.6.1 x Ciguena e [4777² x (Frontana/Kenya 58//Newthatch] Gabo/Pavon-76 mostraram-se resistentes às nove raças do agente causal da ferrugem-do-colmo e às seis raças do agente causal da ferrugem-da-folha. Os resultados evidenciaram que são fontes genéticas de grande valor para o programa de melhoramento do trigo no Instituto Agronômico os genótipos seguintes: IAC-215, IAC-216, Yaco"S", IAC-218, Dougga-Bluejay (T-4, Buckbuck"S" - Bulbul"S", com ciclo precoce; IAC-215, Yaco"S" e Jupateco 73-Bluejay, com porte baixo, Bonanza-Yecora F-70/Florence 35.70, com espigas compridas e maior número de espiguetas e de grãos por espiga; Jupateco 73-Bluejay, com grande fertilidade de espigas; [(IAS-58-IAS-55 x Alondra"S"/IAC-5 Alondra"S" - IAS-58 103A x Alondra"S"] e IAC-215, IAC-216, IAC-219 e IAC-24, com tolerância a 10 mg/litro de Al3+.Twenty three Mexican inbred lines and the cultivars IAC-24 and Anahuac were evaluated in field experiments carried out at Monte Alegre do Sul and Tatu

  7. Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus.

    Science.gov (United States)

    Elliott, Candace; Zhou, Fasong; Spielmeyer, Wolfgang; Panstruga, Ralph; Schulze-Lefert, Paul

    2002-10-01

    Homologs of barley Mlo are found in syntenic positions in all three genomes of hexaploid bread wheat, Triticum aestivum, and in rice, Oryza sativa. Candidate wheat orthologs, designated TaMlo-A1, TaMlo-B1, and TaMlo-D1, encode three distinct but highly related proteins that are 88% identical to barley MLO and appear to originate from the three diploid ancestral genomes of wheat. TaMlo-B1 and the rice ortholog, OsMlo2, are able to complement powdery mildew-resistant barley mlo mutants at the single-cell level. Overexpression of TaMlo-B1 or barley Mlo leads to super-susceptibility to the appropriate powdery mildew formae speciales in both wild-type barley and wheat. Surprisingly, overexpression of either Mlo or TaMlo-B1 also mediates enhanced fungal development to tested inappropriate formae speciales. These results underline a regulatory role for MLO and its wheat and rice orthologs in a basal defense mechanism that can interfere with forma specialis resistance to powdery mildews.

  8. Appraisal of wheat germplasm for adult plant resistance against stripe rust

    Directory of Open Access Journals (Sweden)

    Saleem Kamran

    2015-12-01

    Full Text Available The resurgence of wheat stripe rust is of great concern for world food security. Owing to resistance breakdown and the appearance of new virulent high-temperature adapted races of Puccinia striiformis f. sp. tritici (Pst, many high yielding commercial varieties in the country lost their yield potential. Searching for new sources of resistance is the best approach to mitigate the problem. Quantitative resistance (partial or adult plant or durable resistance is reported to be more stable than race specific resistance. In the current perusal, a repertoire of 57 promising wheat lines along with the KLcheck line Morocco, developed through hybridisation and selection of local and international lines with International Maize and Wheat Improvement Center (CIMMYT origin, were evaluated under natural field conditions at Nuclear Institute for Agriculture and Biology (NIAB during the 2012−2013 and 2013−2014 time periods. Final rust severity (FRS, the area under the rust progress curve (AURPC, the relative area under the rust progress curve (rAURPC, and the coefficient of infection (CI were unraveled to infer the level of quantitative resistance. Final rust severity was recorded when the susceptible check exhibited 100% severity. There were 21 lines which were immune (no disease, 16 which were resistant, five moderately resistant, two resistant-to-moderately resistant, one moderately resistant-to-moderately susceptible, 5 moderately susceptible-to-susceptible, one moderately susceptible, and six exhibited a susceptible response. Nevertheless, 51 lines exhibited a high level of partial resistance while the three lines, NW-5-1212-1, NW-7-30-1, and NW-7-5 all showed a moderate level of partial resistance based on FRS, while 54 lines, on the basis of AURPC and rAURPC, were identified as conferring a high level of partial resistance. Moreover, adult plant resistance was conferred by 47 wheat lines, based on CI value. It was striking that, 13 immune lines

  9. The Genetic Basis of Composite Spike Form in Barley and 'Miracle-Wheat'.

    Science.gov (United States)

    Poursarebani, Naser; Seidensticker, Tina; Koppolu, Ravi; Trautewig, Corinna; Gawroński, Piotr; Bini, Federica; Govind, Geetha; Rutten, Twan; Sakuma, Shun; Tagiri, Akemi; Wolde, Gizaw M; Youssef, Helmy M; Battal, Abdulhamit; Ciannamea, Stefano; Fusca, Tiziana; Nussbaumer, Thomas; Pozzi, Carlo; Börner, Andreas; Lundqvist, Udda; Komatsuda, Takao; Salvi, Silvio; Tuberosa, Roberto; Uauy, Cristobal; Sreenivasulu, Nese; Rossini, Laura; Schnurbusch, Thorsten

    2015-09-01

    Inflorescences of the tribe Triticeae, which includes wheat (Triticum sp. L.) and barley (Hordeum vulgare L.) are characterized by sessile spikelets directly borne on the main axis, thus forming a branchless spike. 'Compositum-Barley' and tetraploid 'Miracle-Wheat' (T. turgidum convar. compositum (L.f.) Filat.) display noncanonical spike-branching in which spikelets are replaced by lateral branch-like structures resembling small-sized secondary spikes. As a result of this branch formation 'Miracle-Wheat' produces significantly more grains per spike, leading to higher spike yield. In this study, we first isolated the gene underlying spike-branching in 'Compositum-Barley,' i.e., compositum 2 (com2). Moreover, we found that COM2 is orthologous to the branched head(t) (bh(t)) locus regulating spike branching in tetraploid 'Miracle-Wheat.' Both genes possess orthologs with similar functions in maize BRANCHED SILKLESS 1 (BD1) and rice FRIZZY PANICLE/BRANCHED FLORETLESS 1 (FZP/BFL1) encoding AP2/ERF transcription factors. Sequence analysis of the bh(t) locus in a collection of mutant and wild-type tetraploid wheat accessions revealed that a single amino acid substitution in the DNA-binding domain gave rise to the domestication of 'Miracle-Wheat.' mRNA in situ hybridization, microarray experiments, and independent qRT-PCR validation analyses revealed that the branch repression pathway in barley is governed through the spike architecture gene Six-rowed spike 4 regulating COM2 expression, while HvIDS1 (barley ortholog of maize INDETERMINATE SPIKELET 1) is a putative downstream target of COM2. These findings presented here provide new insights into the genetic basis of spike architecture in Triticeae, and have disclosed new targets for genetic manipulations aiming at boosting wheat's yield potential. Copyright © 2015 by the Genetics Society of America.

  10. Adverse Effects of Wheat Gluten.

    Science.gov (United States)

    Koning, Frits

    2015-01-01

    Man began to consume cereals approximately 10,000 years ago when hunter-gatherers settled in the fertile golden crescent in the Middle East. Gluten has been an integral part of the Western type of diet ever since, and wheat consumption is also common in the Middle East, parts of India and China as well as Australia and Africa. In fact, the food supply in the world heavily depends on the availability of cereal-based food products, with wheat being one of the largest crops in the world. Part of this is due to the unique properties of wheat gluten, which has a high nutritional value and is crucial for the preparation of high-quality dough. In the last 10 years, however, wheat and gluten have received much negative attention. Many believe that it is inherently bad for our health and try to avoid consumption of gluten-containing cereals; a gluten-low lifestyle so to speak. This is fueled by a series of popular publications like Wheat Belly; Lose the Wheat, Lose the Weight, and Find Your Path Back to Health. However, in reality, there is only one condition where gluten is definitively the culprit: celiac disease (CD), affecting approximately 1% of the population in the Western world. Here, I describe the complexity of the cereals from which gluten is derived, the special properties of gluten which make it so widely used in the food industry, the basis for its toxicity in CD patients and the potential for the development of safe gluten and alternatives to the gluten-free diet. © 2015 S. Karger AG, Basel.

  11. Resistance to eyespot of wheat, caused by Tapesia yallundae, derived from Thinopyrum intermedium homoeologous group 4 chromosome.

    Science.gov (United States)

    Li, H J; Arterburn, M; Jones, S S; Murray, T D

    2005-09-01

    Thinopyrum intermedium was identified previously as resistant to Tapesia yallundae, cause of eyespot of wheat. Using GUS-transformed isolates of T. yallundae as inoculum, we determined that wheat lines carrying Th. intermedium chromosome 4 Ai#2 or the short arm of chromosome 4 Ai#2 were as resistant to the pathogen as the eyespot-resistant wheat- Th. ponticum chromosome substitution line SS 767 (PI 611939) and winter wheat cultivar Madsen, which carries gene Pch 1 for eyespot resistance. Chromosome 4 E from Th. elongatum and chromosome 4 J from Th. bessarabicum did not confer resistance to T. yallundae. Genome-specific PCR primers confirmed the presence of Thinopyrum chromatin in these wheat- Thinopyrum lines. Genomic in situ hybridization using an St genomic probe from Pseudoroegneria strigosa demonstrated that chromosome 4 Ai#2 belongs to the J(s) genome of Thinopyrum. The eyespot resistance in the wheat- Th. intermedium lines is thus controlled by the short arm of this J(s) chromosome. This is the first report of resistance to T. yallundae controlled by a J(s) genome chromosome of Th. intermedium.

  12. Development of a doubled haploid system for wheat through wheat ...

    African Journals Online (AJOL)

    Twenty wheat genotypes were crossed with six maize varieties. The haploid embryos were rescued and cultured for plant regeneration and subsequently treated with colchicines for chromosome doubling. Half-diallel crosses were made in a cage and greenhouse and the embryos were cultured in the laboratory under ...

  13. Melhoramento do trigo: IV. Novas linhagens de trigo a partir de cruzamentos com o cultivar recorrente IAC-5 para o estado de São Paulo Wheat breeding: IV. Evaluation of hybrid lines obtained by using cultivar IAC-5 as the recurrent paren

    Directory of Open Access Journals (Sweden)

    João Carlos Felício

    1983-01-01

    Full Text Available Novas linhagens de trigo, obtidas a partir de cruzamentos e retrocruzamentos entre o cultivar recorrente IAC-5 e outros portadores de qualidades agronômicas, foram estudadas em ensaios de campo instalados na Fazenda Santa Inês, em Maracaí, em 1979 e 1980, na Fazenda Fachinal, em Paranapanema, em 1979, e na Estação Experimental de Capão Bonito em 1980. Foram feitas avaliações do rendimento de grãos, altura das plantas e resistência à ferrugem do colmo, em condições de campo, e estudos da tolerância ao alumínio, em soluções nutritivas, em laboratório. Na média geral dos experimentos, destacaram-se, quanto à produção, as linhagens 4-H-1695-1, 8-H-1695-2, 17-H-1695-3, 7-H-1694, e 2-H-1610, sendo a última mais adaptada a solos de boa fertilidade sem a presença de Al3+. As linhagens 2-H-1610 e 14-H-1699-3 foram as que revelaram maior resistência às raças de ferrugem do colmo (Puccinia graminis tritici, tanto em condições de campo como em casa de vegetação **. Quatro das linhagens estudadas apresentaram redução no porte quando comparadas com o cultivar IAC-5. As linhagens 7-H-1694, 8-H-1695-2, 17-H-1695-3 e ll-H-1698-2 foram tão tolerantes a 6 ppm de Al3+ em solução nutritiva quanto o cultivar IAC-5, não diferindo estatisticamente entre si.Wheat lines were obtained by crossing and backcrossing the recurrent cultivar IAC-5 with others showing good agronomic characteristics. They were studied in field experiments carried out at Santa Inês Farm, Maracaí, during the years of 1979 and 1980, in Fachinal Farm, Paranapanema, in 1979 and Capão Bonito Experimental Station, in 1980. Grain yield, plant height and resistance to stem rust were evaluated under field conditions, and tests of tolerance to rust and to aluminum were made in greenhouse and in laboratory, respectively. Considering the mean of all experiments in relation to grain yield the best lines were: 4-H-1695-1, S-H-1695-2, 17-H-1695-3, 7-H-1694 and 2-H-1610

  14. Effects of crop rotation on weed density, biomass and yield of wheat (Titicum aestivum L.)

    OpenAIRE

    A. Zareafeizabadi; H.R. Rostamzadeh

    2016-01-01

    In order to study the weed populations in wheat, under different crop rotations an experiment was carried out at Agricultural Research Station of Jolgeh Rokh, Iran. During growing season this project was done in five years, based on Randomized Complete Bloch Design with three replications, on Crop rotations included: wheat monoculture for the whole period (WWWWW), wheat- wheat- wheat- canola- wheat (WWWCW), wheat- sugar beet- wheat-sugar beet- wheat (WSWSW), wheat- potato- wheat- potato- whea...

  15. Spontaneous and divergent hexaploid triticales derived from common wheat × rye by complete elimination of D-genome chromosomes.

    Directory of Open Access Journals (Sweden)

    Hao Li

    Full Text Available Hexaploid triticale could be either synthesized by crossing tetraploid wheat with rye, or developed by crossing hexaploid wheat with a hexaploid triticale or an octoploid triticale.Here two hexaploid triticales with great morphologic divergence derived from common wheat cultivar M8003 (Triticum aestivum L. × Austrian rye (Secale cereale L. were reported, exhibiting high resistance for powdery mildew and stripe rust and potential for wheat improvement. Sequential fluorescence in situ hybridization (FISH and genomic in situ hybridization (GISH karyotyping revealed that D-genome chromosomes were completely eliminated and the whole A-genome, B-genome and R-genome chromosomes were retained in both lines. Furthermore, plentiful alterations of wheat chromosomes including 5A and 7B were detected in both triticales and additionally altered 5B, 7A chromosome and restructured chromosome 2A was assayed in N9116H and N9116M, respectively, even after selfing for several decades. Besides, meiotic asynchrony was displayed and a variety of storage protein variations were assayed, especially in the HMW/LMW-GS region and secalins region in both triticales.This study confirms that whole D-genome chromosomes could be preferentially eliminated in the hybrid of common wheat × rye, "genome shock" was accompanying the allopolyploidization of nascent triticales, and great morphologic divergence might result from the genetic variations. Moreover, new hexaploid triticale lines contributing potential resistance resources for wheat improvement were produced.

  16. Drought resistance in durum wheat

    NARCIS (Netherlands)

    Simane, B.

    1993-01-01

    Durum wheat is widely grown as a rainfed crop in the semi-arid tropics. Its production is low and variable from season to season due to frequent drought-stress. Characterization of target environment and employing both analytical and empirical breeding approaches would speed up progress in

  17. wheat flour (dubbie) in rats

    African Journals Online (AJOL)

    2 Central Food Technological Research Institute. Mysore 570013, Mysore, India. ABSTRACT: Anaemic rats were fed on diets containing sour dough bread. (Di/'0 dabbo) or porridge prepared from soy-fortified wheat flour (Dubbie) as the source of nonheme iron. The criteria used to determine the relative biological.

  18. Registration of Vision 30 Wheat

    Science.gov (United States)

    ‘Vision 30’ (Reg. No. CV-1062, PI 661153) hard red winter (HRW) wheat (Triticum aestivum L.) was developed and tested as VA06HRW-49 and released by the Virginia Agricultural Experiment Station in March 2010. Vision 30 was derived from the cross 92PAN1#33/VA97W-414. Vision 30 is high yielding, awned,...

  19. IPR 118 - Bread wheat cultivar

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Riede

    2007-01-01

    Full Text Available Wheat cultivar IPR 118 developed by IAPAR has a good yield potential and is widely adapted. It is earlymaturing and moderately tolerant to shattering and soil aluminum, moderately resistant to leaf rust and presents high glutenstrength for bread-making. The overall yield exceeded controls by 13%.

  20. Studies on mutant breeding of Hibiscus syriacus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hi Sup; Kim, Jin Kyu; Lee, Ki Un; Kim, Young Taik

    1997-01-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has such a characteristic of self-incompatibility that all the plant exist as natural hybrids and have heterogeneous genes. Many domestic 91 varieties of Hibiscus syriacus were collected. Radiosensitivity of H. Syriacus irradiated with {gamma}-ray was investigated in plant cuttings. The plant height was reduced by 45% in 5KR irradiated group, compared to control group. The radiation dose of 5KR could be recommended for mutation breeding of Hibiscus cuttings. Radiosensitivity of {gamma}-ray irradiated Hibiscus seed were investigated. The germination rate, survival rate and plant height was better in the 4KR irradiation plot than control. The radiation dose of 10{approx}12KR are recommended for mutation breeding of Hibiscus. Promising mutant lines were selected form the varieties of Hwarang, Wolsan no. 176, Ilpyondansim, Emille, Hanol, Yongkwang, Saeyongkwang, Chungmu, Imjinhong, Arang, Hungdansim-1 and Hongdansim-2. (author). 66 refs., 16 tabs., 13 figs.

  1. HULLED WHEAT FARMING IN DEVELI

    Directory of Open Access Journals (Sweden)

    Sancar Bulut

    2016-07-01

    Full Text Available Emmer (Triticum dicoccum and einkorn (T. monococcum cultivation has a long history in Anatolia. The crops, cultivated in Anatolia over thousands years, can still be found in some parts of the country, especially Develi in the Kayseri province. The total cultivation area of these crops was around 36 000 ha in 2015. The species is mainly cultivated in sloping and marginal lands by poor farmers, where no other crops can be economically grown. Cultivation area is rapidly declining, and if such trend continues, hulled wheats will be shortly completely wiped out from Turkey. Present-day distribution of emmer and spelt within Turkey is concentrated in countryside areas of Develi where traditional farming systems still survive. This group of wheats is called in Turkish the general name of ‘kaplìca’ which means ‘covered’ or ‘hulled’. More specifically, the tetraploid species (emmer is called ‘gacer’ in the Develi. Being a low-yielding type of wheat, emmer was replaced by other improved varieties of Triticum. This decrease was mainly due to the widespread use of improved cultivars of wheat and the adoption of new agricultural techniques, but also to social and economic factors. In fact, wheat yielded 2840 t/ha, whereas hulled wheats yielded 1200 t/ha. The cultivation of these two crops shows disadvantages that relate to the harvesting techniques used and the need to dehisce the spikelets to obtain the grain for human consumption. The increasing interest in low-input systems due to the actual ecological and economical situation has led to a growing interest in specific genetic variability. Organic agriculture and health food products have been gaining increasing popularity that has led to a renewed interest in hulled wheat species such as emmer and spelt. The objective of this study was to estimate agronomical and grain quality characteristics of some Turkey (Develi emmer landraces. This effort was motivated by the fact that autochthonous

  2. 7 CFR 810.2201 - Definition of wheat.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  3. Acceptability of Noodles Produced from Blends of Wheat, Acha and ...

    African Journals Online (AJOL)

    Acha (Digitaria exilis) and soybean (Glycine max) were processed into flours and used to substitute wheat flour (Titicum aestivm) as a composite flour at different proportions of 100:0:0 (Wheat); 75:25:25 (Wheat: Acha: Soybean); 75:25 (Wheat: Acha); 75:25 (Wheat: Soybean) and 50:50 (Acha: soybean). The formulated ...

  4. Wild Accessions and Mutant Resources

    DEFF Research Database (Denmark)

    Kawaguchi, Masayoshi; Sandal, Niels Nørgaard

    2014-01-01

    Lotus japonicus, Lotus burttii, and Lotus filicaulis are species of Lotus genus that are utilized for molecular genetic analysis such as the construction of a linkage map and QTL analysis. Among them, a number of mutants have been isolated from two wild accessions: L. japonicus Gifu B-129 and Miy...

  5. trategies for durum wheat fertilization

    Directory of Open Access Journals (Sweden)

    L. Plescuta

    2016-06-01

    Full Text Available Abstract. Durum wheat (Tr. durum Desf. ranks second in the world cereal production after common wheat. It differs from the other species with its high grain protein content, especially with gluten quality, which makes it suitable for producing spaghetti, macaroni, semolina flour and other products for the food industry. The purpose of this review was to summarize the results obtained in Bulgaria and in the world on the impact of mineral fertilization on yield and quality of durum wheat. All authors confirm that a significant increase of the grain yield in the last decades was achieved by both using new varieties and through optimal fertilization. Nitrogen as a nutrient is of great importance for wheat productivity. Nitrogen fertilization leads to stronger increase of leaf area, dry matter accumulation, content of protein and gluten. Accumulated nitrogen and phosphorus depend mainly on the formed dry matter. At low nitrogen rates yield increased at higher phosphorus level. Suppressant effect of high nitrogen and phosphorus rates on growth and development is emphasized in richer soil. A number of authors have found genotypic specificity regarding grain yield in dependence on the level of fertilization. Problems of genetically determined and improved grain quality under different durum wheat varieties are the subject of extensive research. The opinions of all authors are one-way for the positive influence of fertilization and in particular nitrogen on the technological quality parameters – protein content, wet and dry gluten, vitreoussness, carotenoids pigment, although the values vary significantly. The influence of fertilization is insignificant on the test weight.

  6. Effect of high molecular weight glutenin subunit composition in common wheat on dough properties and steamed bread quality.

    Science.gov (United States)

    Zhang, Pingping; Jondiko, Tom O; Tilley, Michael; Awika, Joseph M

    2014-10-01

    Steamed bread is a popular staple food in Asia with different flour quality requirements from pan bread. Little is known about how glutenin characteristics affect steamed bread quality. This work investigated how deletions of high-molecular-weight glutenin subunits (HMW-GS) influence gluten properties and Chinese steamed bread quality using 16 wheat lines grown in Texas. Although similar in protein content (134-140 mg g⁻¹), gluten composition and dough properties differed widely among the lines. Compared with non-deletion lines, deletion lines had lower (P bread quality (score, 60.8-65.0) with good elasticity and crumb structure. Deletion at Glu-B1y and/or Glu-D1y loci in high-strength hard wheat produced good dough properties for steamed bread. This suggests that wheat functionality for steamed bread can be improved by manipulating HMW-GS composition. © 2014 Society of Chemical Industry.

  7. GmDREB1 overexpression affects the expression of microRNAs in GM wheat seeds.

    Directory of Open Access Journals (Sweden)

    Qiyan Jiang

    Full Text Available MicroRNAs (miRNAs are small regulators of gene expression that act on many different molecular and biochemical processes in eukaryotes. To date, miRNAs have not been considered in the current evaluation system for GM crops. In this study, small RNAs from the dry seeds of a GM wheat line overexpressing GmDREB1 and non-GM wheat cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, 23 differentially expressed miRNAs in dry seeds were identified and confirmed between GM wheat and a non-GM acceptor. Notably, more differentially expressed tae-miRNAs between non-GM wheat varieties were found, indicating that the degree of variance between non-GM cultivars was considerably higher than that induced by the transgenic event. Most of the target genes of these differentially expressed miRNAs between GM wheat and a non-GM acceptor were associated with abiotic stress, in accordance with the product concept of GM wheat in improving drought and salt tolerance. Our data provided useful information and insights into the evaluation of miRNA expression in edible GM crops.

  8. Evaluation of the Effect of Crop Rotations on Yield and Yield Components of Bread Wheat (Triticum aestivum L. cv. Darya)

    OpenAIRE

    H. A. Fallahi; U. Mahmadyarov; H. Sabouri; M. Ezat-Ahmadi4

    2013-01-01

    Grain yield in wheat is influenced directly and indirectly by other plant characteristics. One of the main goals in wheat breeding programs is increase of grain yield. Considering the role of crop rotation in increasing grain yield, and in order to study the difference between crop rotations for wheat yield and yield components (Darya cultivar), an experiment was conducted with six rotation treatments (wheat-chickpea-wheat, wheat-cotton-wheat, wheat-watermelon-wheat, wheat-wheat-wheat, wheat-...

  9. WheatGenome.info: an integrated database and portal for wheat genome information.

    Science.gov (United States)

    Lai, Kaitao; Berkman, Paul J; Lorenc, Michal Tadeusz; Duran, Chris; Smits, Lars; Manoli, Sahana; Stiller, Jiri; Edwards, David

    2012-02-01

    Bread wheat (Triticum aestivum) is one of the most important crop plants, globally providing staple food for a large proportion of the human population. However, improvement of this crop has been limited due to its large and complex genome. Advances in genomics are supporting wheat crop improvement. We provide a variety of web-based systems hosting wheat genome and genomic data to support wheat research and crop improvement. WheatGenome.info is an integrated database resource which includes multiple web-based applications. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second-generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This system includes links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/.

  10. High production of wheat double haploids via anther culture

    Directory of Open Access Journals (Sweden)

    Kondić-Šipka Ankica

    2007-01-01

    Full Text Available Androgenous and regeneration abilities of 14 randomly selected F1 hybrids of wheat (Triticum aestivum L. were analyzed. Anthers were grown in vitro on a modified Potato-2 inductive medium. The hybrid NS111-95/Ana had the highest average values for androgenous capacity (33% and callus yield (119%, while the hybrid NS 92-250/Tiha had the lowest values for these traits (9 and 21%, respectively. Seven genotypes (50% had a frequency of green plants relative to the number of isolated anthers of over 10%, with the highest frequency of 21.3% (NS111-95/Sremica. This hybrid produced 12.8 doubled haploid (DH lines per spike used for isolation. In the other genotypes, the number of produced DH lines per spike ranged from 1 (30­Sc.Smoc.88-89/Hays-2 to 11.2 (NS111-95/Ana. As half of the randomly selected genotypes exhibited high green plant regeneration ability and a high production of DH lines per spike, it can be concluded that in vitro anther culture can be successfully used in breeding programs for rapid production of homozygous wheat lines.

  11. PIK3CA mutant tumors depend on oxoglutarate dehydrogenase

    Science.gov (United States)

    Ilic, Nina; Birsoy, Kıvanç; Aguirre, Andrew J.; Kory, Nora; Pacold, Michael E.; Singh, Shambhavi; Moody, Susan E.; DeAngelo, Joseph D.; Spardy, Nicole A.; Freinkman, Elizaveta; Weir, Barbara A.; Cowley, Glenn S.; Root, David E.; Asara, John M.; Vazquez, Francisca; Widlund, Hans R.; Sabatini, David M.; Hahn, William C.

    2017-01-01

    Oncogenic PIK3CA mutations are found in a significant fraction of human cancers, but therapeutic inhibition of PI3K has only shown limited success in clinical trials. To understand how mutant PIK3CA contributes to cancer cell proliferation, we used genome scale loss-of-function screening in a large number of genomically annotated cancer cell lines. As expected, we found that PIK3CA mutant cancer cells require PIK3CA but also require the expression of the TCA cycle enzyme 2-oxoglutarate dehydrogenase (OGDH). To understand the relationship between oncogenic PIK3CA and OGDH function, we interrogated metabolic requirements and found an increased reliance on glucose metabolism to sustain PIK3CA mutant cell proliferation. Functional metabolic studies revealed that OGDH suppression increased levels of the metabolite 2-oxoglutarate (2OG). We found that this increase in 2OG levels, either by OGDH suppression or exogenous 2OG treatment, resulted in aspartate depletion that was specifically manifested as auxotrophy within PIK3CA mutant cells. Reduced levels of aspartate deregulated the malate–aspartate shuttle, which is important for cytoplasmic NAD+ regeneration that sustains rapid glucose breakdown through glycolysis. Consequently, because PIK3CA mutant cells exhibit a profound reliance on glucose metabolism, malate–aspartate shuttle deregulation leads to a specific proliferative block due to the inability to maintain NAD+/NADH homeostasis. Together these observations define a precise metabolic vulnerability imposed by a recurrently mutated oncogene. PMID:28396387

  12. Reinforcement Effect of Alkali-Hydrolyzed Wheat Gluten and Shear-Degraded Wheat Starch in Carboxylated Styrene-Butadiene Composites

    Science.gov (United States)

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  13. Transformation of common wheat (Triticum aestivum L.) with avenin-like b gene improves flour mixing properties.

    Science.gov (United States)

    Ma, Fengyun; Li, Miao; Yu, Lingling; Li, Yin; Liu, Yunyi; Li, Tingting; Liu, Wei; Wang, Hongwen; Zheng, Qian; Li, Kexiu; Chang, Junli; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan

    2013-01-01

    Avenin-like b proteins may contribute to the viscoelastic properties of wheat dough via inter-chain disulphide bonds, due to their rich cysteine residues. In order to clarify the effect of the avenin-like b proteins on the functional properties of wheat flour, the functional and biochemical properties of wheat flour were analyzed in three transgenic wheat lines overexpressing the avenin-like b gene using the sodium dodecyl sulfate sedimentation (SDSS) test, Mixograph and size exclusion-high performance liquid chromatography (SE-HPLC) analysis. The results of the SDSS test and Mixograph analysis demonstrated that the overexpression of avenin-like b proteins in transgenic lines led to significantly increased SDSS volume and improved flour mixing properties. The results of SE-HPLC analysis of the gluten proteins in wheat flour demonstrated that the improvement in transgenic line flour properties was associated with the increased proportion of large polymeric proteins due to the incorporation of overexpressed avenin-like b proteins into the glutenin polymers. These results could help to understand the influence and mechanism of avenin-like b proteins on the functional properties of wheat flour.

  14. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Directory of Open Access Journals (Sweden)

    Huali Huang

    Full Text Available Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L. DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  15. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  16. Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  17. Evaluation of high yielding mutants of Hordeumvulgare cultivar Izgrev

    Directory of Open Access Journals (Sweden)

    B. Dyulgerova

    2017-06-01

    Full Text Available Abstract. Seeds of Hordeum vulgare L. cultivar Izgrev were treated with different concentrations of sodium azide to induce genetic variability for the selection of genotypes with improved traits. After passing through different stages of selection, 18 promising mutants were selected for further studies. Eighteen mutants and their parent and national standard cultivar Veslets were evaluated in Complete Block Design with four replications. The research was conducted in 2013 – 2014 and 2014 – 2015 growing seasons in the experimental field of the Institute of Agriculture Karnobat, Southeastern Bulgaria. The characters studied included days to heading, plant height, lodging, peduncle length, spike length, awn length, spikelet number per spike, grain number per spike, grain weight per spike, 1000 grains weight and grain yield. Wide variation among mutant lines was observed for different traits. Mutant lines M4/16 and M 3/14 produced significantly greater grain yield than the parent and standard cultivar. Positive changes in lodging tolerance, grain number per spike, grain weight per spike, 1000 grains weightwere also observed. This study showed positive effects in the use of mutation in inducing improvement for grain yield and some yield related traits.

  18. Cytomolecular characterization of cultivars and landraces of wheat tolerant and sensitive to aluminum toxicity

    Directory of Open Access Journals (Sweden)

    Érica Cristina de Oliveira

    2017-08-01

    Full Text Available ABSTRACT Karyotyping and chromosome complement knowledge are a prerequisite for cytogenetic mapping. The aim of this study was to characterize 1 common wheat cultivar (BH 1146 and 4 durum wheat genotypes (IAC 1003, Langdon, P19 and P33 from the breeding program of the Agronomic Institute of Campinas (IAC, using karyotype analysis together with Chromomycin A3/4’-6-Diamidino-2-phenylindole (CMA/DAPI banding techniques for longitudinal characterization of chromosomes and fluorescence in situ hybridization (FISH in the mapping of the 45S rDNA region. Durum wheat chromosome complement number was 2n = 4x = 28 with the following karyotype formula: 22m + 6sm. Common wheat chromosome complement number was 2n = 6x = 42 with the following karyotype formula: 34m + 8sm. Tetraploid and hexaploid genomes presented 2 pairs of chromosomes with secondary constriction and terminal satellites. All 5 wheat genotypes exhibited CMA and DAPI bands and signals in the 45S rDNA regions (FISH-probe pTa71 which varied in number and location on the chromosome complement. All lines showed greater amount of DAPI bands than CMA bands. The FISH-rDNA 45S in situ hybridization signals, related to the nucleolar organizing regions (NORs, were observed in common wheat, presenting signals for the 45S rDNA sequence in 3 pairs of chromosomes. Durum wheat presented signals in 2 pairs. The CMA bands coincided with the location of 45S rDNA region in the chromosomes of durum wheat. The techniques were efficient for chromosomal characterization of all 5 genotypes.

  19. Adult plant leaf rust resistance derived from the soft red winter wheat cultivar Caldwell maps to chromosome 3BS

    Science.gov (United States)

    'Caldwell' is a U.S. soft red winter wheat that has partial, adult plant resistance to the leaf rust pathogen Puccinia triticina. A line of 'Thatcher*2/Caldwell' with adult plant resistance derived from Caldwell was crossed with 'Thatcher' to develop a population of recombinant inbred lines (RILs). ...

  20. Divergent Development of Hexaploid Triticale by a Wheat - Rye -Psathyrostachys huashanica Trigeneric Hybrid Method.

    Directory of Open Access Journals (Sweden)

    Houyang Kang

    Full Text Available Hexaploid triticale is an important forage crop and a promising energy plant. Some forms were previously reported for developing the hexaploid triticale, such as crossing tetraploid wheat or hexaploid wheat with rye, crossing hexaploid triticale and/or hexaploid wheat with octoploid triticale, and spontaneously appearing in the selfed progenies of octoploid triticale. In the present study, we developed an effective method for production of diverse types of hexaploid triticale via wheat-rye-Psathyrostachys huashanica trigeneric hybrid. Genomic in situ hybridization (GISH and fluorescence in situ hybridization (FISH karyotyping revealed that D genome chromosomes were completely eliminated and the whole A, B, and R genome chromosomes were retained in three lines. More interestingly, the composite genome of the line K14-489-2 consisted of complete A and B genomes and chromosomes 1D, 2R, 3R, 4R, 5R, 6R, and 7R, that of line K14-491-2 was 12 A-genome (1A-6A, 14 B-genome (1B-7B, 12 R-genome (1R-3R, 5R-7R, and chromosomes 1D and 3D, and that of the line K14-547-1 had 26A/B and 14R chromosomes, plus one pair of centric 6BL/2DS translocations. This finding implies that some of D genome chromosomes can be spontaneously and stably incorporated into the hexaploid triticale. Additionally, a variety of high-molecular-weight glutenin subunits (HMW-GS compositions were detected in the six hexaploid triticale lines, respectively. Besides, compared with its recurrent triticale parent Zhongsi828, these lines showed high level of resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst pathogens prevalent in China, including V26/Gui 22. These new hexaploid triticales not only enhanced diversification of triticale but also could be utilized as valuable germplasm for wheat improvement.

  1. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties.

    Directory of Open Access Journals (Sweden)

    Rohit Kumar

    Full Text Available Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH and transition temperature (ΔT, showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have

  2. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties.

    Science.gov (United States)

    Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika

    2016-01-01

    Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch

  3. Identification of the 1RS rye chromosomal segment in wheat by RAPD analysis.

    Science.gov (United States)

    Iqbal, M J; Rayburn, A L

    1995-11-01

    The introgression of rye DNA into the wheat genome was studied using random decamer and specific primers with the polymerase chain reaction (PCR). DNA from paired near-isolines in Chisholm and Arkan backgrounds differing with respect to the presence of a 1 RS.1 BL translocation was amplified with 120 arbitrary sequence primers. Two of the primers (OPR 19 and OPJ07) amplified rye-specific DNA fragments. The OPR19 primer amplified a 1.35-kb fragment that appeared to be specific to the 1 RS.1 BL translocation, based on its presence only in lines carrying the 1 RS. 1 BL translocation. A fragment of the same size was also amplified in 1 RS.1 AL translocation lines. This 1 RS. 1 BL marker locus was designated Ximc 1. The other primer, OPJ07, amplified a 1.2-kb DNA sequence, that was designated Ximc 2, specific to the wheat-rye translocation in various wheat backgrounds. The sequences of the two marker loci were found to be different from each other. The Ximc 1 locus was a low-copy sequence which was also present in Balboa rye genomic DNA. Through the use of specific primers, the presence of the rye-specific marker was confirmed in hexaploid as well as in tetraploid wheat backgrounds. The use of RAPDs for the study of smaller alien introgressions into wheat is discussed.

  4. Characterization of the Wheat Leaf Metabolome during Grain Filling and under Varied N-Supply

    Directory of Open Access Journals (Sweden)

    Elmien Heyneke

    2017-11-01

    Full Text Available Progress in improving crop growth is an absolute goal despite the influence multifactorial components have on crop yield and quality. An Avalon × Cadenza doubled-haploid wheat mapping population was used to study the leaf metabolome of field grown wheat at weekly intervals during the time in which the canopy contributes to grain filling, i.e., from anthesis to 5 weeks post-anthesis. Wheat was grown under four different nitrogen supplies reaching from residual soil N to a luxury over-fertilization (0, 100, 200, and 350 kg N ha−1. Four lines from a segregating doubled haploid population derived of a cross of the wheat elite cvs. Avalon and Cadenza were chosen as they showed pairwise differences in either N utilization efficiency (NUtE or senescence timing. 108 annotated metabolites of primary metabolism and ions were determined. The analysis did not provide genotype specific markers because of a remarkable stability of the metabolome between lines. We speculate that the reason for failing to identify genotypic markers might be due to insufficient genetic diversity of the wheat parents and/or the known tendency of plants to keep metabolome homeostasis even under adverse conditions through multiple adaptations and rescue mechanism. The data, however, provided a consistent catalogue of metabolites and their respective responses to environmental and developmental factors and may bode well for future systems biology approaches, and support plant breeding and crop improvement.

  5. Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat.

    Science.gov (United States)

    Zhao, Na; Zhu, Bo; Li, Mingjiu; Wang, Li; Xu, Liying; Zhang, Huakun; Zheng, Shuangshuang; Qi, Bao; Han, Fangpu; Liu, Bao

    2011-07-01

    Allopolyploidy has played a prominent role in organismal evolution, particularly in angiosperms. Allohexaploidization is a critical step leading to the formation of common wheat as a new species, Triticum aestivum, as well as for bestowing its remarkable adaptability. A recent study documented that the initial stages of wheat allohexaploidization was associated with rampant genetic and epigenetic instabilities at genomic regions flanking a retrotransposon family named Veju. Although this finding is in line with the prevailing opinion of rapid genomic instability associated with nascent plant allopolyploidy, its relevance to speciation of T. aestivum remains unclear. Here, we show that genetic instability at genomic regions flanking the Veju, flanking a more abundant retroelement BARE-1, as well as at a large number of randomly sampled genomic loci, is all extremely rare or nonexistent in preselected individuals representing three sets of independently formed nascent allohexaploid wheat lines, which had a transgenerationally stable genomic constitution analogous to that of T. aestivum. In contrast, extensive and transgenerationally heritable repatterning of DNA methylation at all three kinds of genomic loci were reproducibly detected. Thus, our results suggest that rampant genetic instability associated with nascent allohexaploidization in wheat likely represents incidental and anomalous phenomena that are confined to by-product individuals inconsequential to the establishment of the newly formed plants toward speciation of T. aestivum; instead, extensive and heritable epigenetic remodeling coupled with preponderant genetic stability is generally associated with nascent wheat allohexaploidy, and therefore, more likely a contributory factor to the speciation event(s).

  6. Analysis of Deoxynivalenol and Deoxynivalenol-3-glucoside in Hard Red Spring Wheat Inoculated with Fusarium Graminearum

    Directory of Open Access Journals (Sweden)

    Maribel Ovando-Martínez

    2013-12-01

    Full Text Available Deoxynivalenol (DON is a mycotoxin affecting wheat quality. The formation of the “masked” mycotoxin deoxinyvalenol-3-glucoside (D3G results from a defense mechanism the plant uses for detoxification. Both mycotoxins are important from a food safety point of view. The aim of this work was to analyze DON and D3G content in inoculated near-isogenic wheat lines grown at two locations in Minnesota, USA during three different years. Regression analysis showed positive correlation between DON content measured with LC and GC among wheat lines, locality and year. The relationship between DON and D3G showed a linear increase until a certain point, after which the DON content and the D3G increased. Wheat lines having higher susceptibility to Fusarium showed the opposite trend. ANOVA demonstrated that the line and location have a greater effect on variation of DON and D3G than do their interaction among years. The most important factor affecting DON and D3G was the growing location. In conclusion, the year, environmental conditions and location have an effect on the D3G/DON ratio in response to Fusarium infection.

  7. Greenhouse studies reveal increased aggressiveness of emergent Canadian Fusarium graminearum chemotypes in wheat

    Science.gov (United States)

    The role of Fusarium graminearum trichothecene-chemotypes in disease outcomes was evaluated in a series of wheat lines with different levels of resistance to Fusarium Head Blight (FHB). Four inocula, each consisting of a composite of four strains with either 15-acetyldeoxynivalenol (ADON) chemotypes...

  8. A novel nitrogen-dependent gene associates with the lesion mimic trait in wheat

    Science.gov (United States)

    Lesion mimic (LM) refers to hypersensitive reaction-like (HRL) symptoms that appears on leaf tissue in the absence of plant pathogens. In a wheat line P7001, LM showed up on the leaves under the 0 g nitrogen (N) treatment, but disappeared when sufficient N was supplied, suggesting that LM is N-respo...

  9. Study of wheat protein based materials

    Science.gov (United States)

    Ye, Peng

    Wheat gluten is a naturally occurring protein polymer. It is produced in abundance by the agricultural industry, is biodegradable and very inexpensive (less than $0.50/lb). It has unique viscoelastic properties, which makes it a promising alternative to synthetic plastics. The unplasticized wheat gluten is, however, brittle. Plasticizers such as glycerol are commonly used to give flexibility to the articles made of wheat gluten but with the penalty of greatly reduced stiffness. Former work showed that the brittleness of wheat gluten can also be improved by modifying it with a tri-thiol additive with no penalty of reduced stiffness. However, the cost of the customer designed tri-thiol additive was very high and it was unlikely to make a cost effective material from such an expensive additive. Here we designed a new, inexpensive thiol additive called SHPVA. It was synthesized from polyvinyl alcohol (PVA) through a simple esterification reaction. The mechanical data of the molded wheat gluten/SHPVA material indicated that wheat gluten was toughened by SHPVA. As a control, the wheat gluten/PVA material showed no improvement compared with wheat gluten itself. Several techniques have been used to characterize this novel protein/polymer blend. Differential scanning calorimetric (DSC) study showed two phases in both wheat gluten/PVA and wheat gluten/SHPVA material. However, scanning electron microscope (SEM) pictures indicated that PVA was macroscopically separated from wheat gluten, while wheat gluten/SHPVA had a homogeneous look. The phase image from the atomic force microscope (AFM) gave interesting contrast based on the difference in the mechanical properties of these two phases. The biodegradation behavior of these protein/polymer blends was examined in soil. SHPVA was not degraded in the time period of the experiment. Wheat gluten/SHPVA degraded slower than wheat gluten. We also developed some other interesting material systems based on wheat gluten, including the

  10. Evaluating spectral indices for winter wheat health status monitoring ...

    African Journals Online (AJOL)

    vegetation index relationships for winter wheat in order to determine indices that are sensitive to changes in the wheat health status. The indices were derived from Landsat 8 scenes over the wheat growing area across Bloemfontein, South Africa.

  11. Meiotic behaviour of tetraploid wheats (Triticum turgidum L.) and ...

    Indian Academy of Sciences (India)

    Meiotic aberrations such as laggards, chromosome bridges, micronuclei, abnormal cytokines, chromatin pulling and meiotic restitution were observed and the studied genotypes were accordingly ranked as follows: triticale > synthetic hexaploid wheats > tetraploid wheats possessing meiotic restitution > tetraploid wheats ...

  12. Wheat yield dynamics: a structural econometric analysis.

    Science.gov (United States)

    Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin

    2007-10-15

    In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.

  13. The case of the missing wheat

    Science.gov (United States)

    Lobell, David B.

    2012-06-01

    regions. The recent rise in prices has reversed the decline, but technologies take a long time to develop and get adopted [4]. So yield increases are in the pipeline but have not arrived yet. A second narrative relates to farm policy. Farmers always have an incentive to improve profits, but this does not always mean raising yields, especially if policies encourage reducing input use. In Europe, where much of the stagnation identified by Lin and Huybers [1] is found, fertilizer rates have actually declined in recent years in response to policies. One line of evidence in support of this narrative is that total factor productivity appears to be rising steadily in many regions, including Europe, even as yields have stagnated [5]. A third story relates to biophysical limits. This narrative declares that the genetic potential of crops has not improved for a long time, and most yield growth in the past two decades was related to agronomic improvements [6, 7]. But once average yields approach genetic potential, it becomes very difficult to further raise yields, and yields will be stuck regardless of price until innovation raises genetic potential [8]. If innovation is simply a function of prices, then this story folds into the first, but it could also be that returns on breeding are becoming much harder to achieve relative to the transformative effect of dwarfing genes and rust resistance that occurred in the last century. In the fourth corner is climate change. As Lin and Huybers [1] discuss, many of their stagnating countries have experienced adverse climate trends in the past few decades. Wheat has the lowest temperature optimum of any major crop, and has been among the most affected by climate change so far [9]. So maybe the stagnation is a sign of worse things to come. Interestingly though, they find stagnation even for Northern European countries where recent warming is more likely to have helped than hurt yields [10]. The easy answer is that a combination of these factors

  14. Identification of An Arsenic Tolerant Double Mutant With a Thiol-Mediated Component And Increased Arsenic Tolerance in PhyA Mutants

    Energy Technology Data Exchange (ETDEWEB)

    Sung, D.Y.; Lee, D.; Harris, H.; Raab, A.; Feldmann, J.; Meharg, A.; Kumabe, B.; Komives, E.A.; Schroeder, J.I.; /SLAC, SSRL /Sydney U. /Aberdeen U. /UC, San Diego

    2007-04-06

    A genetic screen was performed to isolate mutants showing increased arsenic tolerance using an Arabidopsis thaliana population of activation tagged lines. The most arsenic-resistant mutant shows increased arsenate and arsenite tolerance. Genetic analyses of the mutant indicate that the mutant contains two loci that contribute to arsenic tolerance, designated ars4 and ars5. The ars4ars5 double mutant contains a single T-DNA insertion, ars4, which co-segregates with arsenic tolerance and is inserted in the Phytochrome A (PHYA) gene, strongly reducing the expression of PHYA. When grown under far-red light conditions ars4ars5 shows the same elongated hypocotyl phenotype as the previously described strong phyA-211 allele. Three independent phyA alleles, ars4, phyA-211 and a new T-DNA insertion allele (phyA-t) show increased tolerance to arsenate, although to a lesser degree than the ars4ars5 double mutant. Analyses of the ars5 single mutant show that ars5 exhibits stronger arsenic tolerance than ars4, and that ars5 is not linked to ars4. Arsenic tolerance assays with phyB-9 and phot1/phot2 mutants show that these photoreceptor mutants do not exhibit phyA-like arsenic tolerance. Fluorescence HPLC analyses show that elevated levels of phytochelatins were not detected in ars4, ars5 or ars4ars5, however increases in the thiols cysteine, gamma-glutamylcysteine and glutathione were observed. Compared with wild type, the total thiol levels in ars4, ars5 and ars4ars5 mutants were increased up to 80% with combined buthionine sulfoximine and arsenic treatments, suggesting the enhancement of mechanisms that mediate thiol synthesis in the mutants. The presented findings show that PHYA negatively regulates a pathway conferring arsenic tolerance, and that an enhanced thiol synthesis mechanism contributes to the arsenic tolerance of ars4ars5.

  15. Prehaustorial and posthaustorial resistance to wheat leaf rust in diploid wheat

    NARCIS (Netherlands)

    Anker, C.C.

    2001-01-01

    In modern wheat cultivars, resistance to wheat leaf rust, Puccinia triticina , is either based on hypersensitivity resistance or on partial resistance. Hypersensitivity resistance in wheat is monogenic, often complete and posthaustorial: it is induced after the

  16. Bread Wheat Quality: Some Physical, Chemical and Rheological Characteristics of Syrian and English Bread Wheat Samples

    Directory of Open Access Journals (Sweden)

    Abboud Al-Saleh

    2012-11-01

    Full Text Available The relationships between breadmaking quality, kernel properties (physical and chemical, and dough rheology were investigated using flours from six genotypes of Syrian wheat lines, comprising both commercially grown cultivars and advanced breeding lines. Genotypes were grown in 2008/2009 season in irrigated plots in the Eastern part of Syria. Grain samples were evaluated for vitreousness, test weight, 1000-kernel weight and then milled and tested for protein content, ash, and water content. Dough rheology of the samples was studied by the determination of the mixing time, stability, weakness, resistance and the extensibility of the dough. Loaf baking quality was evaluated by the measurement of the specific weight, resilience and firmness in addition to the sensory analysis. A comparative study between the six Syrian wheat genotypes and two English flour samples was conducted. Significant differences were observed among Syrian genotypes in vitreousness (69.3%–95.0%, 1000-kernel weight (35.2–46.9 g and the test weight (82.2–88.0 kg/hL. All samples exhibited high falling numbers (346 to 417 s for the Syrian samples and 285 and 305 s for the English flours. A significant positive correlation was exhibited between the protein content of the flour and its absorption of water (r = 0.84 **, as well as with the vitreousness of the kernel (r = 0.54 *. Protein content was also correlated with dough stability (r = 0.86 **, extensibility (r = 0.8 **, and negatively correlated with dough weakness (r = −0.69 **. Bread firmness and dough weakness were positively correlated (r = 0.66 **. Sensory analysis indicated Doumah-2 was the best appreciated whilst Doumah 40765 and 46055 were the least appreciated which may suggest their suitability for biscuit preparation rather than bread making.

  17. Genotypic effects on sugar and by-products of liquid hydrolysates and on saccharification of acid-insoluble residues of from wheat straw.

    Science.gov (United States)

    Ohno, Ryoko; Teramura, Hiroshi; Ogino, Chiaki; Kondo, Akihiko; Takumi, Shigeo

    2018-01-17

    Wheat straw is one of the major attractive resources for low-cost raw materials for renewable energy, biofuels and biochemicals. However, like other sources of lignocellulosic biomass, straw is a heterogeneous material due to its mixed origin from different tissue and cell types. Here, to examine the genotypic effects on biorefinery usage of wheat straw, straw obtained from different wheat cultivars and experimental lines was pretreated with dilute acid. Significant differences between cultivars were observed in the concentrations of glucose and toxic by-products of the liquid hydrolysates. A higher content of xylose than glucose was found in liquid hydrolysates from wheat straw, and the xylose content appeared to be affected by both environmental and genetic factors. Analysis using chromosome substitution lines of the common wheat cultivar Chinese Spring showed that chromosomes 2A and 3A from other wheat cultivars, Hope and Timstein, significantly increased the xylose content. However, no significant relationship was observed between the liquid hydrolysate xylose content and the glucose content obtained from enzymatic saccharification of the acid-insoluble residue. These results highlight the potential of wheat breeding to improve biomass-related traits in wheat straw.

  18. Effect of warming temperatures on US wheat yields.

    Science.gov (United States)

    Tack, Jesse; Barkley, Andrew; Nalley, Lawton Lanier

    2015-06-02

    Climate change is expected to increase future temperatures, potentially resulting in reduced crop production in many key production regions. Research quantifying the complex relationship between weather variables and wheat yields is rapidly growing, and recent advances have used a variety of model specifications that differ in how temperature data are included in the statistical yield equation. A unique data set that combines Kansas wheat variety field trial outcomes for 1985-2013 with location-specific weather data is used to analyze the effect of weather on wheat yield using regression analysis. Our results indicate that the effect of temperature exposure varies across the September-May growing season. The largest drivers of yield loss are freezing temperatures in the Fall and extreme heat events in the Spring. We also find that the overall effect of warming on yields is negative, even after accounting for the benefits of reduced exposure to freezing temperatures. Our analysis indicates that there exists a tradeoff between average (mean) yield and ability to resist extreme heat across varieties. More-recently released varieties are less able to resist heat than older lines. Our results also indicate that warming effects would be partially offset by increased rainfall in the Spring. Finally, we find that the method used to construct measures of temperature exposure matters for both the predictive performance of the regression model and the forecasted warming impacts on yields.

  19. Infestation of transgenic powdery mildew-resistant wheat by naturally occurring insect herbivores under different environmental conditions.

    Directory of Open Access Journals (Sweden)

    Fernando Álvarez-Alfageme

    Full Text Available A concern associated with the growing of genetically modified (GM crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L. and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low.

  20. Multimodel ensembles of wheat growth

    DEFF Research Database (Denmark)

    Martre, Pierre; Wallach, Daniel; Asseng, Senthold

    2015-01-01

    , but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24...... are applicable to other crop species, and hypothesize that they apply more generally to ecological system models....

  1. Interference of allelopathic wheat with different weeds.

    Science.gov (United States)

    Zhang, Song-Zhu; Li, Yong-Hua; Kong, Chui-Hua; Xu, Xiao-Hua

    2016-01-01

    Interference of allelopathic wheat with weeds involves a broad spectrum of species either independently or synergistically with competitive factors. This study examined the interference of allelopathic wheat with 38 weeds in relation to the production of allelochemical 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in wheat with and without root-root interactions. There were substantial differences in weed biomass and DIMBOA concentration in wheat-weed coexisting systems. Among 38 weeds, nine weeds were inhibited significantly by allelopathic wheat but the other 29 weeds were not. DIMBOA levels in wheat varied greatly with weed species. There was no significant relationship between DIMBOA levels and weed suppression effects. Root segregation led to great changes in weed inhibition and DIMBOA level. Compared with root contact, the inhibition of eight weeds was lowered significantly, while significantly increased inhibition occurred in 11 weeds with an increased DIMBOA concentration under root segregation. Furthermore, the production of DIMBOA in wheat was induced by the root exudates from weeds. Interference of allelopathic wheat with weeds not only is determined by the specificity of the weeds but also depends on root-root interactions. In particular, allelopathic wheat may detect certain weeds through the root exudates and respond by increasing the allelochemical, resulting in weed identity recognition. © 2015 Society of Chemical Industry.

  2. Photosynthesis of spring wheat (Triticum aestivum) in rainfed ...

    African Journals Online (AJOL)

    . ... observed environments. These physiological results of wheat genotypes can be used to find adaptive and potential genotypes for changing environment. Keywords: Wheat, photosynthesis, stomatal conductance, transpiration, environment.

  3. The impact of drought on wheat leaf cuticle properties.

    Science.gov (United States)

    Bi, Huihui; Kovalchuk, Nataliya; Langridge, Peter; Tricker, Penny J; Lopato, Sergiy; Borisjuk, Nikolai

    2017-05-08

    The plant cuticle is the outermost layer covering aerial tissues and is composed of cutin and waxes. The cuticle plays an important role in protection from environmental stresses and glaucousness, the bluish-white colouration of plant surfaces associated with cuticular waxes, has been suggested as a contributing factor in crop drought tolerance. However, the cuticle structure and composition is complex and it is not clear which aspects are important in determining a role in drought tolerance. Therefore, we analysed residual transpiration rates, cuticle structure and epicuticular wax composition under well-watered conditions and drought in five Australian bread wheat genotypes, Kukri, Excalibur, Drysdale, RAC875 and Gladius, with contrasting glaucousness and drought tolerance. Significant differences were detected in residual transpiration rates between non-glaucous and drought-sensitive Kukri and four glaucous and drought-tolerant lines. No simple correlation was found between residual transpiration rates and the level of glaucousness among glaucous lines. Modest differences in the thickness of cuticle existed between the examined genotypes, while drought significantly increased thickness in Drysdale and RAC875. Wax composition analyses showed various amounts of C31 β-diketone among genotypes and increases in the content of alkanes under drought in all examined wheat lines. The results provide new insights into the relationship between drought stress and the properties and structure of the wheat leaf cuticle. In particular, the data highlight the importance of the cuticle's biochemical makeup, rather than a simple correlation with glaucousness or stomatal density, for water loss under limited water conditions.

  4. Agribusiness Perspectives on Transgenic Wheat.

    Science.gov (United States)

    Malcolm, Bill

    2017-01-01

    Declining yields of the major human food crops, looming growth in global population and rise of populism, and ill-founded bans on agricultural and horticultural crops and foodstuffs which are genetically modified have potentially serious implications. It makes the chance less than otherwise would be the case that agribusiness value chains in the future will meet the growing demand around the world for more and different foods from more and wealthier people. In the agribusiness value chain, transgenic wheat, meeting a consumer "trigger need" also must meet the "experience" and "credence," risk-related criteria of well-informed consumers. Public policy that rejects science-based evidence about the reductions in costs of production and price of genetically modified agricultural products and the science about the safety of genetically modified foods, including transgenic wheat, has imposed significant costs on producers and consumers. If the science-based evidence is accepted, transgenic wheat has potential to improve significantly the well-being of grain growers and consumers all over the world.

  5. Problem-Solving Test: Tryptophan Operon Mutants

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  6. Equivalence of airborne and ground-acquired wheat canopy temperatures

    Science.gov (United States)

    Millard, J. P.; Hatfield, J. L.; Goettelman, R. C.

    1979-01-01

    The relationship between airborne and ground-based measurements of soil and crop canopy temperatures is investigated for a partial crop canopy. Daily ground-based measurements using a wide-field-of-view radiometer oriented towards the nadir at a height of 1.5 m and airborne thermal imagery at two-week intervals were obtained throughout the entire growing season of a stand of wheat. When corrected for atmospheric effects, the airborne measurements were found to be virtually identical to ground-based measurements, with a regression line slope of 0.985, a standard deviation of 1.8 C and a correlation coefficient of 0.97.

  7. Comparison of Two Cellulomonas Strains and Their Interaction with Azospirillum brasilense in Degradation of Wheat Straw and Associated Nitrogen Fixation

    OpenAIRE

    Halsall, Dorothy M.; Gibson, Alan H.

    1986-01-01

    A mutant strain of Cellulomonas sp. CS1-17 was compared with Cellulomonas gelida 2480 as the cellulolytic component of a mixed culture which was responsible for the breakdown of wheat straw to support asymbiotic nitrogen fixation by Azospirillum brasilense Sp7 (ATCC 29145). Cellulomonas sp. strain CSI-17 was more efficient than was C. gelida in cellulose breakdown at lower oxygen concentrations and, in mixed culture with A. brasilense, it supported higher nitrogenase activity (C2H2 reduction)...

  8. Invitro Synthesis of Barley Endosperm Proteins on Wild Type and Mutant Templates

    DEFF Research Database (Denmark)

    Brandt, A.; Ingversen, J.

    1976-01-01

    Membrane bound and free polyribosomes were isolated from 20 day old barley endosperms. Sucrose gradient analysis revealed distinct polysomal peaks up to heptamers. The isolated polysomes were active in a cell-free protein synthesizing system employing wheat germ extract. SDS-polyacrylamide gel...... electrophoresis showed that proteins with molecular weights ranging from 200,000 to 10,000 daltons were synthesized. A substantial part of the polypeptides coded for by the template associated with the membrane bound polysomes was identified as hordeins by their solubility in 55% isopropanol and by their co......-migration with native hordein on SDS-polyacrylamide gels. Membrane bound endosperm polysomes from a barley mutant defective in hordein synthesis produced in the cell-free protein synthesizing system only a small amount of hordein. Conversely membrane bound polysomes from the endosperm of a mutant giving rise...

  9. Response of the pearly eye melon fly Bactrocera cucurbitae (Coquillett)(Diptera:Tephritidae) mutant to host-associated visual cues

    Science.gov (United States)

    We report on a pearly eye mutant (PEM) line generated from a single male Bactrocera cucurbitae collected in Kapoho, Hawaii. Crossing experiments with colony wild-type flies indicate that the locus controlling this trait is autosomal and the mutant allele is recessive. Experiments with females to ass...

  10. Understanding the yield gap in wheat production

    Science.gov (United States)

    Wheat production around the globe is a staple of human nutrition needs and will continue to provide a major component of global food security. The increases in world population demand that we continue to increase wheat production in a sustainable manner. To achieve this goal requires that we underst...

  11. Registration of 'Sunshine' Hard White Winter Wheat

    Science.gov (United States)

    ’Sunshine’ (Reg. No. CV-XXXX, PI 674741) hard white winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2014 through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State Un...

  12. Weed Dynamics and Management in Wheat

    DEFF Research Database (Denmark)

    Jabran, Khawar; Mahmood, Khalid; Melander, Bo

    2017-01-01

    Wheat is among the most important cereal and food crops of world and is grown in almost all parts of the world. It is a staple for a large part of the world population. Any decline in wheat yield by biotic or abiotic factors may affect global food security adversely. Weeds are the most damaging...

  13. Phytochemical profile and nutraceutical value of old and modern common wheat cultivars.

    Directory of Open Access Journals (Sweden)

    Emanuela Leoncini

    Full Text Available Among health-promoting phytochemicals in whole grains, phenolic compounds have gained attention as they have strong antioxidant properties and can protect against many degenerative diseases. Aim of this study was to profile grain phenolic extracts of one modern and five old common wheat (Triticum aestivum L. varieties and to evaluate their potential antiproliferative or cytoprotective effect in different cell culture systems.Wheat extracts were characterized in terms of antioxidant activity and phenolic composition (HPLC/ESI-TOF-MS profile, polyphenol and flavonoid contents. Results showed that antioxidant activity (FRAP and DPPH is mostly influenced by flavonoid (both bound and free content and by the ratio flavonoids/polyphenols. Using a leukemic cell line, HL60, and primary cultures of neonatal rat cardiomyocytes, the potential antiproliferative or cytoprotective effects of different wheat genotypes were evaluated in terms of intracellular reactive oxygen species levels and cell viability. All tested wheat phenolic extracts exerted dose-dependent cytoprotective and antiproliferative effects on cardiomyocytes and HL60 cells, respectively. Due to the peculiar phenolic pattern of each wheat variety, a significant genotype effect was highlighted. On the whole, the most relevant scavenging effect was found for the old variety Verna. No significant differences in terms of anti-proliferative activities among wheat genotypes was observed.Results reported in this study evidenced a correspondence between the in vitro antioxidant activity and potential healthy properties of different extracts. This suggests that an increased intake of wheat grain derived products could represent an effective strategy to achieve both chemoprevention and protection against oxidative stress related diseases.

  14. Characterization of wheat-Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization.

    Science.gov (United States)

    Fedak, G; Chen, Q; Conner, R L; Laroche, A; Petroski, R; Armstrong, K W

    2000-08-01

    A combination of genomic in situ hybridization (GISH) and meiotic pairing analysis of wheat-Thinopyrum partial amphiploids was employed to identify the genomic constitution and relationships between partial amphiploids derived from wheat and wheatgrass crosses. On the basis of similarities in the meiotic behavior and GISH patterns, the alien chromosomes of two of eight partial amphiploids, TAF46 and 'Otrastayuskaya 38', were judged to originate from Th. intermedium, whereas Th. ponticum was one of the parents of the other six partial amphiploids; PWM706, PWM206, PWM209, PWMIII, OK7211542, and Ag-wheat hybrid. Each of these partial amphiploids was found to contain a synthetic alien genome composed of different combinations of St-, J-, or Js-genome chromosomes. For relatedness of partial amphiploid lines, meiotic analysis of F1 hybrids and GISH results were generally complementary, but the latter offered greater precision in identifying constituent genomes.

  15. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Liu, Zhenshan; Xin, Mingming; Qin, Jinxia; Peng, Huiru; Ni, Zhongfu; Yao, Yingyin; Sun, Qixin

    2015-06-20

    Hexaploid wheat (Triticum aestivum) is a globally important crop. Heat, drought and their combination dramatically reduce wheat yield and quality, but the molecular mechanisms underlying wheat tolerance to extreme environments, especially stress combination, are largely unknown. As an allohexaploid, wheat consists of three closely related subgenomes (A, B, and D), and was reported to show improved tolerance to stress conditions compared to tetraploid. But so far very little is known about how wheat coordinates the expression of homeologous genes to cope with various environmental constraints on the whole-genome level. To explore the transcriptional response of wheat to the individual and combined stress, we performed high-throughput transcriptome sequencing of seedlings under normal condition and subjected to drought stress (DS), heat stress (HS) and their combination (HD) for 1 h and 6 h, and presented global gene expression reprograms in response to these three stresses. Gene Ontology (GO) enrichment analysis of DS, HS and HD responsive genes revealed an overlap and complexity of functional pathways between each other. Moreover, 4,375 wheat transcription factors were identified on a whole-genome scale based on the released scaffold information by IWGSC, and 1,328 were responsive to stress treatments. Then, the regulatory network analysis of HSFs and DREBs implicated they were both involved in the regulation of DS, HS and HD response and indicated a cross-talk between heat and drought stress. Finally, approximately 68.4 % of homeologous genes were found to exhibit expression partitioning in response to DS, HS or HD, which was further confirmed by using quantitative RT-PCR and Nullisomic-Tetrasomic lines. A large proportion of wheat homeologs exhibited expression partitioning under normal and abiotic stresses, which possibly contributes to the wide adaptability and distribution of hexaploid wheat in response to various environmental constraints.

  16. Seedling Resistance to Stem Rust and Molecular Marker Analysis of Resistance Genes in Wheat Cultivars of Yunnan, China.

    Directory of Open Access Journals (Sweden)

    Tian Ya Li

    Full Text Available Stem rust is one of the most potentially harmful wheat diseases, but has been effectively controlled in China since 1970s. However, the interest in breeding wheat with durable resistance to stem rust has been renewed with the emergence of Ug99 (TTKSK virulent to the widely used resistance gene Sr31, and by which the wheat stem rust was controlled for 40 years in wheat production area worldwide. Yunnan Province, located on the Southwest border of China, is one of the main wheat growing regions, playing a pivotal role in the wheat stem rust epidemic in China. This study investigated the levels of resistance in key wheat cultivars (lines of Yunnan Province. In addition, the existence of Sr25, Sr26, Sr28, Sr31, Sr32, and Sr38 genes in 119 wheat cultivars was assessed using specific DNA markers. The results indicated that 77 (64.7% tested wheat varieties showed different levels of resistance to all the tested races of Puccinia graminis f. sp. tritici. Using molecular markers, we identified the resistance gene Sr31 in 43 samples; Sr38 in 10 samples; Sr28 in 12 samples, and one sample which was resistant against Ug99 (avirulent to Sr32. No Sr25 or Sr26 (effective against Ug99 was identified in any cultivars tested. Furthermore, 5 out of 119 cultivars tested carried both Sr31 and Sr38 and eight contained both Sr31 and Sr28. The results enable the development of appropriate strategies to breed varieties resistant to stem rust.

  17. Wheat bran decreases aberrant crypt foci, preserves normal proliferation, and increases intraluminal butyrate levels in experimental colon cancer.

    Science.gov (United States)

    Compher, C W; Frankel, W L; Tazelaar, J; Lawson, J A; McKinney, S; Segall, S; Kinosian, B P; Williams, N N; Rombeau, J L

    1999-01-01

    Dietary wheat bran protects against colon cancer, but the mechanism(s) of this effect is not known. Butyrate, produced by colonic bacterial fermentation of dietary polysaccharides, such as wheat bran, induces apoptosis and decreases proliferation in colon cancer cell lines. Whether similar effects occur in vivo is not well defined. We hypothesized that wheat bran's antineoplastic effects in vivo may be mediated in part by butyrate's modulation of apoptosis and proliferation. Male F344 rats were fed wheat bran-supplemented or an isocaloric, isonitrogenous fiber-free diet. Rats were treated with one dose of the carcinogen azoxymethane or vehicle with sacrifice after 5 days (tumor initiation); or two doses (days O and 7) with sacrifice after 56 days (tumor promotion). Study variables included fecal butyrate levels and the intermediate biomarkers of colon carcinogenesis, aberrant crypt foci (ACF), and changes in crypt cell proliferation and apoptosis. During tumor initiation, wheat bran produced greater apoptosis (p = .01), a trend toward less proliferation, and preserved the normal zone of proliferation (p = .01). At tumor promotion, wheat bran decreased the number of ACF (proximal colon, p = .005; distal colon, p = .047) and maintained the normal proliferative zone. The fiber-free diet shifted the zone of proliferation into the premalignant pattern in both studies. Wheat bran produced significantly higher fecal butyrate (p = .01; .004, .00001) levels than the fiber-free diet throughout the tumor promotion study. Wheat bran increased apoptosis and controlled proliferation during tumor initiation and resulted in decreased ACF. Wheat bran's antineoplastic effects occurred early after carcinogen exposure, and were associated with increased fecal butyrate levels.

  18. Mutant p53 upregulates alpha-1 antitrypsin expression and promotes invasion in lung cancer.

    Science.gov (United States)

    Shakya, R; Tarulli, G A; Sheng, L; Lokman, N A; Ricciardelli, C; Pishas, K I; Selinger, C I; Kohonen-Corish, M R J; Cooper, W A; Turner, A G; Neilsen, P M; Callen, D F

    2017-08-01

    Missense mutations in the TP53 tumor-suppressor gene inactivate its antitumorigenic properties and endow the incipient cells with newly acquired oncogenic properties that drive invasion and metastasis. Although the oncogenic effect of mutant p53 transcriptome has been widely acknowledged, the global influence of mutant p53 on cancer cell proteome remains to be fully elucidated. Here, we show that mutant p53 drives the release of invasive extracellular factors (the 'secretome') that facilitates the invasion of lung cancer cell lines. Proteomic characterization of the secretome from mutant p53-inducible H1299 human non-small cell lung cancer cell line discovered that the mutant p53 drives its oncogenic pathways through modulating the gene expression of numerous targets that are subsequently secreted from the cells. Of these genes, alpha-1 antitrypsin (A1AT) was identified as a critical effector of mutant p53 that drives invasion in vitro and in vivo, together with induction of epithelial-mesenchymal transition markers expression. Mutant p53 upregulated A1AT transcriptionally through the involvement with its family member p63. Conditioned medium containing secreted A1AT enhanced cell invasion, while an A1AT-blocking antibody attenuated the mutant p53-driven migration and invasion. Importantly, high A1AT expression correlated with increased tumor stage, elevated p53 staining and shorter overall survival in lung adenocarcinoma patients. Collectively, these findings suggest that A1AT is an indispensable target of mutant p53 with prognostic and therapeutic potential in mutant p53-expressing tumors.

  19. Increasing the amylose content of durum wheat through silencing of the SBEIIa genes

    Directory of Open Access Journals (Sweden)

    Masci Stefania

    2010-07-01

    Full Text Available Abstract Background High amylose starch has attracted particular interest because of its correlation with the amount of Resistant Starch (RS in food. RS plays a role similar to fibre with beneficial effects for human health, providing protection from several diseases such as colon cancer, diabetes, obesity, osteoporosis and cardiovascular diseases. Amylose content can be modified by a targeted manipulation of the starch biosynthetic pathway. In particular, the inactivation of the enzymes involved in amylopectin synthesis can lead to the increase of amylose content. In this work, genes encoding starch branching enzymes of class II (SBEIIa were silenced using the RNA interference (RNAi technique in two cultivars of durum wheat, using two different methods of transformation (biolistic and Agrobacterium. Expression of RNAi transcripts was targeted to the seed endosperm using a tissue-specific promoter. Results Amylose content was markedly increased in the durum wheat transgenic lines exhibiting SBEIIa gene silencing. Moreover the starch granules in these lines were deformed, possessing an irregular and deflated shape and being smaller than those present in the untransformed controls. Two novel granule bound proteins, identified by SDS-PAGE in SBEIIa RNAi lines, were investigated by mass spectrometry and shown to have strong homologies to the waxy proteins. RVA analysis showed new pasting properties associated with high amylose lines in comparison with untransformed controls. Finally, pleiotropic effects on other starch genes were found by semi-quantitative and Real-Time reverse transcription-polymerase chain reaction (RT-PCR. Conclusion We have found that the silencing of SBEIIa genes in durum wheat causes obvious alterations in granule morphology and starch composition, leading to high amylose wheat. Results obtained with two different methods of transformation and in two durum wheat cultivars were comparable.

  20. Variability of agronomic properties of wheat

    Directory of Open Access Journals (Sweden)

    Jocković Bojan

    2010-01-01

    Full Text Available In order to investigate variability of yield, number of grains per m2 and 1000 grain weight, it was selected 39 different genotypes of wheat. Field trial was set up at Rimski Sancevi in 2008/2009 season. On the basis of geting results we find out significant differences in yield, number of grains per m2 and 1000 grain weight among investigated genotypes. The highest averrage grain yield (9.25 t/ha has had variety Dragana, and the lowest yield (3.08 t/ha has had variety Banatka. The highest number of grains per m2 (51532 has had variety Sana, and the lowest number of grains per m2 (22360 has had variety Bankut 1205. The highest 1000 grain weight (57.1 g has had variety KG 56, and the lowest 1000 grain weight (33.2 g has had line NS3-5299/2. Positive but small correlation among studied traits show a large portion of ecological variance in total variation of investigated traits.

  1. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham buns...

  2. Protocols for Pre-Field Screening of Mutants for Salt Tolerance in Rice, Wheat and Barley

    National Research Council Canada - National Science Library

    Bado, Souleymane; Forster, Brian P; Ghanim, Abdelbagi M.A; Jankowicz-Cieslak, Joanna; Berthold, Günter; Luxiang, Liu

    2016-01-01

    .... It presents simple methods for measuring soil salinity, including soil sampling and the analysis of water-soluble salts, and describes a detailed, but simple, screening test for salt tolerance...

  3. A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation1[W][OA

    Science.gov (United States)

    Pislariu, Catalina I.; D. Murray, Jeremy; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; A. Benedito, Vagner; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E.; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S.; Chen, Rujin; Udvardi, Michael K.

    2012-01-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod−), 51 mutants with totally ineffective nodules (Nod+ Fix−), 17 mutants with partially ineffective nodules (Nod+ Fix+/−), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/− Fix−), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/− Fix+), and 11 supernodulating mutants (Nod++Fix+/−). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN’T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod− lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging. PMID:22679222

  4. Mitochondrial quality control: Cell-type-dependent responses to pathological mutant mitochondrial DNA.

    Science.gov (United States)

    Malena, Adriana; Pantic, Boris; Borgia, Doriana; Sgarbi, Gianluca; Solaini, Giancarlo; Holt, Ian J; Spinazzola, Antonella; Perissinotto, Egle; Sandri, Marco; Baracca, Alessandra; Vergani, Lodovica

    2016-11-01

    Pathological mutations in the mitochondrial DNA (mtDNA) produce a diverse range of tissue-specific diseases and the proportion of mutant mitochondrial DNA can increase or decrease with time via segregation, dependent on the cell or tissue type. Previously we found that adenocarcinoma (A549.B2) cells favored wild-type (WT) mtDNA, whereas rhabdomyosarcoma (RD.Myo) cells favored mutant (m3243G) mtDNA. Mitochondrial quality control (mtQC) can purge the cells of dysfunctional mitochondria via mitochondrial dynamics and mitophagy and appears to offer the perfect solution to the human diseases caused by mutant mtDNA. In A549.B2 and RD.Myo cybrids, with various mutant mtDNA levels, mtQC was explored together with macroautophagy/autophagy and bioenergetic profile. The 2 types of tumor-derived cell lines differed in bioenergetic profile and mitophagy, but not in autophagy. A549.B2 cybrids displayed upregulation of mitophagy, increased mtDNA removal, mitochondrial fragmentation and mitochondrial depolarization on incubation with oligomycin, parameters that correlated with mutant load. Conversely, heteroplasmic RD.Myo lines had lower mitophagic markers that negatively correlated with mutant load, combined with a fully polarized and highly fused mitochondrial network. These findings indicate that pathological mutant mitochondrial DNA can modulate mitochondrial dynamics and mitophagy in a cell-type dependent manner and thereby offer an explanation for the persistence and accumulation of deleterious variants.

  5. Identification and characterization of tomato mutants affected in the Rx-mediated resistance to PVX isolates.

    Science.gov (United States)

    Sturbois, Bénédicte; Dubrana-Ourabah, Marie-Pierre; Gombert, Julie; Lasseur, Bertrand; Macquet, Audrey; Faure, Chantal; Bendahmane, Abdelhafid; Baurès, Isabelle; Candresse, Thierry

    2012-03-01

    Five tomato mutants affected in the Rx-mediated resistance against Potato virus X (PVX) were identified by screening a mutagenized population derived from a transgenic, Rx1-expressing 'Micro-Tom' line. Contrary to their parental line, they failed to develop lethal systemic necrosis upon infection with the virulent PVX-KH2 isolate. Sequence analysis and quantitative reverse-transcription polymerase chain reaction experiments indicated that the mutants are not affected in the Rx1 transgene or in the Hsp90, RanGap1 and RanGap2, Rar1 and Sgt1 genes. Inoculation with the PVX-CP4 avirulent isolate demonstrated that the Rx1 resistance was still effective in the mutants. In contrast, the virulent PVX-KH2 isolate accumulation was readily detectable in all mutants, which could further be separated in two groups depending on their ability to restrict the accumulation of PVX-RR, a mutant affected at two key positions for Rx1 elicitor activity. Finally, transient expression of the viral capsid protein elicitor indicated that the various mutants have retained the ability to mount an Rx1-mediated hypersensitive response. Taken together, the results obtained are consistent with a modification of the specificity or intensity of the Rx1-mediated response. The five Micro-Tom mutants should provide very valuable resources for the identification of novel tomato genes affecting the functioning of the Rx gene.

  6. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis.

    Science.gov (United States)

    Zhu, Xiuliang; Yang, Kun; Wei, Xuening; Zhang, Qiaofeng; Rong, Wei; Du, Lipu; Ye, Xingguo; Qi, Lin; Zhang, Zengyan

    2015-11-01

    Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome evolution between two wheat cultivars

    KAUST Repository

    Thind, Anupriya Kaur

    2018-02-08

    Background: Recent improvements in DNA sequencing and genome scaffolding have paved the way to generate high-quality de novo assemblies of pseudomolecules representing complete chromosomes of wheat and its wild relatives. These assemblies form the basis to compare the evolutionary dynamics of wheat genomes on a megabase-scale. Results: Here, we provide a comparative sequence analysis of the 700-megabase chromosome 2D between two bread wheat genotypes, the old landrace Chinese Spring and the elite Swiss spring wheat line CH Campala Lr22a. There was a high degree of sequence conservation between the two chromosomes. Analysis of large structural variations revealed four large insertions/deletions (InDels) of >100 kb. Based on the molecular signatures at the breakpoints, unequal crossing over and double-strand break repair were identified as the evolutionary mechanisms that caused these InDels. Three of the large InDels affected copy number of NLRs, a gene family involved in plant immunity. Analysis of single nucleotide polymorphism (SNP) density revealed three haploblocks of 8 Mb, 9 Mb and 48 Mb with a 35-fold increased SNP density compared to the rest of the chromosome. Conclusions: This comparative analysis of two high-quality chromosome assemblies enabled a comprehensive assessment of large structural variations. The insight obtained from this analysis will form the basis of future wheat pan-genome studies.

  8. A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat.

    Science.gov (United States)

    Gennaro, Andrea; Koebner, Robert M D; Ceoloni, Carla

    2009-08-01

    Lr19, one of the few widely effective genes conferring resistance to leaf rust in wheat, was transferred from the wild relative Thinopyrum ponticum to durum wheat. Since Lr19 confers a hypersensitive response to the pathogen, it was considered likely that the gene would be a member of the major nucleotide-binding site (NBS)-leucine-rich repeat (LRR) plant R gene family. NBS profiling, based on PCR amplification of conserved NBS motifs, was applied to durum wheat-Th. ponticum recombinant lines involving different segments of the alien 7AgL chromosome arm, carrying or lacking Lr19. Differential PCR products were isolated and sequenced. From one such sequence (AG15), tightly linked to Lr19, a 4,121-bp full-length cDNA was obtained. Its deduced 1,258 amino acid sequence has the characteristic NBS-LRR domains of plant R gene products and includes a coiled-coil (CC) region typical of monocots. The genomic DNA sequence showed the presence of two exons and a short intron upstream of the predicted stop codon. Homology searches revealed considerable identity of AG15 with the cloned wheat resistance gene Pm3a and a lower similarity with wheat Lr1, Lr21, and Lr10. Quantitative PCR on leaf-rust-infected and non-infected Lr19 carriers proved AG15 to be constitutively expressed, as is common for R genes.

  9. Resistance Potential of Bread Wheat Genotypes Against Yellow Rust Disease Under Egyptian Climate

    Directory of Open Access Journals (Sweden)

    Amer F. Mahmoud

    2015-12-01

    Full Text Available Yellow rust (stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive foliar diseases of wheat in Egypt and worldwide. In order to identify wheat genotypes resistant to yellow rust and develop molecular markers associated with the resistance, fifty F₈ recombinant inbred lines (RILs derived from a cross between resistant and susceptible bread wheat landraces were obtained. Artificial infection of Puccinia striiformis was performed under greenhouse conditions during two growing seasons and relative resistance index (RRI was calculated. Two Egyptian bread wheat cultivars i.e. Giza-168 (resistant and Sakha-69 (susceptible were also evaluated. RRI values of two-year trial showed that 10 RILs responded with RRI value >6 2 <6. However, only 7 RILs showed RRI value <2. Five RILs expressed hypersensitive type of resistance (R against the pathogen and showed the lowest Average Coefficient of Infection (ACI. Bulked segregant analysis (BSA with eight simple sequence repeat (SSR, eight sequence-related amplified polymorphism (SRAP and sixteen random amplified polymorphic DNA (RAPD markers revealed that three SSR, three SRAP and six RAPD markers were found to be associated with the resistance to yellow rust. However, further molecular analyses would be performed to confirm markers associated with the resistance and suitable for marker-assisted selection. Resistant RILs identified in the study could be efficiently used to improve the resistance to yellow rust in wheat.

  10. Genetic diversity reduction in improved durum wheat cultivars of Morocco as revealed by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Fatima Henkrar

    2016-04-01

    Full Text Available ABSTRACT It has been argued that genetic diversity in crop varieties has been on the decline in recent times due to plant breeding. This can have serious consequences for both the genetic vulnerability of crops and their plasticity when responding to changes in production environments. It is, therefore, vital for plant breeding programs to maintain sufficient diversity in the cultivars deployed for multi-period cultivation. In this study, to understand the temporal genetic diversity in durum wheat, 21 improved durum wheat cultivars released in Morocco, since 1956 and five exotic cultivars currently used in crossing programs were analyzed using 13 microsatellite markers. The analysis revealed a total of 44 alleles and average genetic diversity of 0.485 with genetic distances ranging from 0.077 to 0.846 at 13 microsatellite loci in Moroccan durum wheat cultivars. All the durum cultivars of Morocco could be distinguished using the 13 microsatellite markers. The total number of alleles and unique alleles were highest in cultivars developed before 1990, decreasing in cultivars developed during the 1990s and 2000s, indicating that recent durum breeding efforts have reduced allelic richness in recent cultivars. Thus, deployment of exotic durum wheat lines in breeding programs could enhance genetic diversity in durum wheat cultivars.

  11. Effects of Light Intensity on Development and Chlorophyll Content in the Arabidopsis Mutant Plants with Defects in Photosynthesis

    Directory of Open Access Journals (Sweden)

    E.Yu. Garnik

    2015-12-01

    Full Text Available The developmental stages and adaptability to different light intensity (150 µmol*m-2*s-1 and 100 µmol*m-2*s-1 in Arabidopsis mutant lines with defects of photosynthetic apparatus were analyzed. Plant development in the mutant lines depended on the light intensity to varying degrees. Lines ch1-1 (lack of the chlorophyllide a oxygenase and rtn16 (decreased chlorophyll a and b amounts were the most susceptible to the light decrease. No one of the investigated lines demonstrated chlorophyll a/b rate alteration under the different light conditions. The depleted chlorophyll content has had the major effect on the mutant plants development under the different light conditions. The different chlorophyll a/b rate correlated with the different adaptability of mutant plants to low light.

  12. Cytogenetic mapping of a major locus for resistance to Fusarium head blight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL.

    Science.gov (United States)

    Ceoloni, Carla; Forte, Paola; Kuzmanović, Ljiljana; Tundo, Silvio; Moscetti, Ilaria; De Vita, Pasquale; Virili, Maria Elena; D'Ovidio, Renato

    2017-10-01

    A major locus for resistance to different Fusarium diseases was mapped to the most distal end of Th. elongatum 7EL and pyramided with Th. ponticum beneficial genes onto wheat 7DL. Perennial Triticeae species of the Thinopyrum genus are among the richest sources of valuable genes/QTL for wheat improvement. One notable and yet unexploited attribute is the exceptionally effective resistance to a major wheat disease worldwide, Fusarium head blight, associated with the long arm of Thinopyrum elongatum chromosome 7E (7EL). We targeted the transfer of the temporarily designated Fhb-7EL locus into bread wheat, pyramiding it with a Th. ponticum 7el1L segment stably inserted into the 7DL arm of wheat line T4. Desirable genes/QTL mapped along the T4 7el1L segment determine resistance to wheat rusts (Lr19, Sr25) and enhancement of yield-related traits. Mapping of the Fhb-7EL QTL, prerequisite for successful pyramiding, was established here on the basis of a bioassay with Fusarium graminearum of different 7EL-7el1L bread wheat recombinant lines. These were obtained without resorting to any genetic pairing promotion, but relying on the close 7EL-7el1L homoeology, resulting in 20% pairing frequency between the two arms. Fhb-7EL resided in the telomeric portion and resistant recombinants could be isolated with useful combinations of more proximally located 7el1L genes/QTL. The transferred Fhb-7EL locus was shown to reduce disease severity and fungal biomass in grains of infected recombinants by over 95%. The same Fhb-7EL was, for the first time, proved to be effective also against F. culmorum and F. pseudograminearum, predominant agents of crown rot. Prebreeding lines possessing a suitable 7EL-7el1L gene/QTL assembly showed very promising yield performance in preliminary field tests.

  13. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Crespo-Herrera, Leonardo A; Garkava-Gustavsson, Larisa; Åhman, Inger

    2017-01-01

    Wheat is globally one of the most important crops. With the current human population growth rate, there is an increasing need to raise wheat productivity by means of plant breeding, along with development of more efficient and sustainable agricultural systems. Damage by pathogens and pests, in combination with adverse climate effects, need to be counteracted by incorporating new germplasm that makes wheat more resistant/tolerant to such stress factors. Rye has been used as a source for improved resistance to pathogens and pests in wheat during more than 50 years. With new devastating stem and yellow rust pathotypes invading wheat at large acreage globally, along with new biotypes of pest insects, there is renewed interest in using rye as a source of resistance. Currently the proportion of wheat cultivars with rye chromatin varies between countries, with examples of up to 34%. There is mainly one rye source, Petkus, that has been widely exploited and that has contributed considerably to raise yields and increase disease resistance in wheat. Successively, the multiple disease resistances conferred by this source has been overcome by new pathotypes of leaf rust, yellow rust, stem rust and powdery mildew. However, there are several other rye sources reported to make wheat more resistant to various biotic constraints when their rye chromatin has been transferred to wheat. There is also development of knowledge on how to produce new rye translocation, substitution and addition lines. Here we compile information that may facilitate decision making for wheat breeders aiming to transfer resistance to biotic constraints from rye to elite wheat germplasm.

  14. Impact of improved wheat technology adoption on productivity and ...

    African Journals Online (AJOL)

    Wheat (Triticum aestivum L.) is one of the most important cereal crops cultivated in wide range of agro-ecologies in Eastern Africa. However, wheat productivity has remained low. This study was carried out in Ethiopia Aris Zone to determine the level and impact of adoption of improved wheat varieties on wheat productivity ...

  15. Breeding value of primary synthetic wheat genotypes for grain yield

    Science.gov (United States)

    To introduce new genetic diversity into the bread wheat gene pool from its progenitor, Aegilops tauschii (Coss.) Schmalh, 33 primary synthetic hexaploid wheat genotypes (SYN) were crossed to 20 spring bread wheat (BW) cultivars at the International Wheat and Maize Improvement Center. Modified single...

  16. Registration of “Pritchett” soft white winter club wheat

    Science.gov (United States)

    Soft white club winter wheat (Triticium aestivum L. ssp. compactum) is a unique component of the wheat production in the PNW, comprising 6-10% of the wheat crop. It is valued for milling and baking functionality and marketed for export in a 20-30% blend with soft white wheat as Western White. Our g...

  17. 77 FR 21685 - United States Standards for Wheat

    Science.gov (United States)

    2012-04-11

    ... change the definition of Contrasting classes (CCL) in Hard White wheat and change the grade limits for... marketing of wheat. DATES: Comments must be received on or before June 11, 2012. ADDRESSES: You may submit... standards facilitate the marketing of wheat and define U.S. wheat quality and commonly used industry terms...

  18. The Pontin series of recombinant alien translocations in bread wheat: single translocations integrating combinations of Bdv2, Lr19 and Sr25 disease-resistance genes from Thinopyrum intermedium and Th. ponticum.

    Science.gov (United States)

    Ayala-Navarrete, L I; Mechanicos, A A; Gibson, J M; Singh, D; Bariana, H S; Fletcher, J; Shorter, S; Larkin, Philip J

    2013-10-01

    Two bread wheat lines each with a translocation on chromosome 7DL from either Thinopyrum intermedium (TC5 and TC14) or Thinopyrum ponticum (T4m), were hybridized in a ph1b mutant background to enhance recombination between the two translocated chromosomal segments. The frequency of recombinants was high in lines derived from the larger and similar-sized translocations (TC5/T4m), but much lower when derived from different-sized translocations (TC14/T4m). Recombinant translocations contained combinations of resistance genes Bdv2, Lr19 and Sr25 conferring resistance to Barley yellow dwarf virus (BYDV), leaf rust and stem rust, respectively. Their genetic composition was identified using bioassays and molecular markers specific for the two progenitor Thinopyrum species. This set of 7DL Th. ponticum/intermedium recombinant translocations was termed the Pontin series. In addition to Thinopyrum markers, the size of the translocation was estimated with the aid of wheat markers mapped on each of the 7DL deletion bins. Bioassays for BYDV, leaf rust and stem rust were performed under greenhouse and field conditions. Once separated from ph1b background, the Pontin recombinant translocations were stable and showed normal inheritance in successive backcrosses. The reported Pontin translocations integrate important resistance genes in a single linkage block which will allow simultaneous selection of disease resistance. Combinations of Bdv2 + Lr19 or Lr19 + Sr25 in both long and short translocations, are available to date. The smaller Pontins, comprising only 20 % of the distal portion of 7DL, will be most attractive to breeders.

  19. Coexpression of the high molecular weight glutenin subunit 1Ax1 and puroindoline improves dough mixing properties in durum wheat (Triticum turgidum L. ssp. durum).

    Science.gov (United States)

    Li, Yin; Wang, Qiong; Li, Xiaoyan; Xiao, Xin; Sun, Fusheng; Wang, Cheng; Hu, Wei; Feng, Zhijuan; Chang, Junli; Chen, Mingjie; Wang, Yuesheng; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2012-01-01

    Wheat end-use quality mainly derives from two interrelated characteristics: the compositions of gluten proteins and grain hardness. The composition of gluten proteins determines dough rheological properties and thus confers the unique viscoelastic property on dough. One group of gluten proteins, high molecular weight glutenin subunits (HMW-GS), plays an important role in dough functional properties. On the other hand, grain hardness, which influences the milling process of flour, is controlled by Puroindoline a (Pina) and Puroindoline b (Pinb) genes. However, little is known about the combined effects of HMW-GS and PINs on dough functional properties. In this study, we crossed a Pina-expressing transgenic line with a 1Ax1-expressing line of durum wheat and screened out lines coexpressing 1Ax1 and Pina or lines expressing either 1Ax1 or Pina. Dough mixing analysis of these lines demonstrated that expression of 1Ax1 improved both dough strength and over-mixing tolerance, while expression of PINA detrimentally affected the dough resistance to extension. In lines coexpressing 1Ax1 and Pina, faster hydration of flour during mixing was observed possibly due to the lower water absorption and damaged starch caused by PINA expression. In addition, expression of 1Ax1 appeared to compensate the detrimental effect of PINA on dough resistance to extension. Consequently, coexpression of 1Ax1 and PINA in durum wheat had combined effects on dough mixing behaviors with a better dough strength and resistance to extension than those from lines expressing either 1Ax1 or Pina. The results in our study suggest that simultaneous modulation of dough strength and grain hardness in durum wheat could significantly improve its breadmaking quality and may not even impair its pastamaking potential. Therefore, coexpression of 1Ax1 and PINA in durum wheat has useful implications for breeding durum wheat with dual functionality (for pasta and bread) and may improve the economic values of durum

  20. Coexpression of the high molecular weight glutenin subunit 1Ax1 and puroindoline improves dough mixing properties in durum wheat (Triticum turgidum L. ssp. durum.

    Directory of Open Access Journals (Sweden)

    Yin Li

    Full Text Available Wheat end-use quality mainly derives from two interrelated characteristics: the compositions of gluten proteins and grain hardness. The composition of gluten proteins determines dough rheological properties and thus confers the unique viscoelastic property on dough. One group of gluten proteins, high molecular weight glutenin subunits (HMW-GS, plays an important role in dough functional properties. On the other hand, grain hardness, which influences the milling process of flour, is controlled by Puroindoline a (Pina and Puroindoline b (Pinb genes. However, little is known about the combined effects of HMW-GS and PINs on dough functional properties. In this study, we crossed a Pina-expressing transgenic line with a 1Ax1-expressing line of durum wheat and screened out lines coexpressing 1Ax1 and Pina or lines expressing either 1Ax1 or Pina. Dough mixing analysis of these lines demonstrated that expression of 1Ax1 improved both dough strength and over-mixing tolerance, while expression of PINA detrimentally affected the dough resistance to extension. In lines coexpressing 1Ax1 and Pina, faster hydration of flour during mixing was observed possibly due to the lower water absorption and damaged starch caused by PINA expression. In addition, expression of 1Ax1 appeared to compensate the detrimental effect of PINA on dough resistance to extension. Consequently, coexpression of 1Ax1 and PINA in durum wheat had combined effects on dough mixing behaviors with a better dough strength and resistance to extension than those from lines expressing either 1Ax1 or Pina. The results in our study suggest that simultaneous modulation of dough strength and grain hardness in durum wheat could significantly improve its breadmaking quality and may not even impair its pastamaking potential. Therefore, coexpression of 1Ax1 and PINA in durum wheat has useful implications for breeding durum wheat with dual functionality (for pasta and bread and may improve the economic

  1. Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26.

    Science.gov (United States)

    Liu, Sixin; Yu, Long-Xi; Singh, Ravi P; Jin, Yue; Sorrells, Mark E; Anderson, James A

    2010-02-01

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most destructive diseases of wheat. A new race of the pathogen named TTKSK (syn. Ug99) and its derivatives detected in East Africa are virulent to many designated and undesignated stem rust resistance genes. The emergence and spread of those races pose an imminent threat to wheat production worldwide. Genes Sr25 and Sr26 transferred into wheat from Thinopyrum ponticum are effective against these new races. DNA markers for Sr25 and Sr26 are needed to pyramid both genes into adapted germplasm. The previously published dominant markers Gb for Sr25 and Sr26#43 for Sr26 were validated with eight wheat lines with or without Sr25 or Sr26. We tested six published STS (sequence tagged site) markers amplifying diagnostic bands of Th. ponticum. Marker BF145935 consistently amplified well and can be used as a co-dominant marker for Sr25. Among 16 STS markers developed from wheat ESTs mapped to deletion bin 6AL8-0.90-1.00, none was co-dominant for tagging Sr26. However, five 6A-specific markers were identified. Multiplex PCR with marker Sr26#43 and 6A-specific marker BE518379 can be used as a co-dominant marker for Sr26. The co-dominant markers for Sr25 and Sr26 were validated with 37 lines with known stem rust resistance genes. A diverse set of germplasm consisting 170 lines from CIMMYT, China, USA and other counties were screened with the co-dominant markers for Sr25 and Sr26. Five lines with the diagnostic fragment for Sr25 were identified, and they all have 'Wheatear' in their pedigrees, which is known to carry Sr25. None of the 170 lines tested had Sr26, as expected.

  2. Isolation and characterization of a novel wall-associated kinase gene TaWAK5 in wheat (Triticum aestivum

    Directory of Open Access Journals (Sweden)

    Kun Yang

    2014-10-01

    Full Text Available Wall-associated kinases (WAKs play an important role in plant defense and development. Considerable progress has been made in understanding WAK genes in Arabidopsis thaliana. However, much less is known about these genes in common wheat. Here, we isolated a novel wheat WAK gene TaWAK5 from sharp eyespot disease-resistant wheat line CI12633, based on a differentially-expressed sequence identified by microarray analysis. The transcript abundance of TaWAK5 was rapidly increased following inoculation with the pathogen Rhizoctonia cerealis. TaWAK5 in resistant wheat lines was induced to higher levels than in susceptible lines at 7 days post inoculation with R. cerealis. The expression of TaWAK5 was also induced by treatments with exogenous salicylic acid, abscisic acid, and methyl jasmonate. The deduced TaWAK5 protein contained a signal peptide, two epidermal growth factor (EGF-like repeats, a transmembrane domain, and a serine/threonine protein kinase catalytic domain. Subcellular localization analyses in onion epidermal cells indicated that the TaWAK5 protein was localized to the plasma membrane. Virus-induced gene silencing of TaWAK5 in CI12633 plants showed that the silencing of TaWAK5 did not obviously impair wheat resistance to R. cerealis, suggesting that TaWAK5 may be not the major gene in wheat defense response to R. cerealis, or that it is functionally redundant with other genes. This study paves the way for further research into WAK functions in wheat stress physiology.

  3. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    Science.gov (United States)

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-02-02

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  4. Mapping pathological phenotypes in Reelin mutant mice

    Directory of Open Access Journals (Sweden)

    Caterina eMichetti

    2014-09-01

    Full Text Available Autism Spectrum Disorders (ASD are neurodevelopmental disorders with multifactorial origin characterized by social communication and behavioural perseveration deficits. Several studies showed an association between the reelin gene mutation and increased risk of ASD and a reduced reelin expression in some brain regions of ASD subjects, suggesting a role for reelin deficiency in ASD etiology. Reelin is a large extracellular matrix glycoprotein playing important roles during development of the central nervous system. To deeply investigate the role of reelin dysfunction as vulnerability factor in ASD, we investigated the behavioural, neurochemical and brain morphological features of reeler male mice. We recently reported a genotype-dependent deviation in ultrasonic vocal repertoire and a general delay in motor development in reeler pups. We now report that adult male heterozygous reeler mice did not show social behaviour and communication deficits during male-female social interactions. Wildtype and heterozygous mice also showed a typical light/dark locomotor activity profile, with a peak during the central interval of the dark phase. However, when faced with a mild stressful stimulus (a saline injection only heterozygous mice showed an over response to stress. At the end of the behavioural studies, we conducted high performance liquid chromatography and magnetic resonance imaging and spectroscopy to investigate whether reelin mutation influences brain monoamine and metabolites levels in regions involved in ASD. Low levels of dopamine in cortex and high levels of glutamate and taurine in hippocampus were detected in heterozygous mice, in line with clinical data collected on ASD children. Altogether, our data detected subtle but relevant neurochemical abnormalities in reeler mice supporting this mutant line, particularly male subjects, as a valid experimental model to estimate the contribution played by reelin deficiency in the global ASD

  5. Chromosomal rearrangements caused by gamma-irradiation in winter wheat cells

    Directory of Open Access Journals (Sweden)

    M. M. Nazarenko

    2017-02-01

    Full Text Available In this article we report the results of our investigation into several cytogenetic parameters of variability in mutation induction of modern winter wheat varieties and some connections between the means of cytogenetic indices and different doses of gamma-rays. Analysis of chromosomal aberrations following the action of any kind of mutagen by the anaphases method is one of the most widely investigated and most precise methods which can be used to determine the fact of mutagenic action on plants and identify the nature of the mutagen. We combined in our investigation the sensitivity of genotype to mutagen using cytological analysis of mutagen treated wheat populations with the corresponding different varieties by breeding methods to reveal its connections and differences, specific sensitivity to mutagens action on the cell level. Dry seeds of 8 varieties of winter wheat were subjected to 100, 150, 200, 250 Gy gamma irradiation, which are trivial for winter wheat mutation breeding. We investigated rates and spectra of chromosomal aberrations in the cells of winter wheat primary roots tips. The coefficients of correlations amid the rate of chromosomal aberrations and the dose of gamma-rays were on the level 0.8–0.9. The fragments/bridges ratio is a clear and sufficient index for determining the nature of the mutagen agent. We distinguished the following types of chromosomal rearrangements: chromatid and chromosome bridges, single and double fragments, micronuclei, and delayed chromosomes. The ratio of chromosomal aberrations changes with the change in mutagen; note that bridge-types are characteristic of irradiation. Radiomutants are more resistant to gamma rays. This is apparent in the lower rate of chromosomal aberrations. Varieties obtained by chemical mutagenesis (varieties Sonechko, Kalinova are more sensitive to gamma-irradiation than others. We propose these varieties as objects for a mutation breeding programme and radiation of mutants

  6. Aluminium toxicity in winter wheat

    Directory of Open Access Journals (Sweden)

    Szabó A.

    2015-01-01

    Full Text Available Aluminium is the most frequent metal of the earth crust; it occurs mainly as biologically inactive, insoluble deposit. Environmental problems, industrial contaminations and acid rains increase the soil acidity, leading to the mobilization of Al. Half of the world’s potential arable lands are acidic; therefore, Al-toxicity decreases crop productivity. Wheat is a staple food for 35% of the world population. The effects of Al-stress (0.1 mM were studied on winter wheat; seedlings were grown hydroponically, at acidic pH. After two weeks, the root weight was decreased; a significant difference was found in the P- and Ca-content. The shoot weight and element content changed slightly; Al-content in the root was one magnitude higher than in the shoot, while Al-translocation was limited. The root plasma membrane H+-ATPase has central role in the uptake processes; Al-stress increased the Mg2+-ATPase activity of the microsomal fraction.

  7. Genetic control of bread wheat (Triticum aestivum L. traits

    Directory of Open Access Journals (Sweden)

    Zine El Abidine Fellahi

    2016-02-01

    Full Text Available Nine bread wheat genotypes were crossed under a partial diallel scheme, in which group 1 counted five lines and group 2 four lines. The 20 F1 ’s and their parents were evaluated in randomized complete block design with three replications at the Field Crop Institute-Agricultural Experimental Station of Setif (Algeria during the 2011/2012 cropping season. The results showed that the components associated with additive effects were more relevant than those associated with the dominance effects for these traits. Based on the KD /KR ratio, the dominant alleles are present in greater frequency in the first group of parents, while the opposite is true for the second group. Values of the gene proportion with positive and negative effects in the parents revealed an unequal distribution of dominant genes in the parents for almost all the traits except for number of grain per spike in the second group which showed an equal distribution.

  8. Wheat products as acceptable substitutes for rice.

    Science.gov (United States)

    Yu, B H; Kies, C

    1993-07-01

    The objective of the study was to compare the acceptability to semi-trained US American and Asian palatability panelist, of four wheat products processed to be possible replacers of rice in human diets. Products evaluated using rice as the control standard of excellence were steamed whole wheat, couscous (steamed, extracted wheat flour semolina), rosamarina (rice shaped, extracted wheat flour pasta), and bulgar (steamed, pre-cooked partly debranned, cracked wheat). Using a ten point hedonic rating scale, both groups of panelists gave rosamarina closely followed by couscous, most favorable ratings although these ratings were somewhat lower than that of the positive control, steamed polished rice. Bulgar wheat was given the lowest evaluation and was, in general, found to be an unacceptable replacement for rice by both American and Asian judges because of its dark, 'greasy' color and distinctive flavor. In their personal dietaries, judges included rice from 0.25 to 18 times per week with the Asian judges consuming rice significantly more times per week than did the American judges (10.8 +/- 4.71 vs 1.75 +/- 1.65, p < 0.01). However, rice consumption patterns, nationality, race, or sex of the judges was not demonstrated to affect scoring of the wheat products as rice replacers.

  9. Predicting Hybrid Performances for Quality Traits through Genomic-Assisted Approaches in Central European Wheat

    KAUST Repository

    Liu, Guozheng

    2016-07-06

    Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1) examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2) explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3) investigate the effects of marker density and the composition and size of the training population on the accuracy of prediction of hybrid performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum L.) and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six environments. The 135 parental lines were genotyped using a 90k single-nucleotide polymorphism array. Genome-wide association mapping initially suggested presence of several quantitative trait loci (QTLs), but cross-validation rather indicated the absence of major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection substantially outperformed marker-assisted selection in predicting hybrid performance. A resampling study revealed that increasing the effective population size in the estimation set of hybrids is relevant to boost the accuracy of prediction for an unrelated test population.

  10. Predicting Hybrid Performances for Quality Traits through Genomic-Assisted Approaches in Central European Wheat.

    Directory of Open Access Journals (Sweden)

    Guozheng Liu

    Full Text Available Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1 examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2 explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3 investigate the effects of marker density and the composition and size of the training population on the accuracy of prediction of hybrid performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum L. and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six environments. The 135 parental lines were genotyped using a 90k single-nucleotide polymorphism array. Genome-wide association mapping initially suggested presence of several quantitative trait loci (QTLs, but cross-validation rather indicated the absence of major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection substantially outperformed marker-assisted selection in predicting hybrid performance. A resampling study revealed that increasing the effective population size in the estimation set of hybrids is relevant to boost the accuracy of prediction for an unrelated test population.

  11. Threshing efficiency as an incentive for rapid domestication of emmer wheat.

    Science.gov (United States)

    Tzarfati, Raanan; Saranga, Yehoshua; Barak, Vered; Gopher, Avi; Korol, Abraham B; Abbo, Shahal

    2013-09-01

    The harvesting method of wild and cultivated cereals has long been recognized as an important factor in the emergence of domesticated non-shattering ear genotypes. This study aimed to quantify the effects of spike brittleness and threshability on threshing time and efficiency in emmer wheat, and to evaluate the implications of post-harvest processes on domestication of cereals in the Near East. A diverse collection of tetraploid wheat genotypes, consisting of Triticum turgidum ssp. dicoccoides - the wild progenitor of domesticated wheat - traditional landraces, modern cultivars (T. turgidum ssp. durum) and 150 recombinant (wild × modern) inbred lines, was used in replicated controlled threshing experiments to quantify the effects of spike brittleness and threshability on threshing time and efficiency. The transition from a brittle hulled wild phenotype to non-brittle hulled phenotype (landraces) was associated with an approx. 30 % reduction in threshing time, whereas the transition from the latter to non-brittle free-threshing cultivars was associated with an approx. 85 % reduction in threshing time. Similar trends were obtained with groups of recombinant inbred lines showing extreme phenotypes of brittleness and threshability. In tetraploid wheat, both non-brittle spike and free-threshing are labour-saving traits that increase the efficiency of post-harvest processing, which could have been an incentive for rapid domestication of the Near Eastern cereals, thus refuting the recently proposed hypothesis regarding extra labour associated with the domesticated phenotype (non-brittle spike) and its presumed role in extending the domestication episode time frame.

  12. Incomplete flagellar structures in Escherichia coli mutants.

    OpenAIRE

    Suzuki, T; Komeda, Y

    1981-01-01

    Escherichia coli mutants with defects in 29 flagellar genes identified so far were examined by electron microscopy for possession of incomplete flagellar structures in membrane-associated fractions. The results are discussed in consideration of the known transcriptional interaction of flagellar genes. Hook-basal body structures were detected in flaD, flaS, flaT, flbC, and hag mutants. The flaE mutant had a polyhook-basal body structure. An intact basal body appeared in flaK mutants. Putative ...

  13. Effects of Light Intensity on Development and Chlorophyll Content in the Arabidopsis Mutant Plants with Defects in Photosynthesis

    OpenAIRE

    E.Yu. Garnik; D.V. Deeva; V.I. Belkov; V.I. Tarasenko; Yu.M. Konstantinov

    2015-01-01

    The developmental stages and adaptability to different light intensity (150 µmol*m-2*s-1 and 100 µmol*m-2*s-1) in Arabidopsis mutant lines with defects of photosynthetic apparatus were analyzed. Plant development in the mutant lines depended on the light intensity to varying degrees. Lines ch1-1 (lack of the chlorophyllide a oxygenase) and rtn16 (decreased chlorophyll a and b amounts) were the most susceptible to the light decrease. No one of the investigated lines demonstrated chlorophyll a/...

  14. Putative Microsatellite DNA Marker-Based Wheat Genomic Resource for Varietal Improvement and Management

    Directory of Open Access Journals (Sweden)

    Sarika Jaiswal

    2017-11-01

    Full Text Available Wheat fulfills 20% of global caloric requirement. World needs 60% more wheat for 9 billion population by 2050 but climate change with increasing temperature is projected to affect wheat productivity adversely. Trait improvement and management of wheat germplasm requires genomic resource. Simple Sequence Repeats (SSRs being highly polymorphic and ubiquitously distributed in the genome, can be a marker of choice but there is no structured marker database with options to generate primer pairs for genotyping on desired chromosome/physical location. Previously associated markers with different wheat trait are also not available in any database. Limitations of in vitro SSR discovery can be overcome by genome-wide in silico mining of SSR. Triticum aestivum SSR database (TaSSRDb is an integrated online database with three-tier architecture, developed using PHP and MySQL and accessible at http://webtom.cabgrid.res.in/wheatssr/. For genotyping, Primer3 standalone code computes primers on user request. Chromosome-wise SSR calling for all the three sub genomes along with choice of motif types is provided in addition to the primer generation for desired marker. We report here a database of highest number of SSRs (476,169 from complex, hexaploid wheat genome (~17 GB along with previously reported 268 SSR markers associated with 11 traits. Highest (116.93 SSRs/Mb and lowest (74.57 SSRs/Mb SSR densities were found on 2D and 3A chromosome, respectively. To obtain homozygous locus, e-PCR was done. Such 30 loci were randomly selected for PCR validation in panel of 18 wheat Advance Varietal Trial (AVT lines. TaSSRDb can be a valuable genomic resource tool for linkage mapping, gene/QTL (Quantitative trait locus discovery, diversity analysis, traceability and variety identification. Varietal specific profiling and differentiation can supplement DUS (Distinctiveness, Uniformity, and Stability testing, EDV (Essentially Derived Variety/IV (Initial Variety disputes, seed

  15. Genetic Diversity in Barley and Wheat for Tolerance to Soil Constraints

    Directory of Open Access Journals (Sweden)

    Yash P. Dang

    2016-11-01

    genotypes significantly improved the prediction of grain yield in the regression analysis. Barley genotypes, Mackay and Kaputar, were relatively susceptible while Baronesse and Grout were relatively more tolerant to sodicity. Wheat genotypes Gregory and Stampede were generally relatively more susceptible to sodicity, and genotypes Baxter, Hume, and the experimental line HSF1-255 were relatively more tolerant than the former group.

  16. Effect of the double mutant e//e w//w and the culture medium on the productivity of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Francisco Mora

    2000-01-01

    Full Text Available We investigated the effect of two culture media on the productivity of the double mutant ebony-white (e//e w//w of Drosophila melanogaster, aimed at improving the conditions for maintenance of Drosophila’s collection, Departamento de Biología, Universidad Nacional de Colombia. The results indicate that the productivity is affected by the culture medium, being the maize culture medium more productive than the wheat one; it was also shown that the productivity depends both, on the crosses type that is realize and on the mutant. The “+//+ +//+ x e//e w/ cross is more productive than its reciprocal cross, where the position of the ebony allele is the most important factor. With respect to the white allele, when carried by males it does not have effect on the productivity. In addition, we detected a negative effect of wheat culture medium on females +//e +//w.

  17. Aflatoxin B1and sterigmatocystin in wheat and wheat products from supermarkets in China.

    Science.gov (United States)

    Zhao, Yarong; Wang, Qiongshan; Huang, Jianxiang; Ma, Liyan; Chen, Zhihui; Wang, Fuhua

    2018-03-01

    Wheat is an important cereal but it is often contaminated with mycotoxins. The natural occurrence of aflatoxin B 1 (AFB 1 ) and sterigmatocystin (STC) was determined in 178 food samples (32 wheat samples and 146 wheat products) purchased from Chinese supermarkets. The methodology was validated, the wheat and wheat products samples were treated with a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). From these samples 18.8% of wheat and 8.2% of cracker samples were contaminated with AFB 1 . Mean levels were 0.06 µg/kg and 0.05µg/kg, respectively. There was no AFB 1 contamination in white bread or whole meal bread. Meanwhile 53.1% of wheat, 59.2% of crackers, 20.8% of white bread and 16% of whole meal bread samples were contaminated with STC. The mean levels were 0.07, 0.79, 0.12 and 0.12 µg/kg respectively. Although the levels were low, this demonstrates the need for more comprehensive surveys for these two mycotoxins in wheat and wheat products from China.

  18. Durum wheat and allelopathy: toward wheat breeding for natural weed management.

    Science.gov (United States)

    Fragasso, Mariagiovanna; Iannucci, Anna; Papa, Roberto

    2013-09-24

    Wheat-derived foodstuffs represent about one-fifth of the calories consumed by humans worldwide. Bread wheat (Triticum aestivum L.) is one of the most important crops throughout the world, and it has been extensively studied for its allelopathic potential. In contrast, for allelopathy in durum wheat (Triticum turgidum ssp. durum), our knowledge is partial and fragmentary. Through highlighting recent advances in using allelopathy as a crop-breeding tool, we provide an overview of allelopathy in Triticum spp., to stimulate further coordinated breeding-oriented studies, to favor allelopathy exploitation for the sustainable cultivation of wheat, and in particular, to achieve improved biological weed control.

  19. Identification of genomic associations for adult plant resistance in the background of popular South Asian wheat cultivar, PBW343

    Directory of Open Access Journals (Sweden)

    Huihui Li

    2016-11-01

    Full Text Available Rusts, a fungal disease as old as its host plant wheat, an enemy as old as wheat, has caused havoc for over 8,000 years. As the rust pathogens can evolve into new virulent races which quickly defeat to qualitative or vertical the resistance that primarily rely on race specificity over time, adult plant resistance (APR has often been found to be race non-specific and hence is considered have been proven to be a more to be a more reliable and durable strategy to combat this malady. Over decades sets of donor lines have been identified at International Maize and Wheat Improvement Center (CIMMYT representing a wide range of APR sources in wheat. In this study, using nine donors and a common parent ‘PBW343’, a popular Green Revolution variety at CIMMYT, the nested association mapping (NAM population of 1122 lines was constructed to understand the APR genetics underlying these founder lines. Thirty-four QTL were associated with APR to rusts, and 20 of 34 QTL had pleiotropic effects on SR, YR and LR resistance. Three chromosomal regions, associated with known APR genes (Sr58/Yr29/Lr46, Sr2/Yr30/Lr27, and Sr57/Yr18/Lr34, were also identified, 13 previously reported QTL regions were validated. Of the 18 QTL first detected in this study, 7 were pleiotropic QTL, distributing on chromosomes 3A, 3B, 6B, 3D, and 6D. The present investigation revealed the genetic relationship of historical APR donor lines, the novel knowledge on APR, as well as the new analytical methodologies to facilitate the applications of NAM design in crop genetics. Results shown in this study will aid the parental selection for hybridization in wheat breeding, and envision the future rust management breeding for addressing potential threat to wheat production and food security.

  20. Physiological characteristics and metabolomics of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress.

    Science.gov (United States)

    Qi, Xueli; Xu, Weigang; Zhang, Jianzhou; Guo, Rui; Zhao, Mingzhong; Hu, Lin; Wang, Huiwei; Dong, Haibin; Li, Yan

    2017-03-01

    In this paper, two transgenic wheat lines, PC27 and PC51, containing the maize PEPC gene and its wild-type (WT) were used as experimental material to study the effects of high temperature on their photosynthetic physiological characteristics and metabolome. The results showed that transgenic wheat lines had higher photosynthetic rate (P n) than WT under non-stress treatment (NT) and high temperature stress treatment (HT), and more significantly under HT. The change trends of F v/F m, Ф PSII, and q P were similar to P n, whereas that of non-photochemical quenching (NPQ) was the opposite. Compared with WT, no differences in chlorophyll content between the transgenic wheat and WT were observed under NT, but two transgenic lines had relatively higher contents than WT under HT. The change trends of Chlorophyll a/b radio, the decreased values of F m, Wk, and Vj, and the activity of the antioxidant enzyme were consistent with the chlorophyll content. Compared with WT, transgenic wheat lines exhibited lower rate of superoxide anion production, H2O2 and malondialdehyde content under HT, and no significant differences were observed under NT. The expression pattern of the ZmPEPC gene and wheat endogenous photosynthesis-related genes were in agreement with that of P n. Compared with WT, about 13 different metabolites including one organic acid, six amino acids, four sugars, and two polyols were identified under NT; 25 different metabolites including six organic acids, 12 amino acids, four sugars, and three polyols were identified under HT. Collectively, our results indicate that ZmPEPC gene can enhance photochemical and antioxidant enzyme activity, upregulate the expression of photosynthesis-related genes, delay degradation of chlorophyll, change contents of proline and other metabolites in wheat, and ultimately improves its heat tolerance.

  1. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes.

    Science.gov (United States)

    Duan, T; Chapman, S C; Holland, E; Rebetzke, G J; Guo, Y; Zheng, B

    2016-08-01

    Early vigour is an important physiological trait to improve establishment, water-use efficiency, and grain yield for wheat. Phenotyping large numbers of lines is challenging due to the fast growth and development of wheat seedlings. Here we developed a new photo-based workflow to monitor dynamically the growth and development of the wheat canopy of two wheat lines with a contrasting early vigour trait. Multiview images were taken using a 'vegetation stress' camera at 2 d intervals from emergence to the sixth leaf stage. Point clouds were extracted using the Multi-View Stereo and Structure From Motion (MVS-SFM) algorithm, and segmented into individual organs using the Octree method, with leaf midribs fitted using local polynomial function. Finally, phenotypic parameters were calculated from the reconstructed point cloud including: tiller and leaf number, plant height, Haun index, phyllochron, leaf length, angle, and leaf elongation rate. There was good agreement between the observed and estimated leaf length (RMSE=8.6mm, R (2)=0.98, n=322) across both lines. Significant contrasts of phenotyping parameters were observed between the two lines and were consistent with manual observations. The early vigour line had fewer tillers (2.4±0.6) and larger leaves (308.0±38.4mm and 17.1±2.7mm for leaf length and width, respectively). While the phyllochron of both lines was quite similar, the non-vigorous line had a greater Haun index (more leaves on the main stem) on any date, as the vigorous line had slower development of its first two leaves. The workflow presented in this study provides an efficient method to phenotype individual plants using a low-cost camera (an RGB camera is also suitable) and could be applied in phenotyping for applications in both simulation modelling and breeding. The rapidity and accuracy of this novel method can characterize the results of specific selection criteria (e.g. width of leaf three, number of tillers, rate of leaf appearance) that have

  2. Fusarium graminearum Possesses Virulence Factors Common to Fusarium Head Blight of Wheat and Seedling Rot of Soybean but Differing in Their Impact on Disease Severity.

    Science.gov (United States)

    Sella, Luca; Gazzetti, Katia; Castiglioni, Carla; Schäfer, Wilhelm; Favaron, Francesco

    2014-11-01

    Fusarium graminearum is a toxigenic fungal pathogen that causes Fusarium head blight (FHB) and crown rot on cereal crops worldwide. This fungus also causes damping-off and crown and root rots at the early stage of crop development in soybean cultivated in North and South America. Several F. graminearum genes were investigated for their contribution to FHB in cereals but no inherent study is reported for the dicotyledonous soybean host. In this study we determined the disease severity on soybean seedlings of five single gene disrupted mutants of F. graminearum, previously characterized in wheat spike infection. Three of these mutants are impaired on a specific function as the production of deoxynivalenol (DON, Δtri5), lipase (ΔFgl1), and xylanase (Δxyl03624), while the remaining two are MAP kinase mutants (ΔFgOS-2, Δgpmk1), which are altered in signaling pathways. The mutants that were reduced in virulence (Δtri5, ΔFgl1, and ΔFgOS-2) or are avirulent (Δgpmk1) on wheat were correspondently less virulent or avirulent in soybean seedlings, as shown by the extension of lesions and seedling lengths. The Δxyl03624 mutant was as virulent as the wild type mirroring the behavior observed in wheat. However, a different ranking of symptom severity occurred in the two hosts: the ΔFgOS-2 mutant, that infects wheat spikelets similarly to Δtri5 and ΔFgl1 mutants, provided much reduced symptoms in soybean. Differently from the other mutants, we observed that the ΔFgOS-2 mutant was several fold more sensitive to the glyceollin phytoalexin suggesting that its reduced virulence may be due to its hypersensitivity to this phytoalexin. In conclusion, lipase and DON seem important for full disease symptom development in soybean seedlings, OS-2 and Gpmk1 MAP kinases are essential for virulence, and OS-2 is involved in conferring resistance to the soybean phytoalexin.

  3. Paint removal using wheat starch blast media

    Science.gov (United States)

    Foster, Terry; Oestreich, John

    1993-03-01

    A review of the Wheat Starch Blasting technology is presented. Laboratory evaluations covering Almen Arc testing on bare 2024-T3 aluminum and magnesium, as well as crack detection on 7075-T6 bare aluminum, are discussed. Comparisons with Type V plastic media show lower residual stresses are achieved on aluminum and magnesium with wheat starch media. Dry blasting effects on the detection of cracks confirms better crack visibility with wheat starch media versus Type V or Type II plastic media. Testing of wheat starch media in several composite test programs, including fiberglass, Kevlar, and graphite-epoxy composites, showed no fiber damage. Process developments and production experience at the first U.S. aircraft stripping facility are also reviewed. Corporate and regional aircraft are being stripped in this three nozzle dry blast hanger.

  4. QUALITY PARAMETRES OF EMMER WHEAT LANDRACES

    Directory of Open Access Journals (Sweden)

    Petr KONVALINA

    2009-03-01

    Full Text Available Emmer wheat, Triticum dicoccum SCHUEBL, is an old variety of cereals which has been traditionally grown in aride areas. Nowdays, it is mainly grown in Italy, Spain, Turkey, Austria and in the Czech republic. This article deals with a study of quality parametres and selected economic parametres of 6 varieties coming from the genetic resources of emmer wheat. High crude protein content in grain was proved during the trials. Nevertheless, such a characteristic is not suitable for the classical bakery processing (production of leavened products. Low figure of the harvest index is supposed to be the most problematic economic character. However, emmer wheat is a suitable variety for organic farming system. Growing of emmer wheat contributes to an extension of the agrobiodiversity in the countryside and to the suistainable development of a region.

  5. Patterns of suspected wheat-related allergy

    DEFF Research Database (Denmark)

    Junker Christensen, Morten; Eller, Esben; Mortz, Charlotte G

    2014-01-01

    ). All children had atopic dermatitis, and most (13/15) outgrew their wheat allergy. Most children (13/15) had other food allergies. Challenge positive patients showed significantly higher levels of sIgE to wheat and significantly more were SPT positive than challenge negative. Group 2: Eleven out of 13...... of sIgE to ω-5-gliadin. The natural course is presently unknown. CONCLUSION: Wheat allergy can manifest in different disease entities, rendering a detailed case history and challenge mandatory. Patient age, occupation, concomitant allergies (food or inhalant) and atopic dermatitis are important factors...... were examined with detailed case history, specific IgE (sIgE), Skin Prick Test (SPT) and wheat challenge (nasal or oral ± exercise). Details of the case history were extracted from the patients´ case records. RESULTS: Group 1: Twenty one of 95 patients were challenge positive (15 children, 6 adults...

  6. Production of ethanol from wheat straw

    Directory of Open Access Journals (Sweden)

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  7. Prevalence of Wheat Allergy in Japanese Adults

    Directory of Open Access Journals (Sweden)

    Eishin Morita

    2012-01-01

    Conclusions: The prevalence of wheat allergy in Japanese adults was found to be 0.21% by using a combination of questionnaire-based examination, skin prick test and serum omega-5 gliadin-specific IgE test.

  8. Generation and characterization of pigment mutants of ...

    African Journals Online (AJOL)

    The induced mutagenesis method for deriving pigment mutants of a green microalga, Chlamydomonas reinhardtii CC-124 and their pigment composition as well as ability to assess mutability of contaminated aquatic ecosystems were studied. In the present study, 14086 mutants (colonies) were obtained by exposure of the ...

  9. Cadmium-Sensitive Mutants of Arabidopsis thaliana.

    Science.gov (United States)

    Howden, R; Cobbett, C S

    1992-09-01

    A screening procedure for identifying Cd-sensitive mutants of Arabidopsis thaliana is described. With this procedure, two Cd-sensitive mutants were isolated. These represent independent mutations in the same locus, referred to as CAD1. Genetic analysis has shown that the sensitive phenotype is recessive to the wild type and segregates as a single Mendelian locus. Crosses of the mutant to marker strains showed that the mutation is closely linked to the tt3 locus on chromosome 5. In addition to Cd, the mutants are also significantly more sensitive to mercuric ions and only slightly more sensitive to Cu and Zn, while being no more sensitive than the wild type to Mn, thus indicating a degree of specificity in the mechanism affected by the mutation. Undifferentiated callus tissue is also Cd sensitive, suggesting that the mutant phenotype is expressed at the cellular level. Both wild-type and mutant plants showed increased sensitivity to Cd in the presence of buthionine sulfoximine, an inhibitor of the biosynthesis of the cadmium-binding (gamma-glutamylcysteine)(n)-glycine peptides, suggesting that the mutant is still able to synthesize these peptides. However, the effects of a cad1 mutation and buthionine sulfoximine together on cadmium sensitivity are essentially nonadditive, indicating that they may affect different aspects of the same detoxification mechanism. Assays of Cd uptake by intact plants indicate that the mutant is deficient in its ability to sequester Cd.

  10. Induced High Lysine Mutants in Barley

    DEFF Research Database (Denmark)

    Doll, Hans; Køie, B.; Eggum, B. O.

    1974-01-01

    Screening of mutagenically treated materials by combined Kjeldahl nitrogen and dye-binding capacity determinations disclosed fourteen barley mutants, which have from a few to about 40 per cent more lysine in the protein and one mutant with 10 per cent less lysine in the protein than the parent...

  11. Fusarium Head Blight Resistance QTL in the Spring Wheat Cross Kenyon/86ISMN 2137

    Science.gov (United States)

    McCartney, Curt A.; Brûlé-Babel, Anita L.; Fedak, George; Martin, Richard A.; McCallum, Brent D.; Gilbert, Jeannie; Hiebert, Colin W.; Pozniak, Curtis J.

    2016-01-01

    Fusarium head blight (FHB), caused by Fusarium graminearum, is a very important disease of wheat globally. Damage caused by F. graminearum includes reduced grain yield, reduced grain functional quality, and results in the presence of the trichothecene mycotoxin deoxynivalenol in Fusarium-damaged kernels. The development of FHB resistant wheat cultivars is an important component of integrated management. The objective of this study was to identify QTL for FHB resistance in a recombinant inbred line (RIL) population of the spring wheat cross Kenyon/86ISMN 2137. Kenyon is a Canadian spring wheat, while 86ISMN 2137 is an unrelated spring wheat. The RIL population was evaluated for FHB resistance in six FHB nurseries. Nine additive effect QTL for FHB resistance were identified, six from Kenyon and three from 86ISMN 2137. Rht8 and Ppd-D1a co-located with two FHB resistance QTL on chromosome arm 2DS. A major QTL for FHB resistance from Kenyon (QFhb.crc-7D) was identified on chromosome 7D. The QTL QFhb.crc-2D.4 from Kenyon mapped to the same region as a FHB resistance QTL from Wuhan-1 on chromosome arm 2DL. This result was unexpected since Kenyon does not share common ancestry with Wuhan-1. Other FHB resistance QTL on chromosomes 4A, 4D, and 5B also mapped to known locations of FHB resistance. Four digenic epistatic interactions were detected for FHB resistance, which involved eight QTL. None of these QTL were significant based upon additive effect QTL analysis. This study provides insight into the genetic basis of native FHB resistance in Canadian spring wheat. PMID:27790188

  12. Fusarium head blight resistance QTL in the spring wheat cross Kenyon/86ISMN 2137

    Directory of Open Access Journals (Sweden)

    Curt A McCartney

    2016-10-01

    Full Text Available Fusarium head blight (FHB, caused by Fusarium graminearum, is a very important disease of wheat globally. Damage caused by F. graminearum includes reduced grain yield, reduced grain functional quality, and results in the presence of the trichothecene mycotoxin deoxynivalenol in Fusarium-damaged kernels. The development of FHB resistant wheat cultivars is an important component of integrated management. The objective of this study was to identify QTL for FHB resistance in a recombinant inbred line (RIL population of the spring wheat cross Kenyon/86ISMN 2137. Kenyon is a Canadian spring wheat, while 86ISMN 2137 is an unrelated spring wheat. The RIL population was evaluated for FHB resistance in six FHB nurseries. Nine additive effect QTL for FHB resistance were identified, six from Kenyon and three from 86ISMN 2137. Rht8 and Ppd-D1a co-located with two FHB resistance QTL on chromosome arm 2DS. A major QTL for FHB resistance from Kenyon (QFhb.crc-7D was identified on chromosome 7D. The QTL QFhb.crc-2D.4 from Kenyon mapped to the same region as a FHB resistance QTL from Wuhan-1 on chromosome arm 2DL. This result was unexpected since Kenyon does not share common ancestry with Wuhan-1. Other FHB resistance QTL on chromosomes 4A, 4D, and 5B also mapped to known locations of FHB resistance. Four digenic epistatic interactions were detected for FHB resistance, which involved eight QTL. None of these QTL were significant based upon additive effect QTL analysis. This study provides insight into the genetic basis of native FHB resistance in Canadian spring wheat.

  13. Los mutantes de la escuela

    Directory of Open Access Journals (Sweden)

    Diego Armando Jaramillo-Ocampo

    2013-01-01

    Full Text Available El presente artículo muestra los resultados parciales del estudio “Juegos en el recreo escolar: un escenario para la formación ciudadana”, cuya pretensión fue comprender los imaginarios sociales de juego en el recreo escolar y su relación con la convivencia social desde la proximidad del enfoque de complementariedad y el diseño de investigación emergente, planteado por Murcia y Jaramillo (2008. Se presentan los desarrollos logrados en dos categorías centrales del estudio: el patio y el cuerpo; dos categorías que mutan constantemente como entidades vivas en la escuela, hacia la configuración de sujetos que reconocen en el otro y lo otro su posibilidad. La escuela viva, donde es posible “ser en relación con”… se reduce a un espacio temporal y físico, limitado por la campana, “el recreo”. El texto muestra, desde la voz de los actores, esa vida que se da y se quita en la escuela y que se posiciona como una más de las imposiciones normalizadas para controlar. Reconoce, finalmente, una propuesta desde la posibilidad que estos dos mutantes propician para una escuela libre y dinámica.

  14. Organic Wheat Farming Improves Grain Zinc Concentration

    OpenAIRE

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir S.; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central I...

  15. Source-Sink Relationship in Wheat (Triticum aestivum and T. durum and Triticale (Triticale hexaploid Lart. Genotypes under Ahvaz Conditions

    Directory of Open Access Journals (Sweden)

    A Modhej

    2012-02-01

    Full Text Available In order to study the sink-source physiological relationship, current photosynthesis, contribution and remobilization of assimilates to grain yield in wheat and triticale genotypes, a field experiment was conducted in Iran, Ahvaz area on 2003-4. Treatments were two bread wheat (Simareh and Tawer, one durum wheat (Showa and two triticale (Juvanillo92 and Line 45 genotypes. Grain weight changes determined with removal of 50% spikelet from one spike side in main stem and tillers. Results indicated that the highest and the lowest grain yield were in Juvanilo92 and Line 45 genotypes. Higher grain yield in Juvanillo92 genotype was due to higher biological yield (1500 g.m-2, grain number per spike (65 floret per spikelet (2.3 and spikelet number per spike (28. In average, source limitation was 22 and 30.7% in wheat and triticale genotypes, respectively. Increase in grain weight in spikelet removal treatments compared to unmanipulated spike was 22.2 and 29% for main stem and tillers, respectively. It seems that this reaction was due to remobilization of assimilates from main stems to tillers by spikelets removal from main spikes. However, in desirable conditions, high yielding genotypes of wheat and triticale could be selected on the basis of the higher spike number and grain yield which are related to increase of source limitation.

  16. Development of a core collection of Triticum and Aegilops species for improvement of wheat for activity against chronic diseases

    Directory of Open Access Journals (Sweden)

    Santra Meenakshi

    2013-02-01

    Full Text Available Abstract Background The objective of this study was to develop a core collection of Triticum and Aegilops species as a resource for the identification and characterization of wheat lines with preventive activity against chronic diseases. Given that cancer is the leading cause of mortality in the world and shares risk factors with obesity, type-2 diabetes, and cardiovascular disease, and given that wheat has been reported to protect against these diseases, the core collection was developed based on cancer prevalence. Methods The Germplasm Resources Information Network (GRIN database was used to identify Triticum and Aegilops species grown in regions of the world that vary in cancer prevalence based on the International Agency for Cancer Research GLOBOCAN world map of cancer statistics (2008. Cancer incidence data drove variety selection with secondary consideration of ploidy, center of origin, and climate. Results Analysis indicated that the geographic regions from which wheat is considered to have originated have a lower incidence of cancer than other geographic regions (P Conclusions A diverse core collection of wheat germplasm has been established from a range of regions worldwide. This core collection will be used to identify wheat lines with activity against chronic diseases using anticancer activity as a screening tool.

  17. Mechanistic Insight of Water Stress Induced Aggregation in Wheat (Triticum aestivum L. Quality: The Protein Paradigm Shift

    Directory of Open Access Journals (Sweden)

    Ijaz Rasool NOORKA

    2012-11-01

    Full Text Available Vertical and horizontal expansion of agriculture to provide food, feed, fibre and fuel to escalating populations has affected the availability of wheat in terms of quantity and quality. Irrigation is the most important factor influencing yield and grain quality. To achieve sustainable and quality wheat production, strategic measures should be adopted. Seven water stress-tolerant wheat varieties/strains were crossed with drought-susceptible lines using a line tester design to evaluate the effect of water stress on genetic variability and heritability of wheat grains. As might be expected, plant traits like moisture, ash, fat, protein and gluten content showed different responses under normal, irrigated and water-stress environments. In particular, the quality of wheat grains was found to be highly significant, indicating the presence of high variability in plant attributes like moisture percentage, ash content, crude fat, crude protein percentage and gluten content under both normal irrigation and water stress conditions. Water stress played a key role in reducing the moisture and fat content, whereas correspondingly, it increased protein, ash and gluten contents. The paradigm shifts in the deleterious effects of water stress have been elucidated. The broad-sense heritability estimate was significant for each of these characters under both conditions, with water stress in some measurements altering the heritabilities of all quality characters.

  18. Mechanistic Insight of Water Stress Induced Aggregation in Wheat (Triticum aestivum L. Quality: The Protein Paradigm Shift

    Directory of Open Access Journals (Sweden)

    Ijaz Rasool NOORKA

    2012-11-01

    Full Text Available Vertical and horizontal expansion of agriculture to provide food, feed, fibre and fuel to escalating populations has affected the availability of wheat in terms of quantity and quality. Irrigation is the most important factor influencing yield and grain quality. To achieve sustainable and quality wheat production, strategic measures should be adopted. Seven water stress-tolerant wheat varieties/strains were crossed with drought-susceptible lines using a line � tester design to evaluate the effect of water stress on genetic variability and heritability of wheat grains. As might be expected, plant traits like moisture, ash, fat, protein and gluten content showed different responses under normal, irrigated and water-stress environments. In particular, the quality of wheat grains was found to be highly significant, indicating the presence of high variability in plant attributes like moisture percentage, ash content, crude fat, crude protein percentage and gluten content under both normal irrigation and water stress conditions. Water stress played a key role in reducing the moisture and fat content, whereas correspondingly, it increased protein, ash and gluten contents. The paradigm shifts in the deleterious effects of water stress have been elucidated. The broad-sense heritability estimate was significant for each of these characters under both conditions, with water stress in some measurements altering the heritabilities of all quality characters.