WorldWideScience

Sample records for wheat mutant lines

  1. New early-ripening wheat mutant lines from the varieties Norman and Avalon

    International Nuclear Information System (INIS)

    Djelepov, K.

    1988-01-01

    The English wheat varieties Norman and Avalon are high-productive, resistant to lodging and to diseases but late-ripening in Bulgaria. They are 10-15 days later than the variety Sadovo 1 and therefore suffer often from dry and hot weather, causing premature ripening and shrivelled seed. Dry seeds from the two varieties were irradiated with 10 and 15 kR 60 Co gamma rays. In M 2 , several earlier ripening forms were selected and they were studied also in M 3 in 1987. In the Table, four early ripening mutant lines and the respective initial varieties are compared. They vary significantly in plant height and grain size. The mutant lines of Norman produce smaller grain but all mutants show a higher hectoliter weight. The mutant lines head and mature 4 to 10 days earlier than the respective initial varieties. Some of them are as productive as the standard and other cultivated varieties. We shall continue testing their productivity and possibilities for their use in the breeding

  2. Effect of sowing dates on yield and yield components on mutant-cum-hybrid lines of bread wheat

    International Nuclear Information System (INIS)

    Sial, M.A.; Arain, M.A.; Dahot, M.U.; Laghari, K.A.; Naqvi, M.H.; Markhand, G.S.; Mangrio, S.M.; Mirbahar, A.A.

    2010-01-01

    Twenty-one stable wheat mutant lines along with four check varieties viz., Sarsabz, Kiran-95, T.J.83 and Khirman were evaluated under normal and late sowing dates. The observations were recorded on phenological, morphological and meteorological parameters. Higher yield and improvement in various yield components were recorded at normal sowing as compared to late sowing. Six mutant lines showed superiority in yield than check varieties at normal sowings while three mutants produced more yield than check varieties except Sarsabz at late sowings. At normal sowing eleven mutant lines matured earlier than all check varieties including short duration variety T.J-83 whereas two mutant lines were earlier than Sarsabz and Kiran-95 and thirteen than T.J-83 and Khirman. (author)

  3. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    International Nuclear Information System (INIS)

    Wang Tiegu; Huang Qunce; Feng Weisen

    2007-01-01

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning

  4. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    Science.gov (United States)

    Wang, Tiegu; Huang, Qunce; Feng, Weisen

    2007-10-01

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.

  5. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    Energy Technology Data Exchange (ETDEWEB)

    Tiegu, Wang [Henan Provincial Key Laboratory of Ion Beam Bio-Engineering, Zhengzhou University, Zhengzhou 450052 (China); Qunce, Huang [Henan Provincial Key Laboratory of Ion Beam Bio-Engineering, Zhengzhou University, Zhengzhou 450052 (China); Weisen, Feng [Luoyang Institute of Agricultural Science, Luoyang 471022 (China)

    2007-10-15

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.

  6. Cytogenetic characteristics of soft wheat mutants under x-irradiation

    International Nuclear Information System (INIS)

    Shakaryan, Zh.O.; Avakyan, V.A.; Amirbekyan, V.A.

    1981-01-01

    Radiosensitivity of induced mutants of soft wheat is studied by criteria of frequency and character of changes in 1 and 2 divisions of meiosis. Two constant induced mutant forms of soft wheat were investigated. Mutant lines of squareheads with red ear (re) and erectoids 37/1 were obtained by X-ray irradiating hydride seeds F 1 of hybride combination of Alty-Agach Awnless 1. Seeds of mutants and initial kinds were exposed to X-rays at a dose of 10 kR. A conclusion may be drawn on the basis of studying the meiosis process in mutants and initial kinds of soft wheat on X-ray radiation that the mutants are more radiosensitive. This testifies to that that the induced mutants of soft wheat represent new genotypes in comparison with the initial kinds and differ from the latter not only in morphological characters but in the reaction norm with respect to external medium factors, i.e. the limit of possible changeability of the genotype has been extended [ru

  7. The breeding of a wheat mutant pollen-derived variety Chuanfu No.5 and the related techniques

    International Nuclear Information System (INIS)

    Xuan Pu; Yin Chunrong; Yue Chunfang; Qu Shihong

    2002-01-01

    With the treatment of 150 Gy 60 Co-γ irradiation to the dry F 1 (Mianyang 88-334 x 8811525) hybrid seeds and the donor plants chosen from MF 2 , wheat anther culture was made based on MW 14 and modified MS media and the pure diploid lines of MH 1 derived from anther pollen were obtained. In 1996, the new mutant line 6086 and its sibling lines, 6086 and 6087, were selected and bred successfully. In 2002, the mutant pollen-derived line 6086 was denominated as Chuanfu No.5 by Sichuan Crop Variety Identification Committee and became the first mutant variety via anther culture of wheat in Sichuan. The success of Chuanfu No.5 shown that combining radiation induction and anther technique could shorten the breeding period and increase the efficiency of breeding of wheat

  8. Selection of high hectolitre weight mutants of winter wheat

    International Nuclear Information System (INIS)

    Crowley, C.; Jones, P.

    1989-01-01

    Grain quality in wheat includes hectolitre weight (HLW) besides protein content and thousand-grain weight (TGW). The British winter wheat variety ''Guardian'' has a very high yield potential. Although the long grain of ''Guardian'' results in a desirable high TGW the HLW is too low. To select mutants exhibiting increased HLW the character was first analyzed to identify traits that could more easily be screened for using M 2 seeds. In comparison of 6 wheat cultivars, correlation analyses with HLW resulted in coefficients of -0.86 (grain length, L:P 2 seeds for shorter, less prolate grains. Mutagenesis was carried out using EMS sulphonate (1.8 or 3.6%), sodium azide (2 or 20 mM) or X-rays (7.5 or 20 kR). 69 M 2 grains with altered shape were selected. Examination of the M 3 progeny confirmed 6 grain-shape mutants, most of them resulting from EMS treatment (Table). Two of the mutants showed TGW values significantly below the parental variety, but three mutants exhibited HLW and TGW values significantly greater than those of the parental variety. Microplot yield trails on selected M 3 lines are in progress. The influence of physical grain characteristics on HLW offers prospects for mechanical fractionation of large M 2 populations. The application of gravity separators (fractionation on the basis of grain density) and sieves (fractionation on the basis of grain length) in screening mutants possessing improved grain quality is being investigated

  9. A large-scale mutant panel in wheat developed using heavy-ion beam mutagenesis and its application to genetic research

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Koji, E-mail: murai@fpu.ac.jp [Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195 (Japan); Nishiura, Aiko [Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195 (Japan); Kazama, Yusuke [RIKEN, Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Abe, Tomoko [RIKEN, Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); RIKEN, Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2013-11-01

    Mutation analysis is a powerful tool for studying gene function. Heavy-ion beam mutagenesis is a comparatively new approach to inducing mutations in plants and is particularly efficient because of its high linear energy transfer (LET). High LET radiation induces a higher rate of DNA double-strand breaks than other mutagenic methods. Over the last 12 years, we have constructed a large-scale mutant panel in diploid einkorn wheat (Triticum monococcum) using heavy-ion beam mutagenesis. Einkorn wheat seeds were exposed to a heavy-ion beam and then sown in the field. Selfed seeds from each spike of M{sub 1} plants were used to generate M{sub 2} lines. Every year, we obtained approximately 1000 M{sub 2} lines and eventually developed a mutant panel with 10,000 M{sub 2} lines in total. This mutant panel is being systematically screened for mutations affecting reproductive growth, and especially for flowering-time mutants. To date, we have identified several flowering-time mutants of great interest: non-flowering mutants (mvp: maintained vegetative phase), late-flowering mutants, and early-flowering mutants. These novel mutations will be of value for investigations of the genetic mechanism of flowering in wheat.

  10. Genetics of leaf rust-resistant mutant WH 147-LM-1 in hexaploid wheat variety WH 147

    International Nuclear Information System (INIS)

    Reddy, V.R.K.; Viswanathan, P.

    1999-01-01

    By applying gamma rays, EMS and their combination in hexaploid wheat variety WH 147, a total of 20 mutants (0.0226%) exhibiting complete leaf rust resistance were isolated from segregating M2 rows.When one of the rust-resistant mutants, WH 147-LM-1 was crossed with the universally susceptible, suggesting that the mutant character is controlled by one dominant gene and one recessive gene.The F2 plants derived by crossing the mutant WH 147-LM with seven near-isogenic wheat lines showed segregation for susceptibility, indicating that the mutant character was indeed generated through induced mutations

  11. Induction of Mutants in Durum Wheat

    International Nuclear Information System (INIS)

    AL-Ubaidi, M.; Ibrahim, I.; AL-Hadithi, A.

    2002-01-01

    This investigation presents a breeding program for induction and development of a new genotype of durum wheat, resistant to lodging with high yield, by irradiation durum wheat hybrids (F2) with gamma rays 100 Gy, during 1990-1997 cultivation seasons. This program involves: induction of variability, selection evaluation of the mutants at three locations: Twaitha (Baghdad) Latifya ( Babylon) and Swari (Kutt). All mutants showed resistance to lodging and there was a significant reduction in plant height. Mutant SIXIZ-22 surpassed other mutants and its origin in lodging resistance and plant height (83.5,82.8 and 89.4 cm) in the three locations at generation M5 and M6, respectively. Also, there were significant differences between mutant and their origin in the number of spikes/M 2 and grain yild during the two successive generation. On the other hand, mutant IZxCO-105 surpassed other mutants in the number of spikes/M 2 (231.8,242.3 and 292) and grain yield (4336,3376 and 5232 kg/ha) in all testing location, respectively . (authors) 14 refs., 4 tabs

  12. Modified Starch of Sorghum Mutant Line Zh-30 for High Fiber Muffin Products

    Directory of Open Access Journals (Sweden)

    D.D.S. Santosa

    2009-01-01

    Full Text Available Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30 has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour.

  13. Modified Starch of Sorghum Mutant Line Zh-30 For High Fiber Muffin Products

    International Nuclear Information System (INIS)

    Santosa, D. D. S; Human, S

    2009-01-01

    Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30) has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour (author)

  14. Disjunction or non-disjunction in F2 generation according to the cross between a wheat mutant and its original lines

    International Nuclear Information System (INIS)

    Touvin, H.

    1973-01-01

    An early homogeneous mutant line (B) was obtained in M 2 generation following the gamma-rays (15kR) treatment of the dry seeds of a fixed homogeneous line of soft wheat (A). The study of this mutant leads to the following observations: the earliness is stable in the mutant stock during successive generations and in different climatic conditions; the products of reciprocal crosses between the mutant B and the original line A, compared in micro-tests under greenhouse conditions gave following different results according to the cross; in the F 1 , the reciprocal hybrids (AxB, BxA) are earlier than the mutant. The F 1 offsprings (BxA) which received the earliness characteristic from the female parent, develop more rapidly than the reciprocal F 1 hybrid (AxB). Thus, this shows that there exist a maternal effect from the mutant side. In the F 2 , the descendants of the hybrid (AxB) segregated phenotypically in two classes, early and late, whereas the other hybrid (BxA) produces only early plants. The F 3 offsprings confirm the observations made in the F 2 generation. Although the F 3 generation of the hybrid (AxB) is composed of the early homogenous, the heterogeneous and the late homogeneous lines, but no segregation occurs in the cross (BxA). The segregation ratio in F 2 and in most of the backcrosses progenies indicates that the transmission of the earliness character is monogenic. From these results the existence of a major gene for earliness can be supposed, the expression of which appears to be under the control of the cytoplasm. The conclusion emphasizes the importance of the reciprocal crosses in the use of the mutants [fr

  15. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    Science.gov (United States)

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  16. Bioethanol production using genetically modified and mutant wheat and barley straws

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Washington State Univ., Pullman, WA (US). Dept. of Biological Engineering; East China Univ. of Science and Technology, Shanghai (CN). State Key Laboratory of Bioreactor Engineering; Liu, Y. [Michigan State Univ., East Lansing, MI (US). Biosystems and Agricultural Engineering; Chen, S. [Washington State Univ., Pullman, WA (US). Dept. of Biological Systems Engineering; Zemetra, R.S. [Univ. of Idaho, Moscow, ID (US). Plant, Soil, and Entomological Sciences

    2011-01-15

    To improve the performance of wheat and barley straws as feedstocks for ethanol biorefining, the genetic modifications of down regulating Cinnamoyl-CoA reductase and low phytic acid mutation have been introduced into wheat and barley respectively. In this study, total 252 straw samples with different genetic background and location were collected from the field experiment based on a randomized complete block design. The fiber analysis (neutral detergent fiber, acid detergent fiber, and acid detergent lignin) indicated that there were no significant differences between modified and wild type straw lines in terms of straw compositions. However, the difference did exist among straw lines on fiber utilization. 16 straw samples were further selected to conduct diluted acid pretreatment, enzymatic hydrolysis and fermentation. The data indicated that the phytic acid mutant and transgenic straws have changed the fiber structure, which significantly influences their hydrolysibility. These results may lead to a possible solution of mutant or genetic modified plant species that is capable to increase the hydrolysibility of biomass without changing their compositions and sacrificing their agronomy performance. (author)

  17. Meiosis observation of the sterile mutant after injection of exogenous DNA into wheat

    International Nuclear Information System (INIS)

    Yang Jingcheng; Yu Yuanjie; Qi Yanfang; Shen Fafu; Liu Fengzhen

    2001-01-01

    A male sterile mutant was obtained after injection of exogenous λ DNA into wheat line 814527. Meiosis of pollen mother cells (PMC) of the mutant and its receptor (line 814527) were observed. The results showed that the frequency of chromosomal variation of the sterile line was 18%, and that of the receptor was 0.8%. The main types of variation included univalent, chromosome lagging, chromosome fragment, chromosome bridge, micronucleus, abnormal ditrad and tetrad. The fragment of DNA injected into the receptor may influence the normal genetic process of chromosomes in pollen mother cells, and this may cause variations of chromosomes. The chromosome variation in meiosis may cause a part of pollen mother cells to abort, but it is not the main cause of abortion

  18. Experimental mutation of disease resistance in wheat

    International Nuclear Information System (INIS)

    Hanisova, A.; Hanis, M.; Knytl, V.; Cerny, J.

    1980-01-01

    In 1968 to 1974, 19 cultivars and lines of wheat were treated with mutagens (i.e., with X rays, gamma radiation, neutrons, EMS). ALtogether 140 lines were obtained showing better resistance and/or tolerance to black stem rust, yellow rust, stem rust of wheat, powdery mildew of cereals, and root-rot of wheat. The frequency of the induced mutations was sufficiently high, i.e., 0.0012 to 0.078 mutants per 100 plants of M 2 . The major part of mutant lines showed a lower agronomical value due to negative pleiotropy of mutant genes and a changed genetic background of mutants. Some mutant lines can be used as the starting material in hybridization programmes. (author)

  19. Sodium azide mutagenesis in wheat: Mutants with golden glumes

    International Nuclear Information System (INIS)

    Siddiqui, K.A.; Jafri, K.A.; Arain, M.A.

    1989-01-01

    In bread wheat, Triticum aestivum L. (2n=6x=42, AABBDD), detection of induced mutations is hampered by the presence of duplicate and triplicate genes. Induced changes in spike characteristics are known, but mutants with changed glume colour do not seem to have been reported. Physical mutagens such as gamma rays, thermal neutrons and fast neutrons, and chemical mutagens like EMS, El, dES and NEH have been extensively used for induction of mutations in bread wheat but it seems as if these mutagens did not induce mutants with changed glume colour. We used sodium azide for inducing mutations in the widely adapted cultivar 'Sonalika', which is characterized by brown glume colour. Presoaked seeds were treated with 0.2M sodium azide for 3 hours. Three spikes were harvested from each M 1 plant. M 2 generation was space-planted as spike progeny. We were successful in identifying 3 mutants with golden glumes. The mutants resemble 'Sonalika' in other spike characteristics. The mutants glume colour was confirmed in M 3 . The mutants were also evaluated for agronomically important characteristics. Some characters were significantly different from the parent. Glume colours may be useful as genetic markers since such characters are less influenced by the environment. Our investigation confirms that also agronomically useful genetic variation may be readily induced in bread wheat through sodium azide

  20. A wheat cold resistance mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Li Peng; Sun Mingzhu; Zhang Fengyun; Gao Guoqiang; Qiu Denglin; Li Xinhua

    2012-01-01

    A cold resistance mutant, obtained by spaceflight mutagenesis on the seeds of wheat variety Han6172, and the DNA of cold resistance mutant and contrast Han6172 were compared by SRAP technique. 380 pairs of primers were screened, 6 pairs of them had polymorphisms between mutant and contrast, the rate was 1.58%, and this data indicated that there are no obvious DNA differences between mutant and contrast Six specific fragments were obtained, 3 fragments of them were amplified in mutant. Homology analysis in GenBank showed that Me3-Em7-Mt, Me4-Em11-CK, Me7-Em19-CK and Me6-Em9-Mt all had homologous sequences with wheat chromosome 3B-specific BAC library, and this result indicated that the gene and regulator sequences associated with mutant cold resistance might locate on 3B chromosome. It was speculated that space mutation induced the mutation of 3B chromosome primary structure, and influenced the expressions of cold resistance genes, which resulted in the mutation of cold resistance ability. (authors)

  1. A wheat cold resistance mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Li Peng; Sun Mingzhu; Zhang Fengyun; Gao Guoqiang; Qiu Denglin; Li Xinhua

    2011-01-01

    A cold resistance mutant, obtained by spaceflight mutagenesis on the seeds of wheat variety Han6172, and the DNA of cold resistance mutant and contrast Han6172 were compared by SRAP technique. 380 pairs of primers were screened, 6 pairs of them had polymorphisms between mutant and contrast, the rate was 1.58%, and this data indicated that there are no obvious DNA differences between mutant and contrast. Six specific fragments were obtained, 3 fragments of them were amplified in mutant. Homology analysis in GenBank showed that Me3-Em7-Mt, Me4-Em11-CK, Me7-Em19-CK and Me6-Em9-Mt all had homologous sequences with wheat chromosome 3B-specific BAC library, and this result indicated that the gene and regulator sequences associated with mutant cold resistance might locate on 3B chromosome. It was speculated that space mutation induced the mutation of 3B chromosome primary structure, and influenced the expressions of cold resistance genes, which resulted in the mutation of cold resistance ability. (authors)

  2. Isozyme patterns of powdery mildew resistant wheat mutants

    International Nuclear Information System (INIS)

    Xia Wengau; Li Zhengkui; Wang Kefeng

    1989-01-01

    Full Text: Wheat mutants induced by gamma irradiation and showing improved resistance to powdery mildew were analysed for isozymes. The peroxidase band 3A could be related to the disease reaction. The band 3A is absent in resistant mutants, the higher the activity of band 3A the greater the susceptibility. (author)

  3. Induction of mutants in durum wheat (triticum durum desf cv. samra) using gamma irradiation

    International Nuclear Information System (INIS)

    Albokari, M.

    2014-01-01

    A mutation breeding program was initiated in 2008 emphasizing the main constraints for sustainable production of durum wheat in Saudi Arabia. The aim of the program was to develop moderate or high yielding semi-dwarf/lodging tolerant, early maturing mutants with drought and disease tolerance from a local durum wheat cultivar (Triticum durum Desf. cv. Samra) which has the main defects of longer crop duration, lodging habit and low grain yield. Dry seeds of Samra were subjected to 150 and 200Gy doses of gamma irradiation and each treatment consisted of 2500 seeds. Irradiated seeds were grown as M1 population along with parental variety as control at Almuzahmiah Research Station of Riyadh, Saudi Arabia. Decrease in germination (%) and survival rate (%) of plants was observed. A wide variation in days to flowering and plant height was found in the M1 populations. Three seeds from each spike per plant of M1 plants were collected, bulked dose wise and grown separately as M2 in 2009 growing season. From these M2, 17 desirable putative mutant plants which varied significantly with the mother were visually selected. These putative mutants were found to be semi-dwarf and early maturing in nature with other improved agronomic traits including lodging reaction and grain yield. The selected plants, when grown in progeny lines as M3 in 2010, more or less maintained their superiority over the mother for many traits. Most of the mutant lines showed homogeneity for most of characters studied. Eleven of these 17 lines were found to be promising in respect of days to flower, plant height (for semi-dwarf) and other traits including grain yield. (author)

  4. Molecular verification on male sterile mutant after injected exogenous λDNA into wheat

    International Nuclear Information System (INIS)

    Yang Jingcheng; Yu Yuanjie; Liu Fengzhen; Qi Yanfang; Shen Fafu

    2000-01-01

    A cytoplasmic male sterile mutant and then a stable CMS line named D-type sterile line were obtained after injected exogenous λDNA into wheat line 814527, and line 814527 could be its maintainer line. By using λDNA labelled with 32 P as probe, unlabelled λDNA as positive check, dot blotting of nuclear DNA and chloroplast DNA of receptor 814527, D-type sterile line and its hybrid F 1 with Lumai 14 were carried out. Positive dots appeared in nuclear DNA and chloroplast DNA of D-type sterile line and its hybrid F 1 , but did not appear in the receptor. It showed that fragments of exogenous λDNA existed in nuclear genome and chloroplast genome of D-type sterile line, and could be inherited stably. All these results, on a molecular level, proved the reliability of exogenous DNA injection

  5. Transcriptome Analysis for Abnormal Spike Development of the Wheat Mutant dms.

    Science.gov (United States)

    Zhu, Xin-Xin; Li, Qiao-Yun; Shen, Chun-Cai; Duan, Zong-Biao; Yu, Dong-Yan; Niu, Ji-Shan; Ni, Yong-Jing; Jiang, Yu-Mei

    2016-01-01

    Wheat (Triticum aestivum L.) spike development is the foundation for grain yield. We obtained a novel wheat mutant, dms, characterized as dwarf, multi-pistil and sterility. Although the genetic changes are not clear, the heredity of traits suggests that a recessive gene locus controls the two traits of multi-pistil and sterility in self-pollinating populations of the medium plants (M), such that the dwarf genotype (D) and tall genotype (T) in the progeny of the mutant are ideal lines for studies regarding wheat spike development. The objective of this study was to explore the molecular basis for spike abnormalities of dwarf genotype. Four unigene libraries were assembled by sequencing the mRNAs of the super-bulked differentiating spikes and stem tips of the D and T plants. Using integrative analysis, we identified 419 genes highly expressed in spikes, including nine typical homeotic genes of the MADS-box family and the genes TaAP2, TaFL and TaDL. We also identified 143 genes that were significantly different between young spikes of T and D, and 26 genes that were putatively involved in spike differentiation. The result showed that the expression levels of TaAP1-2, TaAP2, and other genes involved in the majority of biological processes such as transcription, translation, cell division, photosynthesis, carbohydrate transport and metabolism, and energy production and conversion were significantly lower in D than in T. We identified a set of genes related to wheat floral organ differentiation, including typical homeotic genes. Our results showed that the major causal factors resulting in the spike abnormalities of dms were the lower expression homeotic genes, hormonal imbalance, repressed biological processes, and deficiency of construction materials and energy. We performed a series of studies on the homeotic genes, however the other three causal factors for spike abnormal phenotype of dms need further study.

  6. Evaluation of induced mutants of wheat for resistance to fungal diseases

    International Nuclear Information System (INIS)

    Barriga B, P.; Fuentes P, R.; Andrade S, N.; Seeman F, P.

    1990-01-01

    Evaluation of induced mutants of wheat for resistance to fungal diseases. Seeds of spring wheat cultivars Austral and Huenufen were exposed to gamma radiation in doses of 0.10 and 0.25 KGy with the objective of producing genotypes resistant to the main fungal diseases, with a high protein content and grain yield, for the southern region of Chile (39 sup(o)-44 sup(o) Latitude south). The selection process and evaluation up to the generation M sub(8) has made possible to identify mutants with a higher protein content and grain yield. Progress made in improving resistance to Puccinia striiformis and tolerance to Septoria spp., has also been important. Some selected mutants, conditioned to their future performance, could be directly used as commercial varieties and other mutants, on crosses with regionally adapted cultivars. (author)

  7. Induced spherococcoid hard wheat

    International Nuclear Information System (INIS)

    Yanev, Sh.

    1981-01-01

    A mutant has been obtained - a spheroccocoid line -through irradiation of hard wheat seed with fast neutrons. It is distinguished by semispherical glumes and smaller grain; the plants have low stem with erect leaves but with shorter spikes and with lesser number of spikelets than those of the initial cultivar. Good productive tillering and resistance to lodging contributed to 23.5% higher yield. The line was superior to the standard and the initial cultivars by 14.2% as regards protein content, and by up to 22.8% - as to flour gluten. It has been successfully used in hybridization producing high-yielding hard wheat lines resistant to lodging, with good technological and other indicators. The possibility stated is of obtaining a spherococcoid mutant in tetraploid (hard) wheat out of the D-genome as well as its being suited to hard wheat breeding to enhance protein content, resistance to lodging, etc. (author)

  8. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop.

    Science.gov (United States)

    Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip

    2015-02-01

    New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.

  9. Gamma rays effect on inducing semidwarf mutants with good quality in the local durum wheat variety (Hamari)

    International Nuclear Information System (INIS)

    Mir Ali, Nizar

    1991-01-01

    The main objective of the present study was to test, under our field conditions, some promising M4-M5 mutant lines that were selected under green house conditions (U.K) from a Ph.D. project aimed at improving protein content in a local Syrian durum wheat variety Hamari. The study lasted 3 years, in the first year there were not enough seeds available for replications, thus, about 90 lines were grown in one location after which many unsatisfactory lines were discarded. In the second and third years 3 recently released varieties and 4 advanced lines from ICARDA were included in the trials with 4 replications and 2 and 3 locations in 1989 and 1990 respectively. Nearest Neighbour Analysis was used to estimate the lines yield performance. The results indicated that, in all locations, there were some mutant lines that surpassed the varieties Sham 3 and Bhuth 1. Moreover, in the dry location (Izraa) 3 mutant lines have out yielded the OM-Al Rabi lines which were produced by ICARDA and described as being suitable in dry areas. The employment of ANOFT and FTAB programme was effective in selecting some lines of interest depending on multiple character selection with variable selection pressure. Such selections resulted in short mutant lines that were better in their yield and quality than the recently released varieties (except for variety Daki in the driest location, Izraa). These results need confirmation for three more years with increasing plot size and locations before sending the superior lines to the national testing and multiplication authorities. (author). 10 refs., 14 tabs

  10. Characterization of reduced height mutant of emmer wheat var. NP200 (Triticum dicoccum)

    International Nuclear Information System (INIS)

    Suman, Sud; Nayeem, K.A.; Bhagwat, S.G.

    2006-01-01

    Full text: Emmer wheat commonly known as Khapli is cultivated on limited area in Tamil Nadu, Andhra Pradesh, Karnataka, Maharashtra and Gujarat. Although cultivation of emmer wheat is confirmed to a small area, improvement work in this species is gaining importance because of its potential for diabetic patients and high dietary fibre in comparison to durum and bread wheats. Emmer wheat cultivar NP200 is a selection from local wheats of Andhra Pradesh. The cultivar NP200 is tall and is prone to lodging leading to yield loss. Therefore, systematic effort to improve cultivar NP200 is needed with the objective to reduce height and introduce lodging tolerance and to improve harvest index. The cultivar NP200 was irradiated with γ-rays. A reduced height mutant with vigorous growth and high tillering was found in M2 population. The mutant was designated as HW1095. The progeny of mutant in M3 showed 35.7 percent reduction in height as compared to parent. The HW1095 mutant was subjected to gibberellic acid treatment at seedling stage and was found to be insensitive to gibberellic acid. An allele specific marker for major dwarfing gene Rht B1b was used to check the status of dwarfing gene in semi dwarf emmer (DDK1009, DDK1025, HW5013, HW5301 and MACS2961) and tall emmer (Np200 and NP201), semi dwarf durums (HD4502, HD4530, MACS2846) along with dwarf mutant (HW1095). The validity of primer in semi dwarf durums and emmer for Rht B 1b gene was found to be perfect. The parent variety NP200 showed presence of wild type allele (Rht B1a) with the primer pair BF-WR1. All semi dwarf emmer showed a band of 237 bp with primer pair BF-MR1. However, mutant (HW1095) showed absence of amplification for both Rht B1a and Rht B1b alleles with respective primer pairs. The results indicated that the reduced height mutant carried a mutation different than from the existing allele (Rht B1b)

  11. Induction of mutants in Durum Wheat by hybridization and irradiation techniques

    International Nuclear Information System (INIS)

    Al Ubaidi, M.O.; Ibrahim, I.F.

    2001-01-01

    This investigation presents a breeding program for induction and development a new genotypes of durum wheat, resistant to lodging with high yield, by irradiated seeds (F2) of durum wheat hybrid's (Sin Al-jemal X Izraa, Sin Al-Jemal X Cocorat and Izraa X Cocorat) with gamma rays 100 Gy dose. This program involves: Induction of variability, selection, evaluation of the best mutants at three different locations, Twaitha(Baghdad), Latifya (Babylon) and Swari (Kutt), for the period 1990-1999. Results revealed that the mutants ( Si X Iz-7, Si X Iz-22, Si X Co-43, Si X Co-48, Si X Co-50, Si X Co- 87, Iz X Co-95 and Iz X Co-105) showed resistance to lodging with a significant reduction in plant heigth, but mutant Si X Iz-22 surpassed the other mutants and it is origin in lodging resistance and reduction in plant heigth (84.8, 81.9 and 86.3 cm) at Twaitha, Latifya and Babylon respectively in M7 and M8 generations. Also there were a significant differences between the mutants and their origin in yield and yield components during the two successive generations, on the other hand mutant Iz X Co-105 surpassed the other mutants in spikes/m2 ( 278.8, 263.3 and 289) and grain yield (4950, 4820 and 5320 kg/ha) in the testing locations respectively

  12. A dwarf wheat mutant is associated with increased drought ...

    African Journals Online (AJOL)

    ... was significantly higher than Jingdong 6. Most of the s-dwarf seedlings survived in recovering experiement after water loss. The stalk of s-dwarf seedling also showed reduced gravitropism. This is the first report about a new dwarf wheat mutant associated with increased drought resistance and altered stalk gravitropism.

  13. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering.

    Directory of Open Access Journals (Sweden)

    Andrew Chen

    Full Text Available Most of the natural variation in wheat vernalization response is determined by allelic differences in the MADS-box transcription factor VERNALIZATION1 (VRN1. Extended exposures to low temperatures during the winter (vernalization induce VRN1 expression and promote the transition of the apical meristem to the reproductive phase. In contrast to its Arabidopsis homolog (APETALA1, which is mainly expressed in the apical meristem, VRN1 is also expressed at high levels in the leaves, but its function in this tissue is not well understood. Using tetraploid wheat lines with truncation mutations in the two homoeologous copies of VRN1 (henceforth vrn1-null mutants, we demonstrate that a central role of VRN1 in the leaves is to maintain low transcript levels of the VRN2 flowering repressor after vernalization. Transcript levels of VRN2 were gradually down-regulated during vernalization in both mutant and wild-type genotypes, but were up-regulated after vernalization only in the vrn1-null mutants. The up-regulation of VRN2 delayed flowering by repressing the transcription of FT, a flowering-integrator gene that encodes a mobile protein that is transported from the leaves to the apical meristem to induce flowering. The role of VRN2 in the delayed flowering of the vrn1-null mutant was confirmed using double vrn1-vrn2-null mutants, which flowered two months earlier than the vrn1-null mutants. Both mutants produced normal flowers and seeds demonstrating that VRN1 is not essential for wheat flowering, which contradicts current flowering models. This result does not diminish the importance of VRN1 in the seasonal regulation of wheat flowering. The up-regulation of VRN1 during winter is required to maintain low transcript levels of VRN2, accelerate the induction of FT in the leaves, and regulate a timely flowering in the spring. Our results also demonstrate the existence of redundant wheat flowering genes that may provide new targets for engineering wheat

  14. Induced mutations for disease resistance in wheat and barley

    International Nuclear Information System (INIS)

    Hanis, M.; Hanisova, A.; Knytl, V.; Cerny, J.; Benc, S.

    1977-01-01

    The induction of mutations in cultivars of wheat (Triticum aestivum), barley (Hordeum vulgare), and field beans (Phaseolus vulgaris) has been part of the breeding programme at the Plant Breeding Station at Stupice since 1960. A total of 26 cultivars or selections of winter wheat, 4 cultivars or selections of spring wheat, 2 cultivars of field beans, and 43 selections of spring barley have been treated since 1960. A total of 140 mutant lines of wheat and 37 mutant lines of barley with improved disease resistance of a race-specific type have been obtained. Several mutation programme derived cultivars have been registered in Czechoslovakia (''Diamant'', ''Ametyst'', ''Favorit'', ''Hana'', ''Rapid'', and ''Atlas'' in barley, and ''Alfa'' in field beans), but none of them is a mutation for disease resistance. A series of mutants have been used in crossing programmes. Approaches to improve the efficiency of mutation breeding for disease resistance are suggested. (author)

  15. Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. METHODOLOGY/PRINCIPAL FINDINGS: Octoploid triticale was derived from common wheat T. aestivum L. 'Mianyang11'×rye S. cereale L. 'Kustro' and some progeny were obtained by the controlled backcrossing of triticale with 'Mianyang11' followed by self-fertilization. Genomic in situ hybridization (GISH using rye genomic DNA and fluorescence in situ hybridization (FISH using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in 'Mianyang11'. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. CONCLUSIONS/SIGNIFICANCE: These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat.

  16. Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines

    Science.gov (United States)

    Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang

    2013-01-01

    Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213

  17. Mutants with Enhanced Nitrogenase Activity in Hydroponic Azospirillum brasilense-Wheat Associations

    Science.gov (United States)

    Pereg Gerk, Lily; Gilchrist, Kate; Kennedy, Ivan R.

    2000-01-01

    The effect of a mutation affecting flocculation, differentiation into cyst-like forms, and root colonization on nitrogenase expression by Azospirillum brasilense is described. The gene flcA of strain Sp7 restored these phenotypes in spontaneous mutants of both strains Sp7 and Sp245. Employing both constitutive pLA-lacZ and nifH-lacZ reporter fusions expressed in situ, the colony morphology, colonization pattern, and potential for nitrogenase activity of spontaneous mutants and flcA Tn5-induced mutants were established. The results of this study show that the ability of Sp7 and Sp245 mutant strains to remain in a vegetative form improved their ability to express nitrogenase activity in association with wheat in a hydroponic system. Restoring the cyst formation and colonization pattern to the spontaneous mutant Sp7-S reduced nitrogenase activity rates in association with plants to that of the wild-type Sp7. Although Tn5-induced flcA mutants showed higher potentials for nitrogenase expression than Sp7, their potentials were lower than that of Sp7-S, indicating that other factors in this strain contribute to its exceptional nitrogenase activity rates on plants. The lack of lateral flagella is not one of these factors, as Sp7-PM23, a spontaneous mutant impaired in swarming and lateral-flagellum production but not in flocculation, showed wild-type nitrogenase activity and expression. The results also suggest factors of importance in evolving an effective symbiosis between Azospirillum and wheat, such as increasing the availability of microaerobic niches along the root, increased supply of carbon sources by the plant, and the retention of the bacterial cells in vegetative form for faster metabolism. PMID:10788397

  18. Studies on productivity lodge resistance of radiation induced mutants of syrian local durum wheat

    Energy Technology Data Exchange (ETDEWEB)

    Elfares, A M; Ghazal, H M [Dep. of Radiation Agriculture, Syrian Atomic Energy Commision, Damascus, P.O. Box 6091, (Syrian Arab Republic)

    1995-10-01

    The aim of the research was to induce mutations characterized by lodging resistant and high yielding ability in two syrian local durum wheat land races. This research was carried out at two periods during 1983-1987 and from 1991-1993. At the first period, Kernels of Hourani and Senatore Cappelle were treated with 10, 15, 20, 25 and 30 K rad of gamma rays at the Laboratory of the commission of Syrian Atomic Energy to induce mutations. The treated Kernels were planted in 1983/1984 season. After that, selection were practicised on plants which characterized by good performance and lodging resistant. During the successive seasons, screening were made on mutant lines to keep out only lines which show adaptability to intensive cultivation. Second period includes testing of selected lines at two govern orates of syria (Raqqa and Aleppo) during three successive seasons; 1991/1992 and 1992/1993 under intensive cultivation conditions (fertilization, irrigation, stands, etc.).

  19. Studies on in vitro induction mutation for wheat mutant of resistance to root rot and its resistance mechanism

    International Nuclear Information System (INIS)

    Sun Guangzu

    1992-06-01

    The screening wheat mutant which has the resistance to root rot was completed in 37 varieties by in vitro induction mutation method. The effect of irradiation on in vitro culture of different wheat explants and the effectiveness of screening rude toxin were studied. Two wheat mutants, RB500 and RB501, which have the resistance to root rot, were obtained. Changes of the ultrastructure and defensive enzymes (SOD, ROD and PAL) were investigated by using mutants and parent under the action of rude toxin. The results showed that the rude toxin could induce changes of enzyme activity, isoenzyme pattern and ultrastructure of the mitochondria and chloroplast. These change correspond to their ability of resistance to disease. The mutant under the action of toxin has the ability to increase the defensive enzyme activity and to reduce the damage of cell membrane system that would result in resistance increasing

  20. A temperature-sensitive winter wheat chlorophyll mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Zhao Hongbin; Guo Huijun; Zhao Linshu; Gu Jiayu; Zhao Shirong; Li Junhui; Liu Luxiang

    2010-01-01

    A temperature-sensitive winter wheat (Triticum aestivum L.) chlorophyll mutant Mt18, induced by spaceflight mutagenesis, was studied on agronomic traits, ultrastructure of chloroplast and photosynthesis characteristics. The leaf color of the mutant Mt18 showed changes from green to albino and back to green during the whole growth period. Plant height, productive tillers, spike length, grains and grain weight per plant, and 1000-grain weight of the mutant were lower than those of the wild type. The ultrastructural observation showed that no significant difference was found between the mutant and the wild type during prior albino stage, however, at the albino stage the number of granum-thylakoids and grana lamellae became fewer or completely disappeared, but the strom-thylakoid was obviously visible. After turning green,the structure of most chloroplasts recovered to normal, but number of chloroplast was still lower than that of the wild type. When exposed to photosynthetic active radiation (PAR) of 110 μmol·m -2 ·s -1 , the non-photochemical quenching (NPQ) of mutant was significantly lower than that of the wild type, and the non-regulated energy dissipation (Y NO ) was significantly higher than that of the wild type, while the change of the maximum photosystem II quantum yield (F v /F m ), potential activity of photosystem II (F v /F o ), photochemical quenching (q P ), effective quantum yield (Y PSI I) and regulated non-photochemical energy dissipation (Y NPQ ) were different at various stages. In addition, the differences of the electron transport rate (ETR), photochemical quenching (q P ), and effective quantum yield (Y PSI I) between mutant and wild type varied under different PAR conditions. It was concluded that with the change of chloroplast ultrastructure, the leaf color and photosynthesis of the wheat mutant Mt18 change correspondingly. The chloroplast ultrastructure was obviously different from that of wild type, and the photosynthetic efficiency

  1. Promising semi-dwarf mutant in wheat variety K68

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D [Banaras Hindu Univ. (India). Dept. of Genetics and Plant Breeding

    1977-04-01

    A semi-dwarf mutant (HUW-SDf 1) was induced from common wheat Var. K68 through the exposure of /sup 60/Co ..gamma..-rays at 15 kR. This mutant along with other induced mutants and control was assessed for yield components, yield and grain quality (M/sub 4/ generation); internode length reduction pattern and the yielding ability at three levels of nitrogen (M/sub 5/ generation). The mutant was significantly shorter in height and almost equal in tillers per plant and grains per spike to K68. However, it showed marked reduction in spike length and spikelets per spike. On the other hand, it possessed significantly higher (50.04 g) 1000-grain weight against control (41.15 g). The mutant gave 56.0% higher yield than the control. Grain quality studies indicated that the mutant possessed significantly higher (14.15%) total protein than K68. It was equally as good as K68 in lysine content. Pelshenke value (62.5 min) of the mutant indicated medium hard nature of gluten as compared to hard nature (198.0) of the control. The mutant showed 24.0% reduction in total culm length compared to K68. Reduction occurred due to maximum and almost equal reduction in 5th and 4th internodes (ca 34.0%) followed by 3rd, 2nd and 1st. The mutant showed similar yield and yield response to increasing nitrogen levels (80 to 160 kg per ha.) as for current commercial semi-dwarf varieties.

  2. Use of wheat and maize protein mutants in breeding for improved protein quantity and quality

    International Nuclear Information System (INIS)

    Denic, M.; Dumanovic, J.; Misevic, D.; Konstantinov, K.; Fidler, D.; Stojanovic, Z.

    1984-01-01

    Selected offspring progenies (50 mutant lines) originating from mutation experiments with hexaploid wheat (cv. Bezostaya 1) were analysed for induced heritable variation in protein content, lysine content, grain yield and protein and lysine yields. Ten of these mutant lines were crossed with 11 local varieties. The protein and lysine contents were measured in the progenies of these crossings. The data showed better correlations of grain yield with protein and lysine yields than the protein and lysine contents with their corresponding yields. F 1 seeds showed higher lysine and protein contents than local varieties. Data with maize showed that: (1) the total endosperm protein content of modified opaque-2 types increases with an increase in the degree of normalization; (2) the lysine content in dry matter and protein in normalized o 2 kernels usually decreases with the increasing degree of normalization; (3) the lysine content in protein of modified o 2 kernels, is, in general, satisfactory up to the normalization of about 50% of endosperm. A desirable modification of o 2 endosperm within line A632o 2 was selected and crossed with o 2 lines. Most of the tested hybrids had a good protein quality, but endosperm modification was not evident in all hybrids. The o 2 gene was incorporated into high protein backgrounds. Besides a high protein content and quality, some of the hybrids tested had a comparable or higher yield than the o 2 check. (author)

  3. New advances of wheat mutation breeding in Heilongjiang Province

    International Nuclear Information System (INIS)

    Sun Guangzu

    1991-09-01

    Five wheat varieties have been released between 1980 and 1990, these varieties possess early maturity, high yield, good quality, disease resistance and wide adaptability. They have been cultivated on 373 330 ha. Some of them are proved to be very valuable germ plasma for cross breeding. Technique of induced wheat mutation have been studied. Since selecting adaptable irradiation conditions, using combination of radiation with hybridization, irradiating male gamete, female gamete and zygote, soaking treatment with KH+2 32 PO 4 , etc., the efficiency of induced mutation have been increased. By combining radiation with distant hybridization, F 0 unfruitfulness and F 1 sterility have been overcome, and 21 wheat-rye translocation lines have been selected. One of them, 6BS/6RL translocation line, which is called Longfumai No. 4, was released in 1987. The procedure of inducting and identifying translocation lines has been raised already. Mature embryos, anthers and young embryos of wheat were irradiated and inoculated as explants. The rude toxin of Bipoloris sorokiniana, as a screening factor, was added to different medi and finally 3 lines with resistance to Bipoloris sorokiniana were selected. It was established that technical system for in-vitro radiation induced mutation and screening wheat mutants of resistance to disease. The biochemical identify methods for mutants have been studied already

  4. Characteristics of mutant lines of sweet potato flour

    International Nuclear Information System (INIS)

    Aryanti

    2012-01-01

    Research on mutation induction of sweet potato Sari variety has been conducted. Flour mutant lines were obtained from selection of M1V5 tubers irradiated by gamma rays at the dose of 10 Gy. Flour was made by peeling of tubers, then dried, blended and sieved. The quality test of flour have been done by measuring degree of whiteness, proximate, amylose contents, water content, soluble water, swelling power, and flour characteristics. The result of this work showed that flour of C6.26.13 mutant line had higher protein content than the parent plant with concentration of 3.62 % and its amylose content was also higher than the other mutant lines. The soluble water value of mutant lines were significant different compared to the parent plant from 1.82 to 2.25 % and swelling power from 4.28 to 5.55 %. The flour granule of the mutant line was different compared to the parent plant. (author)

  5. Nuclear technique for inducing new genetical sources of powdery mildew resistant mutants of wheat

    International Nuclear Information System (INIS)

    Shi Jinguo; Hu Xiaoyuan; Fan Qingxia; Wang Linqing; Hong Jisong

    1996-01-01

    Three varieties of winter wheat were treated with γ-rays, electron-beams, NaN 3 , EMS with various doses and intermittent irradiation of γ-rays respectively. 16 pure varieties and 12 hybrids were irradiated by γ-rays with appropriate doses (250∼300 Gy) for inducing mutation resistant to powdery mildew in winter wheat. γ-rays, electron-beams, NaN 3 and EMS were effective mutagens for inducing powdery mildew resistant mutants. The latter two were more effective than the former. It showed that the appropriate doses were as follows: γ-rays 300∼350 Gy, electron-beams 100∼200 Gy, NaN 3 1∼3 mmol/L, EMS about 0.3%. It also showed that the intermittent irradiation of γ-rays was more effective than the continuous irradiation for inducing powdery mildew resistant mutants. Irradiating hybrids were more effective materials than pure varieties for this purpose. 86 mutants with resistance to powdery mildew were obtained

  6. Induced multiple disease resistance in wheat

    International Nuclear Information System (INIS)

    Borojevic, K.; Worland, A.J.

    1990-01-01

    Full text: The existence of genes suppressing resistance to leaf rust, stem rust and yellow rust in hexaploid wheat has been suggested. If such genes are deleted or inactivated, a more resistant variety may be obtained. In mutant lines of the wheat variety San Pastore, selected after treatment with 20,000 rad of gamma-rays, resistance to leaf rust, yellow rust, stem rust, and to some extent to Erysiphe graminis was determined. The mutants responded to infection by producing necrotic flecks in the presence of high level of disease inoculum. Similar flecks develop under stress condition. It is likely that the mother variety San Pastore carries genes for resistance which are masked by suppressor genes. Irradiation inactivates suppressors so that resistance genes which were previously masked are expressed. The first results of monosomic analysis indicate that chromosomes of groups 4 and 5 or possibly 7 may be critical for expression of resistance in the mutant lines. (author)

  7. The Development of “Eldo Ngano 1”: The World’s World’s First Ug99 Resistant Mutant Wheat Variety

    International Nuclear Information System (INIS)

    Forster, Brian P.

    2014-01-01

    The wheat black stem rust disease is a virulent race of fungus, Puccinia graminis, which affects wheat plants and is caused by a strain of fungus known as Ug99. Named for its place and year of origin, Ug99 was first discovered on wheat in Uganda in 1999. The spores of this plant disease are airborne and can be easily spread by wind. If not prevented, the disease can destroy 70 to 100 per cent of the yield of wheat crops. Annually on average 8.3 million tonnes of wheat grain is lost to this disease, costing US $1.23 billion per year. Ethiopia, Kenya and Uganda are hot spots for this disease. In 2009, growing international concern regarding the horrific impact of Ug99 on wheat led to the establishment of IAEA project INT/5/150, Responding to the Transboundary Threat of Wheat Black Stem Rust (Ug99). This project has involved over 18 countries and 5 national and international institutions, and examined possible mutation induction treatments to deal with the challenges posed by Ug99. Meetings and workshops to facilitate the project efforts have been held in Kenya and Turkey. Ug99 continues to spread globally and has now reached the Islamic Republic of Iran. There are also reports of suspected disease occurrences in Europe. It is essential that work continues on developing mutant lines for further crop protection that can be utilized worldwide to safeguard the wheat crop from this devastating disease

  8. Male-fertility-restorer mutation induced by x-rays in wheat

    International Nuclear Information System (INIS)

    Sasaki, Mutsuo; Nakata, Noboru; Yasumuro, Yoshimasa

    1982-01-01

    Some male-fertility restoring mutants were obtained by X-irradiation (20 or 25 kR, 105.3 R/min) of the air-dried seed of cytoplasmic male-sterile (cms) wheat, (timopheevi)-Bison. These X-ray induced male-fertility restoring mutant (Rfx) lines restored the male fertility of F 1 hybrids with cms (timopheevi)-Bison as female, but their fertility-restoring ability was not superior to that of known restorers such as Gironde, Primepi, and (t)-H30. The Rfx lines were also different from the original (timopheevi)-Bison, in many characters. The study on these multicharacter mutations with 18 morphological and physiological characters of the 7 M 6 line groups derived from the 7M 2 plants, revealed that each M 2 progenitor plant of each M 6 line-group had the mutant genes for almost all these characters, and that the mutation for at least half of all these mutant genes was induced in the original cell of the gamates of each X-irradiated M 1 plant. Considering the multicharacter mutations of the Rfx lines, a backcross method for the mutation breeding of male-fertility restorers in wheat was proposed. (Kaihara, S.)

  9. Anther and isolated microspore culture of wheat lines from northwestern and eastern Europe

    DEFF Research Database (Denmark)

    Holme, I B; Olesen, A; Hansen, N J P

    1999-01-01

    Hexaploid wheat genotypes from north-western Europe show low responses to current anther culture techniques. This phenomenon was investigated on 145 north-western European wheat lines. Twenty-seven lines from eastern Europe were included to observe the response pattern of wheat from an area, where...... the technique has been used successfully. On average, eastern European wheat lines produced 3.6 green plants per 111 anthers, while only 1.4 green plants per 111 anthers were obtained in north-western European lines. This difference was due to the high capacity for embryo formation among the eastern European...... lines, while the ability to regenerate green plants was widespread in both germplasm groups. Isolated wheat microspore culture performed on 85 of these wheat lines gave an average 3.7-fold increase in green plants per anther compared with the anther culture response. The increased recovery of green...

  10. Induced mutation aiming at obtaining lodging resistance in wheat C V.Omid(Triticum Aestivum)

    International Nuclear Information System (INIS)

    Majd, F.; Rezazadeh, M.; Ghohari, A.

    1993-01-01

    Mutation breeding has been an important part breeding research for solving some of the existing problems related to wheat. A locally adopted wheat cultivar 'Omid' which is a traditionally tall wheat mostly cultivated in regions with a continental climate and is susceptible to lodging was chosen as research material. The nuclear research department for agriculture of Atomic Energy Organization of Iran initiated a mutation breeding program for creating genetic variability in wheat using this local cultivar. Seeds of this variety was irradiated with gamma radiation (50-150 Gy) to induce short straw mutants with greater lodging resistance and yield potential. from a total of about 20000 irradiated seeds 1500 plants showing promising agronomic character were isolated as potential mutants. Following progeny tests and selection 18 mutants lines entered preliminary yield trail. Further field trails at different locations gave two promising lines which are characterized by higher yield, lodging resistance and early maturity. (author). 3 tabs

  11. Semi-dwarf mutant lines of hexaploid triticale

    International Nuclear Information System (INIS)

    Pidra, M.

    1989-01-01

    A spring form of hexaploid secondary triticale ADD 143/71, bred by MOGILEVA at the Plant Breeding Station at Uhretice was used for the mutagen treatment. The mutation experiment started in 1979. Seeds were treated with a 0.8 mM water solution of N-methyl-N-nitrosourea (MNH) (CETL and RELICHOVA, unpublished). From 180 M 1 plants, one spike was harvested per plant. A random sample of these seeds was sown as M 2 in 1980 and several plants with shorter main culm were selected. Selfed progenies of eight mutant plants designated ADD 143-m1, ADD 143-m2, ADD 143-m3 etc. were further tested in M 3 and M 4 . There were significant differences in culm length and in some other characters between the original line and the mutant lines. Especially the line m8 looks like a promising source of semi-dwarfness for breeding programmes of hexaploid triticale. During 1985-1987 genetic analysis was performed on the ADD 143/71 and the mutant lines m2, m6, m7 and m8, which suggest that their mutant genes are allelic and recessive

  12. Grain-filling duration and grain yield relationships in wheat mutants

    International Nuclear Information System (INIS)

    Larik, A.S.

    1987-01-01

    Nine stable mutants of bread wheat along with their mother cultivars were investigated for grain-filling characteristics in relation to grain yield. Significant differences among mutants for grain-filling duration and grain-filling index were observed. Inspite of the consistent differences in grain-filling duration there was no significant association between grain-filling duration and grain yield in C-591 and Nayab mutants. Failure to detect an yield advantage due to differences in grain-filling duration in these genotypes suggests that any advantage derived from alteration of grain-filling period may have been outweighed by the coincident changes in length of the vegetative period. Other factors such as synchrony of anthesis may have limited out ability to find an association between grainfilling duration and grain yield. On the contrary, significant association between grain-filling duration and grain yield displayed by indus-66 indus-66 mutants derived from gamma rays, shows the ability of gamma rays to induce functional alternations in the pattern of gene arrangements controlling these traits. Thus, the vaability observed in these physiological traits suggests that selection for these traits could be useful in improving grain yield. (author)

  13. Study on the mechanism of wheat mutants resistance to bi-polaris sorokiniana

    International Nuclear Information System (INIS)

    Sun Guangzu; Wang Guangjin; Tang Fenglan; Liu Lijun; Li Zhongjie

    1992-01-01

    The activities and band number of peroxidase (POD), superoxide dismutase (SOD) and phenylalanine aminolyase (PAL) in plant tissue have been studied after treatment with phytotoxin produced from Bi polaris sorokiniana. The results showed that the activity and band number of these enzymes have been changed markedly. The change in degree of activity for mutants was more than that of the parent, and coincident with the ability of resistance to disease. The authors considered that the toxin tolerance ability and inducibility of SOD and POD by toxin might be one of resistance mechanism of wheat mutant against Bipolaris sorokiniana

  14. Peculiarities of meiosis in radiomutants of the soft wheat

    Energy Technology Data Exchange (ETDEWEB)

    Shakaryan, Zh.O.; Avakyan, V.A. (Armyanskij Sel' skokhozyajstvennyj Inst.)

    1983-10-01

    The experiment is carried out using five constant mutant lines of soft wheat with a cylindrical ear. On the basis of the study of the dynamics and character of violations in 1 and 2 divisions of meiosis in the mutants and initial sorts a conclusion can be made that inspite of the morphological homogeneity in M/sub 8/, the mutants are characteristized by different degree of heterozygosis in translocations and micromutations. The presence of a comparatively large number of multivalents in MI of the meiosis did not cause violations in the final stage of meiosis. All the mutants have normal meiotic index and formed gametes, balanced as to genetic material, which points to the possibility of growing the economically-efficient wheat mutants with a high productivity and fertility using the method of radiation mutagenesis.

  15. Grain product of 34 soya mutant lines

    International Nuclear Information System (INIS)

    Salmeron E, J.; Mastache L, A. A.; Valencia E, F.; Diaz V, G. E.; Cervantes S, T.; De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.; Gatica T, M. A.

    2009-01-01

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R 4 M 18 ) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co 60 gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L 25 and L 32 produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  16. Photosynthetic and nitrogen fixation capability in several soybean mutant lines

    International Nuclear Information System (INIS)

    Gandanegara, S.; Hendratno, K.

    1987-01-01

    Photosynthetic and nitrogen fixation capability in several soybean mutant lines. A greenhouse experiment has been carried out to study photosynthetic and nitrogen fixation capability of five mutant lines and two soybean varieties. An amount of 330 uCi of 14 CO 2 was fed to the plants including of the non-fixing reference crop (Chippewa non-nodulating isoline). Nitrogen fixation measurements was carried out using 15 N isotope dilution technique according to A-value concept. Results showed that beside variety/mutant lines, plant growth also has important role in photosynthetic and N fixing capability. Better growth and a higher photosynthetic capability in Orba, mutant lines nos. 63 and 65 resulted in a greater amount of N 2 fixed (mg N/plant) than other mutant lines. (author). 12 refs.; 5 figs

  17. Cloning and Functional Analysis of MADS-box Genes, TaAG-A and TaAG-B, from a Wheat K-type Cytoplasmic Male Sterile Line

    Directory of Open Access Journals (Sweden)

    Wenlong Yang

    2017-06-01

    Full Text Available Wheat (Triticum aestivum L. is a major crop worldwide. The utilization of heterosis is a promising approach to improve the yield and quality of wheat. Although there have been many studies on wheat cytoplasmic male sterility, its mechanism remains unclear. In this study, we identified two MADS-box genes from a wheat K-type cytoplasmic male sterile (CMS line using homology-based cloning. These genes were localized on wheat chromosomes 3A and 3B and named TaAG-A and TaAG-B, respectively. Analysis of TaAG-A and TaAG-B expression patterns in leaves, spikes, roots, and stems of Chinese Spring wheat determined using quantitative RT-PCR revealed different expression levels in different tissues. TaAG-A had relatively high expression levels in leaves and spikes, but low levels in roots, while TaAG-B had relatively high expression levels in spikes and lower expression in roots, stems, and leaves. Both genes showed downregulation during the mononucleate to trinucleate stages of pollen development in the maintainer line. In contrast, upregulation of TaAG-B was observed in the CMS line. The transcript levels of the two genes were clearly higher in the CMS line compared to the maintainer line at the trinucleate stage. Overexpression of TaAG-A and TaAG-B in Arabidopsis resulted in phenotypes with earlier reproductive development, premature mortality, and abnormal buds, stamens, and stigmas. Overexpression of TaAG-A and TaAG-B gives rise to mutants with many deformities. Silencing TaAG-A and TaAG-B in a fertile wheat line using the virus-induced gene silencing (VIGS method resulted in plants with green and yellow striped leaves, emaciated spikes, and decreased selfing seed set rates. These results demonstrate that TaAG-A and TaAG-B may play a role in male sterility in the wheat CMS line.

  18. A preliminary yield trial of some soybean mutant lines

    International Nuclear Information System (INIS)

    Ratma, Rivaie

    1985-01-01

    A preliminary yield trial of some soybean mutant lines, derived from irradiated Orba variety with dose of 0.40 kGy, were carried out during the wet and dry season in 1979-1982 in Muara and Citayam, Bogor. The result obtained showed that yield potential of mutant lines no. M6/40/10 was higher than that of the control in dry season in 1979 as well as in the wet season of 1979/80 in Muara. Whereas, the yield potential of the mutant lines no. M6/40/8 and no. M6/40/14 were higher than that of the control only in the wet season. The yield potential of semi dwarf mutant lines no. M6/40/68 was highly significant compared to that of the control in dry season in Muara and the wet season in 1981/82 in Citayam. Whereas, the yield potential of the mutant lines no. M6/40/69 was higher yield compared to that of the control in dry season in 1981 in Muara. (author). 10 refs

  19. Boron tolerance in NS wheat lines

    Directory of Open Access Journals (Sweden)

    Brdar Milka

    2006-01-01

    Full Text Available Boron is an essential micronutrient for higher plants. Present in excessive amounts boron becomes toxic and can limit plant growth and yield. Suppression of root growth is one of the symptoms of boron toxicity in wheat. This study was undertaken to investigate the response of 10 perspective NS lines of wheat to high concentrations of boron. Analysis of root growth was done on young plants, germinated and grown in the presence of different concentrations of boric acid (0, 50,100 and 150 mg/1. Significant differences occurred between analyzed genotypes and treatments regarding root length. Average suppression of root growth was between 11,6 and 34,2%, for line NS 252/02 are even noted 61,4% longer roots at treatments in relation to the control. Lines with mean suppression of root growth less than 20% (NS 101/02, NS 138/01, NS 53/03 and NS 73/02 may be considered as boron tolerant. Spearmans coefficients showed high level of agreement regarding rang of root length for genotypes treated with 100 and 150 mg H3BO3/l.

  20. The peculiarities of meiosis in radiomutants of the soft wheat

    International Nuclear Information System (INIS)

    Shakaryan, Zh.O.; Avakyan, V.A.

    1983-01-01

    The experiment is carried out using five constant mutant lines of soft wheat with a cylindrical ear. On the basis of the study of the dynamics and character of violations in 1 and 2 divisions of meiosis in the mutants and initial sorts a conclusion can be made that inspite of the morphological homogeneity in M 8 , the mutants are characteristized by different degree of heterozygosis in translocations and micromutations. The presence of a comparatively large number of multivalents in MI of the meiosis did not cause violations in the final stage of meiosis. All the mutants has a normal meiotic index and formed gametes, balanced as to genetic material, which points to the possibility of growing the economically-efficient wheat mutants with a high productivity and fertility using the method of radiation mutagenesis

  1. Efficient induction of Wheat-agropyron cristatum 6P translocation lines and GISH detection.

    Directory of Open Access Journals (Sweden)

    Liqiang Song

    Full Text Available The narrow genetic background restricts wheat yield and quality improvement. The wild relatives of wheat are the huge gene pools for wheat improvement and can broaden its genetic basis. Production of wheat-alien translocation lines can transfer alien genes to wheat. So it is important to develop an efficient method to induce wheat-alien chromosome translocation. Agropyroncristatum (P genome carries many potential genes beneficial to disease resistance, stress tolerance and high yield. Chromosome 6P possesses the desirable genes exhibiting good agronomic traits, such as high grain number per spike, powdery mildew resistance and stress tolerance. In this study, the wheat-A. cristatum disomic addition was used as bridge material to produce wheat-A. cristatum translocation lines induced by (60Co-γirradiation. The results of genomic in situ hybridization showed that 216 plants contained alien chromosome translocation among 571 self-pollinated progenies. The frequency of translocation was 37.83%, much higher than previous reports. Moreover, various alien translocation types were identified. The analysis of M2 showed that 62.5% of intergeneric translocation lines grew normally without losing the translocated chromosomes. The paper reported a high efficient technical method for inducing alien translocation between wheat and Agropyroncristatum. Additionally, these translocation lines will be valuable for not only basic research on genetic balance, interaction and expression of different chromosome segments of wheat and alien species, but also wheat breeding programs to utilize superior agronomic traits and good compensation effect from alien chromosomes.

  2. Production and identification of wheat - Agropyron cristatum (1.4P) alien translocation lines.

    Science.gov (United States)

    Liu, Wei-Hua; Luan, Yang; Wang, Jing-Chang; Wang, Xiao-Guang; Su, Jun-Ji; Zhang, Jin-Peng; Yang, Xin-Ming; Gao, Ai-Nong; Li, Li-Hui

    2010-06-01

    The P genome of Agropyron Gaertn., a wild relative of wheat, contains an abundance of desirable genes that can be utilized as genetic resources to improve wheat. In this study, wheat - Aegilops cylindrica Host gametocidal chromosome 2C addition lines were crossed with wheat - Agropyron cristatum (L.) Gaertn. disomic addition line accession II-21 with alien recombinant chromosome (1.4)P. We successfully induced wheat - A. cristatum alien chromosomal translocations for the first time. The frequency of translocation in the progeny was 3.75%, which was detected by molecular markers and genomic in situ hybridization (GISH). The translocation chromosomes were identified by dual-color GISH /fluorescence in situ hybridization (FISH). The P genomic DNA was used as probe to detect the (1.4)P chromosome fragment, and pHvG39, pAs1, or pSc119.2 repeated sequences were used as probes to identify wheat translocated chromosomes. The results showed that six types of translocations were identified in the three wheat - A. cristatum alien translocation lines, including the whole arm or terminal portion of a (1.4)P chromosome. The (1.4)P chromosome fragments were translocated to wheat chromosomes 1B, 2B, 5B, and 3D. The breakpoints were located at the centromeres of 1B and 2B, the pericentric locations of 5BS, and the terminals of 5BL and 3DS. In addition, we obtained 12 addition-deletion lines that contained alien A. cristatum chromosome (1.4)P in wheat background. All of these wheat - A. cristatum alien translocation lines and addition-deletion lines would be valuable for identifying A. cristatum chromosome (1.4)P-related genes and providing genetic resources and new germplasm accessions for the genetic improvement of wheat. The specific molecular markers of A. cristatum (1.4)P chromosome have been developed and used to track the (1.4)P chromatin.

  3. Induction of short culm mutants for bread wheat by using gamma rays

    International Nuclear Information System (INIS)

    Sobieh, S.S.

    2002-01-01

    This investigation was conducted at the experimental farm of plant research department, nuclear research center, atomic energy authority, Inshas in order to select some short culm mutants from the local wheat varieties; Sid's-5, Sid's-6 and Sid's-7 after gamma irradiation. The obtained results indicated that: 1-M 4 mutants progenies retained the features of their M 3 selections. 2-Some short culm mutants exhibited high grain yield/plant as compared to their original varieties. 3-There were significant decreases in plant height varied from 21.4 to 35.4%. This reduction was due to the shorting of culm inter nods length. As well as, the reduction diameter/culm especially diameter of the inter nods/culm did not differed between original varieties and the mutants. 4-The correlation between grain yield/plant and number of spikes/plant was positive and highly significant for most mutants and the original varieties as well. Data also showed that there were positive relationship between grain yield/plant and number of grains/spike and and length of the inter nods/culm. Positive or negative association between grain yield/plant and plant height as well as diameters of inter nods/culm for mutants and original varieties were detected

  4. Induced mutations for resistance to leaf rust in wheat

    International Nuclear Information System (INIS)

    Borojevic, K.

    1983-01-01

    Problems related to the induction of mutations for disease resistance were investigated under several aspects, using the wheat/leaf rust system. Previously selected mutant lines, tested in M 11 and M 13 , were found to differ with regard to infection type and disease severity from the original varieties. To verify the induced-mutation origin, these mutants were examined further using test crosses with carriers of known genes for leaf rust resistance and electrophoresis. A separate experiment to induce mutations for leaf rust resistance in the wheat varieties Sava, Aurora and Siete Cerros, using gamma rays, fast neutrons and EMS, yielded mutants with different disease reaction in the varieties Sava and Aurora at a frequency of about 1x10 - 3 per M 1 plant progenies. (author)

  5. Application Of Database Program in selecting Sorghum (Sorghum bicolor L) Mutant Lines

    International Nuclear Information System (INIS)

    H, Soeranto

    2000-01-01

    Computer database software namely MSTAT and paradox have been exercised in the field of mutation breeding especially in the process of selecting plant mutant lines of sorghum. In MSTAT, selecting mutant lines can be done by activating the SELECTION function and then followed by entering mathematical formulas for the selection criterion. Another alternative is by defining the desired selection intensity to the analysis results of subprogram SORT. Including the selected plant mutant lines in BRSERIES program, it will make their progenies be easier to be traced in subsequent generations. In paradox, an application program for selecting mutant lines can be made by combining facilities of Table, form and report. Selecting mutant lines with defined selection criterion can easily be done through filtering data. As a relation database, paradox ensures that the application program for selecting mutant lines and progeny trachings, can be made easier, efficient and interactive

  6. Genetic rearrangements of six wheat-agropyron cristatum 6P addition lines revealed by molecular markers.

    Directory of Open Access Journals (Sweden)

    Haiming Han

    Full Text Available Agropyron cristatum (L. Gaertn. (2n = 4x = 28, PPPP not only is cultivated as pasture fodder but also could provide many desirable genes for wheat improvement. It is critical to obtain common wheat-A. cristatum alien disomic addition lines to locate the desired genes on the P genome chromosomes. Comparative analysis of the homoeologous relationships between the P genome chromosome and wheat genome chromosomes is a key step in transferring different desirable genes into common wheat and producing the desired alien translocation line while compensating for the loss of wheat chromatin. In this study, six common wheat-A. cristatum disomic addition lines were produced and analyzed by phenotypic examination, genomic in situ hybridization (GISH, SSR markers from the ABD genomes and STS markers from the P genome. Comparative maps, six in total, were generated and demonstrated that all six addition lines belonged to homoeologous group 6. However, chromosome 6P had undergone obvious rearrangements in different addition lines compared with the wheat chromosome, indicating that to obtain a genetic compensating alien translocation line, one should recombine alien chromosomal regions with homoeologous wheat chromosomes. Indeed, these addition lines were classified into four types based on the comparative mapping: 6PI, 6PII, 6PIII, and 6PIV. The different types of chromosome 6P possessed different desirable genes. For example, the 6PI type, containing three addition lines, carried genes conferring high numbers of kernels per spike and resistance to powdery mildew, important traits for wheat improvement. These results may prove valuable for promoting the development of conventional chromosome engineering techniques toward molecular chromosome engineering.

  7. Intra lines uniformity and inter lines variation of rice mutants resulting from irradiation of South Kalimantan local varieties

    International Nuclear Information System (INIS)

    Raihani Wahdah; Gusti Rumayadi; Rahmi Zulhidiani

    2016-01-01

    The preference of farmer in tidal swamp on local rice varieties are quite high, but local varieties have a long life and low yield characters, so it needs to be improved for the trait. This study is part of activities of the local rice varieties improvement to generate promising lines were short-moderate aged, but the slimming and pera (high amylose content) grains maintained. The aims of this study were to determine the intra lines uniformity and the inter lines variation of M5 generation of rice mutant lines. The experiment was carried out in the Experimental Station of Agriculture Faculty, Lambung Mangkurat University from March to September 2014. The experiment used 150 earliest flowering lines of 300 M5 mutant lines that were planted. Intra lines uniformity were analysed by comparing the variance of each mutant lines with variance of its parent, while the variation among lines were analyzed by comparing the variance of all lines with variance of its parent. More than 85 % M5 mutant lines from Siam Harli as parent and > 79 % of Siam Kuatek as parent are uniform. The uniform character at all M5 mutant lines, both of Siam Harli or Siam Kuatek parent are the harvest age, the filled grains number, and the empty grains number. There is no variability between M5 mutant lines, but some of M5 mutant lines from Siam Harli and Siam Kuatek have some better characters than their parents, so there is an opportunity for selection. (author)

  8. Mutation induction of protein variability in wheat and rice

    International Nuclear Information System (INIS)

    Narahari, P.; Bhatia, C.R.; Gopalakrishna, T.; Mitra, R.K.

    1976-01-01

    No high protein mutants of wheat have been obtained without depression of grain yield after screening a few thousand lines. The best wheat mutant identified in our programme so far is an erectoid mutant that has consistently shown about 1.5-2% points increase in protein over Kalyan sona for the last four years. Grain yield of the mutant is about 89% of the parent. No significant variation in amino composition is noted in the mutant. Preliminary analysis of over 200 macro mutants in three varieties of rice has resulted in identification of mutants with high protein content (10-22%) compared with 8.0 to 8.5% in the high yielding controls. The amino-acid composition of some of the mutant kernels do not show great deviation from the controls. All the high protein percentage mutants are lower in grain yield. Despite very high F 1 sterility in a cross involving the high protein genotype GMPR-51 and high yielding IR-8, several fertile F 2 plants resembling IR-8 have been isolated which on preliminary analysis have shown still higher protein content than GMPR-51, suggesting a transgressive mode of inheritance of this trait. (author)

  9. Induced mutations for resistance to powdery mildew in wheat

    International Nuclear Information System (INIS)

    Liu Xueyu

    1990-01-01

    The most serious diseases of wheat in the Yangtze River Valley in China are powdery mildew and scab. Breeding for disease resistance either using conventional methods or through mutation breeding is the best way of controlling these diseases. Mutation breeding may be valuable in obtaining genotypes with resistance or tolerance, or for breaking undesirable linkages involving existing genes for disease resistance. The following commercial varieties were used: Yangmai 3, Ningmai 3 and Ningmai 6. They are high-yielding varieties, but susceptible to powdery mildew. Seeds of these cultivars were treated with gamma-rays. The material was screened in the seedling stage in M 2 in the greenhouse and under field conditions in M 3 -M 4 and later generations. The seedlings were inoculated with a spore suspension of the powdery mildew fungus. The most resistant mutant selected from variety Ningmai 3 was the line 34080 with resistance to races 4, 16 and 20. According to the number of progenies in M 2 , the mutation frequency was 1.2x10 -4 . The other two mutants (34157, 34158) were screened from variety Yangmai 3. Mutant 34157 showed a stable resistance to races 4, 16 and 20; mutant 34158 was resistant to races 4 and 20 but susceptible to race 16. Tracing them back to M 2 progeny, the mutation frequency was 1.0x10 -4 . From electrophoretic analysis of mildew resistant mutant lines of wheat we found that the zymogram of peroxidase in resistant lines 34080 and 34157 was different from their parents and that these lines do not have band 3A

  10. Semi-dwarf mutants in triticale and wheat breeding

    International Nuclear Information System (INIS)

    Driscoll, C.J.

    1984-01-01

    The triticale lines Beagle and DR-IRA have been subjected to ionizing irradiation and chemical mutagenesis in order to produce semi-dwarf mutants. Beagle is 100 cm tall and DR-IRA 80 cm under average field conditions. A bulk then pedigree method is currently represented by 158 single plots of M 6 (or in some cases M 7 ) mutants that are from 5 to 35 cm shorter than the control variety. The shortest mutants are 65 cm in height. Forty of these mutants are also earlier flowering than the control varieties. Replicated yield testing will be conducted on confirmed mutants in 1983. Response to gibberellic acid of these mutants will also be determined. The Cornerstone male-sterility mutant (ms1c) on chromosome arm 4Aα has been combined with the GA-insensitive/reduced height gene Gai/Rht1 which is also on chromosome arm 4Aα. The ms1c mutant has also been combined with Gai/Rht2 on chromosome 4D and with both Gai/Rht1 and Gai/Rht2. The combination ms1c and Gai/Rht1 has been chosen as the basis of a composite cross. Thirteen varieties were tested with GA 3 and seven (Warigal, Aroona, Oxley, Banks, Avocet, Matipo and Toquifen) which contain Gai/Rht1 were crossed with ms1c Gai/Rht1 and entered into an interpollinating F 2 . The entire composite is homozygous for this semi-dwarf allele and selection will be practiced for increased height on a GA-insensitive background. (author)

  11. Soybean promising mutant lines super early maturity Q-298 and 4-Psj

    International Nuclear Information System (INIS)

    Arwin; Mulyana, H.I.; Tarmizi; Masrizal; Faozi, K.; Adie, M.

    2012-01-01

    One of the efforts to increase the national soybean (Glycine max L. Merr.) production is by growing super early maturity with high yielding varieties, so that the planting time can be shortened to fill out the cropping pattern of ''rice-rice-soybean''. Such varieties can be developed through mutation breeding method using γ ray irradiation. In this research the seeds of Tidar variety were irradiated by 200 Gy γ ray from 60 Co. Irradiated seeds were planted in the field and selections with emphasis on early maturing character were conducted in M 2 generation. Selected plants were purified to M 7 generation and selected pure mutant lines were subjected to preliminary and advanced yield trials. Based on these results 5 promising mutant lines were selected to continue in multi location yield trials. A set of lines for multi location yield trials consist of 14 lines included 5 mutant lines from this experiment, 5 lines from UNSUD, 3 national leading varieties, Argomulyo, Gorobogan, Burangrang, as national control varieties and Tidar as an original of mutant lines. Based on the result of multi location yield trials, 2 mutant lines, Q-298 dan 4-Psj, have significant high productivities compared to productivities of other lines and varieties. The growth duration of these lines were only 66 days and 68 days, respectively with average productivities were 2.41 tons / ha and 2.42 tons / ha, respectively. Index stability of Q-298 and 4-Psj mutant lines were 0.84 and 0.79, respectively, it means that the productivities of these two lines were stable in all tested locations. Based on the results, the Q-298 and 4-Psj mutant lines were proposed to be released as new varieties with the names of Gamasugen 1 and Gamasugen 2, respectively. (author)

  12. Characteristics and use of wheat mutants tolerant or resistant to Septoria nodorum Berk

    International Nuclear Information System (INIS)

    Fossati, A.; Kleijer, G.; Fried, P.M.

    1983-01-01

    Mutation induction was used to obtain mutants tolerant or resistant to Septoria nodorum. This technique is valuable but many genotypes had to be treated because mutants could not be selected from all the genotypes. Short tolerant mutants could be obtained from 3 of the 15 treated tall tolerant lines. Induction of tolerance in susceptible lines of good agronomic value succeeded for 2 of 5 treated varieties. All these mutants showed a reduction in yield potential. One mutant showed partial resistance to S. nodorum. The disease development on the leaves and the spikes of this mutant was much slower than on the original variety. The characteristics of this mutant are discussed in detail. The genetics of tolerance proved to be polygenic and additive, which has consequences on the breeding method. A good way of obtaining a stable system would be the combination of high tolerance and partial resistance in the same cultivar. (author)

  13. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene

    International Nuclear Information System (INIS)

    Shitsukawa, N.; Ikari, C.; Shimada, S.; Kitagawa, S.; Sakamoto, K.; Saito, H.; Ryuto, H.; Fukunishi, N.; Abe, T.; Takumi, S.; Nasuda, S.; Murai, K.

    2007-01-01

    The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase (mvp), was induced by nitrogen ion-beam treatment and was identified by its inability to transit from the vegetative to reproductive phase. In our previous study, we showed that WAP1 (wheat APETALA1) is a key gene in the regulatory pathway that controls phase transition from vegetative to reproductive growth in common wheat. WAP1 is an ortholog of the VRN1 gene that is responsible for vernalization insensitivity in einkorn wheat. The mvp mutation resulted from deletion of the VRN1 coding and promoter regions, demonstrating that WAP1/VRN1 is an indispensable gene for phase transition in wheat. Expression analysis of flowering-related genes in mvp plants indicated that wheat GIGANTIA (GI), CONSTANS (CO) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) genes either act upstream of or in a different pathway to WAP1/VRN1

  14. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance.

    Science.gov (United States)

    Ali, N; Heslop-Harrison, Js Pat; Ahmad, H; Graybosch, R A; Hein, G L; Schwarzacher, T

    2016-08-01

    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a cost-effective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chromatin in four genetically diverse populations of wheat (Triticum aestivum) lines incorporating chromosome segments from Thinopyrum intermedium and Secale cereale (rye). Out of 20 experimental lines, 10 carried Th. intermedium chromatin as T4DL*4Ai#2S translocations, while, unexpectedly, 7 lines were positive for alien chromatin (Th. intermedium or rye) on chromosome 1B. The newly described rye 1RS chromatin, transmitted from early in the pedigree, was associated with enhanced WSMV resistance. Under field conditions, the 1RS chromatin alone showed some resistance, while together with the Th. intermedium 4Ai#2S offered superior resistance to that demonstrated by the known resistant cultivar Mace. Most alien wheat lines carry whole chromosome arms, and it is notable that these lines showed intra-arm recombination within the 1BS arm. The translocation breakpoints between 1BS and alien chromatin fell in three categories: (i) at or near to the centromere, (ii) intercalary between markers UL-Thin5 and Xgwm1130 and (iii) towards the telomere between Xgwm0911 and Xbarc194. Labelled genomic Th. intermedium DNA hybridised to the rye 1RS chromatin under high stringency conditions, indicating the presence of shared tandem repeats among the cereals. The novel small alien fragments may explain the difficulty in developing well-adapted lines carrying Wsm1 despite improved tolerance to the virus. The results will facilitate directed chromosome engineering producing agronomically desirable WSMV-resistant germplasm.

  15. Mildew resistant and less lodging wheat mutants induced in Iran

    International Nuclear Information System (INIS)

    Naghedi-Ahmadi, I.

    1989-01-01

    ''Tabassi'' is a lodging and mildew susceptible cultivar. To induce mutations, seeds were gamma irradiated (50 to 150 Gy) in 1982 and selection for lodging resistance was carried out in M 2 . During field experiments with the mutant lines in 1985/86 there has been a heavy mildew epidemic under which mutant 63-5-I (derived from 50 Gy treatment) exhibited considerable resistance and as a consequence, higher yield. The control was 100% infected, the mutant only 40%. The mutant yielded 31% more grain, 7.5% less straw and 4.5% more protein than the control. Lodging of 63-5-I was only 60% in an experiment under rainfed conditions in the same season, resulting in a relative yield increase of about 11%. In 1986/87 there was no mildew epidemic and the mutant yielded the same as ''Tabassi''

  16. Plants Regeneration Derived From Various on Peanut on Mutant Lines

    International Nuclear Information System (INIS)

    Dewi, Kumala; Masrizal; Mugiono

    1998-01-01

    The study of calli, greenspot formation and shoot regeneration on peanut mutant lines has ben conducted by MS media. Three explants derived from shoot tips, embryo and seeding root of two mutant lines a/20/3 and D/25/3/2 were used in this experiment. the explants were cultured on modified MS media enriched by vitamins, growth regulation, amino acids for fourth teen calli were transferred on regeneration media. The ability of calli formation and plant regeneration of each explant and genotypes of plants was varied. Greenspot and shoot formation were observed seventh days after the calli transferred on regeneration media. It is shown that the ability of calli, greenspot and shoot formation of each explants and genotypes was varied. the high ability of calli, greenspot and shoot formation were found in explant derived from shoot tip and embryo. Seedling root explant has lower ability in calli formation, while greenspot and shoot was formatted. The ability of calli, greenspot and shoot formation on A/20/3 mutant line was better than D/25/3/2 mutant line. (author)

  17. Grain product of 34 soya mutant lines;Rendimiento de grano de 34 lineas mutantes de soya

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron E, J.; Mastache L, A. A.; Valencia E, F.; Diaz V, G. E. [Colegio Superior Agropecuario del Estado de Guerrero, Vicente Guerrero No. 81, Col. Centro, 40000 Iguala, Guerrero (Mexico); Cervantes S, T. [Instituto de Recursos Geneticos y Productividad, Colegio de Posgraduados, Carretera Mexico-Texcoco Km. 36.5, Montecillo, 56230 Texcoco, Estado de Mexico (Mexico); De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.; Gatica T, M. A. [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R{sub 4}M{sub 18}) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co{sup 60} gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L{sub 25} and L{sub 32} produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  18. Biochemical characteristics of mutant lines of currant tomato

    International Nuclear Information System (INIS)

    Gorbatenko, I.Yu.; Khrustaleva, V.V.; Shcherbakov, V.K.

    1988-01-01

    The currant tomato is used in breeding for fruit quality. It contains up to 50 mg% ascorbic acid, a large quantity of sugar and 8-10% of dry matter. The weight of the fruit, however, does not exceed 1.2-1.5 g. The plants have long, spreading and very branchy stems. Gamma ray induced mutants of currant tomato were used, as initial material in breeding for fruit quality in varieties suitable for mechanized harvesting. The research was carried out mainly at the Department of Vegetable Growing Ukrainian Scientific Research Institute of Irrigation Farming. The regional variety Lebyazhinskij (suitable for mechanized harvesting) was adopted as the standard. Its fruits contain: 5.6% dry matter, 2.7% sugars, 0.543% titrated acidity, 26.6 mg/100 g ascorbic acid, 0.425 mg% carotene and 0.35% cellulose. The biochemical characteristics of the tomato mutants are shown. In terms of fruit dry matter, all mutants surpassed the standard. The acidity and the ascorbic acid content varied considerably. Most noteworthy in terms of carotene were the lines GP-5, GP-9 and GP-12. An important factor in the production of tomato paste is the fruit cellulose content. The lowest cellulose content is found in mutant GP-3. As shown, all of the mutants were early ripening. The mutants surpassed the standard in simultaneous fruit ripening. Mutant lines GP-3, GP-6, GP-9 and GP-12 will be used in the breeding programme for improving fruit quality of varieties suitable for mechanized harvesting

  19. Mutant lines of currant tomato, valuable germplasm with multiple disease resistance

    International Nuclear Information System (INIS)

    Govorova, G.F.; Khrustaleva, V.V.; Shcherbakov, V.K.

    1987-01-01

    Studies were carried out for two years on eight mutant lines of currant tomato at the Krymsk Experimental Breeding Station of the N.I. Vavilov All-Union Scientific Research Institute of Plant-Growing (VIR). The station is situated in an area of commercial field tomato growing (Krasnodar region). The mutant lines of currant tomato (VIR specimen No. k-4053) were obtained through chronic gamma-irradiation. A disease resistance evaluation of the mutants was carried out for Verticillium wilt (Verticillium albo-atrum Rein. and Berth.), for black bacterial spotting (Xanthomonas vesicatoria Dows.), for tobacco mosaic virus Nicotiana 1 Smith), for streak virus (Nicotiana 1), for the combination TMV with X and Y potato viruses, for cucumber virus (Cucumis 1), and also for top rot. Fifty plants of each mutant line were evaluated and checks were made three times in each season. A comparison of the currant tomato mutants with the standard tomato varieties demonstrates the better resistance shown by the mutant germplasm to the main pathogens. The degree to which some currant tomato mutants were affected by Verticillium was lower than that of the most VerticiIlium-resistant samples of tomato evaluated between 1975 and 1981. The mutants of currant tomato should therefore be of interest as germplasm in breeding tomatoes for improved multiple disease resistance

  20. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach.

    Science.gov (United States)

    Acevedo-Garcia, Johanna; Spencer, David; Thieron, Hannah; Reinstädler, Anja; Hammond-Kosack, Kim; Phillips, Andrew L; Panstruga, Ralph

    2017-03-01

    Wheat is one of the most widely grown cereal crops in the world and is an important food grain source for humans. However, wheat yields can be reduced by many abiotic and biotic stress factors, including powdery mildew disease caused by Blumeria graminis f.sp. tritici (Bgt). Generating resistant varieties is thus a major effort in plant breeding. Here, we took advantage of the non-transgenic Targeting Induced Lesions IN Genomes (TILLING) technology to select partial loss-of-function alleles of TaMlo, the orthologue of the barley Mlo (Mildew resistance locus o) gene. Natural and induced loss-of-function alleles (mlo) of barley Mlo are known to confer durable broad-spectrum powdery mildew resistance, typically at the expense of pleiotropic phenotypes such as premature leaf senescence. We identified 16 missense mutations in the three wheat TaMlo homoeologues, TaMlo-A1, TaMlo-B1 and TaMlo-D1 that each lead to single amino acid exchanges. Using transient gene expression assays in barley single cells, we functionally analysed the different missense mutants and identified the most promising candidates affecting powdery mildew susceptibility. By stacking of selected mutant alleles we generated four independent lines with non-conservative mutations in each of the three TaMlo homoeologues. Homozygous triple mutant lines and surprisingly also some of the homozygous double mutant lines showed enhanced, yet incomplete, Bgt resistance without the occurrence of discernible pleiotropic phenotypes. These lines thus represent an important step towards the production of commercial non-transgenic, powdery mildew-resistant bread wheat varieties. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Resistance of some early mutant lines of soybean to rust fungus (Phakospora pachyrhizi Syd)

    International Nuclear Information System (INIS)

    Ratma, Rivaie

    1984-01-01

    A trial for resistance to rust fungus (Phakospora pachyrhizi Syd.) was conducted on 11 early mutant lines of soybean M6 (derived from Orba variety with a dose of 0.4 kGy of Co-60) at Citayam Experimental Station, Bogor, in the wet season of 80/81. Based on IWGSR rating system, soybean mutant lines number M6/40/6 was moderately susceptible to rust fungus (Phakospora pachyrhizi Syd). While 10 other soybean mutant lines M6/40/1, M6/40/2, M6/40/3, M6/40/4, M6/40/5, M6/40/7, M6/40/8, M6/40/9, M6/40/10 and M6/40/11 were susceptible to rust fungus. Significant differences in yield were observed between the early mutant lines M6/40/6 (moderate susceptible), 10 other mutant lines (susceptible) and ringgit variety (susceptible). However, a significant lower yield was produced by those mutant lines compared with the yield of orba variety. (author)

  2. Heterosis and combining ability analysis of eight agronomic characters in five distinctive wheat mutants

    International Nuclear Information System (INIS)

    Hou Guangyun; Jing Liling

    1996-01-01

    A complete delia cross (no reciprocal hybrid) was made using 5 wheat mutants with distinctive characters. The heterosis and combining ability of 8 agronomic characters were studied in 10 crosses F 1 and 5 parents. The dominance degree of F 1 indicated that except for the remarkable negative heterosis for heading-date, the positive heterosis was remarkable for all the other 7 characters. The performance of parents was significantly related to the gca effects. However, gca effects were not completely consistent with the value of heterosis. As germplasm resources, dwarf-stalk mutant 890376 was the best for reducing plant height. A large grain mutant, Hesheng 2, was the best for increasing 1000-grain weight. An early maturity mutant 890236 was the best for earlier heading and fillering ability. A large head mutant 890018 was the best for improving head length, number of spikelets per head, number of grain per head and grain weight per head. To sum up, the above 4 distinctive mutants were very useful for improving the characters corresponding with their mutated characters. For some characters, the cross will have a bigger sca effects if its parents have a bigger gca effects. However, it is not the same for all their characters. Sca effects of crosses were significantly related to the heterosis over mean parent

  3. Grain weight improvement in wheat through irradiation

    International Nuclear Information System (INIS)

    Rasal, P.N.; Gadekar, D.A.; Gavhane, V.N.; Bhoite, K.D.

    2006-01-01

    T. aestivum wheat variety NIAW 34 was developed by Agricultural Research Station, Niphad, and was released by Central Varietal Release Committee, for cultivation under irrigated late sown conditions of Peninsular Zone. The grains of NIAW 34 are medium sized with 40g 1000 grain weight. However, in market the bold sized grains (above 40g 1000 grain weight) are preferred by the traders and consumers. To overcome this lacuna, grains of wheat variety NIAW 34 were irradiated to exploit the possibilities of improvement in test weight. The material was irradiated with 15 and 20 kr dose of gamma rays. In M2 generation, mutants for various morphological characters were observed. The plants showing vigorous growth habit and desirable morphological characters were selected. These selected plants were studied for grain characters after harvest. On the basis of improved test weight as compared to parental line, selections were effected. The material was advanced to M6 generation and found stable for character of interest. The material selected comprised of total 10 lines showing improved test weight having range of 42-46 g i.e. increase of 4-6 g over the parental line NIAW 34. The lines selected are being evaluated in yield evaluation trials during Rabi 2006-07. Amongst the doses used, frequency of desired mutants was higher in treatment, of 15 kr

  4. Effect of new lines of winter wheat on microbiological activity in Luvisol

    Science.gov (United States)

    Jezierska-Tys, S.; Rachoń, L.; Rutkowska, A.; Szumiło, G.

    2012-02-01

    The study presented in this paper was conducted under the conditions of a field experiment. Microbiological analyses were made at various stages of winter wheat plants development ie heading, milk ripeness and full ripeness. The objective of the study was to acquire knowledge on the effect of cultivation of various lines of winter wheat on the numbers of bacteria and fungi with proteolytic capabilities, on protease and urease activity, and on the rate of the processes of ammonification and nitrification. The results of conducted study demonstrated that the number of proteolytic bacteria and fungi, as well as the activity of protease and urease, and the intensity of ammonification and nitrification processes in soil depended on both the development stage and cultivated line of winter wheat.

  5. Evaluation of rice mutant lines for resistance to brown planthopper, nilaparvata lugens stall

    International Nuclear Information System (INIS)

    Mugiono

    1985-01-01

    The most important and common insect in rice cultivation in South East Asia is brown planthopper, nilaparvata lugens stall. Seven rice mutant lines produced by the National Atomic Energy Agency, Indonesia, were tested at IRRI, the Philippines for resistance to brown planthopper. Those mutant lines were Atomita 1, 627/10-3/PsJ, Atomita 2 and 627/4-E/PsJ originated from Pelita 1/1 which was irradiated with 0.2 kGy of gamma rays and A227/2/PsJ, A227/3/PsJ and A227/5/PsJ, originated from early maturing mutant A23/PsJ/72K from irradiated Pelita 1/1 which was irradiated with 0.1 kGy of gamma rays. Evaluation of resistance was carried out by seedling bulk screening, honeydew excretion, survival and population build up tests by using brown planthopper biotype 1, 2 and 3. Results of these tests showed that the seven tested mutant lines were resistant to biotype 1 but susceptible to biotype 2. Reaction to biotype 3 showed that six mutant lines tested were moderately resistant and only one mutant of 627/4-E/PsJ was susceptible. Reactions of the mutant lines to biotype 1, 2 and 3 were different from the resistant varieties, Mudgo or ASD-7. This indicated that mutant lines might have gene(s) for resistance which differed from those of resistant varieties. The results showed that resistance to brown planthopper is possible to be introduced in Indonesian rice varieties by means of mutations. (author)

  6. Nitrogen Dynamic Study on Rice Mutant Lines Using 15N Isotope Techniques

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Shyful Azizi Abdul Rahman; Abdul Rahim Harun

    2015-01-01

    Malaysian Nuclear Agency in collaboration with UPM and MARDI has produced two types of rice mutant lines of MR219, viz. MR219-4 and MR219-9 developed under rice radiation mutagenenesis programme for adaptability to aerobic conditions. Aerobic cultivating is rice cultivation system on well drained soil and using minimal water input. At Malaysian Nuclear Agency, a nitrogen fertilization study in aerobic condition for the rice mutant lines was carried out in the shade house and field. The study is intended to examine and assess the dynamics of nitrogen by rice mutant lines through the different soil water management and nitrogen levels. Direct 15 N isotopic tracer method was used in this study, whereby the 15 N labeled urea fertilizer was utilized as a tracer for nitrogen nutrient uptake by the test crops. This paper is intended to highlight the progress that has been made in the study of the nitrogen dynamics on MR219-4 and MR219-9 rice mutant lines. (author)

  7. Evaluation of Promising Mutant Lines of Canola Grown under New Reclamation Lands (Harsh Lands)

    International Nuclear Information System (INIS)

    Amer, I.M.; Farrag, M.E.; Soliman, S.S.; Hassan, A.A.

    2017-01-01

    Canola seed lots of four varieties (Serow4, Serow6, Pactol as local cultivars and Evita as exotic variety) were treated with gamma rays at four doses (0, 100, 400 and 600 Gy). The present study aims to evaluate useful mutations in canola which possess high seed yield and oil content under new reclamation desert land at Ras-Suder-Sinai (saline) and Inshas (harsh and poor fertility) in M 4 and M 5 generations. The results at M 4 and M 5 generations showed that the 13-selected mutant lines on the bases of number of pods and seed yield/plant differed in their yield response according to environmental conditions. Over the two locations, the highest number of pods plant and seed yield was found at line 75 (M4) and line 11 for seed yield and line 78 for number of pods in M5 compared to other genotypes. More over, all the mutant lines compared to their parents showed significant or insignificant increases for all studies traits during the two successive generations. Over the two generations, the highest mean value compared to all genotypes was found in line 22 for plant height at Sudr and line 11 at Inshas, for fruiting zone length, the highest value was noticed in line 18 at Sudr and line 75 at Inshas, for the highest number of pods, (125/plant) it was found in line 63 at Sudr and (193/plant) in line 75 at Inshas which reflected the highest seed yield ( 8 g/plant).The highest mean value compared to all genotypes was found for 100 seed-weight in line 8 at Sudr and line 11 at Inshas which appeared the highest seed yield at Suder. Over all studied conditions, the mutant line 75 derived from Evita variety was characterized by the highest mean values for fruiting zone length of plant and number of pods/plant, reflecting a high seed yield (6.47 g/plant ) or about 83.87% over its parent. The increase of seed yield/plant for mutant line 11 over its parent was about 68.8% followed by line 8 surpassed its parent for seed yield by about 60.2 %. The oil content of canola seeds in

  8. Mutation induction in durum wheat

    International Nuclear Information System (INIS)

    Senay, A.; Sekerci, S.

    2009-01-01

    The aim of this research was to determine the separate and combine effects of different doses of gamma rays and EMS concentrations on some characteristics of M1 plants of durum wheat, cv. Kunduru 1149. The seeds of durum wheat, cv. Kunduru 1149 which were irradiated with 50 Gy, 150 Gy and 250 Gy gamma rays and/or treated EMS for 6 hours at 30 C in 0,2 % and 0,4 % concentrated. According to the results of this research; separate and combine treatments of different doses of gamma rays and EMS have shown significant difference all of the observed traits at M1 plants of durum wheat cv. Kunduru 1149. The negative effects of increasing doses of mutagens on all plant characteristics for M1 plants were found statistically significant. Combined treatments were found to be more efficient than the sum of effects of the single treatments. In followed generation 3 mutant lines were selected according to plant height, spike height, number of seed, leaf relative water lost, and some quality traits. In M6 generation 3 desirable lines have been sown for preliminary field yield tests.

  9. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Millet, E; Manisterski, J; Ben-Yehuda, P; Distelfeld, A; Deek, J; Wan, A; Chen, X; Steffenson, B J

    2014-06-01

    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relative of wheat, exhibits a high frequency of leaf and stripe rust resistance. We used the resistant AES accession TH548 and induced homoeologous recombination by the ph1b allele to obtain resistant wheat recombinant lines carrying AES chromosome segments in the genetic background of the spring wheat cultivar Galil. The gametocidal effect from AES was overcome by using an "anti-gametocidal" wheat mutant. These recombinant lines were found resistant to highly virulent races of the leaf and stripe rust pathogens in Israel and the United States. Molecular DArT analysis of the different recombinant lines revealed different lengths of AES segments on wheat chromosome 6B, which indicates the location of both resistance genes.

  10. Detection of DNA polymorphisms in Dendrobium Sonia White mutant lines

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Putri Noor Faizah Megat Mohd Tahir; Zaiton Ahmad; Mohd Nazir Basiran

    2006-01-01

    Dendrobium Sonia white mutant lines were obtained through gamma ray induced mutation of purple flower Dendrobium Sonia at dosage 35 Gy. Amplified Fragment Length Polymorphism (AFLP) technique was used to compare genomic variations in these mutant lines with the control. Our objectives were to detect polymorphic fragments from these mutants to provide useful information on genes involving in flower colour expression. AFLP is a PCR based DNA fingerprinting technique. It involves digestion of DNA with restriction enzymes, ligation of adapter and selective amplification using primer with one (pre-amplification) and three (selective amplification) arbitrary nucleotides. A total number of 20 primer combinations have been tested and 7 produced clear fingerprint patterns. Of these, 13 polymorphic bands have been successfully isolate and cloned. (Author)

  11. Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization.

    Science.gov (United States)

    Zhang, Lianquan; Liu, Dengcai; Yan, Zehong; Zheng, Youliang

    2005-10-01

    Polyploidy has been found to be common in plants. Bread or common wheat (Triticum aestivum L., 2n=42) is a good example of allopolyploid made up of three diploid genomes A, B and D. In recent years, by the study of mimicking the origination of common wheat, it was found that changes of DNA sequence and gene expression occurred at the early stages of artificial allohexaploid between tetraploid wheat and Aegilops tauschii, which was probably favorable to genetic diploidization of new synthetic hexaploid wheat. Common wheat 99L2 is a new line stable in genetic, which was derived from the early self-pollinated generation of wide hybrids between common wheat and rye. In this study, it was found that at least two rye DNA segments had been introgressed into 99L2. This result suggested that a mechanism of alien DNA introgression may exist, which was different from the traditional mechanism of chromosome pairing and DNA recombination between wheat and alien species. Meanwhile, during the introgression process of alien rye DNA segments, the changes in DNA sequences of wheat itself occurred.

  12. Meiosis in gamma-ray induced tomato mutants of line XXIV-a

    International Nuclear Information System (INIS)

    Zagorcheva, L.; Jordanov, M.

    1976-01-01

    Results are reported of investigations on meiosis in tomato mutants obtained by gamma-irradiation ( 60 Co) of seeds from line XXIV-a with doses of 20 and 30 krad. Two genome mutants (one a triploid and the other a tetraploid form) as well as a chromosome aberration of the translocation type, were selected in the course of the investigations and their meiosis is described. Meiosis in the initial form (line XXIV-a) was also studied. About 16% of the initial line XXIV-a plants proved to be trisomic forms. (author)

  13. Anatomy and Cytogenetic Identification of a Wheat-Psathyrostachys huashanica Keng Line with Early Maturation.

    Directory of Open Access Journals (Sweden)

    Liangming Wang

    Full Text Available In previous studies, our research team successfully transferred the Ns genome from Psathyrostachys huashanica Keng into Triticum aestivum (common wheat cv. 7182 using embryo culture. In the present study, one of these lines, i.e., hybrid progeny 25-10-3, which matured about 10-14 days earlier than its wheat parent, was assessed using sequenced characterized amplified region (SCAR analysis, EST-SSR and EST-STS molecular markers, and genomic in situ hybridization (GISH. We found that this was a stable wheat-P. huashanica disomic addition line (2n = 44 = 22 II and the results demonstrated that it was a 6Ns disomic chromosome addition line, but it exhibited many different features compared with previously characterized lines, i.e., a longer awn, early maturation, and no twin spikelets. It was considered to be an early-maturing variety based on the early stage of inflorescence initiation in field experiments and binocular microscope observations over three consecutive years. This characteristic was distinct, especially from the single ridge stage and double ridge stage until the glume stage. In addition, it had a higher photosynthesis rate and economic values than common wheat cv. 7182, i.e., more spikelets per spike, more florets per spikelet, more kernels per spike, and a higher thousand-grain weight. These results suggest that this material may comprise a genetic pool of beneficial genes or chromosome segments, which are suitable for introgression to improve the quality of common wheat.

  14. Improve of local durum wheat by gamma radiation use

    International Nuclear Information System (INIS)

    Fares, A. M.

    1993-01-01

    Syrian local durum wheat's, specially the cultivar Hurani, are known for adaptation to local environments; are characterized by many biotic and abiotic stresses. However, these local durum cultivars suffer from a low yield potential when compared to new high yielding lines, and lodging when high input technologies are used. A research program was initiated to improve the two local cultivars Hurani and Senator Capilli by exposing their seed to 5 doses of gamma rays (10, 15, 20, 25, and 30 krad) to induced mutation. The treated seed were sown during 1983/84 and up to 1987/88 cropping seasons. 160 mutants were studies in comparison with the local Syrian durum. Mutant lines were selected as resistant to lodging (860, 990, 1065, 1052) as dwarf mutant lines (899, 465, 1072) as higher yielding than Hurani and Sentor and Capilli (33, 695, 1003). Some were superior or equal to the checks (915, 832, 840). Work will continue in theses lines in the coming cropping seasons to be evaluated for yield and homogeneity. (author)

  15. Evaluation of some mutant lines of rice induced by gamma radiation treatment 1. mean performance of rice mutants in M4 generation

    International Nuclear Information System (INIS)

    El-Banna, M.N.; El-Wakil, H.M.F.; Ebaid, R.A.; Sallam, R.A.

    2009-01-01

    Grains of eight rice mutants; SC 1, SC 6, RTY 1, RTY 3, HY 14, HYI 17, EH 4 and HYPI 22 were secured from Botany Department Faculty of Agriculture Cairo university. The procedures and the methodology for induction these mutants as well as the original mean performance of such mutants are presented else where; Sabbour, (1989) and Sabbour etal. (2002). Grains were sown (M4 generation) at the experimental farm in Itai EI-Baroud Agricultural Research Station Behaira Governorate Agricultural Research Center (ARC) in the summer season (2007). The mean performance of such mutants was studied during M4 generation. The most exciting results were as follows: the selected line SC 1 showed in M4 generation superior agronomic and yield traits. Sc 1 mutant line is not bred truly and it need more generations to reach stability. SC 6 in M4 generation showed considerable number of individuals scored low mean values toward the negative direction and lowering the overall trait mean performance. The rice lines RTY 1 and RTY 3 proved that, the average number of fertile tillers per plant of the selected lines maintained previously recorded mean values of M3 generation in M4. The traits showed significant differences among their progeny that recorded high CV% values as compared with those showed no significant differences. The rice lines HY 14 and HYI 17 showed a true breeding signs and no more breeding generations are required. Rice lines EH 4, showed a considerable reduction in number of days elapsed from date of cultivation till harvest. As, this mutant maintained 86.58 days till heading. Rice mutant line HYPI 22 did not bred truly for the original selected traits (high yield and high protein content) and it still need more generations of selection to reach considerable stability

  16. Reaction of some soybean mutant lines to natural rust fungus caused by (phakopsora pachyrhizi syd)

    International Nuclear Information System (INIS)

    Ratma, R.

    1988-01-01

    Reaction of some soybean mutant lines to natural rust fungus caused by (phakopsora pachyhizi syd). Eleven soybean mutant lines of orba variety derived from gamma fungus disease in the wet season 1985/86 at the experimental station of Citayam, Bogor. Based on IWGSR rating system, soybean mutant lines No 18/PsJ was moderately resistant to rust fungus disease. The other mutant lines, 14/PsJ, 15/PsJ, 20/PsJ, 102/PsJ, 106/PsJ, 111/PsJ, 118/PsJ, 119/PsJ and 220/PsJ were susceptible. (author). 4 figs.; 8 refs

  17. High lysine and high yielding mutants in wheat (Triticum aestivum) L

    International Nuclear Information System (INIS)

    Mohammad, T.; Mahmood, F.; Ahmad, A.; Sattar, A.; Khan, I.

    1988-01-01

    The dry seeds of the variety Lu-26 were irradiated with 20 krad of gamma rays. In M 2 about 300 mutant plants were selected for short stature, rust resistance and other desirable traits. As a result of further selection, in M 6 , eight superior lines were finally identified. The agronomic characteristics of these mutants, the parent variety (Lu-26) and a standard check variety (Pak-81) are shown. The selected mutants and commercially grown cultivars (Lu-26 and Pak-81) were studied for total protein content and amino acid pattern. The mutants WM-89-1, WM-6-17 and WM-81-2 showing high yield also contained comparatively high amounts of methionine and lysine. The lysine contents were 565, 410, and 370 mg/100g in the mutants WM-89-1, WM-6-17 and WM-81-2, respectively against a range value of 210-370 mg/100g in other mutants and 250-320 in the commercial cultivars. The mutant WM-81-2 was comparable to WM-56-1-5 in lysine content. The results of these experiments show a possibility of developing varieties having high yield and high amounts of essential amino acids such as lysine and methionine

  18. Production and evaluation of dwarf and semi-dwarf winter wheat mutants

    International Nuclear Information System (INIS)

    Barabas, Z.; Kertesz, Z.

    1984-01-01

    A special research programme for evolving and evaluating dwarf wheat forms resistant to lodging was carried out at the Cereal Research Institute, Wheat Division, Szeged, Hungary. Seed lots of the two tall winter wheat varieties Jubilejnaya 50 and Partizanka were exposed to gamma ray of 60 Co. With irradiation of 15000 rad 60 Co all of M 1 plants grown in the field were almost totally destroyed in 1980 and about 50% in 1982. In the greenhouse the number of lost M 1 plants was insignificant. Only a small number of plants died both in the greenhouse and in the field when they were irradiated with 5000 rad. A treatment with this lower dose of irradiation probably may help the breeders in selection for winter hardiness. 97 dwarf wheat lines already established were analysed for height character by a top cross method using the variety Jubilejnaya 50 as a tester. Height data of the simultaneously grown parental as well as the F 1 and F 2 offsprings indicated that the majority of them were recessive, except 3 cases where dominant or semi-dominant dwarfism was observed. Noteworthy is the Mx 158 a new semi-dwarf variety candidate, 60-65 cm in height at normal stand and resistant to all the main diseases here (powdery mildew and rusts). Its grain and protein production per unit area is also very good. Some genetically lesser-known dwarf sources were investigated in a complete crossing diallel test. (author)

  19. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum lines

    Directory of Open Access Journals (Sweden)

    Qi Bao

    2012-01-01

    Full Text Available Abstract Background Alteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat. Results Multi-color GISH (genomic in situ hybridization was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n = 4x = 28; genome BBAA and Aegilops tauschii (2n = 2x = 14; genome DD, which had a stable chromosomal constitution analogous to that of common wheat (2n = 6x = 42; genome BBAADD. Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO

  20. Development of One mutant line with Improved Quantitative and Qualitative Traits through Induced Mutation

    International Nuclear Information System (INIS)

    Saif, A. A.; Al-kibssi, M; Al-Shamiri, A; Kassem, R

    2008-01-01

    A field experiment was conducted in three consecutive seasons 2005, 2006 and 2007 for evaluating five mutant lines derived from Gemiza-9 variety. Gemiza-9 and Shibam-8 were used as a checks for yellow rust resistance and some agronomic characters. The mutant lines were planted in Al-erra research farm and farmer's field under rainfed condition, in particularly at Shibam and Bani-Mater regions. Results showed that the MS-5 and MS-9 mutant lines were earlier than the others and the checks. They matured on 102 - 105 days compared with 111 - 118 days for the other lines including the original variety and the Shibam-8 variety. These two mutant lines showed not only early maturing but also resistance to yellow rust disease, they scored R20% -R30%, while the all material were medium resistance including the checks. With respect to yield, the MS -5 mutant had a significant high yield (3963 kg/ha) compared with the others including the Gemiza-9 and Shibam-8 variety amounting to 35.5 % and 32.2 % for the two checks respectively. (author)

  1. Mechanism of Resistance in two Bread Wheat (Triticum Aestivum L.) Lines to Russian Wheat Aphid (Diuraphis Noxia: Homoptra: Aphididae) in Kenya

    International Nuclear Information System (INIS)

    Malinga, J.N.

    2002-01-01

    Russian wheat aphid (Diuraphis noxia) is a recent pest of small cereals that is causing severe yield losses in farmers' fields and farmers have demanded a resistant wheat line. In wheat the pest causes both direct and indirect damage resulting in losses of up to 90%. Control of the aphid is a major constraint in the production of wheat in Kenya requiring the use of more than one systematic insecticide application.This cost is prohibitive.Breeding wheat for resistance to Russian wheat is the cheapest alternative and is the international trend. The use of Russian wheat aphid resistant cultivars may reduce the impact of these pest on cereal production. A study was therefore conducted in Kenya to understand and determine the genetics of inheritance pattern of D. noxia present in two new sources of resistance (RWA 8 and RWA 16). These two new sources would be potential donors of D. noxia resistance in breeding programmes. The two resistant donors with unknown resistance genes for Diuraphis noxia were crossed with susceptible Kenyan commercial wheat cultivar, Heroe. Resistant reaction of F 1 ,BC 1 and F2 indicated that resistance in the two lines differed. Resistant in RWA 8 may be controlled by a single dominant genes while RWA 16 by two incomplete dominant genes. It is unknown wether these genes are identical to any known, designated resistance genes. However, their resistance has been shown to be effective on the RWA population in Kenya. As studies continue on these genes at molecular level, it is recommended that resistant populations are carried on through the breeding programme to possibly identify and release a resistant variety for commercial production

  2. Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants

    Science.gov (United States)

    2013-01-01

    Background Wheat and rice are important food crops with enormous biomass residues for biofuels. However, lignocellulosic recalcitrance becomes a crucial factor on biomass process. Plant cell walls greatly determine biomass recalcitrance, thus it is essential to identify their key factors on lignocellulose saccharification. Despite it has been reported about cell wall factors on biomass digestions, little is known in wheat and rice. In this study, we analyzed nine typical pairs of wheat and rice samples that exhibited distinct cell wall compositions, and identified three major factors of wall polymer features that affected biomass digestibility. Results Based on cell wall compositions, ten wheat accessions and three rice mutants were classified into three distinct groups each with three typical pairs. In terms of group I that displayed single wall polymer alternations in wheat, we found that three wall polymer levels (cellulose, hemicelluloses and lignin) each had a negative effect on biomass digestibility at similar rates under pretreatments of NaOH and H2SO4 with three concentrations. However, analysis of six pairs of wheat and rice samples in groups II and III that each exhibited a similar cell wall composition, indicated that three wall polymer levels were not the major factors on biomass saccharification. Furthermore, in-depth detection of the wall polymer features distinctive in rice mutants, demonstrated that biomass digestibility was remarkably affected either negatively by cellulose crystallinity (CrI) of raw biomass materials, or positively by both Ara substitution degree of non-KOH-extractable hemicelluloses (reverse Xyl/Ara) and p-coumaryl alcohol relative proportion of KOH-extractable lignin (H/G). Correlation analysis indicated that Ara substitution degree and H/G ratio negatively affected cellulose crystallinity for high biomass enzymatic digestion. It was also suggested to determine whether Ara and H monomer have an interlinking with cellulose chains

  3. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance.

    Science.gov (United States)

    Li, Xiaojun; Jiang, Xiaoling; Chen, Xiangdong; Song, Jie; Ren, Cuicui; Xiao, Yajuan; Gao, Xiaohui; Ru, Zhengang

    2017-01-01

    Agropyron elongatum (Host.) Neviski (synonym, Thinopyrum ponticum Podp., 2n = 70) has been used extensively as a valuable source for wheat breeding. Numerous chromosome fragments containing valuable genes have been successfully translocated into wheat from A. elongatum. However, reports on the transfer of powdery mildew resistance from A. elongatum to wheat are rare. In this study, a novel wheat-A. elongatum translocation line, 11-20-1, developed and selected from the progenies of a sequential cross between wheat varieties (Lankaoaizaoba, Keyu 818 and BainongAK 58) and A. elongatum, was evaluated for disease resistance and characterized using molecular cytogenetic methods. Cytological observations indicated that 11-20-1 had 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genomic in situ hybridization analysis using whole genomic DNA from A. elongatum as a probe showed that the short arms of a pair of wheat chromosomes were replaced by a pair of A. elongatum chromosome arms. Fluorescence in situ hybridization, using wheat D chromosome specific sequence pAs1 as a probe, suggested that the replaced chromosome arms of 11-20-1 were 5DS. This was further confirmed by wheat SSR markers specific for 5DS. EST-SSR and EST-STS multiple loci markers confirmed that the introduced A. elongatum chromosome arms belonged to homoeologous group 5. Therefore, it was deduced that 11-20-1 was a wheat-A. elongatum T5DL∙5AgS translocation line. Both resistance observation and molecular marker analyses using two specific markers (BE443538 and CD452608) of A. elongatum in a F2 population from a cross between line 11-20-1 and a susceptible cultivar Yannong 19 verified that the A. elongatum chromosomes were responsible for the powdery mildew resistance. This work suggests that 11-20-1 likely contains a novel resistance gene against powdery mildew. We expect this line to be useful for the genetic improvement of wheat.

  4. Creation and evaluation of best cotton mutant lines

    International Nuclear Information System (INIS)

    Rastegari, S. J.; Hosseini, Z.

    2001-01-01

    During (1997-1999) a study was carried out to recognize the best mutant lines, which were already obtained from a mutation breeding project. A Triple Rectangular Latis Design (8 7) in form of randomized complete blocks (RCB) with fifty- six treatments and three replications, were used in Estahban, Kordkouy and Varamin, under different ecological conditions, rainfall (Kordkouy) desert (Varamin) hot and dry (Estahban). During growing season some important morphological characteristics were recorded. Some lines had specific characters, for example: line 3191 (Chirpan 150 gray) had a low leaf number per plant, line 3169 (Bakhtegan 200 gray) plants were clustered. The results of the data in Varamin station showed that Bakhtegan irradiated with 150 gray line 3485 and Tashkand with 300 gray line 3451 compared to check (Varamin with 4373 kg/ha) had highest yield with 4942 kg/ha, and 4871 kg/ha respectively. In view of boll weight line 3405 of Sahel irradiated with 200 gray had highest boll weight (6.5 g/boll). In Kordkouy station the best mutant line was Chirpan irradiated with 250 gray, line 3208, with 20% yield increase compared to Sahel and 30% yield increase compared to original Chirpan. In respect to irradiation effect on lint percentage and fiber quality, the results showed; there was a positive effect on lint percentage of all varieties, especially in Tashkant, Bakhtegan and Chirpan which are inherently weak in lint percentage. As a whole gamma radiation did not have any negative effect on fiber quality. Even in Estahban 1.6 to 2.4 mm fiber increase were observed in some Chirpan irradiated material (C150-3516) and (C200-3523)

  5. Evaluation of Durum Wheat Lines for Tolerance to Early Season Cold via Early Planting

    Directory of Open Access Journals (Sweden)

    V. Rashidi

    2010-10-01

    Full Text Available Cold stress is one of the environmental factors that affect planting date of durum wheat in mountainous North West areas of Iran. To study tolerance of 36 Durum wheat lines for cold, an experiment was conducted in mid winter (mid of February at the Agricultural Research Station of Islamic Azad University, Tabriz Branch, in 2007. Experimental design used was simple lattice. The results of analysis of variance showed that the lines under study responded differently to cold as to traits like percentage of survival, yield and its components. This indicates existence of genetic diversity among durum wheat lines. Percentage of survival of the lines 30, 5, 16, 27, 31 and 35 were for higher than those at other lines. Thus, they can be considered to be tolerant to early season cold. Comparison of means showed that lines 35, 31, 16 and 5 possessed higher percentage of survival and other percent survival also correlated positive with plant height, number of fertile spike seed yield and 1000 grain weight. As a whole line 35 was found to be more tolerant to early season cold than the others were. Cluster analysis was divided 36 lines into three groups. Lines in the third group possessed higher percentage of survival, plant height, number of fertile spike, biomass and high yield than their over all means.

  6. Marker-assisted selection for recognizing wheat mutant genotypes carrying HMW glutenin alleles related to baking quality.

    Science.gov (United States)

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker's results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism).

  7. Marker-Assisted Selection for Recognizing Wheat Mutant Genotypes Carrying HMW Glutenin Alleles Related to Baking Quality

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Zamani

    2014-01-01

    Full Text Available Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker’s results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism.

  8. Evaluation of Mungbean Mutant Lines to Drought Stress and Their Genetic Relationships Using SSR Markers

    Directory of Open Access Journals (Sweden)

    Yuliasti

    2015-12-01

    Full Text Available Development of mungbean cultivarstolerant to drought stress through mutation breeding approach would enable us to anticipate the crop yield-reducing effects of climate changes. The objective of this research was to evaluate the yield performance of mungbean mutant lines that showed tolerance to drought stress, and to analyze their genetic diversity and relationship among mutant lines using SSR markers. The study was conducted during the dry season of 2012 in the Muneng experimental farm, Probolinggo, East Java. The experiment was laid out in a randomized block design with four replications. Five mutant lines and two parental lines as control were tested for evaluation of yield and drought tolerance under twoenvironments of two irrigation systems as treatment. The two environmental conditions consisted of optimal irrigation (at least three times: at planting, flowering and during pod filling and suboptimal irrigation (two times at planting and flowering. To evaluate genetic variation among selected mutant lines and their discrimination from parental lines in molecular level, a cluster analysis was performed using Unweighted Pair Group Method with Arithmetic Mean (UPGMA in the NTSYS software. The results showed that three mutant lines, including PsJ30, PsJ31, PsJ32 produced the highest grain yields of 1.17, 1.01, and 1.04 ton/ha, respectively, compared to the other mutant lines and the parents Gelatik (0.85 ton/ha and Perkutut (0.87 ton/ha as control check. Of those mutant lines, PSJ31 was the most tolerant to drought with sensitivity index value of 0.47. The PSJ31 has now been officially released as a new variety ( 2013, named as Muri which was identified to have high yield and tolerant to drought. Based on 23 SSR markers used for clustering analysis of those 3 selected mutant lines,9SSR markers (MBSS R033; satt137; MBSSR008; MBSSR203; MBSSR013; MBSSR021; MBSSR016; MBSSR136; and DMBSSR013 were successfully identified the three mungbean mutant

  9. Induced mutations for rust resistance in bread wheat

    International Nuclear Information System (INIS)

    Sawhney, R.N.

    1989-01-01

    Full text: Seeds of variety ''Lalbahadur'' were treated with 0.04% NMH. M 2 plants were inoculated with a mixture of pathotypes of each of the 3 Puccinia species (P. graminis, P. recondita, P. striiformis). Plants with simultaneous resistance to all 3 rusts were selected. Repeated testing in subsequent generations confirmed the resistance. The mutant lines are morphologically similar to the parent cultivar and therefore could be used as components of a multiline variety. Comparison of variety pattern against the Indian pathotypes of rusts suggests that the mutant genes are different from the ones known already in bread wheat. (author)

  10. Mutation breeding and studies in wheat and rice

    International Nuclear Information System (INIS)

    Bhagwat, S.G.; Das, B.K.; Suman, Bakshi; Vikash Kumar, K.

    2009-01-01

    Wheat and rice are important part of average Indian diet. Efforts are needed to incorporate resistance to various biotic and abiotic stress factors, quality attributes and higher yield potential in the changing scenario. Radiation induced mutations can play important role in these crops as the variability among the cultivars is low. Mutants in wheat for earliness without affecting quality were selected. Grain shape mutants were isolated using computer based image analysis. In rice mutants with short stature in Basmati type and short stature in salinity tolerant background were isolated. Markers have been developed or validated to facilitate combining stress tolerance/quality and agronomic traits. Studies are underway to understand nature of reduced height mutant in wheat and disease mimic mutants in rice. (author)

  11. Water-deficit tolerant classification in mutant lines of indica rice

    Directory of Open Access Journals (Sweden)

    Suriyan Cha-um

    2012-04-01

    Full Text Available Water shortage is a major abiotic stress for crop production worldwide, limiting the productivity of crop species, especially in dry-land agricultural areas. This investigation aimed to classify the water-deficit tolerance in mutant rice (Oryza sativa L. spp. indica genotypes during the reproductive stage. Proline content in the flag leaf of mutant lines increased when plants were subjected to water deficit. Relative water content (RWC in the flag leaf of different mutant lines dropped in relation to water deficit stress. A decrease RWC was positively related to chlorophyll a degradation. Chlorophyll a , chlorophyll b , total chlorophyll , total carotenoids , maximum quantum yield of PSII , stomatal conductance , transpiration rate and water use efficiency in mutant lines grown under water deficit conditions declined in comparison to the well-watered, leading to a reduction in net-photosynthetic rate. In addition, when exposed to water deficit, panicle traits, including panicle length and fertile grains were dropped. The biochemical and physiological data were subjected to classify the water deficit tolerance. NSG19 (positive control and DD14 were identified as water deficit tolerant, and AA11, AA12, AA16, BB13, BB16, CC12, CC15, EE12, FF15, FF17, G11 and IR20 (negative control as water deficit sensitive, using Ward's method.

  12. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis.

    Science.gov (United States)

    Falbel, T G; Meehl, J B; Staehelin, L A

    1996-10-01

    Analyses of a series of allelic chlorina mutants of wheat (Triticum aestivum L.), which have partial blocks in chlorophyll (Chl) synthesis and, therefore, a limited Chl supply, reinforce the principle that Chl is required for the stable accumulation of Chl-binding proteins and that only reaction centers accumulate when the supply of Chl is severely limited. Depending on the rate of Chl accumulation (determined by the severity of the mutation) and on the rate of turnover of Chl and its precursors (determined by the environment in which the plant is grown), the mutants each reach an equilibrium of Chl synthesis and degradation. Together these mutants generate a spectrum of phenotypes. Under the harshest conditions (high illumination), plants with moderate blocks in Chl synthesis have membranes with very little Chl and Chl-proteins and membrane stacks resembling the thylakoids of the lethal xantha mutants of barely grown at low to medium light intensities (which have more severe blocks). In contrast, when grown under low-light conditions the same plants with moderate blocks have thylakoids resembling those of the wild type. The wide range of phenotypes of Chl b-deficient mutants has historically produced more confusion than enlightenment, but incomparable growth conditions can now explain the discrepancies reported in the literature.

  13. Application of Doubled Haploid (DH) Technique in Mutation and Conventional Wheat Breeding in Kenya

    International Nuclear Information System (INIS)

    Njau, P.N.

    2002-01-01

    Wheat is the second most important staple cereal in Kenya after maize.over the last six years wheat improvement for various stresses and agronomic characteristics have been undertaken through various biotechnological approaches which have been used as complements to the traditional breeding methods. The prime objective in any breeding program is the prevention of the debilitating effects of breeding. In self-pollinated crops such as wheat selection is more efficient homozygous lines than in segregating population. During repeated selfing, to develop homozygousity the vigour of the F1 of M1 plats is lost. Application of biotechnology in crop movement has been suggested as the useful tool in a faster variety development. The double haploid (DH) technique does not only shorten the time of developing homozygous lines but also maintains the heterosis of the F 1 , increase the selection of the efficiency of selection in mutants and increase the effectiveness of selection. in this study DHs were developed from F1 and M4 generation developed from drought tolerance.This was accomplished through the following step: (i)F 1 crosses were produced by crossing three drought tolerant varieties namely Kenya Mbweha, Duma and Ngamia with two highly yielding commercial varieties namely Kenya Chiriku and Kwale in 1998 while mutants were developed through gamma ray irradiation in 1995. (ii) The haploids were produced through chromosome elimination by crossing the F 1 s and the M 4 with maize pollen and (iii) the Double Haploid (DH) were produced by treating the haploid with colchicine. Twenty DH lines were produced from F 1 haploid and 5 from M 4 ones. The DH technique tend to increase uniformity, stability and distinctiveness of the mutants and the segregating populations. Most of the DHs showed wide variation indicating high potential of selection for various agronomic characteristics. Heterosis was realized on a number of characteristics in the DH lines. Through this technique the

  14. Wheat breeding for low phytic acid content: State and perspectives

    Directory of Open Access Journals (Sweden)

    Branković Gordana

    2011-01-01

    Full Text Available Interest in wheat breeding for low phytic acid content arised from its roll as antinutrient factor which chelates mineral elements (Ca, Zn, Fe, Mn, Cu and P, leading to their inadequate use. Excretion of unused P in phytic acid complex through non-ruminant animals such as poultry, swine and fish causes water eutrophication. Numerous indirect methods (e.g. spectrophotometric and direct methods (HPLC - High Performance Liquid Chromatography were developed for fast and accurate phytic acid determination in wheat. It typically represents 50-85% of seed total phosphorus and one to several percents of dry seed weight. Phytic acid content and phytate phosphorus genetic variability have been determined for wheat cultivars and lines under different environmental conditions. Wheat mutant (Triticum aestivum L for low phytic acid content Js-12-LPA was created through breeding efforts.

  15. Evaluation of artemisia mutant lines conducted from gamma irradiation treatment

    International Nuclear Information System (INIS)

    Ragapadmi Purnamaningsih; EG Lestari; M Syukur

    2010-01-01

    Cases of Malaria diseases attack in Indonesia has been increasing. Plasmodium falciparum the cause of malaria disease is now resistant to the usual medicine. One of malaria medicine which recommended by WHO is artemisinine compound extracted from Artemisia annua L plant. Low artemisinine content is one problem of Artemisia development in Indonesia. Increasing genetic variation using gamma irradiation is one alternative method to improve artemisinin content. In 2007, induce mutation had been done to artemisia seeds using gamma irradiation at dosage of 10-100 Gy. The good rooting planlet was regenerated and acclimatized in the green house, and then the seedling (M0 generation) was planted in the field at 1545 m asl. Plants derived from seeds without gamma irradiation treatment and cultured in vitro (in vitro control) were used as control. The result showed there were some morphological variations between the mutant lines (plant height, shape of the leaves and time of flowering). Ten mutant lines were selected based on biomass yield and analyzed for the artemisinine content.The result showed that artemisinine content of the mutant lines ranged from 0.44 - 1.41%, and it was significantly higher than that of in vitro control (0.43%). (author)

  16. SRAP analysis for space induced mutant line of maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Du Wenping; Yu Guirong; Song Jun; Xu Liyuan

    2011-01-01

    In order to detect the effects of space mutation on maize, 16 SRAP primers were applied for the discrimination of the maize inbred line '968' and its 93 mutant materials, 154 polymorphic fragments were amplified. The average of polymorphic bands detected by per SRAP primer combination was 9.6 with a range from 5 to 18. Genetic similarities among the 94 materials ranged from 0.481 to 1.000 with an average of 0.903, and the largest genetic distance was found between mutant line 37 and control. The 94 materials were divided into six groups with the similarity coefficient of 0.732. The phylogenetic analysis showed distinct variation among the mutants. The results indicated that SRAP markers could be used for analyzing genetic variation of mutants. (authors)

  17. Induced mutations for disease resistance in wheat

    International Nuclear Information System (INIS)

    Cerny, J.; Hanis, M.; Hanisova, A.; Knytl, V.; Sasek, A.

    1983-01-01

    Mutation induction has been used over a period of 20 years to obtain mutants of wheat with improved disease resistance. 34 wheat cultivars have been treated with X-rays, gamma rays, thermal neutrons or EMS. A great number of mutants were selected. Their mutational origin was verified by electrophoretic analysis of gliadin spectra. Resistances have been confirmed over several generations. None of the mutants have been released yet for commercial cultivation because of shortcomings in yield or susceptibility to other diseases. The use of mutants in cross-breeding is considered. (author)

  18. Adaptation of bread-wheat lines across different environment of Pakistan

    International Nuclear Information System (INIS)

    Mujhid, M.Y.; Ahmad, Z.; Khan, M.A.; Qamar, M.; Kisana, N.S.; Asif, M.

    2009-01-01

    Ten advance wheat-lines developed by National Agricultural Research Centre (NARC), Islamabad, were evaluated for stability of grain-yield over five locations. The experiment was conducted during 2006-07 at NARC, Islamabad, AARI, Faisalabad, RARI, Bahawalpur, CCRI, Pirsabak and NIFA, Peshawar, by following randomized complete block design with three replications. At maturity, grain-yield was taken from standard plot and data were analyzed statistically. Genotypes x locations interactions were found highly significant. Predictable (linear) portion of variation was important, but non-linear component was non significant. None of the regression coefficients differ significantly from unity. Hence deviation from regression and average grain-yield was used to identify superior genotypes. Above average grain-yields were observed in five genotypes. V4 and V8 were stable across environments with low deviation from regression and gave above-average yield. The study provides valuable information for selecting advance wheat-lines under different locations of the country, to be considered potential as breeding material for release as varieties. (author)

  19. Production and molecular characterization of bread wheat lines with reduced amount of α-type gliadins.

    Science.gov (United States)

    Camerlengo, Francesco; Sestili, Francesco; Silvestri, Marco; Colaprico, Giuseppe; Margiotta, Benedetta; Ruggeri, Roberto; Lupi, Roberta; Masci, Stefania; Lafiandra, Domenico

    2017-12-19

    Among wheat gluten proteins, the α-type gliadins are the major responsible for celiac disease, an autoimmune disorder that affects about 1% of the world population. In fact, these proteins contain several toxic and immunogenic epitopes that trigger the onset of the disease. The α-type gliadins are a multigene family, encoded by genes located at the complex Gli-2 loci. Here, three bread wheat deletion lines (Gli-A2, Gli-D2 and Gli-A2/Gli-D2) at the Gli-2 loci were generated by the introgression in the bread wheat cultivar Pegaso of natural mutations, detected in different bread wheat cultivars. The molecular characterization of these lines allowed the isolation of 49 unique expressed genes coding α-type gliadins, that were assigned to each of the three Gli-2 loci. The number and the amount of α-type gliadin transcripts were drastically reduced in the deletion lines. In particular, the line Gli-A2/Gli-D2 contained only 12 active α-type gliadin genes (-75.6% respect to the cv. Pegaso) and a minor level of transcripts (-80% compared to cv. Pegaso). Compensatory pleiotropic effects were observed in the two other classes of gliadins (ω- and γ-gliadins) either at gene expression or protein levels. Although the comparative analysis of the deduced amino acid sequences highlighted the typical structural features of α-type gliadin proteins, substantial differences were displayed among the 49 proteins for the presence of toxic and immunogenic epitopes. The deletion line Gli-A2/Gli-D2 did not contain the 33-mer peptide, one of the major epitopes triggering the celiac disease, representing an interesting material to develop less "toxic" wheat varieties.

  20. Yield of two mutant lines of soybean for human consumption

    International Nuclear Information System (INIS)

    Salmeron E, J.; Mastache L, A. A.; Diaz V, G. E.; Valencia E, F.; Ranfla C, R.; Melendez P, M.; Cervantes S, T.; De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.

    2009-01-01

    The present work has the objective of to evaluate the yield and the agronomic behavior of 2 mutant lines of soybean for human consumption, obtained by means of a process of recurrent irradiation of soybean seed ISAAEG-BM 2 with gammas of Co 60 and selection in the generation R 4 M 18 . For the variable yield significant statistical differences were not observed, but considering the rest of the evaluated agronomic characteristics the mutant lines L 6 and Bombona they were excellent with values of 3,934.6 and 3,806.8 Kg ha- 1 to 15% of grain humidity, they also possess excellent genetic characteristics result of the irradiations and selections of these new genetic materials. (Author)

  1. Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L. presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes, a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M(2 mutants in a common wheat cultivar 'Jinmai 47'. Numerous phenotypes with altered morphological and agronomic traits were observed from the M(2 and M(3 lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic

  2. Assesment of spineless safflower (Carthamus tinctorius, L.) mutant lines for seed oil content and fatty acid profiles

    International Nuclear Information System (INIS)

    Ragab, A.I.; Kassem, M.; Moustafa, H.A.M.

    2008-01-01

    This study was conducted to assess the new spineless mutants that previously induced through gamma radiation and hybridization techniques in the advanced generation for seed oil content and fatty acid profiles The obtained results cleared that oil percentages of all seven safflower mutants were increased than local variety Giza (1) and the new mutant hybrid 2 line (white petals) had the highest increase value of oil percentage (10%) but the mutant line M14 (dark red petals) had the lowest increase value of oil percentage (3.1 %) The mutant line M7 (yellow petals) had the highest value of total saturated fatty acid (40.38%), because it had the highest value of palmitic fatty acid (25.16%), comparing to 10.01% value for local variety Giza (1), followed by mutant line hybrid 2 (white petals) which had (39.88%) because it had the highest value of caprylic, capric, lauric, myristic and stearic fatty acids. All safflower mutant lines had higher value of oleic fatty acid than that of the local variety Giza (1) the two new safflower mutant lines M7 (yellow petals) and hybrid 2 (white petal) had the highest value of oleic fatty acid 41.22% and 39.88% respectively in comparison with 13.5% for local variety Giza (1), the obtained results are indicating to seed oil content negative correlation between oleic and linoleic acids

  3. X-ray-sensitive mutants of Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Kemp, L.M.

    1983-01-01

    A standard technique of microbial genetics, which involves the transfer of cells from single colonies by means of sterile toothpicks, has been adapted to somatic cell genetics. Its use has been demonstrated in the isolation of X-ray-sensitive mutants of CHO cells. 9000 colonies have been tested and 6 appreciably X-ray-sensitive mutants were isolated. (D 10 values 5-10-fold of wild-type D 10 value.) A further 6 mutants were obtained which showed a slight level of sensitivity (D 10 values less than 2-fold of wild-type D 10 value). The 6 more sensitive mutants were also sensitive to bleomycin, a chemotherapeutic agent inducing X-ray-like damage. Cross-sensitivity to UV-irradiation and treatment with the alkylating agents, MMS, EMS and MNNG, was investigated for these mutants. Some sensitivity to these other agents was observed, but in all cases it was less severe than the level of sensitivity to X-irradiation. Each mutant showed a different overall response to the spectrum of agents examined and these appear to represent new mutant phenotypes derived from cultured mammalian cell lines. One mutant strain, xrs-7, was cross-sensitive to all the DNA-damaging agents, but was proficient in the repair of single-strand breaks. (Auth.)

  4. Preliminary studies on male sterile mutant after exogenous DNA introduced into wheat

    International Nuclear Information System (INIS)

    Yang Jingcheng; Yu Yuanjie; Qi Yanfang

    2004-01-01

    A stable sterile line--D-type sterile line was obtained after exogenous λDNA introduced into wheat line 814527. There were obvious characters in flower structure of the sterile line. The number of ovaries increased and that of anthers declined, and the sum was not always equal to four. Polygynous flower were located in the middle of panicles, while there were no polygynous ones on the top and the base of panicles. The main ovary was in the center of the flower, and the accessory ovaries surrounded to main ovary. The ovaries did not develop synchronously, main ovary developed earlier and accessory ones slower. The volume of main ovary was bigger than the accessory ones. Anthers of the sterile line with abnormal shapes were obsolescent at early stage, and had no living pollen. It showed that the sterile line was a cytoplasmic male sterile one, and the acceptor line 814527 could be its maintainer. The hybrid of the sterile line and Lumai 14 had some heterosis in traits such as panicle length, spikelet number per panicle and grain number per panicle, and its yield per plant was 11.6% higher than that of Lumai 14

  5. Responses of Soybean Mutant Lines to Aluminium under In Vitro and In Vivo Condition

    International Nuclear Information System (INIS)

    Yuliasti; Sudarsono

    2011-01-01

    The main limited factors of soybean plants expansion in acid soil are Aluminium (Al) toxicity and low pH. The best approach to solve this problem is by using Al tolerance variety. In vitro or in vivo selections using selective media containing AlCl 3 and induced callus embryonic of mutant lines are reliable methods to develop a new variety. The objectives of this research are to evaluate response of soybean genotypes against AlCl 3 under in vitro and in vivo condition. Addition of 15 part per million (ppm) AlCl 3 into in vitro and in vivo media severely affected plant growth. G3 soybean mutant line was identified as more tolerant than the control soybean cultivar Tanggamus. This mutant line was able to survive under more severe AlCl 3 concentrations (15 ppm) under in vitro conditions. Under in vivo conditions, G1 and G4 mutants were also identified as more tolerant than Tanggamus since they produced more pods and higher dry seed weigh per plant. Moreover, G4 mutant line also produced more dry seed weight per plant than Tanggamus when they were grown on soil containing high Al concentration 8.1 me/100 gr = 81 ppm Al +3 . (author)

  6. Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines

    Directory of Open Access Journals (Sweden)

    Lina Maria Aguirre-Rojas

    2017-11-01

    Full Text Available The wheat curl mite, Aceria toschiella (Keifer, and a complex of viruses vectored by A. toschiella substantially reduce wheat yields in every wheat-producing continent in the world. The development of A. toschiella-resistant wheat cultivars is a proven economically and ecologically viable method of controlling this pest. This study assessed A. toschiella resistance in wheat genotypes containing the H13, H21, H25, H26, H18 and Hdic genes for resistance to the Hessian fly, Mayetiola destructor (Say and in 94M370 wheat, which contains the Dn7 gene for resistance to the Russian wheat aphid, Diuraphis noxia (Kurdjumov. A. toschiella populations produced on plants containing Dn7 and H21 were significantly lower than those on plants of the susceptible control and no different than those on the resistant control. Dn7 resistance to D. noxia and H21 resistance to M. destructor resulted from translocations of chromatin from rye into wheat (H21—2BS/2RL, Dn7—1BL/1RS. These results provide new wheat pest management information, indicating that Dn7 and H21 constitute resources that can be used to reduce yield losses caused by A. toschiella, M. destructor, D. noxia, and wheat streak mosaic virus infection by transferring multi-pest resistance to single sources of germplasm.

  7. Nutrient Changes and in Vitro Digestibility in Generative Stage of M10-BMR Sorghum Mutant Lines

    Directory of Open Access Journals (Sweden)

    R. Sriagtula

    2017-08-01

    Full Text Available The objective of this research was to investigate the influences of generative stage on crude protein, crude fiber, ash, and crude fat contents as well as in-vitro dry matter and organic matter digestibilities of M-10 BMR sorghum mutant lines. This research was arranged into a randomized block design with 2 factors. The first factor was M-10 BMR sorghum mutant lines (Patir 3.1, Patir 3.2 and Patir 3.7 and the second factor was generative stages (flowering, soft dough and hard dough phase. The observed variables were proximate contents of stem, leaves and panicle of sorghum plant and in-vitro digestibility of whole plant. The results showed that leaves crude protein (CP was more influenced by M-10 BMR sorghum mutant lines. Stems and panicles CP were influenced by the interaction between M-10 BMR sorghum mutant lines and generative stages. Further generative stage reduced stems CP but increased panicles CP. Crude fiber (CF, ash, and ether extract (EE in leaves were not influenced by generative stages. Stems CF was influenced by M-10 BMR sorghum mutant lines and generative stages, while stems EE was more influenced by generative stages. Stems ash content was influenced by the interaction between M-10 BMR sorghum mutant lines and generative stages while panicles ash content was more influenced by generative stages. M-10 BMR sorghum mutant lines and hard dough phase increased in-vitro dry matter and organic matter digestibilities. Based on those findings, it can be concluded that the increased maturity reduces CP and CF contents so it increases in-vitro digestibilities.

  8. New wheat-rye 5DS-4RS·4RL and 4RS-5DS·5DL translocation lines with powdery mildew resistance.

    Science.gov (United States)

    Fu, Shulan; Ren, Zhenglong; Chen, Xiaoming; Yan, Benju; Tan, Feiquan; Fu, Tihua; Tang, Zongxiang

    2014-11-01

    Powdery mildew is one of the serious diseases of wheat (Triticum aestivum L., 2 n = 6 × = 42, genomes AABBDD). Rye (Secale cereale L., 2 n = 2 × = 14, genome RR) offers a rich reservoir of powdery mildew resistant genes for wheat breeding program. However, extensive use of these resistant genes may render them susceptible to new pathogen races because of co-evolution of host and pathogen. Therefore, the continuous exploration of new powdery mildew resistant genes is important to wheat breeding program. In the present study, we identified several wheat-rye addition lines from the progeny of T. aestivum L. Mianyang11 × S. cereale L. Kustro, i.e., monosomic addition lines of the rye chromosomes 4R and 6R; a disomic addition line of 6R; and monotelosomic or ditelosomic addition lines of the long arms of rye chromosomes 4R (4 RL) and 6R (6 RL). All these lines displayed immunity to powdery mildew. Thus, we concluded that both the 4 RL and 6 RL arms of Kustro contain powdery mildew resistant genes. It is the first time to discover that 4 RL arm carries powdery mildew resistant gene. Additionally, wheat lines containing new wheat-rye translocation chromosomes were also obtained: these lines retained a short arm of wheat chromosome 5D (5 DS) on which rye chromosome 4R was fused through the short arm 4 RS (designated 5 DS-4 RS · 4 RL; 4 RL stands for the long arm of rye chromosome 4R); or they had an extra short arm of rye chromosome 4R (4 RS) that was attached to the short arm of wheat chromosome 5D (5 DS) (designated 4 RS-5 DS · 5 DL; 5 DL stands for the long arm of wheat chromosome 5D). These two translocation chromosomes could be transmitted to next generation stably, and the wheat lines containing 5 DS-4 RS · 4 RL chromosome also displayed immunity to powdery mildew. The materials obtained in this study can be used for wheat powdery mildew resistant breeding program.

  9. Evaluation of yield and N2 fixation of mutant lines of groundnut in Malaysia

    International Nuclear Information System (INIS)

    Rusli, I.; Harun, A.R.; Rahman, K.A.; Shamsuddin, S.; Rahim, K.A.; Danso, S.K.A.

    1998-01-01

    The 15 N-dilution technique was used to evaluate N 2 fixation in groundnut (Arachis hypogaea L.) in three field trials of cultivars Matjan and V-13 (parents), their selected mutant lines, and a other local and foreign genotypes. Matjan mutant MJ/40/42 consistently produced the highest pod yields, at above 4 t ha -1 , 14-22% higher yields than the parent. In contrast, none of the V-13 mutants had consistently better yields than the parent. The mutant lines did not show consistent agronomic performance from year to year. Total dry matter yield did not correlate with pod yield, and pod yield did not correlate with amount of N fixed

  10. Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line.

    Science.gov (United States)

    Liu, Huitao; Cui, Peng; Zhan, Kehui; Lin, Qiang; Zhuo, Guoyin; Guo, Xiaoli; Ding, Feng; Yang, Wenlong; Liu, Dongcheng; Hu, Songnian; Yu, Jun; Zhang, Aimin

    2011-03-29

    Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS), a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line. The complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi) CMS line, Ks3, was assembled into a master circle (MC) molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs), and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38%) and repeats (> 100 bp, 29 units) as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs) in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants. The complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of its maintainer line Km3, especially in non

  11. Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS line and its maintainer line

    Directory of Open Access Journals (Sweden)

    Liu Dongcheng

    2011-03-01

    Full Text Available Abstract Background Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS, a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA, and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line. Results The complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi CMS line, Ks3, was assembled into a master circle (MC molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs, and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38% and repeats (> 100 bp, 29 units as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants. Conclusion The complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of

  12. Molecular cytogenetic identification of a novel dwarf wheat line with ...

    Indian Academy of Sciences (India)

    2012-01-08

    Jan 8, 2012 ... of a pAs1 hybridization band on 2DL chromosome of 31505-1. Two SSR ... [Chen G, Zheng Q, Bao Y, Liu S, Wang H and Li X 2012 Molecular cytogenetic identification of a novel dwarf wheat line with ..... translocations (Fedak and Han 2005; Li et al. ... growth (Cambridge, UK: Cambridge University Press).

  13. Selection and agronomic evaluation of induced mutant lines of sesame

    International Nuclear Information System (INIS)

    Hoballah, A.A.

    2001-01-01

    Station yield trial: Three high yielding mutants (8, 48, and EFM92) with better and stable performance were developed in our breeding programme and submitted for registration to the Agricultural Research Center (ARC), Egyptian Ministry of Agriculture and Land Reclamation. Multi-location yield trials indicated that mutant line EFM92 ranked first in all locations; significant yield increases recorded for it ranged from 14.7 to 74.0% over the check variety. Moreover, it was 15-20 days earlier than the check and/or other mutants. Mutant lines 8 and 48 produced higher seed yields than the check at two different locations. These mutants can probably be grown and produce more yield than the check variety at the low yielding environments. Seed quality assay: During 1996 and 1997, 15 promising lines of sesame including mutants and hybrid populations as well as the local variety were evaluated for seed protein, oil content and fatty acid composition. The protein content varied from 20.6 to 26.7%; hybrid population EXM90 gave the highest value. About 85% of the total fatty acids in the oil are unsaturated (oleic and linoleic) and 15% saturated, mainly palmitic and stearic. Linoleic acid ranged from 41.8 to 47.9%. Mutant lines 6, 9, and EFM92, which gave high oil content (54-55.5%) together with high linoleic acid values (45.2-47.8%), are recommended for breeding for seed oil quality. Heterosis, combining ability and type of gene action in sesame: A half diallel set of crosses involving seven parents was used to study heterosis and combining ability in the F 1 generation as well as the nature of gene action controlling seed yield and its contributing traits in both F 1 and F 2 in order to identify the most efficient breeding methods leading to rapid genetic improvement. The expressions of heterosis varied with the crosses and characters investigated. The maximal significant positive useful heterosis was observed for branches/plant (52.9%) followed by seed yield/plant (38

  14. Recombinant lines for less-spininess in steroid-bearing Solanum viarum using induced mutants as parents

    International Nuclear Information System (INIS)

    Krishnan, R.; Nanda Kumar, D.; Subhas Chander, M.

    1988-01-01

    In the domestication of the wild, spinous and steroid-bearing Solanum viarum (syn. S. khasianum var. chatterjeeanum) induced mutations play a major role. The development of Glaxo and BARC mutants catalysed commercial cultivation of this species for its berries containing solasodine, used in steroid industries. The commercially more popular Glaxo mutant population consists predominantly of plants that are totally free of spines in aerial parts except lamina where few straight spines develop. The BARC mutant still possesses spines on aerial parts including the persistent calyx. However, the laminary spines of the BARC mutant are curved and vestigial. Comparative studies on morphology, growth behaviour and agronomic characters of the two mutants, their wild progenitor and their hybrid progenies showed that the three types differ only for spine character. In F 2 generation of a cross involving the Glaxo and BARC mutants, a double mutant recombinant was recovered. The recombinant is devoid of spines in aerial parts like its Glaxo mutant parent, but possesses laminary curved vestigial spines like the BARC parent. The spine characters of the recombinant are inherited double recessive. Three advanced lines of this recombinant type (IIHR 2n - 1,2 and 3) were tested in replicated trials 1985 and 1986. They showed parity in berry yield and solasodine content with the Glaxo mutant and three promising lines evolved elsewhere viz. 'RRL (Bhuhaneswar) Y-14', 'RRL (Jorhat)' and 'Pusa'. The results indicate gainful use of induced mutants in hybridization leading to development of superior less-spiny lines of steroid bearing Solanum viarum

  15. Stability Test For Sorghum Mutant Lines Derived From Induced Mutations with Gamma-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    S. Human

    2011-12-01

    Full Text Available Sorghum breeding program had been conducted at the Center for the Application of Isotopes and Radiation Technology, BATAN. Plant genetic variability was increased through induced mutations using gamma-ray irradiation. Through selection process in successive generations, some promising mutant lines had been identified to have good agronomic characteristics with high grain yield. These breeding lines were tested in multi location trials and information of the genotypic stability was obtained to meet the requirements for officially varietal release by the Ministry of Agriculture. A total of 11 sorghum lines and varieties consisting of 8 mutant lines derived from induced mutations (B-100, B-95, B-92, B-83, B-76, B-75, B-69 and Zh-30 and 3 control varieties (Durra, UPCA-S1 and Mandau were included in the experiment. All materials were grown in 10 agro-ecologically different locations namely Gunungkidul, Bantul, Citayam, Garut, Lampung, Bogor, Anyer, Karawaci, Cianjur and Subang. In each location, the local adaptability test was conducted by randomized block design with 3 replications. Data of grain yield was used for evaluating genotypic stability using AMMI approach. Results revealed that sorghum mutation breeding had generated 3 mutant lines (B-100, B-76 and Zh-30 exhibiting grain yield significantly higher than the control varieties. These mutant lines were genetically stable in all locations so that they would be recommended for official release as new sorghum varieties to the Ministry of Agriculture

  16. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    Science.gov (United States)

    Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2013-01-01

    Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  17. Evaluation of Spring Wheat Recombinant Inbred Lines under Drought Stress

    Directory of Open Access Journals (Sweden)

    M. Moghaddaszadeh-Ahrabi

    2012-07-01

    Full Text Available Iran is one of arid and semi-arid regions of the world. Wheat as a strategic agricultural products faces water deficiency in most areas of the country. Therefore, identification of the resistant varieties to drought stress is one of main aims for breeders. To assess effect of drought stress at heading on 72 spring wheat recombinant inbred lines derived from American Yecora Rojo (high yielder, dwarf and early maturity as paternal parent and Iranian No. 49 line (tall and late maturiting as maternal parent cross were studied. The experiment was conducted at the Research Station of the University of Tabriz using a randomized complete block design with two replications during 2009 growing season. Based on the results from combined analysis of variance significant difference was observed among lines for all of traits studied, except for harvest index, grain number per spike and days to heading. There was significant difference between normal and drought stress conditions. Since the interaction between line and conditions was insignificant for all traits, it does therefore, provide the possibility of comparing the lines without regard to irrigation levels. Based on the means of, the traits it was found that the lines 96, 122, 123 and 155 were superior. MP, GMP and STI indices were recognized to be suitable indices to identify superior lines. With respect to these indices, lines 96, 122, 123, 138, 149 and 155 were found superior as compared with remaining lines. Based on stepwise regression analysis of grain yield with other traits, respectively grain number per spike, number of spikes/m2 and 1000 kernel weight were inserted into final model as effective variables on grain yield, which made 81/9 percent of the grain yield variation. Path analysis of grain yield and related traits, based on stepwise regression, demonstrated the significant positive direct effect for grain number per spike, number of spikes/m2 and 1000 kernel weight on grain yield

  18. Cytogenetic and molecular identification of a wheat-Leymus mollis alien multiple substitution line from octoploid Tritileymus x Triticum durum.

    Science.gov (United States)

    Pang, Y H; Zhao, J X; Du, W L; Li, Y L; Wang, J; Wang, L M; Wu, J; Cheng, X N; Yang, Q H; Chen, X H

    2014-05-23

    Leymus mollis (Trin.) Pilger (NsNsXmXm, 2n = 28), a wild relative of common wheat, possesses many traits that are potentially valuable for wheat improvement. In order to exploit and utilize the useful genes of L. mollis, we developed a multiple alien substitution line, 10DM50, from the progenies of octoploid Tritileymus M842-16 x Triticum durum cv. D4286. Genomic in situ hybridization analysis of mitosis and meiosis (metaphase I), using labeled total DNA of Psathyrostachys huashanica as probe, showed that the substitution line 10DM50 was a cytogenetically stable alien substitution line with 36 chromosomes from wheat and three pairs of Ns genome chromosomes from L. mollis. Simple sequence repeat analysis showed that the chromosomes 3D, 6D, and 7D were absent in 10DM50. Expressed sequence tag-sequence tagged sites analysis showed that new chromatin from 3Ns, 6Ns, and 7Ns of L. mollis were detected in 10DM50. We deduced that the substitution line 10DM50 was a multiple alien substitution line with the 3D, 6D, and 7D chromosomes replaced by 3Ns, 6Ns, and 7Ns from L. mollis. 10DM50 showed high resistance to leaf rust and significantly improved spike length, spikes per plant, and kernels per spike, which are correlated with higher wheat yield. These results suggest that line 10DM50 could be used as intermediate material for transferring desirable traits from L. mollis into common wheat in breeding programs.

  19. Mapping of Powdery Mildew Resistance Gene pmCH89 in a Putative Wheat-Thinopyrum intermedium Introgression Line.

    Science.gov (United States)

    Hou, Liyuan; Zhang, Xiaojun; Li, Xin; Jia, Juqing; Yang, Huizhen; Zhan, Haixian; Qiao, Linyi; Guo, Huijuan; Chang, Zhijian

    2015-07-28

    Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally serious disease adversely affecting wheat production. The Bgt-resistant wheat breeding line CH09W89 was derived after backcrossing a Bgt resistant wheat-Thinopyrum intermedium partial amphiploid TAI7045 with susceptible wheat cultivars. At the seedling stage, CH09W89 exhibited immunity or high resistance to Bgt pathotypes E09, E20, E21, E23, E26, Bg1, and Bg2, similar to its donor line TAI7045 and Th. intermedium. No Th. intermedium chromatin was detected based on genomic in situ hybridization of mitotic chromosomes. To determine the mode of inheritance of the Bgt resistance and the chromosomal location of the resistance gene, CH09W89 was crossed with two susceptible wheat cultivars. The results of the genetic analysis showed that the adult resistance to Bgt E09 in CH09W89 was controlled by a single recessive gene, which was tentatively designated as pmCH89. Two polymorphic SSR markers, Xwmc310 and Xwmc125, were linked to the resistance gene with genetic distances 3.1 and 2.7 cM, respectively. Using the Chinese Spring aneuploid and deletion lines, the resistance gene and its linked markers were assigned to chromosome arm 4BL in the bin 0.68-0.78. Due to its unique position on chromosome 4BL, pmCH89 appears to be a new locus for resistance to powdery mildew. These results will be of benefit for improving powdery mildew resistance in wheat breeding programs.

  20. Resistance to Phytophthora in mutant lines of currant tomato and in their original forms

    International Nuclear Information System (INIS)

    Khrustaleva, V.V.; Shcherbakov, V.K.

    1987-01-01

    Information on the production of currant tomato mutants is contained in a previous report. Evaluation of fruit resistance against Phytophthora infestans (Mont.) de Bary was carried out with pathotypes T 0 and T 1 . For artificial infection we used mainly a culture of T 1 (isolate 275), supplied by the Byelorussian Scientific Research Institute of Potato, Fruit and Vegetable Growing at Samokhvalovich. As inoculum for T 0 , a local population of the potato pathotype from the village of Shebantsevo, Moscow province was used. The standard variety 'Gruntovyj gribovskij 1180' was used as the control. Green fruits were taken from the first or second raceme of 20 plants. They were inoculated by spraying in plastic cuvettes with moist filter paper. The cuvettes were covered with glass and maintained at temperature of 18-20 deg. C. The results were checked 5, 9 and 12 days after inoculation. Under natural conditions, each of the 20 plants was also evaluated. As result, three lines with increased resistance to Phytophthora were selected from the original wild-type of currant tomato. Induced mutant forms were tested in the same way for resistance to Phytophthora. Data is presented from 4 years study. Of 26 mutant lines studied, we identified seven whose fruit displayed a stable and enhanced resistance to Phytophthora under both laboratory and field conditions. With regard to leaf infection of these lines, positive results were not obtained. There appears to be no direct relationship between resistance to Phytophthora of the fruit and the leaves. The mutant lines are of determinate type with early and medium ripening time. The average fruit weight is 5-33 g; in the case of the original specimen, it is only 0.9-1.7 g. The fruits have a pleasant sour-sweet taste and a thick skin. It is noteworthy that the mutant lines selected on the basis of their suitability for cultivation not only showed the resistance selected from the wild-type, but in a number of cases even turned out to

  1. Wheat and triticale breeding using gamma-ray-induced variability

    International Nuclear Information System (INIS)

    Parodi, P.C.; Nebreda, I.M.

    1984-01-01

    Use of gamma-ray-induced variability in wheat has proved to be a valuable breeding methodology. Results with triticale are still inconclusive. After several years of research a number of wheat mutants have been developed which possess an improved protein content, high yield, good agronomic type and wide adaptability. A change in the stem rust (Puccinia graminis f. sp. tritici) population, however, rendered most of the mutants susceptible to this disease. One mutant, recently named Carolina, which was able to withstand the effects of stem rust without serious yield deterioration, was registered and released to farmers. Efforts are being made to add stem rust resistance to the susceptible mutants by conventional backcrossing. Also, new material and the most outstanding susceptible mutants were gamma irradiated in an effort to induce resistance. Other mutants, not necessarily with an improved protein content, were grouped according to disease reaction and phenotypic similarity to form multilineal composites, some of which have had a superior performance and may be released to farmers in late 1984. A study conducted under four nitrogen levels with six wheat protein mutants showed a weak and inconsistent negative correlation between yield and protein content. The mutants could be differentiated by their increased protein content under most nitrogen rates. (author)

  2. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Monosomic alien addition lines (MAALs can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP and methylation-sensitive amplification polymorphism (MSAP analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. CONCLUSIONS/SIGNIFICANCE: The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  3. Accelerated Senescence and Enhanced Disease Resistance in Hybrid Chlorosis Lines Derived from Interspecific Crosses between Tetraploid Wheat and Aegilops tauschii

    Science.gov (United States)

    Tosa, Yukio; Yoshida, Kentaro; Park, Pyoyun; Takumi, Shigeo

    2015-01-01

    Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions. PMID:25806790

  4. Accelerated senescence and enhanced disease resistance in hybrid chlorosis lines derived from interspecific crosses between tetraploid wheat and Aegilops tauschii.

    Directory of Open Access Journals (Sweden)

    Hiroki Nakano

    Full Text Available Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions.

  5. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant.

    Science.gov (United States)

    Xiong, Hongchun; Guo, Huijun; Xie, Yongdun; Zhao, Linshu; Gu, Jiayu; Zhao, Shirong; Li, Junhui; Liu, Luxiang

    2017-06-02

    Salinity stress has become an increasing threat to food security worldwide and elucidation of the mechanism for salinity tolerance is of great significance. Induced mutation, especially spaceflight mutagenesis, is one important method for crop breeding. In this study, we show that a spaceflight-induced wheat mutant, named salinity tolerance 1 (st1), is a salinity-tolerant line. We report the characteristics of transcriptomic sequence variation induced by spaceflight, and show that mutations in genes associated with sodium ion transport may directly contribute to salinity tolerance in st1. Furthermore, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between salinity-treated st1 and wild type suggested that the homeostasis of oxidation-reduction process is important for salt tolerance in st1. Through KEGG pathway analysis, "Butanoate metabolism" was identified as a new pathway for salinity responses. Additionally, key genes for salinity tolerance, such as genes encoding arginine decarboxylase, polyamine oxidase, hormones-related, were not only salt-induced in st1 but also showed higher expression in salt-treated st1 compared with salt-treated WT, indicating that these genes may play important roles in salinity tolerance in st1. This study presents valuable genetic resources for studies on transcriptome variation caused by induced mutation and the identification of salt tolerance genes in crops.

  6. Mapping of Powdery Mildew Resistance Gene pmCH89 in a Putative Wheat-Thinopyrum intermedium Introgression Line

    Directory of Open Access Journals (Sweden)

    Liyuan Hou

    2015-07-01

    Full Text Available Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt, is a globally serious disease adversely affecting wheat production. The Bgt-resistant wheat breeding line CH09W89 was derived after backcrossing a Bgt resistant wheat-Thinopyrum intermedium partial amphiploid TAI7045 with susceptible wheat cultivars. At the seedling stage, CH09W89 exhibited immunity or high resistance to Bgt pathotypes E09, E20, E21, E23, E26, Bg1, and Bg2, similar to its donor line TAI7045 and Th. intermedium. No Th. intermedium chromatin was detected based on genomic in situ hybridization of mitotic chromosomes. To determine the mode of inheritance of the Bgt resistance and the chromosomal location of the resistance gene, CH09W89 was crossed with two susceptible wheat cultivars. The results of the genetic analysis showed that the adult resistance to Bgt E09 in CH09W89 was controlled by a single recessive gene, which was tentatively designated as pmCH89. Two polymorphic SSR markers, Xwmc310 and Xwmc125, were linked to the resistance gene with genetic distances 3.1 and 2.7 cM, respectively. Using the Chinese Spring aneuploid and deletion lines, the resistance gene and its linked markers were assigned to chromosome arm 4BL in the bin 0.68–0.78. Due to its unique position on chromosome 4BL, pmCH89 appears to be a new locus for resistance to powdery mildew. These results will be of benefit for improving powdery mildew resistance in wheat breeding programs.

  7. Agronomic performance of rape seed (brassica napus L.) mutant lines under drought conditions

    International Nuclear Information System (INIS)

    Shah, S.A.; Ali, I.; Shah, S.J.A.; Rehman, K.; Rashid, A.

    1995-01-01

    Oil seed forms of Brassica napus are not well adapted to drought and the warner environments of Pakistan. Induced mutations were, therefore, utilized for improving drought tolerance efficiency of two napus cultivars. Induction of genetic variability, selection of desirable mutants and stabilization of mutants in acceptable agronomic background were carried out during 1988-1991. Fourteen promising mutants each of cv. Pak-cheen and Tower were evaluated for different agronomic characters in separate yield trials, under extremely drought conditions. The results demonstrated that yield potential of some mutants was very high and 9 mutants of cv. Pak-cheen and 8 mutants of cv. Tower significantly (P<0.05) out yield the local commercial cultivar. Eleven mutants in both the trials matured significantly earlier than the check. Nevertheless, more extensive testing of the drought tolerant lines under diversified environs of the country will help confirm these findings. (author)

  8. Mutation breeding for disease resistance in wheat and field beans in Egypt

    International Nuclear Information System (INIS)

    Abdel-Hak, T.M.

    1983-01-01

    Seeds of three varieties of hexaploid wheat and of one variety of tetraploid wheat were treated with gamma rays in order to obtain mutants with improved resistance to stem rust, leaf rust and stripe rust. Mutants with resistance to prevailing races of rusts were selected; however, the race spectrum shifted and made the mutants useless for the time being. Induction of mutations for resistance to chocolate spot and rusts was attempted in Vicia faba. No resistant mutant was found but some mutants with lower levels of infection were. (author)

  9. Breeding drought tolerant wheat for the marginal areas of Kenya

    International Nuclear Information System (INIS)

    Njau, P.N.; Kinyua, M.G.; Karanja, L.

    2001-01-01

    Over the last 10 years the National Plant Breeding Research Center (NPBRC - Njoro) has been involved in developing wheat varieties for the marginal areas of Kenya with the aim of introducing wheat in the non- traditional region of the country. During this period four varieties tolerant to drought have been released. These include varieties such as Duma, Ngamia, Chozi and the newly released Njoro BW1. At the moment the released varieties are of low yielding and so there is need to develop higher yielding varieties if we are to produce at an economic level. This study was aimed at developing and evaluating some of the germplasm, which have been developed or introduced over the years over their suitability for production in the marginal areas of of Kenya. Over 600 introductions were screened in the screening nursery in Njoro while segregating populations in F2-F8 were selected and advanced to the next generation. A National Dryland Wheat Performance Trial (NDL WPT) was conducted for 10 introduced lines, 3 mutants, 1 Kenya seed line and Duma and Chozi as check varieties. KM14 has been released as a marginal area variety for its high protein content. Line R965 showed higher performance in both yield and hectolitre weight and will be entered for the second NDLWPT in 2002 and may be released as variety later. (author)

  10. Main agronomic traits and resistance to rice blast of space-induced mutant lines of Zhong-er-ruan-zhan

    International Nuclear Information System (INIS)

    Xiao Wuming; Wang Hui; Liu Yongzhu; Guo Tao; Chen Zhiqiang; Yang Qiyun; Zhu Xiaoyuan

    2012-01-01

    The main agronomic traits and resistance to rice blast of 34 space-induced lines from an elite rice cultivar, Zhong-er-ruan-zhan were evaluated at their SP 4 . The resistance to blast of the mutant lines had been tested by two blast isolates previously. It was found that the mutant lines showed significant difference in plant height, effective panicles, panicle length and grains per panicle etc. from their parent. The range of variation in 1000-grain weight the largest, followed by the seed-setting rate, and that of effective panicles was the least among all the traits. Except for the line Z34, 33 mutant lines had broader resistance spectra than the wild-type based on the test with 38 different blast isolates, and all the 33 lines were also resistant to the panicle blast in the field. The result confirmed that selection for resistant to blast in lower generations was reliable. Taking account of agronomic traits and blast resistance, promising lines with resistance to blast and good agronomic characters could be selected from those mutant lines. Therefore, the elite rice germplasm with enhanced disease resistance can be produced. (authors)

  11. Evaluation of Drought Tolerance of Bread Wheat Recombinant Inbred Lines

    Directory of Open Access Journals (Sweden)

    N Zafar Naderi

    2014-10-01

    Full Text Available To evaluateresponse of bread wheat recombinant inbred lines to water deficit, a split plot experiment arranged in randomized complete block design (CRBD was conducted using eight recombinant inbred lines and their parental cultivars (Roshan and Super Head with three replications under three irrigation levels (80, 120 and 160 mm evaporation from class A pan at the Agriculture Research Station of Islamic Azad University, Tabriz Branch during 2009. The results of analysis of variance data collected revealed significant difference among lines and irrigation levels for grain yield. While line × irrigation level interaction was non significant for grain yield. Based on SSI and TOL, drought tolerance indices lines number 1, 7, 41 and Roshan cultivar under 120 mm evaporation, and lines number 7 and 19 under 160 mm evaporation were the tolerant lines. Under both stress conditions according to STI, MP and GMP indices, lines number 37, 38 and Roshan cultivar were recognized as the tolerant lines to water deficiet. Cluster analyses based on grain yield and drought tolerance indices recognized the lines number 1, 30, 32, 37, 38, 41 and Roshan cultivar under 120 mm and lines number 30, 37 and 38 and Roshan under 160 mm evaporation as the most drought tolerants and higher producers.

  12. Variations in seed protein content of cotton (Gossypium hirsutum L.) mutant lines by in vivo and in vitro mutagenesis.

    Science.gov (United States)

    Muthusamy, Annamalai; Jayabalan, Narayanasamy

    2013-01-01

    The present work describes the influence of gamma irradiation (GR), ethyl methane sulphonate (EMS) and sodium azide (SA) treatment on yield and protein content of selected mutant lines of cotton. Seeds of MCU 5 and MCU 11 were exposed to gamma rays (GR), ethyl methane sulphonate (EMS) and sodium azide (SA). Lower dose of gamma irradiation (100-500 Gy), 10-50 mM EMS and SA at lower concentration effectively influences in improving the yield and protein content. Significant increase in yield (258.9 g plant(-1)) and protein content (18.63 mg g(-1) d. wt.) as compared to parental lines was noted in M2 generations. During the subsequent field trials, number of mutant lines varied morphologically in terms of yield as well as biochemical characters such as protein. The selected mutant lines were bred true to their characters in M3 and M4 generations. The significant increase in protein content and profiles of the mutant lines with range of 10.21-18.63 mg g(-1). The SDS-PAGE analysis of mutant lines revealed 9 distinct bands of different intensities with range of 26-81 kDa. The difference in intensity of bands was more (41, 50 and 58 kDa) in the mutant lines obtained from in vitro mutation than in vivo mutation. Significance of such stimulation in protein content correlated with yielding ability of the mutant lines of cotton in terms of seed weight per plant. The results confirm that in cotton it is possible to enhance the both yield and biochemical characters by in vivo and in vitro mutagenic treatments.

  13. Identification of the second mutation of BADH2 gene derived from rice mutant lines induced by gamma rays

    International Nuclear Information System (INIS)

    I Ishak

    2016-01-01

    The BADH2 gene acts as suppressor of 2-acetyl-1-pyrolline (2AP) biosynthesis in plants. 2AP is the volatile compound which provides fragrance in rice. Biosynthesis of 2AP occurs when BADH2 loses its function as suppressor gene. Aromatic rice cultivars naturally incur mutation of BADH2 gene at 8 bp. In this experiment, aromatic mutant rice lines derived from irradiation of Sintanur cultivar by gamma rays with dose of 100 Gy were studied in molecular level. These mutant lines were characterized at the M10 plantgeneration under the assumption that genetically these aromatic mutant rice lines were homozygotic. Several primers related to aroma in rice have been used for polymerase chain reaction (PCR) in a thermal cycler instrument. Gel electrophoreses were carried out using 1.5% agarose in TAE buffer. DNA fragments at 254 bp and 355 bp (base pair) were taken and amplified by primer for nucleotide sequencing of these fragments. Molecular identification and characterization after electrophoresis showed that the mutant line from AR1020 can be differentiated from AR.1080 at 254 bp. Nucleotide sequence data from of these DNA fragments showed that point mutations (deletions and substitutions) occurred at the BADH2 gene in exon 7; those are called second mutation and were caused by gamma rays effects. The Sintanur variety was used as check cultivar and its DNA sequence was compared to that of the AR.1020 mutant line. The results from both DNA sequences (from cv. Sintanur and AR.1020) derived from fragments at 254 bp show that point mutations occurred within exon 7 and earlier stop codon occurred in the AR.1020 mutant rice line. Further, the use of EA primer in PCR resulted in detection of deletion and substitution of nucleotides in the AR.1020 mutant line. (author)

  14. Yield of two mutant lines of soybean for human consumption;Rendimiento de dos lineas mutantes de soya para consumo humano

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron E, J.; Mastache L, A. A.; Diaz V, G. E.; Valencia E, F.; Ranfla C, R.; Melendez P, M. [Colegio Superior Agropecuario del Estado de Guerrero, Vicente Guerrero No. 81, Col. Centro, 40000 Iguala, Guerrero (Mexico); Cervantes S, T. [Instituto de Recursos Geneticos y Productividad, Colegio de Postgraduados, Carretera Mexico-Texcoco Km. 36.5, Montecillo, 56230 Texcoco, Estado de Mexico (Mexico); De la Cruz T, E.; Garcia A, J. M.; Falcon B, T., E-mail: csaegro@prodigy.net.m [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2009-07-01

    The present work has the objective of to evaluate the yield and the agronomic behavior of 2 mutant lines of soybean for human consumption, obtained by means of a process of recurrent irradiation of soybean seed ISAAEG-BM{sub 2} with gammas of Co{sup 60} and selection in the generation R{sub 4}M{sub 18}. For the variable yield significant statistical differences were not observed, but considering the rest of the evaluated agronomic characteristics the mutant lines L{sub 6} and Bombona they were excellent with values of 3,934.6 and 3,806.8 Kg ha-{sup 1} to 15% of grain humidity, they also possess excellent genetic characteristics result of the irradiations and selections of these new genetic materials. (Author)

  15. Comparison of radiation and chemical mutagens with respect to protein in wheat. Part of a coordinated programme on the use of nuclear techniques for seed protein improvement

    International Nuclear Information System (INIS)

    Denic, M.

    1979-12-01

    In wheat mutant (M-19) albumins were reduced but globulins and glutelins increased. In opaque-2 mutant of maize, glutelins and albumins increased but the alcohol fraction (zeins) reduced. The amino acid composition of various Osborne protein fractions in maize and wheat was compared. The separation of polypetides within each Osborne protein fraction was performed, using SDS polyacrylamide gel electrophoresis. Distinct differences in zeins between the normal genotype of maize and opaque-2 mutant was observed. No really lysine-rich polypeptides were found. Relative grain and protein yields were studied in different mutants. Ten mutant lines with increased protein content were crossed with high-yielding varieties. Classes of RNA synthesized on the chromatin were analyzed. The highest ratio of ATP/UTP incorporation was in the class of RNAs which migrated on the gel as mRNA. Radioactivity distribution through the gel proved dependent both on the genotype of chromatin and the origin of the polymerase

  16. Molecular, Physicochemical and Rheological Characteristics of Introgressive Triticale/Triticum monococcum ssp. monococcum Lines with Wheat 1D/1A Chromosome Substitution

    Directory of Open Access Journals (Sweden)

    Lidia Błaszczyk

    2013-07-01

    Full Text Available Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8. Genomic in situ hybridization (GISH and fluorescence in situ hybridization (FISH confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax, and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement.

  17. Quality characteristics of soybean pasted (Doenjang) manufactured with 2 soybean mutant lines derived from cv. baekwon

    International Nuclear Information System (INIS)

    Lee, Kyung Jun; Kang, Si Yong; Choi, Hong Il; Kim, Jin Baek

    2016-01-01

    In order to identification of the possibility of manufacturing soybean paste (doenjang) with soybean mutant lines induced from gamma-ray mutagenesis, this study was performed to investigate the quality characteristics of doenjang using two soybean mutant lines, Baekwon-1 (BW-1) and Baekwon-2 (BW-2) and their original cultivar (cv. Baekwon, BW) for 8 weeks. The BW and two mutant lines (BW-1 and BW-2) were showed higher content of amino type nitrogen than control (cv. Taegwang). The pH decreased and the titratable acidity increased all the samples during aging period. The lightness, redness and yellowness of doenjang were the lowest in BW. Total free sugar content of doenjang was the highest in control (10.43%) after 4 weeks and composed mainly fructose and glucose. The order of the free amino acid content was Glutamic acid>Leucine>Lysine>Phenylalanine>Aspartic acid in control, Glutamic acid>Leucine >Arginine>Lysine>Phenylalanine in BW, Glutamic acid>Lysine>Phenylalanine>Aspartic acid>Valine in BW-1 and Glutamic acid>Arginine>Lysine>Phenylalanine>Aspartic acid in BW-2, respectively. Our results showed that it is possible to increase the quality of doenjang using soybean mutant lines in manufacturing soybean paste

  18. Quality characteristics of soybean pasted (Doenjang) manufactured with 2 soybean mutant lines derived from cv. baekwon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Jun; Kang, Si Yong; Choi, Hong Il; Kim, Jin Baek [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2016-11-15

    In order to identification of the possibility of manufacturing soybean paste (doenjang) with soybean mutant lines induced from gamma-ray mutagenesis, this study was performed to investigate the quality characteristics of doenjang using two soybean mutant lines, Baekwon-1 (BW-1) and Baekwon-2 (BW-2) and their original cultivar (cv. Baekwon, BW) for 8 weeks. The BW and two mutant lines (BW-1 and BW-2) were showed higher content of amino type nitrogen than control (cv. Taegwang). The pH decreased and the titratable acidity increased all the samples during aging period. The lightness, redness and yellowness of doenjang were the lowest in BW. Total free sugar content of doenjang was the highest in control (10.43%) after 4 weeks and composed mainly fructose and glucose. The order of the free amino acid content was Glutamic acid>Leucine>Lysine>Phenylalanine>Aspartic acid in control, Glutamic acid>Leucine >Arginine>Lysine>Phenylalanine in BW, Glutamic acid>Lysine>Phenylalanine>Aspartic acid>Valine in BW-1 and Glutamic acid>Arginine>Lysine>Phenylalanine>Aspartic acid in BW-2, respectively. Our results showed that it is possible to increase the quality of doenjang using soybean mutant lines in manufacturing soybean paste.

  19. Multilocation trial of potential selected mutant lines of groundnut (arachis hypogaea) at 3 location in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Rusli Ibrahim; Khairuddin Abdul Rahim; Shuhaimi Shamsuddin

    2002-01-01

    Two fixed mutant lines of groundnut derived from cultivar Matjan were selected for their yield potential at M 1 0 generation. Multilocation trial of these mutants (MJ40/42 and MJ20/165-5) was carried out to evaluate genotype stability at different climate and soil types in Peninsular Malaysia. The mutant lines were planted and compared with their parent (Matjan) and control variety (MKT1). The identified locations were in Taiping (Perak), Machang (Kelantan), and Air Hitam (Johor). The soils at the locations were of the Serdang, Bungor and Rengam series, respectively. The trial was carried out simultaneously in the same year at each location. Mutant MJ20/165-5 showed stable performance at all location compared to other genotypes tested. Its yield was higher than the parent in Kelantan and Johor trial and showed similar performance in Perak. This mutant also showed better yield performance than the control varieties in the Kelantan trial. Meanwhile, mutant line MJ40/42 gave better yield in Kelantan and Johor but did not perform well in Perak as compared to its parent and control varieties. (Author)

  20. Evaluation of Grain Quality in Bread Wheat Recombinant Inbred Lines Under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    H. Shahbazi

    2014-04-01

    Full Text Available To study drought stress effect on grain quality properties of wheat, an experiment was conductedusing 169 recombinant inbreed lines (RILS under water stress and non-stress condition and with two separated lattice designs. Grain yield, protein yield, protein content, volume of Zeleny sediment, grain hardness, water absorption, grain moisture content and grain dry matter were evaluated. Analysis of variance showed that there were significant differences among the lines for all traits. Moreover, comparison between two lines in two environmental conditions showed, the quality in bread wheat under drought stress conditions due to increment of protein yield is improved. Protein yield in both irrigation regimes has a significant and negative correlation with grain moisture and in the other hand, significant and positive correlation with the grain hardiness dry matter, Zeleny sedimentation and water intake in both conditions. The results showed that the identification of favorable quality characteristics in optimum and stressed conditions were possible and the lines with high grain quality can be used in breeding programs for improving of baking quality. Although some drought sensitive genotypes possessed a favorable baking quality but their grain yield was low.

  1. Genotypic variability in sesame mutant lines in Kenya | Ong'injo ...

    African Journals Online (AJOL)

    Sesame (Sesamum indicum L) is one of the major oil crops with potential for production by small- scale holders in the marginal agro-ecological zones of Kenya. Variability studies on yield and yield components of sesame mutant lines now in M7generation was carried out in two locations for two seasons in Kenya.

  2. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations.

    Science.gov (United States)

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K H; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L; Sandholzer, Michael; Lisse, Thomas S; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-12-07

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1-3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3 N294K/N294K ), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3 N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3 In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3 N294K/N294K mice. The Scube3 N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. Copyright © 2016 Fuchs et al.

  3. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Helmut Fuchs

    2016-12-01

    Full Text Available The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K, which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC. Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB, associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function.

  4. EVALUATION OF QUALITY INDICATORS RELATED TO QUALITY BREAD WHEAT PROMISING LINES

    Directory of Open Access Journals (Sweden)

    Watson Munyanyi

    2014-01-01

    Full Text Available The bread waste is one of the important socio-economic's issues country now, the urgent need is feeling to improve the wheat quality. Therefore, using the methods of farming and breeding is necessary to improve the quality of this strategic product. As a result, tests of quality's traits in wheat promising lines in Isfahan climate took place. In this study, the choice 17 advanced lines of compare the performances,s experiments, an experiment was conducted for two consecutive cropping (2011-2012 at cultural experiment and research centre in Isfahan located in Kabutar Abad region. Randomized complete block designs with 3 replications were compared with Spring variety (for control. Traits including: 1000 grain weight, hectolitre weight, protein content, Zeleny sedimentation rate, bread volume, grain moisture content, grain hardness, water absorption, falling number, percentage of dry gluten, gluten index, sedimentation rates were SDS.The results of the combined analysis of variance qualitative characteristics,s for two consecutive cropping showed that treatments with compare together and control variety had significant influence in 1% probability.Correlation coefficients of two years showed that the compound test significant positive correlation within grain hardness index and protein content, wet gluten and dry deposition rates of SDS. Also, significant positive correlation with the percentage of protein content of dry gluten. In view of the high correlation with protein content of dry gluten (quantity. However, grain hardness and relatively high correlation with SDS sedimentation as an important measure of protein quality. Therefore, the test results of dry gluten grains can be tough to choose in order to improve the quality of wheat bread may be used.

  5. Efficient production of a gene mutant cell line through integrating TALENs and high-throughput cell cloning.

    Science.gov (United States)

    Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff

    2015-02-01

    Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.

  6. Evaluating the Production of Doubled Haploid Wheat Lines Using Various Methods of Wheat and Maize Crossing to Develop Heat-Tolerant Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Tayebeh BAKHSHI

    2017-02-01

    Full Text Available Abstract. In this study, chromosome elimination method was used to develop doubled haploid wheat lines via crosses with maize. The plant materials used included 11, F1 wheat genotypes and maize genotype BC572. In these crosses, the maize plant was used as the male parent.Three methods of haploid production in wheat comprising conventional (A, detached-tiller culture (B and intermediate (C techniques were used and compared. The traits such as the number of seeds set, the number of embryos obtained and the number of haploid seedlings produced were studied. Comparisons showed that among various methods of storing wheat spikes, method (C was better than other techniques in terms of the percentage of seed production, embryo formation and haploid seedling production. Also, in all three methods, the percentage of seed production, the percentage of embryo formation and the percentage of haploid seedling production were respectively equal to 76.84, 25.22 and 51.89. Among the wheat genotypes in all three methods, genotype DH-133 with 87.28 percent seed set and genotype DH-132 with 32.71 percent embryo formation and 65.08 percent haploid seedling production were the best genotypes. A total of 92 doubled haploid lines were produced. In the field evaluations of 86 doubled haploid lines, traits such as growing season, plant height, lodging, kernel yield and 1000 kernel weight were examined. Finally, 3 lines were selected for adaptation and stability testing under heat stress conditions.Keywords: Wheat, Doubled haploid, Chromosome elimination, Detached-tiller culture Özet. Bu çalışmada, mısır ile çaprazlarla çift katlı haploid buğday hatlarının geliştirilmesi için kromozom eliminasyon yöntemi kullanılmıştır. Kullanılan bitki materyalleri 11, F1 buğday genotipleri ve BC572 mısır genotipini içermektedir. Bu çaprazlarda, mısır bitkisi erkek ebeveyn olarak kullanılmıştır. Geleneksel (A, ayrık-yeke kültürü (B ve ara (C

  7. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop

    Science.gov (United States)

    Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...

  8. Evaluating Genetic Variability of Sorghum Mutant Lines Tolerant to Acid Soil

    International Nuclear Information System (INIS)

    Puspitasari, W.; Human, S.; Wirnas, D.; Trikoesoemaningtyas

    2012-01-01

    High rainfall in some parts in Indonesia causes soil become acidic. The main constraint of acid soil is phosphor (P) deficiency and aluminum (Al) toxicity which decrease plant productivity. To overcome this problem, it is important to develop a crop variety tolerant to such conditions. Sorghum is probably one of the potential crops to meet that objective. Sorghum has been reported to have wide adaptability to various agro-ecology and can be used as food and animal feed. Unfortunately, sorghum is not Indonesian origin so its genetic variability is still low. From previous breeding works with induced mutation, some promising mutant lines have been developed. These mutant lines were included in the experiment carried out in Tenjo with soil condition was classified as acid soil with pH 4.8 and exchangeable-Al content 2.43 me/100 g. The objectives of this experiment were to study the magnitude of genetic variability of agronomy and grain quality characters in sorghum in order to facilitate the breeding improvement of the species. Plant materials used in this study were ten genotypes, including 6 mutant lines and 4 control varieties. The randomized block design with three replications was used in the experiment. The genetic variabilities of agronomic and grain quality characters existed among genotypes, such as plant height, number of leaves, stalk diameter, biomass weight, panicle length, grain yield per plant, 100 seed weight and tannin content in the grain. The broad sense heritabilities of agronomic characters were estimated ranging from medium to high. Grain yield showed significantly positive correlation with agronomic characters observed, but it was negatively correlated with protein content (author)

  9. Creating Sunflower Mutant Lines (Helianthus Annuus L.) Using Induced Mutagenesis

    International Nuclear Information System (INIS)

    Encheva, J.

    2009-01-01

    Immature sunflower zygotic embryos of sunflower fertility restorer line 374 R were treated with ultrasound and gamma radiation before plating embryos to culture medium. All plants were isolated and self-pollinated for several generations. New sunflower forms with inherited morphological and biochemical changes were obtained. The genetic changes occurring during the mutation procedure included fourteen morphological and biochemical characters. In comparison to the check line 374 R, decreasing of the mean value of the indexes was registered for 33 % of the total number of characters and vise verse, significant increasing was observed for 60 %. Mutation for resistance to the local population of Orobanche cumana race A-E was obtained from the susceptible Bulgarian control line 374 R. Two investigated mutant lines possessed 100 % resistance to Orobanche and stable inheritance in the next generations. Our results showed that induced mutagenesis in sunflower can be successfully used to develop new lines useful for heterosis breeding

  10. Growth of wheat and triticale cultivars with the use of the artificial genetic mutations

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This document reports the use of gamma radiation to induce resistance to the fungus Puccina graminis tritici in wheat (Triticum). A resistant wheat mutant was produced, and its genetic properties are reported. The mutant was evaluated for use as a crop and for application in further crop improvement programms

  11. Development and Molecular Cytogenetic Identification of a Novel Wheat-Leymus mollis Lm#7Ns (7D Disomic Substitution Line with Stripe Rust Resistance.

    Directory of Open Access Journals (Sweden)

    Xiaofei Yang

    Full Text Available Leymus mollis (2n = 4x = 28, NsNsXmXm possesses novel and important genes for resistance against multi-fungal diseases. The development of new wheat-L. mollis introgression lines is of great significance for wheat disease resistance breeding. M11003-3-1-15-8, a novel disomic substitution line of common wheat cv. 7182 -L. mollis, developed and selected from the BC1F5 progeny between wheat cv. 7182 and octoploid Tritileymus M47 (2n = 8x = 56, AABBDDNsNs, was characterized by morphological and cytogenetic identification, analysis of functional molecular markers, genomic in situ hybridization (GISH, sequential fluorescence in situ hybridization (FISH-genomic in situ hybridization (GISH and disease resistance evaluation. Cytological observations suggested that M11003-3-1-15-8 contained 42 chromosomes and formed 21 bivalents at meiotic metaphase I. The GISH investigations showed that line contained 40 wheat chromosomes and a pair of L. mollis chromosomes. EST-STS multiple loci markers and PLUG (PCR-based Landmark Unique Gene markers confirmed that the introduced L. mollis chromosomes belonged to homoeologous group 7, it was designated as Lm#7Ns. While nulli-tetrasomic and sequential FISH-GISH analysis using the oligonucleotide Oligo-pSc119.2 and Oligo-pTa535 as probes revealed that the wheat 7D chromosomes were absent in M11003-3-1-15-8. Therefore, it was deduced that M11003-3-1-15-8 was a wheat-L. mollis Lm#7Ns (7D disomic substitution line. Field disease resistance demonstrated that the introduced L. mollis chromosomes Lm#7Ns were responsible for the stripe rust resistance at the adult stage. Moreover, M11003-3-1-15-8 had a superior numbers of florets. The novel disomic substitution line M11003-3-1-15-8, could be exploited as an important genetic material in wheat resistance breeding programs and genetic resources.

  12. Genetic analysis of a novel broad-spectrum powdery mildew resistance gene from the wheat-Agropyron cristatum introgression line Pubing 74.

    Science.gov (United States)

    Lu, Yuqing; Yao, Miaomiao; Zhang, Jinpeng; Song, Liqiang; Liu, Weihua; Yang, Xinming; Li, Xiuquan; Li, Lihui

    2016-09-01

    A novel broad-spectrum powdery mildew resistance gene PmPB74 was identified in wheat- Agropyron cristatum introgression line Pubing 74. Development of wheat cultivars with broad-spectrum, durable resistance to powdery mildew has been restricted by lack of superior genetic resources. In this study, a wheat-A. cristatum introgression line Pubing 74, originally selected from a wide cross between the common wheat cultivar Fukuhokomugi (Fukuho) and Agropyron cristatum (L.) Gaertn (2n = 4x = 28; genome PPPP), displayed resistance to powdery mildew at both the seedling and adult stages. The putative alien chromosomal fragment in Pubing 74 was below the detection limit of genomic in situ hybridization (GISH), but evidence for other non-GISH-detectable introgressions was provided by the presence of three STS markers specific to A. cristatum. Genetic analysis indicated that Pubing 74 carried a single dominant gene for powdery mildew resistance, temporarily designated PmPB74. Molecular mapping showed that PmPB74 was located on wheat chromosome arm 5DS, and flanked by markers Xcfd81 and HRM02 at genetic distances of 2.5 and 1.7 cM, respectively. Compared with other lines with powdery mildew resistance gene(s) on wheat chromosome arm 5DS, Pubing 74 was resistant to all 28 Blumeria graminis f. sp tritici (Bgt) isolates from different wheat-producing regions of northern China. Allelism tests indicated that PmPB74 was not allelic to PmPB3558 or Pm2. Our work showed that PmPB74 is a novel gene with broad resistance to powdery mildew, and hence will be helpful in broadening the genetic basis of powdery mildew resistance in wheat.

  13. Mutation breeding for durum wheat (Triticum turgidum ssp. durum Desf.) improvement in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Scarascia-Mugnozza, G T [Universita della Tuscia, Viterbo (Italy); D' Amato, F [Dipartimento di Biologia delle Piante Agrarie, Universita di Pisa (Italy); Avanzi, S [Dipartimento di Botanica, Universita di Pisa (Italy); and others

    1993-12-01

    In view of the economic importance of durum wheat in Italy and in the Mediterranean and Near East Region much effort was devoted to its genetic improvement. Lodging susceptibility and straw weakness, particularly under high fertilizer level, were the main reasons of substantially lower yields compared to bread wheat. An experimental mutagenesis programme was started in Italy in 1956 by F. D'Amato and G.T. Scarascia. It included both fundamental genetic studies and applied mutation breeding. Remarkable results were obtained at the 'Laboratorio Applicazioni in Agricoltura', Casaccia Nuclear Research Center, Roma, Italy, in radiobiology, radiogenetics, cytology and cytogenetics, genetics and breeding. Selection among some 1,000 induced mutants and hybridization led to 11 registered mutant varieties, six by the direct use of selected mutants and the remaining from cross-breeding. The economic benefits derived from the developed mutant cultivars are substantial. Mutant varieties have a great impact on durum wheat production, both in Italy and other countries like Bulgaria or Austria where Italian mutants have been used successfully in cross-breeding. (author)

  14. Mutation breeding for durum wheat (Triticum turgidum ssp. durum Desf.) improvement in Italy

    International Nuclear Information System (INIS)

    Scarascia-Mugnozza, G.T.; D'Amato, F.; Avanzi, S.

    1993-01-01

    In view of the economic importance of durum wheat in Italy and in the Mediterranean and Near East Region much effort was devoted to its genetic improvement. Lodging susceptibility and straw weakness, particularly under high fertilizer level, were the main reasons of substantially lower yields compared to bread wheat. An experimental mutagenesis programme was started in Italy in 1956 by F. D'Amato and G.T. Scarascia. It included both fundamental genetic studies and applied mutation breeding. Remarkable results were obtained at the 'Laboratorio Applicazioni in Agricoltura', Casaccia Nuclear Research Center, Roma, Italy, in radiobiology, radiogenetics, cytology and cytogenetics, genetics and breeding. Selection among some 1,000 induced mutants and hybridization led to 11 registered mutant varieties, six by the direct use of selected mutants and the remaining from cross-breeding. The economic benefits derived from the developed mutant cultivars are substantial. Mutant varieties have a great impact on durum wheat production, both in Italy and other countries like Bulgaria or Austria where Italian mutants have been used successfully in cross-breeding. (author)

  15. Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew.

    Science.gov (United States)

    An, Diaoguo; Zheng, Qi; Zhou, Yilin; Ma, Pengtao; Lv, Zhenling; Li, Lihui; Li, Bin; Luo, Qiaoling; Xu, Hongxing; Xu, Yunfeng

    2013-07-01

    Rye is an important and valuable gene resource for wheat improvement. However, due to extensive growing of cultivars with disease resistance genes from short arm of rye chromosome 1R and coevolution of pathogen virulence and host resistance, these cultivars successively lost resistance to pathogens. Identification and deployment of new resistance gene sources in rye are, therefore, of especial importance and urgency. A new wheat-rye line, designated as WR41-1, was produced through distant hybridization and chromosome engineering protocols between common wheat cultivar Xiaoyan 6 and rye cultivar German White. It was proved to be a new wheat-rye T4BL·4RL and T7AS·4RS translocation line using sequential genomic in situ hybridization (GISH), multicolor fluorescence in situ hybridization (mc-FISH), and expressed sequence tag-simple sequence repeat (EST-SSR) marker analysis. WR41-1 showed high levels of resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) pathogens prevalent in China at the adult growth stage and 13 of 23 Bgt isolates tested at the seedling stage. According to its resistant pattern to 23 different Bgt isolates, WR41-1 may possess new gene(s) for resistance to powdery mildew, which differed from previously identified and known powdery mildew genes from rye (Pm7, Pm8, Pm17, and Pm20). In addition, WR41-1 was cytologically stable, had a desirable fertility, and is expected to be useful in wheat improvement.

  16. Selection of wheat lines with resistance to Fusarium graminearum by somaclonal variation

    International Nuclear Information System (INIS)

    Sun Guangzu

    1997-10-01

    The screening wheat new lines which have the resistance to Fusarium graminearum were completed by in vitro induced mutation and cell screening. Four new lines with resistance to Fusarium graminearum were obtained. The field inoculating determination in 1990∼1996 showed that their resistance was 1∼2 degree higher than that of parents, and there were variations in main agronomic traits between the new lines and their parents. Changes of the defensive enzymes (SOD, POD), sugar-protein on cell surface, and ultrastructure were investigated by using new lines and their parents under the action of toxin of Fusarium graminearum. The new lines under the action of toxin of Fusarium graminearum have the ability to increase the defensive enzyme activity and thickness of sugarprotein on cell surface and to reduce the damage of cell membrane system that would result in resistance increasing. (8 refs., 3 figs., 3 tabs.)

  17. A novel PCR-based marker for identifying Ns chromosomes in wheat-Psathyrostachys huashanica Keng derivative lines

    Directory of Open Access Journals (Sweden)

    J. Wang

    2013-10-01

    Full Text Available Psathyrostachys huashanica Keng is an endangered species that is endemic to China, which provides an important gene pool for wheat improvement. We developed a quick and reliable PCR-based diagnostic assay to accurately and efficiently detect P. huashanica DNA sequences from introgression lines, which was based on a species-specific marker derived from genomic DNA. The 900-bp PCR-amplified band used as a P. huashanica-specific RAPD marker was tested with 21 different plant species and was converted into a sequence-characterized amplified region (SCAR marker by cloning and sequencing the selected fragments (pHs11. This SCAR marker, which was designated as RHS23, could clearly distinguish the presence of P. huashanica DNA repetitive sequences in wheat-P. huashanica derivative lines. The specificity of the marker was validated using 21 different plant species and a complete set of wheat-P. huashanica disomic addition lines (1Ns–7Ns, 2n=44=22II. This specific sequence targeted the Ns genome of P. huashanica and it was present in all the seven P. huashanica chromosomes. Therefore, this SCAR marker is specific for P. huashanica chromosomes and may be used in the identification of alien repetitive sequences in large gene pools. This diagnostic PCR assay for screening the target genetic material may play a key role in marker-assisted selective breeding programs.

  18. Molecular Cytogenetic Identification of a New Wheat-Rye 6R Chromosome Disomic Addition Line with Powdery Mildew Resistance.

    Directory of Open Access Journals (Sweden)

    Diaoguo An

    Full Text Available Rye (Secale cereale L. possesses many valuable genes that can be used for improving disease resistance, yield and environment adaptation of wheat (Triticum aestivum L.. However, the documented resistance stocks derived from rye is faced severe challenge due to the variation of virulent isolates in the pathogen populations. Therefore, it is necessary to develop desirable germplasm and search for novel resistance gene sources against constantly accumulated variation of the virulent isolates. In the present study, a new wheat-rye line designated as WR49-1 was produced through distant hybridization and chromosome engineering protocols between common wheat cultivar Xiaoyan 6 and rye cultivar German White. Using sequential GISH (genomic in situ hybridization, mc-FISH (multicolor fluorescence in situ hybridization, mc-GISH (multicolor GISH and EST (expressed sequence tag-based marker analysis, WR49-1 was proved to be a new wheat-rye 6R disomic addition line. As expected, WR49-1 showed high levels of resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici, Bgt pathogens prevalent in China at the adult growth stage and 19 of 23 Bgt isolates tested at the seedling stage. According to its reaction pattern to different Bgt isolates, WR49-1 may possess new resistance gene(s for powdery mildew, which differed from the documented powdery mildew gene, including Pm20 on chromosome arm 6RL of rye. Additionally, WR49-1 was cytologically stable, had improved agronomic characteristics and therefore could serve as an important bridge for wheat breeding and chromosome engineering.

  19. Evaluation of some advanced wheat lines (F7 in normal and drought stress conditions

    Directory of Open Access Journals (Sweden)

    R. Nikseresht

    2016-05-01

    Full Text Available For assessment of drought stress effects on agro characteristics of 30 lines and 6 wheat cultivars and for introducing of drought tolerant and susceptible ones one trial were established using split plot base of randomized complete block design with two replications, main plots were stress and non-stress condition and sub plots contain 30 lines and six wheat cultivars in the check trial, irrigation the farm was done with the normal regime, but in stress trial for germination of seeds and one irrigation in Isfand to the end of rooting the farm was irrigated. Within and end of growth season we measured some agronomic and morphological characters such as yield and its component, height, peduncle length, and etc. Responses of cultivars under stress and non-stress conditions were' different, for example drought stress reduced yield. In spite of this general yield reducing, we found some line, such as 2, 29, 23 had relatively high yield (in tree levels. In order to final evaluate using Factor Analysis, Principal Component, Cluster Analysis .Factor Analysis indicated that four important factors accounted for about 80.245 and 79.624 percent of the total variation among traits in normal and drought stress conditions. With cluster analysis of 36 lines and cultivar using Ward procedure based on Euclidean distance were grouped in 4 distance cluster.

  20. Inheritance of culm height and grain yield in durum wheat

    International Nuclear Information System (INIS)

    Filev, K.

    1984-01-01

    Results from a study of GA sensitive and GA insensitive durum wheat mutants and cultivars in relation with their culm height and 1000 grain weight are presented. With increasing culm height, the GA response also increased. A positive correlation between plant height and GA response was found. Crosses were made between durum wheats and the F 1 and F 2 progenies were analysed. A different inheritance in F 1 and segregation in F 2 was obtained in crosses of a semi-dwarf, GA insensitive [1] line with GA sensitive (S) lines differing in height, medium (93.2cm) and tall (133.5cm). In a reciprocal cross, semi-dwarf - I with medium - S, the semi-dwarf type was dominant in F 1 , suggesting that their semi-dwarfing genes were not allelic. When the semi-dwarf - I and tall - S were crossed an intermediate inheritance in F 1 was observed. In the F 2 generation from crosses semi-dwarf - I with medium - S with semi-dwarf - I, a phenotypic dihybred segregation 9:3:3:1 was observed. In crosses semi-dwarf - I with tall - S different variation curves were obtained. Semi-dwarfs with high productivity were observed in F 2 , a fact indicating that lodging resistant lines with high yields could be selected. (author)

  1. Mapping of a rice thermosensitive genic male sterility gene from a TGMS mutant line

    Energy Technology Data Exchange (ETDEWEB)

    Vu Duc Quang; Nguyen Van Dong; Pham Ngoc Luong; Tran Duy Quy [Argicultural Genetics Institute, Hanoi (Viet Nam); Nguyen, Henry T. [Texas Tech Univ., Department of Plant and Soil Science, Lubbock TX (United States)

    2001-03-01

    At the Agricultural Genetics Institute (AGI), Hanoi, Vietnam, a number of thermo-sensitive genic male sterility (TGMS) homozygous rice lines have been developed by means of experimental mutagenesis followed by anther culture techniques. One of them (TGMS-1 indica mutant line) was used in this research. The critical temperature (at the period from pollen mother cell formation to the beginning of meiotic division) for TGMS-1 sterility was 24-25degC, below which the plants were fertile and above which the plants became sterile. Segregation analysis showed that the TGMS trait of the TGMS-1 mutant line was controlled by a single recessive gene. An F{sub 2} mapping population from a cross between TGMS-1 mutant line and CH1 (a fertile indica line) was developed for tagging and mapping the TGMS gene. From survey of 200 AFLP primer combinations in a bulked segregant analysis, 4 AFLP markers (E2/M5-200, E3/M16-400, E5/M12-600 and E5/M12-200) linked to TGMS-1 gene were identified and cloned. All except E2/M5-200 were found to be low-copy number sequences. The marker E5/M12-600 showed polymorphism in RFLP analysis and was closely linked to the TGMS gene at a distance of 3.3cM. This marker was subsequently mapped on chromosome 2 using doubled-haploid mapping populations derived from the crosses IR64xAzucena and CT9993xIR62666. Linkage of microsatellite marker RM27 with the TGMS gene further confirmed its location on chromosome 2. The closest marker, E5/M12-600, was sequenced so that a PCR marker can be developed for the use in marker-assisted breeding. The application of TGMS genes to the commercial two-line hybrid rice breeding system was discussed. (author)

  2. Mapping of a rice thermosensitive genic male sterility gene from a TGMS mutant line

    International Nuclear Information System (INIS)

    Vu Duc Quang; Nguyen Van Dong; Pham Ngoc Luong; Tran Duy Quy; Nguyen, Henry T.

    2001-01-01

    At the Agricultural Genetics Institute (AGI), Hanoi, Vietnam, a number of thermo-sensitive genic male sterility (TGMS) homozygous rice lines have been developed by means of experimental mutagenesis followed by anther culture techniques. One of them (TGMS-1 indica mutant line) was used in this research. The critical temperature (at the period from pollen mother cell formation to the beginning of meiotic division) for TGMS-1 sterility was 24-25degC, below which the plants were fertile and above which the plants became sterile. Segregation analysis showed that the TGMS trait of the TGMS-1 mutant line was controlled by a single recessive gene. An F 2 mapping population from a cross between TGMS-1 mutant line and CH1 (a fertile indica line) was developed for tagging and mapping the TGMS gene. From survey of 200 AFLP primer combinations in a bulked segregant analysis, 4 AFLP markers (E2/M5-200, E3/M16-400, E5/M12-600 and E5/M12-200) linked to TGMS-1 gene were identified and cloned. All except E2/M5-200 were found to be low-copy number sequences. The marker E5/M12-600 showed polymorphism in RFLP analysis and was closely linked to the TGMS gene at a distance of 3.3cM. This marker was subsequently mapped on chromosome 2 using doubled-haploid mapping populations derived from the crosses IR64xAzucena and CT9993xIR62666. Linkage of microsatellite marker RM27 with the TGMS gene further confirmed its location on chromosome 2. The closest marker, E5/M12-600, was sequenced so that a PCR marker can be developed for the use in marker-assisted breeding. The application of TGMS genes to the commercial two-line hybrid rice breeding system was discussed. (author)

  3. Improved wheat for baking.

    Science.gov (United States)

    Faridi, H; Finley, J W

    1989-01-01

    To bakers, wheat quality means the performance characteristics of the flour milled from the wheat when used in specific wheat products. The tremendous increase in the number of wheat cultivars grown in the U.S. in recent years, along with the unusual climate, new advances in milling technology, and increased automation of baking lines, have resulted in bakery production problems partly attributed to wheat flour quality. In this review various factors affecting wheat quality are explained. Concerns of bread and cookie/cracker manufacturers on deterioration of the wheat quality are discussed, and, finally, some solutions are proposed.

  4. Expression of Pinellia pedatisecta Lectin Gene in Transgenic Wheat Enhances Resistance to Wheat Aphids

    Directory of Open Access Journals (Sweden)

    Xiaoliang Duan

    2018-03-01

    Full Text Available Wheat aphids are major pests during the seed filling stage of wheat. Plant lectins are toxic to sap-sucking pests such as wheat aphids. In this study, Pinellia pedatisecta agglutinin (ppa, a gene encoding mannose binding lectin, was cloned, and it shared 92.69% nucleotide similarity and 94% amino acid similarity with Pinellia ternata agglutinin (pta. The ppa gene, driven by the constitutive and phloem-specific ribulose bisphosphate carboxylase small subunit gene (rbcs promoter in pBAC-rbcs-ppa expression vector, was transferred into the wheat cultivar Baofeng104 (BF104 by particle bombardment transformation. Fifty-four T0 transgenic plants were generated. The inheritance and expression of the ppa gene were confirmed by PCR and RT-PCR analysis respectively, and seven homozygous transgenic lines were obtained. An aphid bioassay on detached leaf segments revealed that seven ppa transgenic wheat lines had lower aphid growth rates and higher inhibition rates than BF104. Furthermore, two-year aphid bioassays in isolated fields showed that aphid numbers per tiller of transgenic lines were significantly decreased, compared with wild type BF104. Therefore, ppa could be a strong biotechnological candidate to produce aphid-resistant wheat.

  5. Evaluation of the combining ability of mutant maize lines

    Directory of Open Access Journals (Sweden)

    V. Valkova

    2016-09-01

    Full Text Available Abstract. The study shows the results of a preliminary evaluation of the combining ability for grain yield of 17 mutant maize lines. For the purpose the top cross method for early testing and the mathematical model of Savchenko for analysis of the general and the specific combining ability were used. The lines were tested on three testers with high general combining ability that belong to two genetic groups: K 46 52 and XM 552 from SSS and N 192 – Lancaster. For the purposes of evaluation of the productive abilities of the received top cross two preliminary varietal experiments were carried out at the experimental field of Maize Research Institute, Knezha As a result of the conducted experimental work and the analysis it was found that the highest general combining ability have lines XM 11 6 and XM 12 1. These lines can be included as components of high-yielding synthetics or as testers in analyzing crosses to determine general combining ability in early stages of the selection process. The above lines with high specific combining ability – XM 11 13 and XM 11 46 are suitable for inclusion in combinations to develop high-yielding hybrids. Three of the tested lines XM 11 7 11 XM 10 and XM 11 11 have both high GCA and SCA. These lines can be used in corresponding breeding in the selection programs.

  6. Biotransformation of the Mycotoxin Deoxynivalenol in Fusarium Resistant and Susceptible Near Isogenic Wheat Lines

    Science.gov (United States)

    Kluger, Bernhard; Bueschl, Christoph; Lemmens, Marc; Michlmayr, Herbert; Malachova, Alexandra; Koutnik, Andrea; Maloku, Imer; Berthiller, Franz; Adam, Gerhard; Krska, Rudolf; Schuhmacher, Rainer

    2015-01-01

    In this study, a total of nine different biotransformation products of the Fusarium mycotoxin deoxynivalenol (DON) formed in wheat during detoxification of the toxin are characterized by liquid chromatography—high resolution mass spectrometry (LC-HRMS). The detected metabolites suggest that DON is conjugated to endogenous metabolites via two major metabolism routes, namely 1) glucosylation (DON-3-glucoside, DON-di-hexoside, 15-acetyl-DON-3-glucoside, DON-malonylglucoside) and 2) glutathione conjugation (DON-S-glutathione, “DON-2H”-S-glutathione, DON-S-cysteinyl-glycine and DON-S-cysteine). Furthermore, conjugation of DON to a putative sugar alcohol (hexitol) was found. A molar mass balance for the cultivar ‘Remus’ treated with 1 mg DON revealed that under the test conditions approximately 15% of the added DON were transformed into DON-3-glucoside and another 19% were transformed to the remaining eight biotransformation products or irreversibly bound to the plant matrix. Additionally, metabolite abundance was monitored as a function of time for each DON derivative and was established for six DON treated wheat lines (1 mg/ear) differing in resistance quantitative trait loci (QTL) Fhb1 and/or Qfhs.ifa-5A. All cultivars carrying QTL Fhb1 showed similar metabolism kinetics: Formation of DON-Glc was faster, while DON-GSH production was less efficient compared to cultivars which lacked the resistance QTL Fhb1. Moreover, all wheat lines harboring Fhb1 showed significantly elevated D3G/DON abundance ratios. PMID:25775425

  7. Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat.

    Science.gov (United States)

    Diallo, Amadou Oury; Agharbaoui, Zahra; Badawi, Mohamed A; Ali-Benali, Mohamed Ali; Moheb, Amira; Houde, Mario; Sarhan, Fathey

    2014-06-01

    The einkorn wheat mutant mvp-1 (maintained vegetative phase 1) has a non-flowering phenotype caused by deletions including, but not limited to, the genes CYS, PHYC, and VRN1. However, the impact of these deletions on global gene expression is still unknown. Transcriptome analysis showed that these deletions caused the upregulation of several pathogenesis-related (PR) and jasmonate-responsive genes. These results suggest that jasmonates may be involved in flowering and vernalization in wheat. To test this hypothesis, jasmonic acid (JA) and methyl jasmonate (MeJA) content in mvp and wild-type plants was measured. The content of JA was comparable in all plants, whereas the content of MeJA was higher by more than 6-fold in mvp plants. The accumulation of MeJA was also observed in vernalization-sensitive hexaploid winter wheat during cold exposure. This accumulation declined rapidly once plants were deacclimated under floral-inductive growth conditions. This suggests that MeJA may have a role in floral transition. To confirm this result, we treated vernalization-insensitive spring wheat with MeJA. The treatment delayed flowering with significant downregulation of both TaVRN1 and TaFT1 genes. These data suggest a role for MeJA in modulating vernalization and flowering time in wheat. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Development of a wheat-Aegilops searsii substitution line with positively affecting Chinese steamed bread quality.

    Science.gov (United States)

    Du, Xuye; Ma, Xin; Min, Jingzhi; Zhang, Xiaocun; Jia, Zhenzhen

    2018-03-01

    A wheat- Aegilops searsii substitution line GL1402, in which chromosome 1B was substituted with 1S s from Ae. searsii , was developed and detected using SDS-PAGE and GISH. The SDS-PAGE analysis showed that the HMW-GS encoded by the Glu-B1 loci of Chinese Spring was replaced by the HMW-GS encoded by the Glu-1S s loci of Ae. searsii . Glutenin macropolymer (GMP) investigation showed that GL1402 had a much higher GMP content than Chinese Spring did. A dough quality comparison of GL1402 and Chinese Spring indicated that GL1402 showed a significantly higher protein content and middle peak time (MPT), and a smaller right peak slope (RPS). Quality tests of Chinese steamed bread (CSB) showed that the GL1402 also produced good steamed bread quality. These results suggested that the substitution line is a valuable breeding material for improving the wheat processing quality.

  9. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat.

    Science.gov (United States)

    Zhu, Xiuliang; Li, Zhao; Xu, Huijun; Zhou, Miaoping; Du, Lipu; Zhang, Zengyan

    2012-08-01

    The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.

  10. Improvement of wheat for resistance to Russian Wheat Aphid

    International Nuclear Information System (INIS)

    Kinyua, M.; Malinga, J.N.; Wanyama, J.; Karanja, L.; Njau, P.; Leo, T.; Alomba, E.

    2001-01-01

    Breeding for resistance against Russian wheat aphid in Kenya is reported. Results of six of the lines were found to have high to moderate resistance to Russian wheat aphid. Popular lines were susceptible in the greenhouse when subjected to aphid pressure but showed moderate susceptibility when screened under field conditions, indicating that in years or location with low aphid pressure farmers may still get a crop. However in areas of high aphid pressure or bad years they may lose their crop. Consequently, developing resistant/torerant varieties is urgent

  11. Accumulation of dry matter and nitrogen in the developing seeds of high protein mutant lines of Triticum Aestivum (L.) produced by the IAEA

    International Nuclear Information System (INIS)

    Mir Ali, N.; Nabulsi, I.

    1993-03-01

    Accumulation patterns of dry matter and nitrogen in the developing seeds of nine mutant lines produced by the IAEA and their mother Triticum Aestivum (L.) line were studied. The experiments lasted 2 years under rain fed conditions. Significant differences were found among the lines in dry matter and nitrogen rates, and periods of accumulation, whereas no significant differences were found in the final seed weight of the lines. The highest rates of accumulation for dry matter and nitrogen were accompanied with the shortest period of accumulation in two late flowering mutant lines. However, these two lines were the lowest in their yield per plot. The other mutant lines achieved the high nitrogen percentage in their seeds through the relative reduction in dry matter accumulation rate compared to their mother line rather than through higher rate of nitrogen accumulation. This study revealed some of the potential reasons behind the higher percentage of protein in the seeds of the mutant lines under investigation. (author). 17 refs., 3 figs., 2 tabs

  12. Stem rust seedling resistance genes in Ethiopian wheat cultivars ...

    African Journals Online (AJOL)

    Thirty durum wheat (19 commercial cultivars and 11 breeding lines) and 30 bread wheat (20 commercial cultivars and 10 breeding lines) were tested for gene postulation. Stem rust infection types produced on wheat cultivars and breeding lines by ten Pgt races was compared with infection types produced on 40 near ...

  13. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium

    Science.gov (United States)

    The chromosome painting is an efficient tool for chromosome research. However, plant chromosome painting is relatively underdeveloped. In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and chromosomes of...

  14. Copper phytoextraction in tandem with oilseed production using commercial cultivars and mutant lines of sunflower.

    Science.gov (United States)

    Kolbas, A; Mench, M; Herzig, R; Nehnevajova, E; Bes, C M

    2011-01-01

    Use of sunflower (Helianthus annuus L.) for Cu phytoextraction and oilseed production on Cu-contaminated topsoils was investigated in afield trial at a former wood preservation site. Six commercial cultivars and two mutant lines were cultivated in plots with and without the addition of compost (5% w/w) and dolomitic limestone (0.2% w/w). Total soil Cu ranged from 163 to 1170 mg kg(-1). In soil solutions, Cu concentration varied between 0.16-0.93 mg L(-1). The amendment increased soil pH, reduced Cu exposure and promoted sunflower growth. Stem length, shoot and capitulum biomasses, seed yield, and shoot and leaf Cu concentrations were measured. At low total soil Cu, shoot Cu mineralomass was higher in commercial cultivars, Le., Salut, Energic, and Countri, whereas competition and shading affected morphological traits of mutants. Based on shoot yield (7 Mg DW ha(-1)) and Cu concentration, the highest removal was 59 g Cu ha(-1). At high total soil Cu, shoot Cu mineralomass peaked for mutants (e.g., 52 g Cu ha(-1) for Mutant 1 line) and cultivars Energic and Countri. Energic seed yield (3.9 Mg air-DW ha(-1)) would be sufficient to produce oil Phenotype traits and shoot Cu removal depended on sunflower types and Cu exposure.

  15. Characterization of a new synthetic wheat – Aegilops biuncialis ...

    African Journals Online (AJOL)

    The aim of the experiments was to identify the synthetic wheat – Aegilops biuncialis germplasm Line 15-3-2 with 42 chromosomes. Morphologically, the spike of line 15-3-2 is intermediate to those of its wheat and Aegilops parents. Line 15-3-2 displays stable fertility and immunity to wheat powdery mildew and stripe rust.

  16. Resistance of durum wheat cultivars to Fusarium culmorum and the difficulty or bringing greenhouse data into agreement with field results

    International Nuclear Information System (INIS)

    Piglionica, V.

    1977-01-01

    Foot-rot, caused by Fusarium culmorum is becoming a more and more serious problem in durum wheat. Therefore, resistance breeding has to be considered and tests were started to assess whether available durum wheat germplasm contains lines or varieties with satisfactory levels of resistance. A wide range of susceptibility was observed among 192 cultivars and lines included in this preliminary test. However, considerable experimental problems were faced, which became evident by an obvious disagreement of results obtained under greenhouse versus field conditions. The paper describes some of the problems and indicates promising approaches to overcome them. The following difficulties have been overcome: (1) Avoiding seeds latently infected; (2) Eliminating possible interference with other pathogenic organisms; (3) Handling the pathogen so that low-pathogenicity mutants do not appear; (4) Standardization of the inoculum level to enable identification of partial resistance. (author)

  17. Mutational rectification for resistance to diseases in rice and bread wheat

    International Nuclear Information System (INIS)

    Chakrabarti, S.N.; Kar, G.N.; Sen, B.

    1976-01-01

    The mutation breeding programme with a view to rectify the defects of severe susceptibility to important diseases of a few varieties of rice and bread wheat was undertaken using different mutagenic treatments with radiation (X-rays and gamma rays), chemical mutagens (EMS, NMU, NEU) and combination of radiation and chemical mutagens (gamma rays + EMS). In rice two mutant strains have shown moderate resistance to helminthosporiose, one strain to both helminthosporiose and blast and five strains resistant to bacterial leaf blight under artificial epiphytotic conditions. In bread wheat, out of large M 2 population, derived from different mutagenic treatments, the frequencies of appearance of mutants resistant to rust diseases were observed to be 0.03 percent in H.D. 1944 from 0.2 percent EMS treatment, 0.06 percent in H.D. 1999 from 0.01 percent NEU treatment and 0.07 percent in Kalyan Sona from combined treatment with 20 krad gamma rays and 0.4 percent EMS. The mutants bred true for resistance upto M 6 generations. A few of the mutants, resistant to different diseases in rjce and bread wheat, proved to be very promising in yield. An early (earlier to Kalyan Sona by 25 days) mutant, derived from Kalyan Sona, topped in yield out of 49 varieties tested in 1974l75 in Delhi and Pusa. The Kalyan Sona early tested in 1974-75 in Delhi and Pusa. The Kalyan Sona early mutant is having resistance to yellow and brown rusts. (author)

  18. Mixtures of genetically modified wheat lines outperform monocultures.

    Science.gov (United States)

    Zeller, Simon L; Kalinina, Olena; Flynn, Dan F B; Schmid, Bernhard

    2012-09-01

    Biodiversity research shows that diverse plant communities are more stable and productive than monocultures. Similarly, populations in which genotypes with different pathogen resistance are mixed may have lower pathogen levels and thus higher productivity than genetically uniform populations. We used genetically modified (GM) wheat as a model system to test this prediction, because it allowed us to use genotypes that differed only in the trait pathogen resistance but were otherwise identical. We grew three such genotypes or lines in monocultures or two-line mixtures. Phenotypic measurements were taken at the level of individual plants and of entire plots (population level). We found that resistance to mildew increased with both GM richness (0, 1, or 2 Pm3 transgenes with different resistance specificities per plot) and GM concentration (0%, 50%, or 100% of all plants in a plot with a Pm3 transgene). Plots with two transgenes had 34.6% less mildew infection and as a consequence 7.3% higher seed yield than plots with one transgene. We conclude that combining genetic modification with mixed cropping techniques could be a promising approach to increase sustainability and productivity in agricultural systems, as the fitness cost of stacking transgenes within individuals may thus be avoided.

  19. Tolerance of Septoria nodorum Berk. in wheat: inheritance and potential in breeding

    International Nuclear Information System (INIS)

    Fossati, A.; Broennimann, A.

    1976-01-01

    Investigations in the genetics of tolerance towards Septoria nodorum Berk. in wheat showed that this tolerance is inherited polygenically and mainly additively. This has to be considered when breeding for tolerance. Crosses should be carried out between parents of the highest possible tolerance. Breeding for tolerance is carried out in two different manners: Conventional breeding and with the use of mutation techniques. The conventional breeding program can be divided into three steps: The choice of the parents, the selection in the narrow sense (F 2 - F 5 ) and the evaluation of the tolerant lines (F 6 till about F 9 ). When producing mutants with tolerance towards Septoria nodorum, another cultivar is treated every year in order to enlarge the genetical basis for selection. 7 cultivars have been treated since 1967. Some tolerant lines could be selected from most of the cultivars used for this treatment. The efficiency of the mutation and selection techniques used is discussed in the case of the cultivar Fermo. Besides the real improvement of tolerance the selection was accompanied in general also by an increase in plant height and grain size. But some tolerant mutants were also found which did not show these side effects. Furthermore, some mutants were selected in which the progress of infection is slowed down. (author)

  20. Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta.

    Directory of Open Access Journals (Sweden)

    Kui Shi

    Full Text Available Chloroplast development is an integral part of plant survival and growth, and occurs in parallel with chlorophyll biosynthesis. However, little is known about the mechanisms underlying chloroplast development in hexaploid wheat. Here, we obtained a spaceflight-induced wheat albino mutant mta. Chloroplast ultra-structural observation showed that chloroplasts of mta exhibit abnormal morphology and distribution compared to wild type. Photosynthetic pigments content was also significantly decreased in mta. Transcriptome and chloroplast proteome profiling of mta and wild type were done to identify differentially expressed genes (DEGs and proteins (DEPs, respectively. In total 4,588 DEGs including 1,980 up- and 2,608 down-regulated, and 48 chloroplast DEPs including 15 up- and 33 down-regulated were identified in mta. Classification of DEGs revealed that most were involved in chloroplast development, chlorophyll biosynthesis, or photosynthesis. Besides, transcription factors such as PIF3, GLK and MYB which might participate in those pathways were also identified. The correlation analysis between DEGs and DEPs revealed that the transcript-to-protein in abundance was functioned into photosynthesis and chloroplast relevant groups. Real time qPCR analysis validated that the expression level of genes encoding photosynthetic proteins was significantly decreased in mta. Together, our results suggest that the molecular mechanism for albino leaf color formation in mta is a thoroughly regulated and complicated process. The combined analysis of transcriptome and proteome afford comprehensive information for further research on chloroplast development mechanism in wheat. And spaceflight provides a potential means for mutagenesis in crop breeding.

  1. DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population.

    Science.gov (United States)

    Colasuonno, Pasqualina; Incerti, Ornella; Lozito, Maria Luisa; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2016-02-17

    Durum wheat (Triticum turgidum L.) is a cereal crop widely grown in the Mediterranean regions; the amber grain is mainly used for the production of pasta, couscous and typical breads. Single nucleotide polymorphism (SNP) detection technologies and high-throughput mutation induction represent a new challenge in wheat breeding to identify allelic variation in large populations. The TILLING strategy makes use of traditional chemical mutagenesis followed by screening for single base mismatches to identify novel mutant loci. Although TILLING has been combined to several sensitive pre-screening methods for SNP analysis, most rely on expensive equipment. Recently, a new low cost and time saving DHPLC protocol has been used in molecular human diagnostic to detect unknown mutations. In this work, we developed a new durum wheat TILLING population (cv. Marco Aurelio) using 0.70-0.85% ethyl methane sulfonate (EMS). To investigate the efficiency of the mutagenic treatments, a pilot screening was carried out on 1,140 mutant lines focusing on two target genes (Lycopene epsilon-cyclase, ε-LCY, and Lycopene beta-cyclase, β-LCY) involved in carotenoid metabolism in wheat grains. We simplify the heteroduplex detection by two low cost methods: the enzymatic cleavage (CelI)/agarose gel technique and the denaturing high-performance liquid chromatography (DHPLC). The CelI/agarose gel approach allowed us to identify 31 mutations, whereas the DHPLC procedure detected a total of 46 mutations for both genes. All detected mutations were confirmed by direct sequencing. The estimated overall mutation frequency for the pilot assay by the DHPLC methodology resulted to be of 1/77 kb, representing a high probability to detect interesting mutations in the target genes. We demonstrated the applicability and efficiency of a new strategy for the detection of induced variability. We produced and characterized a new durum wheat TILLING population useful for a better understanding of key gene functions

  2. Generation of gamma irradiation and EMS-induced mutant lines of the H7996 tomato (Solanum lycopersicum L.)

    International Nuclear Information System (INIS)

    Canama, Alma O.; Galvez, Hayde F.; Tongson, Eden Jane U.; Quilloy, Reynaldo B.; Hautea, Desiree M.

    2010-01-01

    Tomato (L.) is one of the most important vegetable crops grown worldwide for the fresh vegetable market and food processing industry. With the completion of the genome-sequencing projects in various crops, the major challenge will be determine the gene function. One approach is to generate and to analyze mutant phenotypes. The paper reports the generation of gamma-irradiated and ethy methane sulfonate (EMS)-treated mutant populations, identification and phenotypic characterization of dominant and visible mutations in tomato mutant lines. Mutant populations of tomato H7996 were created using physical (cobalt 60 gamma ray) and chemical EMS mutagens. Generally, based on high-throughput phenotypic characterization, mutations were observed on the plant habit, size, morphology, leaf and flower color and morphology and fruit characteristics. Specifically, the most common dominant and visible mutations noted in the M 1 generation were monopodial, compact, short internodes, multi-branch plant type, light yellow and ghost leaf coloration, tiny and long pedicel leaf morphology and small or short plant size. In the M2 generation, homogeneous and segregating M 2 families were selected to constitute the core set of visible tomato mutants. Initial bacterial wilt resistance (BWR) gene knockouts were also identified. The mutant lines will be used as a rich source of genetic materials for breeding and functional genomics of tomato. (author)

  3. Trigo: avaliação tecnológica de novas linhagens Technological evaluation of new lines of wheat

    Directory of Open Access Journals (Sweden)

    Celina Raquel de Oliveira Camargo

    1987-01-01

    Full Text Available Avaliou-se a qualidade tecnológica das linhagens de trigo IAC-22, IAC-31, IAC-37, IAC-41, IAC-46, IAC-57 e IAC-60, obtidas pelo programa de melhoramento do Instituto Agronômico, tomando como controle uma amostra de trigo norte-americano e amostras dos cultivares Alondra-S-46 e IAC-18, comerciais no Estado de São Paulo. Os maiores teores de proteína foram encontrados no 'IAC-22' e nas linhagens IAC-37 e IAC-41, superiores àqueles das farinhas de trigo importado, Alondra-S-46 e IAC-18. Todas as farinhas de trigo apresentaram viscosidade máxima superior a 1.000 unidades amilográficas, indicando a ausência da enzima alfa-amilase. As farinhas de trigo importado e das linhagens IAC-31, IAC-41 e IAC-57 apresentaram características farinográficas típicas de farinha de força média a forte e IAC-18 e IAC-60, de farinha média a fraca. Os extensigramas mostraram que as linhagens IAC-41, IAC-31, IAC-57 e IAC-46 apresentaram glúten com características viscoelásticas adequadas para a produção de pão. Pelo teste de panificação, concluiu-se que as linhagens IAC-31 e IAC-41 produziram pão de qualidade "muito boa", semelhante à da farinha de trigo importado; IAC-57, IAC-37 e IAC-60, pão de qualidade "boa" e similar à do 'Alondra-S-46'; as linhagens IAC-46 e IAC-22 tiveram o pior comportamento em relação à qualidade de pão, "regular", semelhante à do 'IAC-18'.The new wheat lines IAC-22, IAC-31, IAC-37, IAC-41, IAC-46, IAC-57 and IAC-60, obtained from the Wheat Breeding Program of the Instituto Agronômico of the State of São Paulo, Brazil, were submitted to technological tests to evaluate the flour quality. Samples of wheat from the United States and of the wheat cultivars Alondra-S-46 and IAC-18 were used as controls. The wheat flours were submitted to chemical tests to determine the protein, lipid, ash, fiber and carbohidrate composition and to rheologic tests using a farinograph, an extensigraph and a viscoamilograph. The final

  4. Natural variation in grain composition of wheat and related cereals.

    Science.gov (United States)

    Shewry, Peter R; Hawkesford, Malcolm J; Piironen, Vieno; Lampi, Ann-Maija; Gebruers, Kurt; Boros, Danuta; Andersson, Annica A M; Åman, Per; Rakszegi, Mariann; Bedo, Zoltan; Ward, Jane L

    2013-09-04

    The wheat grain comprises three groups of major components, starch, protein, and cell wall polysaccharides (dietary fiber), and a range of minor components that may confer benefits to human health. Detailed analyses of dietary fiber and other bioactive components were carried out under the EU FP6 HEALTHGRAIN program on 150 bread wheat lines grown on a single site, 50 lines of other wheat species and other cereals grown on the same site, and 23-26 bread wheat lines grown in six environments. Principal component analysis allowed the 150 bread wheat lines to be classified on the basis of differences in their contents of bioactive components and wheat species (bread, durum, spelt, emmer, and einkorn wheats) to be clearly separated from related cereals (barley, rye, and oats). Such multivariate analyses could be used to define substantial equivalence when novel (including transgenic) cereals are considered.

  5. Sources of stem rust resistance in wheat-alien introgression lines

    Science.gov (United States)

    Stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most devastating diseases of wheat and the novel highly virulent race of TTKSK and its lineage are threatening wheat production worldwide. The objective of the study was to identify new sources of resistance in wheat-alien introgre...

  6. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.

    Science.gov (United States)

    Ivaničová, Zuzana; Valárik, Miroslav; Pánková, Kateřina; Trávníčková, Martina; Doležel, Jaroslav; Šafář, Jan; Milec, Zbyněk

    2017-01-01

    The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

  7. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.

    Directory of Open Access Journals (Sweden)

    Zuzana Ivaničová

    Full Text Available The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (insensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

  8. Attempts to induce mutations for resistance of wheat to mildew, stem rust and leaf rust

    International Nuclear Information System (INIS)

    Kiraly, Z.; Barabas, Z.

    1983-01-01

    Research carried out between 1971 and 1981 is summarized. Attempts to find induced mutants with full resistance to pathotype mixtures of the three pathogens were not successful. Reasons are discussed. Studies on wheat lines tolerant to stem rust infection led to the conclusion that this disease reaction may be often accompanied by a reduced number of infection sites and a longer lag period resulting in reduced spore production. Various selection methods have been evaluated. Selecting for the multigenic 'non race specific' way is promising. (author)

  9. Characterization of Boerhavia diffusa L. mutant lines by RAPD and isozyme, selected for agronomically valuable traits

    International Nuclear Information System (INIS)

    Shukla, N.; Sangwan, N.S.; Misra, H.O.; Sangwan, R.S.

    2004-01-01

    Boerhavia diffusa is a medicinally important plant and finds extensive uses in traditional herbal drug preparations. For the development of improved varieties in terms of superior yield and quality of herb/root of B. diffusa, mutation breeding was attempted. Mutants generated by physical and chemical mutagenic treatments were screened for yield and quality parameters of the root/herb up to three consecutive generations. The selected-screened lines generated by physical and chemical mutagenic treatments on two selected genotypes I and II were molecularly analyzed using eight isozymes and eleven RAPD primers producing good amplification. Mutants from BD10 (selected genotype I) were distinct, while, in case of BD22 (selected genotype II), only one mutant BDMu7 was recorded distinct by isozyme analysis. The wild mutant (BDMu16, with maximum height and mouve coloured flower) was distinct in RAPD banding pattern. Isozymes differentiated the mutants from their respective controls, whereas RAPD differentiated the mutants and controls and also distinguished the mutants. The RAPD analysis was found to be better suited than isozymes for detecting genetic differences among controls and their mutants. However, both RAPD and isozyme analyses gave similar patterns of genetic relationships [it

  10. Agronomic and molecular evaluation of induced mutant rice (oryza sativa l.) lines in Egypt

    International Nuclear Information System (INIS)

    Sshehzad, T.; Allah, A.; Aallah, E.A.; Ammar, M.H.; Abdelkhalik, A.H.

    2011-01-01

    The present study was conducted at the farm of the Rice Research and Training Center, Sakha, Kafr El-Sheikh, Egypt, during 2000-2007 rice sowing seasons. Five rice varieties viz., Giza 171, Giza 175, Giza 176, Giza 181 and GZ 1368 were the most widely grown Japonica and Indica types in Egypt during the last period, possesses at that time many positive agronomic characteristics including wide adaptability, high yield potential, tolerance to stresses and good eating quality. But with the passage of time it has lost its vigor. In Rice Research Program, Egypt, dry seeds of the above mentioned varieties were treated with different doses of gamma rays (100, 200, 300, 400, and 500 Gy) for raising M1 generation. M1 plants were established by transplanting in the year 2000 season. One hundred independent lines have been advanced to M5 generation enabling evaluation of quantitative traits by replicated trials and promising lines were selected and tested in multi-location trials as M6, M7 and M8 generations. Morphological variations at vegetative and reproductive stages including plant type and various physiological characters were observed in the five populations. The mutant lines characteristics consisted of better resistance to lodging, blast disease, high yield potential, as well as early maturity. Results from yield trials and molecular assessments indicated that the mutants differed genetically from their parents. So, these mutants could be used as a donor parents in rice breeding program and some of them can be recommended as new rice varieties suitable for rice belt in Egypt. (author)

  11. Productivity and Nutrient Quality of Some Sorghum Mutant Lines at Different Cutting Ages

    Directory of Open Access Journals (Sweden)

    R. E. Puteri

    2015-08-01

    Full Text Available The objective of the study was to explore the appropriate cutting age to produce optimal biomass and good nutrient quality from sorghum mutant lines BMR i.e., PATIR 3.5 M7, PATIR 3.6 M7, and PATIR 3.7 M7, also SAMURAI I (M17. A completely randomized in Split Plot design with 2 factors and 3 replicates was used. The first factor was the type of sorghum (SAMURAI I M17, PATIR 3.5, PATIR 3.6, PATIR 3.7 as the main plot and the second factor was the cutting age (85, 95, 105 as a subplot. Parameters observed were the production of stems, leaves, grains, total biomass production, ash, crude fat, crude fiber, crude protein, NFE, TDN, percentage of DMD, OMD and N-NH3. Data were analyzed by using ANOVA followed by DMRT (Duncan Multiple Range Test. The results showed that there were highly significant interactions (P<0.01 between cutting age and type of sorghum in production of stems, leaves, grains, total biomass production, value of TDN, DMD, OMD, and N-NH3. Increasing cutting age significantly increased the percentage of ash content, crude protein and crude fat. The sorghum type significantly affected crude fat content nonBMR sorghum variety of SAMURAI I (M17 and achieved optimal biomass production and nutrient content at cutting age of 85 d similar to BMR sorghum mutant lines PATIR 3.6 and PATIR 3.5, whereas BMR sorghum mutant lines of PATIR 3.7 achieved optimum production at the age of 95 d of cutting. All types of sorghum varieties was not recommended to be harvested at 105 d. Biomass production increased with the increasing of cutting age, but the nutrient content decreased.

  12. Development of improved advanced mutant lines of cereal and native grains through radiation-induced mutagenesis in Peru

    International Nuclear Information System (INIS)

    Gomez, L.; Aldaba, G.; Yarango, D.; Argumedo, K.; Ibannez, N.; Falconi, J.

    2015-01-01

    In Peru it is very important to increase the food production in amount and quality, especially in the rural areas where a high poverty and malnutrition problems are usually founded. Mutation induction method is used to improve well adapted cultivars, thru the upgraded in one or two changed characteristics, retaining all its original attributes. Quinoa (Chenopodium quinoa), accession LM 89, was treated with gamma rays at the doses 150 and 250 Gray. In M 2 and following generations mutation in morphological traits were observed and 8 mutant lines were selected among them MQLM89-149 with higher yield equal to 4258.6 Kg/ha, surpassing the witness at 205.63% and MQLM89-42 with 14.7 of grain protein, superior to the parent material with 12.3%. Kiwicha (Amaranthus caudatus) CICA- UNASAC cultivar was irradiated with gamma ray (400 and 600 Gray). Mutations of morphological and physiological characteristics were identified and nine mutant lines with 27 to 50% better yield potential than the parent material were selected. In barley (Hordeum vulgare) mutant lines were developed from the cultivar UNALM 96, through the application of gamma rays at a dose of 200 and 300 Gray. Mutant lines were selected a M 8 generation with higher agronomic performance and nutritive quality adapted to the highland with grain yield within the range of 5100 - 8731 kg/ha, over the value of the parent material with of 4246 kg/ha and had improvement in the content of P-131 mg/g DW, Zn66 mg/g DW, Mn55 mg/g DW, Fe57 mg/g DW and Cu63 ug/g DW. (Author)

  13. The characteristics of high-yield genotype of early-mature mutant lines in barley

    International Nuclear Information System (INIS)

    Chen Xiulan; Han Yuepeng; He Zhentian; Yang Hefeng

    2000-01-01

    The correlation and genetic parameters of eight agronomic traits of 36 early mature mutant lines induced from barley Sunong 9052 were studied by stepwise regression and path analysis. The results showed that: (1) the growing period of early mutants was shortened 2-13 days from that of their parent and the trait of yield had a great mutation range; (2) the number of grain per panicle significantly correlated with the days from sowing to heading; (3) according to direct path coefficients, the main characters related with individual plant-yield were in order of productive panicle per plant > 1000-grain-weight > number of grain per panicle > fertility, the high-yield genotype had more productive panicle and higher 10000-grain-weight, and to increase the yield in the breeding of early mature mutation was to select the lines with more tillers and productive panicles, higher 1000-grain-weight and lower number of grain per panicle; (4) the higher broad-sense heritability and genetic variation coefficient were found in 1000-grain-weight and the days from sowing to heading

  14. Characterization of a New Pm2 Allele Conferring Powdery Mildew Resistance in the Wheat Germplasm Line FG-1

    Science.gov (United States)

    Ma, Pengtao; Xu, Hongxng; Li, Lihui; Zhang, Hongxia; Han, Guohao; Xu, Yunfeng; Fu, Xiaoyi; Zhang, Xiaotian; An, Diaoguo

    2016-01-01

    Powdery mildew has a negative impact on wheat production. Novel host resistance increases the diversity of resistance genes and helps to control the disease. In this study, wheat line FG-1 imported from France showed a high level of powdery mildew resistance at both the seedling and adult stages. An F2 population and F2:3 families from the cross FG-1 × Mingxian 169 both fit Mendelian ratios for a single dominant resistance gene when tested against multiple avirulent Blumeria tritici f. sp. tritici (Bgt) races. This gene was temporarily designated PmFG. PmFG was mapped on the multi-allelic Pm2 locus of chromosome 5DS using seven SSR, 10 single nucleotide polymorphism (SNP)-derived and two SCAR markers with the flanking markers Xbwm21/Xcfd81/Xscar112 (distal) and Xbwm25 (proximal) at 0.3 and 0.5 cM being the closest. Marker SCAR203 co-segregated with PmFG. Allelism tests between PmFG and documented Pm2 alleles confirmed that PmFG was allelic with Pm2. Line FG-1 produced a significantly different reaction pattern compared to other lines with genes at or near Pm2 when tested against 49 Bgt isolates. The PmFG-linked marker alleles detected by the SNP-derived markers revealed significant variation between FG-1 and other lines with genes at or near Pm2. It was concluded that PmFG is a new allele at the Pm2 locus. Data from seven closely linked markers tested on 31 wheat cultivars indicated opportunities for marker-assisted pyramiding of this gene with other genes for powdery mildew resistance and additional traits. PMID:27200022

  15. Genetic variability, path-coefficient and correlation studies in twenty elite bread-wheat (triticum aestivum L.) lines

    International Nuclear Information System (INIS)

    Mujahid, M.Y.; Asif, M.; Ahmad, I.; Kisana, N.A.; Ahmad, Z.; Asim, M.

    2005-01-01

    Twenty bread-wheat elite lines of diverse origin, developed by various research institutes in the country, were tested and evaluated at National Agricultural Research Centre (NARC) under optimum irrigated conditions. Significant variation was observed for all the traits studied viz: days to heading, days to maturity, kernel weight, test weight and grain yield. Genotypic and phenotypic correlations were computed and the direct and indirect contributions of each trait towards grain-yield were determined. Grain-yield showed significant association with test weight and kernel weight. Direct positive effects of kernel weight and test weight towards grain-yield suggest the effectiveness of these traits to select and identify the desirable wheat- genotypes for a target environment. (author)

  16. Mutation breeding for nutritional value in wheat

    International Nuclear Information System (INIS)

    Barriga, P.; Fuentes, R.; Manquian, N.; Mansilla, R.

    1984-01-01

    In 1981 two batches of 100,000 seeds of the spring wheat cultivars Austral and Huenufen were irradiated with gamma rays at 10 and 25 Krad doses. The source of radiation was 60 Co, from the Comision Chilena de Energia Nuclear. Objectives of this irradiation program were to develop wheat cultivars well adapted to the Lakes Region of Chile (latitude south 39 to 40 0 ), whith higher content of protein and lysine and good yield. Generation M 1 was sown densily under field conditions and harvested by mass selection. Plant selection was set up in generation M 2 onwards. Selected mutants for protein content (DBC values) in generations M 2 (1982-83) and M 3 (1983-84) showed ranges from 18 to 22%. These contents were higher than in the controls. As regards lysine content of the proteins, the number of selected was low, however mutants with maximum lysine content overshot 4%. In M 4 generation, the better mutants, with adequate number of controls, will be analyzed in the crop season 1984-85, in preliminary trials of production. The technique of horizontal polyacrylamide gel electrophoresis as an alternative technique to the identification and certification of mutants with high content of protein is examined. (Author) [pt

  17. Natural Variation in Grain Composition of Wheat and Related Cereals

    OpenAIRE

    Shewry, Peter R; Hawkesford, Malcolm J; Piironen, Vieno; Lampi, Anna-Maija; Gebruers, Kurt; Boros, Danuta; Andersson, Annica AM; Åman, Per; Rakszegi, Mariann; Bedo, Zoltan; Ward, Jane L

    2013-01-01

    The wheat grain comprises three groups of major components, starch, protein, and cell wall polysaccharides (dietary fiber), and a range of minor components that may confer benefits to human health. Detailed analyses of dietary fiber and other bioactive components were carried out under the EU FP6 HEALTHGRAIN program on 150 bread wheat lines grown on a single site, 50 lines of other wheat species and other cereals grown on the same site, and 23−26 bread wheat lines grown in six environments. P...

  18. Development and identification of a wheat-Roegneria kamoji translocation line T7A/1Rk no.1

    International Nuclear Information System (INIS)

    Bie Tongde; Feng Yigao; Chen Peidu; Xu Chuanmei

    2009-01-01

    Pollen of Triticum aestivum-Roegneria kamoji del1Rk No.1L disomic addition line, treated with 10 Gy 6 0C o γ-rays, was pollinated to T · aestivum cv. Chinese Spring. A reciprocal chromosomal translocation line involving wheat 7A and R.kamoji 1Rk No.1 was identified in M 2 generation using the techniques including C-banding, GISH, sequential C-banding/45S rDNA-FISH, and sequential GISH/45S rDNA-FISH. A 45S rDNA locus and its corresponding red band in GISH pattern were observed specific to the short arm of 1Rk No.1 and could be used as a marker of 1Rk No.1 chromosome. Analyses of chromosome constitution of M 2 population and test-crosses showed that the reciprocal translocation chromosomes were co-segregated in offspring, and the transmitting ratios were both higher through female gametes than through male ones. The results of scab resistance identification in 2004, 2005 and 2006 showed that the translocation line conveyed scab resistance that varied in different years in different district. The experiment also showed that pollen irradiation was an effective method to induce wheat-alien chromosome translocations. (authors)

  19. Seed protein improvement in wheat by mutation breeding

    International Nuclear Information System (INIS)

    Muhammed, A.; Shakoor, A.; Tahir Nadeem, M.; Ali, A.; Ifzal, S.M.; Sadiq, M.

    1976-01-01

    Several nutritional surveys conducted in different areas in Pakistan have shown the prevalence of protein-calorie malnutrition, especially among young children. However, there is no evidence of overall deficiency of protein resources in the country on a national basis. The available data are entirely inadequate to draw a definite conclusion about the extent of malnutrition in the country, and to plan a strategy for improving the diet of vulnerable groups. The common meal of the low income groups consists of Dal-Roti, which is a spiced pulse soup and pan bread. It is therefore essential to improve the protein content of the pulses and wheat in order to overcome malnutrition. The average yield per acre of pulses in Pakistan is very low, and it is particularly important to evolve high yielding, improved grain quality varieties of the popular pulses which have been hitherto largely neglected. Studies on the improvement of various local and exotic varieties of wheat (Triticum aestivum) and mung (Phaseolus aureus), through induced mutation, have yielded several high yielding and high protein mutants. These mutant lines are being further investigated for the confirmation of their variant traits. Single plant selections of mung bean made from the M 2 generation on the basis of their plant type, habit of growth, maturity time, grain yield and disease resistance are under critical observation. Other pulses, e.g. Cicer arietinum, Lens esculenta and Phaseolus mungo have also been included in the programme; however the breeding work on these crops is still in the preliminary stages. (author)

  20. Improvement of some quantitative characters by mutation breeding in durum wheat

    International Nuclear Information System (INIS)

    Başer, İ.; Bİlgİn, O.; Korkut, K.Z.; Balkan, A.

    2007-01-01

    In this research conducted in the Department of Field Crops, Agricultural Faculty, Namık Kemal University, the effect of six different gamma ray doses on plant growth in M 1 and M 2 generations derived from two durum wheat cultivars was investigated. When mutants and control genotypes in M 2 generation were investigated for seven characters, a considerable number of mutants having the desired characteristics were obtained. The application of 200 gray dose resulted in significantly short genotypes among selected mutant genotypes. After 300 gray dose applications, suitable genotypes were obtained in terms of plant height, seed yield per main spike, the number of seeds per spike, harvesting index and spike length. In addition, mutagen application increased number of tillers per plant. For obtained protein band design using the SDS-PAGE method in the Standard and mutant durum wheat genotypes were observed different in 300, 400 and 500 gray mutagen doses. (author) [tr

  1. Field performance of thirty mutant lines of the rice (Oryza sativa L.) varieties ICTA-Virginia and Precoz-ICTA

    International Nuclear Information System (INIS)

    Montepeque, R.; Molina, L. G.; Lopez, J. J.; Pazos, W.; Ramirez, J.

    1993-01-01

    Fifteen mutant lines from the variety ICTA-Virginia and fifteen from the variety Precozicta were evaluated according to their agronomic characteristics under conditions of the Motagua river valley during 1992. The objective was to select genotypes showing resistance to disease caused by Pyricularia grisea. The analysis of variance did not show significative differences among ICTA-Virginia mutants. The highest yield was form MV-860, 8.17 TM/ha and the lowest 5.31 TM/ha for MV-411. Significant differences were found among mutant lines from Precozicta. The highest yields were 6.06, 5.80 and 5.52 TM/ha for MPI-1189, MPI-1664 and MPI-1346 respectively. Inoculation with Pyricularia was made spraying it over the crop. However, it was not possible the evaluation of the disease in the neck (neck blast) due to absence of the pathogen. 5 tabs.(Author)

  2. Inhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines.

    Science.gov (United States)

    Suijker, Johnny; Oosting, Jan; Koornneef, Annemarie; Struys, Eduard A; Salomons, Gajja S; Schaap, Frank G; Waaijer, Cathelijn J F; Wijers-Koster, Pauline M; Briaire-de Bruijn, Inge H; Haazen, Lizette; Riester, Scott M; Dudakovic, Amel; Danen, Erik; Cleton-Jansen, Anne-Marie; van Wijnen, Andre J; Bovée, Judith V M G

    2015-05-20

    Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found in a subset of benign and malignant cartilage tumors, gliomas and leukaemias. The mutant enzyme causes the production of D-2-hydroxyglutarate (D-2-HG), affecting CpG island and histone methylation. While mutations in IDH1/2 are early events in benign cartilage tumors, we evaluated whether these mutations play a role in malignant chondrosarcomas. Compared to IDH1/2 wildtype cell lines, chondrosarcoma cell lines harboring an endogenous IDH1 (n=3) or IDH2 mutation (n=2) showed up to a 100-fold increase in intracellular and extracellular D-2-HG levels. Specific inhibition of mutant IDH1 using AGI-5198 decreased levels of D-2-HG in a dose dependent manner. After 72 hours of treatment one out of three mutant IDH1 cell lines showed a moderate decrease in viability , while D-2-HG levels decreased >90%. Likewise, prolonged treatment (up to 20 passages) did not affect proliferation and migration. Furthermore, global gene expression, CpG island methylation as well as histone H3K4, -9, and -27 trimethylation levels remained unchanged. Thus, while IDH1/2 mutations cause enchondroma, malignant progression towards central chondrosarcoma renders chondrosarcoma growth independent of these mutations. Thus, monotherapy based on inhibition of mutant IDH1 appears insufficient for treatment of inoperable or metastasized chondrosarcoma patients.

  3. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance

    Science.gov (United States)

    Although several wheat genes differentially expressed during the Russian wheat aphid resistance response have recently been identified, their requirement for and specific role in resistance remain unclear. Progress in wheat-aphid interaction research is hampered by inadequate collections of mutant g...

  4. GENETIC TRANSFORMATION AND ANALYSIS OF WHEAT TRANSGENIC CELL LINES BY IRAP-PCR

    Directory of Open Access Journals (Sweden)

    Bavol A. V.

    2013-12-01

    Full Text Available The transgenic wheat cell lines were obtained via biolistic transformation of the callus cultures initiated from the 3-day-old sterile seedling shoot apexes. The pAHC25 vector construction used for 14- and 28-day-old callus cultures transformation carried the selective phosphinothricin-N-acetyltransferase (bar gene and reporter ?-glucuronidase gene. The cell line selection was carried out on the media with phosphinothricin by means of graduated cell selection. The transgenic status of the obtained forms was proved by PCR-analysis. The presence of new relatively high molecular (more than 1 000 bp amplicons were found out for three transformed lines by means of IRAP PCRanalysis with the primers coding for long termainal repeats sequences of SIRE 1 retrotransposon. This fact may prove transposition of this mobile genetic element. The new DNA fragments were detected for three of the seven analyzed lines but for the control callus. It is possible to assume at induction of SIRE 1 transposition bis probably caused by the genomic stress of foreign DNA inserting or associated with the transformation process (mechanical wounding, cultivation on selective media.

  5. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines

    OpenAIRE

    Kiseleva, Antonina A.; Potokina, Elena K.; Salina, Elena A.

    2017-01-01

    Background Photoperiod insensitive Ppd-1a alleles determine early flowering of wheat. Increased expression of homoeologous Ppd-D1a and Ppd-A1a result from deletions in the promoter region, and elevated expression of Ppd-B1a is determined by an increased copy number. Results In this study, using bread wheat cultivars Sonora and PSL2, which contrast in flowering time, and near-isogenic lines resulting from their cross, “Ppd-m” and “Ppd-w” with Ppd-B1a introgressed from Sonora, we investigated t...

  6. Study of Yield and Effective Traits in Bread Wheat Recombinant Inbred Lines (Triticum aestivum L. under Water Deficit Condition

    Directory of Open Access Journals (Sweden)

    S. Mohammad zadeh

    2013-11-01

    Full Text Available The effects some traits on seed yield of recombinant inbred lines of wheat under water deficit stress was studied. This research was done at the Agricultural Research Stations, Islamic Azad University, Tabriz Branch in 2010- 2011. 28 recombinant inbred lines of wheat bread with two parents (Norstar and Zagros in split plot experiment based on a randomized complete block design with three replications at two irrigation levels (70 and 140 mm evaporation from pan class A were studied. Analysis of variance indicated a significant genetic differences in all traits under study among the lines. Lines No. 32, 163 and 182 produced highest yield under both irrigation levels. Number of spikes, grains per spike and harvest index had the highest positive correlation with grain yield. Path analysis based on stepwise regression showed that under the normal irrigation conditions, number spike (0.556, number of grains per spike (0.278, weight of 1000 grain (0.259 and the drought stress number spike (0.430, straw yield (0.276 and peduncle length (0.323 had the most direct and positive effect on yield respectively.

  7. Improvement of the nutritional quality of barley and spring wheat: A review of the FAO/SIDA/SAREC project

    International Nuclear Information System (INIS)

    Hayes, I.D.

    1984-01-01

    The main aim of the joint FAO/SIDA/SAREC project was to develop new varieties of barley and spring wheat adapted to conditions in developing countries and with increased protein and lysine contents of the grain. Six premier research institutes in Egypt, Ethiopia, India, Iran, Pakistan and Turkey co-operated in the project under the technical leadership of Svaloev AB, formerly the Swedish Seed Association, during the period 1974 to 1981. Barley lines having grain with high protein and high lysine contents derived from Hiproly, Risoe 1508 and B1 were used as donors and backcrossed at Svaloev into adapted breeding material provided by breeders in the participating countries. Backcrosses and other progenies selected for homozygosity of the lysine genes on the basis of their protein content and dye-binding capacity (DBC) were distributed to the participants who continued selection in their own environments. A similar programme was initiated for wheat, based largely on Atlas 66, Nap Hal and Rageni as donors of high protein and lysine, but the expression of high lysine was very weakly inherited and selection was abandoned in 1978. It has proved extremely difficult, and so far impossible, to find high yielding lines with desirable agronomic characters combined with increased protein and lysine contents. Evidence of positive improvement in protein production per unit area was obtained in both wheat and barley in India. Under the aegis of the project over 14,000 lines of wheat and nearly 21,000 lines of barley, which included around 6,000 mutant progenies, were screened for protein content and DBC values at Svaloev, but no new prospective donors were identified that were superior to those already available. Conclusions are drawn concerning the benefit of the project and suggestions are made for further action. (author)

  8. Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat.

    Science.gov (United States)

    Rey, Elodie; Abrouk, Michael; Keeble-Gagnère, Gabriel; Karafiátová, Miroslava; Vrána, Jan; Balzergue, Sandrine; Soubigou-Taconnat, Ludivine; Brunaud, Véronique; Martin-Magniette, Marie-Laure; Endo, Takashi R; Bartoš, Jan; Appels, Rudi; Doležel, Jaroslav

    2018-03-06

    Despite a long history, the production of useful alien introgression lines in wheat remains difficult mainly due to linkage drag and incomplete genetic compensation. In addition, little is known about the molecular mechanisms underlying the impact of foreign chromatin on plant phenotype. Here, a comparison of the transcriptomes of barley, wheat and a wheat-barley 7HL addition line allowed the transcriptional impact both on 7HL genes of a non-native genetic background and on the wheat gene complement as a result of the presence of 7HL to be assessed. Some 42% (389/923) of the 7HL genes assayed were differentially transcribed, which was the case for only 3% (960/35 301) of the wheat gene complement. The absence of any transcript in the addition line of a suite of chromosome 7A genes implied the presence of a 36 Mbp deletion at the distal end of the 7AL arm; this deletion was found to be in common across the full set of Chinese Spring/Betzes barley addition lines. The remaining differentially transcribed wheat genes were distributed across the whole genome. The up-regulated barley genes were mostly located in the proximal part of the 7HL arm, while the down-regulated ones were concentrated in the distal part; as a result, genes encoding basal cellular functions tended to be transcribed, while those encoding specific functions were suppressed. An insight has been gained into gene transcription in an alien introgression line, thereby providing a basis for understanding the interactions between wheat and exotic genes in introgression materials. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Development of new iraqi wheat varieties induced by gamma rays

    International Nuclear Information System (INIS)

    Ibrahim, I.F.; Al-Janabi, K.K.; Al-Maaroof, E.M.; Al-Aubaidi, M.O.; Mahmoud, A.H.; Al-Janabi, A.A.

    1991-01-01

    The aim of the present investigation is to study agronomic traits of three wheat mutants induced by gamma rays and compared with their origin 'Saber Beg' during M 8 - M 11 generations. These mutants showed a moderate resistance to leaf rust and lodging, while the origin was susceptible. Also, these mutants surpassed their origin in seed weight of 100 spikes, weight of 1000 kernels and protein yield per unit area. Chemical and physical analyses of mutant flours indicated that it could be used for bread making successfully.2 fig.,4 tab

  10. Quality of synthetic hexaploid wheat containing null alleles at Glu-A1

    Indian Academy of Sciences (India)

    GSs. However, incorporation of HMW-GS from Ae. tauschii in six synthetic hexaploid wheat lines significantly increased most quality related parameters. The potential values of these wheat lines in improving the quality of wheat are discussed.

  11. Plant regeneration of bananas Ambon kuning and Barangan mutant lines were carried out by using female organ and shoot-tip as explants source

    International Nuclear Information System (INIS)

    Dewi, Azri K; Ishak

    1998-01-01

    Plant regeneration of bananas Ambon Kuning and Barangan mutant lines were carried out by using female organ and shoot-tip as explants source. Female organ was taken from heart of banana stem, while shoot-tip taken from sucker in banana plantation at Pasar Jumat, Jakarta. Those explants were cultured on MS medium containing 3 mg/l BAP, 0.5 mg/l IAA and supplemented by 100 tyrosin and 80 mg/l adenin hemisulphate. Observation showed that 180 and 42 buds were obtained from JBR 02 mutant lines respectively, while 84 and 79 buds for JAK 01 and JAK 02 respectively. The highest shoot formation was 1.013 shoots were obtained from BRC variety and lowest one was JBR 01 mutant line. statistical data analysis indicated that shoot formation between BRC variety and another mutant lines were significant difference using LSD test at level 0.05. Plantlet formation derived from female organ as well as shoot-tip showed that BRC variety produced number of plantlets per bottle was higher that another one. (author)

  12. Mutation breeding on dueruem wheat (Triticum durum Desf.) by nuclear techniques

    International Nuclear Information System (INIS)

    2011-01-01

    Cereals provide 50 % of protein and calorie essential for nutrition. Cereals contribution to total daily food consumption can go up to 3/4, if their role in animal feeding has also been considered. Of the 41 % of crop plants are cereals and their share in food production is as high as 98 %. Combination of high yielding cultivars and adequate management techniques is primary to increase yield in unit area. Crossing is the most common breeding method to develop new cultivars. Mutation has been important as a direct or complemental technique to crossing in plant breeding. Mutation is an effective method to expand existent gene pools for breeding purposes. It has been proved as a successful and effectual method by widely grown mutant cereal varieties. Considering these successful examples, Saraykoey Nuclear Research and Training Center started a durum wheat mutation breeding program in 2002. Main goal of the program is to develop durum wheat lines/varieties with high adaptation to drought and cold, high yield and quality, and short length. Kunduru 1149 has been used as parent cultivar. Kunduru 1149 had 11 % seed moisture content and 98 % germination rate. Seeds were irradiated with 50, 150, 250 Gy of gamma rays from a 6 0Co source and 0,002-0,004 EMS doses of individual and bulk applications for growth rooms and field experiments, respectfully. M1 plants of field experiment had been transplanted to the several field days after the treatment. M2 generation seeds were harvested from fertile spikes of M1 plants and planted to field in the next growing season in 2003. Selections based on the program goals were made throughout M3-M6 generations in 2004-2008. Preliminary field yield trials have been in progress with selected mutant lines of M6 generation based on their quality analysis.

  13. Metabolite profiling of a diverse collection of wheat lines using ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Shawna B Matthews

    Full Text Available Genetic differences among major types of wheat are well characterized; however, little is known about how these distinctions affect the small molecule profile of the wheat seed. Ethanol/water (65% v/v extracts of seed from 45 wheat lines representing 3 genetically distinct classes, tetraploid durum (Triticum turgidum subspecies durum (DW and hexaploid hard and soft bread wheat (T. aestivum subspecies aestivum (BW were subjected to ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-TOF-MS. Discriminant analyses distinguished DW from BW with 100% accuracy due to differences in expression of nonpolar and polar ions, with differences attributed to sterol lipids/fatty acids and phospholipids/glycerolipids, respectively. Hard versus soft BW was distinguished with 100% accuracy by polar ions, with differences attributed to heterocyclic amines and polyketides versus phospholipid ions, respectively. This work provides a foundation for identification of metabolite profiles associated with desirable agronomic and human health traits and for assessing how environmental factors impact these characteristics.

  14. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat.

    Science.gov (United States)

    Placido, Dante F; Campbell, Malachy T; Folsom, Jing J; Cui, Xinping; Kruger, Greg R; Baenziger, P Stephen; Walia, Harkamal

    2013-04-01

    Root architecture traits are an important component for improving water stress adaptation. However, selection for aboveground traits under favorable environments in modern cultivars may have led to an inadvertent loss of genes and novel alleles beneficial for adapting to environments with limited water. In this study, we elucidate the physiological and molecular consequences of introgressing an alien chromosome segment (7DL) from a wild wheat relative species (Agropyron elongatum) into cultivated wheat (Triticum aestivum). The wheat translocation line had improved water stress adaptation and higher root and shoot biomass compared with the control genotypes, which showed significant drops in root and shoot biomass during stress. Enhanced access to water due to higher root biomass enabled the translocation line to maintain more favorable gas-exchange and carbon assimilation levels relative to the wild-type wheat genotypes during water stress. Transcriptome analysis identified candidate genes associated with root development. Two of these candidate genes mapped to the site of translocation on chromosome 7DL based on single-feature polymorphism analysis. A brassinosteroid signaling pathway was predicted to be involved in the novel root responses observed in the A. elongatum translocation line, based on the coexpression-based gene network generated by seeding the network with the candidate genes. We present an effective and highly integrated approach that combines root phenotyping, whole-plant physiology, and functional genomics to discover novel root traits and the underlying genes from a wild related species to improve drought adaptation in cultivated wheat.

  15. Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different photoperiod-1 (Ppd-1) alleles.

    Science.gov (United States)

    Bentley, A R; Horsnell, R; Werner, C P; Turner, A S; Rose, G A; Bedard, C; Howell, P; Wilhelm, E P; Mackay, I J; Howells, R M; Greenland, A; Laurie, D A; Gosman, N

    2013-04-01

    Flowering is a critical period in the life cycle of flowering plant species, resulting in an irreversible commitment of significant resources. Wheat is photoperiod sensitive, flowering only when daylength surpasses a critical length; however, photoperiod insensitivity (PI) has been selected by plant breeders for >40 years to enhance yield in certain environments. Control of flowering time has been greatly facilitated by the development of molecular markers for the Photoperiod-1 (Ppd-1) homeoloci, on the group 2 chromosomes. In the current study, an allelic series of BC2F4 lines in the winter wheat cultivars 'Robigus' and 'Alchemy' was developed to elucidate the influence on flowering of eight gene variants from the B- and D-genomes of bread wheat and the A-genome of durum wheat. Allele effects were tested in short, natural, and extended photoperiods in the field and controlled environments. Across genetic background and treatment, the D-genome PI allele, Ppd-D1a, had a more potent effect on reducing flowering time than Ppd-B1a. However, there was significant donor allele effect for both Ppd-D1a and Ppd-B1a, suggesting the presence of linked modifier genes and/or additional sources of latent sensitivity. Development of Ppd-A1a BC2F4 lines derived from synthetic hexaploid wheat provided an opportunity to compare directly the flowering time effect of the A-genome allele from durum with the B- and D-genome variants from bread wheat for the first time. Analyses indicated that the reducing effect of Ppd-A1a is comparable with that of Ppd-D1a, confirming it as a useful alternative source of PI.

  16. Breeding value of wheat mutants induced by gamma irradiation

    International Nuclear Information System (INIS)

    Szilagyi, Gy.

    1979-01-01

    The combined use of the irradiation techniques available in Hungary and a number of other breeding methods has resulted in the production at Martonvasar of a new wheat variety, Martonvasari 8. It has valuable agronomic characteristics for commercial production and it will no doubt be of good service in the coming years in the development of Hungarian agricultural production. (author)

  17. Aphid-parasitoid community structure on genetically modified wheat.

    Science.gov (United States)

    von Burg, Simone; van Veen, Frank J F; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2011-06-23

    Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore-natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid-parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited.

  18. Evaluation of Drought response in Some Rice Mutant Lines Using Stress Tolerance Indices

    Directory of Open Access Journals (Sweden)

    H Aminpanah

    2018-05-01

    Full Text Available Introduction Drought is a major problem that limits the adoption of high-yielding rice varieties in drought-prone rainfed rice environments. To improve crop productivity, it is necessary to understand the mechanism of plant responses to drought conditions with the ultimate goal of improving crop performance in the vast areas of the world where rainfall is limiting or unreliable. Safaei Chaeikar et al. (2008 reported that MP, GMP, HM and STI indices, which showed the highest correlation with grain yield under both optimal and stress conditions, can be used as the best indices to introduce drought-tolerant genotypes in rice breeding programs. They also were introduced Nemat, Sepidrood, IR64, IR50 and Bejar genotypes as tolerant varieties. The present study was conducted to determine how drought affects grain yield in rice mutant lines and also to test this hypothesis in order to identify the most suitable indices/genotypes. Materials and Methods A field trial was conducted at Iranian Rice Research Centers in North of Iran, Rasht (latitude 37◦28', longitude 49◦28'E and altitude 7m below the sea level, during the 2014-2015 growing season. The seeds were sown in a nursery on the 10 May and 25 day old seedlings were transplanted to the field. Two separately experiment was carried out under reproductive stage drought stress and controlled conditions based on randomized complete block design with three replications, in four-row plots of three m length. Transplanting was done using 1 seedling per hill; at hill spacing of 25 cm × 25 cm. 18 rice genotypes were consisted 14 M5 mutant lines and their four parental cultivars. Results and Discussion Analysis of variance indicated significant effects of drought stress, genotype and interaction effects of two factors on grain yield, plant height, flag leaf area, tiller number and grain fertility percentage. Drought stress at reproductive stage caused reduction in grain yield (59.47%, grain fertility

  19. Integrated weed management in wheat

    International Nuclear Information System (INIS)

    Marwat, K.B.; Khan, M.A.; Nawab, K.; Khattak, A.M.

    2011-01-01

    The paper summarizes the results of an experiment conducted on wheat at Kohat, Khyber Pakhtunkhwa, Pakistan during winter 2004-05. Randomized complete block design with split-split-plot arrangement was used where wheat line and broadcast sowing were kept in main plots. Seed rates (100 and 150 kg ha-1) were assigned as sub-plots, while four herbicides (Topik, Isoproturon, Puma super and Buctril super) and weed check were assigned to sub-sub-plots. Results revealed that higher biological yield was recorded in line sowing. However, higher wheat seed rate decreased weed biomass and increased biological yield. Herbicides proved to be effective in decreasing weed biomass and enhancing grain yield and its contributing traits. It was suggested that line sowing in combination with higher seeding rate and Buctril super should be used in an integrated weed management fashion. However further studies are required to investigate various ranges of seeding rate and herbicides doses. (author)

  20. Determination of rust resistance genes in pakistani bread wheats

    International Nuclear Information System (INIS)

    Qamar, M.; Ahmad, S.D.; Rabbani, M.A.; Shinwari, Z.K.

    2014-01-01

    Stripe and leaf rusts are the major constraints to bread wheat production in Pakistan. Molecular markers were used to investigate the presence of leaf rust and stripe rust resistance gene cluster Lr34/Yr18 and stem rust resistance gene Sr2 in 52 Pakistani bread wheat cultivars/lines. PCR amplification of DNA fragments using DNA marker csLV-34 showed that 13 of the studied cultivars/lines, namely 03FJ26, NR 337, NR 339, NR 347, NR 350, Manthar, Margalla 99, Iqbal 2000, Saleem 2000, Wafaq 2001, Marwat 2001, Pirsabak 2004 and Fareed 2006 carry leaf rust and stripe rust resistance genes Lr34/Yr18. Stem rust resistance gene Sr2 was observed in 36 Pakistani spring wheat cultivars/lines using stm560.3tgag marker. The slow rusting gene Sr2 needs to be combined with additional stem rust resistance genes to establish durable resistance against Ug99 in modern wheat cultivars. Low frequency of Lr34/Yr18 was found in Pakistani wheats. This gene cluster needs to be incorporated into Pakistani wheats for durable rust resistance. (author)

  1. Characterization of FLOWERING LOCUS T1 (FT1 gene in Brachypodium and wheat.

    Directory of Open Access Journals (Sweden)

    Bo Lv

    Full Text Available The phase transition from vegetative to reproductive growth is a critical event in the life cycle of flowering plants. FLOWERING LOCUS T (FT plays a central role in the regulation of this transition by integrating signals from multiple flowering pathways in the leaves and transmitting them to the shoot apical meristem. In this study, we characterized FT homologs in the temperate grasses Brachypodium distachyon and polyploid wheat using transgenic and mutant approaches. Downregulation of FT1 by RNAi was associated with a significant downregulation of the FT-like genes FT2 and FT4 in Brachypodium and FT2 and FT5 in wheat. In a transgenic wheat line carrying a highly-expressed FT1 allele, FT2 and FT3 were upregulated under both long and short days. Overexpression of FT1 caused extremely early flowering during shoot regeneration in both Brachypodium and hexaploid wheat, and resulted in insufficient vegetative tissue to support the production of viable seeds. Downregulation of FT1 transcripts by RNA interference (RNAi resulted in non-flowering Brachypodium plants and late flowering plants (2-4 weeks delay in wheat. A similar delay in heading time was observed in tetraploid wheat plants carrying mutations for both FT-A1 and FT-B1. Plants homozygous only for mutations in FT-B1 flowered later than plants homozygous only for mutations in FT-A1, which corresponded with higher transcript levels of FT-B1 relative to FT-A1 in the early stages of development. Taken together, our data indicate that FT1 plays a critical role in the regulation of flowering in Brachypodium and wheat, and that this role is associated with the simultaneous regulation of other FT-like genes. The differential effects of mutations in FT-A1 and FT-B1 on wheat heading time suggest that different allelic combinations of FT1 homoeologs could be used to adjust wheat heading time to improve adaptation to changing environments.

  2. Genetic variation of dry matter and nitrogen accumulation of double haploid wheat lines

    International Nuclear Information System (INIS)

    Nankova, M.; Milkova, V.; Ivanov, P.; Penchev, E.

    1999-01-01

    The study considers the genotype peculiarities in the dynamics of dry matter and nitrogen accumulation in plant parts during the different stages of 10 DH wheat lines characterized as initial breeding material of high quality. These were obtained from 2 crosses - 7-P 2 - 11 x H-81/32-4 and 7-P 2 - 11 x H-81/32-24. Considerable genotype variations were established both between the lines and the parental forms, and in comparison to the standard quality variety Slavyanka-196. Lines 41-191 and 41-344 are of special interest because of their high grain yield and high intensity of biomass accumulation (kg/dka/day) and high intensity of nitrogen uptake (g/dka/day) mainly in the second half of the grain filling period. These fines stand out among the new DH fines with their high protein yields. In line 41-181 the ratio NHI/GHI changes positively with a high degree of certainty in both phases of grain maturity. This line is characterized with the highest value of nitrogen (mg) in vegetation mass per unit mature grain. A positive correlation was established between the NHI/GHI ratio and protein content in grain. Line 41-344 is the most economic one with regard to nitrogen formation per 100 kg grain with the lowest expense for formation of the respective quantity of straw. Refs. 5 (author)

  3. Stability of rust resistance and yield potential of some icarda bread wheat lines in Pakistan

    International Nuclear Information System (INIS)

    Shah, S.J.A.; Khan, A.J.; Azam, F.; Mirza, J.I.; Atiq-ur-Rehman

    2003-01-01

    Thirty bread wheat lines resistant to Yellow rust (Yr) were selected after careful screening from two ICARDA nurseries during 1998 - 1999, Rabi season at Nuclear Institute for Food and Agriculture (NIFA), Tarnab, Peshawar under severe disease pressure. In the following crop cycle, these selections were again field evaluated for stability and effectiveness of Yr resistance at multilocations while their yield potential was ascertained at Tarnab in two different trials with Tatara as commercial check. Results revealed that uniformity was found in the potential behavior of 23 lines (77%) in both the cropping seasons against Yr. This included some high yielding (up to 7067 kg/ ha) and low yielding lines (up to 4333 kg / ha) when compared with the check (6089 kg / ha). Yield potential of some high yielding lines with stable Yr resistance should be further evaluated over sites and seasons for wide adaptability, under national uniform testing in order to select and deploy future varieties to combat Yr for acquiring food security in Pakistan.(author)

  4. Mapping of stripe rust resistance gene in an Aegilops caudate introgression line in wheat and its genetic association with leaf rust resistance.

    Science.gov (United States)

    Toor, Puneet Inder; Kaur, Satinder; Bansal, Mitaly; Yadav, Bharat; Chhuneja, Parveen

    2016-12-01

    A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcrossrecombinant inbred line (BC-RIL) population derived from the cross of a wheat-Ae. caudata introgression line (IL) T291- 2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.

  5. Registration of DGE-3, a durum wheat disomic substitution line 1E(1B) involving a wheatgrass chromosome

    Science.gov (United States)

    Durum wheat (Triticum turgidum L., 2n = 4x = 28; AABB genomes) alien disomic substitution 1E(1B) line DGE-3 (PI 665473) was developed by the U.S. Department of Agriculture – Agricultural Research Service, Northern Crop Science Lab, Cereal Crops Research Unit, Fargo, ND and released in 2012. It was ...

  6. Durable field resistance to wheat yellow mosaic virus in transgenic wheat containing the antisense virus polymerase gene.

    Science.gov (United States)

    Chen, Ming; Sun, Liying; Wu, Hongya; Chen, Jiong; Ma, Youzhi; Zhang, Xiaoxiang; Du, Lipu; Cheng, Shunhe; Zhang, Boqiao; Ye, Xingguo; Pang, Junlan; Zhang, Xinmei; Li, Liancheng; Andika, Ida B; Chen, Jianping; Xu, Huijun

    2014-05-01

    Wheat yellow mosaic virus (WYMV) has spread rapidly and causes serious yield losses in the major wheat-growing areas in China. Because it is vectored by the fungus-like organism Polymyxa graminis that survives for long periods in soil, it is difficult to eliminate by conventional crop management or fungicides. There is also only limited resistance in commercial cultivars. In this research, fourteen independent transgenic events were obtained by co-transformation with the antisense NIb8 gene (the NIb replicase of WYMV) and a selectable gene bar. Four original transgenic lines (N12, N13, N14 and N15) and an offspring line (N12-1) showed high and durable resistance to WYMV in the field. Four resistant lines were shown to have segregated and only contain NIb8 (without bar) by PCR and herbicide resistance testing in the later generations. Line N12-1 showed broad-spectrum resistance to WYMV isolates from different sites in China. After growing in the infested soil, WYMV could not be detected by tissue printing and Western blot assays of transgenic wheat. The grain yield of transgenic wheat was about 10% greater than the wild-type susceptible control. Northern blot and small RNA deep sequencing analyses showed that there was no accumulation of small interfering RNAs targeting the NIb8 gene in transgenic wheat plants, suggesting that transgene RNA silencing, a common mechanism of virus-derived disease resistance, is not involved in the process of WYMV resistance. This durable and broad-spectrum resistance to WYMV in transgenic wheat will be useful for alleviating the damage caused by WYMV. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Wheat crown rot pathogens Fusarium graminearum and F. pseudograminearum lack specialization.

    Science.gov (United States)

    Chakraborty, Sukumar; Obanor, Friday; Westecott, Rhyannyn; Abeywickrama, Krishanthi

    2010-10-01

    This article reports a lack of pathogenic specialization among Australian Fusarium graminearum and F. pseudograminearum causing crown rot (CR) of wheat using analysis of variance (ANOVA), principal component and biplot analysis, Kendall's coefficient of concordance (W), and κ statistics. Overall, F. pseudograminearum was more aggressive than F. graminearum, supporting earlier delineation of the crown-infecting group as a new species. Although significant wheat line-pathogen isolate interaction in ANOVA suggested putative specialization when seedlings of 60 wheat lines were inoculated with 4 pathogen isolates or 26 wheat lines were inoculated with 10 isolates, significant W and κ showed agreement in rank order of wheat lines, indicating a lack of specialization. The first principal component representing nondifferential aggressiveness explained a large part (up to 65%) of the variation in CR severity. The differential components were small and more pronounced in seedlings than in adult plants. By maximizing variance on the first two principal components, biplots were useful for highlighting the association between isolates and wheat lines. A key finding of this work is that a range of analytical tools are needed to explore pathogenic specialization, and a statistically significant interaction in an ANOVA cannot be taken as conclusive evidence of specialization. With no highly resistant wheat cultivars, Fusarium isolates mostly differ in aggressiveness; however, specialization may appear as more resistant cultivars become widespread.

  8. Biotechnology in wheat improvement in Kenya

    International Nuclear Information System (INIS)

    Karanja, L.; Kinyua, M.G.; Njau, P.N.; Maling'a, J.

    2001-01-01

    Use of double haploid (DH) and mutation techniques in breeding wheat lines and varieties tolerant to drought, acid soils and resistant to Russian Wheat Aphid (RWA) at the National Plant Breeding Research Center in the last 4 years, is reported. The wheat variety, ''Pasa'' irradiated in 1996 is reported to have undergone selection process through yield trials in 1999-2000. Work done in the year 2000 is mainly described

  9. Induced mutations in wheat, Triticum aestivum L., for high protein and lysine content

    International Nuclear Information System (INIS)

    Barriga, P.; Fuentes, R.

    1984-01-01

    With the aim of producing cultivars adapted to the Lakes Region of Chile (latitude 39-44 deg. South) with better protein content and high grain yield, in 1975 spring wheat seeds of genotypes Express and UACH-2-75 were irradiated with gamma rays in doses of 15, 25 and 35 Krad. The M 1 generation was field sown and harvested individually, initiating plant selection in the M 2 generation. The selection process, through six generations, has permitted to identify some mutants of high protein content. Two mutants UACH-2-I and UACH-3-I have been included in the National Co-operative Wheat Program for yield. A second experiment was initiated in 1981 with the objective of obtaining mutants not only for high protein content but also for high lysine content. For this purpose seeds of the spring wheat genotypes Huenufen and Austral were irradiated with gamma rays in doses of 10 and 25 Krad. The M 1 generation was sown at a high density and harvested in bulk. Selection per plant will start in the M 2 generation, continuing in the following. (author)

  10. Improvement of triticale for fertility and grain character through induced mutation

    International Nuclear Information System (INIS)

    Shakoor, A.; Saleem, M.; Afzal, M.

    1980-01-01

    Triticale is a new cereal resulting from a cross between wheat and rye. It has better yield potential than wheat and rye but suffers from low fertility, and poor development of grain. Two mutant lines NIAB T-102 and NIAB T-103 showing improvement in fertility and grain character were obtained from AUT. 567 through 10 KR exposure of gamma irradiation. As compared to the parent, the mutant lines yielded better and possessed well filled grains. The possibilities of using these mutant lines as fodder crop as well as in cross breeding programme are discussed. (author)

  11. Identification of novel QTL for sawfly resistance in wheat

    Science.gov (United States)

    J. D. Sherman; D. K. Weaver; M. L. Hofland; S. E. Sing; M. Buteler; S. P. Lanning; Y. Naruoka; F. Crutcher; N. K. Blake; J. M. Martin; P. F. Lamb; G. R. Carlson; L. E. Talbert

    2010-01-01

    The wheat stem sawfly (WSS) (Cephus cinctus Nort.) is an important pest of wheat (Triticum aestivum L. em. Thell.) in the Northern Great Plains. This paper reports the genetic analysis of antixenosis for egg-laying WSS females in recombinant inbred lines (RIL) of hard red spring wheat. Female WSS preferentially choose certain wheat genotypes for egg-laying, with the...

  12. Evaluation of semi-dwarf mutants in triticale and wheat breeding programmes

    International Nuclear Information System (INIS)

    Driscoll, C.J.

    1982-01-01

    A number of short-statured triticale plants were selected in M 4 following gamma-ray or EMS treatment of seed of Beagle and DR-IRA triticales. Selection for homozygous mutants will be attempted in M 5 . The Cornerstone male sterility mutant mslc is being combined with the three GA-insensitive, reduced-height mutants Gai/Rht1, Gai/Rht2 and Gai/Rht3 in order to establish a composite cross based on homozygosity of a given Gai/Rht allele. This would allow selection for minor genes for increased height on a GA-insensitive, reduced-height background. (author)

  13. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance

    Science.gov (United States)

    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a costeffective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chrom...

  14. Induced Mutations for Improving Production on Bread and Durum Wheat

    Science.gov (United States)

    Stamo, Ilirjana; Ylli, Ariana; Dodbiba, Andon

    2007-04-01

    Wheat is a very important crop and has been bred for food and its improvement is continuous from cross-breeding. Radiation and chemically induced mutations have provided variability in selection for novel varieties. Four bread and one durum wheat cultivars were exposed to gamma rays, Cs 137 with doses 10, 15 and 20 krad (2000 seeds of each dose and cultivars). We have isolated mutant plants with height reduced and on cv Progress spike without chaff.

  15. Induced Mutations for Improving Production on Bread and Durum Wheat

    International Nuclear Information System (INIS)

    Stamo, Ilirjana; Ylli, Ariana; Dodbiba, Andon

    2007-01-01

    Wheat is a very important crop and has been bred for food and its improvement is continuous from cross-breeding. Radiation and chemically induced mutations have provided variability in selection for novel varieties. Four bread and one durum wheat cultivars were exposed to gamma rays, Cs 137 with doses 10, 15 and 20 krad (2000 seeds of each dose and cultivars). We have isolated mutant plants with height reduced and on cv Progress spike without chaff

  16. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat

    OpenAIRE

    Chen, Liang; Zhang, ZengYan; Liang, HongXia; Liu, HongXia; Du, LiPu; Xu, Huijun; Xin, Zhiyong

    2008-01-01

    Wheat sharp eyespot, primarily caused by a soil-borne fungus Rhizoctonia cerealis, has become one of the most serious diseases of wheat in China. In this study, an ethylene response factor (ERF) gene from a wheat relative Thinopyrum intermedium, TiERF1, was characterized further, transgenic wheat lines expressing TiERF1 were developed, and the resistance of the transgenic wheat lines against R. cerealis was investigated. Southern blotting analysis indicated that at least two copies of the TiE...

  17. Mutation breeding in wheat

    International Nuclear Information System (INIS)

    Amer, I.M.

    2002-01-01

    The study aims to improve the productivity of wheat by using gamma ray (100 - 600 Gy) in mutation breading. Five local varieties were used and the program continued for the Sakha 69 for seven generations. Seeds irradiated with 600 Gy were not germinated in the field, while low doses (100-150 Gy) stimulated the root growth and spike length. The higher doses caused gradual decrease of growth with differences in varieties response. in the second generation, a genetic differences were noticed in most varieties using doses of 100-300 Gy, and the dispike was disappeared when 250 Gy was used. 79 plants from irradiated Sakha 69 were selected according to spike length and the number of grains and planted with the control to test the third generation. differences between the varieties were noticed and 8 mutants with high productivity were selected and evaluated in the fourth and fifth generations with the local variety. The mutants improve the productivity and in particular the mutants Nos.. (19-1), (14-3), and (30-2). The experiment showed the relation between the planting sites and the mutants in the sixth and seven generations

  18. The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1.

    Directory of Open Access Journals (Sweden)

    Zhaohui Liu

    2012-01-01

    Full Text Available The wheat pathogen Stagonospora nodorum produces multiple necrotrophic effectors (also called host-selective toxins that promote disease by interacting with corresponding host sensitivity gene products. SnTox1 was the first necrotrophic effector identified in S. nodorum, and was shown to induce necrosis on wheat lines carrying Snn1. Here, we report the molecular cloning and validation of SnTox1 as well as the preliminary characterization of the mechanism underlying the SnTox1-Snn1 interaction which leads to susceptibility. SnTox1 was identified using bioinformatics tools and verified by heterologous expression in Pichia pastoris. SnTox1 encodes a 117 amino acid protein with the first 17 amino acids predicted as a signal peptide, and strikingly, the mature protein contains 16 cysteine residues, a common feature for some avirulence effectors. The transformation of SnTox1 into an avirulent S. nodorum isolate was sufficient to make the strain pathogenic. Additionally, the deletion of SnTox1 in virulent isolates rendered the SnTox1 mutated strains avirulent on the Snn1 differential wheat line. SnTox1 was present in 85% of a global collection of S. nodorum isolates. We identified a total of 11 protein isoforms and found evidence for strong diversifying selection operating on SnTox1. The SnTox1-Snn1 interaction results in an oxidative burst, DNA laddering, and pathogenesis related (PR gene expression, all hallmarks of a defense response. In the absence of light, the development of SnTox1-induced necrosis and disease symptoms were completely blocked. By comparing the infection processes of a GFP-tagged avirulent isolate and the same isolate transformed with SnTox1, we conclude that SnTox1 may play a critical role during fungal penetration. This research further demonstrates that necrotrophic fungal pathogens utilize small effector proteins to exploit plant resistance pathways for their colonization, which provides important insights into the molecular

  19. Characterization of a mutant rat kangaroo cell line with alterations in the cell cycle and DNA repair

    OpenAIRE

    Miyaji, E.N.; Johnson, R.T.; Downes, C.S.; Eveno, E.; Mezzina, M.; Sarasin, A.; Menck, C.F.M.

    2000-01-01

    Using a positive selection system for isolating DNA replication and repair related mutants, we isolated a clone from a rat kangaroo cell line (PtK2) that has increased sensitivity to UV light. Characterization of this clone indicated normal post-replication repair after UV irradiation, and normal removal rates of cyclobutane pyrimidine dimers and pyrimidine(6-4)pyrimidone photoproducts by excision repair. However, this cell line has decreased ability to make early incisions on damaged DNA, po...

  20. Isolation and molecular cytogenetic characterization of a wheat - Leymus mollis double monosomic addition line and its progenies with resistance to stripe rust.

    Science.gov (United States)

    Yang, Xiaofei; Li, Xin; Wang, Changyou; Chen, Chunhuan; Tian, Zengrong; Ji, Wanquan

    2017-12-01

    A common wheat - Leymus mollis (2n = 4x = 28, NsNsXmXm) double monosomic addition line, M11003-4-3-8/13/15 (2n = 44 = 42T.a + L.m2 + L.m3), with stripe rust resistance was developed (where T.a represents Triticum aestivum chromosome, L.m represents L. mollis chromosome, and L.m2/3 represents L. mollis chromosome of homoeologous groups 2 and 3). The progenies of line M11003-4-3-8/13/15 were characterized by cytological observation, specific molecular markers, fluorescence in situ hybridization (FISH), and genomic in situ hybridization (GISH). Among the progenies, there existed five different types (I, II, III, IV, and V) of chromosome constitution, the formulas of which were 2n = 44 = 42T.a + 1L.m2 + 1L.m3, 2n = 43 = 42T.a + 1L.m2, 2n = 43 = 42T.a + 1L.m3, 2n = 42 = 42T.a, and 2n = 44 = 42T.a + 2L.m2, respectively. Field disease screening showed that types I and III showed high resistance to stripe rust, while types II, IV, and V were susceptible. Leymus mollis was almost immune to stripe rust, whereas the wheat parent, cultivar 7182, was susceptible. Therefore, we concluded that the stripe rust resistance originated from L. mollis. These various lines could be further fully exploited as important disease resistance materials to enrich wheat genetic resources.

  1. Induced mutations of rust resistance genes in wheat

    International Nuclear Information System (INIS)

    McIntosh, R.A.

    1983-01-01

    Induced mutations are being used as a tool to study genes for resistance in wheat. It was found that Pm1 can be separated from Lr20 and Sr15, but these two react like a single pleiotropic gene. Mutants were further examined in crosses and backmutations have been attempted. (author)

  2. Analysis of aneuploid lines of bread wheat to map chromosomal locations of genes controlling root hair length.

    Science.gov (United States)

    Liu, Miao; Rathjen, Tina; Weligama, Kumara; Forrest, Kerrie; Hayden, Matthew; Delhaize, Emmanuel

    2017-06-01

    Long root hairs enable the efficient uptake of poorly mobile nutrients such as phosphorus. Mapping the chromosomal locations of genes that control root hair length can help exploit the natural variation within crops to develop improved cultivars. Genetic stocks of the wheat cultivar 'Chinese Spring' were used to map genes that control root hair length. Aneuploid stocks of 'Chinese Spring' were screened using a rapid method based on rhizosheath size and then selected lines were assayed for root hair length to identify chromosomes harbouring genes controlling root hair length. A series of lines with various fractional deletions of candidate chromosomes were then screened to map the root hair loci more accurately. A line with a deletion in chromosome 5A was analysed with a 90 000 single nucleotide polymorphism (SNP) array. The phosphorus acquisition efficiency (PAE) of one deletion line was compared with that of euploid 'Chinese Spring' by growing the seedlings in pots at low and luxury phosphorus supplies. Chromosomes 1A, 1D and 5A were found to harbour genes controlling root hair length. The 90 000 SNP array identified two candidate genes controlling root hair length located on chromosome 5A. The line with a deletion in chromosome 5A had root hairs that were approx. 20 % shorter than euploid 'Chinese Spring', but this was insufficient to reduce its PAE. A rapid screen for rhizosheath size enabled chromosomal regions controlling root hair length to be mapped in the wheat cultivar 'Chinese Spring' and subsequent analysis with an SNP array identified candidate genes controlling root hair length. The difference in root hair length between euploid 'Chinese Spring' and a deletion line identified in the rapid screen was still apparent, albeit attenuated, when the seedlings were grown on a fully fertilized soil. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Characterization and Mapping of Leaf Rust and Stripe Rust Resistance Loci in Hexaploid Wheat Lines UC1110 and PI610750 under Mexican Environments.

    Science.gov (United States)

    Lan, Caixia; Hale, Iago L; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Randhawa, Mandeep S; Huerta-Espino, Julio; Dubcovsky, Jorge; Singh, Ravi P

    2017-01-01

    Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by the globally important wheat leaf rust (LR) and stripe rust (YR) diseases. In this study, a population of 186 F 8 recombinant inbred lines (RILs) derived from a cross between a synthetic wheat derivative (PI610750) and an adapted common wheat line (cv. "UC1110") were phenotyped for LR and YR response at both seedling and adult plant stages over multiple seasons. Using a genetic linkage map consisting of single sequence repeats and diversity arrays technology markers, in combination with inclusive composite interval mapping analysis, we detected a new LR adult plant resistance (APR) locus, QLr.cim-2DS , contributed by UC1110. One co-located resistance locus to both rusts, QLr.cim-3DC/QYr.cim-3DC , and the known seedling resistance gene Lr26 were also mapped. QLr.cim-2DS and QLr.cim-3DC showed a marginally significant interaction for LR resistance in the adult plant stage. In addition, two previously reported YR APR loci, QYr.ucw-3BS and Yr48 , were found to exhibit stable performances in rust environments in both Mexico and the United States and showed a highly significant interaction in the field. Yr48 was also observed to confer intermediate seedling resistance against Mexican YR races, thus suggesting it should be re-classified as an all-stage resistance gene. We also identified 5 and 2 RILs that possessed all detected YR and LR resistance loci, respectively. With the closely linked molecular markers reported here, these RILs could be used as donors for multiple resistance loci to both rusts in wheat breeding programs.

  4. Evaluation of Nitrogen Uptake and Growth Performance of Advanced Mutant Lines MR219-4 and MR219-9 Grown Under Aerobic Conditions

    International Nuclear Information System (INIS)

    Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Rusli Ibrahim; Khairuddin Abdul Rahim

    2014-01-01

    Developing a good crop production management package; drought resistance variety, effective water and nutrient management in rice production practices is crucial for global climate change adaptation. A research project under IAEA RAS5065 (Supporting Climate-Proofing Rice Production Systems (CRiPS) Based on Nuclear Applications) was conducted from 2012 to 2013, in collaboration with MARDI. Two advanced mutant lines, MR219-4 and MR219-9 were used in this research project to evaluate growth, yield potential and fertilizer uptake under different water input condition (flooded and aerobic). The advanced mutant line MR219-9 showed comparable growth, yield and nitrogen uptake under both flooded and aerobic conditions. The yield and yield components are not significantly different from the parent variety (MR219) but total N uptake was lower than MR219 regardless of water regime. The field trial showed that MR219-9 has a better total N content which is comparable to the aerobic rice variety (MRIA 1) and this indicates that this advance mutant line MR219-9 is a potential aerobic rice variety. (author)

  5. Development of technique on the induction and selection of in vitro mutant lines(Potato, Solanum tuberosum L.)

    International Nuclear Information System (INIS)

    Hong, Joo Bong; Lee, Young Il; Song, Hee Sup; Kim, Jae Sung; Byun, Myung Woo; Lee, Young Keun; Shin, In Chul; Lee, Sang Jae; Lee, Ki Woon; Lim, Yong Taek

    1992-08-01

    The radiosensitivity and salt resistance on the single cell and callus of potato, mass production method of plantlet and microtuber of potato by in vitro culture and microtuber formation from the stem irradiated with radiation were investigated to obtain a optimum condition for selection of mutant cell line. (Author)

  6. Competitive Expression of Endogenous Wheat CENH3 May Lead to Suppression of Alien ZmCENH3 in Transgenic Wheat × Maize Hybrids.

    Science.gov (United States)

    Chen, Wei; Zhu, Qilin; Wang, Haiyan; Xiao, Jin; Xing, Liping; Chen, Peidu; Jin, Weiwei; Wang, Xiu-E

    2015-11-20

    Uniparental chromosome elimination in wheat × maize hybrid embryos is widely used in double haploid production of wheat. Several explanations have been proposed for this phenomenon, one of which is that the lack of cross-species CENH3 incorporation may act as a barrier to interspecies hybridization. However, it is unknown if this mechanism applies universally. To study the role of CENH3 in maize chromosome elimination of wheat × maize hybrid embryos, maize ZmCENH3 and wheat αTaCENH3-B driven by the constitutive CaMV35S promoter were transformed into wheat variety Yangmai 158. Five transgenic lines for ZmCENH3 and six transgenic lines for αTaCENH3-B were identified. RT-PCR analysis showed that the transgene could be transcribed at a low level in all ZmCENH3 transgenic lines, whereas transcription of endogenous wheat CENH3 was significantly up-regulated. Interestingly, the expression levels of both wheat CENH3 and ZmCENH3 in the ZmCENH3 transgenic wheat × maize hybrid embryos were higher than those in the non-transformed Yangmai 158 × maize hybrid embryos. This indicates that the alien ZmCENH3 in wheat may induce competitive expression of endogenous wheat CENH3, leading to suppression of ZmCENH3 over-expression. Eliminations of maize chromosomes in hybrid embryos of ZmCENH3 transgenic wheat × maize and Yangmai 158 × maize were compared by observations on micronuclei presence, by marker analysis using maize SSRs (simple sequence repeats), and by FISH (fluorescence in situ hybridization) using 45S rDNA as a probe. The results indicate that maize chromosome elimination events in the two crosses are not significantly different. Fusion protein ZmCENH3-YFP could not be detected in ZmCENH3 transgenic wheat by either Western blotting or immnunostaining, whereas accumulation and loading of the αTaCENH3-B-GFP fusion protein was normal in αTaCENH3-B transgenic lines. As ZmCENH3-YFP did not accumulate after AM114 treatment, we speculate that low levels of Zm

  7. Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley.

    Science.gov (United States)

    Lachman, Jaromír; Hejtmánková, Alena; Orsák, Matyáš; Popov, Marek; Martinek, Petr

    2018-02-01

    Colored-grain spring and winter wheat, spring tritordeum and barley (blue aleurone, purple pericarp, and yellow endosperm) from the harvests 2014 and 2015 were evaluated for tocol contents by HPLC-FD. Higher content of total tocols was found in spring wheat varieties compared with winter varieties. Four tocols (β-tocotrienol, α-tocotrienol, β-tocopherol, and α-tocopherol) were identified in wheat and tritordeum varieties. Dominant tocols in purple- and blue-grained wheat and yellow-grained tritordeum were α-tocopherol and β-tocotrienol, whereas spring barley varieties differed from wheat and tritordeum by high α-tocotrienol content. Tocol content was significantly affected by genotype and in a lesser extent in some varieties and lines also by rainfall and temperatures during crop year. Higher rainfall and lower temperatures caused in most varieties higher tocol contents. Purple- and blue-grained wheat lines with higher tocol, anthocyanin and phenolic acids with health benefits may be useful for breeding new varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    International Nuclear Information System (INIS)

    Bonwell, E.; Fisher, T.; Fritz, A.; Wetzel, D.

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the a-helix form compared with that in other secondary structure forms including β-sheet. Modeling of a-helix and β-sheet absorption bands that contribute to the amide I band at 1650 cm-1 was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 μm thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 μm diameter or confocal 5 μm x 5 μm spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the a-helix population relative to other secondary protein structures from the position and shape of the amide I absorption band. Current breeding lines show a

  9. Do ancient types of wheat have health benefits compared with modern bread wheat?

    Science.gov (United States)

    Shewry, Peter R

    2018-01-01

    A number of studies have suggested that ancient wheats have health benefits compared with modern bread wheat. However, the mechanisms are unclear and limited numbers of genotypes have been studied, with a particular focus on Kamut ® (Khorasan wheat). This is important because published analyses have shown wide variation in composition between genotypes, with further effects of growth conditions. The present article therefore critically reviews published comparisons of the health benefits of ancient and modern wheats, in relation to the selection and growth of the lines, including dietary interventions and comparisons of adverse effects (allergy, intolerance, sensitivity). It is concluded that further studies are urgently required, particularly from a wider range of research groups, but also on a wider range of genotypes of ancient and modern wheat species. Furthermore, although most published studies have made efforts to ensure the comparability of material in terms of growth conditions and processing, it is essential that these are standardised in future studies and this should perhaps be a condition of publication.

  10. Induced mutations for disease resistance in wheat and field beans

    International Nuclear Information System (INIS)

    Abdel-Hak, T.M.; Kamel, A.H.

    1976-01-01

    Wheat disease in Egypt is reviewed and results of mutation breeding by γ irradiation for disease resistance in wheat and field beans are described. Wheat mutants of the variety Giza 155 resistant to leaf rust, Giza 156 resistant to both leaf and yellow rusts, and Tosson with a reasonable level of combined resistance to the three rusts in addition to mutants of the tetraploid variety Dakar 52 with a good level of stem and yellow rust resistance are required. Their seeds were subjected to 10, 15 and 20 krad. Of 3000-3700 M 2 plants from each variety and dosage, 22 plants from both Giza 155 and Giza 156, although susceptible, showed a lower level of disease development. In 1975, M 3 families of these selected plants and 6000 plants from bulked material were grown from each variety and dosage at two locations. Simultaneously, an additional population consisting of 3000 mutagen-treated seeds was grown to have a reasonable chance of detecting mutants; 2 heads from each plant were harvested. These will be grown next season (1976) to make a population of 25,000-30,000 M 2 plants and screened to composite cultures of specific rusts. Vicia faba seeds of field bean varieties Giza 1, Giza 2 and Rebaya 40, equally susceptible to rust and chocolate spot, were subjected to 3, 5 and 7 krad of 60 Co gamma radiation and 800 M 1 plants were grown in 1972 per variety and dose. Up to this later growing season (M 3 ) no resistance was detected in M 3 plank

  11. Preferência de Bemisia tabaci biótipo B em linhagens mutantes de algodoeiro Bemisia tabaci biotype B preference in mutant cotton lines

    Directory of Open Access Journals (Sweden)

    Francisco das Chagas Vidal Neto

    2008-02-01

    Full Text Available Os efeitos de caracteres mutantes morfológicos do algodoeiro (Gossypium hirsutum L. r. latifolium Hutch.: folha okra, bráctea frego e planta vermelha, em relação à resistência à mosca-branca (Bemisia tabaci biótipo B Hemiptera: Aleyrodidae, foram avaliados em experimentos com ou sem chance de escolha. Os experimentos foram conduzidos em casa-de-vegetação, no delineamento de blocos ao acaso, em fatorial 23 + 1, com quatro repetições. O mutante com a característica planta vermelha foi menos atrativo e menos preferido para oviposição, em relação à planta verde, em ambos os ensaios, com ou sem escolha. Não houve preferência quanto à forma da folha e ao tipo de bráctea.The effects of cotton lines (Gossypium hirsutum L. r. latifolium Hutch. with mutants morphologic characteristics: okra leaf, frego bract and red plant in relation to host plant resistance to whitefly (Bemisia tabaci bioyipe B Hemiptera: Aleyrodidae, were evaluated in choice or no choice assays. The assays were carried out in the greenhouse conditions, according to a completely randomized block design, in a 23 + 1 in a factorial arrangement with four replications. The mutant with red plant characteristic was less attractive and less preferred for oviposition than the normal green plant does, in both, whit or without choice tests. It did not have preference in relation to the form of the leaf and bract type.

  12. Development of technique on the induction and selection of in vitro mutant lines (Potato, Solanum tuberosum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jang Ryoel; Lee, Yeong Il; Song, Hee Seop; Kim, Jae Seong; Sin, In Cheol; Lee, Sang Jae; Lee, Ki Un; Lim, Yong Taek [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1993-09-01

    For the development of the technique on the plant tissue culture and application of nuclear technique in the in vitro mutation breeding, present research laid emphasis on the development of techniques of potato tissue culture, and on the induction and selection of radiation mutation. Another culture for haploid induction, optimum radiation dosage for cybrid formation of potato and mutation induction from in vitro cultured microtuber and plantlets were investigated for modelling the technique on the induction and selection of in vitro mutant lines. Inheritance stability of the selected mutants were also studied in field condition. In vitro system of micropropagation and selection of mutation was summarized.

  13. Development of technique on the induction and selection of in vitro mutant lines (Potato, Solanum tuberosum L.)

    International Nuclear Information System (INIS)

    Yoo, Jang Ryoel; Lee, Yeong Il; Song, Hee Seop; Kim, Jae Seong; Sin, In Cheol; Lee, Sang Jae; Lee, Ki Un; Lim, Yong Taek

    1993-09-01

    For the development of the technique on the plant tissue culture and application of nuclear technique in the in vitro mutation breeding, present research laid emphasis on the development of techniques of potato tissue culture, and on the induction and selection of radiation mutation. Another culture for haploid induction, optimum radiation dosage for cybrid formation of potato and mutation induction from in vitro cultured microtuber and plantlets were investigated for modelling the technique on the induction and selection of in vitro mutant lines. Inheritance stability of the selected mutants were also studied in field condition. In vitro system of micropropagation and selection of mutation was summarized

  14. Induced mutations for horizontal resistance. A model study using leaf rust resistance in wheat

    International Nuclear Information System (INIS)

    Chopra, V.L.; Sawhney, R.N.; Kumar, R.

    1983-01-01

    A mutant with seemingly non-specific resistance to leaf rust was obtained some time ago from the wheat variety Kharchia Local treated with NMH. This mutant is being studied genetically and in its disease reaction by laboratories in Australia, Canada and India in co-operation. The mutant showed a dominant inheritance of resistance in F 1 , but different segregation in F 2 and F 3 . This peculiar genetic behaviour has so far not been explained. (author)

  15. Drought tolerant wheat varieties developed through mutation ...

    African Journals Online (AJOL)

    In search for higher yielding drought tolerant wheat varieties, one of the Kenyan high yielding variety 'Pasa' was irradiated with gamma rays (at 150, 200, and 250gy) in 1997 so as to induce variability and select for drought tolerance. Six mutants ((KM10, KM14, KM15, KM18, KM20 and KM21) were selected at M4 for their ...

  16. Registration of DGE-2, a durum wheat disomic alien substitution line 1E(1A) involving a diploid wheatgrass chromosome

    Science.gov (United States)

    The durum wheat (Triticum turgidum L., 2n = 2x = 28; AABB genomes) alien disomic substitution 1E(1A) line DGE-2 (PI 663216) was developed by the USDA–ARS, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota and released in 2011. DGE-2 has 2n = 28 chromosomes, which are...

  17. Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B.

    Science.gov (United States)

    Jia, Aolin; Ren, Yan; Gao, Fengmei; Yin, Guihong; Liu, Jindong; Guo, Lu; Zheng, Jizhou; He, Zhonghu; Xia, Xianchun

    2018-05-01

    Four QTLs for adult-plant resistance to powdery mildew were mapped in the Zhou8425B/Chinese Spring population, and a new QTL on chromosome 3B was validated in 103 wheat cultivars derived from Zhou8425B. Zhou8425B is an elite wheat (Triticum aestivum L.) line widely used as a parent in Chinese wheat breeding programs. Identification of genes for adult-plant resistance (APR) to powdery mildew in Zhou8425B is of high importance for continued controlling the disease. In the current study, the high-density Illumina iSelect 90K single-nucleotide polymorphism (SNP) array was used to map quantitative trait loci (QTL) for APR to powdery mildew in 244 recombinant inbred lines derived from the cross Zhou8425B/Chinese Spring. Inclusive composite interval mapping identified QTL on chromosomes 1B, 3B, 4B, and 7D, designated as QPm.caas-1BL.1, QPm.caas-3BS, QPm.caas-4BL.2, and QPm.caas-7DS, respectively. Resistance alleles at the QPm.caas-1BL.1, QPm.caas-3BS, and QPm.caas-4BL.2 loci were contributed by Zhou8425B, whereas that at QPm.caas-7DS was from Chinese Spring. QPm.caas-3BS, likely to be a new APR gene for powdery mildew resistance, was detected in all four environments. One SNP marker closely linked to QPm.caas-3BS was transferred into a semi-thermal asymmetric reverse PCR (STARP) marker and tested on 103 commercial wheat cultivars derived from Zhou8425B. Cultivars with the resistance allele at the QPm.caas-3BS locus had averaged maximum disease severity reduced by 5.3%. This STARP marker can be used for marker-assisted selection in improvement of the level of powdery mildew resistance in wheat breeding.

  18. Hyperactive mutant of a wheat plasma membrane Na+/H+ antiporter improves the growth and salt tolerance of transgenic tobacco.

    Science.gov (United States)

    Zhou, Yang; Lai, Zesen; Yin, Xiaochang; Yu, Shan; Xu, Yuanyuan; Wang, Xiaoxiao; Cong, Xinli; Luo, Yuehua; Xu, Haixia; Jiang, Xingyu

    2016-12-01

    Wheat SOS1 (TaSOS1) activity could be relieved upon deletion of the C-terminal 168 residues (the auto-inhibitory domain). This truncated form of wheat SOS1 (TaSOS1-974) was shown to increase compensation (compared to wild-type TaSOS1) for the salt sensitivity of a yeast mutant strain, AXT3K, via increased Na + transportation out of cells during salinity stress. Expression of the plasma membrane proteins TaSOS1-974 or TaSOS1 improved the growth of transgenic tobacco plants compared with wild-type plants under normal conditions. However, plants expressing TaSOS1-974 grew better than TaSOS1-transformed plants. Upon salinity stress, Na + efflux and K + influx rates in the roots of transgenic plants expressing TaSOS1-974 or TaSOS1 were greater than those of wild-type plants. Furthermore, compared to TaSOS1-transgenic plants, TaSOS1-974-expressing roots showed faster Na + efflux and K + influx, resulting in less Na + and more K + accumulation in TaSOS1-974-transgenic plants compared to TaSOS1-transgenic and wild-type plants. TaSOS1-974-expressing plants had the lowest MDA content and electrolyte leakage among all tested plants, indicating that TaSOS1-974 might protect the plasma membrane against oxidative damage generated by salt stress. Overall, TaSOS1-974 conferred higher salt tolerance in transgenic plants compared to TaSOS1. Consistent with this result, transgenic plants expressing TaSOS1-974 showed a better growth performance than TaSOS1-expressing and wild-type plants under saline conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat.

    Science.gov (United States)

    Zhang, Yunwei; Bai, Yang; Wu, Guangheng; Zou, Shenghao; Chen, Yongfang; Gao, Caixia; Tang, Dingzhong

    2017-08-01

    Wheat (Triticum aestivum L.) incurs significant yield losses from powdery mildew, a major fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). enhanced disease resistance1 (EDR1) plays a negative role in the defense response against powdery mildew in Arabidopsis thaliana; however, the edr1 mutant does not show constitutively activated defense responses. This makes EDR1 an ideal target for approaches using new genome-editing tools to improve resistance to powdery mildew. We cloned TaEDR1 from hexaploid wheat and found high similarity among the three homoeologs of EDR1. Knock-down of TaEDR1 by virus-induced gene silencing or RNA interference enhanced resistance to powdery mildew, indicating that TaEDR1 negatively regulates powdery mildew resistance in wheat. We used CRISPR/Cas9 technology to generate Taedr1 wheat plants by simultaneous modification of the three homoeologs of wheat EDR1. No off-target mutations were detected in the Taedr1 mutant plants. The Taedr1 plants were resistant to powdery mildew and did not show mildew-induced cell death. Our study represents the successful generation of a potentially valuable trait using genome-editing technology in wheat and provides germplasm for disease resistance breeding. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines.

    Science.gov (United States)

    Kiseleva, Antonina A; Potokina, Elena K; Salina, Elena A

    2017-11-14

    Photoperiod insensitive Ppd-1a alleles determine early flowering of wheat. Increased expression of homoeologous Ppd-D1a and Ppd-A1a result from deletions in the promoter region, and elevated expression of Ppd-B1a is determined by an increased copy number. In this study, using bread wheat cultivars Sonora and PSL2, which contrast in flowering time, and near-isogenic lines resulting from their cross, "Ppd-m" and "Ppd-w" with Ppd-B1a introgressed from Sonora, we investigated the putative factors that influence Ppd-B1a expression. By analyzing the Ppd-B1a three distinct copies, we identified an indel and the two SNPs, which distinguished the investigated allele from other alleles with a copy number variation. We studied the expression of the Ppd-A1, Ppd-B1a, and Ppd-D1 genes along with genes that are involved in light perception (PhyA, PhyB, PhyC) and the flowering initiation (Vrn-1, TaFT1) and discussed their interactions. Expression of Ppd-B1a in the "Ppd-m" line, which flowered four days earlier than "Ppd-w", was significantly higher. We found PhyC to be up-regulated in lines with Ppd-B1a alleles. Expression of PhyC was higher in "Ppd-m". Microsatellite genotyping demonstrated that in the line "Ppd-m", there is an introgression in the pericentromeric region of chromosome 5B from the early flowering parental Sonora, while the "Ppd-w" does not have this introgression. FHY3/FAR1 is known to be located in this region. Expression of the transcription factor FHY3/FAR1 was higher in the "Ppd-m" line than in "Ppd-w", suggesting that FHY3/FAR1 is important for the wheat flowering time and may cause earlier flowering of "Ppd-m" as compared to "Ppd-w". We propose that there is a positive bidirectional regulation of Ppd-B1a and PhyC with an FHY3/FAR1 contribution. The bidirectional regulation can be proposed for Ppd-A1a and Ppd-D1a. Using in silico analysis, we demonstrated that the specificity of the Ppd-B1 regulation compared to that of homoeologous genes involves not only a

  1. Cytogenetics and stripe rust resistance of wheat-Thinopyrum elongatum hybrid derivatives.

    Science.gov (United States)

    Li, Daiyan; Long, Dan; Li, Tinghui; Wu, Yanli; Wang, Yi; Zeng, Jian; Xu, Lili; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong; Kang, Houyang

    2018-01-01

    Amphidiploids generated by distant hybridization are commonly used as genetic bridge to transfer desirable genes from wild wheat species into cultivated wheat. This method is typically used to enhance the resistance of wheat to biotic or abiotic stresses, and to increase crop yield and quality. Tetraploid Thinopyrum elongatum exhibits strong adaptability, resistance to stripe rust and Fusarium head blight, and tolerance to salt, drought, and cold. In the present study, we produced hybrid derivatives by crossing and backcrossing the Triticum durum-Th. elongatum partial amphidiploid ( Trititrigia 8801, 2 n  = 6 ×  = 42, AABBEE) with wheat cultivars common to the Sichuan Basin. By means of cytogenetic and disease resistance analyses, we identified progeny harboring alien chromosomes and measured their resistance to stripe rust. Hybrid progenies possessed chromosome numbers ranging from 40 to 47 (mean = 42.72), with 40.0% possessing 42 chromosomes. Genomic in situ hybridization revealed that the number of alien chromosomes ranged from 1 to 11. Out of the 50 of analyzed lines, five represented chromosome addition (2 n  = 44 = 42 W + 2E) and other five were chromosome substitution lines (2 n  = 42 = 40 W + 2E). Importantly, a single chromosome derived from wheat- Th. elongatum intergenomic Robertsonian translocations chromosome was occurred in 12 lines. Compared with the wheat parental cultivars ('CN16' and 'SM482'), the majority (70%) of the derivative lines were highly resistant to strains of stripe rust pathogen known to be prevalent in China. The findings suggest that these hybrid-derivative lines with stripe rust resistance could potentially be used as germplasm sources for further wheat improvement.

  2. Antibiosis resistance in national uniform wheat yield trials against rhopalosiphum padi (L.)

    International Nuclear Information System (INIS)

    Akhtar, N.; Ashfaque, M.; Gillani, W.A.; Ata-ul-Mohsin; Tahfeen, A.; Begum, I.

    2010-01-01

    The germplasm of National Uniform Wheat Yield Trials (Normal) (2003-04) were screened against Rhopalosiphum padi L., bird cherry oat aphid at National Agricultural Research Centre, Islamabad. Twenty National Uniform Wheat Yield Trials (NUWYT) , Normal and 12 (NUWYT) rain fed varieties/ lines were evaluated for seedling bulk test to know the resistant, moderately resistant and susceptible wheat varieties/ lines. These results revealed that varieties Diamond and Margalla-99 and lines V-99022, 99B2278 and 7-03 were partially resistant, two lines V-00125 and SD-66 were susceptible and three varieties and ten lines were moderately resistant in seedling bulk test. For antibiosis studies, 10 varieties/ lines out of 20 were selected to know the effect of host plants on the fecundity of R. padi. Two varieties Wafaq-2007 and Diamond were the least preferred for fecundity and one line VOO125 was highly preferred for fecundity. (author)

  3. Molecular markers for predicting end-products quality of wheat ...

    African Journals Online (AJOL)

    Molecular markers for predicting end-products quality of wheat (Triticum aestivum L.) ... African Journal of Biotechnology. Journal Home · ABOUT ... Four new Saudi wheat lines (KSU 102, KSU 103, KSU 105 and KSU 106) and two. American ...

  4. A haplotype specific to North European wheat (Triticum aestivum L.)

    Czech Academy of Sciences Publication Activity Database

    Tsombalova, J.; Karafiátová, Miroslava; Vrána, Jan; Kubaláková, Marie; Peusa, H.; Jakobson, I.; Jarve, M.; Valárik, Miroslav; Doležel, Jaroslav; Jarve, K.

    2017-01-01

    Roč. 64, č. 4 (2017), s. 653-664 ISSN 0925-9864 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : bread wheat * genetic diversity * polyploid wheat * introgression lines * molecular analysis * tetraploid wheat * hexaploid wheat * powdery mildew * spelta l. * map * Common wheat * Triticum aestivum L * Spelt * Triticum spelta L * Chromosome 4A * Zero alleles * Haplotype * Linkage disequilibrium Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 1.294, year: 2016

  5. Transcriptome analysis of genes related to resistance against powdery mildew in wheat-Thinopyrum alien addition disomic line germplasm SN6306.

    Science.gov (United States)

    Li, Quanquan; Niu, Zubiao; Bao, Yinguang; Tian, Qiuju; Wang, Honggang; Kong, Lingrang; Feng, Deshun

    2016-09-15

    Wheat powdery mildew, which is mainly caused by Blumeria graminis f. sp. tritici (Bgt), seriously damages wheat production. The wheat-Thinopyrum intermedium alien addition disomic line germplasm SN6306, being one of the important sources of genes for wheat resistance, is highly resistant to Bgt E09 and to many other powdery mildew physiological races. However, knowledge on the resistance mechanism of SN6306 remains limited. Our study employed high-throughput RNA sequencing based on next-generation sequencing technology (Illumina) to obtain an overview of the transcriptome characteristics of SN6306 and its parent wheat Yannong 15 (YN15) during Bgt infection. The sequencing generated 104,773 unigenes, 9909 of which showed varied expression levels. Among the 9909 unigenes, 1678 unigenes showed 0 reads in YN15. The expression levels in Bgt-inoculated SN6306 and YN15 of exactly 39 unigenes that showed 0 or considerably low reads in YN15 were validated to identify the genes involved in Bgt resistance. Among the 39 unigenes, 12 unigenes were upregulated in SN6306 by 3-45 times. These unigenes mainly encoded kinase, synthase, proteases, and signal transduction proteins, which may play an important role in the resistance against Bgt. To confirm whether the unigenes that showed 0 reads in YN15 are really unique to SN6306, 8 unigenes were cloned and sequenced. Results showed that the selected unigenes are more similar to SN6306 and Th. intermedium than to the wheat cultivar YN15. The sequencing results further confirmed that the unigenes showing 0 reads in YN15 are unique to SN6306 and are most likely derived from Th. intermedium (Host) Nevski. Thus, the genes from Th. intermedium most probably conferred the resistance of SN6306 to Bgt. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Selection of mutants of capsicum annuum induced by gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. I.; Lee, Y. B. [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of); Lee, E. K. [Chungnam National Univ., Taejeon (Korea, Republic of)

    1998-06-01

    For induction and selection of mutations of Capsicum annuum L., dry seeds of pure lines No.1 and No.2 were irradiated with gamma ray of 150Gy, 200Gy and 250Gy. Various mutants were selected such as showing early maturity, short plant height, long fruit and chlorophyll mutations. Mutation frequency of No.1 line was 3.4% in the dose of 150Gy, while the frequency of No.2 line was 2.7% in the dose of 250Gy. For selection of resistant mutant to amino acid analog, the optimum concentration of 5-methyltryptophan (5-MT) and S-(2-aminoethyl)-L-cysteine were 25 ppm and 30 ppm, respectively. Four resistant mutant lines to 5-MT were selected among 400 mutant lines.

  7. New wheat cultivars induced by fast neutrons in Iraq

    International Nuclear Information System (INIS)

    Ibrahim, I.F.; Al-Maaroof, E.M.; Al-Aubaidi, M.O.; Al-Janabi, K.K.; Al-Janabi, A.A.; Al-Rawi, L.; Ali, A.H.

    1994-01-01

    Wheat (Triticum aestivum L. ssp. aestivum) seeds from the cultivar Mexipak and F2 of the cross SaberBeg/Mexipak and saberBeg/Mexipak/Abu-Ghraib-4 were irradiated with fast neutrons and screened for resistance to leaf rust (Puccinia recondita Rob. ex Desm.) during three generations. Thirty-eight and 226 variants showing resistant and moderately resistant reactions, respectively, were selected. Of these variants three mutants showing genetic purity and stability were studied for yield components for four successive generations. Analyses of proteins and isozymes along with chemical and physical properties were conducted on these mutants and their parents. Data on disease incidence, lodging, shattering and yield components indicated that all the mutants significantly surpassed the cultivars Mexipak, SaberBeg and Abu-Ghraib-4. Both mutants Tamuz-1 and Tamuz-2 surpassed Mexipak in bread-making quality, while the mutant Tamuz-3 had a higher tendency for better bread-making quality than Mexipak or SeberBeg

  8. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    2017-11-01

    Full Text Available As model organism-based research shifts from forward to reverse genetics approaches, largely due to the ease of genome editing technology, a low frequency of abnormal phenotypes is being observed in lines with mutations predicted to lead to deleterious effects on the encoded protein. In zebrafish, this low frequency is in part explained by compensation by genes of redundant or similar function, often resulting from the additional round of teleost-specific whole genome duplication within vertebrates. Here we offer additional explanations for the low frequency of mutant phenotypes. We analyzed mRNA processing in seven zebrafish lines with mutations expected to disrupt gene function, generated by CRISPR/Cas9 or ENU mutagenesis methods. Five of the seven lines showed evidence of altered mRNA processing: one through a skipped exon that did not lead to a frame shift, one through nonsense-associated splicing that did not lead to a frame shift, and three through the use of cryptic splice sites. These results highlight the need for a methodical analysis of the mRNA produced in mutant lines before making conclusions or embarking on studies that assume loss of function as a result of a given genomic change. Furthermore, recognition of the types of adaptations that can occur may inform the strategies of mutant generation.

  9. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Chenfang Wang

    2011-12-01

    Full Text Available As in other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of many plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 protein kinases (PK genes. Although twenty of them appeared to be essential, we generated deletion mutants for the other 96 PK genes, including 12 orthologs of essential genes in yeast. All of the PK mutants were assayed for changes in 17 phenotypes, including growth, conidiation, pathogenesis, stress responses, and sexual reproduction. Overall, deletion of 64 PK genes resulted in at least one of the phenotypes examined, including three mutants blocked in conidiation and five mutants with increased tolerance to hyperosmotic stress. In total, 42 PK mutants were significantly reduced in virulence or non-pathogenic, including mutants deleted of key components of the cAMP signaling and three MAPK pathways. A number of these PK genes, including Fg03146 and Fg04770 that are unique to filamentous fungi, are dispensable for hyphal growth and likely encode novel fungal virulence factors. Ascospores play a critical role in the initiation of wheat scab. Twenty-six PK mutants were blocked in perithecia formation or aborted in ascosporogenesis. Additional 19 mutants were defective in ascospore release or morphology. Interestingly, F. graminearum contains two aurora kinase genes with distinct functions, which has not been reported in fungi. In addition, we used the interlog approach to predict the PK-PK and PK-protein interaction networks of F. graminearum. Several predicted interactions were verified with yeast two-hybrid or co-immunoprecipitation assays. To our knowledge, this is the first functional characterization of the kinome in plant pathogenic fungi. Protein kinase genes important for various aspects of growth, developmental, and infection processes in F. graminearum were

  10. Radiation-induced mutagenicity in repair deficient Chinese hamster ovary (CHO) mutants

    International Nuclear Information System (INIS)

    Tesmer, J.G.; Saunders, E.H.; Chen, D.J.

    1987-01-01

    To determine if there is a relationship between DNA double-strand break repair and mutagenicity the authors utilized two x-ray sensitive mutants of Chinese hamster ovary cells along with the parental line K1. The two mutant lines xrs-5 and xrs-6, which have different DSB repair capabilities, were used to determine cell killing and 6-thioguanine resistance (6TG/sup r/) mutation frequencies induced by either x-rays of α-particles, x-ray survival data indicated the two mutant lines have similar sensitivity and are 5-7 fold more sensitive than the parental line K1. The mutant lines are also sensitive to α-particles but to a lesser extent. The authors' 6TG mutation data indicated that the two mutant lines are hypermutable. When mutation frequencies were plotted against the log of survival, mutation frequency at a given survival level was greater in mutant cell population than in parental K1 cells. Their results support the notion that repair of DSB play an important role in the expression of radiation-induced cell killing and mutagenicity

  11. The pht4;1-3 mutant line contains a loss of function allele in the Fatty Acid Desaturase 7 gene caused by a remnant inactivated selection marker-a cautionary tale.

    Science.gov (United States)

    Nilsson, Anders K; Andersson, Mats X

    2017-01-01

    A striking and unexpected biochemical phenotype was found in an insertion mutant line in the model plant Arabidopsis thaliana . One of two investigated insertion mutant lines in the gene encoding the phosphate transporter PHT4;1 demonstrated a prominent loss of trienoic fatty acids, whereas the other insertion line was indistinguishable from wild type in this aspect. We demonstrate that the loss of trienoic fatty acids was due to a remnant inactive negative selection marker gene in this particular transposon tagged line, pht4;1-3 . This constitutes a cautionary tale that warns of the importance to confirm the loss of this type of selection markers and the importance of verifying the relationship between a phenotype and genotype by more than one independent mutant line or alternatively genetic complementation.

  12. Biolistics Transformation of Wheat

    Science.gov (United States)

    Sparks, Caroline A.; Jones, Huw D.

    We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).

  13. Studies on stem and leaf rust resistance in wheat

    International Nuclear Information System (INIS)

    Knott, D.R.

    1983-01-01

    Stem and leaf rust resistance was successfully transferred from Agropyron to wheat by radiation-induced translocations. Mutation induction subsequently proved to be useful in separating an undesired gene for yellow pigment from the resistance. The homoeologous pairing mutant obtained by Sears was also used successfully in obtaining transfers through crossing-over between wheat and Agropyron chromosomes. Another experimental series succeeded in accumulating minor genes for rust resistance, after eliminating major genes for specific resistance. The resistance is polygenic and widely effective although not general. It is recessively inherited, and hoped to be more durable than major gene resistance used so far in the Canadian prairies. An attempt to induce mutations for leaf rust resistance in a small-scale experiment with leading Canadian wheat varieties Manitou and Neepawa using gamma rays and EMS has not been successful. (author)

  14. Epistatic determinism of durum wheat resistance to the wheat spindle streak mosaic virus.

    Science.gov (United States)

    Holtz, Yan; Bonnefoy, Michel; Viader, Véronique; Ardisson, Morgane; Rode, Nicolas O; Poux, Gérard; Roumet, Pierre; Marie-Jeanne, Véronique; Ranwez, Vincent; Santoni, Sylvain; Gouache, David; David, Jacques L

    2017-07-01

    The resistance of durum wheat to the Wheat spindle streak mosaic virus (WSSMV) is controlled by two main QTLs on chromosomes 7A and 7B, with a huge epistatic effect. Wheat spindle streak mosaic virus (WSSMV) is a major disease of durum wheat in Europe and North America. Breeding WSSMV-resistant cultivars is currently the only way to control the virus since no treatment is available. This paper reports studies of the inheritance of WSSMV resistance using two related durum wheat populations obtained by crossing two elite cultivars with a WSSMV-resistant emmer cultivar. In 2012 and 2015, 354 recombinant inbred lines (RIL) were phenotyped using visual notations, ELISA and qPCR and genotyped using locus targeted capture and sequencing. This allowed us to build a consensus genetic map of 8568 markers and identify three chromosomal regions involved in WSSMV resistance. Two major regions (located on chromosomes 7A and 7B) jointly explain, on the basis of epistatic interactions, up to 43% of the phenotypic variation. Flanking sequences of our genetic markers are provided to facilitate future marker-assisted selection of WSSMV-resistant cultivars.

  15. Mutation induction and evaluation of high yield rice mutants

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Sobri Husein; Rusli Ibrahim

    2006-01-01

    The successful use of plant breeding for improving crops requires the existence of genetic variation of useful traits. Unfortunately, the desired variation is often lacking. However, radiation has been used to induce mutations and thereby generate genetic variation from which desired mutants may be selected. Mutation induction has become a proven way of creating variation within a crop variety. It offers the possibility of inducing desired attributes that either cannot be expressed in nature or have been lost during evolution. Rice is security food crop in Malaysia. Efforts were undertaken to enhance rice yield from 4.0 tones per hectare in 1995 to 5.5 tones per hectare in 2010. Proper management and good varieties are two factors that require for enhancing yield of rice. In this research, purified seeds of MR211 and MR219 were gamma irradiated at 100 to 400 Gray and sown for planting as M1 generation at MARDI experimental plot. The M2 population was sown in bulk with population size around 15,000 to 20,000 plants. Individual plant selection was carried out at maturity and each selected plant became a mutant line of M3 generation. Agronomic trial of M3 mutants lines were conducted in Mardi, Tanjung Karang, Selangor. About 115 of selected mutant lines were evaluated. Each row of those mutant lines were planted in two rows at planting distance of 25cm within and between rows. These mutant lines were visually observed and data were recorded in each of every mutant line. (Author)

  16. Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines.

    Science.gov (United States)

    van den Broeck, Hetty C; van Herpen, Teun W J M; Schuit, Cees; Salentijn, Elma M J; Dekking, Liesbeth; Bosch, Dirk; Hamer, Rob J; Smulders, Marinus J M; Gilissen, Ludovicus J W J; van der Meer, Ingrid M

    2009-04-07

    Gluten proteins can induce celiac disease (CD) in genetically susceptible individuals. In CD patients gluten-derived peptides are presented to the immune system, which leads to a CD4+ T-cell mediated immune response and inflammation of the small intestine. However, not all gluten proteins contain T-cell stimulatory epitopes. Gluten proteins are encoded by multigene loci present on chromosomes 1 and 6 of the three different genomes of hexaploid bread wheat (Triticum aestivum) (AABBDD). The effects of deleting individual gluten loci on both the level of T-cell stimulatory epitopes in the gluten proteome and the technological properties of the flour were analyzed using a set of deletion lines of Triticum aestivum cv. Chinese Spring. The reduction of T-cell stimulatory epitopes was analyzed using monoclonal antibodies that recognize T-cell epitopes present in gluten proteins. The deletion lines were technologically tested with respect to dough mixing properties and dough rheology. The results show that removing the alpha-gliadin locus from the short arm of chromosome 6 of the D-genome (6DS) resulted in a significant decrease in the presence of T-cell stimulatory epitopes but also in a significant loss of technological properties. However, removing the omega-gliadin, gamma-gliadin, and LMW-GS loci from the short arm of chromosome 1 of the D-genome (1DS) removed T-cell stimulatory epitopes from the proteome while maintaining technological properties. The consequences of these data are discussed with regard to reducing the load of T-cell stimulatory epitopes in wheat, and to contributing to the design of CD-safe wheat varieties.

  17. Selection of gamma-ray induced salt tolerant rice mutants by in vitro mutagenesis

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Chun, Jae Beom; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Yun, Song Jong; Kang, Si Yong

    2010-01-01

    The present study had been performed to select the salt tolerant rice mutant lines through an in vivo and in vitro mutagenesis with a gamma-ray. The physiological responses such as MDA and chlorophyll of the selected salt mutant lines were investigated under salt stress. For the selection of the salt tolerant rice mutants by in vitro mutagenesis with gamma-ray, we conducted a second selection procedure with 1,500 mutant lines induced from the original cv. Dongan (wild-type, WT): Ist, selection under a nutrient solution with 171 mM NaCI: 2nd, selection under in vitro conditions. Based on a growth comparison of the entries, out of mutant lines, the putative 2 salt tolerant rice mutant lines, ST-495 and ST-532, were selected. The 2 ST-lines had a lower malonaldehyde (MDA) contents than wild-type (WT) during salt stress. The survival rate of the WT, ST-495 and ST-532 were 36.6%, 70% and 50% in 171 mM NaCI, respectively. The chlorophyll and carotenoid contents were decreased more in a WT plant than the two selected mutant lines. These rice mutant lines will be released for cultivation at the reclaimed land and used as a control plot for genetic research about salt tolerance

  18. Selection of gamma-ray induced salt tolerant rice mutants by in vitro mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Chun, Jae Beom; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Yun, Song Jong; Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-06-15

    The present study had been performed to select the salt tolerant rice mutant lines through an in vivo and in vitro mutagenesis with a gamma-ray. The physiological responses such as MDA and chlorophyll of the selected salt mutant lines were investigated under salt stress. For the selection of the salt tolerant rice mutants by in vitro mutagenesis with gamma-ray, we conducted a second selection procedure with 1,500 mutant lines induced from the original cv. Dongan (wild-type, WT): Ist, selection under a nutrient solution with 171 mM NaCI: 2nd, selection under in vitro conditions. Based on a growth comparison of the entries, out of mutant lines, the putative 2 salt tolerant rice mutant lines, ST-495 and ST-532, were selected. The 2 ST-lines had a lower malonaldehyde (MDA) contents than wild-type (WT) during salt stress. The survival rate of the WT, ST-495 and ST-532 were 36.6%, 70% and 50% in 171 mM NaCI, respectively. The chlorophyll and carotenoid contents were decreased more in a WT plant than the two selected mutant lines. These rice mutant lines will be released for cultivation at the reclaimed land and used as a control plot for genetic research about salt tolerance.

  19. Evaluation of some chemical and technological properties of induced erect chickpea mutant lines developed under drought stressed conditions

    International Nuclear Information System (INIS)

    Moustafa, R.A.K.; Ali, H.G.M.

    2009-01-01

    Seeds of the chickpea variety Flip 99-47 C were treated with gamma rays at doses of 0, 50 and 75 Gy and sown in the winter season of 2004/2005 to raise M1 generation under ordinary (normal) irrigation conditions. Bulked seeds from each treatment were planted in the subsequent growing seasons of 2005/2006 and 2006/2007 to advance M2 and M3 generations, respectively under either ordinary (normal) irrigation or drought stress condition. In the third generation, three erect mutant lines were derived from 75 Gy mutagenic treatment under drought stress compared to semi spreading growth habit of the initiated variety Flip 99-47 C. In the winter season of 2007/2008, M4 bulked seeds from the three erect lines as well as unirradiated seeds of the original variety grown under either ordinary (normal) irrigation (2152.5 m 3 /fad.) or drought (1159.2 m 3 /fad.) conditions were analyzed for the chemical composition and nutritional values. Obtained results indicated that there were slight decreases in protein and fat contents accompanied with marginal increases in both ash and carbohydrates in seed samples of the erect mutant developed under drought stress as compared to unirradiated seeds of the original variety grown under ordinary (normal) irrigation treatment. An opposite trend was noticed between seed samples derived from the erect lines compared to seeds of the parent variety developed under drought condition. Negligible changes in levels of the minerals (iron, magnesium, calcium and phosphorus) were detected between seeds of the erect lines and the original variety that grown under either ordinary (normal) irrigation or drought conditions. Cooking time (min) and hydration coefficient values did not much differ between the three tested seed samples. Marginal differences in essential and non-essential amino acids were detected between seeds of the erect mutants and those of the initial variety grown under ordinary (normal) irrigation or drought stressed conditions

  20. An early maturing rice mutant released as a variety

    International Nuclear Information System (INIS)

    Azam, M.A.; Imtiaz Uddin, Md.

    2001-01-01

    In the content of food grain production deficiency (about 1.0-1.5 million tons of rice per year according to the Bangladesh Bureau of Statistics, 1998) an induced mutation programme was undertaken in 1985. One moderate early maturing and high yielding rice mutant line (BINA6-84-4-115) has been developed by irradiating F 2 seeds of the cross 'BR4' x 'Iratom 38'. Three treatments viz., 250, 300 and 350 Gy were given to the F 2 seeds. Finally, this line was selected in M 6 generation for advanced yield trial. The line was evaluated in comparative trials with another mutant line BINA6-84-4-163. These two mutant lines had been selected earlier from 300 Gy originated lines. The two check varieties, 'BR 11' and 'BR 22' were also included in the trial, which was conducted in two consecutive T. aman seasons (July to December) during 1994 and 1995 at five locations in Bangladesh. From the results, it was evident that the mutant BINA6-84-4-115 did not differ much with the other mutant lines or check varieties in respect to plant height, number of effective tillers and panicle length but it was 10-18 days earlier than the other 3 entries. It produced a similar yield as the check BR 11 in 1994 and a higher yield than the check BR 11 and BR 22 in 1995. This mutant line gave the highest yield per day among all the entries. In addition to this, the grains are long, fine and possess a high L/B ratio, which are of high commercial value. This line has been released by the National Seed Board of Bangladesh in 1998 as a commercial variety under the name 'BINADHAN-4' for cultivation throughout Bangladesh

  1. The Utilization of Premix Flour with Sorghum Mutant Lines Zh-30 Based as Material For Dough Making And Dry Noodle Industry

    International Nuclear Information System (INIS)

    Dwi Djoko Slamet Santosa

    2009-01-01

    Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induced plant genetic variability. Through selection processes on several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher yield than the original variety. Research on flour quality of this mutant line was done to identify its potential use in dry noodle. Subsequent experiments, i.e. the effect of kansui (alkaline salt Na 2 CO 3 and K 2 CO 3 ) on rheological properties of dough, the effect of egg addition on rheological properties of dough and cooked noodles. Observations were done on dough which were premix flour I, II and III with 10.2 %, 14.5 % and 17.4 % protein content respectively. The influence of each alkaline salt and their mixture on dough rheology i.e., dough consistency and resistant to extension and extensibility. The kansui Concentration applied were 0, 0.5, 1.0 and 1.5 %. Obviously premix flour I + 0.5 % kansui gave optimal consistency, resistance and extensibility of the dough. The addition of five ml egg to premix I dough + 0.5 % kansui gave optimal results. The increase of egg mellowed the dough, and increase noodle texture and reduce stickiness. Addition of five ml egg already gave significant increase of elasticity, with the highest elasticity was reached by addition of 35 ml egg, although no difference was found for 5 - 35 ml.. (author)

  2. Yellow Rust Resistance in Advanced Lines and Commercial ...

    African Journals Online (AJOL)

    The objective of this study was to characterize seedling yellow rust resistance in 21 advanced bread wheat lines and 20 cultivars from Ethiopia. Yellow rust infection types (ITs) produced on test wheat lines and cultivars from nine yellow rust races were compared with ITs produced on standard differential lines that differed ...

  3. HIGH YIELD GENETICALLY MODIFIED WHEAT IN GERMANY: SOCIO ECONOMIC ASSESSMENT OF ITS POTENTIAL

    OpenAIRE

    Wree, Philipp; Sauer, Johannes

    2015-01-01

    High Yield Genetically Modified Wheat (HOSUT) HOSUT lines are an innovation in wheat breeding based on biotechnology with an incremental yield potential of ca. 28% compared to conventional wheat varieties. We apply the real option concept of Maximum Incremental Social Tolerable Irreversible Costs (MISTICs) to do an ex-ante assessment of the socioeconomic potential of HOSUT lines for Germany. We analyze the cost and benefits to farmer and society within two scenarios. Our results of our scenar...

  4. Appraisal of wheat germplasm for adult plant resistance against stripe rust

    Directory of Open Access Journals (Sweden)

    Saleem Kamran

    2015-12-01

    Full Text Available The resurgence of wheat stripe rust is of great concern for world food security. Owing to resistance breakdown and the appearance of new virulent high-temperature adapted races of Puccinia striiformis f. sp. tritici (Pst, many high yielding commercial varieties in the country lost their yield potential. Searching for new sources of resistance is the best approach to mitigate the problem. Quantitative resistance (partial or adult plant or durable resistance is reported to be more stable than race specific resistance. In the current perusal, a repertoire of 57 promising wheat lines along with the KLcheck line Morocco, developed through hybridisation and selection of local and international lines with International Maize and Wheat Improvement Center (CIMMYT origin, were evaluated under natural field conditions at Nuclear Institute for Agriculture and Biology (NIAB during the 2012−2013 and 2013−2014 time periods. Final rust severity (FRS, the area under the rust progress curve (AURPC, the relative area under the rust progress curve (rAURPC, and the coefficient of infection (CI were unraveled to infer the level of quantitative resistance. Final rust severity was recorded when the susceptible check exhibited 100% severity. There were 21 lines which were immune (no disease, 16 which were resistant, five moderately resistant, two resistant-to-moderately resistant, one moderately resistant-to-moderately susceptible, 5 moderately susceptible-to-susceptible, one moderately susceptible, and six exhibited a susceptible response. Nevertheless, 51 lines exhibited a high level of partial resistance while the three lines, NW-5-1212-1, NW-7-30-1, and NW-7-5 all showed a moderate level of partial resistance based on FRS, while 54 lines, on the basis of AURPC and rAURPC, were identified as conferring a high level of partial resistance. Moreover, adult plant resistance was conferred by 47 wheat lines, based on CI value. It was striking that, 13 immune lines

  5. INDUCED GENETIC VARIABILITY AND SELECTION FOR HIGH YIELDING MUTANTS IN BREAD WHEAT(TRITICUM AESTIVUM L.)

    International Nuclear Information System (INIS)

    SOBIEH, S.EL-S.S.

    2007-01-01

    This study was conducted during the two winter seasons of 2004/2005 and 2005/2006 at the experimental farm belonging to Plant Research Department, Nuclear Research Centre, AEA, Egypt.The aim of this study is to determine the effect of gamma rays(150, 200 and 250 Gy) on means of yield and its attributes for exotic wheat variety (vir-25) and induction of genetic variability that permits to perform visual selection through the irradiated populations, as well as to determine difference in seed protein patterns between vir-25 parent variety and some selectants in M2 generation.The results showed that the different doses of gamma rays had non-significant effect on mean value of yield/plant and significant effect on mean values of it's attributes. 0n the other hand, the considered genetic variability was generated as result of applying gamma irradiation. The highest amount of induced genetic variability was detected for number of grains/ spike, spike length and number of spikes/plant. Additionally, these three traits exhibited strong association with grain yield/plant, hence, they were used as a criterion for selection.Some variant plants were selected from radiation treatment 250 Gy, with 2-10 spikes per plant.These variant plants exhibited increasing in spike length and number of gains/spike.The results also revealed that protein electrophoresis were varied in the number and position of bands from genotype to another and various genotypes share bands with molecular weights 31.4 and 3.2 KD.Many bands were found to be specific for the genotype and the nine wheat mutants were characterized by the presence of bands of molecular weights: 151.9, 125.7, 14.1 and 5.7 KD at M-167.4, 21.7 and 8.2 at M-299.7 KD at M-3136.1, 97.6, 49.8, 27.9 and 20.6 KD at M-4 135.2, 95.3 and 28.1 KD at M-5 135.5, 67.7, 47.1, 32.3, 21.9 and 9.6 KD at M-6 126.1, 112.1, 103.3, 58.8, 20.9 and 12.1 KD at M-7 127.7, 116.6, 93.9, 55.0 and 47.4 KD at M-8 141.7, 96.1, 79.8, 68.9, 42.1, 32.7, 22.0 and 13

  6. Characterization of the RAPD for 6 Durum wheat lines (Triticum durum desf.) selected from M4-irradiated population under drought conditions

    International Nuclear Information System (INIS)

    Kalil, M.K.; Nesiem, M.R.A.; Kassem, M.K.M.; Basyouny, M.A.E.

    2012-01-01

    Grains of two durum wheat cultivars Sohag 3 and Beni Suef 3 were irradiated with different doses of gamma ray 0, 150, 250 and 350 Gy to obtain new durum wheat lines characterized by high yielding and drought tolerance. Irradiated grins were cultivated in the field under normal and drought conditions during 2005-2009 Results of field experiments showed that there were new six putative lines S1, S2, S3, S4, B1 and B2. Each putative line had superiority than its parent in grain yield / plant. The putative lines S1 and S2 had superiority over their parent Sohag 3 under normal conditions in grain yield per plant this increase equal 52 and 60% respectively. The putative lines S3 and S4 had superiority in grain yield per plan as compared to Sohag 3 under drought conditions this increase equal 75 to 58% respectively. The putative lines B1 and B2 had superiority in grain yield per plant than their parent Beni Suef 3 under normal condition this increase equal 46 and 12% respectively. Results for RAPD markers showed that each putative line was characterized by positive and negative unique marker. The putative line S1: characterized by four negative marker amplified by OPM-05, OPN-04, OPA-18 and OPB-12 primers. The putative line S2: characterized by one negative unique marker amplified by OPQ-14 marker. The putative line S3: characterized by two positive markers amplified by OPB-07 and OPG-12 markers and one negative unique marker amplified by OPA-10 marker. The putative line S4: characterized by four negative markers amplified by OPM-05, OPN-13, OPQ-12 and OPQ-14 markers and one positive unique marker amplified by OPC-05 marker. The putative line B1: characterized by four positive markers amplified by OPA-10, OPG-12, OPB-07 and OPA-18 markers and three negative markers amplified with OPM-05, OPC-05 and OPB-12 markers. The putative line B2: characterized by three positive unique marker amplified by OPB-07, OPN-04, OPN-10 markers and four negative markers amplified with OPA-10

  7. Effective Identification of Low-Gliadin Wheat Lines by Near Infrared Spectroscopy (NIRS: Implications for the Development and Analysis of Foodstuffs Suitable for Celiac Patients.

    Directory of Open Access Journals (Sweden)

    María Dolores García-Molina

    Full Text Available The aim of this work was to assess the ability of Near Infrared Spectroscopy (NIRS to distinguish wheat lines with low gliadin content, obtained by RNA interference (RNAi, from non-transgenic wheat lines. The discriminant analysis was performed using both whole grain and flour. The transgenic sample set included 409 samples for whole grain sorting and 414 samples for flour experiments, while the non-transgenic set consisted of 126 and 156 samples for whole grain and flour, respectively.Samples were scanned using a Foss-NIR Systems 6500 System II instrument. Discrimination models were developed using the entire spectral range (400-2500 nm and ranges of 400-780 nm, 800-1098 nm and 1100-2500 nm, followed by analysis of means of partial least square (PLS. Two external validations were made, using samples from the years 2013 and 2014 and a minimum of 99% of the flour samples and 96% of the whole grain samples were classified correctly.The results demonstrate the ability of NIRS to successfully discriminate between wheat samples with low-gliadin content and wild types. These findings are important for the development and analysis of foodstuff for celiac disease (CD patients to achieve better dietary composition and a reduction in disease incidence.

  8. Cell lines derived from a Medaka radiation-sensitive mutant have defects in DNA double-strand break responses

    International Nuclear Information System (INIS)

    Hidaka, Masayuki; Oda, Shoji; Mitani, Hiroshi; Kuwahara, Yoshikazu; Fukumoto, Manabu

    2010-01-01

    It was reported that the radiation-sensitive Medaka mutant 'ric1' has a defect in the repair of DNA double-strand breaks (DSBs) induced by γ-rays during early embryogenesis. To study the cellular response of a ric1 mutant to ionizing radiation (IR), we established the mutant embryonic cell lines RIC1-e9, RIC1-e42, RIC1-e43. Following exposure to γ-irradiation, the DSBs in wild-type cells were repaired within 1 h, while those in RIC1 cells were not rejoined even after 2 h. Cell death was induced in the wild-type cells with cell fragmentation, but only a small proportion of the RIC1 cells underwent cell death, and without cell fragmentation. Although both wild-type and RIC1 cells showed mitotic inhibition immediately after γ-irradiation, cell division was much slower to resume in the wild-type cells (20 h versus 12 h). In both wild-type and RIC1 cells, Ser139 phosphorylated H2AX (γH2AX) foci were formed after γ-irradiation, however, the γH2AX foci disappeared more quickly in the RIC1 cell lines. These results suggest that the instability of γH2AX foci in RIC1 cells cause an aberration of the DNA damage response. As RIC1 cultured cells showed similar defective DNA repair as ric1 embryos and RIC1 cells revealed defective cell death and cell cycle checkpoint, they are useful for investigating DNA damage responses in vitro. (author)

  9. Evaluation of Spring Bread Wheat Lines (Triticum aestivum L. and Their Classification by Using Some Agronomic Traits

    Directory of Open Access Journals (Sweden)

    A .R. Tarinejad

    2010-10-01

    Full Text Available To obtain superior genotypes from 30 advanced spring bread wheat cultivars a field experiment in RCBD was carried out in 1388. Traits like yield, yield components, harvest index, peduncle length, awn length, number of leaf, plant height, flag leaf area, penultimate leaf area, days to booting, days to spike emergence, days to flowering and physiological maturity were recorded. Analysis of variance showed significant difference among genotypes for the traits measured at %1 probability level. This indicates considerable genetic variations among the lines evaluated lines. Cluster analysis through Ward method, by using all of the traits, grouped lines into three clusters. Eight lines located in third cluster with respect to some traits including grain yield and other important traits like biological yield, number of seed per spike, spike length, peduncle length, plant height, flag leaf area, and number of spike per m² were superior. Factor analysis, five factors discriminated 78.99% of total variation. In this analysis, the first factor could determine 35% of total variation and nominated as effective factor on grain yield. Line with accession number N-75-5 was found to be highest yielding (289.5 g/m2 (as compared with the other lines.

  10. Cytogenetic analysis and mapping of leaf rust resistance in Aegilops speltoides Tausch derived bread wheat line Selection2427 carrying putative gametocidal gene(s).

    Science.gov (United States)

    Niranjana, M; Vinod; Sharma, J B; Mallick, Niharika; Tomar, S M S; Jha, S K

    2017-12-01

    Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F 1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.

  11. Some problems of using irradiated pollen in genetics and selection of winter soft wheat (Triticum acstivum)

    International Nuclear Information System (INIS)

    Bovkis, E.N.

    1978-01-01

    For the first time the mutagenous efficiency of gamma-irradiation of male gametes(pollen) for genetic and selection purposes has been studied using three sorts of winter wheat. It is shown, that a critical irradiation dose for soft wheat in respect of degree of reducing the mass of 1000 grains and survive is 2.0 krad. Application of irradiated pollen results in a wide spectrum of mutagenous changeability, at that, one part of forms remains constant and the other is splitted according to the type of intraspecific hybrids. Pollen irradiation doses are grounded to produce mutants having some important selection features. Irradiation doses from 0.25 to 0.5 krad are most effective to produce mutants with productive ears and from 1.0 to 1.5 krad to produce short-stem ones. More than 80 mutants are studied in respect of productivity and other indications in a control nursery. Combination productivity value of some short-stem mutants has been studied; it is shown, that as a rule it is preserved at the level of initial sorts. The use of historical method for understanding the regularities of mutant appearance is of great theoretical interest during the investigations. It has been established, that mutants relating to different varieties appear with unequal frequency, which, possibly, is due to the species genotype

  12. Study of genetic behavior of some early maturing and high yielding mutant lines of soybean in different locations

    International Nuclear Information System (INIS)

    Mir Ali, N.; Moualla, M.

    2007-01-01

    this study aimed at checking the stability of some mutant lines from soybean varieties in different locations and to select the best performing lines in each location. These lines 15 were selected according to previous experiments as being early maturing and/or that yield higher than the control. The study lasted three years, the experiment plants were grown in 3 locations: Raqa, Idleb and Lattakia. The experiment was designed as RCBD with 3 replicates for each variety. Results showed significant difference between lines, Locations and year in both earliness and yield, A significant interaction was realized between (line X location) and (line X year) for earliness and yield. For earliness (line X year) was not significant. The reverse situation was realized for yield. Location X year of yield and earliness was significant. Earliness was correlated positively with all characters (except for 100-seed-weight). Yield was positively and significantly correlated with characters of all lines. Three lines with higher yield than the control (142.61%) and same maturity time were selected. (author)

  13. Perennial wheat lines have highly admixed population structure and elevated rates of outcrossing.

    Science.gov (United States)

    Perennial wheat has been proposed to alleviate long standing issues with soil erosion in annual cropping systems, while supporting rural communities and providing grain farmers with a marketable climate-resilient crop. The Washington State University perennial wheat breeding program has created sev...

  14. The agronomic characters of a high protein rice mutant

    International Nuclear Information System (INIS)

    Harn, C.; Won, J.L.; Choi, K.T.

    1975-01-01

    Mutant lines (M 5 -M 9 ) of macro-phenotypic traits from several varieties were screened for the protein content. Mutant 398 (M 9 ) is one of the high protein mutants selected from Hokwang. Three years' tests revealed that it has a high protein line under any condition of cultivation. Except for early maturity and short culmness, other agronomic and yield characters were similar to the original variety. There was no difference between the mutant 398 and its mother variety in grain shape and weight, and also the size and protein content of the embryo. The high protein content of the mutant is attributable to the increase of protein in the endosperm. About 150 normal-looking or a few days-earlier-maturing selections were made from Jinheung variety in the M 3 and screened for protein. Promising lines in terms of the plant type, yield and protein were obtained. (author)

  15. Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines

    Directory of Open Access Journals (Sweden)

    Bosch Dirk

    2009-04-01

    Full Text Available Abstract Background Gluten proteins can induce celiac disease (CD in genetically susceptible individuals. In CD patients gluten-derived peptides are presented to the immune system, which leads to a CD4+ T-cell mediated immune response and inflammation of the small intestine. However, not all gluten proteins contain T-cell stimulatory epitopes. Gluten proteins are encoded by multigene loci present on chromosomes 1 and 6 of the three different genomes of hexaploid bread wheat (Triticum aestivum (AABBDD. Results The effects of deleting individual gluten loci on both the level of T-cell stimulatory epitopes in the gluten proteome and the technological properties of the flour were analyzed using a set of deletion lines of Triticum aestivum cv. Chinese Spring. The reduction of T-cell stimulatory epitopes was analyzed using monoclonal antibodies that recognize T-cell epitopes present in gluten proteins. The deletion lines were technologically tested with respect to dough mixing properties and dough rheology. The results show that removing the α-gliadin locus from the short arm of chromosome 6 of the D-genome (6DS resulted in a significant decrease in the presence of T-cell stimulatory epitopes but also in a significant loss of technological properties. However, removing the ω-gliadin, γ-gliadin, and LMW-GS loci from the short arm of chromosome 1 of the D-genome (1DS removed T-cell stimulatory epitopes from the proteome while maintaining technological properties. Conclusion The consequences of these data are discussed with regard to reducing the load of T-cell stimulatory epitopes in wheat, and to contributing to the design of CD-safe wheat varieties.

  16. Rapid gene isolation in barley and wheat by mutant chromosome sequencing

    Czech Academy of Sciences Publication Activity Database

    Sanchez-Martin, J.; Steuernagel, B.; Ghosh, S.; Herren, G.; Hurni, S.; Adamski, N.; Vrána, Jan; Kubaláková, Marie; Krattinger, S.G.; Wicker, T.; Doležel, Jaroslav; Keller, B.; Wulff, B. B. H.

    2016-01-01

    Roč. 17, OCT 31 (2016), č. článku 221. ISSN 1465-6906 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : induced mutations * mitotic chromosomes * confers resistance * exome capture * genome * identification * evolution * pathogens * hordeum * MutChromSeq * Gene cloning * Mutational genomics * Chromosome flow sorting * Triticeae * Wheat * Barley Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.313, year: 2015

  17. Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids.

    Science.gov (United States)

    Fu, Shulan; Lv, Zhenling; Guo, Xiang; Zhang, Xiangqi; Han, Fangpu

    2013-08-20

    Wheat-rye addition and substitution lines and their self progenies revealed variations in telomeric heterochromatin and centromeres. Furthermore, a mitotically unstable dicentric chromosome and stable multicentric chromosomes were observed in the progeny of a Chinese Spring-Imperial rye 3R addition line. An unstable multicentric chromosome was found in the progeny of a 6R/6D substitution line. Drastic variation of terminal heterochromatin including movement and disappearance of terminal heterochromatin occurred in the progeny of wheat-rye addition line 3R, and the 5RS ditelosomic addition line. Highly stable minichromosomes were observed in the progeny of a monosomic 4R addition line, a ditelosomic 5RS addition line and a 6R/6D substitution line. Minichromosomes, with and without the FISH signals for telomeric DNA (TTTAGGG)n, derived from a monosomic 4R addition line are stable and transmissible to the next generation. The results indicated that centromeres and terminal heterochromatin can be profoundly altered in wheat-rye hybrid derivatives. Copyright © 2013. Published by Elsevier Ltd.

  18. New spring wheat varieties ‘Panianka’ and ‘Diana’

    Directory of Open Access Journals (Sweden)

    О. А. Демидов

    2016-12-01

    Full Text Available Purpose. To create new competitive spring wheat varieties. Methods. Field study, laboratory test. Results. Based on the competitive variety trial, bread spring wheat line ‘Lutescens 07-26’ has been selected due to high values of such traits as resistance to fungal diseases, grain qua­lity(protein content accounted for 15.0%, 1000 kernel weight (44.6 g productivity (3.92 t/ha and lodging resistance (9 points. In 2011, it was submitted to the State variety testing as ‘Panianka’ variety. Durum spring wheat line ‘Leukurum 08-11’ was characterized by a number of positive traits: quite a high productivity (3.05 t/ha, short stem (79 cm, resistance to fungal diseases and lodging(9 points, and in 2011 it was submitted to the State variety testing as ‘Diana’ variety. According to the results of the State variety testing in 2012–2014, spring wheat varieties ‘Panianka’ and ‘Diana’ in 2015 were put on the State Register of plant varieties suitable for dissemination in Ukraine. Conclusions. For farms in Forest-Steppe and Polissia zones of Ukraine, bread and durum spring wheat varieties were bred by V. M.Remeslo Myronivka Institute of Wheat of NAAS of Ukraine that demonstrated rather high potential of productivity and adaptability to stress conditions. This goes to prove that cultivation of domestic spring wheat varieties will promote formation of high and quality grain yields.

  19. Isolation of reovirus T3D mutants capable of infecting human tumor cells independent of junction adhesion molecule-A.

    Directory of Open Access Journals (Sweden)

    Diana J M van den Wollenberg

    Full Text Available Mammalian Reovirus is a double-stranded RNA virus with a distinctive preference to replicate in and lyse transformed cells. On that account, Reovirus type 3 Dearing (T3D is clinically evaluated as oncolytic agent. The therapeutic efficacy of this approach depends in part on the accessibility of the reovirus receptor Junction Adhesion Molecule-A (JAM-A on the target cells. Here, we describe the isolation and characterization of reovirus T3D mutants that can infect human tumor cells independent of JAM-A. The JAM-A-independent (jin mutants were isolated on human U118MG glioblastoma cells, which do not express JAM-A. All jin mutants harbour mutations in the S1 segments close to the region that encodes the sialic acid-binding pocket in the shaft of the spike protein. In addition, two of the jin mutants encode spike proteins with a Q336R substitution in their head domain. The jin mutants can productively infect a wide range of cell lines that resist wt reovirus T3D infection, including chicken LMH cells, hamster CHO cells, murine endothelioma cells, human U2OS and STA-ET2.1 cells, but not primary human fibroblasts. The jin-mutants rely on the presence of sialic-acid residues on the cell surface for productive infection, as is evident from wheat germ agglutinin (WGA inhibition experiments, and from the jin-reovirus resistance of CHO-Lec2 cells, which have a deficiency of sialic-acids on their glycoproteins. The jin mutants may be useful as oncolytic agents for use in tumors in which JAM-A is absent or inaccessible.

  20. Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars

    Directory of Open Access Journals (Sweden)

    Lianne eMerchuk-Ovnat

    2016-04-01

    Full Text Available Wild emmer wheat (Triticum turgidum ssp. dicoccoides is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum and bread (T. aestivum wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4 were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm and water-limited (290–320 mm conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS, and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS. In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass - specifically under drought (7AS QTL in cv. Bar Nir background, under both treatments (2BS QTL, and a greater stability across treatments (1BL QTL. The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.

  1. The introgression of RNAi silencing of γ-gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough.

    Directory of Open Access Journals (Sweden)

    Javier Gil-Humanes

    Full Text Available In the present work the effects on dough quality by the down-regulation of γ-gliadins in different genetic backgrounds of bread wheat were investigated. RNAi-mediated silencing of γ-gliadins was introgressed by conventional crossing into three commercial bread wheat lines (namely 'Gazul', 'Podenco' and 'Arpain', and along with the transgenic line A1152 (cv. Bobwhite compared with their respective wild types. The protein fractions were quantified by RP-HPLC, whereas the technological and mixing properties were assessed by SDSS test and by the Mixograph instrument. Principal component analysis (PCA was carried out for both the wild types and the transgenic lines, showing differences in the factors affecting the technological and mixing properties of the dough as a consequence of the reduction of the γ-gliadins. In transgenic lines, the α- and ω-gliadins, and total gliadins negatively affected the dough strength and tolerance to over-mixing, whereas the L/H ratio showed the opposite effect, positively influencing the dough quality. The increase of the SDSS volume in the transgenic lines of 'Gazul', 'Podenco' and 'Arpain' indicates increased gluten strength and quality respect to the wild types. SDSS volume was found to be positively influenced by the amount of glutenins, which were also increased in the transgenic lines. In addition, a positive effect was observed in the MT, PR1 and RBD in some of the transgenic lines of 'Podenco' and 'Arpain'. In conclusion, the down-regulation of γ-gliadins resulted in stronger doughs and a better tolerance to over-mixing in some transgenic lines. Although the reduction of γ-gliadins seems not to have a direct effect on the mixing and bread-making properties, the compensatory effect on the synthesis of the other prolamins may result in stronger doughs with improved over-mixing resistance.

  2. The introgression of RNAi silencing of γ-gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough.

    Science.gov (United States)

    Gil-Humanes, Javier; Pistón, Fernando; Giménez, María J; Martín, Antonio; Barro, Francisco

    2012-01-01

    In the present work the effects on dough quality by the down-regulation of γ-gliadins in different genetic backgrounds of bread wheat were investigated. RNAi-mediated silencing of γ-gliadins was introgressed by conventional crossing into three commercial bread wheat lines (namely 'Gazul', 'Podenco' and 'Arpain'), and along with the transgenic line A1152 (cv. Bobwhite) compared with their respective wild types. The protein fractions were quantified by RP-HPLC, whereas the technological and mixing properties were assessed by SDSS test and by the Mixograph instrument. Principal component analysis (PCA) was carried out for both the wild types and the transgenic lines, showing differences in the factors affecting the technological and mixing properties of the dough as a consequence of the reduction of the γ-gliadins. In transgenic lines, the α- and ω-gliadins, and total gliadins negatively affected the dough strength and tolerance to over-mixing, whereas the L/H ratio showed the opposite effect, positively influencing the dough quality. The increase of the SDSS volume in the transgenic lines of 'Gazul', 'Podenco' and 'Arpain' indicates increased gluten strength and quality respect to the wild types. SDSS volume was found to be positively influenced by the amount of glutenins, which were also increased in the transgenic lines. In addition, a positive effect was observed in the MT, PR1 and RBD in some of the transgenic lines of 'Podenco' and 'Arpain'. In conclusion, the down-regulation of γ-gliadins resulted in stronger doughs and a better tolerance to over-mixing in some transgenic lines. Although the reduction of γ-gliadins seems not to have a direct effect on the mixing and bread-making properties, the compensatory effect on the synthesis of the other prolamins may result in stronger doughs with improved over-mixing resistance.

  3. Phosphorus Partitioning of Soybean Lines Containing Different Mutant Alleles of Two Soybean Seed-Specific Adenosine Triphosphate-Binding Cassette Phytic Acid Transporter Paralogs

    Directory of Open Access Journals (Sweden)

    Jason D. Gillman

    2013-03-01

    Full Text Available Seed phytate is a repository of P and minerals in soybean [ (L. Merr.] seeds that limits P and mineral bioavailability for monogastric animals (e.g., humans, swine [], and poultry [especially chicken, ] due to insufficient digestive tract phytase activity. We previously identified epistatic recessive mutations affecting two paralogous adenosine triphosphate-binding cassette phytic acid transporter genes (one a nonsense mutation in and the other a missense mutation in as the molecular genetic basis in the ethyl methanesulfonate (EMS-induced mutant low phytate soybean line M153. An additional mutant low phytate line, M766, contained one single nucleotide polymorphism within the ninth intron of the locus as well as a nonsense mutation in . The objectives of this research were to clarify the genetics underlying the low phytate phenotype in line M766 and to determine P partitioning in new combinations of mutant alleles from M766 and M153. Inheritance of nonsense alleles affecting both ( genes (one from M153 and one from M766 led to the production of viable seeds that contained transgressive reductions in total seed phytate and significantly higher levels of inorganic phosphate than has been reported for nontransgenic soybean material and will allow efficient molecular selection of soybeans with even greater reductions of phytate for improved quality soybean meal.

  4. Nuclear and allied approaches in improvement of wheat for disease and pest resistance

    Energy Technology Data Exchange (ETDEWEB)

    Sawhney, R N

    1987-09-01

    The paper attempts to review information on the role of physical and chemical mutagens used directly and indirectly in the improvement of wheat for disease and pest resistance. The illustrations relate to transfer of many useful genes for resistance to rusts and pest from alien sources to Triticum aestivum. Popular wheats have been rectified for resistance to rusts mostly without any negative effects on yield potential. The mutation approach has also been successful in the development of multilines. Multiline constituting mutant components conferring simultaneous resistance to more than one rust pathogen has an additional value. The use of induced mutagenesis in breaking linkage between the genes conferring resistance and other genes for undesirable characters has been described. New disease resistant mutant variations with additional changes of positive effect have been obtained for practical utilization with widening the genetic base of future breeding programmes. (author). 56 refs.

  5. Results of the use of induced mutants in maize breeding

    International Nuclear Information System (INIS)

    Balint, A.; Kovacs, Gezane; Hajos, Laszlone; Geczki, I.

    1979-01-01

    The investigated mutagens have the same effect on the increasing of protein content. In the case of WF9 mutants no essential improvement can be found compared with the untreated co trol selected for protein. ''Lines'' flowering 16-19 days earlier than controls were produced; the most effective agent of this production is the fast neutron. Mutation caused a significant change in their combining ability, but there were more negative variants than positive ones. Three hybrids with stronger stalk than that of MvSc 620 were obtained. Stalk standing ability of mutants did not improve. The flowering date of lines (male) is in r=+0.5672 +++ correlation to the yield of their test hybrid. Mutant lines in SC test cross seemed to be stable. The correlation of the yield of two years is r=+0.8659. The correlation of both the yield of test hybrids to the protein content of mutant lines (r=0.2307) and the flowering date of lines to their protein content (r=-0.3032) is loose. The earliest mutant line of WF9, which produced low crop (5000 kg/ha) when crossed with N6, gave a high-yielding hybrid when crossed with other lines. The average yield of eight combinations was 10050 kg/ha and the highest yield was 11680 kg/ha. (author)

  6. GmPGIP3 enhanced resistance to both take-all and common root rot diseases in transgenic wheat.

    Science.gov (United States)

    Wang, Aiyun; Wei, Xuening; Rong, Wei; Dang, Liang; Du, Li-Pu; Qi, Lin; Xu, Hui-Jun; Shao, Yanjun; Zhang, Zengyan

    2015-05-01

    Take-all (caused by the fungal pathogen Gaeumannomyces graminis var. tritici, Ggt) and common root rot (caused by Bipolaris sorokiniana) are devastating root diseases of wheat (Triticum aestivum L.). Development of resistant wheat cultivars has been a challenge since no resistant wheat accession is available. GmPGIP3, one member of polygalacturonase-inhibiting protein (PGIP) family in soybean (Glycine max), exhibited inhibition activity against fungal endopolygalacturonases (PGs) in vitro. In this study, the GmPGIP3 transgenic wheat plants were generated and used to assess the effectiveness of GmPGIP3 in protecting wheat from the infection of Ggt and B. sorokiniana. Four independent transgenic lines were identified by genomic PCR, Southern blot, and reverse transcription PCR (RT-PCR). The introduced GmPGIP3 was integrated into the genomes of these transgenic lines and could be expressed. The expressing GmPGIP3 protein in these transgenic wheat lines could inhibit the PGs produced by Ggt and B. sorokiniana. The disease response assessments postinoculation showed that the GmPGIP3-expressing transgenic wheat lines displayed significantly enhanced resistance to both take-all and common root rot diseases caused by the infection of Ggt and B. sorokiniana. These data suggested that GmPGIP3 is an attractive gene resource in improving resistance to both take-all and common root rot diseases in wheat.

  7. Evaluation of Spring Bread Wheat Lines (Triticum aestivum L. and Their Classification by Using Some Agronomic Traits

    Directory of Open Access Journals (Sweden)

    A. Daryani

    2011-06-01

    Full Text Available To obtain superior genotypes from 30 advanced spring bread wheat cultivars a field experiment in RCBD was carried out in 1388. Traits like yield, yield components, harvest index, peduncle length, awn length, number of leaf, plant height, flag leaf area, penultimate leaf area, days to booting, days to spike emergence, days to flowering and physiological maturity were recorded. Analysis of variance showed significant difference among genotypes for the traits measured at %1 probability level. This indicates considerable genetic variations among the lines evaluated. Cluster analysis of traits measured, grouped lines into three categories. Eight lines were located in third cluster with respect to some traits including grain yield and other important traits like biological yield, number of seed per spike, spike length, peduncle length, plant height, flag leaf area, and number of spike per m² were found to be superior. By using factor analysis, five factors determined 78.99% of total variation. In this analysis, the first factor could account for 35% of total variation and nominated as effective factor on grain yield. Line with accession number of N-75-5 was found to be highest yielding (289.5 g/m2 (as compared with the other lines.

  8. Involvement of Disperse Repetitive Sequences in Wheat/Rye Genome Adjustment

    Directory of Open Access Journals (Sweden)

    Manuela Silva

    2012-07-01

    Full Text Available The union of different genomes in the same nucleus frequently results in hybrid genotypes with improved genome plasticity related to both genome remodeling events and changes in gene expression. Most modern cereal crops are polyploid species. Triticale, synthesized by the cross between wheat and rye, constitutes an excellent model to study polyploidization functional implications. We intend to attain a deeper knowledge of dispersed repetitive sequence involvement in parental genome reshuffle in triticale and in wheat-rye addition lines that have the entire wheat genome plus each rye chromosome pair. Through Random Amplified Polymorphic DNA (RAPD analysis with OPH20 10-mer primer we unraveled clear alterations corresponding to the loss of specific bands from both parental genomes. Moreover, the sequential nature of those events was revealed by the increased absence of rye-origin bands in wheat-rye addition lines in comparison with triticale. Remodeled band sequencing revealed that both repetitive and coding genome domains are affected in wheat-rye hybrid genotypes. Additionally, the amplification and sequencing of pSc20H internal segments showed that the disappearance of parental bands may result from restricted sequence alterations and unraveled the involvement of wheat/rye related repetitive sequences in genome adjustment needed for hybrid plant stabilization.

  9. Infestation of transgenic powdery mildew-resistant wheat by naturally occurring insect herbivores under different environmental conditions.

    Directory of Open Access Journals (Sweden)

    Fernando Álvarez-Alfageme

    Full Text Available A concern associated with the growing of genetically modified (GM crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L. and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low.

  10. Evolving of mutant lines resistant to lodging, blast, and high yield in rice by induce mutation using gamma ray (physical mutagen)

    International Nuclear Information System (INIS)

    Majd, F.; Rahimi, M.; Rezazadeh, M.

    2003-01-01

    Induction of mutation for the purpose of producing variations in the gene pool has been used in recent years. In this experiment the locally adapted rice C V Moosa-Tarom was used as a high quality, tall and very lodging susceptible mutation material. The main purpose of this project was to evolve lodging resistant mutants of high yielding. The elite seeds of Moosa-Tarom variety after moisture regulation were exposed to 100, 200 and 300 Gy from Cobalt 60 source at the Nuclear Research Center. The irradiated seeds were sown in the field along with a comparable number of unirradiated seeds taken as control. All the first panicles of M1 plants were individually harvested and classified according to the dose rate as M2 material . Among M2 plant populations 203 plants that appeared from the agronomic point of view, along with a number of on unirradiated seeds, were selected and moved to the next generations. During subsequent screening for three generations (M 3-M 5) and due to lodging resistant, height and efficient factors of yield potential some mutant lines were harvested. From these lines in a preliminary and advanced randomized complete design agronomic traits, 13 promising lines were selected. From the experiment, line 43-3 were confirmed, which is characterized by lodging resistant and high yield. This line showed relative superiority and introduced to Rice Research Institute

  11. Partial resistance to stripe rust and its effect on sustainability of wheat yield

    International Nuclear Information System (INIS)

    Qamar, M.; Din, R.U.; Gardazi, D.A.

    2014-01-01

    Stripe rust (Puccinia striiformis Westend. f. sp. tritici) poses a serious threat to wheat production in cooler areas of Pakistan. The 70% area of wheat in Pakistan is prone to stripe rust disease. It can cause 10-17% yield losses if susceptible cultivars are planted under favorable conditions. Level of partial plant resistance in bread wheat and its impact on sustainable wheat production was studied at the National Agricultural Research Centre, Islamabad under natural conditions in the field. Eleven Pakistani commercial wheat cultivars/advance lines including check (Inqalab 91) were assessed for the level of partial resistance against stripe rust using Area Under the Disease Progress Curve (AUDPC), disease severity (DS) and epidemic growth rate in comparison with wheat cultivar, Inqalab 91. During 2007 cropping season, natural epidemic was developed and relative AUDPC was recorded from 0 to 100% whereas the 2008 cropping season was dry and no stripe rust appeared. Two advanced lines (NR 268 and NR 285) showed the infection type (IT) less than 7 (incompatible reaction) to the mixture of prevailing stripe rust inoculums. Very low level of DS and AUDPC were recorded in the remaining cultivars/lines indicating a high level of partial resistance to stripe rust compared to the susceptible check cultivar, Inqalab 91. Among eight cultivars/lines that showed compatible type of reaction (IT greater then equal to 7), one was resistant (relative AUDPC = 20% of Inqalab 91) and six showed very high resistance levels (relative AUDPC greater then equal to 5%). Maximum level of resistance (relative AUDPC = 0.1%) was observed in advanced line, NR 271. The wheat cultivars/lines that showed a slow disease development (low DS and AUDPC), could be considered as -1 partially resistant for stripe rust infection. The yield (2178 kg ha) of susceptible check cultivar Inqalab-91 during 2007 was reduced to 45% as -1 compared to its yield (3945 kg ha) in epidemic free year (2008). Thus the use

  12. Mixtures of genetically modified wheat lines outperform monocultures

    OpenAIRE

    Zeller, Simon L; Kalinina, Olena; Flynn, Dan F B; Schmid, Bernhard

    2012-01-01

    Biodiversity research shows that diverse plant communities are more stable and productive than monocultures. Similarly, populations in which genotypes with different pathogen resistance are mixed may have lower pathogen levels and thus higher productivity than genetically uniform populations. We used genetically modified (GM) wheat as a model system to test this prediction, because it allowed us to use genotypes that differed only in the trait pathogen resistance but were otherwise identical....

  13. Nitrate reductase and photosynthetic activities of wheat and their relationship with plant productivity under soil water deficit conditions (abstract)

    International Nuclear Information System (INIS)

    Ashraf, M.Y.; Sarwar, G.; Hussain, F.

    2005-01-01

    Experiments were conducted in lysimeters with wheat during two consecutive years. The first year experiment comprised of eight wheat genotypes with four water stress treatments, i.e. normal irrigation, pre-anthesis drought, post-anthesis drought and terminal drought, with four replications. The results showed that yield and yield parameters reduced with the severity of drought in all wheat lines. However, wheat lines Chakwal-86, DS-4 and Barani-83 had comparatively higher yield and yield components than others. The maximum reduction in all parameters was under terminal drought. The difference between pre- and post-anthesis drought was nonsignificant, particularly for grain yield. The second experiment was conducted with four wheat lines: two were tolerant (Chakwal-86 and DS-4) and two susceptible (Pavon and DS-17) under similar environments with same treatments to study the photosynthetic efficiency, nitrogen metabolism and their relationship with plant productivity (yield). The results showed that leaf area, transpiration, dry matter accumulation and nitrate reductase activity were reduced while diffusive resistance and total amino acids increased in all the wheat lines under water deficit conditions. The relationship between yield and leaf area, transpiration, dry matter accumulation and nitrate reductase activity was positive. The overall results showed that wheat lines Chakwal-86 and DS-4 showed better performance than others. (author)

  14. An extra early mutant of pigeonpea

    International Nuclear Information System (INIS)

    Ravikesavan, R.; Kalaimagal, T.; Rathnaswamy, R.

    2001-01-01

    The redgram (Cajanus cajan (L.) Huth) variety 'Prabhat DT' was gamma irradiated with 100, 200, 300 and 400 Gy doses. Several mutants have been identified viz., extra early mutants, monostem mutants, obcordifoliate mutants and bi-stigmatic mutants. The extra early mutant was obtained when treated with 100 Gy dose. The mutant was selfed and forwarded from M 2 to M 4 generation. In the M 4 generation the mutant line was raised along with the parental variety. Normal cultural practices were followed and the biometrical observations were recorded. It was observed that for the characters viz., total number of branches per plant, number of pods per plants, seeds per pod, 100 seed weight and seed yield per plant there was no difference between the mutant and parent variety. Whereas, regarding the days to flowering and maturity the mutants were earlier than the parents. The observation was recorded from two hundred plants each. The mutant gives the same yield in 90 days as that of the parent variety in 107 days, which make it an economic mutant

  15. Genetic Analysis of Fusarium Head Blight Resistance in CIMMYT Bread Wheat Line C615 Using Traditional and Conditional QTL Mapping.

    Science.gov (United States)

    Yi, Xin; Cheng, Jingye; Jiang, Zhengning; Hu, Wenjing; Bie, Tongde; Gao, Derong; Li, Dongsheng; Wu, Ronglin; Li, Yuling; Chen, Shulin; Cheng, Xiaoming; Liu, Jian; Zhang, Yong; Cheng, Shunhe

    2018-01-01

    Fusarium head blight (FHB) is a destructive wheat disease present throughout the world, and host resistance is an effective and economical strategy used to control FHB. Lack of adequate resistance resource is still a main bottleneck for FHB genetics and wheat breeding research. The synthetic-derived bread wheat line C615, which does not carry the Fhb1 gene, is a promising source of FHB resistance for breeding. A population of 198 recombinant inbred lines (RILs) produced by crossing C615 with the susceptible cultivar Yangmai 13 was evaluated for FHB response using point and spray inoculations. As the disease phenotype is frequently complicated by other agronomic traits, we used both traditional and multivariate conditional QTL mapping approaches to investigate the genetic relationships (at the individual QTL level) between FHB resistance and plant height (PH), spike compactness (SC), and days to flowering (FD). A linkage map was constructed from 3,901 polymorphic SNP markers, which covered 2,549.2 cM. Traditional and conditional QTL mapping analyses found 13 and 22 QTL for FHB, respectively; 10 were identified by both methods. Among these 10, three QTL from C615 were detected in multiple years; these QTL were located on chromosomes 2AL, 2DS, and 2DL. Conditional QTL mapping analysis indicated that, at the QTL level, SC strongly influenced FHB in point inoculation; whereas PH and SC contributed more to FHB than did FD in spray inoculation. The three stable QTL ( QFhbs-jaas.2AL, QFhbp-jaas.2DS , and QFhbp-jaas.2DL ) for FHB were partly affected by or were independent of the three agronomic traits. The QTL detected in this study improve our understanding of the genetic relationships between FHB response and related traits at the QTL level and provide useful information for marker-assisted selection for the improvement of FHB resistance in breeding.

  16. Genetic Analysis of Fusarium Head Blight Resistance in CIMMYT Bread Wheat Line C615 Using Traditional and Conditional QTL Mapping

    Science.gov (United States)

    Yi, Xin; Cheng, Jingye; Jiang, Zhengning; Hu, Wenjing; Bie, Tongde; Gao, Derong; Li, Dongsheng; Wu, Ronglin; Li, Yuling; Chen, Shulin; Cheng, Xiaoming; Liu, Jian; Zhang, Yong; Cheng, Shunhe

    2018-01-01

    Fusarium head blight (FHB) is a destructive wheat disease present throughout the world, and host resistance is an effective and economical strategy used to control FHB. Lack of adequate resistance resource is still a main bottleneck for FHB genetics and wheat breeding research. The synthetic-derived bread wheat line C615, which does not carry the Fhb1 gene, is a promising source of FHB resistance for breeding. A population of 198 recombinant inbred lines (RILs) produced by crossing C615 with the susceptible cultivar Yangmai 13 was evaluated for FHB response using point and spray inoculations. As the disease phenotype is frequently complicated by other agronomic traits, we used both traditional and multivariate conditional QTL mapping approaches to investigate the genetic relationships (at the individual QTL level) between FHB resistance and plant height (PH), spike compactness (SC), and days to flowering (FD). A linkage map was constructed from 3,901 polymorphic SNP markers, which covered 2,549.2 cM. Traditional and conditional QTL mapping analyses found 13 and 22 QTL for FHB, respectively; 10 were identified by both methods. Among these 10, three QTL from C615 were detected in multiple years; these QTL were located on chromosomes 2AL, 2DS, and 2DL. Conditional QTL mapping analysis indicated that, at the QTL level, SC strongly influenced FHB in point inoculation; whereas PH and SC contributed more to FHB than did FD in spray inoculation. The three stable QTL (QFhbs-jaas.2AL, QFhbp-jaas.2DS, and QFhbp-jaas.2DL) for FHB were partly affected by or were independent of the three agronomic traits. The QTL detected in this study improve our understanding of the genetic relationships between FHB response and related traits at the QTL level and provide useful information for marker-assisted selection for the improvement of FHB resistance in breeding. PMID:29780395

  17. Examining the Transcriptional Response in Wheat Fhb1 Near-Isogenic Lines to Fusarium graminearum Infection and Deoxynivalenol Treatment

    Directory of Open Access Journals (Sweden)

    Anna N. Hofstad

    2016-03-01

    Full Text Available head blight (FHB is a disease caused predominantly by the fungal pathogen that affects wheat and other small-grain cereals and can lead to severe yield loss and reduction in grain quality. Trichothecene mycotoxins, such as deoxynivalenol (DON, accumulate during infection and increase pathogen virulence and decrease grain quality. The locus on wheat chromosome 3BS confers Type II resistance to FHB and resistance to the spread of infection on the spike and has been associated with resistance to DON accumulation. To gain a better genetic understanding of the functional role of and resistance or susceptibility to FHB, we examined DON and ergosterol accumulation, FHB resistance, and the whole-genome transcriptomic response using RNA-seq in a near-isogenic line (NIL pair carrying the resistant and susceptible alleles for during infection and DON treatment. Our results provide a gene expression atlas for the resistant and susceptible wheat– interaction. The DON concentration and transcriptomic results show that the rachis is a key location for conferring Type II resistance. In addition, the wheat transcriptome analysis revealed a set of -responsive genes that may play a role in resistance and a set of DON-responsive genes that may play a role in trichothecene resistance. Transcriptomic results from the pathogen show that the genome responds differently to the host level of resistance. The results of this study extend our understanding of host and pathogen responses in the wheat– interaction.

  18. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops

    Directory of Open Access Journals (Sweden)

    Philippa eBorrill

    2014-02-01

    Full Text Available Wheat, like many other staple cereals, contains low levels of the essential micronutrients iron and zinc. Up to two billion people worldwide suffer from iron and zinc deficiencies, particularly in regions with predominantly cereal-based diets. Although wheat flour is commonly fortified during processing, an attractive and more sustainable solution is biofortification, which requires developing new varieties of wheat with inherently higher iron and zinc content in their grains. Until now most studies aimed at increasing iron and zinc content in wheat grains have focused on discovering natural variation in progenitor or related species. However, recent developments in genomics and transformation have led to a step change in targeted research on wheat at a molecular level. We discuss promising approaches to improve iron and zinc content in wheat using knowledge gained in model grasses. We explore how the latest resources developed in wheat, including sequenced genomes and mutant populations, can be exploited for biofortification. We also highlight the key research and practical challenges that remain in improving iron and zinc content in wheat.

  19. Variation of several agronomic and biochemical traits in γ-ray induced mutant soybeans

    International Nuclear Information System (INIS)

    Shim, Kyo Moon; Kim, Sun Hyung; Kim, Nam Soo; Son, Hi Sup; Rhee, Hae Ik

    1996-01-01

    Two soybean cultivars(Paldalkong and Bangsakong) were irradiated with gamma-ray to reduce seed size, which is an important trait for soybean sprout and the derived mutant soybeans were analyzed in several agronomic and biochemical traits. There were high levels of variations in quantitative traits among the mutants. Several mutant lines showed higher yield and smaller seed than their parents. Qualitative traits such as seed coat color or pubescent color were also changed in a few lines. Biochemical variations were also observed among the mutants. In seed storage protein analysis, many mutant lines showed reduced intensities in β-subunits in 7S globulin than their parents and an additional band in the acidic subunit at 31KDa. Two mutant lines derived from Paldalkong showed an additional band and a shifted band of protease inhibitor by electrophoretic analysis. Variations in isozymes and RAPD were also observed among the mutants. Six isozymes(Adh, Est, Gdh, Idh, Mdh and Pgm) among eleven isozymes showed some variations and six out of ten primers showed polymorphic amplified DNA fragments among the mutants. (author)

  20. Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines

    Directory of Open Access Journals (Sweden)

    Jianmin Song

    2016-11-01

    Full Text Available Previous studies have shown that wheat grain yield is seriously affected by drought stress, and leaf cuticular wax is reportedly associated with drought tolerance. However, most studies have focused on cuticular wax biosynthesis and model species. The effects of cuticular wax on wheat drought tolerance have rarely been studied. The aims of the current study were to study the effects of leaf cuticular wax on wheat grain yield under drought stress using the above-mentioned wheat NILs and to discuss the possible physiological mechanism of cuticular wax on high grain yield under drought stress. Compared to water-irrigated (WI conditions, the cuticular wax content (CWC in glaucous and non-glaucous NILs under drought-stress (DS conditions both increased; mean increase values were 151.1% and 114.4%, respectively, which was corroborated by scanning electronic microscopy images of large wax particles loaded on the surfaces of flag leaves. The average yield of glaucous NILs was higher than that of non-glaucous NILs under DS conditions in 2014 and 2015; mean values were 7368.37 kg·ha-1 and 7103.51 kg·ha-1. This suggested that glaucous NILs were more drought-tolerant than non-glaucous NILs (P = 0.05, which was supported by the findings of drought tolerance indices TOL and SSI in both years, the relatively high water potential and relative water content, and the low ELWL. Furthermore, the photosynthesis rate (Pn of glaucous and non-glaucous wheat NILs under DS conditions decreased by 7.5% and 9.8%, respectively; however, glaucous NILs still had higher mean values of Pn than those of non-glaucous NILs, which perhaps resulted in the higher yield of glaucous NILs. This could be explained by the fact that glaucous NILs had a smaller Fv/Fm reduction, a smaller PI reduction and a greater ABS/RC increase than non-glaucous NILs under DS conditions. This is the first report to show that wheat cuticular wax accumulation is associated with drought tolerance. Moreover

  1. Resistance of Wheat Accessions to the English Grain Aphid Sitobion avenae

    Science.gov (United States)

    Hu, Xiang-Shun; Liu, Ying-Jie; Wang, Yu-Han; Wang, Zhe; Yu, Xin-lin; Wang, Bo; Zhang, Gai-Sheng; Liu, Xiao-Feng; Hu, Zu-Qing; Zhao, Hui-Yan; Liu, Tong-Xian

    2016-01-01

    The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice between 2 wheat varieties, strongly discriminated against certain varieties. Specifically, the ‘Amigo’ variety had the lowest palatability to S. avenae alatae of all varieties. ‘Tm’ (Triticum monococcum), ‘Astron,’ ‘Xanthus,’ ‘Ww2730,’ and ‘Batis’ varieties also had lower palatability than other varieties. Thus, these accessions may use antibiosis as the resistant mechanism. In contrast, under field conditions, there were no significant differences in the number of alatae detected on the 14 wheat varieties. One synthetic line (98-10-30, a cross between of Triticum aestivum (var. Chris) and Triticum turgidum (var. durum) hybridization) had low aphid numbers but high yield loss, indicating that it has high antibiosis, but poor tolerance. In comparison, ‘Amigo,’ ‘Xiaoyan22,’ and some ‘186Tm’ samples had high aphid numbers but low yield loss rates, indicating they have low antibiosis, but good tolerance. Aphid population size and wheat yield loss rates greatly varied in different fields and years for ‘98-10-35,’ ‘Xiaoyan22,’ ‘Tp,’ ‘Tam200,’ ‘PI high,’ and other ‘186Tm’ samples, which were hybrid offspring of T. aestivum and wheat related species. Thus, these germplasm should be considered for use in future studies. Overall, S. avenae is best adapted to ‘Xinong1376,’ because it was the most palatable variety, with the greatest yield loss rates of all 14 wheat varieties. However, individual varieties/lines influenced aphid populations differently in different years. Therefore, we strongly recommend a combination of

  2. Genetic and epigenetic alterations induced by different levels of rye genome integration in wheat recipient.

    Science.gov (United States)

    Zheng, X L; Zhou, J P; Zang, L L; Tang, A T; Liu, D Q; Deng, K J; Zhang, Y

    2016-06-17

    The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new wheat cultivars carrying alien rye germplasm. In this study, we investigated the genetic and epigenetic alterations in two sets of wheat-rye disomic addition lines (1R-7R) and the corresponding triticales. We used expressed sequence tag-simple sequence repeat, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analyses to analyze the effects of the introduction of alien chromosomes (either the entire genome or sub-genome) to wheat genetic background. We found obvious and diversiform variations in the genomic primary structure, as well as alterations in the extent and pattern of the genomic DNA methylation of the recipient. Meanwhile, these results also showed that introduction of different rye chromosomes could induce different genetic and epigenetic alterations in its recipient, and the genetic background of the parents is an important factor for genomic and epigenetic variation induced by alien chromosome addition.

  3. Breeding of newly licensed wheat variety Huapei 8 and improved ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-28

    Dec 28, 2011 ... Full Length Research Paper. Breeding of newly licensed wheat variety Huapei 8 and improved breeding strategy by anther culture ... more efficient in pure line selection rather than the hete- .... Regional and productivity tests showed that Huapei 8 had .... Large-scale production of wheat and triticale double.

  4. Durum Wheat (Triticum Durum Desf. Lines Show Different Abilities to Form Masked Mycotoxins under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Martina Cirlini

    2013-12-01

    Full Text Available Deoxynivalenol (DON is the most prevalent trichothecene in Europe and its occurrence is associated with infections of Fusarium graminearum and F. culmorum, causal agents of Fusarium head blight (FHB on wheat. Resistance to FHB is a complex character and high variability occurs in the relationship between DON content and FHB incidence. DON conjugation to glucose (DON-3-glucoside, D3G is the primary plant mechanism for resistance towards DON accumulation. Although this mechanism has been already described in bread wheat and barley, no data are reported so far about durum wheat, a key cereal in the pasta production chain. To address this issue, the ability of durum wheat to detoxify and convert deoxynivalenol into D3G was studied under greenhouse controlled conditions. Four durum wheat varieties (Svevo, Claudio, Kofa and Neodur were assessed for DON-D3G conversion; Sumai 3, a bread wheat variety carrying a major QTL for FHB resistance (QFhs.ndsu-3B, was used as a positive control. Data reported hereby clearly demonstrate the ability of durum wheat to convert deoxynivalenol into its conjugated form, D3G.

  5. Genetics of flowering time in bread wheat Triticum aestivum

    Indian Academy of Sciences (India)

    Twelve Indian spring wheat cultivars and the spring wheat landrace Chinese Spring were characterized for their flowering times by seeding them every month for five years under natural field conditions in New Delhi. Near isogenic Vrn-1 Ppd-D1 and Vrn-1 Ppd-D1a lines constructed in two genetic backgrounds were also ...

  6. 29-34 Yellow Rust Resistance in Advanced Lines and Commercial ...

    African Journals Online (AJOL)

    rust pathogen. The objective of this study was to characterize seedling yellow rust resistance in 21 advanced bread wheat lines and 20 cultivars from Ethiopia. Yellow rust infection types (ITs) produced on test wheat lines and cultivars from nine yellow rust races were compared with ITs produced on standard differential lines ...

  7. Polyploidy and chromosomal aberrations induced by mutagens in open flowering sterile mutants of spring barley

    Energy Technology Data Exchange (ETDEWEB)

    Manzyuk, V T; Kozachenko, M R; Kirichenko, V V

    1975-01-01

    Two types of aberration in meiosis were observed which induced sterility in chemical and radiational mutations of spring wheat: asynapsis and absence of cytokinesis, and chromosomal aberrations in the form of bridges and fragments. Gamma-mutants have many more chromosomal aberrations in the form of fragments, bridges and cells with micronuclei than do chemical mutants. The percent of tetrads with micronuclei is 1.5-2 times greater than the number of dyads with such nuclei. We obtained an original gamma-mutant exhibiting depolyploidization and polyploidization in the mother cells; we also observed cells possessing chromosomal associations of n, 2n, 4n, 68, 8n and greater.

  8. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Simone von Burg

    Full Text Available In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew became more favourable for another pest (aphids.

  9. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Science.gov (United States)

    von Burg, Simone; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2012-01-01

    In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).

  10. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat.

    Science.gov (United States)

    Rong, Wei; Qi, Lin; Wang, Jingfen; Du, Lipu; Xu, Huijun; Wang, Aiyun; Zhang, Zengyan

    2013-08-01

    Take-all, caused by soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt), is a devastating root disease of wheat (Triticum aestivum) worldwide. Breeding resistant wheat cultivars is the most promising and reliable approach to protect wheat from take-all. Currently, no resistant wheat germplasm is available to breed cultivars using traditional methods. In this study, gene transformation was carried out using Snakin-1 (SN1) gene isolated from potato (Solanum tuberosum) because the peptide shows broad-spectrum antimicrobial activity in vitro. Purified SN1 peptide also inhibits in vitro the growth of Ggt mycelia. By bombardment-mediated method, the gene SN1 was transformed into Chinese wheat cultivar Yangmai 18 to generate SN1 transgenic wheat lines, which were used to assess the effectiveness of the SN1 peptide in protecting wheat from Ggt. Genomic PCR and Southern blot analyses indicated that the alien gene SN1 was integrated into the genomes of five transgenic wheat lines and heritable from T₀ to T₄ progeny. Reverse transcription-PCR and Western blot analyses showed that the introduced SN1 gene was transcribed and highly expressed in the five transgenic wheat lines. Following challenging with Ggt, disease test results showed that compared to segregants lacking the transgene and untransformed wheat plants, these five transgenic wheat lines expressing SN1 displayed significantly enhanced resistance to take-all. These results suggest that SN1 may be a potentially transgenic tool for improving the take-all resistance of wheat.

  11. Development of high yielding mutants in lentil

    International Nuclear Information System (INIS)

    Rajput, M.A.; Sarwar, G.; Siddiqui, K.A.

    2001-01-01

    Full text: Lentil (Lens culinaris Medik.) locally known as Masoor, is the second most important rabi pulse crop, after chickpea, in Pakistan. It is cultivated on an area of over 63,400 ha, which constitutes about 4.83% of the total area under pulses. The annual production of the crop is 28,200 tones with an average yield of 445 kg/ha. Yield at the national level is very low, about one-half of the world's yield, which is mainly due to non-availability of high yield potential genotypes. Keeping in view the importance of mutants in developing a large number of new varieties, an induced mutations programme was initiated at AEARC, Tandojam during 1987-88, to develop high yielding varieties in lentil. For this, seeds of two lentil varieties, 'Masoor-85' and 'ICARDA-8' had been irradiated with gamma-rays ranging from 100-600 Gy in NIAB, Faisalabad during 1990. Selections were made in M2 on the basis of earliness, plant height, branches/plant and 100 grain weight. After confirming these mutants in M3 they were promoted in station yield trials and studied continuously for three consecutive years (1993- 1995). Overall results revealed that these mutants have consistent improvement of earliness in flowering and maturity. Plant height also increased in all mutant lines except AEL 23/40/91 where reduction in this attribute was observed as compared to parent variety. Mutant lines AEL 49/20/91 and AEL 13/30/91 showed improvement in 100 grain weight. The improvement of some agronomic characters enhanced the yield of mutant lines in comparison to parent varieties (Masoor-85 and ICARDA-8). The diversity in yield over the respective parents was computed from 6.94 to 60.12%. From these encouraging results it is hoped that mutant lines like AEL 12/30/91 and AEL 49/20/91 may serve as potential lentil genotypes in future. (author)

  12. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis.

    Science.gov (United States)

    Li, Zhao; Zhou, Miaoping; Zhang, Zengyan; Ren, Lijuan; Du, Lipu; Zhang, Boqiao; Xu, Huijun; Xin, Zhiyong

    2011-03-01

    Fusarium head blight (scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat (Triticum aestivum L.) worldwide. Wheat sharp eyespot, mainly caused by Rhizoctonia cerealis, is one of the major diseases of wheat in China. The defensin RsAFP2, a small cyteine-rich antifungal protein from radish (Raphanus sativus), was shown to inhibit growth in vitro of agronomically important fungal pathogens, such as F. graminearum and R. cerealis. The RsAFP2 gene was transformed into Chinese wheat variety Yangmai 12 via biolistic bombardment to assess the effectiveness of the defensin in protecting wheat from the fungal pathogens in multiple locations and years. The genomic PCR and Southern blot analyses indicated that RsAFP2 was integrated into the genomes of the transgenic wheat lines and heritable. RT-PCR and Western blot proved that the RsAFP2 was expressed in these transgenic wheat lines. Disease tests showed that four RsAFP2 transgenic lines (RA1-RA4) displayed enhanced resistance to F. graminearum compared to the untransformed Yangmai 12 and the null-segregated plants. Assays on Q-RT-PCR and disease severity showed that the express level of RsAFP2 was associated with the enhanced resistance degree. Two of these transgenic lines (RA1 and RA2) also exhibited enhanced resistance to R. cerealis. These results indicated that the expression of RsAFP2 conferred increased resistance to F. graminearum and R. cerealis in transgenic wheat.

  13. Breeding wheat for disease resistance in Kenya

    International Nuclear Information System (INIS)

    Njau, P.N.; Kinyua, M.G.; Karanja, L.; Maling'a, J.

    2001-01-01

    Yellow rust caused by Puccinia striformis and stem rust caused by Puccinia graminis tritici are most destructive diseases in Kenya. In wheat improvement, development of varieties of wheat with resistance to these diseases has been among the foremost contributions in wheat breeding. In breeding programs each disease is considered as a separate problem. Attention has been given to varieties resistant to stem rust, yellow rust and leaf rust among other diseases. In the year 2001 program stem rust and yellow rust were recorded in all the sites where NPT was performed. Breeding for resistance for the two diseases is approached through the Introductions and Hybridisation. The Doubled Haploid Technique is used to quicken the time of homozygous lines production. The introduction and the homozygous lines are then evaluated for yield and disease resistance in the field under preliminary yield trials and the National Performance Trials (NPT) in 2001, 18 lines and 2 check varieties were included in the NPT. The results show that there were some differences in reaction to the three diseases where lines R946, K7972-1 and R899 had the lowest score of the diseases in all sites. In the commercial variety trial the results show that all the varietieshave become susceptible to stem rust and so the need to develop new cultivars which will be resistance to the rusts. Yombi a newly developed variety showed a substantially high level resistance. (author)

  14. Detection of alien genetic introgressions in bread wheat using dot-blot genomic hybridisation.

    Science.gov (United States)

    Rey, María-Dolores; Prieto, Pilar

    2017-01-01

    Simple, reliable methods for the identification of alien genetic introgressions are required in plant breeding programmes. The use of genomic dot-blot hybridisation allows the detection of small Hordeum chilense genomic introgressions in the descendants of genetic crosses between wheat and H. chilense addition or substitution lines in wheat when molecular markers are difficult to use. Based on genomic in situ hybridisation, DNA samples from wheat lines carrying putatively H. chilense introgressions were immobilised on a membrane, blocked with wheat genomic DNA and hybridised with biotin-labelled H. chilense genomic DNA as a probe. This dot-blot screening reduced the number of plants necessary to be analysed by molecular markers or in situ hybridisation, saving time and money. The technique was sensitive enough to detect a minimum of 5 ng of total genomic DNA immobilised on the membrane or about 1/420 dilution of H. chilense genomic DNA in the wheat background. The robustness of the technique was verified by in situ hybridisation. In addition, the detection of other wheat relative species such as Hordeum vulgare , Secale cereale and Agropyron cristatum in the wheat background was also reported .

  15. IPR CATUARA TM – new cultivar of high gluten wheat

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Riede

    2015-03-01

    Full Text Available The wheat cultivar IPR Catuara TM, obtained from a cross between the line LD 975 and the cultivar IPR 85, exhibits high gluten strength, which will allow the milling industry to supplement flours from wheats with weaker gluten strength, resulting in better quality products for the final consumer.

  16. The adaptability of upland rice waxy mutant (Oryza sativa L.) to marginal land in Batumarta

    International Nuclear Information System (INIS)

    Dwimahyani, Ita; Mitrosuhardjo, M.M.

    1998-01-01

    A field experiment had been conducted at Batumarta, Lampung Province to test the adaptability of upland rice waxy mutant (DT 20.11.84) at marginal land. Similar experiments had also been conducted in fertilize soil at Ps. Jumat, Jakarta and Citayam, Kabupaten Bogor. Agronomic evaluation such as number of tiller, panicle length number of seeds per tiller, and weight of 1000 grains from waxy mutant line, which were cultivated at Batumarta showed adaptability was better than the original variety (Danau Tempe). Grains yield of waxy mutant line per ha at marginal land (Batubara) was higher than Danau Tempe i.e 2,34 and 1,89 ton/ha respectively. In addition to grain yield of waxy mutant line at Psr Jumat, Jakarta and Citayam, Bogor was lower than Danau Tempe. The Low of grain yield that waxy mutant compared with the original variety line was caused by number of tiller and panicle length of waxy mutant line also low. Results of experiment can be concluded that waxy mutant line was favourable growing at marginal land when compared with the original variety. (author)

  17. Studies on an X-ray induced crinkled leaf mutant of Trichosanthes anguina L

    International Nuclear Information System (INIS)

    Datta, Subodh Kumar

    1986-01-01

    Crinkled leaf mutant isolated in the second generation after treatment with X-ray bred true in subsequent generation. The mutant was a late flowering type with increased percentage of PMC's with chromosomal abnormality and pollen grain sterility. TLC study on phenolic compounds in leaves showed that both the mother line and the mutant had equal number of spots but they differed from each other with respect to four spots. Spot Nos. 2 and 4 of the mother line were absent in the mutant but the latter had two new spots (spot Nos. 11 and 12). The mutant and the mother line also differed from each other in pollen grain morohology. (author)

  18. Isoenzymes performance of some rice varieties and their mutants

    International Nuclear Information System (INIS)

    Winarno, Ermin; Suliwarno, Ambyah; Ismachin, M.

    1992-01-01

    Isoenzymes performance of some rice varieties and their mutants. Genetics studies on alcohol dehydrogenase, malic enzyme, peroxidase, acid phosphase, and aminopeptidase isoenzymes were carried out on several groups of rice varieties and their mutant lines. The first groups consisted of Atomita I, Pelita I/1, A227/5, Mudgo, TN-1, and IR-26. The second group was Cisadane variety and its five mutants, namely OBS 18, OBS 208, OBS 297, OBS 306, and OBS 330. The third group was mutants line 627-10-3 and its mutants, namely 1063, 1066, 1067, 1076, and 1090. Isoenzymes extracts of the rice leaves were fractionated using polyacrylamide gel disc electrophoresis. The pattern of acid phosphate isoenzyme shows the specific character of rice mutants susceptible to brown plant hopper biotype 1. The gene(s) controlling malic enzyme in Cisadane's mutants is (are) estimated more resistant toward gamma irradiation than gene(s) responsible for controlling the other enzymes. Generally, the isoenzymes zymograms show that gene(s) controlling the mutants enzyme have undergone mutation. This case is shown by the changes of Rm value, as well as the amount and intensity of mutants bands. (authors). 7 refs., 7 figs

  19. Rust resistance evaluation of advanced wheat (triticum aestivum l.) genotypes using pcr-based dna markers

    International Nuclear Information System (INIS)

    Rahman, S.U.; Younis, M.; Iqbal, M.Z.; Nawaz, M.

    2014-01-01

    The most effective and environmental friendly approach for the control of wheat rust disease is the use of resistant genotypes. The present study was conducted to explore rust resistance potential of 85 elite wheat genotypes (36 varieties and 49 advanced lines) using various types of DNA markers like STS, SCAR and SSR. DNA markers linked with different genes conferring resistance to rusts (Leaf rust=Lr, Yellow rust=Yr and Stem rust=Sr) were employed in this study. A total of 18 genes, consisting of eleven Lr (lr1, lr10, lr19, lr21, lr28, lr34, lr39, lr46, lr47, lr51 and lr52), four Yr (yr5, yr18, yr26 and yr29) and three Sr genes (sr2, sr29, and sr36) were studied through linked DNA markers. Maximum number of Lr genes was found in 17 advanced lines and 9 varieties, Yr genes in 26 advanced lines and 20 wheat varieties, and Sr genes in 43 advanced lines and 27 varieties. Minimum number of Lr genes was found in advanced line D-97 and variety Kohinoor-83, Yr genes in wheat variety Bwp-97 and Sr genes in 6 advanced lines and 8 varieties. Molecular data revealed that genotypes having same origin, from a specified area showed resistance for similar type of genes. In this study, an average similarity of 84% was recorded among wheat genotypes. Out of 18 loci, 15 were found to be polymorphic. (author)

  20. Physical Localization of a Locus from Agropyron cristatum Conferring Resistance to Stripe Rust in Common Wheat.

    Science.gov (United States)

    Zhang, Zhi; Song, Liqiang; Han, Haiming; Zhou, Shenghui; Zhang, Jinpeng; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-11-13

    Stripe rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most destructive diseases of wheat ( Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2 n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat- A . cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust resistance locus from A . cristatum 6P, ten translocation lines, five deletion lines and the BC₂F₂ and BC₃F₂ populations of two wheat- A . cristatum 6P whole-arm translocation lines were tested with a mixture of two races of Pst in two sites during 2015-2016 and 2016-2017, being genotyped with genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus conferring stripe rust resistance was located on the terminal 20% of 6P short arm's length. Twenty-nine 6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired, which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant translocation lines were found to carry some favorable agronomic traits, which could facilitate their use in wheat improvement. Collectively, the stripe rust resistance locus from A . cristatum 6P could be a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat disease breeding.

  1. [Transgenic wheat (Triticum aestivum L.) with increased resistance to the storage pest obtained by Agrobacterium tumefaciens--mediated].

    Science.gov (United States)

    Bi, Rui-Ming; Jia, Hai-Yan; Feng, De-Shun; Wang, Hong-Gang

    2006-05-01

    The transgenic wheat of improved resistance to the storage pest was production. We have introduced the cowpea trypsin inhibitor gene (CpTI) into cultured embryonic callus cells of immature embryos of wheat elite line by Agrobacterium-mediated method. Independent plantlets were obtained from the kanamycin-resistant calli after screening. PCR and real time PCR analysis, PCR-Southern and Southern blot hybridization indicated that there were 3 transgenic plants viz. transformed- I, II and III (T- I, T-II and T-III). The transformation frequencies were obviously affected by Agrobacterium concentration, the infection duration and transformation treatment. The segregations of CpTI in the transgenic wheat progenies were not easily to be elucidated, and some transgenic wheat lines (T- I and T-III) showed Mendelian segregations. The determinations of insect resistance to the stored grain insect of wheat viz. the grain moth (Sitotroga cerealella Olivier) indicated that the 3 transgenic wheat progeny seeds moth-resistance was improved significantly. The seed moth-eaten ratio of T- I, T-II, T-III and nontransformed control was 19.8%, 21.9%, 32.9% and 58.3% respectively. 3 transgenic wheat T1 PCR-positive plants revealed that the 3 transgenic lines had excellent agronomic traits. They supplied good germplasm resource of insect-resistance for wheat genetic improvement.

  2. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Christine D Zanke

    Full Text Available The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs were observed for plant height and the SSR markers (-log10 (P-value ≥ 4.82 and 280 (-log10 (P-value ≥ 5.89 for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, ent-kaurenoic acid oxidase orthologous to wheat chromosome 7A, ent-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes Rht-B1 and Rht-D1 there is a wide spectrum of loci available that could be used for modulating plant height in variety development.

  3. Analysis of Yield and Yield Related Traits Variability of Winter Wheat (Triticum aestivum L. Cv. Izolda and Double Haploid Lines

    Directory of Open Access Journals (Sweden)

    Kozdój Janusz

    2015-12-01

    Full Text Available The yield-forming potential of winter wheat is determined by several factors, namely total number of shoots per plant and total number of spikelets per spike. The field experiments were conducted during three vegetation seasons at the Plant Breeding and Acclimatization Institute – National Research Institute (PBAI–NRI, located in Radzików, Poland. The objective of this study was a comparative analysis of the structural yield-forming factor levels, which determine grain yield per spike and per plant of the DH lines and standard Izolda cultivar. Results indicate that several DH lines showed some differences in tested morphological structures of plant, yield factor levels and in grain yield per spike and per plant in comparison to standard Izolda, regardless of the year. Mean grain yield per plant of DH lines was 26.5% lower in comparison to standard Izolda only in the second year of study. It was caused by a reduction of productive tillers number. Structural yield-forming potential of DH lines was used in 38% and 59% and in case of Izolda in 47% and 61% (the second and the third year of experiment, respectively. The mean grain yield per spike of DH lines was 14.8% lower than Izolda cultivar only in third year of experiment and it was caused by about 12% lower number of grains per spike. Structural yield-forming potential of DH spikes was used in 82.4%, 85.4% and 84.9% and in case of Izolda in 83.8%, 87% and 89.5% (the first, the second and the third year of experiment, respectively. The grain yield per winter wheat plant (both DH lines and standard Izolda was significantly correlated with the number of productive tillers per plant (r = 0.80. The grain yield per winter wheat spike (both DH lines and Izolda cultivar was significantly and highly correlated with the number of grains per spike (r = 0.96, number of fertile spikelets per spike (r = 0.87 and the spike length (r = 0.80. Variation of spike and plant structural yield-forming factors

  4. Application of gamma rays for induction of tolerance mutants to environmental stress conditions in canola

    International Nuclear Information System (INIS)

    Mansour, M.E.S.F.

    2013-01-01

    The present study aimed to induce useful mutations in canola possess high seed yield and oil content under new reclamation desert land at Ras-Suder-Sina (saline) and Inshas (harsh and poor fertility). Canola seeds of four varieties (Serow 4, Serow 6, Pactol as local cultivars and Evita as exotic variety) were treated with gamma rays at four doses (0, 100, 400 and 600 Gy). Thirty mutant plants for number of pods/plant and changes in morphological criteria were selected at M 2 generation. The mutants at M 3 generation confirmed that induction of mutant lines possessed higher number of pods and seed yield/plant than the mother varieties. The mutant lines possessed homogeneity at M 3 generation were 5, 8,10, 11, 18 and 22 at serow 4, 38 and 45 at serow 6, 63 and 66 at Pactol and mutant lines 74,75, 78,92 at Evita. Highest number of pods/plant (110) was recorded at line 74 derived from Evita variety. The results were appeared the same trend for seed yield/plant with number of pods/plant, the lines which possessed high number of pods/plant were had high seed yield/plant. The results at M 4 and M 5 generations for 13 homogeneity mutant lines selected from M 3 generation contained different response of mutant genotypes for different conditions on the bases of number of pods and seed yield/plant. Promising mutant lines were detected under both conditions possessed significant increases at both M 4 and M 5 generations. Oil percent as well as acid value at M 4 and M 5 were recorded the highest mean value was found at Inshas in line 75 and the lowest acid value was noticed at line 5. Finally nine mutant lines possessed promising traits of this study, lines 11, 66 and 87 under both conditions (Suder and Inshas), lines 8, 38 and 63 under Ras-Sudr and lines 74, 75 and 92 under Inshas condition.

  5. Improvement of Nutritional and Bread-making Quality of Wheat by Genetic Engineering

    OpenAIRE

    Alvarez, Maria Lucrecia

    2000-01-01

    Wheat-derived products provide the basic nutrition for more than a billion of people in the world (about 40% of humankind). Humans consume more proteins from wheat than from any other source. However, the nutritional quality of wheat proteins is limited by the low content of lysine, one of the essential amino acids that we should incorporate through the diet. As part of this thesis work, we obtained transgenic wheat lines expressing the CI-2 gene from barley under the control of a promoter th...

  6. [The influence of combinations of alien translocations on in vitro androgenesis in near-isogenic lines of spring bread wheat].

    Science.gov (United States)

    Sibikeeva, Yu E; Sibikeev, S N

    2014-07-01

    The features of in vitro androgenesis were studied in Cultured anthers of spring bread wheats L503 and Dobrynya, having 7DS-7DL-7Ae#1 L translocation with genes Lrl9/Sr25 (Lrl9 translocation) from Agropyron elongatum (Host.) P.B. and their near-isogenic lines carrying combinations of Lrl9 translocation with translocations: 1BL-IR#1S with genes Pm8/Sr31/Lr26/Yr9 (Lr26translocation) from Secale cereal L., 4BS-4BL-2R#1L with genes Lr25/Pm7 (Lr25 translocation) from Secale cereal, 3DS-3DL-3Ae#1L with genes Lr24/Sr24 (Lr24 translocation) from Agropyron elongatum and 6BS-6BL-6U#1L with gene Lr9 (Lr9 translocation) from Aegilops umbellulata Zhuk. In comparison with those varieties having received the Lrl9 translocation, the following was established: (1) the combination of translocations Lr19+26 increased embryo frequency and green plant regeneration; (2) the combination of translocations Lr19+9 decreased embryo frequency but increased green plant regeneration; (3) the combination of translocations Lr19+24 decreased embryo frequency but increased green and albino plant regeneration; (4) the combination of translocations Lr19+25 increased embryo frequency and green plant regeneration but decreased albino plant regeneration. Thus, on near-isogenic lines of spring bread wheat, the influences of genotypes of four alien translocation combinations on in vitro androgenesis were determined.

  7. Molecular implications from ssr markers for stripe rust (puccinia striiformis F.Sp. tritici) resistance gene in bread wheat line N95175

    International Nuclear Information System (INIS)

    Ali, M.; Ji, W.G.; Hu, Y.G; Zhong, H.; Wang, C.Y.; Baloch, G.M.

    2010-01-01

    Stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most devastating diseases of wheat in China as well as in Pakistan. In the present studies F2 population was established by crossing N95175 resistant to stripe rust race CYR32 with two susceptible lines Huixianhong and Abbondanza to molecularly tag resistance gene existing in wheat line N95175. The segregation of phenotype was accorded with an expected 3:1 ratio in both combinations studied and fit the model of a single dominant gene controlling stripe rust resistance in N95175. Thirty five SSR primer pairs were screened on the parents and bulks and also on individuals since resistance gene to be located in chromosome 1B. The result indicated that most of resistant plants amplified same band as resistant parent while susceptible plants amplified same as susceptible parents studied and considered that markers co-segregated with resistant loci in N95175. This yellow rust resistance gene was considered to be Yr26 originally thought to be also located in chromosome arm 1BS linked to marker loci Xgwm273 and Xgwm11 with genetic distances ranging from 1.075cM to 2.74cM in both combinations studied. However, the closest loci were observed 2.67cM for Xgwm273 and 1.075cM for Xgwm11 in Huixianhong XN95175 and Abbondanza XN95175 crosses respectively. Hence, it has been concluded that the PCR-based micro satellite markers Xgwm273 and Xgwm11 located in chromosome 1B were shown to be very effective for the detection of Yr26 gene in segregating population and can be applied in future wheat breeding strategies. (author)

  8. Studies on an X-ray induced crinkled leaf mutant of Trichosanthes anguina L

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Subodh Kumar

    1986-06-01

    Crinkled leaf mutant isolated in the second generation after treatment with X-ray bred true in subsequent generation. The mutant was a late flowering type with increased percentage of PMC's with chromosomal abnormality and pollen grain sterility. TLC study on phenolic compounds in leaves showed that both the mother line and the mutant had equal number of spots but they differed from each other with respect to four spots. Spot Nos. 2 and 4 of the mother line were absent in the mutant but the latter had two new spots (spot Nos. 11 and 12). The mutant and the mother line also differed from each other in pollen grain morohology. 3 figures, 2 tables, 4 refs.

  9. Evaluate The Fluctuation Of Phytic Acid Content In Seed From Mutant Lines By Gamma Ray

    International Nuclear Information System (INIS)

    Nguyen Thi Lang; Pham Van Ut

    2011-01-01

    Phytic acid is a molecule composed of myo-inositol 1,2,3,4,5,6 hexakis dihydrogen phosphate (Ins P6), a major component in the source of phosphorus (P) reserves of about 50 plants - 80% of total seed phosphorus (Lott, 1984). At physiological pH in the form of phytic acid have negatively charged ions hold together the complex mineral nutrition creates indigestion. Moreover, phosphorus in the form of phytate or phytic humans and monogastric animals can not absorb, are all discharged polluted environment transitions. In rice OM819, OM4900, OM3536, D4 and D8 are irradiated with gamma rays at 5 doses: 100, 200, 300, 400 and 500 Gy to create mutant strains with low levels of phytic acid. Results in radiation levels may appear 100 Gy line grain phytic acid expression is low. At the level 200 Gy of radiation is three populations OM819, OM4900 and OM3536 with 8 lines for grain phytic acid expression is low. At 300 Gy extent, appeared seven lines with low nuclear expression of phytic acid 4 populations OM819, OM4900, OM3536 and D4. At the level 400 Gy of radiation there are 4 populations appear only 5 lines expressed low phytic acid, with 3-line expression levels 3 and 2 lines with level 4 expression. At the level of radiation 500 Gy only one line appears at level 3 of phytic acid this is OM819 populations. For genotype analysis using marker RM 261 with 66.67% of the rice low phytic acid content of the expression analysis of biochemical polymorphisms. (author)

  10. Generation of doubled haploid transgenic wheat lines by microspore transformation.

    Directory of Open Access Journals (Sweden)

    Rhoda A T Brew-Appiah

    Full Text Available Microspores can be induced to develop homozygous doubled haploid plants in a single generation. In the present experiments androgenic microspores of wheat have been genetically transformed and developed into mature homozygous transgenic plants. Two different transformation techniques were investigated, one employing electroporation and the other co-cultivation with Agrobacterium tumefaciens. Different tissue culture and transfection conditions were tested on nine different wheat cultivars using four different constructs. A total of 19 fertile transformants in five genotypes from four market classes of common wheat were recovered by the two procedures. PCR followed by DNA sequencing of the products, Southern blot analyses and bio/histo-chemical and histological assays of the recombinant enzymes confirmed the presence of the transgenes in the T0 transformants and their stable inheritance in homozygous T1∶2 doubled haploid progenies. Several decisive factors determining the transformation and regeneration efficiency with the two procedures were determined: (i pretreatment of immature spikes with CuSO4 solution (500 mg/L at 4°C for 10 days; (ii electroporation of plasmid DNA in enlarged microspores by a single pulse of ∼375 V; (iii induction of microspores after transfection at 28°C in NPB-99 medium and regeneration at 26°C in MMS5 medium; (iv co-cultivation with Agrobacterium AGL-1 cells for transfer of plasmid T-DNA into microspores at day 0 for <24 hours; and (v elimination of AGL-1 cells after co-cultivation with timentin (200-400 mg/L.

  11. Genetic characterization of glossy-leafed mutant broccoli lines

    Science.gov (United States)

    Glossy mutants of Brassica oleracea L. have reduced or altered epicuticular wax on the surface of their leaves as compared to wild-type plants, conveying a shiny green appearance. Mutations conferring glossiness are common and have been found in most B. oleracea crop varieties, including cauliflower...

  12. Cytogenetic and molecular markers for detecting Aegilops uniaristata chromosomes in a wheat background.

    Science.gov (United States)

    Gong, Wenping; Li, Guangrong; Zhou, Jianping; Li, Genying; Liu, Cheng; Huang, Chengyan; Zhao, Zhendong; Yang, Zujun

    2014-09-01

    Aegilops uniaristata has many agronomically useful traits that can be used for wheat breeding. So far, a Triticum turgidum - Ae. uniaristata amphiploid and one set of Chinese Spring (CS) - Ae. uniaristata addition lines have been produced. To guide Ae. uniaristata chromatin transformation from these lines into cultivated wheat through chromosome engineering, reliable cytogenetic and molecular markers specific for Ae. uniaristata chromosomes need to be developed. Standard C-banding shows that C-bands mainly exist in the centromeric regions of Ae. uniaristata but rarely at the distal ends. Fluorescence in situ hybridization (FISH) using (GAA)8 as a probe showed that the hybridization signal of chromosomes 1N-7N are different, thus (GAA)8 can be used to identify all Ae. uniaristata chromosomes in wheat background simultaneously. Moreover, a total of 42 molecular markers specific for Ae. uniaristata chromosomes were developed by screening expressed sequence tag - sequence tagged site (EST-STS), expressed sequence tag - simple sequence repeat (EST-SSR), and PCR-based landmark unique gene (PLUG) primers. The markers were subsequently localized using the CS - Ae. uniaristata addition lines and different wheat cultivars as controls. The cytogenetic and molecular markers developed herein will be helpful for screening and identifying wheat - Ae. uniaristata progeny.

  13. Global adaptation patterns of Australian and CIMMYT spring bread wheat.

    Science.gov (United States)

    Mathews, Ky L; Chapman, Scott C; Trethowan, Richard; Pfeiffer, Wolfgang; van Ginkel, Maarten; Crossa, Jose; Payne, Thomas; Delacy, Ian; Fox, Paul N; Cooper, Mark

    2007-10-01

    The International Adaptation Trial (IAT) is a special purpose nursery designed to investigate the genotype-by-environment interactions and worldwide adaptation for grain yield of Australian and CIMMYT spring bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum L. var. durum). The IAT contains lines representing Australian and CIMMYT wheat breeding programs and was distributed to 91 countries between 2000 and 2004. Yield data of 41 reference lines from 106 trials were analysed. A multiplicative mixed model accounted for trial variance heterogeneity and inter-trial correlations characteristic of multi-environment trials. A factor analytic model explained 48% of the genetic variance for the reference lines. Pedigree information was then incorporated to partition the genetic line effects into additive and non-additive components. This model explained 67 and 56% of the additive by environment and non-additive by environment genetic variances, respectively. Australian and CIMMYT germplasm showed good adaptation to their respective target production environments. In general, Australian lines performed well in south and west Australia, South America, southern Africa, Iran and high latitude European and Canadian locations. CIMMYT lines performed well at CIMMYT's key yield testing location in Mexico (CIANO), north-eastern Australia, the Indo-Gangetic plains, West Asia North Africa and locations in Europe and Canada. Maturity explained some of the global adaptation patterns. In general, southern Australian germplasm were later maturing than CIMMYT material. While CIANO continues to provide adapted lines to northern Australia, selecting for yield among later maturing CIMMYT material in CIANO may identify lines adapted to southern and western Australian environments.

  14. Field Performance of Five Soybean Mutants Under Drought Stress Conditions and Molecular Analysis Using SSR Markers

    Directory of Open Access Journals (Sweden)

    Y Yuliasti

    2017-08-01

    Full Text Available The objectives of this research wereto evaluate (1 the performance of soybean mutant lines under drought stress conditions, and(2 the genetic diversity and relationship among the mutant lines using SSR markers.The field evaluation was conducted during the dry season of 2011 and 2012 at the experimental Farm of Mataram University, West Nusa Tenggara, Indonesia. The field experiment was set up in a randomized block design. Ten mutant lines and two control varieties were evaluated in four replications. Genetic distance among evaluated lines were determined based on allelic diversity analysis using 40 simple sequence repeat (SSR loci. Under drought stress conditions, two mutant lines, Kdl3 and Kdl8,showed a better performance compared to the other ones. The high yielding mutant lines were Kdl3and Kdl8, which yielded 1.75 t ha-1and 1.69 t ha-1, respectively, compared to the parent and national control, Panderman 1.43 t ha-1 and Muria 1.32 t ha-1. These mutant linesrequired 30.75 to 32days to flower and 79.75 to 83.75 day to harvest with relatively short plant height 28.25 and 23.35 cmrespectively. Those mutant characters were better than those of the other three mutants, the original parents, and the control soybean species. Since the evaluated soybean mutant lines yielded more under drought stress conditions than the standard varieties, they can be used and registered as drought-tolerant soybean mutants. Moreover, the evaluated soybean accessions showed a wide genetic distance. The accessions were clustered into two groups according to their genetic background, namelygroup I (the Panderman with three mutant lines and group II (the Muria with two mutant lines. Twenty-three out of 40 evaluated SSR loci, including AW31, BE806, CMAC7L, S080, S126, S57, S171, S224, S285, S294, S393, S294, S383, S511, S511, S520, S540, S547, S551, S571, S577, and S578, provided polymorphic alleles between the parents and their mutants and could be used to differentiate

  15. Competitive performance of transgenic wheat resistant to powdery mildew.

    Directory of Open Access Journals (Sweden)

    Olena Kalinina

    Full Text Available Genetically modified (GM plants offer an ideal model system to study the influence of single genes that confer constitutive resistance to pathogens on the ecological behaviour of plants. We used phytometers to study competitive interactions between GM lines of spring wheat Triticum aestivum carrying such genes and control lines. We hypothesized that competitive performance of GM lines would be reduced due to enhanced transgene expression under pathogen levels typically encountered in the field. The transgenes pm3b from wheat (resistance against powdery mildew Blumeria graminis or chitinase and glucanase genes from barley (resistance against fungi in general were introduced with the ubiquitin promoter from maize (pm3b and chitinase genes or the actin promoter from rice (glucanase gene. Phytometers of 15 transgenic and non-transgenic wheat lines were transplanted as seedlings into plots sown with the same 15 lines as competitive environments and subject to two soil nutrient levels. Pm3b lines had reduced mildew incidence compared with control lines. Chitinase and chitinase/glucanase lines showed the same high resistance to mildew as their control in low-nutrient treatment and slightly lower mildew rates than the control in high-nutrient environment. Pm3b lines were weaker competitors than control lines. This resulted in reduced yield and seed number. The Pm3b line with the highest transgene expression had 53.2% lower yield than the control whereas the Pm3b line which segregated in resistance and had higher mildew rates showed only minor costs under competition. The line expressing both chitinase and glucanase genes also showed reduced yield and seed number under competition compared with its control. Our results suggest that single transgenes conferring constitutive resistance to pathogens can have ecological costs and can weaken plant competitiveness even in the presence of the pathogen. The magnitude of these costs appears related to the degree

  16. SNP Discovery for mapping alien introgressions in wheat

    Science.gov (United States)

    2014-01-01

    Background Monitoring alien introgressions in crop plants is difficult due to the lack of genetic and molecular mapping information on the wild crop relatives. The tertiary gene pool of wheat is a very important source of genetic variability for wheat improvement against biotic and abiotic stresses. By exploring the 5Mg short arm (5MgS) of Aegilops geniculata, we can apply chromosome genomics for the discovery of SNP markers and their use for monitoring alien introgressions in wheat (Triticum aestivum L). Results The short arm of chromosome 5Mg of Ae. geniculata Roth (syn. Ae. ovata L.; 2n = 4x = 28, UgUgMgMg) was flow-sorted from a wheat line in which it is maintained as a telocentric chromosome. DNA of the sorted arm was amplified and sequenced using an Illumina Hiseq 2000 with ~45x coverage. The sequence data was used for SNP discovery against wheat homoeologous group-5 assemblies. A total of 2,178 unique, 5MgS-specific SNPs were discovered. Randomly selected samples of 59 5MgS-specific SNPs were tested (44 by KASPar assay and 15 by Sanger sequencing) and 84% were validated. Of the selected SNPs, 97% mapped to a chromosome 5Mg addition to wheat (the source of t5MgS), and 94% to 5Mg introgressed from a different accession of Ae. geniculata substituting for chromosome 5D of wheat. The validated SNPs also identified chromosome segments of 5MgS origin in a set of T5D-5Mg translocation lines; eight SNPs (25%) mapped to TA5601 [T5DL · 5DS-5MgS(0.75)] and three (8%) to TA5602 [T5DL · 5DS-5MgS (0.95)]. SNPs (gsnp_5ms83 and gsnp_5ms94), tagging chromosome T5DL · 5DS-5MgS(0.95) with the smallest introgression carrying resistance to leaf rust (Lr57) and stripe rust (Yr40), were validated in two released germplasm lines with Lr57 and Yr40 genes. Conclusion This approach should be widely applicable for the identification of species/genome-specific SNPs. The development of a large number of SNP markers will facilitate the precise introgression and

  17. SNP Discovery for mapping alien introgressions in wheat.

    Science.gov (United States)

    Tiwari, Vijay K; Wang, Shichen; Sehgal, Sunish; Vrána, Jan; Friebe, Bernd; Kubaláková, Marie; Chhuneja, Praveen; Doležel, Jaroslav; Akhunov, Eduard; Kalia, Bhanu; Sabir, Jamal; Gill, Bikram S

    2014-04-10

    Monitoring alien introgressions in crop plants is difficult due to the lack of genetic and molecular mapping information on the wild crop relatives. The tertiary gene pool of wheat is a very important source of genetic variability for wheat improvement against biotic and abiotic stresses. By exploring the 5Mg short arm (5MgS) of Aegilops geniculata, we can apply chromosome genomics for the discovery of SNP markers and their use for monitoring alien introgressions in wheat (Triticum aestivum L). The short arm of chromosome 5Mg of Ae. geniculata Roth (syn. Ae. ovata L.; 2n = 4x = 28, UgUgMgMg) was flow-sorted from a wheat line in which it is maintained as a telocentric chromosome. DNA of the sorted arm was amplified and sequenced using an Illumina Hiseq 2000 with ~45x coverage. The sequence data was used for SNP discovery against wheat homoeologous group-5 assemblies. A total of 2,178 unique, 5MgS-specific SNPs were discovered. Randomly selected samples of 59 5MgS-specific SNPs were tested (44 by KASPar assay and 15 by Sanger sequencing) and 84% were validated. Of the selected SNPs, 97% mapped to a chromosome 5Mg addition to wheat (the source of t5MgS), and 94% to 5Mg introgressed from a different accession of Ae. geniculata substituting for chromosome 5D of wheat. The validated SNPs also identified chromosome segments of 5MgS origin in a set of T5D-5Mg translocation lines; eight SNPs (25%) mapped to TA5601 [T5DL · 5DS-5MgS(0.75)] and three (8%) to TA5602 [T5DL · 5DS-5MgS (0.95)]. SNPs (gsnp_5ms83 and gsnp_5ms94), tagging chromosome T5DL · 5DS-5MgS(0.95) with the smallest introgression carrying resistance to leaf rust (Lr57) and stripe rust (Yr40), were validated in two released germplasm lines with Lr57 and Yr40 genes. This approach should be widely applicable for the identification of species/genome-specific SNPs. The development of a large number of SNP markers will facilitate the precise introgression and monitoring of alien segments in crop

  18. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat.

    Science.gov (United States)

    Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota

    2016-10-18

    Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain.

  19. Leaf and stripe rust resistance among Ethiopian grown wheat ...

    African Journals Online (AJOL)

    The result indicated that 20 varieties and lines harbor resistance to the leaf rust and 26 to the stripe rust pathotypes showing infection types <2+. Twelve bread wheat varieties and lines (Et-13 A2, HAR 1407 [Tusie], HAR 1775 [Tura], HAR 1920, HAR 2192, HAR 2534, HAR 2536, HAR 2561, HAR 2563 and three durum lines ...

  20. Genome wide identification of wheat and Brachypodium type one protein phosphatases and functional characterization of durum wheat TdPP1a.

    Directory of Open Access Journals (Sweden)

    Mariem Bradai

    Full Text Available Reversible phosphorylation is an essential mechanism regulating signal transduction during development and environmental stress responses. An important number of dephosphorylation events in the cell are catalyzed by type one protein phosphatases (PP1, which catalytic activity is driven by the binding of regulatory proteins that control their substrate specificity or subcellular localization. Plants harbor several PP1 isoforms accounting for large functional redundancies. While animal PP1s were reported to play relevant roles in controlling multiple cellular processes, plant orthologs remain poorly studied. To decipher the role of plant PP1s, we compared PP1 genes from three monocot species, Brachypodium, common wheat and rice at the genomic and transcriptomic levels. To gain more insight into the wheat PP1 proteins, we identified and characterized TdPP1a, the first wheat type one protein phosphatase from a Tunisian durum wheat variety Oum Rabiaa3. TdPP1a is highly conserved in sequence and structure when compared to mammalian, yeast and other plant PP1s. We demonstrate that TdPP1a is an active, metallo-dependent phosphatase in vitro and is able to interact with AtI2, a typical regulator of PP1 functions. Also, TdPP1a is capable to complement the heat stress sensitivity of the yeast mutant indicating that TdPP1a is functional also in vivo. Moreover, transient expression of TdPP1a::GFP in tobacco leaves revealed that it is ubiquitously distributed within the cell, with a strong accumulation in the nucleus. Finally, transcriptional analyses showed similar expression levels in roots and leaves of durum wheat seedlings. Interestingly, the expression in leaves is significantly induced following salinity stress, suggesting a potential role of TdPP1a in wheat salt stress response.

  1. Induction of high yielding and high protein containing chickpea mutant variety through gamma radiation

    International Nuclear Information System (INIS)

    Hassan, S.; Javed, M.A.; Khan, A.J.; Tariq, M.

    1997-01-01

    Pure seeds of a blight susceptible but high yielding chickpea variety 6153 were irradiated at 20 Kr(0.2 kGy) dose of gamma radiation and the mutant line CMN-446-4 was selected in M3 generation on the basis of high yield and disease resistance. After confirmation of its resistance to blight in M4 and M5, the mutant line CMN-446-4 along with other promising chickpea mutants were evaluated in various yield trials at different locations. The mutant line CMN-446-4 was got evaluated in chickpea national uniform yield trial conducted over two locations in the country during 1993-94. The mutant line, on average, ranked 3rd by producing significantly higher yield of 1528 kg/ha as compared to the two checked varieties Punjab-91 and Paidar-91 which yielded 1316 and 1391 kg/ha respectively. The mutant CMN-446-4 has significantly greater percentage of protein content (25.22%) compared to its parental variety having (20.12%). (author)

  2. Detection of wheat stem rust race RRTTF in Ecuador in 2016

    Science.gov (United States)

    Wheat stem rust is a devastating disease that has incited numerous severe epidemics resulting in extreme yield losses over the past century. Stem rust infection in plots of wheat line UC11075, known to carry the Sr38 resistance gene, was severe in February 2016 in a nursery at the Instituto Nacional...

  3. Identification of leaf rust resistant gene Lr10 in Pakistani wheat ...

    African Journals Online (AJOL)

    Leaf (brown) rust is the major disease of wheat in Pakistan and other countries. The disease is more effectively controlled when several rust resistance genes are pyramided into a single line. Molecular survey was conducted to screen 25 Pakistan wheat germplasm for the presence of leaf rust resistance gene Lr10 using ...

  4. Effect of soil water stress on yield and proline content of four wheat ...

    African Journals Online (AJOL)

    Effect of soil water stress on yield and proline content of four wheat lines. ... This field study was conducted to evaluate the effect of drought stress after anthesis on proline accumulation and wheat yield during 2008 at ... from 32 Countries:.

  5. Characterization of a mutant rat kangaroo cell line with alterations in the cell cycle and DNA repair

    Directory of Open Access Journals (Sweden)

    Miyaji E.N.

    2000-01-01

    Full Text Available Using a positive selection system for isolating DNA replication and repair related mutants, we isolated a clone from a rat kangaroo cell line (PtK2 that has increased sensitivity to UV light. Characterization of this clone indicated normal post-replication repair after UV irradiation, and normal removal rates of cyclobutane pyrimidine dimers and pyrimidine(6-4pyrimidone photoproducts by excision repair. However, this cell line has decreased ability to make early incisions on damaged DNA, possibly indicating a defect in preferential repair of actively transcribed genes, and a slower cell proliferation rate, including a longer S-phase. This phenotype reinforces the present notion that control of key mechanisms in cell metabolism, such as cell cycle control, repair, transcription and cell death, can be linked.

  6. Induction of mutations in Thai rice varieties and subsequent selection and testing of beneficial mutant lines

    Energy Technology Data Exchange (ETDEWEB)

    Dasananda, S; Khambanonda, P [Ministry of Agriculture, Bangkok (Thailand)

    1970-03-01

    Ionizing radiations were first used in the Thailand Rice Breeding Program in 1955 when seeds of two recommended varieties were sent to the United States of America for treatment. As a result, five promising mutant lines are at present in regional yield tests where they are being considered for recommendation to rice growers. During the period 1960-1961 an unsuccessful attempt was made to induce resistance to blast in three susceptible varieties by exposing seeds to a local source of ionizing radiation In 1964, after an elapse of about 4 years, another attempt was made to utilize ionizing radiations in the breeding program by treating seeds of two recommended varieties. In 1965, a co-ordinated rice mutation breeding program was initiated under the auspices of the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture which resulted in treating seeds of twelve different rice varieties with both ethyl methane sulphonate and gamma rays from a {sup 60}Co gamma cell. The results so far indicate that mutagenic agents have been successful in producing genetic variability. Differences in heading date, mature plant height and plant type are frequently observed in the M{sub 2} and M{sub 3} generations. Several lines obtained from two of the irradiated varieties have exhibited a higher degree of resistance to blast than the parental material. From 15-kR treatments of non-glutinous varieties, mutants with glutinous endosperm have been obtained. Not all varieties gave the same response to treatment. (author)

  7. Genetics of flowering time in bread wheat Triticum aestivum: complementary interaction between vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat.

    Science.gov (United States)

    Kumar, Sushil; Sharma, Vishakha; Chaudhary, Swati; Tyagi, Anshika; Mishra, Poonam; Priyadarshini, Anupama; Singh, Anupam

    2012-01-01

    Time to flowering in the winter growth habit bread wheat is dependent on vernalization (exposure to cold conditions) and exposure to long days (photoperiod). Dominant Vrn-1 (Vrn-A1, Vrn-B1 and Vrn-D1) alleles are associated with vernalization independent spring growth habit. The semidominant Ppd-D1a mutation confers photoperiod-insensitivity or rapid flowering in wheat under short day and long day conditions. The objective of this study was to reveal the nature of interaction between Vrn-1 and Ppd-D1a mutations (active alleles of the respective genes vrn-1 and Ppd-D1b). Twelve Indian spring wheat cultivars and the spring wheat landrace Chinese Spring were characterized for their flowering times by seeding them every month for five years under natural field conditions in New Delhi. Near isogenic Vrn-1 Ppd-D1 and Vrn-1 Ppd-D1a lines constructed in two genetic backgrounds were also phenotyped for flowering time by seeding in two different seasons. The wheat lines of Vrn-A1a Vrn-B1 Vrn-D1 Ppd-D1a, Vrn-A1a Vrn-B1 Ppd-D1a and Vrn-A1a Vrn-D1 Ppd-D1a (or Vrn-1 Ppd-D1a) genotypes flowered several weeks earlier than that of Vrn-A1a Vrn-B1 Vrn-D1 Ppd-D1b, Vrn-A1b Ppd-D1b and Vrn-D1 Ppd-D1b (or Vrn-1 Ppd-D1b) genotypes. The flowering time phenotypes of the isogenic vernalization-insensitive lines confirmed that Ppd-D1a hastened flowering by several weeks. It was concluded that complementary interaction between Vrn-1 and Ppd-D1a active alleles imparted super/very-early flowering habit to spring wheats. The early and late flowering wheat varieties showed differences in flowering time between short day and long day conditions. The flowering time in Vrn-1 Ppd-D1a genotypes was hastened by higher temperatures under long day conditions. The ambient air temperature and photoperiod parameters for flowering in spring wheat were estimated at 25°C and 12 h, respectively.

  8. Productive mutants of niger

    International Nuclear Information System (INIS)

    Misra, R.C.

    2001-01-01

    Seeds of six niger (Guizotia abyssinica Cass.) varieties ('GA-10', 'ONS-8', 'IGP-72', 'N-71', 'NB-9' and 'UN-4') were treated with 0.5, 0.75 and 1% ethyl methanesulphonate. After four generations of selection, 29 mutant lines were developed and those were evaluated from 1990-92 during Kharif (July to October) and Rabi (December to March) seasons. Average plant characteristics and yield data of four high yielding mutants along with 'IGP-76' (National Check), GA-10 (Zonal Check) and 'Semiliguda Local' (Local Check) are presented

  9. Genetic diversity in wheat germplasm collections from Balochistan province of Pakistan

    International Nuclear Information System (INIS)

    Khan, A.A.; Iqbal, A.; Awan, F.S.; Khan, I.A.

    2010-01-01

    Productivity of wheat varieties being bred for the last many years is stagnant in Pakistan, apparently because of the narrowed genetic base of their parental lines. As a part of the national wheat germplasm characterization programme, we examined genetic diversity among 75 accessions of wheat using RAPD markers and assessed the relationship and genetic distance between them. The accessions surveyed were comprised of land race populations of Triticum aestivum L., collected from various districts of the Balochistan province of Pakistan, which is considered a reservoir of genetic diversity, particularly for wheat. The genetic similarity revealed by RAPD markers among the wheat accessions was medium to high. The accessions collected from Sibi and Pishin districts had the greatest similarity. The polymorphism revealed in the wheat accessions, appeared to be distributed with the location of collections. The high degree of similarity even among the presumably land race material emphasizes the need for the expansion of germplasm resources and development of wheat varieties with diverse genetic background, which could substantiate the wheat breeding programmes to increase its productivity. (author)

  10. High-Protein Soybean Mutants by Using Irradiation Technique

    International Nuclear Information System (INIS)

    Yathaputanon, C.; Kumsueb, B.; Srisombun, S.

    2009-07-01

    Full text: Soybean variety improvement for high seed protein using induced mutation was initiated. Approximately 5,000 seeds of soybean variety Chiang Mai 60 were irradiated with gamma rays at the dose of 200 Grays at Kasetsart University. High-protein seed mutants in M2 to M4 generations were selected at Nakhon Ratchasima Field Crops Research Center during 2004-2008. The Pedigree method of selection was used. Kjeldahl method was used to analyze seed protein percentages. The M2 seeds protein content of the M2 generation was 45.2% while that of the original parent was 43.0%. M3s were seeded plant to row. In each row, the best four plants were selected for protein analysis. The average protein content of selected mutant lines was 3.9% while the check variety had average protein content of 42.4%. In the M4 generation, the result showed that the average protein contents of the selected mutant lines and the check variety were 42.8% and 42.0%, respectively. In the 2007-2008 trials, four promising mutants had and average protein content of 428%, while the check variety had and average protein content of 41.1%. The four mutants produced the mean grain yield of 2.20-2.42 t/Ha, which was 10.21% higher than that of Chiang Mai 60. The mutant lines produced both a high grain protein content and a high grain yield. They will be further tested their adaptability in the research centers and farmer fields

  11. A wheat cinnamyl alcohol dehydrogenase TaCAD12 contributes to host resistance to the sharp eyespot disease

    Directory of Open Access Journals (Sweden)

    Wei Rong

    2016-11-01

    Full Text Available Sharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, is a destructive disease in hexaploid wheat (Triticum aestivum L.. In Arabidopsis, certain cinnamyl alcohol dehydrogenases (CADs have been implicated in monolignol biosynthesis and in defense response to bacterial pathogen infection. However, little is known about CADs in wheat defense responses to necrotrophic or soil-borne pathogens. In this study, we isolate a wheat CAD gene TaCAD12 in response to R. cerealis infection through microarray-based comparative transcriptomics, and study the enzyme activity and defense role of TaCAD12 in wheat. The transcriptional levels of TaCAD12 in sharp eyespot-resistant wheat lines were significantly higher compared with those in susceptible wheat lines. The sequence and phylogenetic analyses revealed that TaCAD12 belongs to IV group in CAD family. The biochemical assay proved that TaCAD12 protein is an authentic CAD enzyme and possesses catalytic efficiencies towards both coniferyl aldehyde and sinapyl aldehyde. Knock-down of TaCAD12 transcript significantly repressed resistance of the gene-silenced wheat plants to sharp eyespot caused by R. cerealis, whereas TaCAD12 overexpression markedly enhanced resistance of the transgenic wheat lines to sharp eyespot. Furthermore, certain defense genes (Defensin, PR10, PR17c, and Chitinase1 and monolignol biosynthesis-related genes (TaCAD1, TaCCR, and TaCOMT1 were up-regulated in the TaCAD12-overexpressing wheat plants but down-regulated in TaCAD12-silencing plants. These results suggest that TaCAD12 positively contributes to resistance against sharp eyespot through regulation of the expression of certain defense genes and monolignol biosynthesis-related genes in wheat.

  12. De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids.

    Directory of Open Access Journals (Sweden)

    Xiang Guo

    2016-04-01

    Full Text Available Centromeres typically contain tandem repeat sequences, but centromere function does not necessarily depend on these sequences. We identified functional centromeres with significant quantitative changes in the centromeric retrotransposons of wheat (CRW contents in wheat aneuploids (Triticum aestivum and the offspring of wheat wide hybrids. The CRW signals were strongly reduced or essentially lost in some wheat ditelosomic lines and in the addition lines from the wide hybrids. The total loss of the CRW sequences but the presence of CENH3 in these lines suggests that the centromeres were formed de novo. In wheat and its wide hybrids, which carry large complex genomes or no sequenced genome, we performed CENH3-ChIP-dot-blot methods alone or in combination with CENH3-ChIP-seq and identified the ectopic genomic sequences present at the new centromeres. In adcdition, the transcription of the identified DNA sequences was remarkably increased at the new centromere, suggesting that the transcription of the corresponding sequences may be associated with de novo centromere formation. Stable alien chromosomes with two and three regions containing CRW sequences induced by centromere breakage were observed in the wheat-Th. elongatum hybrid derivatives, but only one was a functional centromere. In wheat-rye (Secale cereale hybrids, the rye centromere-specific sequences spread along the chromosome arms and may have caused centromere expansion. Frequent and significant quantitative alterations in the centromere sequence via chromosomal rearrangement have been systematically described in wheat wide hybridizations, which may affect the retention or loss of the alien chromosomes in the hybrids. Thus, the centromere behavior in wide crosses likely has an important impact on the generation of biodiversity, which ultimately has implications for speciation.

  13. Molecular and morpho-anatomical characterization of some Egyptian durum wheat cultivars/lines

    International Nuclear Information System (INIS)

    Saleh, O.M.; Hamiedeldin, N.; Khafaga, A.

    2016-01-01

    Grains of eight durum wheat cultivars were tested for identification of genetic relationship among molecular, anatomical and morphological levels. On the molecular level, two techniques have been used; Randomly Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeats (ISSR). Amplification of RAPD primers showed different numbers of fragments ranged from six to thirteen fragments. Percentage of polymorphism ranged from 0% to 100%. The highest similarity value recorded was 91%, while the lowest similarity value was 69%. Amplification of ISSR primers showed different numbers of fragments ranged from six to twelve fragments. The highest similarity value recorded was 91%, while the lowest similarity value was 68%. The grain's coat morphology was reticulated in all taxa. There were variations with regard to the alignment and the shape of network and architecture of interspaces enclosed by raised line. Reticulate surface patterns appeared some variations ranged from weakly reticulate such as G 413 to strongly reticulate such as G 203. Stem cuticles of all cultivars were thick except cultivar; Benisweif 1. For leaf anatomy, all cultivars had epidermis composed of one layer of thick wall cells except cultivars; G 203 and Benisweif 1. (author)

  14. Genetic mapping of a novel recessive allele for non-glaucousness in wild diploid wheat Aegilops tauschii: implications for the evolution of common wheat.

    Science.gov (United States)

    Nishijima, Ryo; Tanaka, Chisa; Yoshida, Kentaro; Takumi, Shigeo

    2018-04-01

    Cuticular wax on the aerial surface of plants has a protective function against many environmental stresses. The bluish-whitish appearance of wheat leaves and stems is called glaucousness. Most modern cultivars of polyploid wheat species exhibit the glaucous phenotype, while in a wild wheat progenitor, Ae. tauschii, both glaucous and non-glaucous accessions exist. Iw2, a wax inhibitor locus on the short arm of chromosome 2D, is the main contributor to this phenotypic variation in Ae. tauschii, and the glaucous/non-glaucous phenotype of Ae. tauschii is usually inherited by synthetic hexaploid wheat. However, a few synthetic lines show the glaucous phenotype although the parental Ae. tauschii accessions are non-glaucous. Molecular marker genotypes indicate that the exceptional non-glaucous Ae. tauschii accessions share the same genotype in the Iw2 chromosomal region as glaucous accessions, suggesting that these accessions have a different causal locus for their phenotype. This locus was assigned to the long arm of chromosome 3D using an F 2 mapping population and designated W4, a novel glaucous locus in Ae. tauschii. The dominant W4 allele confers glaucousness, consistent with phenotypic observation of Ae. tauschii accessions and the derived synthetic lines. These results implied that glaucous accessions of Ae. tauschii with the W2W2iw2iw2W4W4 genotype could have been the D-genome donor of common wheat.

  15. Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat

    Directory of Open Access Journals (Sweden)

    Doherty Angela

    2005-09-01

    Full Text Available Abstract Since the first report of wheat transformation by Agrobacterium tumefaciens in 1997, various factors that influence T-DNA delivery and regeneration in tissue culture have been further investigated and modified. This paper reviews the current methodology literature describing Agrobacterium transformation of wheat and provides a complete protocol that we have developed and used to produce over one hundred transgenic lines in both spring and winter wheat varieties.

  16. Evaluation of 10 wheat cultivars under water stress at Moghan (Iran ...

    African Journals Online (AJOL)

    Hami

    2011-09-14

    Sep 14, 2011 ... Accepted 20 May, 2011. Water deficit is one of the main abiotic factors that affect yield and yield component of wheat planted in ... evaluate the effects of water stress on seed yield and yield components of ten wheat cultivars and lines that differ in .... Analysis of variance is presented in Table 2. According to.

  17. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.

    Science.gov (United States)

    Pislariu, Catalina I; Murray, Jeremy D; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; Benedito, Vagner A; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Chen, Rujin; Udvardi, Michael K

    2012-08-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.

  18. Induction and assay of pure soyabean mutants obtained from gamma irradiation

    International Nuclear Information System (INIS)

    Nasseri Tafti, M.; Rezazadeh, M.; Yousefi, F.; Sabzi, H.

    2002-01-01

    Gamma ray is an electromagnetic type of radiation and produces ions when passing through biological matter. It can be applied in plant breeding to induce variation. The most important character of this ray is to produce changes in DNA structure existing in cell. Mutants induced by irradiation of soybean seeds were assayed for their agronomic traits. Two locations were used for this purpose, Alishtar and Karaj. There were significant differences between soybean mutant lines and their check cv. Williams at 1% level and cv.Clark at 5% level. Line No. 47 with 4782 kg/hect. Possessed the top of the list and next to it line No.38 with 4722 kg/hect. Some mutant lines reached maturity 10 to 12 days earlier than commercial cv s used as check cultivars

  19. Assessment of the Allergenic Potential of Transgenic Wheat (Triticum aestivum) with Reduced Levels of ω5-Gliadins, the Major Sensitizing Allergen in Wheat-Dependent Exercise-Induced Anaphylaxis.

    Science.gov (United States)

    Altenbach, Susan B; Tanaka, Charlene K; Pineau, Florence; Lupi, Roberta; Drouet, Martine; Beaudouin, Etienne; Morisset, Martine; Denery-Papini, Sandra

    2015-10-28

    The ω5-gliadins are the major sensitizing allergens in wheat-dependent exercise-induced anaphylaxis (WDEIA). In this study, two-dimensional immunoblot analysis was used to assess the allergenic potential of two transgenic wheat lines in which ω5-gliadin genes were silenced by RNA interference. Sera from 7 of 11 WDEIA patients showed greatly reduced levels of immunoglobulin E (IgE) reactivity to ω5-gliadins in both transgenic lines. However, these sera also showed low levels of reactivity to other gluten proteins. Sera from three patients showed the greatest reactivity to proteins other than ω5-gliadins, either high-molecular-weight glutenin subunits (HMW-GSs), α-gliadins, or non-gluten proteins. The complexity of immunological responses among these patients suggests that flour from the transgenic lines would not be suitable for individuals already diagnosed with WDEIA. However, the introduction of wheat lacking ω5-gliadins could reduce the number of people sensitized to these proteins and thereby decrease the overall incidence of this serious food allergy.

  20. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3.

    Science.gov (United States)

    Hurni, Severine; Brunner, Susanne; Stirnweis, Daniel; Herren, Gerhard; Peditto, David; McIntosh, Robert A; Keller, Beat

    2014-09-01

    The powdery mildew resistance gene Pm8 derived from rye is located on a 1BL.1RS chromosome translocation in wheat. However, some wheat lines with this translocation do not show resistance to isolates of the wheat powdery mildew pathogen avirulent to Pm8 due to an unknown genetically dominant suppression mechanism. Here we show that lines with suppressed Pm8 activity contain an intact and expressed Pm8 gene. Therefore, the absence of Pm8 function in certain 1BL.1RS-containing wheat lines is not the result of gene loss or mutation but is based on suppression. The wheat gene Pm3, an ortholog of rye Pm8, suppressed Pm8-mediated powdery mildew resistance in lines containing Pm8 in a transient single-cell expression assay. This result was further confirmed in transgenic lines with combined Pm8 and Pm3 transgenes. Expression analysis revealed that suppression is not the result of gene silencing, either in wheat 1BL.1RS translocation lines carrying Pm8 or in transgenic genotypes with both Pm8 and Pm3 alleles. In addition, a similar abundance of the PM8 and PM3 proteins in single or double homozygous transgenic lines suggested that a post-translational mechanism is involved in suppression of Pm8. Co-expression of Pm8 and Pm3 genes in Nicotiana benthamiana leaves followed by co-immunoprecipitation analysis showed that the two proteins interact. Therefore, the formation of a heteromeric protein complex might result in inefficient or absent signal transmission for the defense reaction. These data provide a molecular explanation for the suppression of resistance genes in certain genetic backgrounds and suggest ways to circumvent it in future plant breeding. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum).

    Science.gov (United States)

    Allen, Alexandra M; Winfield, Mark O; Burridge, Amanda J; Downie, Rowena C; Benbow, Harriet R; Barker, Gary L A; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; Griffiths, Simon; Bentley, Alison R; Alda, Mark; Jack, Peter; Phillips, Andrew L; Edwards, Keith J

    2017-03-01

    Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom ® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Selection and genetic relationship of salt tolerant rice mutants by in vitro mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae Young; Kim, Dong Sub; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Lee, Myung Chul [National Academy of Agriculture and Science, Suwon (Korea, Republic of); Yun, Song Joong [Chonbuk National University, Jeonju (Korea, Republic of)

    2010-12-15

    Plants have evolved physiological, biochemical and metabolic mechanisms to increase their survival under the adverse conditions. This present study has been performed to select salt tolerant rice mutant lines through in vivo and in vitro mutagenesis with gamma-rays. For the selection of the salt-tolerant rice mutants, we conducted three times of selection procedure using 1,500 gamma ray mutant lines resulted from an embryo culture of the original rice cv. Dongan (wild-type, WT): first, selection in the a nutrient solution with 171 mM NaCI: second, selection under in vitro condition with 171 mM NaCI: and third, selection in a reclaimed saline land. Based on a growth comparison of the entries, out of the mutant lines, two putative 2 salt tolerant (ST) rice mutant lines, ST-87 and ST-301, were finally selected. The survival rate of the WT, ST-87 and ST-301 were 36.6%, 60% and 66.3% after 7 days in 171 mM NaCI treatment, respectively. The WT and two salt tolerant mutant lines were used to analyze their genetic variations. A total of 21 EcoRI and Msel primer combinations were used to analyze the genetic relationship of among the two salt tolerant lines and the WT using the ABI3130 capillary electrophoresis system. In the AFLP analysis, a total of 1469 bands were produced by the 21 primer combinations, and 700 (47.6%) of them were identified as having polymorphism. The genetic similarity coefficients were ranged from 0.52 between the ST-87 and WT to 0.24 between the ST-301 and the WT. These rice mutant lines will be used as a control plot for physiological analysis and genetic research on salt tolerance.

  3. High yielding mutants of blackgram variety 'PH-25'

    International Nuclear Information System (INIS)

    Misra, R.C.; Mohapatra, B.D.; Panda, B.S.

    2001-01-01

    Seeds of blackgram (Vigna mungo L.) variety 'PH-5' were treated with chemical mutagens ethyl methanesulfonate (EMS), nitrosoguanidine (NG), maleic hydrazide (MH) and sodium azide (NaN 3 ), each at 3 different concentrations. Thirty six mutant lines developed from mutagenic treatments along with parent varieties were tested in M 4 generation. The mutants showed wide variation in most of the traits and multivariante D 2 analysis showed genetic divergence among themselves. Twenty of the thirty mutants showed genetic divergence from parent. Ten selected high yielding mutants were tested in M 5 . Yield and other productive traits of five high yielding mutants in M 4 and M 5 are presented

  4. Gene expression profiling in wild-type and metallothionein mutant fibroblast cell lines

    Directory of Open Access Journals (Sweden)

    ÁNGELA D ARMENDÁRIZ

    2006-01-01

    Full Text Available The role of metallothioneins (MT in copper homeostasis is of great interest, as it appears to be partially responsible for the regulation of intracellular copper levels during adaptation to extracellular excess of the metal. To further investigate a possible role of MTs in copper metabolism, a genomics approach was utilized to evaluate the role of MT on gene expression. Microarray analysis was used to examine the effects of copper overload in fibroblast cells from normal and MT I and II double knock-out mice (MT-/-. As a first step, we compared genes that were significantly upregulated in wild-type and MT-/- cells exposed to copper. Even though wild-type and mutant cells are undistinguishable in terms of their morphological features and rates of growth, our results show that MT-/- cells do not respond with induction of typical markers of cellular stress under copper excess conditions, as observed in the wild-type cell line, suggesting that the transcription initiation rate or the mRNA stability of stress genes is affected when there is an alteration in the copper store capacity. The functional classification of other up-regulated genes in both cell lines indicates that a large proportion (>80% belong to two major categories: 1 metabolism; and 2 cellular physiological processes, suggesting that at the transcriptional level copper overload induces the expression of genes associated with diverse molecular functions. These results open the possibility to understand how copper homeostasis is being coordinated with other metabolic pathways.

  5. Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field.

    Science.gov (United States)

    Brunner, Susanne; Stirnweis, Daniel; Diaz Quijano, Carolina; Buesing, Gabriele; Herren, Gerhard; Parlange, Francis; Barret, Pierre; Tassy, Caroline; Sautter, Christof; Winzeler, Michael; Keller, Beat

    2012-05-01

    Resistance (R) genes protect plants very effectively from disease, but many of them are rapidly overcome when present in widely grown cultivars. To overcome this lack of durability, strategies that increase host resistance diversity have been proposed. Among them is the use of multilines composed of near-isogenic lines (NILs) containing different disease resistance genes. In contrast to classical R-gene introgression by recurrent backcrossing, a transgenic approach allows the development of lines with identical genetic background, differing only in a single R gene. We have used alleles of the resistance locus Pm3 in wheat, conferring race-specific resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici), to develop transgenic wheat lines overexpressing Pm3a, Pm3c, Pm3d, Pm3f or Pm3g. In field experiments, all tested transgenic lines were significantly more resistant than their respective nontransformed sister lines. The resistance level of the transgenic Pm3 lines was determined mainly by the frequency of virulence to the particular Pm3 allele in the powdery mildew population, Pm3 expression levels and most likely also allele-specific properties. We created six two-way multilines by mixing seeds of the parental line Bobwhite and transgenic Pm3a, Pm3b and Pm3d lines. The Pm3 multilines were more resistant than their components when tested in the field. This demonstrates that the difference in a single R gene is sufficient to cause host-diversity effects and that multilines of transgenic Pm3 wheat lines represent a promising strategy for an effective and sustainable use of Pm3 alleles. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  6. Improving restorer line of hybrid rice by irradiation

    International Nuclear Information System (INIS)

    Guo Guangrong; Yi Weiping; Liu Wuquan

    1995-03-01

    The work for improving restorer line of hybrid rice has been done. The results showed the radiosensitivity of foreign varieties overtakes Chinese ones at average level. Because of their different blood relationship, there are various situation on foreign varieties, i.e. varieties from IR system are not sensitive, Shui-yun system are second and Miyang system are sensitive. The radiosensitivity for restorer lines of hybrid F 0 overtakes one for F 1 . According to this results. We have put forward the point of view 'Multi-gene type blend system'. M 2 mutant frequency of restorer line was investigated. The results showed: there was a little difference between the total mutant frequencies from the different varieties. But, there may be difference in some characters by over thirty times between them. So a problem, worthy to be further studied is proposed that do the differences of radiosensitivity between varieties relate to the mutant frequency of these characters? Various mutants were obtained by irradiation treatment, among which a few mutants changed to maintainer line because losing restorer genes, other more mutants still were restorer lines. New combinations developed by these new mutant restorer lines have strong heterosis. The optimum combinations have been utilized in rice production. (7 tabs.)

  7. Milling and Baking Test REsults for Eastern Soft Winter Wheats Harvested in 2010

    Science.gov (United States)

    The Soft Wheat Quality Council (SWQC) will provide an organization structure to evaluate the quality of soft wheat experimental lines and variety that may be grown in the traditional growing regions of the United States. The SWQC also will establish other activities as requested by the membership. ...

  8. Evaluation of symbiotic performance of some mutant lines of soybean inoculated with two bradyrhizobium japonicum strains using 15N technique

    International Nuclear Information System (INIS)

    Kurdali, F.; Mir-Ali, N.; Al-Nabulsi, I.

    2002-11-01

    A pot experiment was conducted to study the symbiotic performance of two soybean varieties and some of their mutants (that were obtained as a result of a previous mutation breeding program) with two bradyrhizobium japonicum strains (RG and FA3) using 15 N isotopic dilution method. Random amplified polymorphic DNA technique (RAPD) was used to study the genetic relationships among the soybean genotypes and to make sure that the two rhizobial strains are different. The 25 random primers used discriminated the different soybean genotypes and the dendrogram resultants from shared polymorphic fragments put each variety and its mutants in two separate clusters asserting that the mutants and their mother lines are different. Both strains of B. japonicum were able to form effective nodules on all soybean plants. However, number of nodules, dry matter yield and N-uptake from the available sources by soybeans were affected by both plant genotype and rhizobial strains. N 2 -fixation was affected to a large extent by different strain and plant genotype combinations. Percentage of fixed N 2 (N dfa) ranged between 35 and 49%; whereas, the actual amounts of fixed N 2 were between 105 and 210 mg N/pot. Amounts of N 2 -fixed by FA3 strain were higher than of RG in both soybean varieties, whereas, the latter strain showed higher performance in the mutant lines. The results showed that total plant N estimation may not be a sufficient indicator for high N 2 -fixation. the results also showed that it is very important to determine both the amount of nitrogen derived from N 2 -fixation and N derived from soil for evaluating the symbiotic performance ability. Moreover, the performance of symbiotic N 2 -fixation in soybean was shown to depend on both plant genotype and rhizobial strain and the amount of N 2 -fixation can be increased by combining the best plant genotypes and the most adapted strain. (author)

  9. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat

    Science.gov (United States)

    Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota

    2016-01-01

    Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain. PMID:27763547

  10. Effect of the double mutant e//e w//w and the culture medium on the productivity of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Francisco Mora

    2000-01-01

    Full Text Available We investigated the effect of two culture media on the productivity of the double mutant ebony-white (e//e w//w of Drosophila melanogaster, aimed at improving the conditions for maintenance of Drosophila’s collection, Departamento de Biología, Universidad Nacional de Colombia. The results indicate that the productivity is affected by the culture medium, being the maize culture medium more productive than the wheat one; it was also shown that the productivity depends both, on the crosses type that is realize and on the mutant. The “+//+ +//+ x e//e w/ cross is more productive than its reciprocal cross, where the position of the ebony allele is the most important factor. With respect to the white allele, when carried by males it does not have effect on the productivity. In addition, we detected a negative effect of wheat culture medium on females +//e +//w.

  11. Assesment of winter wheat advanced lines by use of multivariate statistical analyses

    Directory of Open Access Journals (Sweden)

    Boshev Dane

    2016-01-01

    Full Text Available This study was conducted to evaluate 49 advanced lines of winter wheat (Triticum aestivum L. for their morphoagronomic traits and to determine best criteria for selection of lines to be included in future breeding program. The material was assessed in two years experiment at two locations, using RCBD design with three replications. Ten quantitative traits: plant height, number of fertile tillers, spike length, number of spikelets per spike, number of grains per spike, weight of grain per spike and per plant, fertility, biological yield and harvest index were evaluated by PCA and two-way cluster analysis. Three main principal components were determined explaining 71.391% of the total variation among the genotypes. One third of the variation is explained by PC1 which reflects the genotype yield potential. PC2 and PC3 explained 25.22% and 15.49% of the total variance, mostly in relation to the plant height and spike components, respectively. Biplot graph revealed strongest positive association between spike length, number of spikelets and biological yield and between number of tillers, weight of grains per spike and per plant. Two-way cluster analysis resulted with a dendrogram with one solely separated genotype, superior for all traits and two main clusters of genotypes defined with wide genetic diversity especially between the groups within the second cluster. Genotypes with high values for specific traits will be included in the future breeding programmes. Classification of genotypes and the extend of variation among them illustrated on the heatmap has proved to be practical tool for selecting genotypes with desired traits in the early stages of the breeding process.

  12. Efficient anchoring of alien chromosome segments introgressed into bread wheat by new Leymus racemosus genome-based markers.

    Science.gov (United States)

    Edet, Offiong Ukpong; Kim, June-Sik; Okamoto, Masanori; Hanada, Kousuke; Takeda, Tomoyuki; Kishii, Masahiro; Gorafi, Yasir Serag Alnor; Tsujimoto, Hisashi

    2018-03-27

    The tertiary gene pool of bread wheat, to which Leymus racemosus belongs, has remained underutilized due to the current limited genomic resources of the species that constitute it. Continuous enrichment of public databases with useful information regarding these species is, therefore, needed to provide insights on their genome structures and aid successful utilization of their genes to develop improved wheat cultivars for effective management of environmental stresses. We generated de novo DNA and mRNA sequence information of L. racemosus and developed 110 polymorphic PCR-based markers from the data, and to complement the PCR markers, DArT-seq genotyping was applied to develop additional 9990 SNP markers. Approximately 52% of all the markers enabled us to clearly genotype 22 wheat-L. racemosus chromosome introgression lines, and L. racemosus chromosome-specific markers were highly efficient in detailed characterization of the translocation and recombination lines analyzed. A further analysis revealed remarkable transferability of the PCR markers to three other important Triticeae perennial species: L. mollis, Psathyrostachys huashanica and Elymus ciliaris, indicating their suitability for characterizing wheat-alien chromosome introgressions carrying chromosomes of these genomes. The efficiency of the markers in characterizing wheat-L. racemosus chromosome introgression lines proves their reliability, and their high transferability further broadens their scope of application. This is the first report on sequencing and development of markers from L. racemosus genome and the application of DArT-seq to develop markers from a perennial wild relative of wheat, marking a paradigm shift from the seeming concentration of the technology on cultivated species. Integration of these markers with appropriate cytogenetic methods would accelerate development and characterization of wheat-alien chromosome introgression lines.

  13. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?

    Science.gov (United States)

    Meyer, Joana Beatrice; Song-Wilson, Yi; Foetzki, Andrea; Luginbühl, Carolin; Winzeler, Michael; Kneubühler, Yvan; Matasci, Caterina; Mascher-Frutschi, Fabio; Kalinina, Olena; Boller, Thomas; Keel, Christoph; Maurhofer, Monika

    2013-01-01

    This study aimed to evaluate the impact of genetically modified (GM) wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF). Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE) method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.

  14. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?

    Directory of Open Access Journals (Sweden)

    Joana Beatrice Meyer

    Full Text Available This study aimed to evaluate the impact of genetically modified (GM wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF. Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.

  15. Wheat Ammonium Transporter (AMT) Gene Family: Diversity and Possible Role in Host-Pathogen Interaction with Stem Rust.

    Science.gov (United States)

    Li, Tianya; Liao, Kai; Xu, Xiaofeng; Gao, Yue; Wang, Ziyuan; Zhu, Xiaofeng; Jia, Baolei; Xuan, Yuanhu

    2017-01-01

    Ammonium transporter (AMT) proteins have been reported in many plants, but no comprehensive analysis was performed in wheat. In this study, we identified 23 AMT members (hereafter TaAMTs) using a protein homology search in wheat genome. Tissue-specific expression analysis showed that TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a were relatively more highly expressed in comparison with other TaAMTs . TaAMT1;1a, TaAMT1;1b, and TaAMT1;3a-GFP were localized in the plasma membrane in tobacco leaves, and TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a successfully complemented a yeast 31019b strain in which ammonium uptake was deficient. In addition, the expression of TaAMT1;1b in an Arabidopsis AMT quadruple mutant ( qko ) successfully restored [Formula: see text] uptake ability. Resupply of [Formula: see text] rapidly increased cellular [Formula: see text] contents and suppressed expression of TaAMT1;3a , but not of TaAMT;1;1a and TaAMT1;1b expressions. Expression of TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a was not changed in leaves after [Formula: see text] resupply. In contrast, nitrogen (N) deprivation induced TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a gene expressions in the roots and leaves. Expression analysis in the leaves of the stem rust-susceptible wheat line "Little Club" and the rust-tolerant strain "Mini 2761" revealed that TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a were specifically induced in the former but not in the latter. Rust-susceptible wheat plants grown under N-free conditions exhibited a lower disease index than plants grown with [Formula: see text] as the sole N source in the medium after infection with Puccinia graminis f. sp. tritici , suggesting that [Formula: see text] and its transport may facilitate the infection of wheat stem rust disease. Our findings may be important for understanding the potential function TaAMTs in wheat plants.

  16. Seed coat color, weight and eye pattern inheritance in gamma-rays induced cowpea M2-mutant line

    Directory of Open Access Journals (Sweden)

    Reda M. Gaafar

    2016-06-01

    Full Text Available Gamma radiation is a very effective tool for inducing genetic variation in characters of many plants. Black seeds of M2 mutant were obtained after exposure of an Egyptian cowpea cultivar (Kaha 1 to a low dose of gamma rays. Segregation of seed coat color, weight of 100 seeds and seed eye pattern of the black seeds of this mutant line were further examined in this study. Four colors were observed for seed coat in the M3 plants ranging from cream to reddish brown and three eye patterns were distinguished from each other. SDS–PAGE of the seed storage proteins showed 18 protein bands; five of these bands disappeared in the seeds of M3 plants compared to M2 and M0 controls while other 5 protein bands were specifically observed in seeds of M3 plants. PCR analysis using twelve ISSR primers showed 47 polymorphic and 8 unique amplicons. The eight unique amplicons were characteristic of the cream coat color and brown wide eye pattern (M03-G10 while the polymorphic bands were shared by 6 coat-color groups. A PCR fragment of 850 bp was amplified, using primer HB-12, in M3-G04 which showed high-100 seed weight. These results demonstrated the mutagenic effects of gamma rays on seed coat color, weight of 100 seeds and eye pattern of cowpea M3 mutant plants.

  17. A high yielding, better quality chickpea mutant variety 'NIFA-95'

    International Nuclear Information System (INIS)

    Hassan, S.; Javed, M.A.; Khattak, S.U.K.; Iqbal, M.M.

    2001-01-01

    Chickpea or gram (Cicer arietinum L.) is an important legume crop of Pakistan, grown on over one million hectares annually. The national average yield of the crop is very low (0.5 t/ha) and thus the country had to spent about 2 billion rupees ($ 50 million) on import of pulses. The main causes of low yield are non-availability of genetic sources for resistance to various diseases especially gram blight Ascochyta rabiei (Pass.) Lab., insect pest (Pod borer) and non-adoption of proper production technology by the farmers. This calls for earnest efforts of breeders to evolve high yielding and disease resistant varieties of chickpea for provision of quality seeds to the farming community to increase production of this important crop. Seeds of a highly blight susceptible variety '6153' were irradiated at 200 Gy dose of gamma radiation in 1985 and the promising mutant line CMN-446-4 was selected in M3 generation on the basis of disease resistance, greater number of pods and better plant type. After confirmation of its resistance to blight in M 4 and M 5 , the mutant line was evaluated in various trials at different locations. In the advanced and zonal yield trials during 1993-95, the line CMN-446-4 produced the highest grain yield of 2,600 kg/ha as compared to the rest of the mutants and varieties. The line was also evaluated in the chickpea national uniform yield trial, conducted on over 11 locations in the country during 1993-94. In this trial, the mutant line ranked 3rd by producing an average yield of 1,528 kg/ha as compared to the two check varieties 'Punjab-91' (1,316 kg/ha) and 'Paidar-91' (1,391 kg/ha). The mutant line CMN-446-4 is moderately resistant to gram blight, highly resistant to stored pest (pulse beetle), contains 25.3% more protein as compared to the parental variety 6153 and is also better in nitrogen fixing capacity.The proposal for release of the mutant line CMN-446-4 as a new variety under the name 'NIFA-95' for general cultivation in the rainfed

  18. Identification of genome-specific transcripts in wheat–rye translocation lines

    Directory of Open Access Journals (Sweden)

    Tong Geon Lee

    2015-09-01

    Full Text Available Studying gene expression in wheat–rye translocation lines is complicated due to the presence of homeologs in hexaploid wheat and high levels of synteny between wheat and rye genomes (Naranjo and Fernandez-Rueda, 1991 [1]; Devos et al., 1995 [2]; Lee et al., 2010 [3]; Lee et al., 2013 [4]. To overcome limitations of current gene expression studies on wheat–rye translocation lines and identify genome-specific transcripts, we developed a custom Roche NimbleGen Gene Expression microarray that contains probes derived from the sequence of hexaploid wheat, diploid rye and diploid progenitors of hexaploid wheat genome (Lee et al., 2014. Using the array developed, we identified genome-specific transcripts in a wheat–rye translocation line (Lee et al., 2014. Expression data are deposited in the NCBI Gene Expression Omnibus (GEO under accession number GSE58678. Here we report the details of the methods used in the array workflow and data analysis.

  19. Effects of location and year on grain yield and its components in wheat genotypes developed from seed irradiation treatment

    International Nuclear Information System (INIS)

    Amer, I.M.; El-Rassas, H.N.; Abdel-Aleem, M.M.

    1994-01-01

    Eight mutant lines derived from gamma ray treatments and their parental cultivar sokha 69 of bread wheat were evaluated for grain yield per feddan, straw yield per feddan, harvest index, spike length, spike yield and weight of 1000-kernels at two locations (El-Fayoum and Inshas) in two seasons, 1991/92 and 1992/93. Significant effects of location on yield and yield components were found and the year significantly affects all the studied traits except grain yield per feddan. A significant location genotype interaction was detected for spike length, 1000-kernel weight and straw yield per feddan. In addition, year genotype interaction was significant in weight of 1000-kernels, straw yield per feddan and harvest index. The statistical analysis showed a significant difference among genotypes over all environments for spike length, 1000-kernel weight, straw yield per feddan and harvest index. However, these did not reflect significant effect on grain yield per feddan over all environments because it has a highly compensation ability. Meanwhile, mutant L 1 2 -1 exhibited significantly higher straw yield than sokha 69, when averaged over two seasons at El-Fayoum. Mutant L 1 9 -1 gave higher weight of 1000-kernels, spike length and harvest index than the other genotypes at low-yielding location (Inshas). It seems to be stable over a wide range of environments. 3 tabs

  20. The 'Green Revolution' dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare.

    Science.gov (United States)

    Saville, R J; Gosman, N; Burt, C J; Makepeace, J; Steed, A; Corbitt, M; Chandler, E; Brown, J K M; Boulton, M I; Nicholson, P

    2012-02-01

    The Green Revolution dwarfing genes, Rht-B1b and Rht-D1b, encode mutant forms of DELLA proteins and are present in most modern wheat varieties. DELLA proteins have been implicated in the response to biotic stress in the model plant, Arabidopsis thaliana. Using defined wheat Rht near-isogenic lines and barley Sln1 gain of function (GoF) and loss of function (LoF) lines, the role of DELLA in response to biotic stress was investigated in pathosystems representing contrasting trophic styles (biotrophic, hemibiotrophic, and necrotrophic). GoF mutant alleles in wheat and barley confer a resistance trade-off with increased susceptibility to biotrophic pathogens and increased resistance to necrotrophic pathogens whilst the converse was conferred by a LoF mutant allele. The polyploid nature of the wheat genome buffered the effect of single Rht GoF mutations relative to barley (diploid), particularly in respect of increased susceptibility to biotrophic pathogens. A role for DELLA in controlling cell death responses is proposed. Similar to Arabidopsis, a resistance trade-off to pathogens with contrasting pathogenic lifestyles has been identified in monocotyledonous cereal species. Appreciation of the pleiotropic role of DELLA in biotic stress responses in cereals has implications for plant breeding.

  1. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  2. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Directory of Open Access Journals (Sweden)

    Huali Huang

    Full Text Available Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L. DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  3. Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  4. Induction and use of artificial mutants in sweet potato

    International Nuclear Information System (INIS)

    Marumine, Shokichi

    1984-01-01

    X-ray, ethylene imine, 32 P and 60 Co were used as mutagen for sweet potato mutation breeding and visible variations were observed for all mutagen. In the case of 60 Co irradiation, mutation rate of skin color is 0.5-1.3% based on cutting. Direction and variation of dry matter and tuber yield of mutants which were induced by 32 P and/or 60 Co irradiation showed more deteriorative variation than progressive variation but some induced mutant lines show same or superior characters than original line. In the case of 32 P irradiation to tuber, obstruction is not so much up to dese of 10,000 μci per tuber but treatment of 330 μci per cutting approximate to LD 50 . By tuber treatment with 60 Co gamma rays, suppression of sprouting occurred in dose of 30kR. Tendency to increase a variation was not observed at higher doses. 50-200 μci per cutting or 300-500 μci per tuber in 32 P treatment and 15 kR in 60 Co gamma-irradiation for tuber seemed to be optimum dosages. Hybrid seed of mutant selected for dry matter content was compared with that of original line and it was concluded that the variation of selected line was genetic. Mutant induced by 32 P and 60 Co treatment was used as a parental material and progeny of the cross was selected for practical characters. As a result, a line of higher starch yield with high resistance to pest and disease was selected and this line was used as parental material of further breeding. (author)

  5. Mutant in tobacco anther culture induced by 60Co γ-rays

    International Nuclear Information System (INIS)

    Tong Daoru; Jia Xinghua

    1991-01-01

    The tobacco anthers at uninucleate eccentric stage were irradiated by 60 Co γ-rays for the purpose of inducing desirable mutants. The results showed that the induction frequency of plantlets increased following 1kR of 60 Co γ-rays treatment. However, the time of plantlet induction was delayed and the percentage of responding anthers as well as the number of plantlets induced per anther significantly decreased after 3kR of 60 Co γ-ray radiation which was considered as a semilethal exposure. The plantlet numbers induced per anther were extremely low following 6kR of 60 Co γ-ray radiation. A white flower mutant appeared in the induced progenies. The tobacco leaf quality of this mutant were significantly improved as compared with its parental line. The mutant line has been tested and proved to have commercial value though the resistance to the black shank of tobacco slightly decreased as compared with the parental line

  6. Genetic evolution and utilization of wheat germplasm resources in Huanghuai winter wheat region of China

    International Nuclear Information System (INIS)

    Xiyong, C.; Haixia, X.U.; Feng, C.

    2011-01-01

    To determine the genetic variation of wheat germplasm resources and improve their use in wheat breeding, 215 wheat cultivars and advanced lines from the Huanghuai Wheat Region of China were used to identify 14 agronomic traits and 7 quality traits, as well as the evolution and utilization of high molecular weight glutenin subunits (HMW-GS) and low molecular weight-glutenin subunits (LMW-GS). From land race cultivars to current cultivars there had been significant increases in grain numbers spike/sip -1/, grain weight spike/sup -1/, 1000-kernel weight, grain weight plant/sup -1/, spikelet number spike/sup -1/, sterile spikelet numbers spike/sup -1/, flag leaf width, and flag leaf area. There had been significant decreases in spike number plant/sup -1/, plant height, the first inter node length, flag leaf length, kernel protein content and wet gluten content. Based on Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results, a novel HMW-GS combination 20/8 was identified in 1B chromosome of Chinese landrace cultivar Heputou. Subunits 22, 20/8, 2.2+12, and GluB3a were only found in cultivars before the 1960s, and subunits 6+8, 13+16, 3+12, and 4+12 were only found in the cultivars after the 1980s. The average diversity index of 21 traits and allele variance of HMW-GS showed a decreasing-increasing-decreasing tendency. HMW-GS and LMW-GS combination-type cultivars showed an increasing-decreasing tendency. Before the 1980s, most parental strains were from foreign cultivars and landrace cultivars, while after the 1980s, most parental strains were from released cultivars and germplasm created by distant hybridization. This study provided useful information for improvement of wheat breeding in Huanghuai winter wheat region. (author)

  7. Induction of two mutants in birdsfoot trefoil (Lotus corniculatus) by x-rays and chemical mutagens

    International Nuclear Information System (INIS)

    Therrien, M.C.; Grant, W.F.

    1982-01-01

    The mutagenic effects of X-rays, ethyl methanesulfonate (EMS), 8-ethoxycaffeine (EOC), N-hydroxyurea (HU) and 2-aminopurine (2AP) on seed treatment of birdsfoot trefoil (Lotus corniculatus L. 'Mirabel') were assessed over four generations. Mutants were recovered in the M 2 , M 3 and M 4 generations from selfed lines, from crosses derived form selfed lines and from open pollination lines. Mutant plants exhibiting vestigial floret character were recovered from X-rays, EMS, EOC and HU treatments. Mutant chlorotica plants were obtained from EMS treatment only. No mutants were recovered from 2AP treatment, EMS, the most effective mutagen, produced nine vestigial floret and 12 chlorotica mutants. Mutants were obtained from only one exposure of X-rays (12 krad). There was evidence for preferential elimination of gametes. The chlorotica and vestigial floret mutants were inherited as tetrasomic recessives. Mutation frequencies of 0.4 - 3.1% in a tetrasomic background are indicative of the effectiveness of EMS in birdsfoot trefoil

  8. Induction of two mutants in birdsfoot trefoil (Lotus corniculatus) by x-rays and chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Therrien, M.C.; Grant, W.F. (McGill Univ., Ste. Anne de Bellevue, Quebec (Canada). Macdonald Coll.)

    1982-10-01

    The mutagenic effects of X-rays, ethyl methanesulfonate (EMS), 8-ethoxycaffeine (EOC), N-hydroxyurea (HU) and 2-aminopurine (2AP) on seed treatment of birdsfoot trefoil (Lotus corniculatus L. 'Mirabel') were assessed over four generations. Mutants were recovered in the M/sub 2/, M/sub 3/ and M/sub 4/ generations from selfed lines, from crosses derived form selfed lines and from open pollination lines. Mutant plants exhibiting vestigial floret character were recovered from X-rays, EMS, EOC and HU treatments. Mutant chlorotica plants were obtained from EMS treatment only. No mutants were recovered from 2AP treatment, EMS, the most effective mutagen, produced nine vestigial floret and 12 chlorotica mutants. Mutants were obtained from only one exposure of X-rays (12 krad). There was evidence for preferential elimination of gametes. The chlorotica and vestigial floret mutants were inherited as tetrasomic recessives. Mutation frequencies of 0.4 - 3.1% in a tetrasomic background are indicative of the effectiveness of EMS in birdsfoot trefoil.

  9. Durable resistance to net blotch and agronomic performance in some barley mutants [Hordeum vulgare L.; Syria

    International Nuclear Information System (INIS)

    Arabi, M.I.E.

    2004-01-01

    Seeds from the net blotch (Pyrenophora teres) susceptible cultivar Thibaut were treated by gamma ray radiation and subsequently evaluated for reaction to the pathogen in the M2-M5 generations. Grain yield and agronomic characteristics of putative mutants were compared with Thibaut in two different locations. Genetic variation among some mutant lines/cv Thibaut was estimated using Amplified Fragment Length Polymorphism (AFLP) markers. Sixteen mutant lines and their mother cultivar Thibaut were analyzed with 14 EcoR1-Mse1 primer combinations. A total number of 504 AFLP bands were analyzed for each pair mutant/Thibaut. Narrow genetic variation among all genotypes was detected with an average of genetic similarity of 0.96. Cluster analysis with the entire AFLP data divided all genotypes into two major groups. The resistant mutant lines were grouped in one subcluster with 0.98 similarity index. Some resistant mutant lines to net blotch with good agronomic performances were produced [it

  10. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease.

    Science.gov (United States)

    Liu, Xin; Yang, Lihua; Zhou, Xianyao; Zhou, Miaoping; Lu, Yan; Ma, Lingjian; Ma, Hongxiang; Zhang, Zengyan

    2013-05-01

    The disease take-all, caused by the fungus Gaeumannomyces graminis, is one of the most destructive root diseases of wheat worldwide. Breeding resistant cultivars is an effective way to protect wheat from take-all. However, little progress has been made in improving the disease resistance level in commercial wheat cultivars. MYB transcription factors play important roles in plant responses to environmental stresses. In this study, an R2R3-MYB gene in Thinopyrum intermedium, TiMYB2R-1, was cloned and characterized. The gene sequence includes two exons and an intron. The expression of TiMYB2R-1 was significantly induced following G. graminis infection. An in vitro DNA binding assay proved that TiMYB2R-1 protein could bind to the MYB-binding site cis-element ACI. Subcellular localization assays revealed that TiMYB2R-1 was localized in the nucleus. TiMYB2R-1 transgenic wheat plants were generated, characterized molecularly, and evaluated for take-all resistance. PCR and Southern blot analyses confirmed that TiMYB2R-1 was integrated into the genomes of three independent transgenic wheat lines by distinct patterns and the transgene was heritable. Reverse transcription-PCR and western blot analyses revealed that TiMYB2R-1 was highly expressed in the transgenic wheat lines. Based on disease response assessments for three successive generations, the significantly enhanced resistance to take-all was observed in the three TiMYB2R-1-overexpressing transgenic wheat lines. Furthermore, the transcript levels of at least six wheat defence-related genes were significantly elevated in the TiMYB2R-1 transgenic wheat lines. These results suggest that engineering and overexpression of TiMYB2R-1 may be used for improving take-all resistance of wheat and other cereal crops.

  11. STUDY OF AZOSPIRILLUM LECTINS INFLUENCE ON HYDROGEN PEROXIDE PRODUCTION IN WHEAT-ROOTS

    Directory of Open Access Journals (Sweden)

    Alen’kina S.A.

    2009-12-01

    Full Text Available It was found that two cell-surface lectins isolated from the nitrogen-fixing soil bacterium Azospirillum brasilense Sp7 and from its mutant defective in lectin activity, A. brasilense Sp7.2.3 can stimulate rapid formation of hydrogen peroxide, associated with an increase in the activities of oxalate oxidase and peroxidase in the roots of wheat seedlings. The most advantageous and most rapidly induced pathway of hydrogen peroxide formation was the oxidation of oxalic acid by oxalate oxidase because in this case, a 10-min treatment of the roots with the lectins at 10 µg ml-1 was sufficient. The data from this study attest that the Azospirillum lectins can act as inducers of adaptation processes in the roots of wheat seedlings.

  12. Evaluation and characterization of advanced rice mutant line of rice (Oryza sativa), MR219-4 and MR219-9 under drought condition

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Zarith Shafika Kamarudin; Abdullah, M.Z.; Anna, L.P.K.; Sobri Hussain; Rusli Ibrahim; Khairuddin abdul Rahim

    2012-01-01

    Two advance rice mutant lines, MR219-4 and MR219-9 derived from mutagenesis of Oryza sativa cv. MR219 with gamma radiation at 300 Gy were evaluated in simulated drought condition in the greenhouse at Malaysian Nuclear Agency. The mutants were evaluated simultaneously with ARN1, a drought resistant variety and MR211 a susceptible cultivar as a check. Randomized complete block design with three replicates was used in the experiment. The evaluation and selection were done based on leaf rolling and leaf drying as well as other agronomic traits, such as, number of tillers per plant, plant height, flag leaf area, grain weight per plant, grain yield per plant, 100-grain weight, harvest index, panicle length and plant biomass. The mutants MR219-4 showed moderate tolerance and MR219-9 showed tolerance to drought respectively as compare to the check variety (ARN1, MR211) and control MR219. Leaf rolling, leaf drying, days to flowering and days to maturity are valuable secondary traits that may provide additional information for selection because of associating with the plant survival under water stress. Further research on expression of drought-tolerant lines under different drought conditions is essential in order to identify particular traits that are associated with drought tolerance and high yield potential. Similarly the importance of secondary traits, relative to other putative traits for drought tolerance, needs to be tested in various environments. (author)

  13. TOMATOMA Update: Phenotypic and Metabolite Information in the Micro-Tom Mutant Resource.

    Science.gov (United States)

    Shikata, Masahito; Hoshikawa, Ken; Ariizumi, Tohru; Fukuda, Naoya; Yamazaki, Yukiko; Ezura, Hiroshi

    2016-01-01

    TOMATOMA (http://tomatoma.nbrp.jp/) is a tomato mutant database providing visible phenotypic data of tomato mutant lines generated by ethylmethane sulfonate (EMS) treatment or γ-ray irradiation in the genetic background of Micro-Tom, a small and rapidly growing variety. To increase mutation efficiency further, mutagenized M3 seeds were subjected to a second round of EMS treatment; M3M1 populations were generated. These plants were self-pollinated, and 4,952 lines of M3M2 mutagenized seeds were generated. We checked for visible phenotypes in the M3M2 plants, and 618 mutant lines with 1,194 phenotypic categories were identified. In addition to the phenotypic information, we investigated Brix values and carotenoid contents in the fruits of individual mutants. Of 466 samples from 171 mutant lines, Brix values and carotenoid contents were between 3.2% and 11.6% and 6.9 and 37.3 µg g(-1) FW, respectively. This metabolite information concerning the mutant fruits would be useful in breeding programs as well as for the elucidation of metabolic regulation. Researchers are able to browse and search this phenotypic and metabolite information and order seeds of individual mutants via TOMATOMA. Our new Micro-Tom double-mutagenized populations and the metabolic information could provide a valuable genetic toolkit to accelerate tomato research and potential breeding programs. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency.

    Science.gov (United States)

    Xue, Gang-Ping; McIntyre, C Lynne; Chapman, Scott; Bower, Neil I; Way, Heather; Reverter, Antonio; Clarke, Bryan; Shorter, Ray

    2006-08-01

    High water use efficiency or transpiration efficiency (TE) in wheat is a desirable physiological trait for increasing grain yield under water-limited environments. The identification of genes associated with this trait would facilitate the selection for genotypes with higher TE using molecular markers. We performed an expression profiling (microarray) analysis of approximately 16,000 unique wheat ESTs to identify genes that were differentially expressed between wheat progeny lines with contrasting TE levels from a cross between Quarrion (high TE) and Genaro 81 (low TE). We also conducted a second microarray analysis to identify genes responsive to drought stress in wheat leaves. Ninety-three genes that were differentially expressed between high and low TE progeny lines were identified. One fifth of these genes were markedly responsive to drought stress. Several potential growth-related regulatory genes, which were down-regulated by drought, were expressed at a higher level in the high TE lines than the low TE lines and are potentially associated with a biomass production component of the Quarrion-derived high TE trait. Eighteen of the TE differentially expressed genes were further analysed using quantitative RT-PCR on a separate set of plant samples from those used for microarray analysis. The expression levels of 11 of the 18 genes were positively correlated with the high TE trait, measured as carbon isotope discrimination (Delta(13)C). These data indicate that some of these TE differentially expressed genes are candidates for investigating processes that underlie the high TE trait or for use as expression quantitative trait loci (eQTLs) for TE.

  15. Prevention of Lysosomal Storage Diseases and Derivation of Mutant Stem Cell Lines by Preimplantation Genetic Diagnosis

    Science.gov (United States)

    Altarescu, Gheona; Beeri, Rachel; Eiges, Rachel; Epsztejn-Litman, Silvina; Eldar-Geva, Talia; Elstein, Deborah; Zimran, Ari; Margalioth, Ehud J.; Levy-Lahad, Ephrat; Renbaum, Paul

    2012-01-01

    Preimplantation genetic diagnosis (PGD) allows birth of unaffected children for couples at risk for a genetic disorder. We present the strategy and outcome of PGD for four lysosomal storage disorders (LSD): Tay-Sachs disease (TSD), Gaucher disease (GD), Fabry disease (FD), and Hunter syndrome (HS), and subsequent development of stem cell lines. For each disease, we developed a family-specific fluorescent multiplex single-cell PCR protocol that included the familial mutation and informative markers surrounding the mutation. Embryo biopsy and PGD analysis were performed on either oocytes (polar bodies one and two) or on single blastomeres from a six-cell embryo. We treated twenty families carrying mutations in these lysosomal storage disorders, including 3 couples requiring simultaneous analysis for two disorders (TSD/GD, TSD/balanced Robertsonian translocation 45XYder(21;14), and HS/oculocutaneus albinism). These analyses led to an overall pregnancy rate/embryo transfer of 38% and the birth of 20 unaffected children from 17 families. We have found that PGD for lysosomal disorders is a safe and effective method to prevent birth of affected children. In addition, by using mutant embryos for the derivation of stem cell lines, we have successfully established GD and HS hESC lines for use as valuable models in LSD research. PMID:23320174

  16. Analysis of the Gli-D2 locus identifies a genetic target for simultaneously improving the breadmaking and health-related traits of common wheat.

    Science.gov (United States)

    Li, Da; Jin, Huaibing; Zhang, Kunpu; Wang, Zhaojun; Wang, Faming; Zhao, Yue; Huo, Naxin; Liu, Xin; Gu, Yong Q; Wang, Daowen; Dong, Lingli

    2018-05-11

    Gliadins are a major component of wheat seed proteins. However, the complex homoeologous Gli-2 loci (Gli-A2, -B2 and -D2) that encode the α-gliadins in commercial wheat are still poorly understood. Here we analyzed the Gli-D2 locus of Xiaoyan 81 (Xy81), a winter wheat cultivar. A total of 421.091 kb of the Gli-D2 sequence was assembled from sequencing multiple bacterial artificial clones, and 10 α-gliadin genes were annotated. Comparative genomic analysis showed that Xy81 carried only eight of the α-gliadin genes of the D genome donor Aegilops tauschii, with two of them each experiencing a tandem duplication. A mutant line lacking Gli-D2 (DLGliD2) consistently exhibited better breadmaking quality and dough functionalities than its progenitor Xy81, but without penalties in other agronomic traits. It also had an elevated lysine content in the grains. Transcriptome analysis verified the lack of Gli-D2 α-gliadin gene expression in DLGliD2. Furthermore, the transcript and protein levels of protein disulfide isomerase were both upregulated in DLGliD2 grains. Consistent with this finding, DLGliD2 had increased disulfide content in the flour. Our work sheds light on the structure and function of Gli-D2 in commercial wheat, and suggests that the removal of Gli-D2 and the gliadins specified by it is likely to be useful for simultaneously enhancing the end-use and health-related traits of common wheat. Because gliadins and homologous proteins are widely present in grass species, the strategy and information reported here may be broadly useful for improving the quality traits of diverse cereal crops. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  17. Increasing the amylose content of durum wheat through silencing of the SBEIIa genes

    Directory of Open Access Journals (Sweden)

    Masci Stefania

    2010-07-01

    Full Text Available Abstract Background High amylose starch has attracted particular interest because of its correlation with the amount of Resistant Starch (RS in food. RS plays a role similar to fibre with beneficial effects for human health, providing protection from several diseases such as colon cancer, diabetes, obesity, osteoporosis and cardiovascular diseases. Amylose content can be modified by a targeted manipulation of the starch biosynthetic pathway. In particular, the inactivation of the enzymes involved in amylopectin synthesis can lead to the increase of amylose content. In this work, genes encoding starch branching enzymes of class II (SBEIIa were silenced using the RNA interference (RNAi technique in two cultivars of durum wheat, using two different methods of transformation (biolistic and Agrobacterium. Expression of RNAi transcripts was targeted to the seed endosperm using a tissue-specific promoter. Results Amylose content was markedly increased in the durum wheat transgenic lines exhibiting SBEIIa gene silencing. Moreover the starch granules in these lines were deformed, possessing an irregular and deflated shape and being smaller than those present in the untransformed controls. Two novel granule bound proteins, identified by SDS-PAGE in SBEIIa RNAi lines, were investigated by mass spectrometry and shown to have strong homologies to the waxy proteins. RVA analysis showed new pasting properties associated with high amylose lines in comparison with untransformed controls. Finally, pleiotropic effects on other starch genes were found by semi-quantitative and Real-Time reverse transcription-polymerase chain reaction (RT-PCR. Conclusion We have found that the silencing of SBEIIa genes in durum wheat causes obvious alterations in granule morphology and starch composition, leading to high amylose wheat. Results obtained with two different methods of transformation and in two durum wheat cultivars were comparable.

  18. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat

    Czech Academy of Sciences Publication Activity Database

    Molnár, I.; Vrána, Jan; Burešová, Veronika; Cápal, Petr; Farkas, A.; Darko, E.; Cseh, A.; Kubaláková, Marie; Molnár-Láng, M.; Doležel, Jaroslav

    2016-01-01

    Roč. 88, č. 3 (2016), s. 452-467 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : tertiary gene pool * triticum-aestivum * common wheat * addition lines * mitotic chromosomes * plant chromosomes * hexaploid wheat * ae. speltoides * dna-sequences * rye genome * Aegilops umbellulata * Aegilops comosa * Aegilops speltoides * Aegilops markgrafii * flow cytometric chromosome sorting * fluorescence insitu hybridization * conserved orthologous set markers Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.901, year: 2016

  19. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat.

    Science.gov (United States)

    Boden, Scott A; Cavanagh, Colin; Cullis, Brian R; Ramm, Kerrie; Greenwood, Julian; Jean Finnegan, E; Trevaskis, Ben; Swain, Steve M

    2015-01-26

    The domestication of cereal crops such as wheat, maize, rice and barley has included the modification of inflorescence architecture to improve grain yield and ease harvesting(1). Yield increases have often been achieved through modifying the number and arrangement of spikelets, which are specialized reproductive branches that form part of the inflorescence. Multiple genes that control spikelet development have been identified in maize, rice and barley(2-5). However, little is known about the genetic underpinnings of this process in wheat. Here, we describe a modified spikelet arrangement in wheat, termed paired spikelets. Combining comprehensive QTL and mutant analyses, we show that Photoperiod-1 (Ppd-1), a pseudo-response regulator gene that controls photoperiod-dependent floral induction, has a major inhibitory effect on paired spikelet formation by regulating the expression of FLOWERING LOCUS T (FT)(6,7). These findings show that modulated expression of the two important flowering genes, Ppd-1 and FT, can be used to form a wheat inflorescence with a more elaborate arrangement and increased number of grain producing spikelets.

  20. Imidacloprid does not induce Cyp genes involved in insecticide resistance of a mutant Drosophila melanogaster line.

    Science.gov (United States)

    Kalajdzic, Predrag; Markaki, Maria; Oehler, Stefan; Savakis, Charalambos

    2013-10-01

    Certain xenobiotics have the capacity to induce the expression of genes involved in various biological phenomena, including insecticide resistance. The induction potential of different chemicals, among them different insecticides, has been documented for a number of insect species. In this study, we have analyzed the induction potential of Imidacloprid, a widely used member of the neonicotinoid insecticide family. Genes Cyp6g1 and Cyp6a2, known to be involved in the resistance of mutant Drosophila melanogaster line MiT[W⁻]3R2 to Imidacloprid and DDT were included in the analyzed sample. We find that Imidacloprid does not induce expression of the analyzed genes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Reaction to diseases of six gamma-irradiated genotypes of wheat (Triticum spp.)

    International Nuclear Information System (INIS)

    Parodi, P.C.; Nebreda, I.M.

    1977-01-01

    Seed from six genotypes of spring wheat: Huelquen, Collafen, Yafen, PLA771 and Bluebird No.3 (Triticum aestivum L.), and also Quilafen (Triticum durum Desf.) was exposed to gamma radiation in doses of 10 and 25 krad. The aim of the research is to produce cultivars resistant to the main diseases, with a high protein content and grain yield, for the north-central region of Chile (29-35 0 latitude south). The selection process up to the generation M 5 has made it possible to identify mutants with a higher level of resistance to Puccinia graminis, Puccinia recondita and Puccinia striiformis than the original genotypes. Progress made in improving resistance to a fungal complex attacking the spikelets of the mutant cultivars Huelquen and Yafen, to Erysiphe graminis, and to the yellow dwarf virus in barley (BYDV), has been slighter. The yield of grain and protein per unit surface of the mutants studied during repeated experiments has been greater than for the controls. If this trend continues, there should be a number of mutants that could be used for commercial cultivation. (author)

  2. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    Science.gov (United States)

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  3. Canola-Wheat Rotation versus Continuous Wheat for the Southern Plains

    OpenAIRE

    Duke, Jason C.; Epplin, Francis M.; Vitale, Jeffrey D.; Peeper, Thomas F.

    2009-01-01

    Crop rotations are not common in the wheat belt of the Southern Plains. After years of continuous wheat, weeds have become increasingly difficult and expensive to manage. Yield data were elicited from farmers and used to determine if canola-wheat-wheat rotations are economically competitive with continuous wheat in the region.

  4. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat.

    Science.gov (United States)

    Rahmatov, Mahbubjon; Rouse, Matthew N; Nirmala, Jayaveeramuthu; Danilova, Tatiana; Friebe, Bernd; Steffenson, Brian J; Johansson, Eva

    2016-07-01

    A new stem rust resistance gene Sr59 from Secale cereale was introgressed into wheat as a 2DS·2RL Robertsonian translocation. Emerging new races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici), from Africa threaten global wheat (Triticum aestivum L.) production. To broaden the resistance spectrum of wheat to these widely virulent African races, additional resistance genes must be identified from all possible gene pools. From the screening of a collection of wheat-rye (Secale cereale L.) chromosome substitution lines developed at the Swedish University of Agricultural Sciences, we described the line 'SLU238' 2R (2D) as possessing resistance to many races of P. graminis f. sp. tritici, including the widely virulent race TTKSK (isolate synonym Ug99) from Africa. The breakage-fusion mechanism of univalent chromosomes was used to produce a new Robertsonian translocation: T2DS·2RL. Molecular marker analysis and stem rust seedling assays at multiple generations confirmed that the stem rust resistance from 'SLU238' is present on the rye chromosome arm 2RL. Line TA5094 (#101) was derived from 'SLU238' and was found to be homozygous for the T2DS·2RL translocation. The stem rust resistance gene on chromosome 2RL arm was designated as Sr59. Although introgressions of rye chromosome arms into wheat have most often been facilitated by irradiation, this study highlights the utility of the breakage-fusion mechanism for rye chromatin introgression. Sr59 provides an additional asset for wheat improvement to mitigate yield losses caused by stem rust.

  5. Gene flow in genetically modified wheat.

    Directory of Open Access Journals (Sweden)

    Silvan Rieben

    Full Text Available Understanding gene flow in genetically modified (GM crops is critical to answering questions regarding risk-assessment and the coexistence of GM and non-GM crops. In two field experiments, we tested whether rates of cross-pollination differed between GM and non-GM lines of the predominantly self-pollinating wheat Triticum aestivum. In the first experiment, outcrossing was studied within the field by planting "phytometers" of one line into stands of another line. In the second experiment, outcrossing was studied over distances of 0.5-2.5 m from a central patch of pollen donors to adjacent patches of pollen recipients. Cross-pollination and outcrossing was detected when offspring of a pollen recipient without a particular transgene contained this transgene in heterozygous condition. The GM lines had been produced from the varieties Bobwhite or Frisal and contained Pm3b or chitinase/glucanase transgenes, respectively, in homozygous condition. These transgenes increase plant resistance against pathogenic fungi. Although the overall outcrossing rate in the first experiment was only 3.4%, Bobwhite GM lines containing the Pm3b transgene were six times more likely than non-GM control lines to produce outcrossed offspring. There was additional variation in outcrossing rate among the four GM-lines, presumably due to the different transgene insertion events. Among the pollen donors, the Frisal GM line expressing a chitinase transgene caused more outcrossing than the GM line expressing both a chitinase and a glucanase transgene. In the second experiment, outcrossing after cross-pollination declined from 0.7-0.03% over the test distances of 0.5-2.5 m. Our results suggest that pollen-mediated gene flow between GM and non-GM wheat might only be a concern if it occurs within fields, e.g. due to seed contamination. Methodologically our study demonstrates that outcrossing rates between transgenic and other lines within crops can be assessed using a phytometer

  6. Gene flow in genetically modified wheat.

    Science.gov (United States)

    Rieben, Silvan; Kalinina, Olena; Schmid, Bernhard; Zeller, Simon L

    2011-01-01

    Understanding gene flow in genetically modified (GM) crops is critical to answering questions regarding risk-assessment and the coexistence of GM and non-GM crops. In two field experiments, we tested whether rates of cross-pollination differed between GM and non-GM lines of the predominantly self-pollinating wheat Triticum aestivum. In the first experiment, outcrossing was studied within the field by planting "phytometers" of one line into stands of another line. In the second experiment, outcrossing was studied over distances of 0.5-2.5 m from a central patch of pollen donors to adjacent patches of pollen recipients. Cross-pollination and outcrossing was detected when offspring of a pollen recipient without a particular transgene contained this transgene in heterozygous condition. The GM lines had been produced from the varieties Bobwhite or Frisal and contained Pm3b or chitinase/glucanase transgenes, respectively, in homozygous condition. These transgenes increase plant resistance against pathogenic fungi. Although the overall outcrossing rate in the first experiment was only 3.4%, Bobwhite GM lines containing the Pm3b transgene were six times more likely than non-GM control lines to produce outcrossed offspring. There was additional variation in outcrossing rate among the four GM-lines, presumably due to the different transgene insertion events. Among the pollen donors, the Frisal GM line expressing a chitinase transgene caused more outcrossing than the GM line expressing both a chitinase and a glucanase transgene. In the second experiment, outcrossing after cross-pollination declined from 0.7-0.03% over the test distances of 0.5-2.5 m. Our results suggest that pollen-mediated gene flow between GM and non-GM wheat might only be a concern if it occurs within fields, e.g. due to seed contamination. Methodologically our study demonstrates that outcrossing rates between transgenic and other lines within crops can be assessed using a phytometer approach and that gene

  7. Inhibition of Cell Proliferation in an NRAS Mutant Melanoma Cell Line by Combining Sorafenib and α-Mangostin.

    Directory of Open Access Journals (Sweden)

    Yun Xia

    Full Text Available α-Mangostin is a natural product commonly used in Asia for cosmetic and medicinal applications including topical treatment of acne and skin cancer. Towards finding new pharmacological strategies that overcome NRAS mutant melanoma, we performed a cell proliferation-based combination screen using a collection of well-characterized small molecule kinase inhibitors and α-Mangostin. We found that α-Mangostin significantly enhances Sorafenib pharmacological efficacy against an NRAS mutant melanoma cell line. The synergistic effects of α-Mangostin and Sorafenib were associated with enhanced inhibition of activated AKT and ERK, induced ER stress, and reduced autophagy, eventually leading to apoptosis. The structure of α-Mangostin resembles several inhibitors of the Retinoid X receptor (RXR. MITF expression, which is regulated by RXR, was modulated by α-Mangostin. Molecular docking revealed that α-Mangostin can be accommodated by the ligand binding pocket of RXR and may thereby compete with RXR-mediated control of MITF expression. In summary, these data demonstrate an unanticipated synergy between α-Mangostin and sorafenib, with mechanistic actions that convert a known safe natural product to a candidate combinatorial therapeutic agent.

  8. Isolation of parafluorophenylalanine-resistant mutants from HeLa cell cultures

    International Nuclear Information System (INIS)

    Yim, L.K.; Stuart, W.D.

    1983-01-01

    This report describes a method to isolate temperature-conditional phenylalanine transport mutants from the transformed human cell line HeLa. Using ultraviolet light as a mutagenic agent and DL-parafluorophenylalanine (PFPA), a poisonous analogue of L-phenylalanine, as a selective agent, mutagenized cells were selected for survival in the presence of PFPA at a temperature of 39 degrees C. Survivors of the mutagenesis and selection procedures were removed from the culture dishes by trypsin and cloned at a temperature of 35 degrees C. Seven of these lines isolated demonstrated continued resistance to PFPA at 39 degrees C. These lines were tested for uptake of L-phenylalanine at an external concentration of 100 microM and for continued resistance to PFPA at two concentrations. Cells were tested at 35 and at 39 degrees C. The data were compared to those obtained for the parental HeLa cell line under identical conditions. The seven mutant cell lines demonstrated varying resistances to PFPA and varying levels of accumulation of L-phenylalanine when tested at 35 and 39 degrees C. Three mutant lines were additionally tested for L-phenylalanine tRNA charging levels and for transport of L-arginine. The lines had parental cell levels of tRNA charging and L-arginine transport which suggest that the induced genetic defect affects a specific L-phenylalanine transport system

  9. The types and genetic analysis of radiation induced early maturity mutants of rice

    International Nuclear Information System (INIS)

    Yang Hefeng; Chen Xiulan; He Zhengtian; Gu Shiliang; Xu Chenwu

    1989-01-01

    Observation and correlation analysis were made for 50 early mutant lines,The early mutant lines fall into late type of early-maturity rice, and early type of mid- maturity rice, some of which are valuable as materials of rice breeding.With shorter growing period, the mutants have less inter-nodes and leaf numbers on main culm, shorter leaf and panicle length, and less filled grains and yield per plant, but have higher Protein content.Among 20 traits observed, 7 were significantly correlated with the length of growing period.The genetic parameter analysis for the mutant lines indicates that the length of growing period, plant height, grain number per panicle, 1000-grain weight have high heritability, Non-filled grain rate, secondary branch, number of panicle, grain number per panicle have larger genetic coefficient of variation and larger gain of selection

  10. Estimates of selection parameters in protein mutants of spring barley

    International Nuclear Information System (INIS)

    Gaul, H.; Walther, H.; Seibold, K.H.; Brunner, H.; Mikaelsen, K.

    1976-01-01

    Detailed studies have been made with induced protein mutants regarding a possible genetic advance in selection including the estimation of the genetic variation and heritability coefficients. Estimates were obtained for protein content and protein yield. The variation of mutant lines in different environments was found to be many times as large as the variation of the line means. The detection of improved protein mutants seems therefore possible only in trials with more than one environment. The heritability of protein content and protein yield was estimated in different sets of environments and was found to be low. However, higher values were found with an increasing number of environments. At least four environments seem to be necessary to obtain reliable heritability estimates. The geneticall component of the variation between lines was significant for protein content in all environmental combinations. For protein yield some environmental combinations only showed significant differences. The expected genetic advance with one selection step was small for both protein traits. Genetically significant differences between protein micromutants give, however, a first indication that selection among protein mutants with small differences seems also possible. (author)

  11. Wheat in the Mediterranean revisited--tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers.

    Science.gov (United States)

    Oliveira, Hugo R; Hagenblad, Jenny; Leino, Matti W; Leigh, Fiona J; Lister, Diane L; Penã-Chocarro, Leonor; Jones, Martin K

    2014-05-08

    Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat.

  12. A preliminary study on induction and identification of chlorophyll mutants of indica type temperature sensitive genie male-sterile rice

    International Nuclear Information System (INIS)

    Xia Yingwu; Liu Guifu; Shu Qingyao; Jiang Ronghua; Xie Jiahua

    1995-01-01

    Chlorophyll mutants of different type were obtained from indica type temperature sensitive genie male-sterile rice (cv. 2177s) by using 60 Co γ-rays irradiation. The total chlorophyll mutation frequency reached to 0.26% in M 2 generation. However only about 4.50% of these mutants could survived. Among them, 33 heritable chlorophyll mutant lines were easily distinguished, and were screened and studied. The mutants either showed chlorosis or yellowing or expressed only at seedling period or persisted all growth cycle. The expression of mutant character was stable under different environment. It is suggested that they are useful as the marker traits in two-line hybrid rice. Moreover, the agronomic traits of most of these lines changed in different levels compared with the parent line 2177S. Every mutation line seemed to be controlled by one recessive gene as the F 1 plants of reciprocal crosses between mutant and 2177S showed normal leaf color. And the ratio of green plants/mutant plants was 3:1 in the segregated F 2 population

  13. Sustainable use of winter Durum wheat landraces under ...

    African Journals Online (AJOL)

    ... the two checks cultivars. Bi- plot analysis showed that some promising lines with reasonable grain yields, good quality parameters, winter hardiness and drought tolerances among yellow rust resistance durum wheat landraces can be selected for semiarid conditions of Mediterranean countries for sustainable production.

  14. A higher yielding mutant of black gram with improved nodule formation

    International Nuclear Information System (INIS)

    Singh, R.K.; Raghuvanshi, S.S.

    1987-01-01

    Dry seeds of black gram (Vigna mungo (L) Hopper) var. T 9 with 12.2% moisture content were irradiated at 10, 20 and 30 krad of gamma rays. This was followed by combined treatment of one set in each dose with freshly prepared 0. 25% EMS in phosphate buffer at 7.0 pH at 30± deg. C for 6 hours. In M 2 population of 20 krad two mutants with pentafoliate instead of trifoliate leaves were found. This character was true breeding in M 3 M 6 generation. Crosses revealed monogenic recessive inheritance of this character. The proposed gene symbol is p5. This mutant has normal maturity period and the plant height is the same as T 9 (ca. 50 cm). Preliminary yield trials indicate superiority of the mutant line over control. The mutant line also shows a significant improvement in number and weight of root nodules, potentially improving green manuring value. Improvement of root nodulation in mungbean mutants was reported before by others

  15. TaEDS1 genes positively regulate resistance to powdery mildew in wheat.

    Science.gov (United States)

    Chen, Guiping; Wei, Bo; Li, Guoliang; Gong, Caiyan; Fan, Renchun; Zhang, Xiangqi

    2018-04-01

    Three EDS1 genes were cloned from common wheat and were demonstrated to positively regulate resistance to powdery mildew in wheat. The EDS1 proteins play important roles in plant basal resistance and TIR-NB-LRR protein-triggered resistance in dicots. Until now, there have been very few studies on EDS1 in monocots, and none in wheat. Here, we report on three common wheat orthologous genes of EDS1 family (TaEDS1-5A, 5B and 5D) and their function in powdery mildew resistance. Comparisons of these genes with their orthologs in diploid ancestors revealed that EDS1 is a conserved gene family in Triticeae. The cDNA sequence similarity among the three TaEDS1 genes was greater than 96.5%, and they shared sequence similarities of more than 99.6% with the respective orthologs from diploid ancestors. The phylogenetic analysis revealed that the EDS1 family originated prior to the differentiation of monocots and dicots, and EDS1 members have since undergone clear structural differentiation. The transcriptional levels of TaEDS1 genes in the leaves were obviously higher than those of the other organs, and they were induced by Blumeria graminis f. sp. tritici (Bgt) infection and salicylic acid (SA) treatment. The BSMV-VIGS experiments indicated that knock-down the transcriptional levels of the TaEDS1 genes in a powdery mildew-resistant variety of common wheat compromised resistance. Contrarily, transient overexpression of TaEDS1 genes in a susceptible common wheat variety significantly reduced the haustorium index and attenuated the growth of Bgt. Furthermore, the expression of TaEDS1 genes in the Arabidopsis mutant eds1-1 complemented its susceptible phenotype to powdery mildew. The above evidences strongly suggest that TaEDS1 acts as a positive regulator and confers resistance against powdery mildew in common wheat.

  16. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    KAUST Repository

    Leach, Lindsey J

    2014-04-11

    BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution \\'nullisomic-tetrasomic\\' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  17. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    KAUST Repository

    Leach, Lindsey J; Belfield, Eric J; Jiang, Caifu; Brown, Carly; Mithani, Aziz; Harberd, Nicholas P

    2014-01-01

    BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  18. Overaccumulation of glycine betaine makes the function of the thylakoid membrane better in wheat under salt stress

    Directory of Open Access Journals (Sweden)

    Fengxia Tian

    2017-02-01

    Full Text Available Wheat (Triticum aestivum L. lines T1, T4, and T6 were genetically modified to increase glycine betaine (GB synthesis by introduction of the BADH (betaine aldehyde dehydrogenase, BADH gene from mountain spinach (Atriplex hortensis L.. These transgenic lines and WT of wheat (T. aestivum L. were used to study the effect of increased GB synthesis on wheat tolerance to salt stress. Salt stress due to 200 mmol L−1 NaCl impaired the photosynthesis of the four wheat lines, as indicated by declines in net photosynthetic rate (Pn, stomatal conductance (Gs, maximum photochemical efficiency of PSII (Fv/Fm, and actual photochemical efficiency of PSII (ФPSII and an increase in intercellular CO2 concentration (Ci. In comparison with WT, the effect of salinity on the three transgenic lines was mild. Salt stress caused disadvantageous changes in lipids and their fatty acid compositions in the thylakoid membrane of the transgenic lines and WT. Under salt stress, the three transgenic lines showed slightly higher chlorophyll and carotenoid contents and higher Hill reaction activities and Ca2+-ATPase activity than WT. All the results suggest that overaccumulation of GB resulting from introduction of the BADH gene can enhance the salt tolerance of transgenic plants, especially in the protection of the components and function of thylakoid membranes, thereby making photosynthesis better. Changes in lipids and fatty acid compositions in the thylakoid membrane may be involved in the increased salt stress tolerance of the transgenic lines.

  19. High production of wheat double haploids via anther culture

    Directory of Open Access Journals (Sweden)

    Kondić-Šipka Ankica

    2007-01-01

    Full Text Available Androgenous and regeneration abilities of 14 randomly selected F1 hybrids of wheat (Triticum aestivum L. were analyzed. Anthers were grown in vitro on a modified Potato-2 inductive medium. The hybrid NS111-95/Ana had the highest average values for androgenous capacity (33% and callus yield (119%, while the hybrid NS 92-250/Tiha had the lowest values for these traits (9 and 21%, respectively. Seven genotypes (50% had a frequency of green plants relative to the number of isolated anthers of over 10%, with the highest frequency of 21.3% (NS111-95/Sremica. This hybrid produced 12.8 doubled haploid (DH lines per spike used for isolation. In the other genotypes, the number of produced DH lines per spike ranged from 1 (30­Sc.Smoc.88-89/Hays-2 to 11.2 (NS111-95/Ana. As half of the randomly selected genotypes exhibited high green plant regeneration ability and a high production of DH lines per spike, it can be concluded that in vitro anther culture can be successfully used in breeding programs for rapid production of homozygous wheat lines.

  20. Regeneration of somatic hybrids in relation to the nuclear and cytoplasmic genomes of wheat and Setaria italica.

    Science.gov (United States)

    Xiang, Fengning; Xia, Guangmin; Zhi, Daying; Wang, Jing; Nie, Hui; Chen, Huimin

    2004-08-01

    Somatic hybridization via PEG (Polyethylene 6000)-mediated protoplast fusion was achieved between two different wheat culture lines (Triticum aestivum L., "Jinan"177, T1 and T2) and Setaria italica (L.) P. Beauv. The T1 recipient originated from non-regenerable long-term cell suspensions, while T2 was derived from embryogenic calli with a high regeneration capacity. Donor protoplasts were obtained from embryogenic calli of S. italica (S) (with low regeneration capacity) irradiated with different doses of ultraviolet light. Twenty-three putative hybrid cell lines were produced in fusion combinations with the donor protoplasts treated with UV light for 30 s (combination I) and 1 min (combination II), but only one (from combination II) differentiated into green plants. Three cell lines from combination I and five cell lines from combination II possessed the nuclear genomes of T1, T2, and S. italica as revealed by cytological, isozyme, RAPD, and 5S rDNA spacer sequence analyses. Genomic in situ hybridization (GISH) analysis showed that most hybrid cell lines had 22-36 wheat chromosomes, 0-2 S. italica chromosomes, and 1-6 wheat - S. italica recombinant chromosomes, whereas the regenerable cell line had 44-56 wheat chromosomes and 3-6 recombinant chromosomes, but no intact S. italica chromosomes. RFLP analysis of organellar DNA revealed that mitochondrial and chloroplast DNA of both parents coexisted in all hybrid cell lines and recombined in most hybrid cell lines. These results indicate that the regeneration of hybrid plants involves not only the integration of S. italica nuclear and organellar DNA, but also the genome complementation of T1 and T2.

  1. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew.

    Science.gov (United States)

    Fu, Ying; Zhang, Hong; Mandal, Siddikun Nabi; Wang, Changyou; Chen, Chunhuan; Ji, Wanquan

    2016-01-01

    Powdery mildew (Pm), caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important crop diseases, causing severe economic losses to wheat production worldwide. However, there are few reports about the proteomic response to Bgt infection in resistant wheat. Hence, quantitative proteomic analysis of N9134, a resistant wheat line, was performed to explore the molecular mechanism of wheat in defense against Bgt. Comparing the leaf proteins of Bgt-inoculated N9134 with that of mock-inoculated controls, a total of 2182 protein-species were quantified by iTRAQ at 24, 48 and 72h postinoculation (hpi) with Bgt, of which 394 showed differential accumulation. These differentially accumulated protein-species (DAPs) mainly included pathogenesis-related (PR) polypeptides, oxidative stress responsive proteins and components involved in primary metabolic pathways. KEGG enrichment analysis showed that phenylpropanoid biosynthesis, phenylalanine metabolism and photosynthesis-antenna proteins were the key pathways in response to Bgt infection. InterProScan 5 and the Gibbs Motif Sampler cluster 394 DAPs into eight conserved motifs, which shared leucine repeats and histidine sites in the sequence motifs. Moreover, eight separate protein-protein interaction (PPI) networks were predicted from STRING database. This study provides a powerful platform for further exploration of the molecular mechanism underlying resistant wheat responding to Bgt. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive pathogenic disease in wheat-producing regions worldwide, resulting in severe yield reductions. Although many resistant wheat varieties have been cultivated, there are few reports about the proteomic response to Bgt infection in resistant wheat. Therefore, an iTRAQ-based quantitative proteomic analysis of a resistant wheat line (N9134) in response to Bgt infection has been performed. This paper provides new insights into the underlying molecular

  2. Segregation distortion in homozygous lines obtained via anther culture and maize doubled haploid methods in comparison to single seed descent in wheat (Triticum aestivum L.)

    OpenAIRE

    Adamski,Tadeusz; Krystkowiak,Karolina; Kuczynska,Anetta; Mikolajczak,Krzysztof; Ogrodowicz,Piotr; Ponitka,Aleksandra; Surma,Maria; Slusarkiewicz-Jarzina,Aurelia

    2014-01-01

    Background: The quality of wheat grain depends on several characteristics, among which the composition of high molecular weight glutenin subunits, encoded by Glu-1 loci, are the most important. Application of biotechnological tools to accelerate the attainment of homozygous lines may influence the proportion of segregated genotypes. The objective was to determine, whether the selection pressure generated by the methods based on in vitro cultures, may cause a loss of genotypes with desirable G...

  3. Establishment and mitotic characterization of new Drosophila acentriolar cell lines from DSas-4 mutant

    Directory of Open Access Journals (Sweden)

    Nicolas Lecland

    2013-01-01

    In animal cells the centrosome is commonly viewed as the main cellular structure driving microtubule (MT assembly into the mitotic spindle apparatus. However, additional pathways, such as those mediated by chromatin and augmin, are involved in the establishment of functional spindles. The molecular mechanisms involved in these pathways remain poorly understood, mostly due to limitations inherent to current experimental systems available. To overcome these limitations we have developed six new Drosophila cell lines derived from Drosophila homozygous mutants for DSas-4, a protein essential for centriole biogenesis. These cells lack detectable centrosomal structures, astral MT, with dispersed pericentriolar proteins D-PLP, Centrosomin and γ-tubulin. They show poorly focused spindle poles that reach the plasma membrane. Despite being compromised for functional centrosome, these cells could successfully undergo mitosis. Live-cell imaging analysis of acentriolar spindle assembly revealed that nascent MTs are nucleated from multiple points in the vicinity of chromosomes. These nascent MTs then grow away from kinetochores allowing the expansion of fibers that will be part of the future acentriolar spindle. MT repolymerization assays illustrate that acentriolar spindle assembly occurs “inside-out” from the chromosomes. Colchicine-mediated depolymerization of MTs further revealed the presence of a functional Spindle Assembly Checkpoint (SAC in the acentriolar cells. Finally, pilot RNAi experiments open the potential use of these cell lines for the molecular dissection of anastral pathways in spindle and centrosome assembly.

  4. Estimation of the deoxynivalenol and moisture contents of bulk wheat grain samples by FT-NIR spectroscopy

    Science.gov (United States)

    Deoxynivalenol (DON) levels in harvested grain samples are used to evaluate the Fusarium head blight (FHB) resistance of wheat cultivars and breeding lines. Fourier transform near-infrared (FT-NIR) calibrations were developed to estimate the DON and moisture content (MC) of bulk wheat grain samples ...

  5. Interactions between Glu-1 and Glu-3 loci and associations of selected molecular markers with quality traits in winter wheat (Triticum aestivum L.) DH lines.

    Science.gov (United States)

    Krystkowiak, Karolina; Langner, Monika; Adamski, Tadeusz; Salmanowicz, Bolesław P; Kaczmarek, Zygmunt; Krajewski, Paweł; Surma, Maria

    2017-02-01

    The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.

  6. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.).

    Science.gov (United States)

    Beales, James; Turner, Adrian; Griffiths, Simon; Snape, John W; Laurie, David A

    2007-09-01

    Ppd-D1 on chromosome 2D is the major photoperiod response locus in hexaploid wheat (Triticum aestivum). A semi-dominant mutation widely used in the "green revolution" converts wheat from a long day (LD) to a photoperiod insensitive (day neutral) plant, providing adaptation to a broad range of environments. Comparative mapping shows Ppd-D1 to be colinear with the Ppd-H1 gene of barley (Hordeum vulgare) which is a member of the pseudo-response regulator (PRR) gene family. To investigate the relationship between wheat and barley photoperiod genes we isolated homologues of Ppd-H1 from a 'Chinese Spring' wheat BAC library and compared them to sequences from other wheat varieties with known Ppd alleles. Varieties with the photoperiod insensitive Ppd-D1a allele which causes early flowering in short (SD) or LDs had a 2 kb deletion upstream of the coding region. This was associated with misexpression of the 2D PRR gene and expression of the key floral regulator FT in SDs, showing that photoperiod insensitivity is due to activation of a known photoperiod pathway irrespective of day length. Five Ppd-D1 alleles were found but only the 2 kb deletion was associated with photoperiod insensitivity. Photoperiod insensitivity can also be conferred by mutation at a homoeologous locus on chromosome 2B (Ppd-B1). No candidate mutation was found in the 2B PRR gene but polymorphism within the 2B PRR gene cosegregated with the Ppd-B1 locus in a doubled haploid population, suggesting that insensitivity on 2B is due to a mutation outside the sequenced region or to a closely linked gene.

  7. Absence-like and tonic seizures in aspartoacylase/attractin double-mutant mice.

    Science.gov (United States)

    Gohma, Hiroshi; Kuramoto, Takashi; Matalon, Reuben; Surendran, Sankar; Tyring, Stephen; Kitada, Kazuhiro; Sasa, Masashi; Serikawa, Tadao

    2007-04-01

    The Spontaneously Epileptic Rat (SER), a double-mutant for tremor and zitter mutations, shows spontaneous occurrences of absence-like and tonic seizures. Several lines of evidence suggest that the combined effect of Aspa and Atrn mutations is the most likely cause of the epileptic phenotype of the SER. To address this issue, we produced a new double-mutant mouse line carrying both homozygous Aspa-knockout and Atrn(mg-3J) mutant alleles. The Aspa/Atrn double-mutant mice exhibited absence-like and tonic seizures that were characterized by the appearance of 5-7 Hz spike-wave-like complexes and low voltage fast waves on EEGs. These results demonstrate directly that the simultaneous loss of the Aspa and Atrn gene functions causes epileptic seizures in the mouse and suggest that both Aspa and Atrn deficiencies might be responsible for epileptic seizures in the SER.

  8. PedonnanceofE3rly MatUring MutantS Derived from ''SuPa'~ Rice ...

    African Journals Online (AJOL)

    Vienna, Austria in 1994. The dry seeds were in-adiated with gamma rays using three doses (170, 210. --iifid 24OC;Y).frOm C.obalt 60 (lCO) in order shorten the plant height and maturity period. From the resulting mutant. PoPulations ortgindtiriifroni modified single seed descent method, five Jery early maturing lines plus the ...

  9. A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation1[W][OA

    Science.gov (United States)

    Pislariu, Catalina I.; D. Murray, Jeremy; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; A. Benedito, Vagner; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E.; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S.; Chen, Rujin; Udvardi, Michael K.

    2012-01-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod−), 51 mutants with totally ineffective nodules (Nod+ Fix−), 17 mutants with partially ineffective nodules (Nod+ Fix+/−), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/− Fix−), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/− Fix+), and 11 supernodulating mutants (Nod++Fix+/−). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN’T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod− lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging. PMID:22679222

  10. Systems responses to progressive water stress in durum wheat.

    Directory of Open Access Journals (Sweden)

    Dimah Z Habash

    Full Text Available Durum wheat is susceptible to terminal drought which can greatly decrease grain yield. Breeding to improve crop yield is hampered by inadequate knowledge of how the physiological and metabolic changes caused by drought are related to gene expression. To gain better insight into mechanisms defining resistance to water stress we studied the physiological and transcriptome responses of three durum breeding lines varying for yield stability under drought. Parents of a mapping population (Lahn x Cham1 and a recombinant inbred line (RIL2219 showed lowered flag leaf relative water content, water potential and photosynthesis when subjected to controlled water stress time transient experiments over a six-day period. RIL2219 lost less water and showed constitutively higher stomatal conductance, photosynthesis, transpiration, abscisic acid content and enhanced osmotic adjustment at equivalent leaf water compared to parents, thus defining a physiological strategy for high yield stability under water stress. Parallel analysis of the flag leaf transcriptome under stress uncovered global trends of early changes in regulatory pathways, reconfiguration of primary and secondary metabolism and lowered expression of transcripts in photosynthesis in all three lines. Differences in the number of genes, magnitude and profile of their expression response were also established amongst the lines with a high number belonging to regulatory pathways. In addition, we documented a large number of genes showing constitutive differences in leaf transcript expression between the genotypes at control non-stress conditions. Principal Coordinates Analysis uncovered a high level of structure in the transcriptome response to water stress in each wheat line suggesting genome-wide co-ordination of transcription. Utilising a systems-based approach of analysing the integrated wheat's response to water stress, in terms of biological robustness theory, the findings suggest that each durum

  11. Genome-Wide Association Mapping of Fusarium Head Blight Resistance in Wheat using Genotyping-by-Sequencing

    Directory of Open Access Journals (Sweden)

    Marcio P. Arruda

    2016-03-01

    Full Text Available Fusarium head blight (FHB is one of the most important wheat ( L. diseases worldwide, and host resistance displays complex genetic control. A genome-wide association study (GWAS was performed on 273 winter wheat breeding lines from the midwestern and eastern regions of the United States to identify chromosomal regions associated with FHB resistance. Genotyping-by-sequencing (GBS was used to identify 19,992 single-nucleotide polymorphisms (SNPs covering all 21 wheat chromosomes. Marker–trait associations were performed with different statistical models, the most appropriate being a compressed mixed linear model (cMLM controlling for relatedness and population structure. Ten significant SNP–trait associations were detected on chromosomes 4A, 6A, 7A, 1D, 4D, and 7D, and multiple SNPs were associated with on chromosome 3B. Although combination of favorable alleles of these SNPs resulted in lower levels of severity (SEV, incidence (INC, and deoxynivalenol concentration (DON, lines carrying multiple beneficial alleles were in very low frequency for most traits. These SNPs can now be used for creating new breeding lines with different combinations of favorable alleles. This is one of the first GWAS using genomic resources from the International Wheat Genome Sequencing Consortium (IWGSC.

  12. Improvement of baking quality traits through a diverse soft winter wheat population

    Science.gov (United States)

    Breeding baking quality improvements into soft winter wheat (SWW) entails crossing lines based on quality traits, assessing new lines, and repeating several times as little is known about the genetics of these traits. Previous research on SWW baking quality focused on quantitative trait locus and ge...

  13. Comparison Of The Caused Physiologic Effects For The GAMMA Radiations And The Sodium Azide (NAN3) In Four Genotypes Of Wheat

    International Nuclear Information System (INIS)

    Quevedo C, Luis A.

    1994-01-01

    As it happens in many countries of the world. The wheat occupies an important line in the feeding of the Colombian town, what demands the continuous obtaining of new cultivations to assist the necessities of the farmers and consumers. The induction of mutations is a tool by means of which excellent results have been obtained in the improvement of cereals, especially in wheat, rice and barley, where mutants have been obtained that have been used directly by the farming ones and indirectly for the programs of improvement. Keeping in mind that in Colombia it is sought to use the induction of mutations in the programs of wheat improvement, and that it doesn't have deep investigations in this respect, it was solved to carry out the present work, where the main objective was to compare the tired physiologic effects after the treatment with different dose and concentrations of gamma rays and sodium azide in four genotypes of wheat of national interest. The work was carried out in two phases, the first one (generation M1) in the one that the seeds of the four genotypes were sowed (ICA-Tenza, Pav -76, Bonza-63 and Creole Pelao) tried with dose of 0, 10, 20, 30 and 40 krad of gamma rays and concentrations of 0, 0.1, 0.2, 0.3 and 0.4 m Molar of sodium azide. The data have more than enough emergency, plant height, longitude of the spike, grains/tassel number and weight of 100 grains, they were tabulated, processed and drawing for each one of the treatments being obtained this way, the radio curves and chemical- sensitivity. The second phase denominated generation M2, makes reference to the seeds coming from the plants M1, which were collected in form singular, taking 2 tassel/plant of the total of plants survivors planted in field

  14. Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Ma, Xiaoli; Cui, Weina; Liang, Wenji; Huang, Zhanjing

    2015-12-01

    A novel salt-induced gene with unknown functions was cloned through analysis of gene expression profile of a salt-tolerant wheat mutant RH8706-49 under salt stress. The gene was named Triticum aestivum salt-related protein (TaSP) and deposited in GenBank (Accession No. KF307326). Quantitative polymerase chain reaction (qPCR) results showed that TaSP expression was induced under salt, abscisic acid (ABA), and polyethylene glycol (PEG) stresses. Subcellular localization revealed that TaSP was mainly localized in cell membrane. Overexpression of TaSP in Arabidopsis could improve salt tolerance of 35S::TaSP transgenic Arabidopsis. 35S::TaSP transgenic Arabidopsis lines after salt stress presented better physiological indexes than the control group. In the non-invasive micro-test (NMT), an evident Na(+) excretion was observed at the root tip of salt-stressed 35S::TaSP transgenic Arabidopsis. TaSP promoter was cloned, and its beta-glucuronidase (GUS) activities before and after ABA, salt, cold, heat, and salicylic acid (SA) stresses were determined. Full-length TaSP promoter contained ABA and salt response elements. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Characteristic, inheritance and breeding application of rice mutants with greenable albino leaf

    International Nuclear Information System (INIS)

    Fang Xiantao; Ma Hongli; Zhao Fuyuan; Zhang Qingqi; Zhang Shubiao

    2009-01-01

    Inheritance and main agronomic traits of photo-thermo-sensitive genic male sterile line with green-revertible albino leaf were investigated. The results indicated that the mutants might be divided into three types: albino regreening type (W2, W3, W4 and W10), albino to kelly type (W9) and abino-regreening-albino-regreening type (W1 and W7). Genetic study indicated that green-revertible albino leaf color trait of the mutants as controlled by a single recessive gene. These mutants had similar agronomic traits and fertility characteristics to the corresponding male sterile line 'Peiai 64S'. The hybrids of these mutants had similar characteristics with original-hybrids in plant type, developing of tillers and plant height. The yield components of the mutant hybrids were different depending on different mutants. The yield potential of hybrids of W1, W2 and W3 were similar to the original-hybrid. The results also indicated that W1, W2 and W3 had breeding application value. (authors)

  16. Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement.

    Science.gov (United States)

    Nemeth, Csilla; Yang, Cai-yun; Kasprzak, Paul; Hubbart, Stella; Scholefield, Duncan; Mehra, Surbhi; Skipper, Emma; King, Ian; King, Julie

    2015-02-01

    We aim to improve diversity of domesticated wheat by transferring genetic variation for important target traits from related wild and cultivated grass species. The present study describes the development of F1 hybrids between wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum and production of new amphidiploids. Amphidiploid lines were produced from 20 different distant relatives. Both colchicine and caffeine were successfully used to double the chromosome numbers. The genomic constitution of the newly formed amphidiploids derived from seven distant relatives was determined using genomic in situ hybridization (GISH). Altogether, 42 different plants were analysed, 19 using multicolour GISH separating the chromosomes from the A, B, and D genomes of wheat, as well as the distant relative, and 23 using single colour GISH. Restructuring of the allopolyploid genome, both chromosome losses and aneuploidy, was detected in all the genomes contained by the amphidiploids. From the observed chromosome numbers there is an indication that in amphidiploids the B genome of wheat suffers chromosome losses less frequently than the other wheat genomes. Phenotyping to realize the full potential of the wheat-related grass germplasm is underway, linking the analyzed genotypes to agronomically important target traits.

  17. Role of the durum wheat dehydrin in the function of proteases conferring salinity tolerance in Arabidopsis thaliana transgenic lines.

    Science.gov (United States)

    Saibi, Walid; Zouari, Nabil; Masmoudi, Khaled; Brini, Faiçal

    2016-04-01

    Dehydrins are claimed to stabilize macromolecules against freezing damage, dehydration, ionic or osmotic stresses, thermal stress and re-folding yield. However, their precise function remains unknown. In this context, we report the behavior of protease activities in dehydrin transgenic Arabidopsis lines against the wild type plant under salt stress (100mM NaCl). Indeed, proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. We proved that durum wheat DHN-5 modulates the activity of some proteases, summarized on the promotion of the Cysteinyl protease and the decrease of the Aspartyl protease activity. This fact is also upgraded in salt stress conditions. We conclude that the dehydrin transgenic context encodes salinity tolerance in transgenic lines through the modulation of the interaction not only at transcriptional level but also at protein level and also with the impact of salt stress as an endogenous and exogenous effector on some biocatalysts like proteases. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Biological effects induced by the inner-target reaction of accelerated 7Li+3 ions with wheat embryo

    International Nuclear Information System (INIS)

    Yang Juncheng; Pan Wei; Zheng Qicheng; Liu Luxiang; Wang Jing; Zhao Linshu; Yu Weixiang; Zhao Wenrong; Bai Xixiang

    2004-01-01

    Using the mechanism of the nuclear reaction of accelerated 7 Li +3 ions with the inner target in mutant material i.e 1 H( 7 Li, 7 Be)n, the biological effects were studied. The wheat seeds were irradiated with the doses ranged from 1.416 x 10 10 ions/cm 2 to 1.416 x 10 12 ions/cm 2 . It was found that the cell membrane ruptured, the plasmolysis occurred, the nucleus shape changed. The serious changes of the chloroplast were as follows: the membrane protuberance, the grand disorder, the membrane disappearance, crista of mitochondrion rupture etc. by checking of the sub-microstructure of leaf cell. The single micronucleus and multi-micronucleus were observed at the interphase. The chromosome aberrational cells including chromosome fragment, lagging chromosome, chromosome bridge and circular chromosome were found during the mitosis. RAPD analysis of seedling genomic DNA variation in M 2 generation of three mutants showed their DNA sequences had changed. The result confirmed that the implantation of 7 Li +3 ions could induce genetic mutation in wheat

  19. Genome-Wide Association Studies and Comparison of Models and Cross-Validation Strategies for Genomic Prediction of Quality Traits in Advanced Winter Wheat Breeding Lines

    Directory of Open Access Journals (Sweden)

    Peter S. Kristensen

    2018-02-01

    Full Text Available The aim of the this study was to identify SNP markers associated with five important wheat quality traits (grain protein content, Zeleny sedimentation, test weight, thousand-kernel weight, and falling number, and to investigate the predictive abilities of GBLUP and Bayesian Power Lasso models for genomic prediction of these traits. In total, 635 winter wheat lines from two breeding cycles in the Danish plant breeding company Nordic Seed A/S were phenotyped for the quality traits and genotyped for 10,802 SNPs. GWAS were performed using single marker regression and Bayesian Power Lasso models. SNPs with large effects on Zeleny sedimentation were found on chromosome 1B, 1D, and 5D. However, GWAS failed to identify single SNPs with significant effects on the other traits, indicating that these traits were controlled by many QTL with small effects. The predictive abilities of the models for genomic prediction were studied using different cross-validation strategies. Leave-One-Out cross-validations resulted in correlations between observed phenotypes corrected for fixed effects and genomic estimated breeding values of 0.50 for grain protein content, 0.66 for thousand-kernel weight, 0.70 for falling number, 0.71 for test weight, and 0.79 for Zeleny sedimentation. Alternative cross-validations showed that the genetic relationship between lines in training and validation sets had a bigger impact on predictive abilities than the number of lines included in the training set. Using Bayesian Power Lasso instead of GBLUP models, gave similar or slightly higher predictive abilities. Genomic prediction based on all SNPs was more effective than prediction based on few associated SNPs.

  20. Molecular mapping of a stripe rust resistance gene in wheat line C51

    Indian Academy of Sciences (India)

    2014-08-18

    Aug 18, 2014 ... This disease causes significant economic losses in terms of .... Development of STS markers. Primers of ..... reference manual, 3rd edition. Whitehead ... Proceedings of the 11th International Wheat Genetic Symposium, pp.

  1. 100 Gy 60Co γ-Ray Induced Novel Mutations in Tetraploid Wheat

    Directory of Open Access Journals (Sweden)

    Chuntao Yang

    2014-01-01

    Full Text Available 10 accessions of tetraploid wheat were radiated with 100 Gy 60Co γ-ray. The germination energy, germination rate, special characters (secondary tillering, stalk with wax powder, and dwarf, meiotic process, and high-molecular-weight glutenin subunits (HMW-GSs were observed. Different species has different radiation sensibility. With 1 seed germinated (5%, T. dicoccum (PI434999 is the most sensitive to this dose of radiation. With a seed germination rate of 35% and 40%, this dose also affected T. polonicum (As304 and T. carthlicum (As293. Two mutant dwarf plants, T. turgidum (As2255 253-10 and T. polonicum (As302 224-14, were detected. Abnormal chromosome pairings were observed in pollen mother cells of both T. dicoccoides (As835 237-9 and T. dicoccoides (As838 239-8 with HMW-GS 1Ax silent in seeds from them. Compared with the unirradiated seed of T. polonicum (As304 CK, a novel HMW-GS was detected in seed of T. polonicum (As304 230-7 and its electrophoretic mobility was between 1By8 and 1Dy12 which were the HMW-GSs of Chinese Spring. These mutant materials would be resources for wheat breeding.

  2. Association of molecular markers with polyphenol oxidase activity in selected wheat genotypes

    International Nuclear Information System (INIS)

    Abbas, Z.; Javad, B.; Majeed, N.; Naqvi, S.

    2016-01-01

    Wheat (Triticum aestivum L.), a major staple food for the people of Pakistan and other Asian countries, is used as bread, chapatti, porridge, noodles and many other. It is established that color quality of wheat products depend on chemical and enzymatic factors especially the polyphenol oxidases (PPOs). These are copper containing enzymes which induce browning in wheat-based products. Various procedures for determining PPO activity available and differences in PPO activity among wheat genotypes have been documented. In present study, an attempt was made to establish the association of molecular markers with polyphenol oxidase activity in wheat genotypes having very high or very low PPO activities. Twelve pairs of markers were used out of which only three primer pairs viz. PPO43, PPO30 and WP2-2 yielded specific pattern discriminating high and low PPO genotypes. Cluster analysis for all 12 markers revealed that all the low PPO lline share the same sub cluster, but high PPO lines were dispersed in different clusters. (author)

  3. Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat.

    Science.gov (United States)

    Zhang, Ruiqi; Sun, Bingxiao; Chen, Juan; Cao, Aizhong; Xing, Liping; Feng, Yigao; Lan, Caixia; Chen, Peidu

    2016-10-01

    Powdery mildew resistance gene Pm55 was physically mapped to chromosome arm 5VS FL 0.60-0.80 of Dasypyrum villosum . Pm55 is present in T5VS·5AL and T5VS·5DL translocations, which should be valuable resources for wheat improvement. Powdery mildew caused by Blumeria graminis f. sp. tritici is a major wheat disease worldwide. Exploiting novel genes effective against powdery mildew from wild relatives of wheat is a promising strategy for controlling this disease. To identify novel resistance genes for powdery mildew from Dasypyrum villosum, a wild wheat relative, we evaluated a set of Chinese Spring-D. villosum disomic addition and whole-arm translocation lines for reactions to powdery mildew. Based on the evaluation data, we concluded that the D. villosum chromosome 5V controls post-seedling resistance to powdery mildew. Subsequently, three introgression lines were developed and confirmed by molecular and cytogenetic analysis following ionizing radiation of the pollen of a Chinese Spring-D. villosum 5V disomic addition line. A homozygous T5VS·5AL translocation line (NAU421) with good plant vigor and full fertility was further characterized using sequential genomic in situ hybridization, C-banding, and EST-STS marker analysis. A dominant gene permanently named Pm55 was located in chromosome bin 5VS 0.60-0.80 based on the responses to powdery mildew of all wheat-D. villosum 5V introgression lines evaluated at both seeding and adult stages. This study demonstrated that Pm55 conferred growth-stage and tissue-specific dependent resistance; therefore, it provides a novel resistance type for powdery mildew. The T5VS·5AL translocation line with additional softness loci Dina/Dinb of D. villosum provides a possibility of extending the range of grain textures to a super-soft category. Accordingly, this stock is a new source of resistance to powdery mildew and may be useful in both resistance mechanism studies and soft wheat improvement.

  4. Antiproliferative and Apoptotic Effect of Dendrosomal Curcumin Nanoformulation in P53 Mutant and Wide-Type Cancer Cell Lines.

    Science.gov (United States)

    Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid

    2017-01-01

    The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil.

    Science.gov (United States)

    Wu, Jirong; Yu, Mingzheng; Xu, Jianhong; Du, Juan; Ji, Fang; Dong, Fei; Li, Xinhai; Shi, Jianrong

    2014-01-01

    The transgenic wheat line N12-1 containing the WYMV-Nib8 gene was obtained previously through particle bombardment, and it can effectively control the wheat yellow mosaic virus (WYMV) disease transmitted by Polymyxa graminis at turngreen stage. Due to insertion of an exogenous gene, the transcriptome of wheat may be altered and affect root exudates. Thus, it is important to investigate the potential environmental risk of transgenic wheat before commercial release because of potential undesirable ecological side effects. Our 2-year study at two different experimental locations was performed to analyze the impact of transgenic wheat N12-1 on bacterial and fungal community diversity in rhizosphere soil using polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE) at four growth stages (seeding stage, turngreen stage, grain-filling stage, and maturing stage). We also explored the activities of urease, sucrase and dehydrogenase in rhizosphere soil. The results showed that there was little difference in bacterial and fungal community diversity in rhizosphere soil between N12-1 and its recipient Y158 by comparing Shannon's, Simpson's diversity index and evenness (except at one or two growth stages). Regarding enzyme activity, only one significant difference was found during the maturing stage at Xinxiang in 2011 for dehydrogenase. Significant growth stage variation was observed during 2 years at two experimental locations for both soil microbial community diversity and enzyme activity. Analysis of bands from the gel for fungal community diversity showed that the majority of fungi were uncultured. The results of this study suggested that virus-resistant transgenic wheat had no adverse impact on microbial community diversity and enzyme activity in rhizosphere soil during 2 continuous years at two different experimental locations. This study provides a theoretical basis for environmental impact monitoring of transgenic wheat when the introduced gene is

  6. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil.

    Directory of Open Access Journals (Sweden)

    Jirong Wu

    Full Text Available The transgenic wheat line N12-1 containing the WYMV-Nib8 gene was obtained previously through particle bombardment, and it can effectively control the wheat yellow mosaic virus (WYMV disease transmitted by Polymyxa graminis at turngreen stage. Due to insertion of an exogenous gene, the transcriptome of wheat may be altered and affect root exudates. Thus, it is important to investigate the potential environmental risk of transgenic wheat before commercial release because of potential undesirable ecological side effects. Our 2-year study at two different experimental locations was performed to analyze the impact of transgenic wheat N12-1 on bacterial and fungal community diversity in rhizosphere soil using polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE at four growth stages (seeding stage, turngreen stage, grain-filling stage, and maturing stage. We also explored the activities of urease, sucrase and dehydrogenase in rhizosphere soil. The results showed that there was little difference in bacterial and fungal community diversity in rhizosphere soil between N12-1 and its recipient Y158 by comparing Shannon's, Simpson's diversity index and evenness (except at one or two growth stages. Regarding enzyme activity, only one significant difference was found during the maturing stage at Xinxiang in 2011 for dehydrogenase. Significant growth stage variation was observed during 2 years at two experimental locations for both soil microbial community diversity and enzyme activity. Analysis of bands from the gel for fungal community diversity showed that the majority of fungi were uncultured. The results of this study suggested that virus-resistant transgenic wheat had no adverse impact on microbial community diversity and enzyme activity in rhizosphere soil during 2 continuous years at two different experimental locations. This study provides a theoretical basis for environmental impact monitoring of transgenic wheat when the

  7. An In Planta-Expressed Polyketide Synthase Produces (R)-Mellein in the Wheat Pathogen Parastagonospora nodorum

    Science.gov (United States)

    Krill, Christian; Barrow, Russell A.; Chen, Shasha; Trengove, Robert; Oliver, Richard P.; Solomon, Peter S.

    2014-01-01

    Parastagonospora nodorum is a pathogen of wheat that affects yields globally. Previous transcriptional analysis identified a partially reducing polyketide synthase (PR-PKS) gene, SNOG_00477 (SN477), in P. nodorum that is highly upregulated during infection of wheat leaves. Disruption of the corresponding SN477 gene resulted in the loss of production of two compounds, which we identified as (R)-mellein and (R)-O-methylmellein. Using a Saccharomyces cerevisiae yeast heterologous expression system, we successfully demonstrated that SN477 is the only enzyme required for the production of (R)-mellein. This is the first identification of a fungal PKS that is responsible for the synthesis of (R)-mellein. The P. nodorum ΔSN477 mutant did not show any significant difference from the wild-type strain in its virulence against wheat. However, (R)-mellein at 200 μg/ml inhibited the germination of wheat (Triticum aestivum) and barrel medic (Medicago truncatula) seeds. Comparative sequence analysis identified the presence of mellein synthase (MLNS) homologues in several Dothideomycetes and two sodariomycete genera. Phylogenetic analysis suggests that the MLNSs in fungi and bacteria evolved convergently from fungal and bacterial 6-methylsalicylic acid synthases. PMID:25326302

  8. Interplay of ribosomal DNA loci in nucleolar dominance: dominant NORs are up-regulated by chromatin dynamics in the wheat-rye system.

    Directory of Open Access Journals (Sweden)

    Manuela Silva

    Full Text Available BACKGROUND: Chromatin organizational and topological plasticity, and its functions in gene expression regulation, have been strongly revealed by the analysis of nucleolar dominance in hybrids and polyploids where one parental set of ribosomal RNA (rDNA genes that are clustered in nucleolar organizing regions (NORs, is rendered silent by epigenetic pathways and heterochromatization. However, information on the behaviour of dominant NORs is very sparse and needed for an integrative knowledge of differential gene transcription levels and chromatin specific domain interactions. METHODOLOGY/PRINCIPAL FINDINGS: Using molecular and cytological approaches in a wheat-rye addition line (wheat genome plus the rye nucleolar chromosome pair 1R, we investigated transcriptional activity and chromatin topology of the wheat dominant NORs in a nucleolar dominance situation. Herein we report dominant NORs up-regulation in the addition line through quantitative real-time PCR and silver-staining technique. Accompanying this modification in wheat rDNA trascription level, we also disclose that perinucleolar knobs of ribosomal chromatin are almost transcriptionally silent due to the residual detection of BrUTP incorporation in these domains, contrary to the marked labelling of intranucleolar condensed rDNA. Further, by comparative confocal analysis of nuclei probed to wheat and rye NORs, we found that in the wheat-rye addition line there is a significant decrease in the number of wheat-origin perinucleolar rDNA knobs, corresponding to a diminution of the rDNA heterochromatic fraction of the dominant (wheat NORs. CONCLUSIONS/SIGNIFICANCE: We demonstrate that inter-specific interactions leading to wheat-origin NOR dominance results not only on the silencing of rye origin NOR loci, but dominant NORs are also modified in their transcriptional activity and interphase organization. The results show a cross-talk between wheat and rye NORs, mediated by ribosomal chromatin

  9. Molecular and Functional Characterization of a Wheat B2 Protein Imparting Adverse Temperature Tolerance and Influencing Plant Growth

    Directory of Open Access Journals (Sweden)

    akanksha esingh

    2016-05-01

    Full Text Available Genomic attempts were undertaken to elucidate the plant developmental responses to heat stress, and to characterize the roles of B2 protein in mediating those responses. A wheat EST for B2 protein was identified which was cloned and characterized to assess its functional relevance causing plant growth and development during stress adaptation. Here, we show that wheat B2 protein is highly expressed in root and shoot tissues as well as in developing seed tissues under high temperature stress conditions. Morphological studies of transgenic Arabidopsis overexpressing gene encoding wheat B2 protein and Δb2 mutant plants were studied at major developmental stages. The stunted growth phenotype of mutant plants, together with hypocotyl and root elongation analysis of transgenic plants showed that B2 protein exhibits a crucial role in plant growth and development. Additional physiological analyses highlights the role of B2 protein in increased tolerance to heat and cold stresses by maintaining high chlorophyll content, strong activity of photosystem II and less membrane damage of overexpression transgenics as compared with the wild-type. Furthermore, the constitutive overexpression of TaB2 in Arabidopsis resulted in ABA hypersensitivity. Taken together, these studies suggest a novel perspectives of B2 protein in plant development and in mediating the thermal stress tolerance.

  10. A higher yielding mutant of black gram with improved nodule formation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R K; Raghuvanshi, S S [Plant Genetic Unit, Department of Botany, University of Lucknow (India)

    1987-07-01

    Dry seeds of black gram (Vigna mungo (L) Hopper) var. T{sub 9} with 12.2% moisture content were irradiated at 10, 20 and 30 krad of gamma rays. This was followed by combined treatment of one set in each dose with freshly prepared 0. 25% EMS in phosphate buffer at 7.0 pH at 30{+-} deg. C for 6 hours. In M{sub 2} population of 20 krad two mutants with pentafoliate instead of trifoliate leaves were found. This character was true breeding in M{sub 3} M{sub 6} generation. Crosses revealed monogenic recessive inheritance of this character. The proposed gene symbol is p5. This mutant has normal maturity period and the plant height is the same as T{sub 9} (ca. 50 cm). Preliminary yield trials indicate superiority of the mutant line over control. The mutant line also shows a significant improvement in number and weight of root nodules, potentially improving green manuring value. Improvement of root nodulation in mungbean mutants was reported before by others.

  11. Assessment of Genetic diversity in mutant cowpea lines using ...

    African Journals Online (AJOL)

    FKOLADE

    2016-11-09

    Nov 9, 2016 ... DNA extraction. The seeds of the mutants and their parents were planted out in pots in the screen house, and young leaves were harvested from them ... The PCR was done using a modified touch down progam as follows: 94°C for 2 min, 12 cycles of 2 min at 94°C, one min at 65°C. (-0.7°C per cycle) and 1 ...

  12. Overexpression of avenin-like b proteins in bread wheat (Triticum aestivum L.) improves dough mixing properties by their incorporation into glutenin polymers.

    Science.gov (United States)

    Ma, Fengyun; Li, Miao; Li, Tingting; Liu, Wei; Liu, Yunyi; Li, Yin; Hu, Wei; Zheng, Qian; Wang, Yaqiong; Li, Kexiu; Chang, Junli; Chen, Mingjie; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan

    2013-01-01

    Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS) test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength.

  13. Overexpression of avenin-like b proteins in bread wheat (Triticum aestivum L. improves dough mixing properties by their incorporation into glutenin polymers.

    Directory of Open Access Journals (Sweden)

    Fengyun Ma

    Full Text Available Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength.

  14. [Analysis of methylation-sensitive amplified polymorphism in wheat genome under the wheat leaf rust stress].

    Science.gov (United States)

    Fu, Sheng-Jie; Wang, Hui; Feng, Li-Na; Sun, Yi; Yang, Wen-Xiang; Liu, Da-Qun

    2009-03-01

    Intrinsic DNA methylation pattern is an integral component of the epigenetic network in many eukaryotes. DNA methylation plays an important role in regulating gene expression in eukaryotes. Biological stress in plant provides an inherent epigenetic driving force of evolution. Study of DNA methylation patterns arising from biological stress will help us fully understand the epigenetic regulation of gene expression and DNA methylation of biological functions. The wheat near-isogenic lines TcLr19 and TcLr41 were resistant to races THTT and TKTJ, respectively, and Thatcher is compatible in the interaction with Puccinia triticina THTT and TKTJ, respectively. By means of methylation-sensitive amplified polymorphism (MSAP) analysis, the patterns of cytosine methylation in TcLr19, TcLr41, and Thatcher inoculated with P. triticina THTT and TKTJ were compared with those of the untreated samples. All the DNA fragments, each representing a recognition site cleaved by each or both of isoschizomers, were amplified using 60 pairs of selective primers. The results indicated that there was no significant difference between the challenged and unchallenged plants at DNA methylation level. However, epigenetic difference between the near-isogenic line for wheat leaf rust resistance gene Lr41 and Thatcher was present.

  15. Starch characteristics of transgenic wheat (Triticum aestivum L.) overexpressing the Dx5 high molecular weight glutenin subunit are substantially equivalent to those in nonmodified wheat.

    Science.gov (United States)

    Beckles, Diane M; Tananuwong, Kanitha; Shoemaker, Charles F

    2012-04-01

    The effects of engineering higher levels of the High Molecular Weight Glutenin Dx5 subunit on starch characteristics in transgenic wheat (Triticum aestivum L.) grain were evaluated. This is important because of the interrelationship between starch and protein accumulation in grain, the strong biotechnological interest in modulating Dx5 levels and the increasing likelihood that transgenic wheat will be commercialized in the U.S. Unintended effects of Dx5 overexpression on starch could affect wheat marketability and therefore should be examined. Two controls with native levels of Dx5 were used: (i) the nontransformed Bobwhite cultivar, and (ii) a transgenic line (Bar-D) expressing a herbicide resistant (bar) gene, and they were compared with 2 transgenic lines (Dx5G and Dx5J) containing bar and additional copies of Dx5. There were few changes between Bar-D and Dx5G compared to Bobwhite. However, Dx5J, the line with the highest Dx5 protein (×3.5) accumulated 140% more hexose, 25% less starch and the starch had a higher frequency of longer amylopectin chains. These differences were not of sufficient magnitude to influence starch functionality, because granule morphology, crystallinity, amylose-to-amylopectin ratio, and the enthalpy of starch gelatinization and the amylose-lipid complex melting were similar to the control (P > 0.05). This overall similarity was borne out by Partial Least Squares-Discriminant Function Analysis, which could not distinguish among genotypes. Collectively our data imply that higher Dx5 can affect starch accumulation and some aspects of starch molecular structure but that the starches of the Dx5 transgenic wheat lines are substantially equivalent to the controls. Transgenic manipulation of biochemical pathways is an effective way to enhance food sensory quality, but it can also lead to unintended effects. These spurious changes are a concern to Government Regulatory Agencies and to those Industries that market the product. In this study we

  16. Molecular cytogenetic characterization of a new wheat Secale ...

    Indian Academy of Sciences (India)

    A stable, highly fertile wheat Secale africanum substitution line LF24, derived from the F7 generation of a cross between Mianyang11 (MY11) and Triticum durum, S. africanum amphiploid (YF) was identified through molecular cytogenetic analysis. Application of C-banding, in situ hybridization and molecular markers ...

  17. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Jiping Wang

    2017-09-01

    Full Text Available Calreticulin (CRT, an endoplasmic reticulum (ER-localized Ca2+-binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat (Triticum aestivum L., particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL population (114 lines developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.

  18. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Wang, Jiping; Li, Runzhi; Mao, Xinguo; Jing, Ruilian

    2017-01-01

    Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca 2+ -binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat ( Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.

  19. Characterization of a new synthetic wheat – Aegilops biuncialis ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... Therefore, it could be concluded that Line 15-3-2 is a new synthetic wheat – A. biuncialis partial amphiploid, and .... races (data not shown). Moreover, its ... ways presented on the distal of short arms (Schneider et al., 2005).

  20. Isolation of two chloroethylnitrosourea-sensitive Chinese hamster cell lines

    International Nuclear Information System (INIS)

    Hata, H.; Numata, M.; Tohda, H.; Yasui, A.; Oikawa, A.

    1991-01-01

    1-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-3-(2-chloroethyl)-3- nitrosourea hydrochloride (ACNU), a cancer chemotherapeutic bifunctional alkylating agent, causes chloroethylation of DNA and subsequent DNA strand cross-linking through an ethylene bridge. We isolated and characterized two ACNU-sensitive mutants from mutagenized Chinese hamster ovary cells and found them to be new drug-sensitive recessive Chinese hamster mutants. Both mutants were sensitive to various monofunctional alkylating agents in a way similar to that of the parental cell lines CHO9. One mutant (UVS1) was cross-sensitive to UV and complemented the UV sensitivity of all Chinese hamster cell lines of 7 established complementation groups. Since UV-induced unscheduled DNA synthesis was very low, a new locus related to excision repair is thought to be defective in this cell line. Another ACNU-sensitive mutant, CNU1, was slightly more sensitive to UV than the parent cell line. CNU1 was cross-sensitive to 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea and slightly more sensitive to mitomycin C. No increased accumulation of ACNU and a low level of UV-induced unscheduled DNA synthesis in this cell as compared with the parental cell line suggest that there is abnormality in a repair response of this mutant cell to some types of DNA cross-links