WorldWideScience

Sample records for wet gas measurement

  1. Wet gas sampling

    Energy Technology Data Exchange (ETDEWEB)

    Welker, T.F.

    1997-07-01

    The quality of gas has changed drastically in the past few years. Most gas is wet with hydrocarbons, water, and heavier contaminants that tend to condense if not handled properly. If a gas stream is contaminated with condensables, the sampling of that stream must be done in a manner that will ensure all of the components in the stream are introduced into the sample container as the composite. The sampling and handling of wet gas is extremely difficult under ideal conditions. There are no ideal conditions in the real world. The problems related to offshore operations and other wet gas systems, as well as the transportation of the sample, are additional problems that must be overcome if the analysis is to mean anything to the producer and gatherer. The sampling of wet gas systems is decidedly more difficult than sampling conventional dry gas systems. Wet gas systems were generally going to result in the measurement of one heating value at the inlet of the pipe and a drastic reduction in the heating value of the gas at the outlet end of the system. This is caused by the fallout or accumulation of the heavier products that, at the inlet, may be in the vapor state in the pipeline; hence, the high gravity and high BTU. But, in fact, because of pressure and temperature variances, these liquids condense and form a liquid that is actually running down the pipe as a stream or is accumulated in drips to be blown from the system. (author)

  2. Wet Gas Airfoil Analyses

    OpenAIRE

    Larsen, Tarjei Thorrud

    2011-01-01

    Subsea wet gas compression renders new possibilities for cost savings and enhanced gas recovery on existing gas wells. Technology like this opens to make traditional offshore processing plants redundant. With new technology, follows new challenges. Multiphase flows is regarded as a complex field of study, and increased knowledge on the fundamental mechanisms regarding wet gas flow is of paramount importance to the efficiency and stability of the wet gas compressor. The scope of this work was ...

  3. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  4. Non-condensible gas fraction predictions using wet and dry bulb temperature measurements

    International Nuclear Information System (INIS)

    Bowman, J.; Griffith, P.

    1983-03-01

    A technique is presented whereby non-condensible gas mass fractions in a closed system can be determined using wet bulb and dry bulb temperature and system pressure measurements. This technique would have application in situations where sampling techniques could not be used. Using an energy balance about the wet bulb wick, and expression is obtained which relates the vapor concentration difference between the wet bulb wick and the free stream to the wet and dry bulb temperature difference and a heat to mass transfer coefficient ratio. This coefficient ratio was examined for forced and natural convection flows. This analysis was verified with forced and natural convection tests over the range of pressure and temperature from 50 to 557 psig and 415 to 576 0 F. All the data could best be fit by the natural convection analysis. This is useful when no information about the flow field is known

  5. Determining noncondensible gas fractions at elevated temperatures and pressures using wet and dry bulb temperature measurements

    International Nuclear Information System (INIS)

    Griffith, P.; Bowman, J.

    1987-01-01

    The work reported in this note was undertaken to provide a method of determining the noncondensible gas fractions in a steam-gas mixture such as might be found in large reactor safety experiment like LOFT. In essence, the method used involves measuring the wet and dry bulb temperatures and using an algorithm, in place of the psychometric chart, to determine the partial pressure of the noncondensible gas in the mixture. In accomplishing this, the authors did the following: (1) extended the use of wet and dry-bulb temperature readings to determine mixture composition up to a temperature of 589 K and a pressure of 4.13 x 10 6 Pa. (2) developed an algorithm to reduce the data (3) found which materials would survive those temperatures

  6. ABB wet flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Niijhawan, P.

    1994-12-31

    The wet limestone process for flue gas desulfurization (FGD) is outlined. The following topics are discussed: wet flue gas desulfurization, wet FGD characteristics, wet scrubbers, ABB wet FGD experience, wet FGD forced oxidation, advanced limestone FGD systems, key design elements, open spray tower design, spray tower vs. packed tower, important performance parameters, SO{sub 2} removal efficiency, influence by L/G, limestone utilization, wet FGD commercial database, particulate removal efficiencies, materials of construction, nozzle layout, spray nozzles, recycle pumps, mist elimination, horizontal flow demister, mist eliminator washing, reagent preparation system, spray tower FGDS power consumption, flue gas reheat options, byproduct conditioning system, and wet limestone system.

  7. Development of a wet gas flowmeter

    Energy Technology Data Exchange (ETDEWEB)

    Andreussi, P.; Ciandri, P.; Faluomi, V. [TRA Sistemi, Pisa (Italy)

    2000-07-01

    A new multiphase flowmeter, particularly suited for wet gas metering, has been developed. The meter working principle is the isokinetic sampling of the gas-liquid mixture, followed by separation and individual metering of the gas and the liquid phase. The liquid flowrate is derived from the value of the sampled liquid flowrate. The gas flowrate is measured with a multiphase nozzle. Preliminary tests have shown that both the gas and the liquid flowrates can be determined with an error less than 5%. The meter can be autocalibrated and allows the water-cut to be measured with any prescribed precision. (author)

  8. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  9. Wet gas compression. Experimental investigation of the aerodynamics within a centrifugal compressor exposed to wet gas

    Energy Technology Data Exchange (ETDEWEB)

    Gruener, Trond Gammelsaeter

    2012-07-01

    revealed when the GMF was reduced (i.e., the surge margin increased). The instability characteristic changed when liquid was present. Dynamic pressure sensors fluch-mounted in the diffuser were used to detect instability inception was revealed when the GMF was reduced (i.e., the surge margin increased). The instability characteristic changed when liquid was present. Dynamic pressure sensors fluch-mounted in the diffuser were used to detect instability inception and evolution by analyzing the measurements in frequency domain. The liquid influenced the dynamic pressure measurements. Analysis revealed an increased amplification of low-frequency amplitudes with decreasing GMF. Exact identification on instability inception was obscure at low GMF. Two different methods for instability detection were evaluated (.i.e., torque measurements and stagnation pressure measurements through a reversed-installed pitot probe at impeller inlet. Both methods were validated with the dynamic pressure measurements and identified instability onset at equal volume flow. Visual observation of wet gas surge process was performed to obtain knowledge of its characteristics. The surge was characterized as a gradual process initiated with an expanding annulus ring of reversed water flow at the impeller shroud inlet pipe while the gas volume flow was gradually reduced until the liquid showed a completely chaotic flow path and stringent liquid flow reversal. The expanding annulus ring was a precursor to surge that may be detected by instrumentation and utilized in a surge protection system. The main contributions of this work are presented in three international papers contained in the appendices. (Author)

  10. Wet flue gas desulphurization and new fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kiil, S.; Dam-Johansen, K.; Michelsen, M.L.

    1998-04-01

    This thesis describes experimental and theoretical investigations of wet flue gas desulphurization (FGD). A review of the current knowledge of the various rate determining steps in wet FDG plants is presented. The mechanism underlying the rate of dissolution of finely grained limestone particles was examined in a laboratory batch apparatus using acid titration. Three Danish limestones of different origin were tested. A transient, mass transport controlled, mathematical model was developed to describe the dissolution process. Model predictions were found to be qualitatively in good agreement with experimental data. Empirical correlations for the dimensionless mass transfer coefficients in a pilot plant (falling-film column) were determined. The presence of inert particles in the liquid phase was found to decrease the rate of gas phase mass transport with up to 15%, though the effect could not be correlated. A detailed model for a wet FGD pilot plant, based on the falling film principle, was developed. All important rate determining steps, absorption of SO{sub 2}, oxidation of HSO{sub 3}{sup -}, dissolution of limestone, and crystallisation of gypsum were included. Model predictions were compared to experimental data such as gas phase concentration profiles of SO{sub 2}, slurry pH-profiles, solids contents of slurry, liquid phase concentrations, and residual limestone in the gypsum. The possibility of co-firing straw and coal was investigated in a full-scale power plant. No effects on the overall performance of the wet FGD plant were observed, though laboratory experiments with fine dust and fly ash from the full-scale experiments showed a decrease in limestone reactivity. (EG) EFP-95. 45 refs.; Also ph.d. thesis of Soeren Kiil

  11. European wet deposition maps based on measurements

    NARCIS (Netherlands)

    Leeuwen EP van; Erisman JW; Draaijers GPJ; Potma CJM; Pul WAJ van; LLO

    1995-01-01

    To date, wet deposition maps on a European scale have been based on long-range transport model results. For most components wet deposition maps based on measurements are only available on national scales. Wet deposition maps of acidifying components and base cations based on measurements are needed

  12. Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES Campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean basin

    Science.gov (United States)

    MONTES (“Woodlands”) was a multidisciplinary international field campaign aimed at measuring energy, water and especially gas exchange between vegetation and atmosphere in a gradient from short semi-desertic shrublands to tall wet temperate forests in NE Spain in the North Wester...

  13. Intensive measurements of gas, water, and energy exchange between vegetation and troposhere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin

    NARCIS (Netherlands)

    Penuelas, J.; Guenther, A.; Rapparini, F.; Llusia, J.; Vilà-Guerau De Arellano, J.

    2013-01-01

    MONTES (“Woodlands”) was a multidisciplinary international field campaign aimed at measuring energy, water and especially gas exchange between vegetation and atmosphere in a gradient from short semi-desertic shrublands to tall wet temperate forests in NE Spain in the North Western Mediterranean

  14. Wetting in a Colloidal Liquid-Gas System

    Science.gov (United States)

    Wijting, W. K.; Besseling, N. A.; Stuart, M. A.

    2003-05-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  15. Wetting in a colloidal liquid-gas system

    OpenAIRE

    Wijting, W.K.; Besseling, N.A.M.; Cohen Stuart, M.A.

    2003-01-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  16. Wet gas flow modeling for a vertically mounted Venturi meter

    International Nuclear Information System (INIS)

    Xu, Lijun; Zhou, Wanlu; Li, Xiaomin

    2012-01-01

    Venturi meters are playing an increasingly important role in wet gas metering in natural gas and oil industries. Due to the effect of liquid in a wet gas, the differential pressure over the converging section of a Venturi meter is higher than that when a pure gas flows through with the same flow rate. This phenomenon is referred to as over-reading. Thus, a correction for the over-reading is required. Most of the existing wet gas models are more suitable for higher pressure (>2 MPa) than lower pressure ( 0.5) than lower quality (<0.5) in recent years. However, conditions of lower pressure and lower quality also widely exist in the gas and oil industries. By comparing the performances of eight existing wet gas models in low-pressure range of 0.26–0.86 MPa and low-quality range of 0.07–0.36 with a vertically mounted Venturi meter of diameter ratio 0.45, de Leeuw's model was proven to perform best. Derived from de Leeuw's model, a modified model with better performance for the low-pressure and low-quality ranges was obtained. Experimental data showed that the root mean square of the relative errors of the over-reading was 2.30%. (paper)

  17. Wetting in a colloidal liquid-gas system

    NARCIS (Netherlands)

    Wijting, W.K.; Besseling, N.A.M.; Cohen Stuart, M.A.

    2003-01-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of

  18. Design considerations for wet flue gas desulfurization systems - wet scrubber hardware issues

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, H.

    1994-12-31

    About 20 years ago the first wet flue gas desulfurization systems installed on coal fired utility boilers in the United States were experiencing extreme operating problems. In addition to their failure to achieve the necessary SO{sub 2} removal efficiencies, these FGD systems required a major investment in maintenance, both material and labor, just to remain operational. These first generation systems demonstrated that a lack of understanding of the chemistry and operating conditions of wet flue gas desulfurization can lead to diastrous results. As the air pollution control industry developed, both in the United States and in Japan, a second generation of FGD systems was introduced. These designs incorporated major improvements in both system chemistry control and in the equipment utilized in the process. Indeed, the successful introduction of utility gas desulfurization systems in Germany was possible only through the transfer of the technology improvements developed in the US and in Japan. Today, technology has evolved to a third generation of wet flue gas desulfurication systems and these systems are now offered worldwide through a series of international licensing agreements. The rapid economic growth and development in Asia and the Pacific Rim combined with existing problems in ambient air quality in these same geographic areas, has resulted in the use of advanced air pollution control systems; including flue gas desulfurization both for new utility units and for many retrofit projects. To meet the requirements of the utility industry, FGD systems must meet high standards of reliability, operability and performance. Key components in achieving these objectives are: FGD System reliability/operability/performance; FGD system supplier qualifications; process design; equipment selection. This paper will discuss each of the essential factors with a concentration on the equipment selection and wet scrubber hardware issues.

  19. Flow Measurement of Wet CO2 Using an Averaging Pitot Tube and Coriolis Mass Flowmeters

    OpenAIRE

    Adefila, K.; Yan, Yong; Sun, Lijun; Wang, Tao

    2017-01-01

    The flow measurement of wet-gas is an active field with extensive research background that remains a modern-day challenge. The implication of wet-gas flow conditions is no different in Carbon Capture and Storage (CCS) pipelines. The associated complex flow regime with wet-gas flow makes it difficult to accurately meter the flow rate of the gas phase. Some conventional single-phase flowmeters like the Coriolis, Orifice plate, Ultrasonic, V-Cone, Venturi and Vortex have been tested for this app...

  20. Analytical modeling of wet compression of gas turbine systems

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Ko, Hyung-Jong; Perez-Blanco, Horacio

    2011-01-01

    Evaporative gas turbine cycles (EvGT) are of importance to the power generation industry because of the potential of enhanced cycle efficiencies with moderate incremental cost. Humidification of the working fluid to result in evaporative cooling during compression is a key operation in these cycles. Previous simulations of this operation were carried out via numerical integration. The present work is aimed at modeling the wet-compression process with approximate analytical solutions instead. A thermodynamic analysis of the simultaneous heat and mass transfer processes that occur during evaporation is presented. The transient behavior of important variables in wet compression such as droplet diameter, droplet mass, gas and droplet temperature, and evaporation rate is investigated. The effects of system parameters on variables such as droplet evaporation time, compressor outlet temperature and input work are also considered. Results from this work exhibit good agreement with those of previous numerical work.

  1. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    Energy Technology Data Exchange (ETDEWEB)

    Youmans-Mcdonald, L.

    2011-02-18

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  2. Beryllium Measurement In Commercially Available Wet Wipes

    International Nuclear Information System (INIS)

    Youmans-Mcdonald, L.

    2011-01-01

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant(trademark) Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  3. Eddy correlation measurements in wet environmental conditions

    Science.gov (United States)

    Cuenca, R. H.; Migliori, L.; O Kane, J. P.

    2003-04-01

    The lower Feale catchment is a low-lying peaty area of 200 km^2 situated in southwest Ireland that is subject to inundation by flooding. The catchment lies adjacent to the Feale River and is subject to tidal signals as well as runoff processes. Various mitigation strategies are being investigated to reduce the damage due to flooding. Part of the effort has required development of a detailed hydrologic balance for the study area which is a wet pasture environment with local field drains that are typically flooded. An eddy correlation system was installed in the summer of 2002 to measure components of the energy balance, including evapotranspiration, along with special sensors to measure other hydrologic variables particular to this study. Data collected will be essential for validation of surface flux models to be developed for this site. Data filtering is performed using a combination of software developed by the Boundary-Layer Group (BLG) at Oregon State University together with modifications made to this system for conditions at this site. This automated procedure greatly reduces the tedious inspection of individual records. The package of tests, developed by the BLG for both tower and aircraft high frequency data, checks for electronic spiking, signal dropout, unrealistic magnitudes, extreme higher moment statistics, as well as other error scenarios not covered by the instrumentation diagnostics built into the system. Critical parameter values for each potential error were developed by applying the tests to real fast response turbulent time series. Potential instrumentation problems, flux sampling problems, and unusual physical situations records are flagged for removal or further analysis. A final visual inspection step is required to minimize rejection of physically unusual but real behavior in the time series. The problems of data management, data quality control, individual instrumentation sensitivity, potential underestimation of latent and sensible heat

  4. Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin

    Science.gov (United States)

    Peñuelas, J.; Guenther, A.; Rapparini, F.; Llusia, J.; Filella, I.; Seco, R.; Estiarte, M.; Mejia-Chang, M.; Ogaya, R.; Ibañez, J.; Sardans, J.; Castaño, L. M.; Turnipseed, A.; Duhl, T.; Harley, P.; Vila, J.; Estavillo, J. M.; Menéndez, S.; Facini, O.; Baraldi, R.; Geron, C.; Mak, J.; Patton, E. G.; Jiang, X.; Greenberg, J.

    2013-08-01

    MONTES (“Woodlands”) was a multidisciplinary international field campaign aimed at measuring energy, water and especially gas exchange between vegetation and atmosphere in a gradient from short semi-desertic shrublands to tall wet temperate forests in NE Spain in the North Western Mediterranean Basin (WMB). The measurements were performed at a semidesertic area (Monegros), at a coastal Mediterranean shrubland area (Garraf), at a typical Mediterranean holm oak forest area (Prades) and at a wet temperate beech forest (Montseny) during spring (April 2010) under optimal plant physiological conditions in driest-warmest sites and during summer (July 2010) with drought and heat stresses in the driest-warmest sites and optimal conditions in the wettest-coolest site. The objective of this campaign was to study the differences in gas, water and energy exchange occurring at different vegetation coverages and biomasses. Particular attention was devoted to quantitatively understand the exchange of biogenic volatile organic compounds (BVOCs) because of their biological and environmental effects in the WMB. A wide range of instruments (GC-MS, PTR-MS, meteorological sensors, O3 monitors,…) and vertical platforms such as masts, tethered balloons and aircraft were used to characterize the gas, water and energy exchange at increasing footprint areas by measuring vertical profiles. In this paper we provide an overview of the MONTES campaign: the objectives, the characterization of the biomass and gas, water and energy exchange in the 4 sites-areas using satellite data, the estimation of isoprene and monoterpene emissions using MEGAN model, the measurements performed and the first results. The isoprene and monoterpene emission rates estimated with MEGAN and emission factors measured at the foliar level for the dominant species ranged from about 0 to 0.2 mg m-2 h-1 in April. The warmer temperature in July resulted in higher model estimates from about 0 to ca. 1.6 mg m-2 h-1 for

  5. Greenhouse gas microbiology in wet and dry straw crust covering pig slurry

    DEFF Research Database (Denmark)

    Hansen, Rikke Ruth; Nielsen, Daniel Aagren; Schramm, Andreas

    2009-01-01

    was observed in all crusted treatments exposed to anoxia, and this was probably a result of denitrification based on NO2- and NO3- that had accumulated in the crust during oxic conditions. To reduce overall greenhouse gas emissions, floating crust should be managed to optimize conditions for methanotrophs....... microbiology had an effect on the emission of the potent greenhouse gases CH4 and nitrous oxide (N2O) when crust moisture was manipulated ("Dry", "Moderate", and "Wet"). The dry crust had the deepest oxygen penetration (45 mm as compared to 20 mm in the Wet treatment) as measured with microsensors, the highest...... oxidizing bacteria were undetectable and methane oxidizing bacteria were only sparsely present in the "Wet" treatment. A change to anoxia did not affect the CH4 emission indicating the virtual absence of aerobic methane oxidation in the investigated 2-months old crusts. However, an increase in N2O emission...

  6. Two-Phase Phenomena In Wet Flue Gas Desulfurization Process

    International Nuclear Information System (INIS)

    Minzer, U.; Moses, E.J.; Toren, M.; Blumenfeld, Y.

    1998-01-01

    In order to reduce sulfur oxides discharge, Israel Electric Corporation (IEC) is building a wet Flue Gas Desulfurization (FGD) facility at Rutenberg B power station. The primary objective of IEC is to minimize the occurrence of stack liquid discharge and avoid the discharge of large droplets, in order to prevent acid rain around the stack. Liquid discharge from the stack is the integrated outcome of two-phase processes, which are discussed in this work. In order to estimate droplets discharge the present investigation employs analytical models, empirical tests, and numerical calculations of two-phase phenomena. The two-phase phenomena are coupled and therefore cannot be investigated separately. The present work concerns the application of Computational Fluid Dynamic (CFD) as an engineering complementary tool in the IEC investigation

  7. Wet gas metering with the v-cone and neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Toral, Haluk; Cai, Shiqian; Peters, Robert

    2005-07-01

    The paper presents analysis of extensive measurements taken at NEL, K-Lab and CEESI wet gas test loops. Differential and absolute pressure signals were sampled at high frequency across V-Cone meters. Turbulence characteristics of the flow captured in the sampled signals were characterized by pattern recognition techniques and related to the fractions and flow rates of individual phases. The sensitivity of over-reading to first and higher order features of the high frequency signals were investigated qualitatively. The sensitivities were quantified by means of the saliency test based on back propagating neural nets. A self contained wet gas meter based on neural net characterization of first and higher order features of the pressure, differential pressure and capacitance signals was proposed. Alternatively, a wet gas meter based on a neural net model of just pressure sensor inputs (based on currently available data) and liquid Froude number was shown to offer an accuracy of under 5% if the Froude number could be estimated with 25% accuracy. (author) (tk)

  8. Polyimide hollow fiber membranes for CO2 separation from wet gas mixtures

    Directory of Open Access Journals (Sweden)

    F. Falbo

    2014-12-01

    Full Text Available Matrimid®5218 hollow fiber membranes were prepared using the dry-wet spinning process. The transport properties were measured with pure gases (H2, CO2, N2, CH4 and O2 and with a mixture (30% CO2 and 70% N2 in dry and wet conditions at 25 ºC, 50 ºC, 60 ºC and 75 ºC and up to 600 kPa. Interesting values of single gas selectivity up to 60 ºC (between 31 and 28 for CO2/N2 and between 33 and 30 for CO2/CH4 in dry condition were obtained. The separation factor measured for the mixture was 20% lower compared to the single gas selectivity, in the whole temperature range analyzed. In saturation conditions the data showed that water influences the performance of the membranes, inducing a reduction of the permeance of all gases. Moreover, the presence of water caused a decrease of single gas selectivity and separation factor, although not so significant, highlighting the very high water resistance of hollow fiber membrane modules.

  9. Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurisation

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Kiil, Søren; Johnsson, Jan Erik

    2003-01-01

    In the present work, an experimental parameter study was conducted in a pilot-scale jet bubbling reactor for wet flue gas desulphurisation (FGD). The pilot plant is downscaled from a limestone-based, gypsum producing full-scale wet FGD plant. Important process parameters, such as slurry pH, inlet...... flue gas concentration of SO2, reactor temperature, and slurry concentration of Cl- have been varied. The degree of desulphurisation, residual limestone content of the gypsum, liquid phase concentrations, and solids content of the slurry were measured during the experimental series. The SO2 removal...... efficiency increased from 66.1% to 71.5% when the reactor slurry pH was changed from 3.5 to 5.5. Addition of Cl(in the form of CaCl2 . 2H(2)O) to the slurry (25 g Cl-/l) increased the degree of desulphurisation to above 99%, due to the onset of extensive foaming, which substantially increased the gas...

  10. Venturi Wet Gas Flow Modeling Based on Homogeneous and Separated Flow Theory

    Directory of Open Access Journals (Sweden)

    Xu Ying

    2008-10-01

    Full Text Available When Venturi meters are used in wet gas, the measured differential pressure is higher than it would be in gas phases flowing alone. This phenomenon is called over-reading. Eight famous over-reading correlations have been studied by many researchers under low- and high-pressure conditions, the conclusion is separated flow model and homogeneous flow model performing well both under high and low pressures. In this study, a new metering method is presented based on homogeneous and separated flow theory; the acceleration pressure drop and the friction pressure drop of Venturi under two-phase flow conditions are considered in new correlation, and its validity is verified through experiment. For low pressure, a new test program has been implemented in Tianjin University’s low-pressure wet gas loop. For high pressure, the National Engineering Laboratory offered their reports on the web, so the coefficients of the new proposed correlation are fitted with all independent data both under high and low pressures. Finally, the applicability and errors of new correlation are analyzed.

  11. Gas flowrate measurements

    International Nuclear Information System (INIS)

    Boure, Madeleine.

    1978-05-01

    The main types of gas flowmeters, especially those which are used for laboratory measurements are reviewed. Modeling, design recommendations, calibration methods and expected accuracy are discussed for each flowmeter. Different types and trademarks are given in two tables [fr

  12. Crystallisation of Gypsum and Prevention of Foaming in Wet Flue Gas Desulphurisation (FGD) Plants

    DEFF Research Database (Denmark)

    Hansen, Brian Brun

    The aim of this project is to investigate two operational problems, which have been experienced during wet flue gas desulphurisation (FGD) operation, i.e. poor gypsum dewatering properties and foaming. The results of this work can be used for the optimization of wet FGD-plants in terms of reliabi......The aim of this project is to investigate two operational problems, which have been experienced during wet flue gas desulphurisation (FGD) operation, i.e. poor gypsum dewatering properties and foaming. The results of this work can be used for the optimization of wet FGD-plants in terms....... Experiments in a falling film wet FGD pilot plant have shown a strong non-linear behaviour (in a ln(n(l)) vs. l plot) at the lower end of the particle size range, compared to the well-known linear “mixed suspension mixed product removal (MSMPR)” model. A transient population balance model, fitted...

  13. Characterization of internal wetting in polymer electrolyte membrane gas diffusion layers

    Science.gov (United States)

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.

    Capillary pressure vs. saturation (P C(S L)) curves are fundamental to understanding liquid water transport and flooding in PEM gas diffusion layers (GDLs). P C(S L) curves convolute the influence of GDL pore geometry and internal contact angles at the three-phase liquid/solid/gas boundary. Even simple GDL materials are a spatially non-uniform mixture of carbon fiber and binder, making a Gaussian distribution of contact angles likely, based on the Cassie-Baxter equation. For a given Gaussian contact angle distribution with mean (θ Mean) and standard deviation (σ), a realistic P C(S L) curve can be computed using a bundle of capillaries model and GDL pore size distribution data. As expected, computed P C(S L) curves show that θ Mean sets the overall hydrophilic (θ Mean 90°) character of the GDL (i.e., liquid saturation level at a given capillary pressure), and σ affects the slope of the P C(S L) curve. The capillary bundle model also can be used with (θ Mean, σ) as unknown parameters that are best-fit to experimentally acquired P C(S L) and pore size distribution data to find (θ Mean, σ) values for actual GDL materials. To test this, pore size distribution data was acquired for Toray TGP-H-090 along with hysteretic liquid and gas intrusion capillary pressure curve data. High quality best-fits were found between the model and combined datasets, with GDL liquid intrusion showing fairly neutral internal surface wetting properties (θ Mean = 92° and σ = 10°) whereas gas intrusion displayed a hydrophilic character (θ Mean = 52° and σ = 8°). External liquid advancing and receding contact angles were also measured on this same material and they also showed major hysteresis. The new methods described here open the door for better understanding of the link between GDL material processing and the wetting properties that affect flooding.

  14. Estimating Wet Bulb Globe Temperature Using Standard Meteorological Measurements

    International Nuclear Information System (INIS)

    Hunter, C.H.

    1999-01-01

    The heat stress management program at the Department of Energy''s Savannah River Site (SRS) requires implementation of protective controls on outdoor work based on observed values of wet bulb globe temperature (WBGT). To ensure continued compliance with heat stress program requirements, a computer algorithm was developed which calculates an estimate of WBGT using standard meteorological measurements. In addition, scripts were developed to generate a calculation every 15 minutes and post the results to an Intranet web site

  15. Measurement of wetted area fraction in subcooled pool boiling of water using infrared thermography

    International Nuclear Information System (INIS)

    Kim, Hyungdae; Park, Youngjae; Buongiorno, Jacopo

    2013-01-01

    The wetted area fraction in subcooled pool boiling of water at atmospheric pressure is measured using the DEPIcT (DEtection of Phase by Infrared Thermography) technique. DEPIcT exploits the contrast in infrared (IR) light emissions between wet and dry areas on the surface of an IR-transparent heater to visualize the instantaneous distribution of the liquid and gas phases in contact with the heater surface. In this paper time-averaged wetted area fraction data in nucleate boiling are reported as functions of heat flux (from 30% up to 100% of the Critical Heat Flux) and subcooling (ΔT sub = 0, 5, 10, 30 and 50 °C). The results show that the wetted area fraction monotonically decreases with increasing heat flux and increases with increasing subcooling: both trends are expected. The range of time-averaged wetted area fractions is from 90%, at low heat flux and high subcooling, to 50% at high heat flux (right before CHF) and low subcooling. It is also shown that the dry areas are periodically rewetted by liquid sloshing on the surface at any subcooling and heat flux; however, the dry areas expand irreversibly at CHF

  16. Measurements of capillary pressure and electric permittivity of gas-water systems in porous media at elevated pressures : Application to geological storage of CO2 in aquifers and wetting behavior in coal

    NARCIS (Netherlands)

    Plug, W.J.

    2007-01-01

    Sequestration of CO2 in aquifers and coal layers is a promising technique to reduce greenhouse gas emissions. Considering the reservoir properties, e.g. wettability, heterogeneity and the caprocks sealing capacity, the capillary pressure is an important measure to evaluate the efficiency, the

  17. Fission gas measuring technology

    International Nuclear Information System (INIS)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok.

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs

  18. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  19. The wet compression technology for gas turbine power plants: Thermodynamic model

    International Nuclear Information System (INIS)

    Bracco, Stefano; Pierfederici, Alessandro; Trucco, Angela

    2007-01-01

    This paper examines from a thermodynamic point of view the effects of wet compression on gas turbine power plants, particularly analysing the influence of ambient conditions on the plant performance. The results of the mathematical model, implemented in 'Matlab' software, have been compared with the simulation results presented in literature and in particular the values of the 'evaporative rate', proposed in Araimo et al. [L. Araimo, A. Torelli, Thermodynamic analysis of the wet compression process in heavy duty gas turbine compressors, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1249-1263; L. Araimo, A. Torelli, Wet compression technology applied to heavy duty gas turbines - GT power augmentation and efficiency upgrade, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1265-1277] by 'Gas Turbines Department' of Ansaldo Energia S.p.A., have been taken into account to validate the model. The simulator permits to investigate the effects of the fogging and wet compression techniques and estimate the power and efficiency gain of heavy duty gas turbines operating in hot and arid conditions

  20. Measuring Dark Molecular Gas

    Science.gov (United States)

    Li, Di; Heiles, Carl E.

    2017-01-01

    It is now well known that a substantial fraction of Galactic molecular gas cannot be traced by CO emission. The thus dubbed CO dark molecular gas (DMG) occupy a large volume of ISM with intermediate extinction, where CO is either not self-shielded and/or subthermally excited. We explore the utilities of simple hydrides, such OH, CH, etc., in tracing DMG. We mapped and modeled the transition zone cross a cloud boundary and derived emperical OH abundance and DMG distribution formulae. We also obtained absorption measurements of various species using Arecibo, VLA, ATCA, and ALMA. The absorption technique has the potential to provide systematic quantification of DMG in the next few years.

  1. Simultaneous Determination of Alkoxyalcohols in Wet Wipes Using Static Headspace Gas Chromatography and Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Jin; Pyo, Hee Soo; Chung, Bong Chul; Lee, Jeon Gae [KIST, Seoul (Korea, Republic of); Kim, Hai Dong [Kyung Hee University, Seoul (Korea, Republic of)

    2014-09-15

    Alkoxyalcohols are used as solvents or preservatives in various consumer products such as wet wipes. The metabolites of alkoxyalcohols are known to be chronically toxic and carcinogenic to animals. Thus, an analytical method is needed to monitor alkoxyalcohols in wet wipes. The aim of this study was to develop a simultaneous analytical method for 14 alkoxyalcohols using headspace gas chromatography coupled with mass spectrometry to analyze the wet wipes. This method was developed by comparing with various headspace extraction parameters. The linear calibration curves were obtained for the method (r2 > 0.995). The limit of detection of alkoxyalcohols ranged from 2 to 200 ng mL-1. The precision of the determinative method was less than 18.20% coefficient of variation both intra and inter days. The accuracy of the method ranged from 82.86% to 119.83%. (2-Methoxymethylethoxy)propanol, 2-phenoxyethanol, and 1-phenoxy-2-propanol were mainly detected in wet wipes.

  2. The influence of the surrounding gas on drop impact onto a wet substrate

    Science.gov (United States)

    Deegan, Robert; Zhang, Li; Toole, Jameson

    2011-11-01

    The impact of a droplet with a wet or solid substrate creates a spray of secondary droplets. The effect of the surrounding gas on this process was widely neglected prior to the work of Xu, Zhang, & Nagel which showed that lowering the gas pressure suppresses splashing for impact with a dry solid substrate. Here we present the results of our experimental investigation of the effect of the surrounding gas on the evolution of splashes from a wet substrate. We varied the density and pressure of the surrounding gas. We find quantitative changes to the onset thresholds of splashing and on the size distribution of, but no qualitative changes. The effects are most pronounced on the evolution of the ejecta sheet.

  3. Three Years of Experience of Wet Gas Allocation on Canyon Express

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Aditya; Hall, James; Letton, Winsor

    2005-07-01

    In September 2002, production was begun from the three fields that together form the Canyon Express System- King's Peak, Aconcagua, and Camden Hills. The 9 wells from these fields are connected to a pair of 12-inch flow lines carrying the commingled wet gas a distance of approximately 92 kilometers back to the Canyon Station platform for processing. At the 21st NSFMW in October 2003, an initial report was given on the status of Wet Gas Allocation for the Canyon Express project. As discussed in that paper, dual-differential, subsea wet gas meters were chosen for the task of allocating gas and liquids back to individual wells. However, since the gas from all three fields was very dry (Lockhart-Martinelli parameter less than 0.01) and because the operating pressures were quite high (250 bar), application of the dual-differential function of the meters yielded errors in both liquid and gas flow rates. Furthermore, as these problems were being uncovered, scale was beginning to collect inside some of the meters. Taken together, these problems produced system imbalances as great as 20%. To address the problems, one of the individual flow metering elements within each wet gas meter was chosen as the allocation meter, operating as a single-phase gas meter. After three years of operation of the Canyon Express Project, considerable experience has been accumulated. Since at the time it held the record for deep water hydrocarbon production, application of the technologies discussed here were challenging and required considerable flexibility. It is believed that the Canyon Express experiences will benefit future deep water flow metering projects. The knowledge acquired thus far is surveyed and summarized. The emphasis is on the technical aspects. (tk)

  4. Experimental and Theoretical Investigations of Wet Flue Gas Desulphurisation

    DEFF Research Database (Denmark)

    Kiil, Søren

    attributed primarily to the particle size distribution (PSD) measurements of the limestone particles, which were used as model inputs. The measured PSD was probably not representa-tive of a given limestone sample because of agglomeration phenomena taking place in the dis-perser, preventing a stable...... limestones of dif-ferent origin were tested. A transient, mass transport controlled, mathematical model was de-veloped to describe the dissolution process. Model predictions were found to be qualitatively in good agreement with experimental data. Deviations between measurements and simulations were...

  5. Experimental Investigation and Modelling of a Wet Flue Gas Desulphurisation Pilot Plant

    DEFF Research Database (Denmark)

    Kiil, Søren; Michelsen, Michael Locht; Dam-Johansen, Kim

    1998-01-01

    A detailed model for a wet flue gas desulphurisation (FGD) pilot plant, based on the packed tower concept, has been developed. All important rate determining steps, absorption of SO2, oxidation of HSO3-, dissolution of limestone, and crystallisation of gypsum were included. Population balance...... equations, governing the description of particle size distributions of limestone in the plant, were derived. Model predictions were compared to experimental data such as gas phase concentration profiles of SO2, slurry pH-profiles, solids content of the slurry, liquid phase concentrations, and residual...

  6. SAFARI 2000 PAR Measurements, Kalahari Transect, Botswana, Wet Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — Ceptometer data from a Decagon AccuPAR (Model PAR-80) were collected at four sites in Botswana during the SAFARI 2000 Kalahari Transect Wet Season Campaign (March,...

  7. Wet method for measuring starch gelatinization temperature using electrical conductivity.

    Science.gov (United States)

    Morales-Sanchez, E; Figueroa, J D C; Gaytan-Martínez, M

    2009-09-01

    The objective of the present study was to develop a method for obtaining the gelatinization temperature of starches by using electrical conductivity. Native starches from corn, rice, potato, and wheat were prepared with different proportions of water and heated from room temperature to 90 degrees C, in a device especially designed for monitoring the electrical conductivity as a function of temperature. The results showed a linear trend of the electrical conductivity with the temperature until it reaches the onset gelatinization temperature. After that point, the electrical conductivity presented an increment or decrement depending on the water content in the sample and it was related to starch swelling and gelatinization phenomena. At the end gelatinization temperature, the conductivity becomes stable and linear, indicating that there are no more changes of phase. The starch gelatinization parameter, which was evaluated in the 4 types of starches using the electrical conductivity, was compared with those obtained by using differential scanning calorimeter (DSC). The onset temperature at which the electrical conductivity increased or decreased was found to be similar to that obtained by DSC. Also, the final temperature at which the electrical conductivity returned to linearity matched the end gelatinization temperature of the DSC. Further, a wet method for measuring the onset, peak, and end gelatinization temperatures as a function of temperature using the electrical conductivity curves is presented for a starch-water suspension.

  8. Effects of foaming and antifoaming agents on the performance of a wet flue gas desulfurization pilot plant

    DEFF Research Database (Denmark)

    Qin, Siqiang; Hansen, Brian Brun; Kiil, Søren

    2014-01-01

    Foaming is a common phenomenon in industrial processes, including wet flue gas desulfurization (FGD) plants. A systemic investigation of the influence of two foaming agents, sodium dodecyl sulphate (SDS) and egg white albumin (protein), and two commercial antifoams on a wet FGD pilot plant...

  9. Simulation studies of the influence of HCl absorption on the performance of a wet flue gas desulphurisation pilot plant

    DEFF Research Database (Denmark)

    Kiil, Søren; Nygaard, Helle; Johnsson, Jan Erik

    2002-01-01

    The mathematical model of Kiil et al, (Ind. Eng, Chem. Res. 37 (1998) 2792) for a wet flue gas desulphurisation (FGD) pilot plant was extended to include the simultaneous absorption of HCl. In contrast to earlier models for wet FGD plants, the inclusion of population balance equations...

  10. Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.J.; Bao, J.J.; Yan, J.P.; Liu, J.H.; Song, S.J.; Fan, F.X. [Southeast University, Nanjing (China). School of Energy & Environment

    2010-01-01

    A novel process to remove fine particles with high efficiency by heterogeneous condensation in a wet flue gas desulfurization (WFGD) system is presented. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent employed. When using CaCO{sub 3} and NH{sub 3} {center_dot} H{sub 2}O to remove SO{sub 2} from flue gas, the fine particle removal efficiencies are lower than those for Na2CO{sub 3} and water, and the morphology and elemental composition of fine particles are changed. This effect can be attributed to the formation of aerosol particles in the limestone and ammonia-based FGD processes. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  11. Simulated and measured soil wetting patterns for overlap zone ...

    African Journals Online (AJOL)

    Jane

    2011-10-17

    Oct 17, 2011 ... Drip irrigation is one of the most useful methods that is widely used in the arid and semi- ... Simulations of the water content and wetting front were close to the observed data. ... many researchers have employed numerical models to ... Field experiments were conducted in 2010 at the management of.

  12. PhaseWatcher Vx subsea for HPHT - a new deepwater multiphase and wet gas flowmeter for HPHT

    Energy Technology Data Exchange (ETDEWEB)

    Rustad, Rolf

    2010-07-01

    A new deepwater multiphase and wet gas flowmeter for HPHT applications has been developed. The flowmeter covers all multiphase and wet gas applications from heavy oil to lean and dry gas. Key features include a pressure rating of 15,000psi, a maximum process temperature of 205 C (400F) and a maximum water depth of 3500m (11500feet). This paper will discuss the design, the qualification program and the application of industry standards and codes in the qualification program. The qualification philosophy and the selected standards and codes may be applied in qualification of most types of equipment for the deepwater HPHT oil and gas industry. (Author)

  13. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2016-01-01

    Full Text Available The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  14. Study of the design variables for a wet-chamber gas meter prototype (MGCH)

    International Nuclear Information System (INIS)

    Patino, Carlos Hernando; Romero, Luis Said; Quiroga, Jabid

    2004-01-01

    This paper established the most important variables and their correlation that affect design and operation of wet-chamber gas meter (MGCH), focused on the gas pressure difference along the meter and the sealing-liquid level. In order to study variable behavior a simulation was carried out based on computational systems The mathematical model developed was built taking into account common features in present wet test gas meter as their internal configuration. Therefore, this work can be understood as a general analysis and its conclusions can be extended to whichever meter of this type. Software was developed to facilitate the analysis of the variables involved in this physical process; besides the drum sizing was modeling using CAD software. As a result of this investigation, theoretical basis were established for the analyzing and designing of a MGCH meter, as a previous phase to the construction and evaluation of the prototype. Uncertainty analysis of each variable implicates in this model was beyond the scope of this study

  15. AEROSOL AND GAS MEASUREMENT

    Science.gov (United States)

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  16. Investigation of the gypsum quality at three full-scale wet flue gas desulphurisation plants

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Kiil, Søren; Johnsson, Jan Erik

    2011-01-01

    In the present study the gypsum (CaSO4·2H2O) quality at three full-scale wet flue gas desulphurisation (FGD) plants and a pilot plant were examined and compared. Gypsum quality can be expressed in terms of moisture content (particle size and morphology dependent) and the concentration of residual......, low moisture content and low impurity content). An episode concerning a sudden deterioration in the gypsum dewatering properties was furthermore investigated, and a change in crystal morphology, as well as an increased impurity content (aluminium, iron and fluoride), was detected....

  17. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    Science.gov (United States)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste

  18. ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report

  19. The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations.

    Science.gov (United States)

    Niksa, Stephen; Fujiwara, Naoki

    2005-07-01

    This article introduces a predictive capability for Hg retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given mercury (Hg) speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO2) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections clearly signal that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO2 absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO2 capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O2 levels and the FGD temperature; weakly dependent on SO2 capture efficiency; and insensitive to HgCl2, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO3 levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg(O) but only for inlet O2 levels that are much lower than those in full-scale FGDs.

  20. Standard practice for measurement of time-of-wetness on surfaces exposed to wetting conditions as in atmospheric corrosion testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1989-01-01

    1.1 This practice covers a technique for monitoring time-of-wetness (TOW) on surfaces exposed to cyclic atmospheric conditions which produce depositions of moisture. 1.2 The practice is also applicable for detecting and monitoring condensation within a wall or roof assembly and in test apparatus. 1.3 Exposure site calibration or characterization can be significantly enhanced if TOW is measured for comparison with other sites, particularly if this data is used in conjunction with other site-specific instrumentation techniques. 1.4 The values stated in SI units are to be regarded as the standard. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. Simulation of the operation of an industrial wet flue gas desulfurization system

    International Nuclear Information System (INIS)

    Kallinikos, L.E.; Farsari, E.I.; Spartinos, D.N.; Papayannakos, N.G.

    2010-01-01

    In this work the simulation of a wet flue gas desulfurization (FGD) unit with spray tower of a power plant is presented, aiming at an efficient follow-up and the optimization of the FGD system operation. The dynamic model developed to simulate the performance of the system has been validated with operation data collected over a long period of time. All the partaking physical and chemical processes like the limestone dissolution, the crystallization of calcium sulfite and gypsum and the oxidation of sulfite ions have been taken into account for the development of the simulation model while the gas absorption by the liquid droplets was based on the two-film theory. The effect of the mean diameter of the slurry droplets on the performance of the system was examined, as it was used as an index factor of the normal operation of the system. The operation limits of the system were investigated on the basis of the model developed. It is concluded that the model is capable of simulating the system for significantly different SO 2 loads and that the absorption rate of SO 2 is strongly affected by the liquid dispersion in the tower. (author)

  2. Part-Load Performance of a Wet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Mazzucco, Andrea

    2014-01-01

    Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design- and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT......-design performance is governed by the efficiency characteristics of the compressor and turbine serving the gas turbine unit....

  3. Low-cost digital counting interface for fermentation gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    Erdman, M.D.; Deluiche, S.R.

    1985-05-01

    Laboratory- and pilot-scale volumetric measurement of fermentation gas can be readily determined with a standard wet-test gas meter. The initial cost of the meter, however, is quite prohibitive for experimental work and researchers have searched for other means of quantifying gas production. Techniques using calibrated floating gas holders, liquid displacement, flexible membranes, and conventional gas meters have been reported. Many of these methods lack a high degree of accuracy for small gas volumes. Residential gas meters such as those manufactured by Singer company, and others appear well suited for this application as long as a relatively dry gas is passed through the meter and a method is developed to subdivide the meter scale and record the results. The objective of this report was to construct a low cost, accurate, digital counting interface for concurrent operation with a low cost bellows-type gas meter. Although initially constructed for use in gas measurement studies, the interface can be used in other applications where digital output or computer interfacing are desired. 2 references.

  4. Wet flue gas desulphurisation procedures and relevant solvents thermophysical properties determination

    Directory of Open Access Journals (Sweden)

    Živković Nikola V.

    2014-01-01

    Full Text Available In order to mitigate climate change, the priority task is to reduce emissions of greenhouse gases, including sulfur oxides, from stationary power plants. The legal framework of the European Union has limited the allowable emissions of gases with harmful effects and fulfillment of this obligation is also ahead of the Republic of Serbia in the following years. In this paper categorization of wet procedures for sulfur oxides removal is given. Wet procedure with the most widespread industrial application, lime/limestone process, has been described in detail. In addition, the procedures with chemical and physical absorption and solvent thermal regeneration, which recently gained more importance, have been presented. Experimentally determined thermophysical and transport properties of commercially used and alternative solvents, necessary for the equipment design and process optimization, are also given in the paper. The obtained values of densities and viscosities of pure chemicals - solvents, polyethylene glycol 200 (PEG 200, polyethylene glycol 400 (PEG 400, tetraethylene glycol dimethyl ether (TEGDMA, N-methyl-2-pyrolidon (NMP and dimethylaniline (DMA, measured at the atmospheric pressure, are presented as a function of temperature. [Projekat Ministarstva nauke Republike Srbije, br. 172063

  5. A Novel Approach to Estimating Nitrous Oxide Emissions during Wetting Events from Single-Timepoint Flux Measurements.

    Science.gov (United States)

    Davis, Brian W; Needelman, Brian A; Cavigelli, Michel A; Yarwood, Stephanie A; Maul, Jude E; Bagley, Gwendolyn A; Mirsky, Steven B

    2017-03-01

    Precipitation and irrigation induce pulses of NO emissions in agricultural soils, but the magnitude, duration, and timing of these pulses remain uncertain. This uncertainty makes it difficult to accurately extrapolate emissions from unmeasured time periods between chamber sampling events. Therefore, we developed a modeling protocol to predict NO emissions from data collected daily for 7 d after wetting events. Within a cover crop-based corn ( L.) production system in Beltsville, MD, we conducted the 7-d time series during four time periods representing a range of corn growth stages in 2013 and 2014. Treatments included mixtures and monocultures of grass and legume cover crops that were fertilized with pelletized poultry litter or urea-ammonium nitrate solution (9-276 kg N ha). Most fluxes did not exhibit the expected exponential decay over time (82%); therefore, cumulative emissions were calculated using trapezoidal integration over 7 d after the wetting event. Cumulative 7-d emissions were well correlated with single point gas fluxes on the second day after a wetting event using a generalized linear mixed model (ln[emissions] = 0.809∙ln[flux] + 2.47). Soil chemical covariates before or after a wetting event were weakly associated with cumulative emissions. The ratio of dissolved organic C to total inorganic N was negatively correlated with cumulative emissions ( = 0.23-0.29), whereas nitrate was positively correlated with cumulative emissions ( = 0.23-0.33). Our model is an innovative approach that is calibrated using site-specific time series data, which may then be used to estimate short-term NO emissions after wetting events using only a single flux measurement. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Direct measurement of the wetting front capillary pressure in a clay brick ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Ioannou, Ioannis [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Hall, Christopher [Centre for Materials Science and Engineering and School of Engineering and Electronics, University of Edinburgh, The King' s Buildings, Edinburgh EH9 3JL (United Kingdom); Wilson, Moira A [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Hoff, William D [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Carter, Margaret A [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom)

    2003-12-21

    The absorption of a liquid into a rectangular bar of an initially dry porous material that is sealed on all surfaces except the inflow face is analysed in terms of Sharp Front theory. Sharp Front models are developed for both complete and incomplete displacement of air ahead of the advancing wetting front. Experiments are described from which a characteristic capillary potential of the material is obtained by measuring the equilibrium pressure of the air displaced and compressed ahead of the advancing wetting front. Results for the absorption of water and n-heptane by a fired clay brick ceramic suggest that this wetting front capillary pressure (or capillary potential) scales approximately with the surface tension and also that the permeability scales inversely with the liquid viscosity. The pressure of the air trapped in the wetted region is found to be the same as the pressure of the displaced air. For this material the wetting front capillary pressure for water at 20 C is 0.113 MPa, equivalent to a hydraulic tension head of 11.5 m and to a Young-Laplace pore diameter of 2.6 {mu}m. The capillary pressure so measured is apparently a fundamental percolation property of the material that can be interpreted as the air pressure at which liquid phase continuity and unsaturated conductivity both vanish. The method described can be applied generally to porous materials.

  7. Direct measurement of the wetting front capillary pressure in a clay brick ceramic

    International Nuclear Information System (INIS)

    Ioannou, Ioannis; Hall, Christopher; Wilson, Moira A; Hoff, William D; Carter, Margaret A

    2003-01-01

    The absorption of a liquid into a rectangular bar of an initially dry porous material that is sealed on all surfaces except the inflow face is analysed in terms of Sharp Front theory. Sharp Front models are developed for both complete and incomplete displacement of air ahead of the advancing wetting front. Experiments are described from which a characteristic capillary potential of the material is obtained by measuring the equilibrium pressure of the air displaced and compressed ahead of the advancing wetting front. Results for the absorption of water and n-heptane by a fired clay brick ceramic suggest that this wetting front capillary pressure (or capillary potential) scales approximately with the surface tension and also that the permeability scales inversely with the liquid viscosity. The pressure of the air trapped in the wetted region is found to be the same as the pressure of the displaced air. For this material the wetting front capillary pressure for water at 20 C is 0.113 MPa, equivalent to a hydraulic tension head of 11.5 m and to a Young-Laplace pore diameter of 2.6 μm. The capillary pressure so measured is apparently a fundamental percolation property of the material that can be interpreted as the air pressure at which liquid phase continuity and unsaturated conductivity both vanish. The method described can be applied generally to porous materials

  8. A fast response miniature probe for wet steam flow field measurements

    International Nuclear Information System (INIS)

    Bosdas, Ilias; Mansour, Michel; Abhari, Reza S; Kalfas, Anestis I

    2016-01-01

    Modern steam turbines require operational flexibility due to renewable energies’ increasing share of the electrical grid. Additionally, the continuous increase in energy demand necessitates efficient design of the steam turbines as well as power output augmentation. The long turbine rotor blades at the machines’ last stages are prone to mechanical vibrations and as a consequence time-resolved experimental data under wet steam conditions are essential for the development of large-scale low-pressure steam turbines. This paper presents a novel fast response miniature heated probe for unsteady wet steam flow field measurements. The probe has a tip diameter of 2.5 mm, and a miniature heater cartridge ensures uncontaminated pressure taps from condensed water. The probe is capable of providing the unsteady flow angles, total and static pressure as well as the flow Mach number. The operating principle and calibration procedure are described in the current work and a detailed uncertainty analysis demonstrates the capability of the new probe to perform accurate flow field measurements under wet steam conditions. In order to exclude any data possibly corrupted by droplets’ impact or evaporation from the heating process, a filtering algorithm was developed and implemented in the post-processing phase of the measured data. In the last part of this paper the probe is used in an experimental steam turbine test facility and measurements are conducted at the inlet and exit of the last stage with an average wetness mass fraction of 8.0%. (paper)

  9. Rainfall measurement using cell phone links: classification of wet and dry periods using geostationary satellites

    NARCIS (Netherlands)

    van Delden, A.J.; van het Schip, T.I.; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; Meirink, J.F.

    2017-01-01

    Commercial cellular telecommunication networks can be used for rainfall estimation by measur- ing the attenuation of electromagnetic signals transmitted between antennas from microwave links. However, as the received link signal may also decrease during dry periods, a method to separate wet and dry

  10. 30 CFR 250.1203 - Gas measurement.

    Science.gov (United States)

    2010-07-01

    ... base pressure of 14.73 psia and reflect the same degree of water saturation as in the gas volume. (8... Federal production. (f) What are the requirements for measuring gas lost or used on a lease? (1) You must either measure or estimate the volume of gas lost or used on a lease. (2) If you measure the volume...

  11. Comparison of torque measurements and near-infrared spectroscopy in characterization of a wet granulation process

    DEFF Research Database (Denmark)

    Jørgensen, Anna Cecilia; Luukkonen, Pirjo; Rantanen, Jukka

    2004-01-01

    The purpose of this study was to compare impeller torque measurements and near-infrared (NIR) spectroscopy in the characterization of the water addition phase of a wet granulation process. Additionally, the effect of hydrate formation during granulation on the impeller torque was investigated....... Anhydrous theophylline, alpha-lactose monohydrate, and microcrystalline cellulose (MCC) were used as materials for the study. The materials and mixtures of them were granulated using purified water in a small-scale high-shear mixer. The impeller torque was registered and NIR spectra of wet samples were...... recorded at-line. The torque and the NIR baseline-corrected water absorbances increased with increasing water content. A plateau in the NIR baseline-corrected water absorbances was observed for wet masses containing MCC. This was at the region of optimal water amount for granulation according to the torque...

  12. Radon gas measurement in Corum

    International Nuclear Information System (INIS)

    Uzbey, S.; Celebi, N.

    2009-01-01

    The existence of the natural radioactive sources in earth's crust which has long half-life and the degradation products of these in the environmental medium such as earth, rocks, foods, water, air, forms the basis of radiation which people are exposed to. Radon is the unique radioactive gas in the nature and it is made up of radium which is the result of uranium degradation. It is necessary to determine the radon concentration because of the difference in the concentration of uranium existence in different places. TAEK (Turkish Atomic Energy Authority) allows 400 Bq/m 3 of radon concentration at houses, 1000 Bq/m 3 at offices per year. In this attempt, government buildings, houses and offices were determined as the sampling places in Corum city center and towns to represent Corum. While disposing the radon measuring detectors, places which are close to the ground level were preferred. 74 radon detectors were left in those places for 60 days and in the end the detectors were collected while discontinuing the connection of environment and they were assessed. According to the results, the average radon gas concentration in 14 government buildings is 71,71 Bq/m 3 , in 15 offices 32,26 Bq/m 3 and at houses 42,34 Bq/m 3 .

  13. Analysis of Indirectly Fired Gas Turbine for Wet Biomass Fuels Based on commercial micro gas turbine data

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Qvale, Einar Bjørn

    2002-01-01

    energy, which has been the practice up to now, the low temperature exhaust gases after having served as drying agent, are lead out into the environment; a simple change of process integration that has a profound effect on the performance. Four different cycles have been studied. These are the Simple IFGT...... fueled by dry biomass assuming negligible pressure loss in the heat exchanger and the combustion chamber, the IFGT fueled with wet biomass (Wet IFGT) assuming no pressure losses, and finally both the Simple and the Wet IFGT incorporating typical data for pressure losses of commercially available micro...

  14. Moisture disturbance when measuring boron content in wet glass fibre materials with thermal neutron transmission method

    International Nuclear Information System (INIS)

    Zhang Zhiping; Liu Shengkang; Zhang Yongjie

    2001-01-01

    The theoretical calculation and experimental study on the moisture disturbance in the boron content measurement of wet glass fibre materials using the thermal neutron transmission method were reported. The relevant formula of the moisture disturbance was derived. For samples with a mass of 16 g, it was found that a moisture variation of 1% (mass percent) would result in a deviation of 0.28% (mass percent) in the measurement of boron contents

  15. Two-dimensional LIF measurements of humidity and OH density resulting from evaporated water from a wet surface in plasma for medical use

    International Nuclear Information System (INIS)

    Yagi, Ippei; Ono, Ryo; Oda, Tetsuji; Takaki, Koichi

    2015-01-01

    In plasma medicine, plasma is applied to a wet surface and is often accompanied by dry-gas flow. The dry-gas flow affects water evaporation from the wet surface and influences production of reactive species derived from water vapor, such as OH radicals. In this study, the effect of the dry-gas flow on two-dimensional distributions of humidity and OH radical density are examined by measuring them using laser-induced fluorescence (LIF). First, humidity is measured when nitrogen flows from a quartz tube of 4 mm inner diameter onto distilled water and agar media from 5 mm distance. NO gas is added to the nitrogen as a tracer and humidity is obtained from the quenching rate of NO molecules measured using LIF. This measurement has a spatial resolution of 0.2 mm 3 and a temporal resolution of less than 220 ns. The two-dimensional humidity distribution shows that the dry-gas flow pushes away water vapor evaporating from the wet surface. As a result, a low-humidity region is formed near the quartz tube nozzle and a high-humidity region is formed near the wet surface. The thickness of the low-humidity region reduces with increasing gas flow rate. It is 0.1–0.5 mm for the flow rate of higher than 0.3 l min −1 . Next, the OH density is measured when a nanosecond pulsed streamer discharge is applied to a distilled water surface with dry-air flow. The OH density decreases with increasing gas flow rate due to decreased humidity. When the flow rate is lower than 0.1 l min −1 , the OH distribution is approximately uniform in the plasma region, while the humidity distribution shows a large gradient. The importance of the thin high-humidity region on the flux of reactive species onto the wet surface is discussed. (paper)

  16. A multicomponent multiphase lattice Boltzmann model with large liquid–gas density ratios for simulations of wetting phenomena

    International Nuclear Information System (INIS)

    Zhang Qing-Yu; Zhu Ming-Fang; Sun Dong-Ke

    2017-01-01

    A multicomponent multiphase (MCMP) pseudopotential lattice Boltzmann (LB) model with large liquid–gas density ratios is proposed for simulating the wetting phenomena. In the proposed model, two layers of neighboring nodes are adopted to calculate the fluid–fluid cohesion force with higher isotropy order. In addition, the different-time-step method is employed to calculate the processes of particle propagation and collision for the two fluid components with a large pseudo-particle mass contrast. It is found that the spurious current is remarkably reduced by employing the higher isotropy order calculation of the fluid–fluid cohesion force. The maximum spurious current appearing at the phase interfaces is evidently influenced by the magnitudes of fluid–fluid and fluid–solid interaction strengths, but weakly affected by the time step ratio. The density ratio analyses show that the liquid–gas density ratio is dependent on both the fluid–fluid interaction strength and the time step ratio. For the liquid–gas flow simulations without solid phase, the maximum liquid–gas density ratio achieved by the present model is higher than 1000:1. However, the obtainable maximum liquid–gas density ratio in the solid–liquid–gas system is lower. Wetting phenomena of droplets contacting smooth/rough solid surfaces and the dynamic process of liquid movement in a capillary tube are simulated to validate the proposed model in different solid–liquid–gas coexisting systems. It is shown that the simulated intrinsic contact angles of droplets on smooth surfaces are in good agreement with those predicted by the constructed LB formula that is related to Young’s equation. The apparent contact angles of droplets on rough surfaces compare reasonably well with the predictions of Cassie’s law. For the simulation of liquid movement in a capillary tube, the linear relation between the liquid–gas interface position and simulation time is observed, which is identical to

  17. Device for measuring the tritium concentration in a measuring gas

    International Nuclear Information System (INIS)

    Koran, P.

    1987-01-01

    The measuring gas is brought into contact via a measuring gas path with a diaphragm permeable to water, which separates the measuring gas path from a counter gas path leading to a proportional detector. The measuring gas path and the counter gas path are in counterflow in the area of diaphragm. The preferably hose diaphragm consists of a well-known ion exchange material, which can be used for gas drying purposes, which is permeable to water and tritium compounds similar to water, but is impermeable to other gases and liquids contained in air, particularly rare gases. In this way, the tritium concentration can be measured with great rare gas suppression. (orig./HP) [de

  18. Fluid Distribution in Synthetic Wet Halite Rocks : Inference from Measured Elastic Wave Velocity and Electrical Conductivity

    Science.gov (United States)

    Watanabe, T.; Kitano, M.

    2011-12-01

    Intercrystalline fluid can significantly affect rheological and transport properties of rocks. Its influences are strongly dependent on its distribution. The dihedral angle between solid and liquid phases has been widely accepted as a key parameter that controls solid-liquid textures. The liquid phase is not expected to be interconnected if the dihedral angle is larger than 60 degree. However, observations contradictory to dihedral angle values have been reported. Watanabe (2010) suggested the coexistence of grain boundary fluid with a positive dihedral angle. For good understanding of fluid distribution, it is thus critical to study the nature of grain boundary fluid. We have developed a high pressure and temperature apparatus for study of intercrystalline fluid distribution. It was specially designed for measurements of elastic wave velocities and electrical conductivity. The apparatus mainly consists of a conventional cold-seal vessel with an external heater. The pressure medium is silicon oil of the viscosity of 0.1 Pa s. The pressure and temperature can be controlled from 0 to 200 MPa and from 20 to 200 C, respectively. Dimensions of a sample are 9 mm in diameter, and 15 mm in length. Halite-water system is used as an analog for crustal rocks. The dihedral angle has been studied systematically at various pressure and temperature conditions [Lewis and Holness, 1996]. The dihedral angle is larger than 60 degree at lower pressure and temperature. It decreases to be smaller than 60 degree with increasing pressure and temperature. A sample is prepared by cold-pressing and annealing of wet NaCl powder. Optical examination has shown that synthesized samples are microstructurally homogeneous. Grains are polygonal and equidimensional with a mean diameter of 100 micrometer. Grain boundaries vary from straight to bowed and 120 degree triple junctions are common. Gas and fluid bearing inclusions are visible on the grain boundaries. There are spherical inclusions or

  19. Measurement of activity of radioactive gas

    International Nuclear Information System (INIS)

    Zhuo Renhong; Lei Jiarong; Wen Dezhi; Cheng Jing; Zheng Hui

    2005-10-01

    A set of standard instrument system with their accessories for the measurement of activity of radioactive gas have been developed. The specifications and performances of the system have been tested and examined. The conventional true values of activity of radioactive gas have been measured and its uncertainty has been assessed. The technique of the dissemination of the measurement of activity of radioactive gas has been researched. The specification and performance of the whole set of apparatus meet the requirements of the relational standard, critra, regulation, it can be regard as a work standard for the measurement of activity of radioactive gas in CAEP. (authors)

  20. The wetting of planar solid surfaces by symmetric binary mixtures near bulk gas-liquid coexistence

    International Nuclear Information System (INIS)

    Woywod, Dirk; Schoen, Martin

    2004-01-01

    We investigate the wetting of planar, nonselective solid substrates by symmetric binary mixtures where the attraction strength between like molecules of components A and B is the same, that is ε AA ε BB AB vertical bar ≤ vertical bar ε AA vertical bar, that is by varying the attraction between a pair of unlike molecules. By means of mean-field lattice density functional calculations we observe a rich wetting behaviour as a result of the interplay between ε AB and the attraction of fluid molecules by the solid substrate ε W . In accord with previous studies we observe complete wetting only above the critical end point if the bulk mixture exhibits a moderate to weak tendency to liquid-liquid phase separation even for relatively strong fluid-substrate attraction. However, in this case layering transitions may arise below the temperature of the critical end point. For strongly phase separating mixtures complete wetting is observed for all temperatures T ≥0 along the line of discontinuous phase transitions in the bulk

  1. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  2. Trends in natural gas distribution and measurements

    International Nuclear Information System (INIS)

    Crone, C.F.A.

    1993-01-01

    On the occasion of the GAS EXPO 93, to be held from 13-15 October 1993 in Amsterdam, Netherlands, an overview is given of trends in the distribution of natural gas and the measuring of natural gas, as noted by experts from the energy utilities, GASTEC and Gasunie in the Netherlands. With regard to the natural gas distribution trends attention is paid to synthetic materials, the environmental effects, maintenance, underground natural gas pressure control, horizontal drilling (no-dig techniques), and other trends. With regard to natural gas metering trends brief discussions are given of the direct energy meter, the search for a new gas meter in households, telemetering, improving the accuracy of the gas meters by means of electronics, on the spot calibration of large gas meters, the use of an online chromatograph to determine the calorific value, the development of a calibration instrument, the so-called piston prover, to measure large quantities of natural gas, the recalibration of natural gas stations, the ultrasonic gas meter, and finally the quality of the natural gas supply. 1 fig., 11 ills

  3. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer

    Science.gov (United States)

    Matilainen, Mika; Tuononen, Ari

    2015-02-01

    We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.

  4. Wet Flue Gas Desulfurization Using a New O-Element Design Which Replaces the Venturi Scrubber

    OpenAIRE

    P. Lestinsky; D. Jecha; V. Brummer; P. Stehlik

    2015-01-01

    Scrubbing by a liquid spraying is one of the most effective processes used for removal of fine particles and soluble gas pollutants (such as SO2, HCl, HF) from the flue gas. There are many configurations of scrubbers designed to provide contact between the liquid and gas stream for effectively capturing particles or soluble gas pollutants, such as spray plates, packed bed towers, jet scrubbers, cyclones, vortex and venturi scrubbers. The primary function of venturi scrubb...

  5. Methodology to determine the appropriate amount of excess air for the operation of a gas turbine in a wet environment

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Leyte, R.; Zamora-Mata, J.M.; Torres-Aldaco, A. [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Ingenieria de Procesos e Hidraulica, San Rafael Atlixco 186, Col Vicentina 09340, Iztapalapa, Mexico, D.F. (Mexico); Toledo-Velazquez, M. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Mecanica y Electrica, Seccion de Estudios de Posgrado e Investigacion, Laboratorio de Ingenieria Termica e Hidraulica Aplicada, Unidad Profesional Adolfo Lopez Mateos, Edificio 5, 3er piso SEPI-ESIME, C.P. 07738, Col. Lindavista, Mexico D.F. (Mexico); Salazar-Pereyra, M. [Tecnologico de Estudios Superiores de Ecatepec, Division de Ingenieria Mecatronica e Industrial, Posgrado en Ciencias en Ingenieria Mecatronica, Av. Tecnologico s/n, Col. Valle de Anahuac, C.P. 55210, Ecatepec de Morelos, Estado de Mexico (Mexico)

    2010-02-15

    This paper addresses the impact of excess air on turbine inlet temperature, power, and thermal efficiency at different pressure ratios. An explicit relationship is developed to determine the turbine inlet temperature as a function of excess air, pressure ratio and relative humidity. The effect of humidity on the calculation of excess air to achieve a pre-established power output is analyzed and presented. Likewise it is demonstrated that dry air calculations provide a valid upper bound for the performance of a gas turbine under a wet environment. (author)

  6. Development of a 'wet' variant of electron beam gas treatment technology adapted to economic and technological conditions of developing countries to remove NOx, SO2 and particulates from flue gas and produce fertilizers

    International Nuclear Information System (INIS)

    Fainchtein, O.L.; Piotrovskiy, V.V.; Savenkov, A.S.; Smirnov, I.K.; Salimov, R.A.

    1998-01-01

    The Institute Energostal with its co-authors has carried out real gas tests of the EB flue gas treatment technology at a 1000 m 3 /h experimental installation at Lipetsk Metallurgical Plant (Lipetsk, Russia), including agricultural tests to utilize the by-product. On the basis of the results obtained, a ''wet'' variant of the EB technology has been developed. A conceptual, basic and working design was engineered for a 100,000 m 3 /h EB demonstration unit at Slavyanskaya Power Plant (Donbass, Ukraine). In a ''wet'' variant of the technology, the following problems are believed to be harmoniously solved: reduction of power consumption for irradiation due to heterogenous reactions based on the so-called droplet mechanism, efficiency and reliability of collecting ammonia salts by wet dust catchers, wet granulation of the by-product using traditional equipment. A ''wet'' variant of the EB technology has a low capital cost and requires less floor area. Therefore, despite all its disadvantages typical for any wet method of gas purification, the ''wet'' EB technology can find its application in developing countries with low levels of economy. In many countries of this type, in particular, in the countries of the former Soviet Union, wet methods of gas treatment and fertilizer granulation are still widely used. As a matter of fact, it is a conventionally ''wet'' method (hence the inverted commas), since no waste water is discharged into the environment

  7. Applications of UT results to confirm defects findings by utilization of relevant metallurgical investigations techniques on gas/condensate pipeline working in wet sour gas environment

    Science.gov (United States)

    El-Azhari, O. A.; Gajam, S. Y.

    2015-03-01

    The gas/condensate pipe line under investigation is a 12 inch diameter, 48 km ASTM, A106 steel pipeline, carrying hydrocarbons containing wet CO2 and H2S.The pipe line had exploded in a region 100m distance from its terminal; after 24 years of service. Hydrogen induced cracking (HIC) and sour gas corrosion were expected due to the presence of wet H2S in the gas analysis. In other areas of pipe line ultrasonic testing was performed to determine whether the pipeline can be re-operated. The results have shown presence of internal planner defects, this was attributed to the existence of either laminations, type II inclusions or some service defects such as HIC and step wise cracking (SWC).Metallurgical investigations were conducted on fractured samples as per NACE standard (TM-0284-84). The obtained results had shown macroscopic cracks in the form of SWC, microstructure of steel had MnS inclusions. Crack sensitivity analyses were calculated and the microhardness testing was conducted. These results had confirmed that the line material was suffering from sour gas deteriorations. This paper correlates the field UT inspection findings with those methods investigated in the laboratory. Based on the results obtained a new HIC resistance material pipeline needs to be selected.

  8. Gas Dispersion in Granular Porous Media under Air-Dry and Wet Conditions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Hamamoto, S; Kawamoto, K

    2012-01-01

    Subsurface gaseous-phase transport is governed by three gas transport parameters: the air permeability coefficient (ka), gas diffusion coefficient (DP), and gas dispersion coefficient (DH). Among these, DH is the least understood due to hitherto limited research into the relationship between gas...... dispersion and soil physical characteristics. In this study, a series of advection–dispersion experiments was performed on granular porous media to identify the effects of soil column dimensions (length and diameter), particle size and shape, dry bulk density, and moisture content on the magnitude of gas...... dispersion. Glass beads and various sands of different shapes (angular and rounded) with mean particle diameters (d50) ranging from 0.19 to 1.51 mm at both air-dry and variable moisture contents were used as granular porous media. Gas dispersion coefficients and gas dispersivities (a = DH/v, where v...

  9. Sensor platform for gas composition measurement

    NARCIS (Netherlands)

    De Graaf, G.; Bakker, F.; Wolffenbuttel, R.F.

    2011-01-01

    The gas sensor research presented here has a focus on the measurement of the composition of natural gas and gases from sustainable resources, such as biogas. For efficient and safe combustion, new sensor systems need to be developed to measure the composition of these new gases. In general about 6

  10. DOE mixed waste metals partition in a rotary kiln wet off-gas system

    International Nuclear Information System (INIS)

    Burns, D.B.; Looper, M.G.

    1994-01-01

    In 1996, the Savannah River Site plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. Test burns were conducted using surrogate CIF wastes spiked with hazardous metals and organics. The partition of metals between the kiln bottom ash, scrubber blowdown solution, and stack gas was measured as a function of kiln temperature, waste chloride content, and waste form (liquid or solid). Three waste simulants were used in these tests, a high and low chloride solid waste mix (paper, plastic, latex, PVC), and a liquid waste mix (benzene and chlorobenzene). An aqueous solution containing: antimony, arsenic, barium, cadmium, chromium, lead, mercury, nickel, silver, and thallium was added to the waste to determine metals fate under various combustion conditions. Test results were used to divide the metals into three general groups, volatile, semi-volatile, and nonvolatile metals. Mercury was the only volatile metal. No mercury remained in the kiln bottom ash under any incineration condition. Lead, cadmium, thallium, and silver exhibited semi-volatile behavior. The partition between the kiln ash, blowdown, and stack gas depended on incineration conditions. Chromium, nickel, barium, antimony, and arsenic exhibited nonvolatile behavior, with greater than 90 wt % of the metal remaining in the kiln bottom ash. Incineration temperature had a significant effect on the partition of volatile and semi-volatile metals, and no effect on nonvolatile metal partition. As incineration temperatures were increased, the fraction of metal leaving the kiln increased. Three metals, lead, cadmium, and mercury showed a relationship between chloride concentration in the waste and metals partition. Increasing the concentration of chlorides in the waste or burning liquid waste versus solid waste resulted in a larger fraction of metal exiting the kiln

  11. Investigation of Parameters Affecting Gypsum Dewatering Properties in a Wet Flue Gas Desulphurization Pilot Plant

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Kiil, Søren

    2012-01-01

    of impurities (0.002 M Al2F6; 50 g quartz/L; 0.02 M Al3+, and 0.040 M Mg2+) were investigated. In addition, slurry from a full-scale wet FGD plant, experiencing formation of flat shaped crystals and poor gypsum dewatering properties, was transferred to the pilot plant to test if the plant would now start...... to time. In this work, the particle size distribution, morphology, and filtration rate of wet FGD gypsum formed in a pilot-scale experimental setup, operated in forced oxidation mode, have been studied. The influence of holding tank residence time (10–408 h), solids content (30–169 g/L), and the presence...... to produce low quality gypsum. The crystals formed in the pilot plant, on the basis of the full-scale slurry did, however, show acceptable filtration rates and crystal morphologies closer to the prismatic crystals from after pilot plant experiments with demineralized water. The gypsum slurry filtration rates...

  12. [Wet work].

    Science.gov (United States)

    Kieć-Swierczyńska, Marta; Chomiczewska, Dorota; Krecisz, Beata

    2010-01-01

    Wet work is one of the most important risk factors of occupational skin diseases. Exposure of hands to the wet environment for more than 2 hours daily, wearing moisture-proof protective gloves for a corresponding period of time or necessity to wash hands frequently lead to the disruption of epidermal stratum corneum, damage to skin barrier function and induction of irritant contact dermatitis. It may also promote penetration of allergens into the skin and increase the risk of sensitization to occupational allergens. Exposure to wet work plays a significant role in occupations, such as hairdressers and barbers, nurses and other health care workers, cleaning staff, food handlers and metalworkers. It is more common among women because many occupations involving wet work are female-dominated. The incidence of wet-work-induced occupational skin diseases can be reduced by taking appropriate preventive measures. These include identification of high-risk groups, education of workers, organization of work enabling to minimize the exposure to wet work, use of personal protective equipment and skin care after work.

  13. Normalization of natural gas composition data measured by gas chromatography

    International Nuclear Information System (INIS)

    Milton, Martin J T; Harris, Peter M; Brown, Andrew S; Cowper, Chris J

    2009-01-01

    The composition of natural gas determined by gas chromatography is routinely used as the basis for calculating physico-chemical properties of the gas. Since the data measured by gas chromatography have particular statistical properties, the methods used to determine the composition can make use of a priori assumptions about the statistical model for the data. We discuss a generalized approach to determining the composition, and show that there are particular statistical models for the data for which the generalized approach reduces to the widely used method of post-normalization. We also show that the post-normalization approach provides reasonable estimates of the composition for cases where it cannot be shown to arise rigorously from the statistical structure of the data

  14. The results of the measurements of mass- and heat-transfer in the wet cooling tower

    International Nuclear Information System (INIS)

    Fabjan, Lj.; Gaspersic, B.

    1979-01-01

    These are the results of our investigations carried out on a packing inside a wet cooling tower for the purpose of studying the mass and heat transfer at the counterflow of water and humid air. The measurements on the experimental tower of the corresponding mathematical model reflect the average coefficient of mass and heat transfer for the unity of the active volume. Further the measurements of pressure drop at the air flow were carried out and thus the coefficient of aerodynamic losses were obtained. The results of measurements are given in the corresponding equations with the dimensionless numbers and diagrams. They will be of great use for the planning of new cooling towers. (author)

  15. Leaf Cutter Ant (Atta cephalotes) Soil Modification and In Situ CO2 Gas Dynamics in a Neotropical Wet Forest

    Science.gov (United States)

    Fernandez Bou, A. S.; Carrasquillo Quintana, O.; Dierick, D.; Harmon, T. C.; Johnson, S.; Schwendenmann, L.; Zelikova, T. J.

    2016-12-01

    The goal of this work is to advance our understanding of soil carbon cycling in highly productive neotropical wet forests. More specifically, we are investigating the influence of leaf cutter ants (LCA) on soil CO2 gas dynamics in primary and secondary forest soils at La Selva Biological Station, Costa Rica. LCA are the dominant herbivore in tropical Americas, responsible for as much as 50% of the total herbivory. Their presence is increasing and their range is expanding because of forest fragmentation and other human impacts. We installed gas sampling wells in LCA (Atta cephalotes) nest and control sites (non-nests in the same soil and forest settings). The experimental design encompassed land cover (primary and secondary forest) and soil type (residual and alluvial). We collected gas samples monthly over an 18-month period. Several of the LCA nests were abandoned during this period. Nevertheless, we continued to sample these sites for LCA legacy effects. In several of the sites, we also installed sensors to continuously monitor soil moisture content, temperature, and CO2 levels. Within the 18-month period we conducted a 2-month field campaign to collect soil and nest vent CO2 efflux data from 3 of the nest-control pairs. Integrating the various data sets, we observed that for most of the sites nest and control soils behaved similarly during the tropical dry season. However, during the wet season gas well CO2 concentrations increased in the control sites while levels in the nests remained at dry season levels. This outcome suggests that ants modify soil gas transport properties (e.g., tortuosity). In situ time series and efflux sampling campaign data corroborated these findings. Abandoned nest CO2 levels were similar to those of the active nests, supporting the notion of a legacy effect from LCA manipulations. For this work, the period of abandonment was relatively short (several months to 1 year maximum), which appears to be insufficient for estimating the

  16. CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route

    International Nuclear Information System (INIS)

    Aslani, Alireza; Oroojpour, Vahid

    2011-01-01

    CuO nanostructures with different morphologies and sizes were grown in a controlled manner using a simple low-temperature hydrothermal technique. By controlling the pH of reaction mixture, spherical nanoparticles and cloudlike CuO structures were synthesized at 100-150 o C with excellent efficiency. These CuO nanostructures have been tested for CO gas monitoring by depositing them as thick films on an interdigitated alumina substrate and evaluated the surface resistance of the deposited layer as a function of operating temperature and CO concentrations. The gas sensitivity tests have demonstrated that the CuO nanostructures, especially cloudlike morphology, exhibit high sensitivity to CO proving their applicability in gas sensors. The role of the nanostructure on the sensing properties of CuO is also discussed.

  17. Evaluation of Synthetic Gypsum Recovered via Wet Flue-Gas Desulfurization from Electric Power Plants for Use in Foundries

    Directory of Open Access Journals (Sweden)

    R. Biernacki

    2012-09-01

    Full Text Available This article investigates possible use of waste gypsum (synthetic, recovered via flue-gas desulfurization from coal-fired electric powerplants, in foundries. Energy sector, which in Eastern Europe is mostly composed from coal-fired electric power plants, is one of the largestproducers of sulfur dioxide (SO2.In order to protect the environment and reduce the amount of pollution flue-gas desulfurization (FGD is used to remove SO2 fromexhaust flue gases of fossil-fuel power plants. As a result of this process gypsum waste is produced that can be used in practicalapplications.Strength and permeability tests have been made and also in-depth analysis of energy consumption of production process to investigateways of preparing the synthetic gypsum for casting moulds application. This paper also assesses the chemical composition, strength andpermeability of moulds made with synthetic gypsum, in comparison with moulds made with traditional GoldStar XL gypsum and withceramic molds. Moreover examination of structure of synthetic gypsum, the investigations on derivatograph and calculations of energyconsumption during production process of synthetic gypsum in wet flue-gas desulfurization were made.After analysis of gathered data it’s possible to conclude that synthetic gypsum can be used as a material for casting mould. There is nosignificant decrease in key properties, and on the other hand there is many additional benefits including low energy consumption,decreased cost, and decreased environmental impact.

  18. Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system

    International Nuclear Information System (INIS)

    Bolinsky, F.T.; Ross, J.; Dennis, D.S.

    1991-01-01

    Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO 2 ) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO 2 will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO 2 is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs

  19. Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization.

    Science.gov (United States)

    Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang

    2014-11-01

    An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO 2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO 2 from by-products was summarized. Results showed that the SO 2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO 2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900-1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO 2 as well as MgO, a temperature range of 900-927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries.

  20. Remarks relating to field experiments to measure the wet scavenging of tracer aerosols

    International Nuclear Information System (INIS)

    Stensland, G.J.

    1977-12-01

    An important question is whether or not the wet deposition of debris from a single (or multiple) airburst of a nuclear device poses a significant hazard to people on the ground. To answer this question for various scenarios, a basic understanding of the aerosol attachment rates to cloud water and raindrops is needed. The attachment rates can then be incorporated into the cloud physics scavenging models to make intelligent assessments. In order to gain an initial impression as to the importance (order of magnitude) of the wet scavenging effects and to provide the data to validate the cloud scavenging models, tracer release field experiments are useful and necessary. The major purpose of this report is to address questions related to the operation and interpretation of such field tracer efforts and in particular to consider the results from the August 3, 1972, Battelle Northwest Laboratory tracer experiment in St. Louis. The Battelle experiment involved the release of several aerosol tracers at 10,000 to 13,000 feet, near rain clouds, and the measurement of the resulting tracer in the rain collected at the ground level sampling sites

  1. Evaluation of the oleophilicity of different alkoxysilane modified ceramic membranes through wetting dynamic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Nengwen, E-mail: nengwengao@cqut.edu.cn [State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400050 (China); Ke, Wei [State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Fan, Yiqun, E-mail: yiqunfan@njut.edu.cn [State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Xu, Nanping [State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2013-10-15

    Wettability has been recognized as one of the most important properties of porous materials for both fundamental and practical applications. In this study, the oleophilicity of Al{sub 2}O{sub 3} membranes modified by four alkoxysilanes with different length of alkyl group was investigated through oil wetting dynamic test. Fourier transform infrared spectroscopy (FTIR), thermogravimertric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were measured to confirm that ceramic membrane surfaces have been grafted with alkoxysilanes without changing the membrane morphology. A high speed video camera was used to record the spreading and imbibition process of oil on the modified membrane surface. The value of oil contact angle and its change during the wetting process were used to characterize the membrane oleophilicity. Characterization results showed that the oleophilicity of the modified membranes increased along with the increasing of the silane alkyl group. The influence of oleophilicity on the filtration performance of water-in-oil (W/O) emulsions was experimentally studied. A higher oil flux was obtained for membranes grafted with a longer alkyl group, indicating that increase oleophilicity can increase the membrane antifouling property. This work presents a valuable route to the surface oleophilicity control and testing of ceramic membranes in the filtration of non-polar organic solvents.

  2. Rehabilitation of the natural gas field Thoense with wet transport of natural gas; Sanierung des Erdgasfeldes Thoense unter Anwendung des Erdgasnasstransports

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, W.; Gerhartz, B.; Schmitt, D.; Uphoff, T. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    1998-12-31

    Natural gas has been extracted the gas field of Thoense situated at the Northern fringe of the city of Hannover for over forty years. At all 10 bore sites the gas was dried with glycol dryers. While dealing with the problem of hydrocarbon emissions from the dryers it became evident, that some of the very old plants had to be rehabilitated. BEB operates the Thoense field on behalf of Elwerath/Brigitta/Deutz. An integrated concept, based on wet transport of natural gas, was used to remove the emission of hydrocarbons and rehabilitate the surface plants in order to cut operating costs. The field at Thoense is now economically efficient enough to continue operations for a long time. [Deutsch] Aus dem am nordoestlichen Stadtrand Hannovers liegenden Gasfeld Thoense wird seit ueber vierzig Jahren Erdgas gefoerdert. Die Gastrocknung erfolgte dort in ueblicher Weise mit Glykoltrocknungsanlagen an allen zehn Bohrungen. Bei der Bearbeitung des damit verbundenen Problems der Kohlenwasserstoffemissionen aus den Trocknungsanlagen wurde der Sanierungsbedarf an den z.T. sehr alten Anlagen deutlich. Das Feld Thoense wird von BEB fuer das Konsortium Elwerath/Brigitta/Deutz betrieben. Es wird gezeigt, wie mit einem integrierten Konzept auf der Basis des Erdgasnasstransportes die KW-Emissionen beseitigt wurden und gleichzeitig eine betriebskostensenkende Sanierung der obertaegigen Anlagen durchgefuehrt werden konnte. Damit wurde die wirtschaftliche Voraussetzung geschaffen, die Gasversorgung aus Thoense noch lange aufrecht erhalten zu koennen. (orig.)

  3. Impact of operating state changes on the behaviour of mercury in wet fuel gas desulfurization plants; Auswirkung von Betriebszustandsaenderungen auf das Verhalten von Quecksilber in nassen Rauchgasentschwefelungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Heidel, Barna; Farr, Silvio; Brechtel Kevin [Institut fuer Feuerungs- und Kraftwerkstechnik (IFK), Universitaet Stuttgart (Germany); Scheffknecht, Guenter [EnBW Kraftwerke AG, Stuttgart (Germany); Thorwarth, Harald

    2011-07-01

    During the combustion of coal, mercury is released in its elemental form and is oxidized by existing flue gas purification plants. Changing operating conditions may result in a re-emission of elemental mercury. With regard to future demands, knowledge of the operation stability is necessary in order to prevent re-emissions from wet flue gas desulphurisation plants. With this in mind, the authors of the contribution under consideration investigate the behaviour of sulfur dioxide and mercury at laboratory scale and pilot plant scale. At first, the effects of load changes, the starting and stopping of flue gas desulfurization systems and the fuel switch on the deposition of sulfur dioxide and mercury are presented. Furthermore, the changes in the suspension solution with regard to the composition, the pH value and the redox potential will be described. In addition, operating conditions resulting in the re-emission of elemental mercury are discussed in detail. Finally, measures such as the change in the L/G value, the adjustment of the addition of air oxidation as well as the possibility of an early process adaptation and their influences on the re-emission of elemental mercury are considered.

  4. Focused Beam Reflectance Measurement (FBRM) a promising tool for wet-end optimisation and web break prediction

    NARCIS (Netherlands)

    Lumpe, C.; Joore, L.; Homburg, K.; Verstraeten, E.

    2001-01-01

    The trends to increased speed and higher qualities have increased the need for wet-end control - especially for systems with on-line measuring devices and feed forward control. One possibility is the use of Focused Beam Reflectance Measurement (FBRM) to measure on-line particle counts and their

  5. Measurement and Analysis of the Diffusible Hydrogen in Underwater Wet Welding Joint

    Directory of Open Access Journals (Sweden)

    Kong Xiangfeng

    2016-01-01

    Full Text Available The diffusible hydrogen in steel weldments is one of the main reasons that led to hydrogen assisted cracking. In this paper, the results of literatures survey and preliminary tests of the diffusible hydrogen in underwater wet welding joint were presented. A fluid-discharge method of for measuring the diffusible hydrogen in weldment was introduced in detail. Two kinds of underwater welding electrode diffusible hydrogen are 26.5 mL/100g and 35.5 mL/100g by fluid-discharge method, which are high levels. The diffusible hydrogen of underwater welding is higher than atmospheric welding, and the result is closely related to welding material. The best way to control the diffusible hydrogen is adjusting welding material and improving fluidity of slag.

  6. Numerical study on over reading coefficient in wet steam flow measurement

    International Nuclear Information System (INIS)

    Bai Xuesong; Yuan Dewen; Yan Xiao; Peng Xingjian

    2013-01-01

    This paper investigated the flow process of wet steam in Venturi under interested conditions with CFD simulation software. The effect of pressure, mass flow rate, throat radius on over reading factor was analyzed. This paper aims to improve the wet steam over reading model and the prediction accuracy in wet steam. The results prove that the mass flow has a small effect on over reading coefficient, while the effect that throat radius has on over reading coefficient increases as the pressure rises. (authors)

  7. Part-Load Performance of aWet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    Directory of Open Access Journals (Sweden)

    Leonardo Pierobon

    2014-12-01

    Full Text Available Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design- and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT fueled by woodchips and an organic Rankine cycle (ORC turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable working fluid for the organic Rankine process. This step enables to parametrize the part-load model of the plant and to estimate its performance at different power outputs. The novel plant has a nominal power of 250 kW and a thermal efficiency of 43%. The major irreversibilities take place in the burner, recuperator, compressor and in the condenser. Toluene is the optimal working fluid for the organic Rankine engine. The part-load investigation indicates that the plant can operate at high efficiencies over a wide range of power outputs (50%–100%, with a peak thermal efficiency of 45% at around 80% load. While the ORC turbogenerator is responsible for the efficiency drop at low capacities, the off-design performance is governed by the efficiency characteristics of the compressor and turbine serving the gas turbine unit.

  8. Radon diagnostics and tracer gas measurements

    International Nuclear Information System (INIS)

    Jilek, K.; Brabec, M.

    2004-01-01

    An outline is presented of the tracer gas technique, which is used for continuous measurements of air ventilation rate (generally time-varying) and for simultaneous estimation of air ventilation rate and radon entry rate, and some of its limitations are discussed. The performance of this technique in the calculation of the air ventilation rate is demonstrated on real data from routine measurements. The potential for air ventilation rate estimation based on radon measurements only is discussed. A practical application is described of the tracer gas technique to a simultaneous estimation of the air ventilation rate and radon entry rate in a real house where the effectiveness of radon remedy was tested. The following main advantages of the CO tracer gas techniques are stressed: (i) The averaging method continuous determination of the ventilation rate with good accuracy (≤ 20 %). (ii) The newly presented and verified method based on simultaneous measurements of radon concentration and CO gas concentration enables separate continuous measurements of the radon entry rate and ventilation rate. The results of comparative measurements performed with the aim to estimate the inaccuracy in determination of radon entry rate showed acceptable and good agreement up to approximately 10 %. The results of comparative measurements performed with the aim to estimate the mutual commensuration of the method to the determination of the ventilation rate confirmed the expected unreliability the two parametric non-linear regression method, which is the most frequently used method in radon diagnostic in the Czech Republic

  9. Fabrication and measurement of gas electron multiplier

    International Nuclear Information System (INIS)

    Zhang Minglong; Xia Yiben; Wang Linjun; Gu Beibei; Wang Lin; Yang Ying

    2005-01-01

    Gas electron multiplier (GEM) with special performance has been widely used in the field of radiation detectors. In this work, GEM film was fabricated using a 50 μm -thick kapton film by the therma evaporation and laser masking drilling technique. GEM film has many uniformly arrayed holes with a diameter of 100 μm and a gap of 223 μm. It was then set up to a gas-flowing detector with an effective area of 3 x 3 cm 2 , 5.9 keV X-ray generated from a 55 Fe source was used to measure the pulse height distribution of GEM operating at various high voltage and gas proportion. The effect of high potential and gas proportion on the count rate and the energy resolution was discussed in detail. The results indicate that GEM has a very high ratio of signal to noise and better energy resolution of 18.2%. (authors)

  10. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  11. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  12. Process Analytical Technology for High Shear Wet Granulation: Wet Mass Consistency Reported by In-Line Drag Flow Force Sensor Is Consistent With Powder Rheology Measured by At-Line FT4 Powder Rheometer.

    Science.gov (United States)

    Narang, Ajit S; Sheverev, Valery; Freeman, Tim; Both, Douglas; Stepaniuk, Vadim; Delancy, Michael; Millington-Smith, Doug; Macias, Kevin; Subramanian, Ganeshkumar

    2016-01-01

    Drag flow force (DFF) sensor that measures the force exerted by wet mass in a granulator on a thin cylindrical probe was shown as a promising process analytical technology for real-time in-line high-resolution monitoring of wet mass consistency during high shear wet granulation. Our previous studies indicated that this process analytical technology tool could be correlated to granulation end point established independently through drug product critical quality attributes. In this study, the measurements of flow force by a DFF sensor, taken during wet granulation of 3 placebo formulations with different binder content, are compared with concurrent at line FT4 Powder Rheometer characterization of wet granules collected at different time points of the processing. The wet mass consistency measured by the DFF sensor correlated well with the granulation's resistance to flow and interparticulate interactions as measured by FT4 Powder Rheometer. This indicated that the force pulse magnitude measured by the DFF sensor was indicative of fundamental material properties (e.g., shear viscosity and granule size/density), as they were changing during the granulation process. These studies indicate that DFF sensor can be a valuable tool for wet granulation formulation and process development and scale up, as well as for routine monitoring and control during manufacturing. Copyright © 2016. Published by Elsevier Inc.

  13. A gas thermometer for vapor pressure measurements

    Science.gov (United States)

    Rusin, A. D.

    2008-08-01

    The pressure of an inert gas over the range 400 1000 K was measured on a tensimetric unit with a quartz membrane pressure gauge of enhanced sensitivity. It was shown that a reactor with a membrane null gauge could be used as a gas thermometer. The experimental confidence pressure and temperature intervals were 0.07 torr and 0.1 K at a significance level of 0.05. A Pt-Pt/10% Rh thermocouple was calibrated; the results were approximated by a polynomial of degree five. The error in temperature calculations was 0.25 K.

  14. Rehabilitation Measures against radon gas entry

    International Nuclear Information System (INIS)

    Frutos Vazquez, Borja; Olaya Adan, Manuel; Esteban Saiz, Jose Luis

    2011-01-01

    Radon gas is a pathological agent for inhabitants of buildings where it is present. Due to its origin in uranium decay chain, it bears radioactive effects that inside human body lead to higher risks of developing lung cancer. It comes from soils containing granite masses or other substrates containing uranium. It enters through common material used in constructions, such as concrete ground slabs, basement walls, etc. In order to avoid such gas immission into inhabited rooms, several measurements cab be considered for existing buildings. This study intends to show the results obtained for radon reductions by means of different constructive solutions, already designed and executed so as to stop radon gas immission into a prototype building constructed for this specific purpose

  15. Haptic perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Daanen, H.A.M.; Kappers, A.M.L.

    2011-01-01

    The sensation of wetness is well-known but barely investigated. There are no specific wetness receptors in the skin, but the sensation is mediated by temperature and pressure perception. In our study, we have measured discrimination thresholds for the haptic perception of wetness of three di erent

  16. Wet/dry film thickness measurement of paint by absorption spectroscopy with acousto-optic tunable filter spectrometer

    Science.gov (United States)

    Sinha, Pranay G.; Xiong, Xiangchun; Jin, Feng; Trivedi, Sudhir; Prasad, Narashima S.

    2005-08-01

    Controlling/monitoring the thickness of applied paint in real time is important to many situations including painting ship and submarine hulls in dry docks for maintaining health of ships and submarines against the harshness of the sea, in automobile and aerospace industries, and in a variety of other industries as a control sensor that plays significant role in product quality, process control, and cost control. Insufficient thickness results to inadequate protection while overspray leads to waste and pollution of the environment. A rugged instrumentation for the real time non-contact accurate measurement of wet and dry paint film thickness measurement will be immensely valuable. As paint is applied with several layers of the same or different type, thickness of each newly sprayed wet layer is of most interest, but measurement on dry paint is also useful. In this study, we use acousto-optic tunable filter-based near infrared spectrometer to obtain the absorption spectrum of layers of paint sprayed on sand blasted steel surface and thus measure the thickness of coating under both wet and dry situations. NIR spectra are obtained from 1100 to 2300 nm on four sample of different thickness of paint up to 127 micron. Partial least squares model built with the spectra shows good correlation with standard error of prediction within ~ 0.7 micron. Results indicate that the spectra also respond to the amount of organic solvent in the wet paint and can be used to monitor the degree of dryness of the paint in real time.

  17. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO{sub 4}), calcium sulfite (CaSO{sub 3}), calcium carbonate (CaCO{sub 3}), calcium hydroxide [Ca(OH){sub 2}], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO{sub 4}2H{sub 2}O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments.

  18. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO 4 ), calcium sulfite (CaSO 3 ), calcium carbonate (CaCO 3 ), calcium hydroxide [Ca(OH) 2 ], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO 4 2H 2 O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments

  19. Gas exchange measurements in natural systems

    International Nuclear Information System (INIS)

    Broecker, W.S.; Peng, T.H.

    1983-01-01

    Direct knowledge of the rates of gas exchange in lakes and the ocean is based almost entirely on measurements of the isotopes 14 C, 222 Rn and 3 He. The distribution of natural radiocarbon has yielded the average rate of CO 2 exchange for the ocean and for several closed basin lakes. That of bomb produced radiocarbon has been used in the same systems. The 222 Rn to 226 Ra ratio in open ocean surface water has been used to give local short term gas exchange rates. The radon method generally cannot be used in lakes, rivers, estuaries or shelf areas because of the input of radon from sediments. A few attempts have been made to use the excess 3 He produced by decay of bomb produced tritium in lakes to give gas transfer rates. The uncertainty in the molecular diffusivity of helium and in the diffusivity dependence of the rate of gas transfer holds back the application of this method. A few attempts have been made to enrich the surface waters of small lakes with 226 Ra and 3 H in order to allow the use of the 222 Rn and 3 He methods. While these studies give broadly concordant results, many questions remain unanswered. The wind velocity dependence of gas exchange rate has yet to be established in field studies. The dependence of gas exchange rate on molecular diffusivity also remains in limbo. Finally, the degree of enhancement of CO 2 exchange through chemical reactions has been only partially explored. 49 references, 2 figures, 2 tables

  20. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    Science.gov (United States)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  1. Co-production of activated carbon, fuel-gas, and oil from the pyrolysis of corncob mixtures with wet and dried sewage sludge.

    Science.gov (United States)

    Shao, Linlin; Jiang, Wenbo; Feng, Li; Zhang, Liqiu

    2014-06-01

    This study explored the amount and composition of pyrolysis gas and oil derived from wet material or dried material during the preparation of sludge-corncob activated carbon, and evaluated the physicochemical and surface properties of the obtained two types of sludge-corncob-activated carbons. For wet material, owing to the presence of water, the yields of sludge-corncob activated carbon and the oil fraction slightly decreased while the yield of gases increased. The main pyrolysis gas compounds were H2 and CO2, and more H2 was released from wet material than dried material, whereas the opposite holds for CO2 Heterocyclics, nitriles, organic acids, and steroids were the major components of pyrolysis oil. Furthermore, the presence of water in wet material reduced the yield of polycyclic aromatic hydrocarbons from 6.76% to 5.43%. The yield of furfural, one of heterocyclics, increased sharply from 3.51% to 21.4%, which could be explained by the enhanced hydrolysis of corncob. In addition, the surface or chemical properties of the two sludge-corncob activated carbons were almost not affected by the moisture content of the raw material, although their mesopore volume and diameter were different. In addition, the adsorption capacities of the two sludge-corncob activated carbons towards Pb and nitrobenzene were nearly identical. © The Author(s) 2014.

  2. Continuous greenhouse gas measurements from ice cores

    DEFF Research Database (Denmark)

    Stowasser, Christopher

    Ice cores offer the unique possibility to study the history of past atmospheric greenhouse gases over the last 800,000 years, since past atmospheric air is trapped in bubbles in the ice. Since the 1950s, paleo-scientists have developed a variety of techniques to extract the trapped air from...... individual ice core samples, and to measure the mixing ratio of greenhouse gases such as carbon dioxide, methane and nitrous oxide in the extracted air. The discrete measurements have become highly accurate and reproducible, but require relatively large amounts of ice per measured species and are both time......-consuming and labor-intensive. This PhD thesis presents the development of a new method for measurements of greenhouse gas mixing ratios from ice cores based on a melting device of a continuous flow analysis (CFA) system. The coupling to a CFA melting device enables time-efficient measurements of high resolution...

  3. Description and testing of three moisture sensors for measuring surface wetness on carbonate building stones

    Science.gov (United States)

    See, R.B.; Reddy, M.M.; Martin, R.G.

    1988-01-01

    Three moisture sensors were tested as a means for determining the surface wetness on carbonate building stones exposed to conditions that produce deposition of moisture. A relative-humidity probe, a gypsum-coated circuit grid, and a limestone-block resistor were tested as sensors for determining surface wetness. Sensors were tested under laboratory conditions of constant relative humidity and temperature and also under on-site conditions of variable relative humidity and temperature for eight weeks at Newcomb, NY. Laboratory tests indicated that relative humidity alone did not cause sensors to become saturated with water. However, the rates of drying indicated by the sensors after an initial saturation were inversely related to the relative humidity. On-site testing of the relative-humidity probe and the gypsum-coated ciruit grid indicated that they respond to a diurnal wetting and drying cycle; the limestone-block resistor responded only to rainfall.

  4. Measurements of radon in soil gas

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine Nicolosi; Schelin, Hugo R.; Barbosa, Laercio; Sadula, Tatyana; Matsuzaki, Cristiana A.

    2009-01-01

    Full text: After the decades of systematic and numerous studies performed at different countries of the World, it has been concluded that radon as well as its progeny is the main cause of lung cancer. It is well known that more than 50% of the effective annual radiation dose received by a human being is related to the radon and its progenies. Among the principle mechanisms that bring the radon inside the dwelling is the soil exhalation as well as exhalation and release from the water. Radon concentration in the soil and its transport (emanation, diffusion, advection and adsorption) to the surface depends on different physical, geological and ambient parameters such as the geology of the area, geochemical composition of the soil, its porosity and permeability, grain size, soil humidity, bottom sediments and inputs from streams, temperature, atmospheric pressure, etc. Since the main part of indoor radon originates in the soil, the measurements of radon concentration in soil gas have to be considered as an important tool and indicator of probable high levels of radon inside the dwellings. Present work describes the radon in soil gas measurements performed during the last two years in cooperation between the Laboratory of Applied Nuclear Physics of the Federal University of Technology (UTFPR), the Nuclear Technology Development Center (CDTN) and the Institute of Radiation Protection and Dosimetry (IRD) from the Brazilian Nuclear Energy Commission (CNEN). Following previously concluded measurements of radon concentration in dwellings and the measurements of 222 Rn activity in drinking water collected at artesian bores of Curitiba urban area, present step of activities has been dedicated to measurements of radon concentration in soil gas. Experimental setup was based on the Professional Radon Monitor (ALPHA GUARD) connected to specially developed for such measurements Soil Gas Probe through the air pump and filter system. The equipment was adjusted with air flow of 0

  5. Corrosion in the wet-dry zone in a flue gas condenser; Korrosion i vaattorr zon i roekgaskondensor

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus; Roemhild, Stefanie; Bergman, Gunnar

    2008-06-15

    The corrosion resistance for a number of metallic and polymeric materials, in the environment of the inlet part of a flue gas condenser for a combustion plant, has been investigated. The combustion plants have been Igelstaverket and Bristaverket, for which the fuel has been mainly waste wood and biofuels, respectively. The materials were exposed in the dry and the wet zone, and also in the transfer zone in between. The metallic materials where stainless steels of the grades 17-10-2L, 2205, SAF2507 and 254SMO, all with a through weld joint, while the polymeric materials where fibre reinforced plastics (FRP) and glass-flake applied on carbon steel. The FRP materials had been formed partly by a traditional method and partly using new types of reinforcement materials, mainly based on carbon fibre, which where located in the surface layer. Also laminate with the special reinforcement of the type 3D-fabric was investigated. The investigation showed that all the metallic materials came off good under normal operating conditions when using biofuels, while 17-10-2L did not manage when using waste wood. The welds of 2205 showed a somewhat restricted corrosion resistance, otherwise being the best choice for waste wood plants when taking the material cost into consideration. FRP, as it seems, can be used successfully in the environments studied for combustion plants using biofuels. The results also indicate that the lifetime can be improved and the maintenance reduced by doing the correct choice of laminate structure and material compared to the laminates of the common type. The laminate structure, however, has to be adjusted to fulfil the demands given by the process environment. It should also further be pointed out that the good results for the flake coatings not necessarily would be the case for real use, where the walls are exposed to a temperature gradient. Finally, a conclusion, outside the initial purpose of the project, was that the addition of ammonium sulphate in

  6. Nondestructive fission gas release measurement and analysis

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Packard, D.R.

    1993-01-01

    Siemens Power Corporation (SPC) has performed reactor poolside gamma scanning measurements of fuel rods for fission gas release (FGR) detection for more than 10 yr. The measurement system has been previously described. Over the years, the data acquisition system, the method of spectrum analysis, and the means of reducing spectrum interference have been significantly improved. A personal computer (PC)-based multichannel analyzer (MCA) package is used to collect, display, and store high-resolution gamma-ray spectra measured in the fuel rod plenum. A PC spread sheet is used to fit the measured spectra and compute sample count rates after Compton background subtraction. A Zircaloy plenum spacer is often used to reduce positron annihilation interference that can arise from the INCONEL reg-sign plenum spring used in SPC-manufactured fuel rods

  7. Greenhouse gas measurements from aircraft during CARVE

    Science.gov (United States)

    Chang, R. Y.; Miller, C. E.; Dinardo, S. J.; Karion, A.; Sweeney, C.; Daube, B.; Pittman, J. V.; Miller, J. B.; Budney, J. W.; Gottlieb, E. W.; Santoni, G. W.; Kort, E. A.; Wofsy, S. C.

    2012-12-01

    Permafrost in the Arctic contain large carbon pools that are currently non-labile. As the polar regions warm, these carbon reserves can be released into the atmosphere and impact the greenhouse gas budget. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents aircraft measurements made as a part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) which flew over Alaska from May to September 2012 and captured seasonal and spatial variations. Results from in situ cavity ring down spectroscopy measurements of CO2, CH4 and CO will be discussed and compared with aircraft measurements made during the summer of 1988 as a part of the Arctic Boundary Layer Expedition as well as relevant measurements from the HIAPER Pole-to-Pole Observations experiments (2009-2011).

  8. Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra.

    Science.gov (United States)

    Boelman, Natalie T; Stieglitz, Marc; Rueth, Heather M; Sommerkorn, Martin; Griffin, Kevin L; Shaver, Gaius R; Gamon, John A

    2003-05-01

    This study explores the relationship between the normalized difference vegetation index (NDVI), aboveground plant biomass, and ecosystem C fluxes including gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem production. We measured NDVI across long-term experimental treatments in wet sedge tundra at the Toolik Lake LTER site, in northern Alaska. Over 13 years, N and P were applied in factorial experiments (N, P and N + P), air temperature was increased using greenhouses with and without N + P fertilizer, and light intensity (photosynthetically active photon flux density) was reduced by 50% using shade cloth. Within each treatment plot, NDVI, aboveground biomass and whole-system CO(2) flux measurements were made at the same sampling points during the peak-growing season of 2001. We found that across all treatments, NDVI is correlated with aboveground biomass ( r(2)=0.84), GEP ( r(2)=0.75) and ER ( r(2)=0.71), providing a basis for linking remotely sensed NDVI to aboveground biomass and ecosystem carbon flux.

  9. Optical properties of wet paper and simulation of the effect of autoprofiling on gas-fired IR drying

    Energy Technology Data Exchange (ETDEWEB)

    Ojala, K T; Lampinen, M J

    1991-01-01

    We have developed new models to determine the radiative heat transfer of gas-fired infrared dryers. A computer program based on the mathematical models is developed further. This program is used for studying the autoprofiling effect in gas-fired infrared drying. Optical properties of paper samples of different moisture contents as a function of wavelength are systematically measured by using FT-lR specrometer and integraing sphere techniques. These measurements covered the moisture content range of 6- 150 %. A new wavelength range (1.2- 1.9 mm), not properly covered by our earlier measurements, is measured by using a liquid nitrogen cooled detector. The total measured wavelength range is 1.0-20.0 mm. The moisture dependence of the optical properties of coating are calculated by using a theoretical model developed in State Research Centre of Finland, Laboratory of Optoelectronics. The radiation properties of component surfaces of the IR dryer were either measured or taken from literature. The mathematical models are based on the calculation of radiation energy balance between the main surfaces and layers in the dryer section. The energy efficiency can be calculated, when the temperatures of the radiator and the optical properties of all parts of the dryer are known. A computer program based on the models is developed further. The dryer efficiency as a function of the moisture content of paper is calculated. The extent of the autoprofiling effect in gas-fired IR drying is hereby achieved for light weight coated paper web. If the variation in moisture contents is high, the autoprofiling effect takes place and reduces the moisture variation. However, if the moisture variation is low, it is not a very significant phenomenon. The simulation results are compared to a pilot coater trial made in Cenre Technique du Papier, Grenoble.

  10. Improving respiration measurements with gas exchange analyzers.

    Science.gov (United States)

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO 2 differential (ΔCO 2 ) increased two-fold with no change in apparent R d , when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO 2 . Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO 2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Description of dedusting in wet flue gas scrubbers with purposeful utilization of the secondary dispersion; Detailliertere Simulation der Staubabscheidung in Nasswaeschern durch Beruecksichtigung der Sekundaerdispersion

    Energy Technology Data Exchange (ETDEWEB)

    Feldkamp, M.; Lessmann, B.; Neumann, J.; Fahlenkamp, H. [Dortmund Univ. (Germany). Lehrstuhl Umwelttechnik

    2003-07-01

    Modern wet gas scrubbers are used in the power plant technology for the flue gas desulphurisation of coal-fired plants. For this the washing liquid is sprayed by numerous nozzles. The specific arrangement of the nozzles in several levels makes it possible for the spray to penetrate mutually. The penetration and overlapping of the spray in the wet scrubber causes the effect of secondary dispersion. This effect can be used effectively to improve the efficiency of the atomisation and to improve the absorption of the pollution gases in a flue gas desulphurisation scrubber. Analyses show that the cleaning efficiency of a wet scrubber depends on the distribution and the size of the drops. (orig.) [German] Moderne Gaswaescher werden in der Kraftwerkstechnik fuer die Rauchgasentschwefelung kohlebefeuerter Anlagen eingesetzt. Hierzu wird Waschfluessigkeit mit Hilfe zahlreicher Duesen zerstaeubt. Eine gezielte Anordnung der Duesen in mehreren Spruehebenen ermoeglicht es den Sprays der Duesen, sich gegenseitig zu durchdringen. Der Effekt der Sekundaerdisperson, der beim Ueberschneiden und Durchdringen der Sprays waehrend der Zerstaeubung im Rauchgaswaescher auftritt, laesst sich wirksam zur Verbesserung des Wirkungsgrades einer Rauchgasentschwefelungsanlage nutzen. Durchgefuehrte Untersuchungen zeigen, dass die Reinigungsleistung eines nassen REA-Waeschers von der Verteilung und der Groesse der Tropfen abhaengt. (orig.)

  12. Measurement of the oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The present invention relates to processes for the recovery of uranium from wet-process phosphoric acid and more particularly to the oxidation-extraction steps in the DEPA-TOPO process for such recovery. A more efficient use of oxidant is obtained by monitoring the redox potential during the extraction step

  13. On the remote measurement of evaporation rates from bare wet soil under variable cloud cover

    Science.gov (United States)

    Auer, S.

    1976-01-01

    Evaporation rates from a natural wet soil surface are calculated from an energy balance equation at 0.1-hour intervals. A procedure is developed for calculating the heat flux through the soil surface from a harmonic analysis of the surface temperature curve. The evaporation integrated over an entire 24-hour period is compared with daily evaporation rates obtained from published models.

  14. BOREAS TE-11 Leaf Gas Exchange Measurements

    Science.gov (United States)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Saugier, Bernard; Pontailler, J. Y.

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-11 (Terrestrial Ecology) team collected several data sets in support of its efforts to characterize and interpret information on the sap flow, gas exchange, and lichen photosynthesis of boreal vegetation and meteorological data of the area studied. This data set contains measurements of assimilation and transpiration conducted at the Old Jack Pine (OJP) site during the growing seasons of 1993 and 1994. The data are stored in ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  15. A comparison of wet and dry season ozone and CO over Brazil using in situ and satellite measurements

    International Nuclear Information System (INIS)

    Watson, C.E.; Fishman, J.; Gregory, G.L.; Sachse, G.W.

    1991-01-01

    Several field experiments have measured the regional effects of biomass burning. Two such experiments, designed to understand the chemistry of the Amazon rainforest during both the wet season and dry season, were conducted in the Amazon Basin. The first experiment, ABLE-2A (Amazon Boundary Layer Experiment), took place from July to August 1985, the early dry season, when biomass burning was just beginning. The second experiment, ABLE-2B, took place during the wet season, from April to May 1987, when little biomass burning was occurring. Comparing ABLE ozone data with tropospheric ozone concentrations derived from satellite data, using the method described by Fishman et al., shows a strong correlation between the direct measurements and the derived ozone concentrations, as well as a direct correlation of both to biomass burning. This comparison gives credence to the use of space-based platforms to monitor global chemistry and, in this case, the regional effects of biomass burning

  16. Optical properties of wet paper and simulation of the effect of autoprofiling on gas-fired IR drying

    Energy Technology Data Exchange (ETDEWEB)

    Ojala, K T; Lampinen, M J [Helsinki University of Technology (FI)

    1991-12-01

    Mathematical models are developed to determine the radiative heat transfer of gas-fired infrared dryers. These models are based on the calculation of radiation energy balance between the main surfaces and layers in the dryer section. The energy efficiency can be calculated, when the temperatures of the radiator and the optical properties of all parts of the dryer are known. A computer program is used for studying the autoprofiling effect in gas-fired infrared drying. Optical properties of paper samples of different moisture contents as a function of wavelength are systematically measured by using FT-IR spectrometer and integrating sphere techniques. These measurements covered the moisture content range of 6-150%. The total measured wavelength range is 1.0-20.0 {mu}m. The moisture content of paper increases the absorptivity mainly in two wavelength ranges, i.e. 1.4-2.6 {mu}m and 3.75-6.0 {mu}m. In these ranges, the difference between the absorptivity of two sheets (dry weight 41.1 g/m{sup 2}, moisture contents 6.0% and 20.8%) is 5-10%. Outside these ranges, the difference is less than 5%. The radiation properties of component surfaces of the IR dryer were measured or taken from literature. The dryer efficiency as a function of the moisture content of paper is calculated. The extent of the autoprofilling effect in gas-fired IR drying is hereby achieved for light weight coated paper web. In one simulation, before the dryer, the moisture difference between two sheets was 5.0% (=20% - 15%). After the dryer, the moisture difference was reduced to 4.5%. If the variation in moisture contents is high, the autoprofilling effect takes place and reduces the moisture variaton. (AB).

  17. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    International Nuclear Information System (INIS)

    Angermann, Heike

    2014-01-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D it (E), and density D it,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on

  18. Measurement of the wetting profile in concrete samples with vertical water by gamma radiation transmission method

    International Nuclear Information System (INIS)

    Silva, L.M. da; Rocha, M.C. da; Appoloni, C.R.; Portezan Filho, O.; Lopes, F.; Melquiades, F.L.; Santos, E.A. dos; Santos, A.O. dos; Moreira, A.C.; Poetker, W.E.; Almeida, E. de; Tannous, C.Q.; Kuramoto, R.; Cavalcante, F.H. de M.; Barbieri, P.F.

    2000-01-01

    Samples of concrete for popular habitation (0,1x0,03x0,1 m) and cellular concrete (0,1x0,05x0,1 m) were submitted to water vertical ascending infiltration. The moisture content spatial and temporal evolution of each sample it was monitored in three halfway positions in a same horizontal line, applying the gamma rays transmission method. The data were taken with a 137 Cs (3,7x10 10 Bq, 0662 MeV) source, NaI (Tl) of 2x2' detector coupled to between wetting profiles and concrete strength. The cellular concrete showed a wetting profile compatible to its greater porosity. (author)

  19. Application of wet effluent diffusion denuder for measurement of uptake coefficient of gaseous pollutants

    Czech Academy of Sciences Publication Activity Database

    Motyka, K.; Mikuška, Pavel; Večeřa, Zbyněk

    2011-01-01

    Roč. 84, č. 2 (2011), s. 519-523 ISSN 0039-9140 R&D Projects: GA MŽP SP/1A3/148/08; GA MŽP SP/1A3/55/08; GA MŽP SP/1B7/189/07 Institutional research plan: CEZ:AV0Z40310501 Keywords : collection efficiency * wet effluent diffusion denuder * uptake coefficient Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.794, year: 2011

  20. Two methods to measure granular gas temperature

    Science.gov (United States)

    Chastaing, J.-Y.; Géminard, J.-C.; Naert, A.

    2017-07-01

    Grains are vibrated so as to achieve a granular gas, here regarded as an archetype of a dissipative non equilibrium steady state (NESS). We report on two distinct and concordant experimental measures of the system effective temperature. To do so, a blade fastened to the shaft of a small DC-motor, immersed in the grains, behaves as a driven 1D Brownian rotator, which is used as both actuator and sensor simultaneously. On the one hand, the Gallavotti-Cohen fluctuation theorem, which involves a measure of the asymmetry of the energy exchanges between the rotator and the NESS reservoir, provides a first effective temperature. On the other hand, the fluctuation-dissipation theorem, which involves the relation between the spontaneous fluctuations and the response to a weak perturbation, defines a second, independent, effective temperature. Both methods, even though they are based on drastically different ideas, give nicely concordant results.

  1. Tropospheric profiles of wet refractivity and humidity from the combination of remote sensing data sets and measurements on the ground

    Directory of Open Access Journals (Sweden)

    F. Hurter

    2013-11-01

    Full Text Available We reconstruct atmospheric wet refractivity profiles for the western part of Switzerland with a least-squares collocation approach from data sets of (a zenith path delays that are a byproduct of the GPS (global positioning system processing, (b ground meteorological measurements, (c wet refractivity profiles from radio occultations whose tangent points lie within the study area, and (d radiosonde measurements. Wet refractivity is a parameter partly describing the propagation of electromagnetic waves and depends on the atmospheric parameters temperature and water vapour pressure. In addition, we have measurements of a lower V-band microwave radiometer at Payerne. It delivers temperature profiles at high temporal resolution, especially in the range from ground to 3000 m a.g.l., though vertical information content decreases with height. The temperature profiles together with the collocated wet refractivity profiles provide near-continuous dew point temperature or relative humidity profiles at Payerne for the study period from 2009 to 2011. In the validation of the humidity profiles, we adopt a two-step procedure. We first investigate the reconstruction quality of the wet refractivity profiles at the location of Payerne by comparing them to wet refractivity profiles computed from radiosonde profiles available for that location. We also assess the individual contributions of the data sets to the reconstruction quality and demonstrate a clear benefit from the data combination. Secondly, the accuracy of the conversion from wet refractivity to dew point temperature and relative humidity profiles with the radiometer temperature profiles is examined, comparing them also to radiosonde profiles. For the least-squares collocation solution combining GPS and ground meteorological measurements, we achieve the following error figures with respect to the radiosonde reference: maximum median offset of relative refractivity error is −16% and quartiles are 5% to

  2. Measurements and modeling to quantify emissions of methane and VOCs from shale gas operations: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Presto, Albert A [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-30

    The objectives of the project were to determine the leakage rates of methane and ozone-forming Volatile Organic Compounds (VOCs) and the emission rates of air toxics from Marcellus shale gas activities. Methane emissions in the Marcellus Shale region were differentiated between “newer” sources associated with shale gas development and “older” sources associated with coal or conventional natural gas exploration. This project conducted measurements of methane and VOC emissions from both shale and non-shale natural gas resources. The initial scope of the project was the Marcellus Shale basin, and measurements were conducted in both the western wet gas regions (southwest PA and WV) and eastern dry gas region (northeast PA) of the basin. During this project, we obtained additional funding from other agencies to expand the scope of measurements to include additional basins. The data from both the Marcellus and other basins were combined to construct a national analysis of methane emissions from oil & gas production activities.

  3. Method of measuring density of gas in a vessel

    International Nuclear Information System (INIS)

    Shono, Kosuke.

    1981-01-01

    Purpose: To accurately measure the density of a gas in a vessel even at a loss-of-coolant accident in a BWR type reactor. Method: When at least one of the pressure or the temperature of gas in a vessel exceeds the usable range of a gas density measuring instrument due to a loss-of-coolant accident, the gas in the vessel is sampled, and the pressure or the temperature of the sampled gas are measured by matching them to the usable conditions of the gas density measuring instrument. Hydrogen gas and oxygen gas densities exceeding the usable range of the gas density measuring instrument are calculated by the following formulae based on the measured values. C'sub(O) = P sub(T).C sub(O)/P sub(T), C'sub(H) = C''sub(H).C'sub(O)/C''sub(O), where C sub(O), P sub(T), C'sub(H) represent the oxygen density, the total pressure and the hydrogen density of the internal pressure gas of the vessel after the respective gas density measuring instruments exceed the usable ranges; C sub(O), P sub(T) represent the oxygen density and the total pressure of the gas in the vessel before the gas density measuring instruments exceeded the usable range, and C''sub(H), C''sub(O) represent the hydrogen density and oxygen density of the respective sampled gases. (Kamimura, M.)

  4. Experimental research on influencing factors of wet removal of NO from coal-fired flue gas by UV/H2O2 advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Wet removal of NO from coal-fired flue gas by UV/H2O2 Advanced Oxidation Process (AOP) were investigated in a self-designed UV-bubble reactor. Several main influencing factors (UV intensity, H2O2 initial concentration, initial pH value, solution temperature, NO initial concentration, liquid-gas ratio and O2 percentage content) on the NO removal efficiency were studied. The results showed that UV intensity, H2O2 initial concentration, NO initial concentration and liquid-gas ratio are the main influencing factors. In the best conditions, the highest NO removal efficiency by UV/H2O2 advanced oxidation process could reach 82.9%. Based on the experimental study, the influencing mechanism of the relevant influencing factors were discussed in depth.

  5. Quantitative Analysis of Oxygen Gas Exhausted from Anode through In Situ Measurement during Electrolytic Reduction

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2017-01-01

    Full Text Available Quantitative analysis by in situ measurement of oxygen gas evolved from an anode was employed to monitor the progress of electrolytic reduction of simulated oxide fuel in a molten Li2O–LiCl salt. The electrolytic reduction of 0.6 kg of simulated oxide fuel was performed in 5 kg of 1.5 wt.% Li2O–LiCl molten salt at 650°C. Porous cylindrical pellets of simulated oxide fuel were used as the cathode by loading a stainless steel wire mesh cathode basket. A platinum plate was employed as the anode. The oxygen gas evolved from the anode was exhausted to the instrumentation for in situ measurement during electrolytic reduction. The instrumentation consisted of a mass flow controller, pump, wet gas meter, and oxygen gas sensor. The oxygen gas was successfully measured using the instrumentation in real time. The measured volume of the oxygen gas was comparable to the theoretically calculated volume generated by the charge applied to the simulated oxide fuel.

  6. DEM Study of Wet Cohesive Particles in the Presence of Liquid Bridges in a Gas Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Yurong He

    2014-01-01

    Full Text Available A modified discrete element method (DEM was constructed by compositing an additional liquid-bridge module into the traditional soft-sphere interaction model. Simulations of particles with and without liquid bridges are conducted in a bubbling fluidized bed. The geometry of the simulated bed is the same as the one in Müller’s experiment (Müller et al., 2008. A comparison between the dry and the wet particular systems is carried out on the bubble behavior, the bed fluctuation, and the mixing process. The bubble in the dry system possesses a regular round shape and falling of scattered particles exists while the bubble boundary of the wet particles becomes rough with branches of agglomerates stretching into it. The mixing of the dry system is quicker than that of the wet system. Several interparticle liquid contents are applied in this work to find their influence on the kinetic characteristic of the wet particle flow. With an increase of liquid content, the mixing process costs more time to be completed. Symmetrical profiles of the velocity and granular temperature are found for two low liquid contents (0.001% and 0.01%, while it is antisymmetrical for the highest liquid content (0.1%.

  7. Measuring and controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bourrier, Herve; LAFONT, Bruno; Fischer, Severin; Leonard, Damien; Tutenuit, Claire

    2011-05-01

    As providing a reporting of their greenhouse gas emissions has become mandatory for a large number of French companies, this publication proposes a methodology to perform an assessment or measurement, and a control of such emissions. In its first part, it explains why measurements are required: indication of concerned gases, international consensus to limit temperature rise, definition and chronology of the main steps adopted at the international level and which must be considered in the approach adopted by enterprises in this respect. It outlines the benefits of such a measurement for the enterprise in terms of competitiveness, personnel commitment, new markets and products, image, compliance with the law, operational and financial aspects, and so on. It identifies the various stakeholders to be informed: civil society, financial community, public authorities, clients and consumers, personnel, suppliers. It outlines the diversity and evolution of legal frameworks at the international level as well as at national levels. While evoking many examples of French companies (SNCF, EDF, Seche Environnement, RTE, Michelin, Arcelormittal, AREVA, Air France, EADS-Airbus, AXA, Veolia, and so on), the next part addresses how to measure emissions. It outlines the complexity of the methodological landscape with its various criteria, evokes the various existing standards, outlines the distinction between organisation-based, product-based and project-based approaches, and the distinction between direct and indirect emissions in relationship with the notion of scope. It comments the existence of sector-based methodologies and guidelines, and discusses some difficulties and methodological decisions. The third part proposes some lessons learned from the experience which could lead to a harmonisation of methodologies, proposes a synthesis of reporting approaches, outlines risks and opportunities related to communication

  8. Measurement of lead compound in stack gas

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y; Hori, M; Tanikawa, N

    1979-01-01

    The concentration and particle-size distribution of lead compounds in the exhaust gas from various stationary sources are examined. The stationary sources concern lead production from battery scraps, lead smelting of cable mold, steel production from iron scraps, plastic combustion furnace, and a heavy oil boiler. A lead concentration of 0.2-100 mg/cu m in exhaust gas is detected. Furthermore, exhaust gas lead compounds are affected by the raw materials used.

  9. A gas turbine diagnostic approach with transient measurements.

    OpenAIRE

    Li, Y. G.

    2003-01-01

    Most gas turbine performance analysis based diagnostic methods use the information from steady state measurements. Unfortunately, steady state measurement may not be obtained easily in some situations, and some types of gas turbine fault contribute little to performance deviation at steady state operating conditions but significantly during transient processes. Therefore, gas turbine diagnostics with transient measurement is superior to that with steady state measurement. In this paper, an ac...

  10. A Field Assessment of a Prototype Meter for Measuring the Wet-Bulb Globe-Thermometer Index

    Science.gov (United States)

    Walters, J. D.

    1968-01-01

    A prototype electronic instrument for the direct measurement of the wet-bulb globe-thermometer index is described. An assessment is made of its accuracy, as compared with W.B.G.T. indices calculated from conventional thermometric data, and a comparison is made between W.B.G.T. values read from the meter and effective or corrected effective temperatures derived from separate thermometric and air velocity recording instruments in the same climates. The instrument proved to be reliable and accurate over a wide range of climates and is a useful self-contained device for use in habitability surveys and similar investigations. Images PMID:5663429

  11. Express method and radon gas measurement detector

    International Nuclear Information System (INIS)

    Khajdarov, R.A.; Khajdarov, R.R.

    2004-01-01

    The purpose of this work was to improve the activated charcoal adsorption method. The detector consisted of an electronic unit (200 mm x 180 mm x 80 mm) and a scintillation cell (a tube 200 mm long, 60 mm diam.). The electronic unit contained a power supply, amplifier, discriminator, timer, counter and indicator. The scintillation cell contained a zinc sulfide scintillator, photomultiplier, preamplifier, high voltage power supply and a 200 ml chamber above the scintillator. This chamber was intended to situate activated carbon fibrous absorber and air compressor. In this method, air is drawn through a filter to remove radon decay products and then through the activated carbon cloth by using a compressor. Sampling takes between 5 and 15 minutes. After the sampling, the cloth is heated for 5-10 sec up to 200-250 deg C by electric current passing through the fiber. Radon gas evaporates from the cloth and the device detects scintillation pulses. Owing to a high radon preconcentration factor (by adsorption of radon on the activated carbon cloth from 50-150 L of air of and evaporation into the small volume of the chamber), the detection limit of the method is 2-4 Bq/m 3 . Since the distance between the filter, cloth and scintillator is over 80 mm, the detector only measures radiation from radon without interference from the radon decay products, remaining in the filter and cloth

  12. Electronegative Gas Thruster - Direct Thrust Measurement Project

    Science.gov (United States)

    Dankanich, John (Principal Investigator); Aanesland, Ane; Polzin, Kurt; Walker, Mitchell

    2015-01-01

    This effort is an international collaboration and academic partnership to mature an innovative electric propulsion (EP) thruster concept to TRL 3 through direct thrust measurement. The initial target application is for Small Satellites, but can be extended to higher power. The Plasma propulsion with Electronegative GASES (PEGASES) concept simplifies ion thruster operation, eliminates a neutralizer requirement and should yield longer life capabilities and lower cost implementation over conventional gridded ion engines. The basic proof-of concept has been demonstrated and matured to TRL 2 over the past several years by researchers at the Laboratoire de Physique des Plasma in France. Due to the low maturity of the innovation, there are currently no domestic investments in electronegative gas thrusters anywhere within NASA, industry or academia. The end product of this Center Innovation Fund (CIF) project will be a validation of the proof-of-concept, maturation to TRL 3 and technology assessment report to summarize the potential for the PEGASES concept to supplant the incumbent technology. Information exchange with the foreign national will be one-way with the exception of the test results. Those test results will first go through a standard public release ITAR/export control review, and the results will be presented in a public technical forum, and the results will be presented in a public technical forum.

  13. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, Heike, E-mail: angermann@helmholtz-berlin.de

    2014-09-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D{sub it}(E), and density D{sub it,min} of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly

  14. Full scale calcium bromide injection with subsequent mercury oxidation and removal within wet flue gas desulphurization system: Experience at a 700 MW coal-fired power facility

    Science.gov (United States)

    Berry, Mark Simpson

    The Environmental Protection Agency promulgated the Mercury and Air Toxics Standards rule, which requires that existing power plants reduce mercury emissions to meet an emission rate of 1.2 lb/TBtu on a 30-day rolling average and that new plants meet a 0.0002 lb/GWHr emission rate. This translates to mercury removals greater than 90% for existing units and greater than 99% for new units. Current state-of-the-art technology for the control of mercury emissions uses activated carbon injected upstream of a fabric filter, a costly proposition. For example, a fabric filter, if not already available, would require a 200M capital investment for a 700 MW size unit. A lower-cost option involves the injection of activated carbon into an existing cold-side electrostatic precipitator. Both options would incur the cost of activated carbon, upwards of 3M per year. The combination of selective catalytic reduction (SCR) reactors and wet flue gas desulphurization (wet FGD) systems have demonstrated the ability to substantially reduce mercury emissions, especially at units that burn coals containing sufficient halogens. Halogens are necessary for transforming elemental mercury to oxidized mercury, which is water-soluble. Plants burning halogen-deficient coals such as Power River Basin (PRB) coals currently have no alternative but to install activated carbon-based approaches to control mercury emissions. This research consisted of investigating calcium bromide addition onto PRB coal as a method of increasing flue gas halogen concentration. The treated coal was combusted in a 700 MW boiler and the subsequent treated flue gas was introduced into a wet FGD. Short-term parametric and an 83-day longer-term tests were completed to determine the ability of calcium bromine to oxidize mercury and to study the removal of the mercury in a wet FGD. The research goal was to show that calcium bromine addition to PRB coal was a viable approach for meeting the Mercury and Air Toxics Standards rule

  15. Measuring Compartment Size and Gas Solubility in Marine Mammals

    Science.gov (United States)

    2015-09-30

    bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Measuring Compartment Size and Gas Solubility in Marine...is to develop methods to estimate marine mamal tissue compartment sizes, and tissue gas solubility. We aim to improve the data available for the

  16. A method to measure the thermal-physical parameter of gas hydrate in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Diao, S.B.; Ye, Y.G.; Yue, Y.J.; Zhang, J.; Chen, Q.; Hu, G.W. [Qingdao Inst. of Marine Geology, Qingdao (China)

    2008-07-01

    It is important to explore and make good use of gas hydrates through the examination of the thermal-physical parameters of sediment. This paper presented a new type of simulation experiment using a device that was designed based on the theories of time domain reflection and transient hot wire method. A series of investigations were performed using this new device. The paper described the experiment, with reference to the experiment device and materials and method. It also presented the results of thermal physical properties; result of the thermal conductivity of water, dry sand and wet sand; and results of wet sand under various pressures. The time domain reflection (TDR) method was utilized to monitor the saturation of the hydrates. Both parallel hot-wire method and cross hot-wire method were utilized to measure the thermal conductivity of the gas hydrate in porous media. A TDR sensor which was equipped with both cross hot-wire probe and parallel hot-wire probe was developed in order to measure the cell temperature with these two methods at one time. It was concluded that the TDR probe could be taken as an online measurement skill in investigating the hydrate thermal physical property in porous media. The TDR sensor could monitor the hydrate formation process and the parallel hot-wire method and cross hot-wire method could effectively measure the thermal physical properties of the hydrates in porous media. 10 refs., 7 figs.

  17. Gas Temperature Measurement in a Glow Discharge Plasma

    Science.gov (United States)

    Sloneker, Kenneth; Podder, Nirmol; McCurdy, William E.; Shi, Shi

    2009-10-01

    In this study a relatively inexpensive quartz protected thermocouple is used to measure the gas temperature in the positive column of a glow discharge plasma. For simplicity a K-type thermocouple is used to interpret the gas temperature from the sensor voltage at pressures from 0.5 Torr to 15 Torr and discharge currents from 5 mA to 120 mA. Gas temperature is investigated as a function of the gas pressure at fixed discharge currents and as a function of discharge current at fixed gas pressures in three different gas species (Ar, N2, and He). An infinite cylinder model is used to compute the average gas temperature of the discharge from joule heating and gas thermal conductivity. The model and measurement data agree within 1% to 10% depending on plasma parameters. Data for all three gases have a similar quasi-linear increasing error as compared to the model.

  18. Remote flammable gas detection/measuring device.

    CSIR Research Space (South Africa)

    Kononov, VA

    1999-11-01

    Full Text Available This research report presents the results of an evaluation of the existing open path remote flammable gas detection/monitoring technology and provides recommendations on possible limited implementation of this technology and future development...

  19. Energy Conservation Alternatives Study (ECAS): Conceptual Design and Implementation Assessment of a Utility Steam Plant with Conventional Furnace and Wet Lime Stack Gas Scrubbers

    Science.gov (United States)

    Brown, Dale H.

    1976-01-01

    A study was performed to estimate the technical/economic characteristics of a steam power plant (3500 pounds per square inch gauge, 1000 degrees Fahrenheit / 1000 degrees Fahrenheit) with a coal-burning radiant furnace and a wet lime stack gas scrubber to control sulfur emissions. Particulate emissions were controlled by an electrostatic precipitator operating at 300 degrees Fahrenheit. The stack gas from the scrubber was reheated from 125 degrees Fahrenheit to 250 degrees Fahrenheit as a base case, and from 125 degrees Fahrenheit to 175 degrees Fahrenheit as an alternate case. The study was performed on a basis consistent with the General Electric ECAS Phase II evaluation of advanced energy conversion systems for electric utility baseload applications using coal or coal-derived fuels. A conceptual design of the power plant was developed, including the on-site calcination of limestone to lime and the provision of sludge ponds to store the products of flue gas scrubbing. From this design, estimates were derived for power plant efficiency, capital cost, environmental intrusion characteristics, natural resource requirements, and cost of electricity at an assumed capacity factor of 65 percent. An implementation assessment was performed where factors affecting applicability of the conceptual design power plant in electric utility generation systems were appraised. At 250 degrees Fahrenheit and 175 degrees Fahrenheit stack gas temperatures respectively, the plants showed a cost of electricity of 39.8 and 37.0 mills per kilowatt-hours and overall plant efficiencies of 32 percent and 34 percent.

  20. PNNL Report on the Development of Bench-scale CFD Simulations for Gas Absorption across a Wetted Wall Column

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Xu, Zhijie; Lai, Canhai; Whyatt, Greg A.; Marcy, Peter; Gattiker, J. R.; Sun, Xin

    2016-05-01

    This report is prepared for the demonstration of hierarchical prediction of carbon capture efficiency of a solvent-based absorption column. A computational fluid dynamics (CFD) model is first developed to simulate the core phenomena of solvent-based carbon capture, i.e., the CO2 physical absorption and chemical reaction, on a simplified geometry of wetted wall column (WWC) at bench scale. Aqueous solutions of ethanolamine (MEA) are commonly selected as a CO2 stream scrubbing liquid. CO2 is captured by both physical and chemical absorption using highly CO2 soluble and reactive solvent, MEA, during the scrubbing process. In order to provide confidence bound on the computational predictions of this complex engineering system, a hierarchical calibration and validation framework is proposed. The overall goal of this effort is to provide a mechanism-based predictive framework with confidence bound for overall mass transfer coefficient of the wetted wall column (WWC) with statistical analyses of the corresponding WWC experiments with increasing physical complexity.

  1. Effects of restoration measures on plant communities of wet heathland ecosystems

    NARCIS (Netherlands)

    Jansen, AJM; Fresco, LFM; Grootjans, AP; Jalink, Mark H.; Rapson, G.

    2004-01-01

    Question: Which are the success and failure of restoration measures, particularly sod-cutting and hydrological measures, in small wetlands on mineral soils in The Netherlands. Location: Twente. in the eastern part of The Netherlands. Methods: Success or failure of restoration measures has been

  2. Effects of restoration measures on plant communities of wet heathland ecosystems

    NARCIS (Netherlands)

    Jansen, AJM; Fresco, LFM; Grootjans, AP; Jalink, Mark H.; Rapson, G.

    Question: Which are the success and failure of restoration measures, particularly sod-cutting and hydrological measures, in small wetlands on mineral soils in The Netherlands. Location: Twente. in the eastern part of The Netherlands. Methods: Success or failure of restoration measures has been

  3. Effects of restoration measures on plant communities of wet heathland ecosystems

    NARCIS (Netherlands)

    Jansen, A.J.M.; Fresco, L.F.M.; Grootjans, A.P.; Jalink, M.H.

    2004-01-01

    Question: Which are the success and failure of restoration measures, particularly sod-cutting and hydrological measures, in small wetlands on mineral soils in The Netherlands. Location: Twente, in the eastern part of The Netherlands. Methods: Success or failure of restoration measures has been

  4. The production of hydrogen-rich gas by wet sludge pyrolysis using waste heat from blast-furnace slag

    International Nuclear Information System (INIS)

    Luo, Siyi; Feng, Yu

    2016-01-01

    Blast furnace (BF) slag, a byproduct of steelmaking industry, contains a large amount of sensible heat and is composed of some metal oxides, which exhibits preferable catalytic performance in improving tar cracking and C_nH_m reforming. This paper presents a heat recovery system from the heat of BF slag, which generates hydrogen-rich gas via the endothermic reactions of sludge pyrolysis. The effects of various parameters including the slag temperature, the mass ratio of slag to sludge (B/S), particle size and feed moisture on product yields and gas characteristics were evaluated separately. It was found that the pyrolysis products distribution was significantly influenced by the BF slag temperature. The differences resulting from varying B/S practically disappear as higher temperature heat carrier is approached. The optimum feed moisture was in favour of sludge pyrolysis by getting char and tar participate in gasification reactions, improving gas yield and quality. BF slag as catalyst can greatly increase H_2 and CO contents of gas by improving tar degradation and reforming of biogas (CO_2 and CH_4). Decreasing the slag particles size was helpful to sludge primary pyrolysis to produce more light gases, less char and condensate, while its effects on gas compositions was not evident. - Highlights: • The sensible heat of molten slag was recovered and converted into combustible gas. • A novel rotary pyrolysis reactor using BF slag as heat carrier was presented. • The moisture in sludge was used as the gasification medium and hydrogen source.

  5. Alpha radiation gauge for the measurement of gas density

    International Nuclear Information System (INIS)

    Lech, M.

    1977-01-01

    Alpha gauge for the measurement of gas density with thick alfa source, has been developed. The gauge is based on radiation transmission through a space filled with gas and total-count principle. Air density can be measured in the range 1,2 - 1,27 kg m -3 with a maximum standard deviation of 2 x 10 -3 kg m -3 . (author)

  6. Contact angles of water-repellent porous media inferred by tensiometer - TDR probe measurement under controlled wetting and drying cycles

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Kawamoto, Ken; Komatsu, Toshiko

    2013-01-01

    with water, eventually allowing water imbibition. However, the effect of the reduction in CA with soil-water contact time on the water retention function of hydrophobic media is not yet fully understood. In this study, water retention characteristics were measured using a hanging water column apparatus...... retention curves. For both water-repellent VAS and hydrophobized sand samples, the calculated CA–SWRC increased with increasing WR. This was determined from both the water drop penetration time and the initial contact angle (CAi) by the sessile drop method. Calculated CA–SWRC values ranged from 20° to 48......-filled pore distributions under controlled wetting and drying cycles was found on calculating the soil water capacity and pore size density as a function of water potential....

  7. Prediction of mineral scale formation in wet gas condensate pipelines and in MEG (mono ethylene glycol) regeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Sandengen, Kristian

    2006-12-20

    Gas hydrate formation is a serious problem in the oil and gas industry, since its formation can plug wells and prevent production. The gas hydrate is a crystalline solid with a natural gas molecule surrounded by a cage of water molecules. It forms at high pressures and low temperatures. This is a problem for offshore gas wells, where the temperature is low in transport lines from well to the production facilities. Mono Ethylene Glycol (MEG) is commonly used as hydrate inhibitor. Classified as a thermodynamic inhibitor, this additive functions just as antifreeze in an automotive radiator. When producing oil and gas there will in most cases also be produced some water, which can contain dissolved salts. These salts may precipitate and they tend to deposit on surfaces. Deposition of inorganic minerals from brine is called scale. Generally MEG has the adverse effect of lowering the solubility of most salts. A common method to prevent corrosion in flow lines is to increase pH by adding basic agents (e.g. NaOH, NaHCO{sub 3}) to the MEG stream. In such cases, carbonate salts are particularly troublesome since an increase in pH by one unit, will reduce the solubility by two orders of magnitude. Thus there will be a trade off between good corrosion protection (high pH) and scale control (low pH). The aim of this work has been to develop a model that can predict mineral solubility in the presence of MEG. Experimental solubility data, together with thermodynamic data taken from literature, have been utilized to construct empirical functions for the influence of MEG on mineral scale formation. These functions enabled the expansion of an already existing aqueous scale model into a model valid for water+MEG mixed solutions. The aqueous scale model combines an equation of state (gas+oil phase) with the Pitzer ion interaction model (water phase) to describe the multiphase behaviour of gas-oil-water systems. This work summarizes the theoretical foundation and proposes how to work

  8. Understanding the formation process of the liquid slug in a hilly-terrain wet natural gas pipeline

    DEFF Research Database (Denmark)

    Yang, Yan; Li, Jingbo; Wang, Shuli

    2017-01-01

    condition on the liquid slug formation is discussed including pipe diameter, inclination angle, gas superficial velocity and liquid holdup. The results show that the pipe is blocked by the liquid slug at the moment of slug formed. The pipe pressure suddenly increases, and then decreases gradually...... in the process of liquid slug formation and motion. The pipe pressure drop and liquid holdup decrease along with the increasing inclination angle of ascending pipe. On the contrary, they rise with the increase of the inclination angle of descending pipe. Higher gas superficial velocity and liquid holdup result...

  9. Wet-gas transport in the Mediterranean Sea. Selection of a combined kinetic hydrate/corrosion inhibitor system

    Energy Technology Data Exchange (ETDEWEB)

    Zettlitzer, M. [RWE Dea AG, Wietze (Germany); Rozengard, N.; Koeckritz, V. [Technical Univ. Freiberg (Germany); Malt, E. [RWE Dea AG (Egypt)

    2007-09-13

    Raw gas will be collected on a platform in the centre of the field. Due to volume and weight constraints, condensing fluids will not be separated from the gas on the platform so that the raw gas will be transported in three-phase mode (gas, water, and condensate) via a 33 km long pipeline to a gas treatment plant. Under the calculated pipeline pressure of about 100 barg, hydrate formation is - according to the outcome of thermodynamic simulations - to be expected at temperatures of 19 C and below while the pipeline may cool down to about 15 C in winter conditions. Due to logistical, environmental and economic reasons, RWE Dea decided to inhibit hydrate formation with kinetic hydrate inhibitors (KHI). As the gas also contains carbon dioxide, certain corrosivity was forecasted and addition of a corrosion inhibitor turned out to be necessary. Laboratory tests were carried out to confirm the feasibility of the concept and to define the required dosage of KHI. Service companies were contacted and several kinetic hydrate and corrosion inhibitors were screened. Experiments with the different chemicals were performed at the University of Freiberg in a high-pressure cell at the pipeline pressure of 100 barg. Hydrate formation was detected by continuous pressure registration during temperature changes and by observation through a glass window. In order to preselect the chemicals, first tests were performed with pure methane. These tests also served for calibration of the equipment with literature data and especially as an indication for the minimum chemical concentration required. A second test series was performed with synthetic gas in a composition close to that of the field gas under consideration in order to verify the results obtained with methane. Finally, the optimum kinetic hydrate inhibitor was identified as well as the required dosage concentration. Compatibility of KHI and corrosion inhibitor was experimentally proven. A further set of kinetic inhibitor tests with

  10. SAFARI 2000 BVOC Measurements at Skukuza and Maun Flux Towers, Wet Season 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — Biogenic volatile organic compound (BVOC) emissions were measured in a Colophospermum mopane woodland near Maun, Botswana, and in a Combretum-Acacia savanna in...

  11. SAFARI 2000 BVOC Measurements at Skukuza and Maun Flux Towers, Wet Season 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Biogenic volatile organic compound (BVOC) emissions were measured in a Colophospermum mopane woodland near Maun, Botswana, and in a Combretum-Acacia...

  12. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    Science.gov (United States)

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  13. Measurement and analysis of the re-wetting front velocity during quench cooling of hot horizontal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Takrouri, Kifah, E-mail: takroukj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Luxat, John, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Hamed, Mohamed [Thermal Processing Laboratory (TPL), Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada)

    2017-01-15

    Highlights: • Two phase flow & re-wetting front velocity were studied for quench of hot tubes. • The velocity decreased as temperature difference between tube and coolant decreased. • Increasing surface curvature was found to decrease the re-wetting front velocity. • Increasing tube thermal conductivity decreased the velocity. • Correlations were developed to predict the front velocity. - Abstract: When a liquid is put into contact with a hot dry surface, there exists a maximum temperature called the re-wetting temperature below which the liquid is in actual contact with the surface. Re-wetting occurs after destabilization of a vapor film that exists between the hot surface and the liquid. If re-wetting is established at a location on the hot surface, a wet patch appears at that location and starts to spread to cover and cool the entire surface. The outer edge of the wet patch is called the re-wetting front and can proceed only if the surface ahead of it cools down to the re-wetting temperature. Study of re-wetting heat transfer is very important in nuclear reactor safety for limiting the extent of core damage during the early stages of severe accidents after loss of coolant accidents LOCA and is essential for predicting the rate at which the coolant cools an overheated core. One of the important parameters in re-wetting cooling is the velocity at which the re-wetting front moves on the surface. In this study, experimental tests were carried out to investigate the re-wetting front velocity on hot horizontal cylindrical tubes being cooled by a vertical rectangular water multi-jet system. Effects of initial surface temperature in the range 400–740 °C, water subcooling in the range 15–80 °C and jet velocity in the range 0.17–1.43 m/s on the re-wetting front velocity were investigated. The two-phase flow behavior was observed by using a high-speed camera. The re-wetting front velocity was found to increase by increasing water subcooling, decreasing

  14. Ionization chamber for measurements of high-level tritium gas

    International Nuclear Information System (INIS)

    Carstens, D.H.W.; David, W.R.

    1980-01-01

    The construction and calibration of a simple ionization-chamber apparatus for measurement of high level tritium gas is described. The apparatus uses an easily constructed but rugged chamber containing the unknown gas and an inexpensive digital multimeter for measuring the ion current. The equipment after calibration is suitable for measuring 0.01 to 100% tritium gas in hydrogen-helium mixes with an accuracy of a few percent. At both the high and low limits of measurements deviations from the predicted theoretical current are observed. These are briefly discussed

  15. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...... and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good...... agreement with thermocouple readings. Gas lines and bands from CO, CO2 and H2O can be observed in the spectra. CO was only observed at the first measuring port (100ms) with the strongest CO-signal seen during experiments with straw particles. Variations in gas concentration (CO2 and H2O) and the signal from...

  16. Gage for gas flow measurement especially in gas-suction pipes

    International Nuclear Information System (INIS)

    Renner, K.; Stegmanns, W.

    1978-01-01

    The gage utilizes the differential pressure given by a differential pressure producer to generate, in a bypass, a partial gas flow measured by means of a direct-reading anemometer of windmill type. The partial gas flow is generated between pressure pick-up openings in the gas-suction pipe in front of a venturi insert and pressure pick-up openings at the bottleneck of the venturi insert. The reading of the anemometer is proportional to the main gas flow and independent of the variables of state and the properties of the gases to be measured. (RW) [de

  17. Device for measurement of gas mass flow. Einrichtung zur Gasmassenstrommessung

    Energy Technology Data Exchange (ETDEWEB)

    Sass, W

    1989-09-28

    The invention is concerned with a device for the measurement of gas mass flow, particularly measuring air mass flow for vehicles with internal combustion engines, with a measurement bridge, in one branch of which a gas flow resistance, particularly a hot film sensor, with gas flowing round it, is connected in series with a measurement resistance and in another branch of which a compensation resistance measuring the gas temperature is connected in series with a fixed resistor, where the bridge differential voltage is measured in the zero branch of the measuring bridge and a control parameter is produced from this, in order to control a transistor valve situated in the bridge supply path of a DC voltage source via its control electrode until the bridge is balanced, and where the voltage at the measurement resistance after the bridge is balanced is used as a measure of the gas mass flow. In order to obtain exact results of measurement in spite of relatively high interference noise from the cables, it is proposed that an increased supply DC voltage appreciably decreasing the occurring interference noise from the cables should be produced from a small DC voltage and that the output of the DC/DC voltage converter should be connected to the control electrode of the transistor valve, so that the control parameter for the control electrode is derived from the raised DC supply voltage through reducers depending on the gas flow.

  18. Gas-liquid two-phase flow behavior in terrain-inclined pipelines for gathering transport system of wet natural gas

    DEFF Research Database (Denmark)

    Yang, Yan; Li, Jingbo; Wang, Shuli

    2018-01-01

    The Volume of Fluid method and Re-Normalisation Group (RNG) k-ε turbulence model were employed to predict the gas-liquid two-phase flow in a terrain-inclined pipeline with deposited liquids. The simulation was carried out in a 22.5 m terrain-inclined pipeline with a 150 mm internal diameter...... on the liquid level under the suction force which caused by the negative pressure around the elbow, and then it touched to the top of the pipe. When the liquid blocked the pipe, the pressure drop between the upstream and downstream of the elbow increased with the increase of the gas velocity. At larger gas...

  19. Gas measuring apparatus with standardization means, and method therefor

    International Nuclear Information System (INIS)

    Typpo, P.M.

    1980-01-01

    An apparatus and a method for standardizing a gas measuring device has a source capable of emitting a beam of radiation aligned to impinge a detector. A housing means encloses the beam. The housing means has a plurality of apertures permitting the gas to enter the housing means, to intercept the beam, and to exit from the housing means. The device further comprises means for closing the apertures and a means for purging said gas from the housing means

  20. Technical Note: Quantification of interferences of wet chemical HONO LOPAP measurements under simulated polar conditions

    Directory of Open Access Journals (Sweden)

    J. Kleffmann

    2008-11-01

    Full Text Available In the present pilot study, an optimized LOPAP instrument (LOng Path Absorption Photometer for the detection of nitrous acid (HONO in the atmosphere (DL 0.2 pptV was tested at the high alpine research station Jungfraujoch at 3580 m altitude in the Swiss Alps under conditions comparable to polar regions. HONO concentrations in the range <0.5–50 pptV with an average of 7.5 pptV were observed at the Jungfraujoch. The diurnal profiles obtained exhibited clear maxima at noon and minima with very low concentration during the night supporting the proposed photochemical production of HONO. In good agreement with recent measurements at the South Pole, it was demonstrated, that interferences of chemical HONO instruments can significantly influence the measurements and lead to considerable overestimations, especially for low pollution level. Accordingly, the active correction of interferences is of paramount importance for the determination of reliable HONO data.

  1. Applying wet sieving fecal particle size measurement to frugivores: A case study of the eastern chimpanzee (Pan troglodytes schweinfurthii).

    Science.gov (United States)

    Weary, Taylor E; Wrangham, Richard W; Clauss, Marcus

    2017-07-01

    Fecal particle size (FPS) as quantified by wet sieving analysis is a measure of chewing efficiency relevant for the understanding of physiological adaptations and constraints in herbivores. FPS has not been investigated systematically in frugivores, and important methodological problems remain. In particular, food items that are not chewed may skew estimates of FPS. We address such methodological issues and also assess the influence of diet type and age on FPS in wild chimpanzees. About 130 fecal samples of 38 individual chimpanzees (aged from 1.3 to ∼55 years) from the Kanyawara community of Kibale National Park (Uganda) were collected during three fruit seasons and analyzed using standardized wet sieves (pores from 16 to 0.025 mm). The effects of using different sieve series and excluding large seeds were investigated. We also assessed the relationship between FPS and sex, age, and fruit season. The treatment of seeds during the sieving process had a large influence on the results. FPS was not influenced by chimpanzee sex or age, but was smaller during a fig season (0.88 ± 0.31 mm) than during two drupe-fruit seasons (1.68 ± 0.37 mm) (0.025-4 mm sieves, excluding seeds). The absence of an age effect on FPS suggests that dental senescence might be less critical in chimpanzees, or in frugivores in general, than in folivorous herbivores. To increase the value of FPS studies for understanding frugivore and hominoid dietary evolution we propose modifications to prior herbivore protocols. © 2017 Wiley Periodicals, Inc.

  2. Using Noble Gas Measurements to Derive Air-Sea Process Information and Predict Physical Gas Saturations

    Science.gov (United States)

    Hamme, Roberta C.; Emerson, Steven R.; Severinghaus, Jeffrey P.; Long, Matthew C.; Yashayaev, Igor

    2017-10-01

    Dissolved gas distributions are important because they influence oceanic habitats and Earth's climate, yet competing controls by biology and physics make gas distributions challenging to predict. Bubble-mediated gas exchange, temperature change, and varying atmospheric pressure all push gases away from equilibrium. Here we use new noble gas measurements from the Labrador Sea to demonstrate a technique to quantify physical processes. Our analysis shows that water-mass formation can be represented by a quasi steady state in which bubble fluxes and cooling push gases away from equilibrium balanced by diffusive gas exchange forcing gases toward equilibrium. We quantify the rates of these physical processes from our measurements, allowing direct comparison to gas exchange parameterizations, and predict the physically driven saturation of other gases. This technique produces predictions that reasonably match N2/Ar observations and demonstrates that physical processes should force SF6 to be ˜6% more supersaturated than CFC-11 and CFC-12, impacting ventilation age calculations.

  3. Absolute luminosity measurement at LHCb with beam-gas imaging

    CERN Document Server

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam-Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used *van der Meer scan* method (VDM). The technique has been used in 10 LHC fills during 2012 including and also provided a first luminosity measurement for proton-lead collisions. This talk presents the principles of the gas injection and the improvements reached with the increased pressure. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch. Those uncertainties are becoming the dominating factor because the uncertainty on the total beam current have been reduced.

  4. The Integration of Gasification Systems with Gas Engine by Developing Wet Tar Scrubbers and Gas Filter to Produce Electrical Energy from Biomass

    Directory of Open Access Journals (Sweden)

    Siregar Kiman

    2018-01-01

    Full Text Available The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactorwere 900 mm and 1 000 mm respectively. The method used here werethe design the Detailed Engineering Design, assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 h with performance engine of 84 % and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kW h electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2 eq per MJ. Electrical production cost for Biomass Power Generation is about IDR 1 500 per kW h which is cheaper than solar power generation which is about of IDR 3 300 per kW h.

  5. Surface force measurements and simulations of mussel-derived peptide adhesives on wet organic surfaces.

    Science.gov (United States)

    Levine, Zachary A; Rapp, Michael V; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H; Mittal, Jeetain; Waite, J Herbert; Israelachvili, Jacob N; Shea, Joan-Emma

    2016-04-19

    Translating sticky biological molecules-such as mussel foot proteins (MFPs)-into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue's molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces.

  6. Device accurately measures and records low gas-flow rates

    Science.gov (United States)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  7. Small spatial variability in methane emission measured from a wet patterned boreal bog

    Directory of Open Access Journals (Sweden)

    A. Korrensalo

    2018-03-01

    Full Text Available We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012–2014 using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, species composition, total leaf area (LAITOT and leaf area of aerenchymatous plant species (LAIAER. Methane emissions ranged from −309 to 1254 mg m−2 d−1. Although methane fluxes increased with increasing peat temperature, LAITOT and LAIAER, they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAIAER and LAITOT in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.

  8. Small spatial variability in methane emission measured from a wet patterned boreal bog

    Science.gov (United States)

    Korrensalo, Aino; Männistö, Elisa; Alekseychik, Pavel; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; Tuittila, Eeva-Stiina

    2018-03-01

    We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012-2014) using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, species composition, total leaf area (LAITOT) and leaf area of aerenchymatous plant species (LAIAER). Methane emissions ranged from -309 to 1254 mg m-2 d-1. Although methane fluxes increased with increasing peat temperature, LAITOT and LAIAER, they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC) technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAIAER and LAITOT in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.

  9. X3 expansion tube driver gas spectroscopy and temperature measurements

    Science.gov (United States)

    Parekh, V.; Gildfind, D.; Lewis, S.; James, C.

    2017-11-01

    The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of

  10. X3 expansion tube driver gas spectroscopy and temperature measurements

    Science.gov (United States)

    Parekh, V.; Gildfind, D.; Lewis, S.; James, C.

    2018-07-01

    The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of

  11. Influence of Gas Atmosphere Dew Point on the Selective Oxidation and the Reactive Wetting During Hot Dip Galvanizing of CMnSi TRIP Steel

    Science.gov (United States)

    Cho, Lawrence; Lee, Seok Jae; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2013-01-01

    The selective oxidation and reactive wetting of intercritically annealed Si-bearing CMnSi transformation-induced plasticity steels were investigated by high-resolution transmission electron microscopy. In a N2 + 10 pct H2 gas atmosphere with a dew point (DP) ranging from 213 K to 278 K (-60 °C to 5 °C), a continuous layer of selective oxides was formed on the surface. Annealing in a higher DP gas atmosphere resulted in a thinner layer of external oxidation and a greater depth of internal oxidation. The hot dipping was carried out in a Zn bath containing 0.22 mass pct Al, and the bath temperature was 733 K (460 °C). Coarse and discontinuous Fe2Al5- x Zn x grains and Fe-Zn intermetallics (ζ and δ) were observed at the steel/coating interface after the hot dip galvanizing (HDG) of panels were annealed in a low DP atmosphere 213 K (-60 °C). The Fe-Zn intermetallics were formed both in areas where the Fe2Al5- x Zn x inhibition layer had not been formed and on top of non-stoichiometric Fe-Al-Zn crystals. Poor wetting was observed on panels annealed in a low DP atmosphere because of the formation of thick film-type oxides on the surface. After annealing in higher DP gas atmospheres, i.e., 263 K and 278 K (-10 °C and 5 °C), a continuous and fine-grained Fe2Al5- x Zn x layer was formed. No Fe-Zn intermetallics were formed. The small grain size of the inhibition layer was attributed to the nucleation of the Fe2Al5- x Zn x grains on small ferrite sub-surface grains and the presence of granular surface oxides. A high DP atmosphere can therefore significantly contribute to the decrease of Zn-coating defects on CMnSi TRIP steels processed in HDG lines.

  12. Instrumentation for Measurement of Gas Permeability of Polymeric Membranes

    Science.gov (United States)

    Upchurch, Billy T.; Wood, George M.; Brown, Kenneth G.; Burns, Karen S.

    1993-01-01

    A mass spectrometric 'Dynamic Delta' method for the measurement of gas permeability of polymeric membranes has been developed. The method is universally applicable for measurement of the permeability of any gas through polymeric membrane materials. The usual large sample size of more than 100 square centimeters required for other methods is not necessary for this new method which requires a size less than one square centimeter. The new method should fulfill requirements and find applicability for industrial materials such as food packaging, contact lenses and other commercial materials where gas permeability or permselectivity properties are important.

  13. Field Measurements of Black Carbon Yields from Gas Flaring.

    Science.gov (United States)

    Conrad, Bradley M; Johnson, Matthew R

    2017-02-07

    Black carbon (BC) emissions from gas flaring in the oil and gas industry are postulated to have critical impacts on climate and public health, but actual emission rates remain poorly characterized. This paper presents in situ field measurements of BC emission rates and flare gas volume-specific BC yields for a diverse range of flares. Measurements were performed during a series of field campaigns in Mexico and Ecuador using the sky-LOSA optical measurement technique, in concert with comprehensive Monte Carlo-based uncertainty analyses. Parallel on-site measurements of flare gas flow rate and composition were successfully performed at a subset of locations enabling direct measurements of fuel-specific BC yields from flares under field conditions. Quantified BC emission rates from individual flares spanned more than 4 orders of magnitude (up to 53.7 g/s). In addition, emissions during one notable ∼24-h flaring event (during which the plume transmissivity dropped to zero) would have been even larger than this maximum rate, which was measured as this event was ending. This highlights the likely importance of superemitters to global emission inventories. Flare gas volume-specific BC yields were shown to be strongly correlated with flare gas heating value. A newly derived correlation fitting current field data and previous lab data suggests that, in the context of recent studies investigating transport of flare-generated BC in the Arctic and globally, impacts of flaring in the energy industry may in fact be underestimated.

  14. Integration of a nonmetallic electrostatic precipitator and a wet scrubber for improved removal of particles and corrosive gas cleaning in semiconductor manufacturing industries.

    Science.gov (United States)

    Kim, Hak-Joon; Han, Bangwoo; Kim, Yong-Jin; Yoa, Seok-Jun; Oda, Tetsuji

    2012-08-01

    To remove particles in corrosive gases generated by semiconductor industries, we have developed a novel non-metallic, two-stage electrostatic precipitator (ESP). Carbon brush electrodes and grounded carbon fiber-reinforced polymer (CFRP) form the ionization stage, and polyvinyl chloride collection plates are used in the collection stage of the ESP The collection performance of the ESP downstream of a wet scrubber was evaluated with KC1, silica, and mist particles (0.01-10 pm), changing design and operation parameters such as the ESP length, voltage, and flow rate. A long-term and regeneration performance (12-hr) test was conducted at the maximum operation conditions of the scrubber and ESP and the performance was then demonstrated for 1 month with exhaust gases from wet scrubbers at the rooftop of a semiconductor manufacturing plant in Korea. The results showed that the electrical and collection performance of the ESP (16 channels, 400x400 mm2) was maintained with different grounded plate materials (stainless steel and CFRP) and different lengths of the ionization stage. The collection efficiency of the ESP at high air velocity was enhanced with increases in applied voltages and collection plate lengths. The ESP (16 channels with 100 mm length, 400x400 mm2x540 mm with a 10-mm gap) removed more than 90% of silica and mistparticles with 10 and 12 kV applied to the ESPat the air velocity of 2 m/s and liquid-to-gas ratio of 3.6 L/m3. Decreased performance after 13 hours ofcontinuous operation was recovered to the initial performance level by 5 min of water washing. Moreover during the 1-month operation at the demonstration site, the ESP showed average collection efficiencies of 97% based on particle number and 92% based on total particle mass, which were achieved with a much smaller specific corona power of 0.28 W/m3/hr compared with conventional ESPs.

  15. The Importance of Landfill Gas Policy Measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The purpose of this document is to identify and examine global policies, measures, and incentives that appear to be stimulating LFG use. As certain countries have made great advances in LFGE development through effective policies, the intention of this report is to use information from the IEA's Global Renewable Energy and Energy Efficiency Measures and Policies Databases to identify and discuss policies. By consolidating this information and categorising it according to policy type, the attributes that are most appealing or applicable to the circumstances of a particular country or area -- technology demonstration, financial incentives, awareness campaigns, etc. -- are more easily identified. The report begins with background information on LFG and sanitary landfill practices, including a discussion of regional disparities, followed by a description of LFG mitigation technologies. Barriers to LFGE projects are then outlined. An explanation of the importance and effectiveness of policy measures leads into a discussion of types and examples of measures that are being used to overcome these barriers and encourage LFGE development. The report concludes with lessons learned, recommendations for further study, and resources where more information can be found.

  16. Trace gas measurements from tethered balloon platforms

    Science.gov (United States)

    Bandy, Alan R.; Bandy, Terese L.; Youngbluth, Otto; Owens, Thomas L.

    1987-01-01

    Instrumentation and chemical sampling and analysis procedures are described for making measurements of atmospheric carbon disulfide in the concentration range 1-1000 pptv from tethered balloon platforms. Results of a study on the CS2 composition of air downward of a saltwater marsh are reported. A method for obtaining the necessary data for solving the budget equations for surface fluxes, chemical formation rates and chemical destruction rates using data acquired from tethered balloon platforms is presented.

  17. Measurements of gas permeability and non-Darcy flow in gas-water-hydrate systems

    Energy Technology Data Exchange (ETDEWEB)

    Ersland, G.; Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Baldwin, B. [Green Country Petrophysics LLC, Dewey, OK (United States); Stevens, J.; Howard, J. [ConocoPhillips, OK (United States)

    2008-07-01

    Storage of carbon dioxide (CO{sub 2}) in natural gas hydrate reservoirs may offer stable long-term storage of a greenhouse gas while benefiting from methane production, without requiring heat. By exposing hydrate to a thermodynamically preferred hydrate former, CO{sub 2}, the hydrate may be maintained macroscopically in the solid state and retain the stability of the formation. However, there is concern over the flow capacity in such reservoirs. This depends on several factors, notably thermodynamic destabilization of hydrate in small pores due to capillary effects; the presence of liquid channels separating the hydrate from the mineral surfaces; and, the connectivity of gas or liquid filled pores and channels. This paper described a technique for measuring gas permeability in gas-water-hydrate systems. It reported on several experiments that measured gas permeability during stages of hydrate growth in sandstone core plugs. Interactions between minerals and surrounding molecules were also discussed. The formation of methane hydrate in porous media was monitored and quantified with magnetic resonance imaging (MRI). MRI images of hydrate growth within the porous rock were provided along with measurements of gas permeability and non-Darcy flow effects at various hydrate saturations. Gas permeability was measured at steady state flow of methane through the hydrate-bearing core sample. Significant gas permeability was recorded for porous sandstone even when hydrates occupied up to 60 per cent of the pore space. It was concluded that MRI imaging can be used effectively to map and quantify hydrate saturation in sandstone core plugs. 27 refs., 2 tabs., 10 figs.

  18. Measurement of fugitive emissions from gas processing plants in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A. [Alberta Research Council, Edmonton, AB (Canada)

    2004-07-01

    This paper presents a new gas visualization camera created to detect leaks. An outline of the device's projected entry into the oil and gas industry was provided, and included: a demonstration of Differential Absorption Light Detection and Ranging (DIAL) and leak cameras to measure and reduce fugitive emissions; a comparison of DIAL measured emissions with estimated emissions; and a review of methods to measure particulate emissions. In addition, a background of gas leak visualisation technology was presented along with an an overview of DIAL and its results from sour gas plants. The results of a survey conducted in 2003 were presented, including leaks identified and repaired as well as a follow up leak survey. An analysis of pre and post-repair hydrocarbon emissions from the Deepcut area revealed a 60 per cent reduction with savings of $140,000 as well as additional savings from reduced carbon emissions. A similar survey conducted in another plant measured emissions from condensate tanks before and after cooler installation as well as from surrounding well sites, quantifying an 80 per cent reduction in methane emissions. Tasks identified for future research concerned particulate emissions and the development of Lidar methods which can currently identify particulates, but are not yet able to quantify them. Other tasks included a complete DIAL data workup and reporting; the quantification of both methane and carbon emissions reduction at a sour gas plant; a comparison of measured emissions with methods that estimate fugitives; and a complete review of particulate measurements. tabs, figs.

  19. Measurement and calculation of gas compressibility factor for condensate gas and natural gas under pressure up to 116 MPa

    International Nuclear Information System (INIS)

    Yan, Ke-Le; Liu, Huang; Sun, Chang-Yu; Ma, Qing-Lan; Chen, Guang-Jin; Shen, De-Ji; Xiao, Xiang-Jiao; Wang, Hai-Ying

    2013-01-01

    Highlights: • Volumetric properties of two reservoir fluid samples were measured with pressure up to 116 MPa. • Dew point pressures at four temperatures for condensate gas sample are obtained. • Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared. • The thermodynamic model recommended is most suitable for fluids produced from reservoirs with a wide pressure range. -- Abstract: The volumetric properties of two reservoir fluid samples collected from one condensate gas well and one natural gas well were measured under four groups of temperatures, respectively, with pressure up to 116 MPa. For the two samples examined, the experimental results show that the gas compressibility factor increases with the increase of pressure. But the influence of the temperature is related to the range of the experimental pressure. It approximately decreases with the increase of temperature when the pressure is larger than (45 to 50) MPa, while there is the opposite trend when the pressure is lower than (45 to 50) MPa. The dew point pressure was also determined for the condensate gas sample, which decreases with the increase of temperature. The capabilities of four empirical correlations and a thermodynamic model based on equation of state for describing gas compressibility factor of reservoir fluids under high pressure were investigated. The comparison results show that the thermodynamic model recommended is the most suitable for fluids whatever produced from high-pressure reservoirs or conventional mild-pressure reservoirs

  20. Hot gas flow cell for optical measurements on reactive gases

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Nielsen, Karsten Lindorff

    2013-01-01

    A new design is presented for a gas flow cell for reactive gases at high temperatures. The design features three heated sections that are separated by flow windows. This design avoids the contact of reactive gases with the material of the exchangeable optical windows. A gas cell with this design ......-resolution measurements are presented for the absorption cross-section of sulfur dioxide (SO2) in the UV range up to 773 K (500 degrees C)...

  1. A new method for noninvasive measurement of pulmonary gas exchange using expired gas.

    Science.gov (United States)

    West, John B; Prisk, G Kim

    2018-01-01

    Measurement of the gas exchange efficiency of the lung is often required in the practice of pulmonary medicine and in other settings. The traditional standard is the values of the PO2, PCO2, and pH of arterial blood. However arterial puncture requires technical expertise, is invasive, uncomfortable for the patient, and expensive. Here we describe how the composition of expired gas can be used in conjunction with pulse oximetry to obtain useful measures of gas exchange efficiency. The new procedure is noninvasive, well tolerated by the patient, and takes only a few minutes. It could be particularly useful when repeated measurements of pulmonary gas exchange are required. One product of the procedure is the difference between the PO2 of end-tidal alveolar gas and the calculated PO2 of arterial blood. This measurement is related to the classical alveolar-arterial PO2 difference based on ideal alveolar gas. However that traditional index is heavily influenced by lung units with low ventilation-perfusion ratios, whereas the new index has a broader physiological basis because it includes contributions from the whole lung. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Measurement of plasma production and neutralization in gas neutralizers

    International Nuclear Information System (INIS)

    Maor, D.; Meron, M.; Johnson, B.; Jones, K.; Agagu, A.; Hu, B.

    1986-01-01

    In order to satisfy the need of experimental data for the designing of gas neutralizers we have started a project aimed at measuring all relevant cross sections for the charge exchange of H - , H 0 and H + projectiles, as well as the cross sections for the production of ions in the target. The expected results of these latter measurements are shown schematically

  3. NOAA Mobile Laboratory Measures Oil and Gas Emissions

    Science.gov (United States)

    Kofler, J. D.; Petron, G.; Dube, W. P.; Edwards, P. M.; Brown, S. S.; Geiger, F.; Patrick, L.; Crepinsek, S.; Chen, H.; Miller, B. R.; Montzka, S. A.; Lang, P. M.; Newberger, T.; Higgs, J. A.; Sweeney, C.; Guenther, D.; Karion, A.; Wolter, S.; Williams, J.; Jordan, A.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    A van capable of continuous real time measurements of CH4 , CO2, CO, Water Vapor, Ozone, NO, NO2, Volatile Organic Compounds VOCs including aromatics and other traces gases was driven in the oil and gas fields of the Uintah Basin in northeastern Utah. Compressor Stations, processing plants, oil and gas well heads. Separators, condensate tanks, evaporation pond disposal facilities, holding tanks, hydraulic fracturing sites, gas pipelines and more were studied using the van. The mobile measurements provide a powerful tool to get to the source of the emissions and reveal the unique chemical signature of each of the stages and components of oil and gas production as well as the overall basin and background gas concentrations. In addition to a suite of gas analyzers, the van includes a meteorological system (temperature, humidity, and wind speed and direction), GPS tracking, flask sampling system and a batter power system. Aspects of the vans hardware, sampling methods and operations are discussed along with a few highlights of the measurements.

  4. Wetting behavior of mixtures of water and nonionic polyoxyethylene alcohol.

    Science.gov (United States)

    Wu, Chih-Kang; Chen, Li-Jen

    2005-07-19

    Five binary water + C4Ej mixtures, water + n-C4E0, water + 2-C4E0, water + iso-C4E0, water + n-C4E1, and water + iso-C4E1, were chosen to perform the surface/interfacial tension measurements over the experimental temperature range from 10 to 85 degrees C at the normal pressure by using a homemade pendent drop/bubble tensiometer. The symbol CiEj is the abbreviation of a nonionic polyoxyethylene alcohol CiH(2i+1)(OCH2CH2)jOH. The wetting behavior of the CiEj-rich phase at the interface separating gas and the aqueous phase is systematically examined according to the wetting coefficient resulting from the experimental data of surface/interfacial tensions measurements. For those systems with a lower critical solution temperature, for example, water + n-C6E2, water + n-C4E1, and water + iso-C4E1, a wetting transition from partial wetting to nonwetting is always observed when the system is brought to close to its lower critical solution temperature. On the other hand, to start with a partial wetting CiEj-rich phase, a wetting transition from partial wetting to complete wetting is always observed when the system is driven to approach its upper critical solution temperature. The effect of hydrophobicity of CiEj on the wetting behavior of the CiEj-rich phase at the interface separating gas and the aqueous phase was carefully investigated by using five sets of mixtures: (1) water + n-C4E0, water + n-C5E0, and water + n-C6E0; (2) water + 2-C4E0 and water + 2-C5E0; (3) water + 2-C4E0 and water + n-C4E0; (4) water + n-C4E1, water + n-C5E1, and water + n-C6E1; (5) water + n-C4E0 and water + n-C4E1. The CiEj-rich phase would tend to drive away from complete wetting (or nonwetting) to partial wetting with an increase in the hydrophobicity of CiEj in the binary water + CiEj system. All the wetting behavior observed in the water + CiEj mixtures is consistent with the prediction of the critical point wetting theory of Cahn.

  5. Wet cutting

    Energy Technology Data Exchange (ETDEWEB)

    Hole, B. [IMC Technical Services (United Kingdom)

    1999-08-01

    Continuous miners create dust and methane problems in underground coal mining. Control has usually been achieved using ventilation techniques as experiments with water based suppression have led to flooding and electrical problems. Recent experience in the US has led to renewed interest in wet head systems. This paper describes tests of the Hydraphase system by IMC Technologies. Ventilation around the cutting zone, quenching of hot ignition sources, dust suppression, the surface trial gallery tests, the performance of the cutting bed, and flow of air and methane around the cutting head are reviewed. 1 ref., 2 figs., 2 photos.

  6. Measurements of pulmonary gas exchange efficiency using expired gas and oximetry: results in normal subjects.

    Science.gov (United States)

    West, John B; Wang, Daniel L; Prisk, G Kim

    2018-04-01

    We are developing a novel, noninvasive method for measuring the efficiency of pulmonary gas exchange in patients with lung disease. The patient wears an oximeter, and we measure the partial pressures of oxygen and carbon dioxide in inspired and expired gas using miniature analyzers. The arterial Po 2 is then calculated from the oximeter reading and the oxygen dissociation curve, using the end-tidal Pco 2 to allow for the Bohr effect. This calculation is only accurate when the oxygen saturation is ideal alveolar Po 2 minus the measured arterial Po 2 . That measurement requires an arterial blood sample. The present study suggests that this noninvasive procedure will be valuable in assessing the degree of impaired gas exchange in patients with lung disease.

  7. Soil gas measurements at high permeabilities and below foundation depth

    International Nuclear Information System (INIS)

    Johner, H.U; Surbeck, H.

    2000-01-01

    We started a project of soil gas measurements beneath houses. Since the foundations of houses often lie deeper than 0.5 to 1 m - the depth where soil gas measurements are often made - the first approach was to apply the method developed previously to deeper soil layers. The radon availability index (RAI), which was defined empirically, proved to be a reliable indicator for radon problems in nearby houses. The extreme values of permeability, non-Darcy flow and scale dependence of permeability stimulated the development of a multi-probe method. A hydrological model was applied to model the soil gas transport. The soil gas measurements below foundation depth provided a wealth of new information. A good classification of soil properties could be achieved. If soil gas measurements are to be made, the low permeability layer has to be traversed. A minimum depth of 1 .5 m is suggested, profiles to below the foundation depth are preferable. There are also implications for mitigation works. A sub-slab suction system should reach the permeable layer to function well. This also holds for radon wells. If a house is located on a slope, it is most convenient to install the sub-slab suction system on the hillside, as the foundation reaches the deepest levels there

  8. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  9. Measurement of slurry droplets in coal-fired flue gas after WFGD.

    Science.gov (United States)

    Wu, Xue-Cheng; Zhao, Hua-Feng; Zhang, Yong-Xin; Zheng, Cheng-Hang; Gao, Xiang

    2015-10-01

    China owns the world's largest capacity of coal-fired power units. By the end of 2012, the capacity of installed national thermal power has been 819.68 million kilowatts. The latest standard requires that newly built power plants emit SO2 in no more than 100 mg/m(3) and the emission of old ones be lower than 200 mg/m(3) while in some key areas the emission should be controlled under 50 mg/m(3). So by the end of 2012, 90% of the active coal-fired units have been equipped with flue gas desulfurization devices. Among the desulfurization methods adopted, limestone-gypsum wet flue gas desulphurization accounts for 92%, causing the problem of fine droplets in the exhaust gas after defogger, which may even form "gypsum rain." At present, sampling methods are widely used at home and abroad, such as magnesium ion tracer method, modified magnesium ion tracer method and chemical analysis. In addition, some scholars use aerodynamic methods, such as ELPI, to measure the diameter distribution and concentration. The methods mentioned above all have their own demerits, such as the inability to on-line, continuous measurements and the need of prolonged measuring time. Thus, in this paper some potential optical on-line methods are presented, such as Fraunhofer diffraction pattern analysis and wavelength-multiplexed laser extinction. Also brought up are their measuring scope and merits. These methods have already been utilized to measure small liquid droplets and their demonstrations and evaluations are as well stated. Finally, a 3D imaging method based on digital holographic microscope is proposed for in-line measurement of size and concentration of slurry droplets. The feasibility of this method is demonstrated by preliminary experimental investigation.

  10. Coalbed gas desorption in canisters: Consumption of trapped atmospheric oxygen and implications for measured gas quality

    International Nuclear Information System (INIS)

    Jin, Hui; Schimmelmann, Arndt; Mastalerz, Maria; Pope, James; Moore, Tim A.

    2010-01-01

    Desorption canisters are routinely employed to quantify coalbed gas contents in coals. If purging with inert gas or water flooding is not used, entrapment of air with ∝ 78.08 vol.% nitrogen (N 2 ) in canisters during the loading of coal results in contamination by air and subsequent overestimates of N 2 in desorbed coalbed gas. Pure coalbed gas does not contain any elemental oxygen (O 2 ), whereas air contamination originally includes ∝ 20.95 vol.% O 2 and has a N 2 /O 2 volume ratio of ∝ 3.73. A correction for atmospheric N 2 is often attempted by quantifying O 2 in headspace gas and then proportionally subtracting atmospheric N 2 . However, this study shows that O 2 is not a conservative proxy for air contamination in desorption canisters. Time-series of gas chromatographic (GC) compositional data from several desorption experiments using high volatile bituminous coals from the Illinois Basin and a New Zealand subbituminous coal document that atmospheric O 2 was rapidly consumed, especially during the first 24 h. After about 2 weeks of desorption, the concentration of O 2 declined to near or below GC detection limits. Irreversible loss of O 2 in desorption canisters is caused by biological, chemical, and physical mechanisms. The use of O 2 as a proxy for air contamination is justified only immediately after loading of desorption canisters, but such rapid measurements preclude meaningful assessment of coalbed gas concentrations. With increasing time and progressive loss of O 2 , the use of O 2 content as a proxy for atmospheric N 2 results in overestimates of N 2 in desorbed coalbed gas. The indicated errors for nitrogen often range in hundreds of %. Such large analytical errors have a profound influence on market choices for CBM gas. An erroneously calculated N 2 content in CBM would not meet specifications for most pipeline-quality gas. (author)

  11. PREFACE: Wetting: introductory note

    Science.gov (United States)

    Herminghaus, S.

    2005-03-01

    The discovery of wetting as a topic of physical science dates back two hundred years, to one of the many achievements of the eminent British scholar Thomas Young. He suggested a simple equation relating the contact angle between a liquid surface and a solid substrate to the interfacial tensions involved [1], γlg cos θ = γsg - γsl (1) In modern terms, γ denotes the excess free energy per unit area of the interface indicated by its indices, with l, g and s corresponding to the liquid, gas and solid, respectively [2]. After that, wetting seems to have been largely ignored by physicists for a long time. The discovery by Gabriel Lippmann that θ may be tuned over a wide range by electrochemical means [3], and some important papers about modifications of equation~(1) due to substrate inhomogeneities [4,5] are among the rare exceptions. This changed completely during the seventies, when condensed matter physics had become enthusiastic about critical phenomena, and was vividly inspired by the development of the renormalization group by Kenneth Wilson [6]. This had solved the long standing problem of how to treat fluctuations, and to understand the universal values of bulk critical exponents. By inspection of the critical exponents of the quantities involved in equation~(1), John W Cahn discovered what he called critical point wetting: for any liquid, there should be a well-defined transition to complete wetting (i.e., θ = 0) as the critical point of the liquid is approached along the coexistence curve [7]. His paper inspired an enormous amount of further work, and may be legitimately viewed as the entrance of wetting into the realm of modern physics. Most of the publications directly following Cahn's work were theoretical papers which elaborated on wetting in relation to critical phenomena. A vast amount of interesting, and in part quite unexpected, ramifications were discovered, such as the breakdown of universality in thin film systems [8]. Simultaneously, a number

  12. Optimising gas pipeline operation - factors to consider in selecting flow measurement technology; Gas flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Fromm, Frank

    2010-07-01

    Multipath ultrasonic transit-time flow meters (UFM) have been employed in the gas industries for many years. Since their inception in the early seventies, advancements in the technology have been made with regard to available configurations, electronics offered and sensor design. Today, UFMs have proven to be reliable, versatile and capable of meeting the demands of the gas markets. It is clear that various UFM technologies have different advantages with regards to design and application use, which ultimately makes one more appropriate than the other. (Author)

  13. Analysis and improvement of gas turbine blade temperature measurement error

    International Nuclear Information System (INIS)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-01-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed. (paper)

  14. Analysis and improvement of gas turbine blade temperature measurement error

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-10-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed.

  15. Measuring and understanding total dissolved gas pressure in groundwater

    Science.gov (United States)

    Ryan, C.; Roy, J. W.; Randell, J.; Castellon, L.

    2009-05-01

    Since dissolved gases are important to a number of aspects of groundwater (e.g. age dating, active or passive bioremediation, greenhouse gas fluxes, understanding biogeochemical processes involving gases, assessing potential impacts of coal bed methane activities), accurate concentration measurements, and understanding of their subsurface behaviour are important. Researchers have recently begun using total dissolved gas pressure (TGP) sensor measurements, more commonly applied for surface water monitoring, in concert with gas composition analyses to estimate more accurate groundwater gas concentrations in wells. We have used hydraulic packers to isolate the well screens where TDP is being measured, and pump tests to indicate that in-well degassing may reduce TDG below background groundwater levels. Thus, in gas-charged groundwater zones, TGPs can be considerably underestimated in the absence of pumping or screen isolation. We have also observed transient decreased TGPs during pumping that are thought to result from ebullition induced when the water table or water level in the well is lowered below a critical hydrostatic pressure.

  16. Gas management of measurement system; Sistema informatizado de programacao e controle integrado de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Niedersberg, Luis Carlos [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Coordenacao de Programacao e Controle Integrado; Gomes, Lea Visali [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia Executiva de Logistica de Operacoes

    2008-07-01

    This paper has for objective to present the software developed for control of measurement of natural gas in the Gas Company of the Rio Grande do Sul State - Sulgas. This paper will be presented the previous control system, developed as Microsoft Excel and the new system developed in Company's ERP. This software automated great part of the process, reducing possible mistakes, reducing the reverse-work index and improving the quality of the measurements considerably and of the revenue of the Company. (author)

  17. High concentration tritium gas measurement with small volume ionization chambers for fusion fuel gas monitors

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Okuno, Kenji; Matsuda, Yuji; Naruse, Yuji

    1991-01-01

    To apply ionization chambers to fusion fuel gas processing systems, high concentration tritium gas was experimentally measured with small volume 0.16 and 21.6 cm 3 ionization chambers. From plateau curves, the optimum electric field strength was obtained as 100∼200 V/cm. Detection efficiency was confirmed as dependent on the ionization ability of the filled gas, and moreover on its stopping power, because when the range of the β-rays was shortened, the probability of energy loss by collisions with the electrode and chamber wall increased. Loss of ions by recombination was prevented by using a small volume ionization chamber. For example the 0.16 cm 3 ionization chamber gave measurement with linearity to above 40% tritium gas. After the tritium gas measurements, the concentration levels inside the chamber were estimated from their memory currents. Although more than 1/4,000 of the maximum, current was observed as a memory effect, the smaller ionization chamber gave a smaller memory effect. (author)

  18. Accurate assessment of exposure using tracer gas measurements

    DEFF Research Database (Denmark)

    Kierat, Wojciech; Bivolarova, Mariya; Zavrl, Eva

    2018-01-01

    analyzers with short and long response times, respectively. The tracer gas concentration was characterized by the mean, standard deviation and 95th percentile values. The results revealed that the measurement time needed to determine, with sufficient accuracy, these parameters decreased substantially...

  19. Measuring gas temperature during spin-exchange optical pumping process

    Science.gov (United States)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  20. Gas Flaring, Environmental Pollution and Abatement Measures in ...

    African Journals Online (AJOL)

    The environmental impact of gas flaring on the oil bearing enclave of the Niger Delta, Nigeria, was examined with a view to evaluating the abatement measures put in place by the Federal government of Nigeria and the oil producing companies. Primary and secondary information and data were analyzed during the study.

  1. Equilibrium gas-oil ratio measurements using a microfluidic technique.

    Science.gov (United States)

    Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid

    2013-07-07

    A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.

  2. Precision luminosity measurement at LHCb with beam-gas imaging

    International Nuclear Information System (INIS)

    Barschel, Colin

    2014-01-01

    The luminosity is the physical quantity which relates the cross-section to the production rate in collider experiments. The cross-section being the particle physics observable of interest, a precise determination of the luminosity is required. This work presents the absolute luminosity calibration results performed at the Large Hadron Collider beauty (LHCb) experiment at CERN using a novel method based on beam-gas interactions with data acquired at a center of mass energy √(s)=8 TeV and √(s)=2.76 TeV. Reconstructed beam-gas interaction vertices in LHCb are used to measure the beam profiles, thus making it possible to determine the beams overlap integral. An important element of this work was to install and use a neon gas injection system to increase the beam-gas interaction rate. The precision reached with the beam-gas imaging method relies on the two-dimensional beam shape determination developed in this work. For such precision, the interaction vertex resolution is an important ingredient. Therefore, a new method has been developed using all reconstructed vertices in order to improve the understanding of the vertex resolution. In addition to the overlap integral, the knowledge of the colliding bunch populations is required to measure the luminosity. The determination of the bunch populations relies on LHC instruments to measure the bunch population fractions and the total beam intensity. Studies performed as part of this work resulted in a reduction of the bunch current normalization uncertainty from ±2.7% to ±0.2% and making it possible to achieve precision luminosity measurements at all LHC experiments. Furthermore, information on beam-gas interactions not originating from nominally filled bunches was analyzed to determine the charge fraction not participating in bunch collisions. The knowledge of this fraction is required to correct the total beam intensity. The reference cross-section of pp interactions with at least two tracks in the vertex detector

  3. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  4. Enhanced Hg{sup 2+} removal and Hg{sup 0} re-emission control from wet fuel gas desulfurization liquors with additives

    Energy Technology Data Exchange (ETDEWEB)

    Tingmei Tang; Jiang Xu; Rongjie Lu; Jingjing Wo; Xinhua Xu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering

    2010-12-15

    Secondary atmospheric pollutions may result from wet flue gas desulfurization (FGD) systems caused by the reduction of Hg{sup 2+} to Hg{sup 0}. The present study employed three agents: Na{sub 2}S, 2,4,6-trimercaptotiazine, trisodium salt nonahydrate (TMT) and sodium dithiocarbamate (DTCR) to precipitate aqueous Hg{sup 2+} in simulated desulfurization solutions. The effects of the precipitator's dosing quantity, the initial pH value, the reaction temperature, the concentrations of Cl{sup -} and other metal ions (e.g. Cu{sup 2+} and Pb{sup 2+}) on Hg{sup 2+} removal were studied. A linear relationship was observed between Hg{sup 2+} removal efficiency and the increasing precipitator's doses along with initial pH. The addition of chloride and metal ions impaired the Hg{sup 2+} removal from solutions due to the complexation of Cl{sup -} and Hg{sup 2+} as well as the chelating competition between Hg{sup 2+} and other metal ions. Based on a comprehensive comparison of the treatment effects, DTCR was found to be the most effective precipitating agent. Moreover, all the precipitating agents were potent enough to inhibit Hg{sup 2+} reduction as well as Hg{sup 0} re-emission from FGD liquors. More than 90% Hg{sup 2+} was captured by precipitating agents while Hg{sup 2+} reduction efficiency decreased from 54% to just less than 3%. The additives could efficiently control the secondary Hg{sup 0} pollution from FGD liquors. 21 refs., 6 figs.

  5. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part I Standard Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2015-01-01

    Full Text Available The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple.

  6. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part II Dynamic Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2016-01-01

    Full Text Available The second part of the article describes the technology of marine engine diagnostics making use of dynamic measurements of the exhaust gas temperature. Little-known achievements of Prof. S. Rutkowski of the Naval College in Gdynia (now: Polish Naval Academy in this area are presented. A novel approach is proposed which consists in the use of the measured exhaust gas temperature dynamics for qualitative and quantitative assessment of the enthalpy flux of successive pressure pulses of the exhaust gas supplying the marine engine turbocompressor. General design assumptions are presented for the measuring and diagnostic system which makes use of a sheathed thermocouple installed in the engine exhaust gas manifold. The corrected thermal inertia of the thermocouple enables to reproduce a real time-history of exhaust gas temperature changes.

  7. Measurement of Optical Feshbach Resonances in an Ideal Gas

    International Nuclear Information System (INIS)

    Blatt, S.; Nicholson, T. L.; Bloom, B. J.; Williams, J. R.; Thomsen, J. W.; Ye, J.; Julienne, P. S.

    2011-01-01

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic 88 Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  8. The Innovative Design of Lucas Cell for Radon Gas Measurement

    International Nuclear Information System (INIS)

    Wanabongse, Paitoon; Rattanabussayaporn, Sakon; Sriya, Maitree; Sola, Banthom

    2007-08-01

    Full text: Lucas scintillation cell has been widely used for radon gas measurement. They are commercially available but usually with a rather high price, therefore, four cells were developed and built in house. The invented radon gas detector has a special feature; the circumference of the upper part of the cylindrical detector is larger than the lower part. The purpose of this is to allow the light sensing device coupled at the lower end can better detect the phosphorescence light occurred inside. The result is that the invented detector yields higher detection efficiency. This special feature also allows us to increase the volume of the detector which results in higher detection sensitivity

  9. Measurement of optical Feshbach resonances in an ideal gas.

    Science.gov (United States)

    Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J

    2011-08-12

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  10. Gas loop - continuous measurement of thermal and fast neutron fluxes

    International Nuclear Information System (INIS)

    Droulers, Y.; Pleyber, G.; Sciers, P.; Maurin, G.

    1964-01-01

    The measurement method described in this report can be applied both to thermal and fast neutron fluxes. A description is given of two practical applications in each of these two domains. This method is particularly suitable for measurements carried out on 'loop' type equipment. The measurement of the relative flux variations are carried out with an accuracy of 5 per cent. The choice of the shape of the gas circuit leaves a considerable amount of liberty for the adaptation of the measurement circuit to the experimental conditions. (authors) [fr

  11. Greenhouse gas emission measurement and economic analysis of Iran natural gas fired power plants

    International Nuclear Information System (INIS)

    Shahsavari Alavijeh, H.; Kiyoumarsioskouei, A.; Asheri, M.H.; Naemi, S.; Shahsavari Alavije, H.; Basirat Tabrizi, H.

    2013-01-01

    This study attempts to examine the natural gas fired power plants in Iran. The required data from natural gas fired power plants were gathered during 2008. The characteristics of thirty two gas turbine power plants and twenty steam power plants have been measured. Their emission factor values were then compared with the standards of Energy Protection Agency, Euro Union and World Bank. Emission factors of gas turbine and steam power plants show that gas turbine power plants have a better performance than steam power plants. For economic analysis, fuel consumption and environmental damages caused by the emitted pollutants are considered as cost functions; and electricity sales revenue are taken as benefit functions. All of these functions have been obtained according to the capacity factor. Total revenue functions show that gas turbine and steam power plants are economically efficient at 98.15% and 90.89% of capacity factor, respectively; this indicates that long operating years of power plants leads to reduction of optimum capacity factor. The stated method could be implemented to assess the economic status of a country’s power plants where as efficient capacity factor close to one means that power plant works in much better condition. - Highlights: • CO 2 and NO x emissions of Iran natural gas fired power plants have been studied. • CO 2 and NO x emission factors are compared with EPA, EU and World Bank standards. • Costs and benefit as economic functions are obtained according to capacity factor. • Maximum economic profit is obtained for gas turbine and steam power plants. • Investment in CO 2 reduction is recommended instead of investment in NO x reduction

  12. Energy efficiency measures for offshore oil and gas platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Voldsund, Mari; Breuhaus, Peter

    2016-01-01

    . They include: (i) the installation of multiple pressure levels in production manifolds, (ii) the implementation of multiphaseexpanders, (iii) the promotion of energy and process integration, (iv) the limitation of gas recirculation around the compressors, (v) the exploitation of low-temperature heat from...... the gas cooling steps, (vi) the downsizing or replacement of the existing gas turbines, and (vii) the use of the waste heat from the powerplant. The present study builds on four actual cases located in the North and Norwegian Seas, which differ by the type of oil processed, operating conditions...... and strategies. The benefits and practical limitations of each measure are discussed based on thermodynamic, economic and environmental factors. Signiffcant energy savings and reductions in CO2-emissions are depicted, reaching up to 15-20 %. However, they strongly differ from one facility to another, which...

  13. Measuring Effective Tax Rates for Oil and Gas in Canada

    Directory of Open Access Journals (Sweden)

    Jack M. Mintz

    2010-03-01

    Full Text Available The purpose of this report is to provide cost of capital formulae for assessing the effects of taxation on the incentive to invest in oil and gas industries in Canada. The analysis is based on the assumption that businesses invest in capital until the after-tax rate of return on capital is equal to the tax-adjusted cost of capital. The cost of capital in absence of taxation is the inflation-adjusted cost of finance. The after-tax rate of return on capital is the annualized profit earned on a project net of the taxes paid by the businesses. For this purpose, we include corporate income, sales and other capital-related taxes as applied to oil and gas investments. For oil and gas taxation, it is necessary to account for royalties in a special way. Royalties are payment made by businesses for the right to extract oil and gas from land owned by the property holder. The land is owned by the province so the royalties are a rental payment for the benefit received from extracting the product from provincial lands. Thus, provincial royalty payments are a cost to oil and gas companies for using public property. However, since the provincial government is responsible for the royalty regime and could use taxes like the corporate income tax to extract revenue, one might think of royalties as part of the overall fiscal regime to raise revenue. In principle, one should subtract the rental benefit received from oil and gas businesses from taxes and royalty payments to assess the overall fiscal impact. This is impossible to do without measuring some explicit rental rate for use of provincial property. Further, royalty payments may distort economic decisions unlike a payment based on the economic rents earned on oil and gas projects. Instead, for comparability across jurisdictions, one might calculate the aggregate tax and royalty effective tax rates (such as between Alberta and Texas.

  14. Gas and particle velocity measurements in an induction plasma

    International Nuclear Information System (INIS)

    Lesinski, J.; Gagne, R.; Boulos, M.I.

    1981-08-01

    Laser doppler anemometry was used for the measurements of the plasma and particle velocity profiles in the coil region of an inductively coupled plasma. Results are reported for a 50 mm ID induction torch operated at atmospheric pressure with argon as the plasma gas. The oscillator frequency was 3 MHz and the power in the coil was varied between 4.6 and 10.5 kW. The gas velocity measurements were made using a fine carbon powder as a tracer (dp approx. = 1 μm). Measurements were also made with larger silicon particles (dp = 33 μm and sigma = 13 μm) centrally injected in the plasma under different operating conditions

  15. Asymmetric regulation measures in the European gas sector

    International Nuclear Information System (INIS)

    Clastres, C.

    2003-01-01

    Like most of the privatized utilities, the gas market needs to be regulated in order for the positive benefits of competition to fully develop. In addition to the issues of eligibility and access, the regulators have had to deal with several other obstacles, and among other things have raised questions concerning the supply of gas. Asymmetric regulation (release gas and market share reduction measures) is one of the possible responses, making it possible to facilitate access to both resources and consumers. The British regulator was the first to introduce this type of regulation during the 1990's. More recently, Spain and Italy have also adopted it. Although we can find a number of similarities in the causes justifying the use of such regulation, the results obtained vary from one country to another. It appears that they are dependent upon a number of variables including: the existence of national production, the structure of the gas market and finally the level of penetration and growth of gas in various business sectors. (authors)

  16. Precision luminosity measurement at LHCb with beam-gas imaging

    CERN Document Server

    Barschel, Colin

    The luminosity is the physical quantity which relates the cross-section to the production rate in collider experiments. The cross-section being the particle physics observable of interest, a precise determination of the luminosity is required. This work presents the absolute luminosity calibration results performed at the Large Hadron Collider beauty (LHCb) experiment at CERN using a novel method based on beam-gas interactions with data acquired at a center of mass energy $\\sqrt{s}=8$ TeV and $\\sqrt{s}=2.76$ TeV. Reconstructed beam-gas interaction vertices in LHCb are used to measure the beam profiles, thus making it possible to determine the beams overlap integral. An important element of this work was to install and use a neon gas injection system to increase the beam-gas interaction rate. The precision reached with the beam-gas imaging method relies on the two-dimensional beam shape determination developed in this work. For such precision, the interaction vertex resolution is an important ingredient. There...

  17. Detection of gas in landfills using resistivity measurements; Detektering av gas i deponier med resistivitet

    Energy Technology Data Exchange (ETDEWEB)

    Rosqvist, Haakan; Leroux, Virginie; Lindsjoe, Magnus (NSR AB, Helsingborg (Sweden)); Dahlin, Torleif (Lund Univ., LTH (Sweden)); Svensson, Mats; Maansson, Carl-Henrik (Tyrens AB, Stockholm (Sweden))

    2009-05-15

    The main objective with the research project was to develop a methodology to improve the understanding of landfill gas migration in landfills, based on measurements with electrical resistivity. Consequently, the project aimed at an improvement of the utilisation of the energy potential in landfill gas, and to reduce the environmental impact to the atmosphere. Further more, the objective was to improve techniques for investigations of internal structures in landfills. The project also aimed at better understanding of gas migration in the waste body and the mitigation through a landfill cover. Measurements were performed at four landfills; the Biocell reactor (NSR, Helsingborg), the Filborna landfill (NSR, Helsingborg), the Hyllstofta landfill (Naarab, Klippan) and the Flishult landfill (Vetab, Vetlanda). Three dimensional (3D) measurements and analysis were performed. The measurements were repeated in time in order to study changes with time for the resistivity. Supplementary information was created by measurement of other parameters, such as, groundwater table and soil temperature. The results from the resistivity measurements agreed with previous measurements performed at landfills, and thus, the results are therefore regarded as reliable. The measurements showed large temporal and spatial variations, and all of the measurements showed the highest variability near the surface. The results show that the resistivity technique is a powerful tool for investigations of the internal of landfills. Water and gas migration are important features in landfill management and both processes can be detected by using resistivity. Degradation of organic waste results in process with high variability in time and space. Also the degradation rate varies in a landfill and high variability was registered during the resistivity measurements. The high variability in resistivity is likely to be explained by changes in gas pressure and thus indicating gas migration. Therefore, the project

  18. The Late Paleozoic relative gas fields of coal measure in China and their significances on the natural gas industry

    Directory of Open Access Journals (Sweden)

    Chenchen Fang

    2016-12-01

    Full Text Available The coal measure gas sources of coal-derived gas fields in the Late Paleozoic China are the Lower Carboniferous Dishuiquan Formation, the Upper Carboniferous Batamayineishan Formation and Benxi Formation, the Lower Permian Taiyuan Formation and Shanxi Formation, and the Upper Permian Longtan Formation. The coal-derived gas accumulates in Ordovician, Carboniferous, Permian, and Paleocene reservoirs and are distributed in Ordos Basin, Bohai Bay Basin, Junggar Basin, and Sichuan Basin. There are 16 gas fields and 12 of them are large gas fields such as the Sulige large gas field which is China's largest reserve with the highest annual output. According to component and alkane carbon isotope data of 99 gas samples, they are distinguished to be coal-derived gas from coal-derived gas with δ13C2 > −28.5‰ and δ13C1 -δ13C2 -δ13C3 identification chart. The Late Paleozoic relative gas fields of coal measure are significant for the Chinese natural gas industry: proven natural gas geological reserves and annual output of them account for 1/3 in China, and the gas source of three significant large gas fields is coal-derived, which of five significant large gas fields supporting China to be a great gas producing country. The average reserves of the gas fields and the large gas fields formed from the late Paleozoic coal measure are 5.3 and 1.7 times that of the gas fields and the large gas fields in China.

  19. Energy efficiency measures for offshore oil and gas platforms

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Voldsund, Mari; Breuhaus, Peter; Elmegaard, Brian

    2016-01-01

    Oil and gas platforms are energy-intensive systems – each facility uses from a few to several hundreds MW of energy, depending on the petroleum properties, export specifications and field lifetime. Several technologies for increasing the energy efficiency of these plants are investigated in this work. They include: (i) the installation of multiple pressure levels in production manifolds, (ii) the implementation of multiphase expanders, (iii) the promotion of energy and process integration, (iv) the limitation of gas recirculation around the compressors, (v) the exploitation of low-temperature heat from the gas cooling steps, (vi) the downsizing or replacement of the existing gas turbines, and (vii) the use of the waste heat from the power plant. The present study builds on four actual cases located in the North and Norwegian Seas, which differ by the type of oil processed, operating conditions and strategies. The benefits and practical limitations of each measure are discussed based on thermodynamic, economic and environmental factors. Significant energy savings and reductions in CO_2-emissions are depicted, reaching up to 15–20%. However, they strongly differ from one facility to another, which suggests that generic improvements can hardly be proposed, and that thorough techno-economic analyses should be conducted for each plant. - Highlights: • Energy efficiency measures for offshore platforms are assessed. • Energy savings and reductions in CO_2-emissions can reach up to 15-20%. • They differ strongly depending on the oil type, operating conditions and strategies.

  20. Coalbed gas desorption in canisters: Consumption of trapped atmospheric oxygen and implications for measured gas quality

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hui; Schimmelmann, Arndt [Indiana University, Dept. of Geological Sciences, Bloomington, IN 47405-1405 (United States); Mastalerz, Maria [Indiana University, Indiana Geological Survey, Bloomington, IN 47405-2208 (United States); Pope, James [CRL Energy Ltd., 123 Blenheim Road, Christchurch (New Zealand); University of Canterbury, Dept. of Geological Sciences, Christchurch (New Zealand); Moore, Tim A. [University of Canterbury, Dept. of Geological Sciences, Christchurch (New Zealand); P.T. Arrow Energy Indonesia, Wisma Anugraha, Jl. Taman Kemang No. 32B, Jakarta Selatan (Indonesia)

    2010-01-07

    Desorption canisters are routinely employed to quantify coalbed gas contents in coals. If purging with inert gas or water flooding is not used, entrapment of air with {proportional_to} 78.08 vol.% nitrogen (N{sub 2}) in canisters during the loading of coal results in contamination by air and subsequent overestimates of N{sub 2} in desorbed coalbed gas. Pure coalbed gas does not contain any elemental oxygen (O{sub 2}), whereas air contamination originally includes {proportional_to} 20.95 vol.% O{sub 2} and has a N{sub 2}/O{sub 2} volume ratio of {proportional_to} 3.73. A correction for atmospheric N{sub 2} is often attempted by quantifying O{sub 2} in headspace gas and then proportionally subtracting atmospheric N{sub 2}. However, this study shows that O{sub 2} is not a conservative proxy for air contamination in desorption canisters. Time-series of gas chromatographic (GC) compositional data from several desorption experiments using high volatile bituminous coals from the Illinois Basin and a New Zealand subbituminous coal document that atmospheric O{sub 2} was rapidly consumed, especially during the first 24 h. After about 2 weeks of desorption, the concentration of O{sub 2} declined to near or below GC detection limits. Irreversible loss of O{sub 2} in desorption canisters is caused by biological, chemical, and physical mechanisms. The use of O{sub 2} as a proxy for air contamination is justified only immediately after loading of desorption canisters, but such rapid measurements preclude meaningful assessment of coalbed gas concentrations. With increasing time and progressive loss of O{sub 2}, the use of O{sub 2} content as a proxy for atmospheric N{sub 2} results in overestimates of N{sub 2} in desorbed coalbed gas. The indicated errors for nitrogen often range in hundreds of %. Such large analytical errors have a profound influence on market choices for CBM gas. An erroneously calculated N{sub 2} content in CBM would not meet specifications for most pipeline

  1. Real-Time Measurements of Gas/Particle Partitioning of Semivolatile Organic Compounds into Different Probe Particles in a Teflon Chamber

    Science.gov (United States)

    Liu, X.; Day, D. A.; Ziemann, P. J.; Krechmer, J. E.; Jimenez, J. L.

    2017-12-01

    The partitioning of semivolatile organic compounds (SVOCs) into and out of particles plays an essential role in secondary organic aerosol (SOA) formation and evolution. Most atmospheric models treat the gas/particle partitioning as an equilibrium between bulk gas and particle phases, despite potential kinetic limitations and differences in thermodynamics as a function of SOA and pre-existing OA composition. This study directly measures the partitioning of oxidized compounds in a Teflon chamber in the presence of single component seeds of different phases and polarities, including oleic acid, squalane, dioctyl sebacate, pentaethylene glycol, dry/wet ammonium sulfate, and dry/wet sucrose. The oxidized compounds are generated by a fast OH oxidation of a series of alkanols under high nitric oxide conditions. The observed SOA mass enhancements are highest with oleic acid, and lowest with wet ammonium sulfate and sucrose. A chemical ionization mass spectrometer (CIMS) was used to measure the decay of gas-phase organic nitrates, which reflects uptake by particles and chamber walls. We observed clear changes in equilibrium timescales with varying seed concentrations and in equilibrium gas-phase concentrations across different seeds. In general, the gas evolution can be reproduced by a kinetic box model that considers partitioning and evaporation with particles and chamber walls, except for the wet sucrose system. The accommodation coefficient and saturation mass concentration of each species in the presence of each seed are derived using the model. The changes in particle size distributions and composition monitored by a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) are investigated to probe the SOA formation mechanism. Based on these results, the applicability of partitioning theory to these systems and the relevant quantitative parameters, including the dependencies on seed particle composition, will

  2. Continuous wet-only and dry-only deposition measurements of 137Cs and 7Be: an indicator of their origin

    International Nuclear Information System (INIS)

    Rosner, G.; Hoetzl, H.; Winkler, R.

    1996-01-01

    Series of monthly values of 137 Cs and 7 Be wet and dry deposition were measured with a wet-only and a dry-only collector each having an area of 2.25 m 2 . The results are presented for the period from November 1991 to May 1995. The behaviour of resuspended, Chernobyl-derived radiocesium is shown to be significantly different from that of cosmogenic 7 Be and from that of global fallout 137 Cs from nuclear weapons testing. The dry-to-total ratio of 0.65, the dry deposition velocity of 1.5 cm s -1 , the close correlation to the total amount of solids collected and the absence of a correlation between activity deposition and amount of rainfall point to a strong similarity in the deposition behaviour of present radiocesium and that of stable elements of terrestrial origin. (author)

  3. Continuous wet-only and dry-only deposition measurements of {sup 137}Cs and {sup 7}Be: an indicator of their origin

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G.; Hoetzl, H.; Winkler, R. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Strahlenschutz

    1996-09-01

    Series of monthly values of {sup 137}Cs and {sup 7}Be wet and dry deposition were measured with a wet-only and a dry-only collector each having an area of 2.25 m{sup 2}. The results are presented for the period from November 1991 to May 1995. The behaviour of resuspended, Chernobyl-derived radiocesium is shown to be significantly different from that of cosmogenic {sup 7}Be and from that of global fallout {sup 137}Cs from nuclear weapons testing. The dry-to-total ratio of 0.65, the dry deposition velocity of 1.5 cm s{sup -1}, the close correlation to the total amount of solids collected and the absence of a correlation between activity deposition and amount of rainfall point to a strong similarity in the deposition behaviour of present radiocesium and that of stable elements of terrestrial origin. (author).

  4. Gas chromatographic measurement in water-steam circuits

    International Nuclear Information System (INIS)

    Zschetke, J.; Nieder, R.

    1984-01-01

    A gas chromatographic technique for measurements in water-steam circuits, which has been well known for many years, has been improved by design modifications. A new type of equipment developed for special measuring tasks on nuclear engineering plant also has a general application. To date measurements have been carried out on the ''Otto Hahn'' nuclear powered ship, on the KNK and AVR experimental nuclear power plants at Karlsruhe and Juelich respectively and on experimental boiler circuits. The measurements at the power plants were carried out under different operating conditions. In addition measurements during the alkali operating mode and during combined cycle operation were carried out on the AVR reactor. It has been possible to draw new conclusion from the many measurements undertaken. (orig.) [de

  5. MEASURING PROTOPLANETARY DISK GAS SURFACE DENSITY PROFILES WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jonathan P.; McPartland, Conor, E-mail: jpw@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-10-10

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams and Best to show that gas surface density profiles can be measured from high fidelity {sup 13}CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M {sub gas} = 0.048 M {sub ⊙}, and accretion disk characteristic size R {sub c} = 213 au and gradient γ = 0.39. The same parameters match the C{sup 18}O 2–1 image and indicate an abundance ratio [{sup 12}CO]/[C{sup 18}O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large {sup 13}CO 2–1 image library and fit simulated data. For disks with gas masses 3–10 M {sub Jup} at 150 pc, ALMA observations with a resolution of 0.″2–0.″3 and integration times of ∼20 minutes allow reliable estimates of R {sub c} to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.

  6. Multi-spectral temperature measurement method for gas turbine blade

    Science.gov (United States)

    Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong

    2016-02-01

    One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.

  7. Waste tank ventilation rates measured with a tracer gas method

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103

  8. Innovation of fission gas release and thermal conductivity measurement methods

    International Nuclear Information System (INIS)

    Van der Meer, K.; Soboler, V.

    1998-01-01

    This presentation described two innovative measurement methods being currently developed at SCK-CEN in order to support the modeling of fuel performance. The first one is an acoustic method to measure the fission gas release in a fuel rod in a non destructive way. The total rod pressure is determined by generating a heat pulse causing a pressure wave that propagates through the gas to an ultrasound transducer. The final pulse width being proportional to the pressure, the latter can thus be determined. The measurement of the acoustic resonance frequency at fixed temperatures enables the distinction between different gas components. The second method is a non-stationary technique to investigate the thermal properties of the fuel rod, like thermal conductivity, diffusivity and heat capacity. These properties are derived from the amplitude and the phase shift of the fuel centre temperature response induced by a periodic temperature variation. These methods did not reveal any physical limitations for the practical applicability. Furthermore, they are rather simple. Preliminary investigations have proven both methods to be more accurate than techniques usually utilized. (author)

  9. System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for Co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage.

    Science.gov (United States)

    Qian, Jin; Liu, Rulong; Wei, Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    A sulfur cycle-based wastewater treatment process, namely the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process (SANI(®) process) has been recently developed for organics and nitrogen removal with 90% sludge minimization and 35% energy reduction in the biological treatment of saline sewage from seawater toilet flushing practice in Hong Kong. In this study, sulfate- and sulfite-rich wastes from simple wet flue gas desulfurization (WFGD) were considered as a potential low-cost sulfur source to achieve beneficial co-treatment with non-saline (freshwater) sewage in continental areas, through a Mixed Denitrification (MD)-SANI process trialed with synthetic mixture of simple WFGD wastes and freshwater sewage. The system showed 80% COD removal efficiency (specific COD removal rate of 0.26 kg COD/kg VSS/d) at an optimal pH of 7.5 and complete denitrification through MD (specific nitrogen removal rate of 0.33 kg N/kg VSS/d). Among the electron donors in MD, organics and thiosulfate could induce a much higher denitrifying activity than sulfide in terms of both NO3(-) reduction and NO2(-) reduction, suggesting a much higher nitrogen removal rate in organics-, thiosulfate- and sulfide-based MD in MD-SANI compared to sulfide alone-based autotrophic denitrification in conventional SANI(®). Diverse sulfate/sulfite-reducing bacteria (SRB) genera dominated in the bacterial community of sulfate/sulfite-reducing up-flow sludge bed (SRUSB) sludge without methane producing bacteria detected. Desulfomicrobium-like species possibly for sulfite reduction and Desulfobulbus-like species possibly for sulfate reduction are the two dominant groups with respective abundance of 24.03 and 14.91% in the SRB genera. Diverse denitrifying genera were identified in the bacterial community of anoxic up-flow sludge bed (AnUSB) sludge and the Thauera- and Thiobacillus-like species were the major taxa. These results well explained the successful operation of the lab

  10. Measurement of the position resolution of the Gas Pixel Detector

    International Nuclear Information System (INIS)

    Soffitta, Paolo; Muleri, Fabio; Fabiani, Sergio; Costa, Enrico; Bellazzini, Ronaldo; Brez, Alessandro; Minuti, Massimo; Pinchera, Michele; Spandre, Gloria

    2013-01-01

    The Gas Pixel Detector was designed and built as a focal plane instrument for X-ray polarimetry of celestial sources, the last unexplored subtopics of X-ray astronomy. It promises to perform detailed and sensitive measurements resolving extended sources and detecting polarization in faint sources in crowded fields at the focus of telescopes of good angular resolution. Its polarimetric and spectral capability were already studied in earlier works. Here we investigate for the first time, with both laboratory measurements and Monte Carlo simulations, its imaging properties to confirm its unique capability to carry out imaging spectral-polarimetry in future X-ray missions.

  11. Apparatus for measuring the concentration of a gas

    International Nuclear Information System (INIS)

    Manin, Ange.

    1974-01-01

    The apparatus described for measuring the concentration of a gas in an atmosphere is of the kind which has an ionization chamber with an internal radioactive source and associated electronics enabling the ionization current crossing the chamber to be measured. It includes at least one cylindrical metal grid forming an electrode brought to a high voltage in relation to a cylindrical collection electrode fitted to the axis of the grid coated with a radioactive deposit and, around this grid, a screen acting as a protective envelope. The radioactive deposit is tritiated titanium [fr

  12. Projected uranium measurement uncertainties for the Gas Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Younkin, J.M.

    1979-02-01

    An analysis was made of the uncertainties associated with the measurements of the declared uranium streams in the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). The total uncertainty for the GCEP is projected to be from 54 to 108 kg 235 U/year out of a measured total of 200,000 kg 235 U/year. The systematic component of uncertainty of the UF 6 streams is the largest and the dominant contributor to the total uncertainty. A possible scheme for reducing the total uncertainty is given

  13. Flow measurement in two-phase (gas-liquid) systems

    International Nuclear Information System (INIS)

    Hewitt, G.F.; Whalley, P.B.

    1980-01-01

    The main methods of measuring mass flow and quality in gas-liquid flows in industrial situations are reviewed. These include gamma densitometry coupled with differential pressure devices such as crifice plates, turbine flow meters and drag screens. For each method the principle of operation, and the advantages and disadvantages, are given. Some further techniques which are currently being investigated and developed for routine use are also described briefly. Finally the detailed flow measurements possible on a particular flow pattern - annular flow - is examined. (author)

  14. A scintillation detector for measuring inert gas beta rays

    International Nuclear Information System (INIS)

    Shi Hengchang; Yu Yunchang

    1989-10-01

    The inert gas beta ray scintillation detector, which is made of organic high polymers as the base and coated with compact fluorescence materials, is a lower energy scintillation detector. It can be used in the nuclear power plant and radioactive fields as a lower energy monitor to detect inert gas beta rays. Under the conditions of time constant 10 minutes, confidence level is 99.7% (3σ), the intensity of gamma rays 2.6 x 10 -7 C/kg ( 60 Co), and the minimum detectable concentration (MDC) of this detector for 133 Xe 1.2 Bq/L. The measuring range for 133 Xe is 11.1 ∼ 3.7 x 10 4 Bq/L. After a special measure is taken, the device is able to withstand 3 x 10 5 Pa gauge pressure. In the loss-of-cooolant-accident, it can prevent the radioactive gas of the detector from leaking. This detector is easier to be manufactured and decontaminated

  15. Measurements of potato tubers gamma-ray irradiated in nitrogen gas or carbondioxide gas

    International Nuclear Information System (INIS)

    Katayama, Tadashi; Ohnishi, Tokuhiro; Dohmaru, Takaaki; Kanazawa, Tamotsu; Hiraoka, Eiichi; Furuta, Jun-ichiro.

    1984-01-01

    In this report the respiration of the potato tubers irradiated in nitrogen gas or carbondioxide gas was studied. Potato tubers of common Japanese variety, ''Danshaku'' were used for the examination. Potato tubers of about 2kg were put into each of Triple-Nylon bags and the bags were sealed after replacement of air in bags with nitrogen or carbondioxide gases. More than 16 hours after sealing of bags, the γ-dose ( 60 Co) of 150 Gy or 250 Gy were given to the potato tubers in bags at the dose rate of 10 4 R/h. After irradiation, all bags were opened in air and amounts of CO 2 released by respiration of tubers were measured with Hitachi gas chromatograph analyser Type 023. The amounts of CO 2 released from the potato tubers irradiated in open air is shown in Fig. 2. The results show that there is an initial lag period of several hours, followed by a rapid increase in the respiration, after which the CO 2 release was gradually decreased. Potato tubers irradiated in nitrogen gas show a similar release of CO 2 on time scale to the potato tubers irradiated in open air, but the total amounts of CO 2 are approximately half of those of the potato tubers irradiated in open air (Figs. 3 and 4). (J.P.N.)

  16. Measurement of gas transport properties for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  17. Measurements of radon gas in dwellings of Argentina

    International Nuclear Information System (INIS)

    Canoba, A.C.; Arnaud, M.I.; Lopez, F.O.; Oliveira, A.A.

    1998-01-01

    The concentration of radon gas in dwellings of several cities of Argentina was measured. For this purpose, different kind of detectors were used such as passive solid state nuclear track detectors, electrets and detectors which use activated charcoal. Since 1983, a total of 1630 dwellings were analysed. The cases monitored were dwellings where the main construction materials are reinforced concrete and brick. The average values found in each city are below 50 Bq/m 3 . The values above 200-Bqm 3 are very few, and none of them is above 300 Bq/m 3 . The average value of radon gas in air dwellings in our country is 33 Bq/m 3 , with a geometric mean of 23 Bq/m 3 , corresponding to an annual effective dose of 0.83 mSv. (author) [es

  18. Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements

    CERN Document Server

    Rihl, Mariana; Baglin, Vincent; Barschel, Colin; Bay, Aurelio; Blanc, Frederic; Bravin, Enrico; Bregliozzi, Giuseppe; Chritin, Nicolas; Dehning, Bernd; Ferro-Luzzi, Massimiliano; Gaspar, Clara; Gianì, Sebastiana; Giovannozzi, Massimo; Greim, Roman; Haefeli, Guido; Hopchev, Plamen; Jacobsson, Richard; Jensen, Lars; Jones, Owain Rhodri; Jurado, Nicolas; Kain, Verena; Karpinski, Waclaw; Kirn, Thomas; Kuhn, Maria; Luthi, Berengere; Magagnin, Paolo; Matev, Rosen; Nakada, Tatsuya; Neufeld, Niko; Panman, Jaap; Rakotomiaramanana, Barinjaka; Salustino Guimaraes, Valdir; Salvant, Benoit; Schael, Stefan; Schneider, Olivier; Schwering, Georg; Tobin, Mark; Veness, Raymond; Veyrat, Quentin; Vlachos, Sotiris; Wlochal, Michael; Xu, Zhirui; von Dratzig, Arndt

    2016-01-01

    Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.

  19. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    International Nuclear Information System (INIS)

    William S. Charlton

    1999-01-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels

  20. Gas Measurement Using Static Fourier Transform Infrared Spectrometers.

    Science.gov (United States)

    Köhler, Michael H; Schardt, Michael; Rauscher, Markus S; Koch, Alexander W

    2017-11-13

    Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm - 1 to 1250 cm - 1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising.

  1. Unit vent airflow measurements using a tracer gas technique

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.G. [Union Electric Company, Fulton, MO (United States); Lagus, P.L. [Lagus Applied Technology, Inc., San Diego, CA (United States); Fleming, K.M. [NCS Corp., Columbus, OH (United States)

    1997-08-01

    An alternative method for assessing flowrates that does not depend on point measurements of air flow velocity is the constant tracer injection technique. In this method one injects a tracer gas at a constant rate into a duct and measures the resulting concentration downstream of the injection point. A simple equation derived from the conservation of mass allows calculation of the flowrate at the point of injection. Flowrate data obtained using both a pitot tube and a flow measuring station were compared with tracer gas flowrate measurements in the unit vent duct at the Callaway Nuclear Station during late 1995 and early 1996. These data are presented and discussed with an eye toward obtaining precise flowrate data for release rate calculations. The advantages and disadvantages of the technique are also described. In those test situations for which many flowrate combinations are required, or in large area ducts, a tracer flowrate determination requires fewer man-hours than does a conventional traverse-based technique and does not require knowledge of the duct area. 6 refs., 10 figs., 6 tabs.

  2. Evaluating the effectiveness of pollution control measures via the occurrence of DDTs and HCHs in wet deposition of an urban center, China.

    Science.gov (United States)

    Guo, Ling-Chuan; Bao, Lian-Jun; Li, Shao-Meng; Tao, Shu; Zeng, Eddy Y

    2017-04-01

    Wet deposition is not only a mechanism for removing atmospheric pollutants, but also a process which reflects loadings of atmospheric pollutants. Our previous study on wet deposition examined the effectiveness of short-term control measures on atmospheric particulate pollution, which were partly effective for organic pollutants of current input sources. In the present study, dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs), representative of legacy contaminants, were measured in the same samples collected throughout the entire year of 2010 in Guangzhou, a large urban center in South China. Concentrations of ∑DDT (sum of o,p' and p,p'-DDT, o,p' and p,p'-DDE, o,p' and p,p'-DDD, and p,p'-DDMU) and ∑HCH (sum of α-, β-, γ-, and δ-HCH) in wet deposition were in the ranges of nd-69 (average: 1.8 ng L -1 ) and nd-150 ng L -1 (average: 5.1 ng L -1 ), respectively. In addition, the results of source diagnostics and backward air mass trajectories appeared to suggest the transport of antifouling paint derived DDTs from the coastal region off South China to Guangzhou. The combined wet and dry deposition flux of ∑HCH in the first quarter (January to March) was greater than that in the fourth quarter (October to December), while those of ∑DDT were comparable in the first and fourth quarters. Similar trends were also observed for the concentrations of ∑HCH and ∑DDT in aerosol samples. These results suggested the short-term pollution control measures implemented during the 16th Asian Games and 10th Asian Para Games (held in November and December 2010, respectively) did not work well for DDTs. The reduced input of HCHs during the fourth quarter was probably associated with the strict ban on lindane for food safety, which also exposed the weakness of control measures focusing mainly on the removal of atmospheric particulate matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development of an Internally-Calibrated Wide-Band Airborne Microwave Radiometer to Provide High-Resolution Wet-Tropospheric Path Delay Measurements for SWOT (HAMMR - High-frequency Airborne Microwave and Millimeter-wave Radiometer)

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Internally-Calibrated Wide-Band Airborne Microwave Radiometer to Provide High-Resolution Wet-Tropospheric Path Delay Measurements for SWOT (HAMMR -...

  4. WET SOLIDS FLOW ENHANCEMENT; SEMIANNUAL

    International Nuclear Information System (INIS)

    Hugo S Caram; Natalie Foster

    1998-01-01

    The strain-stress behavior of a wet granular media was measured using a split Parfitt tensile tester. In all cases the stress increases linearly with distance until the maximum uniaxial tensile stress is reached. The stress then decreases exponentially with distance after this maximum is reached. The linear region indicates that wet solids behave elastically for stresses below the tensile stresses and can store significant elastic energy. The elastic deformation cannot be explained by analyzing the behavior of individual capillary bridges and may require accounting for the deformation of the solids particles. The elastic modulus of the wet granular material remains unexplained

  5. Measurement system for nitrous oxide based on amperometric gas sensor

    Science.gov (United States)

    Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.

    2017-03-01

    It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.

  6. Measurement of average radon gas concentration at workplaces

    International Nuclear Information System (INIS)

    Kavasi, N.; Somlai, J.; Kovacs, T.; Gorjanacz, Z.; Nemeth, Cs.; Szabo, T.; Varhegyi, A.; Hakl, J.

    2003-01-01

    In this paper results of measurement of average radon gas concentration at workplaces (the schools and kindergartens and the ventilated workplaces) are presented. t can be stated that the one month long measurements means very high variation (as it is obvious in the cases of the hospital cave and the uranium tailing pond). Consequently, in workplaces where the expectable changes of radon concentration considerable with the seasons should be measure for 12 months long. If it is not possible, the chosen six months period should contain summer and winter months as well. The average radon concentration during working hours can be differ considerable from the average of the whole time in the cases of frequent opening the doors and windows or using artificial ventilation. (authors)

  7. Tritium inventory measurements by 'in-bed' gas flowing calorimetry

    International Nuclear Information System (INIS)

    Hayashi, T.; Suzuki, T.; Yamada, M.; Okuno, K.

    1996-01-01

    In order to establish the 'in-bed' tritium accounting technology for the ITER scale tritium storage system, a gas flowing calorimetry has been studied using a scaled ZrCo bed (25 g tritium capacity). The basic calorimetric characteristics, steady state temperature raise of He gas stream flowing through a secondary coil line fixed in the ZrCo tritide, was measured and correlated with the stored tritium inventory. The results shows that about 4 degrees raise of He stream temperature can be detected for each gram of tritium storage. The sensitivity of this calorimetry is about 0.05 g of tritium, calculated by 0.2 degrees of temperature sensor error. The accuracy is better than 0.25 g of tritium on 25 g storage, evaluated by 2 times of standard deviation from the repeat measurements. This accuracy of < 1% on full storage capacity is satisfied the target accountability to measure ± 1 gram of tritium on 100 g storage for ITER. 13 refs., 7 figs

  8. International workshop on greenhouse gas mitigation technologies and measures: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    More than 150 countries are now Party to the United Nations Framework Convention on Climate Change (FCCC), which seeks to stabilize atmospheric concentrations of greenhouse gases at a level that would prevent dangerous human interference with the global climate system. Climate change country studies are a significant step for developing countries and countries with economies in transition to meet their national reporting commitments to the FCCC. These studies also provide the basis for preparation of National Climate Change Action Plans and implementation of technologies and practices which reduce greenhouse gas emissions or enhance carbon sinks. The broad goals of the workshop were to: (1) present results of country study mitigation assessments, (2) identify promising no-regrets greenhouse gas mitigation options in land-use and energy sectors, (3) share information on development of mitigation technologies and measures which contribute to improved National Climate Change Actions Plans, and (4) begin the process of synthesizing mitigation assessments for use by FCCC subsidiary bodies. The 59 papers are arranged into the following topical sections: (1) national mitigation assessments, technology priorities, and measures; (2) sector-specific mitigation assessment results, subdivided further into: energy sector; non-energy sector; renewable energy; energy efficiency in industry and buildings; transportation; electricity supply; forestry; and methane mitigation; (3) support for mitigation technologies and measures; and (4) activities implemented jointly. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. A helium gas scintillator active target for photoreaction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Al Jebali, Ramsey; Annand, John R.M.; Buchanan, Emma; Gardner, Simon; Hamilton, David J.; Livingston, Kenneth; McGeorge, John C.; MacGregor, Ian J.D.; MacRae, Roderick; Reiter, Andreas J.H.; Rosner, Guenther; Sokhan, Daria; Strandberg, Bruno [University of Glasgow, School of Physics and Astronomy, Glasgow, Scotland (United Kingdom); Adler, Jan-Olof; Fissum, Kevin; Schroeder, Bent [University of Lund, Department of Physics, Lund (Sweden); Akkurt, Iskender [Sueleyman Demirel University, Fen-Edebiyat Faculty, Isparta (Turkey); Brudvik, Jason; Hansen, Kurt; Isaksson, Lennart; Lundin, Magnus [MAX IV Laboratory, PO Box 118, Lund (Sweden); Middleton, Duncan G. [Universitaet Tuebingen, Kepler Centre for Astro and Particle Physics, Physikalisches Institut, Tuebingen (Germany); Sjoegren, Johan [University of Glasgow, School of Physics and Astronomy, Glasgow, Scotland (United Kingdom); MAX IV Laboratory, PO Box 118, Lund (Sweden)

    2015-10-15

    A multi-cell He gas scintillator active target, designed for the measurement of photoreaction cross sections, is described. The target has four main chambers, giving an overall thickness of 0.103 g/cm{sup 3} at an operating pressure of 2 MPa. Scintillations are read out by photomultiplier tubes and the addition of small amounts of N{sub 2} to the He, to shift the scintillation emission from UV to visible, is discussed. First results of measurements at the MAX IV Laboratory tagged-photon facility show that the target has a timing resolution of around 1 ns and can cope well with a high-flux photon beam. The determination of reaction cross sections from target yields relies on a Monte Carlo simulation, which considers scintillation light transport, photodisintegration processes in {sup 4}He, background photon interactions in target windows and interactions of the reaction-product particles in the gas and target container. The predictions of this simulation are compared to the measured target response. (orig.)

  10. Separation of submicron particles from biofuel combustion with flue gas condensation or wet condensing electrostatic precipitator. Analysis of possibilities; Avskiljning av submikrona partiklar vid biobraenslefoerbraenning med roekgaskondensering eller kondenserande vaata elfilter. Analys av moejligheterna

    Energy Technology Data Exchange (ETDEWEB)

    Roennbaeck, Marie; Gustavsson, Lennart [Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-11-15

    Dust particles in flue gas larger than 1 {mu}m are well separated by conventional techniques, while submicron particles are poorly separated. As the use of biofuels with high ash content is increasing, as well as knowledge about negative health effects from inhalation of submicron particles, the interest for reduction of emissions of submicron particles will probably increase. The aim of this project is to investigate possible techniques for separation of submicron particles during flue gas condensation through modification of conventional technique, or with available techniques not usually used with combustion of biofuels, e.g. a wet electrostatic precipitator. Mechanisms for separation of dust particles are briefly described. Cyclones separates particles larger than about 1 {mu}m. Fabric filters separates all particles sizes, but the efficiency reduces as the size reduces. In flue gas condensers and scrubbers the speed and size of water droplets are important for the reduction efficiency. Dry electrostatic precipitators work for all particle sizes, but with reduced efficiency for sizes between 0.1 and 3 {mu}m. Wet electrostatic precipitators separates submicron particles much better. One reason for this is that the potential between the electrodes can be higher. Among conventional flue gas condensers and scrubbers there are two types that, properly designed, can separate submicron particles, namely 'type venturi scrubbers', i.e. a scrubber where a high flue gas velocity is used to form many, small water droplets by friction forces in a nozzle, and 'type scrubber with nozzles', i.e. a scrubber where nozzles supply droplets to the flue gas. For a scrubber with nozzles, the falling velocity of the droplets must be lower and the size smaller than is common today. Also the wet electrostatic precipitator separates submicron particles with high efficiency. They are used today mainly for problematic particles, e.g. sticky or corrosive ones, or for

  11. PIV Measurements in Weakly Buoyant Gas Jet Flames

    Science.gov (United States)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

    2001-01-01

    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  12. Wireless transfer of measured data. Continuous measurement of natural gas consumption in a liberalized market

    International Nuclear Information System (INIS)

    De Buisonje, B.

    2000-01-01

    In a deregulated market it is very important to be able to measure gas consumption per hour, or even every 5 minutes, on site and reliably transfer the data measured to the trader. It is common practice in the gas industry to make forecasts for each customer taking off more than 10 million m 3 . This requires the preparation of load profiles based on gas consumption during five minutes. For both the consumer and the trader it is important to be informed (semi-)continuously of the actual gas consumption, which can then be directly compared with the expected load profile, after which adjustments can be made. One of the gas distribution companies in the Netherlands, Essent, transfers wireless data in the case of remote metering. Essent uses Ferranti Computer Systems and the Mobitex network of RAM Mobile Data. Consumers also have access to the data measured through the Internet. They can use the actual load profile for billing purposes. Moreover, they can immediately adjust their energy consumption to stick to the offtake forecast as long as possible and thus save costs

  13. Measurement of Submerged Oil/Gas Leaks using ROV Video

    Science.gov (United States)

    Shaffer, Franklin; de Vera, Giorgio; Lee, Kenneth; Savas, Ömer

    2013-11-01

    Drilling for oil or gas in the Gulf of Mexico is increasing rapidly at depths up to three miles. The National Commission on the Deepwater Horizon Oil Leak concluded that inaccurate estimates of the leak rate from the Deepwater Horizon caused an inadequate response and attempts to cap the leak to fail. The first response to a submerged oil/gas leak will be to send a Remotely Operated Vehicle (ROV) down to view the leak. During the response to the Deepwater Horizon crisis, the authors Savas and Shaffer were members of the Flow Rate Technical Group's Plume Team who used ROV video to develop the FRTG's first official estimates of the oil leak rate. Savas and Shaffer developed an approach using the larger, faster jet features (e.g., turbulent eddies, vortices, entrained particles) in the near-field developing zone to measure discharge rates. The authors have since used the Berkeley Tow Tank to test this approach on submerged dye-colored water jets and compressed air jets. Image Correlation Velocimetry has been applied to measure the velocity of visible features. Results from tests in the Berkeley Tow Tank and submerged oil jets in the OHMSETT facility will be presented.

  14. A Controlled Environment System For Measuring Plant-Atmosphere Gas Exchange

    Science.gov (United States)

    James M. Brown

    1975-01-01

    Describes an inexpensive, efficient system for measuring plant-atmosphere gas exchange. Designed to measure transpiration from potted tree seedlings, it is readily adaptable for measuring other gas exchanges or gas exchange by plant parts. Light level, air and root temperature can be precisely controlled at minimum cost.

  15. Field measurements of tracer gas transport by barometric pumping

    International Nuclear Information System (INIS)

    Lagus, P.L.; McKinnis, W.B.; Hearst, J.R.; Burkhard, N.R.; Smith, C.F.

    1994-01-01

    Vertical gas motions induced by barometric pressure variations can carry radioactive gases out of the rubblized region produced by an underground nuclear explosion, through overburden rock, into the atmosphere. To better quantify transit time and amount of transport, field experiments were conducted at two sites on Pahute Mesa, Kapelli and Tierra, where radioactive gases had been earlier detected in surface cracks. At each site, two tracer gases were injected into the rubblized chimney 300-400 m beneath the surface and their arrival was monitored by concentration measurements in gas samples extracted from shallow collection holes. The first ''active'' tracer was driven by a large quantity of injected air; the second ''passive'' tracer was introduced with minimal gas drive to observe the natural transport by barometric pumping. Kapelli was injected in the fall of 1990, followed by Tierra in the fall of 1991. Data was collected at both sites through the summer of 1993. At both sites, no surface arrival of tracer was observed during the active phase of the experiment despite the injection of several million cubic feet of air, suggesting that cavity pressurization is likely to induce horizontal transport along high permeability layers rather than vertical transport to the surface. In contrast, the vertical pressure gradients associated with barometric pumping brought both tracers to the surface in comparable concentrations within three months at Kapelli, whereas 15 months elapsed before surface arrival at Tierra. At Kapelli, a quasisteady pumping regime was established, with tracer concentrations in effluent gases 1000 times smaller than concentrations thought to exist in the chimney. Tracer concentrations observed at Tierra were typically an order of magnitude smaller. Comparisons with theoretical calculations suggest that the gases are traveling through ∼1 millimeter vertical fractures spaced 2 to 4 meters apart. 6 refs., 18 figs., 3 tabs

  16. Neutron electric dipole moment measurement with a buffer gas comagnetometer

    International Nuclear Information System (INIS)

    Masuda, Yasuhiro; Asahi, Koichiro; Hatanaka, Kichiji; Jeong, Sun-Chan; Kawasaki, Shinsuke; Matsumiya, Ryohei; Matsuta, Kensaku; Mihara, Mototsugu; Watanabe, Yutaka

    2012-01-01

    A neutron EDM measurement with a comagnetometer is discussed. For magnetometry, polarized xenon atoms are injected into a cylindrical cell where a cylindrically symmetric magnetic field and an electric field are applied for the EDM measurement. The geometric phase effect (GPE), which originates from particle motion in a magnetic field gradient, is analyzed in terms of the Dyson series. The motion of the xenon atom is largely suppressed because of a small mean free path. The field gradient is controlled by means of NMR measurements, where the false effect of Earth's rotation is removed. As a result, the GPE is reduced below 10 −28 e cm. -- Highlights: ► A method of high precision neutron EDM measurement is described. ► Geometric phase effects are discussed in terms of Dyson series. ► A magnetic field drift is compensated by means of a buffer gas magnetometer. ► Geometric phase effects are greatly suppressed. ► The systematic error is reduced by two orders of magnitude compared with before.

  17. Neutron electric dipole moment measurement with a buffer gas comagnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Yasuhiro, E-mail: yasuhiro.masuda@kek.jp [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Asahi, Koichiro [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Hatanaka, Kichiji [RCNP, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Jeong, Sun-Chan; Kawasaki, Shinsuke [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Matsumiya, Ryohei [RCNP, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsuta, Kensaku; Mihara, Mototsugu [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Watanabe, Yutaka [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2012-03-19

    A neutron EDM measurement with a comagnetometer is discussed. For magnetometry, polarized xenon atoms are injected into a cylindrical cell where a cylindrically symmetric magnetic field and an electric field are applied for the EDM measurement. The geometric phase effect (GPE), which originates from particle motion in a magnetic field gradient, is analyzed in terms of the Dyson series. The motion of the xenon atom is largely suppressed because of a small mean free path. The field gradient is controlled by means of NMR measurements, where the false effect of Earth's rotation is removed. As a result, the GPE is reduced below 10{sup −28}e cm. -- Highlights: ► A method of high precision neutron EDM measurement is described. ► Geometric phase effects are discussed in terms of Dyson series. ► A magnetic field drift is compensated by means of a buffer gas magnetometer. ► Geometric phase effects are greatly suppressed. ► The systematic error is reduced by two orders of magnitude compared with before.

  18. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    Science.gov (United States)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  19. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Marques, J-L; Forster, G; Schein, J

    2013-01-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned

  20. Can radon gas measurements be used to predict earthquakes?

    International Nuclear Information System (INIS)

    2009-01-01

    After the tragic earthquake of April 6, 2009 in Aquila (Abruzzo), a debate has begun in Italy regarding the alleged prediction of this earthquake by a scientist working in the Gran Sasso National Laboratory, based on radon content measurements. Radon is a radioactive gas originating from the decay of natural radioactive elements present in the soil. IRSN specialists are actively involved in ongoing research projects on the impact of mechanical stresses on radon emissions from underground structures, and some of their results dating from several years ago are being brought up in this debate. These specialists are therefore currently presenting their perspective on the relationships between radon emissions and seismic activity, based on publications on the subject. (authors)

  1. Radon gas measurements inside houses of the Argentine Republic

    International Nuclear Information System (INIS)

    Canoba, Analia C.; Arnaud, Marta I.; Lopez, Fabio O.; Oliveira, Antonio

    2001-01-01

    Indoor radon gas concentrations were measured in dwellings in various cities of Argentina. Solid-state nuclear track, electrets and activated charcoal detectors were the methods used for monitoring the radon concentration.A total of 2034 homes were monitored since the beginning of this project in 1983. The monitored homes are constructed of a variety of building materials but most of them are built predominantly of bricks and concrete. The mean values calculated for the different cities are below 50 Bq m -3 . Very few values above 200 Bq m -3 were found and none exceeded 300 Bq m -3 . The mean value for the whole country is 34.6 Bq m -3 with a geometric mean of 25.0 Bq m -3 and the corresponding annual effective dose is 0.86 mSv. (author)

  2. Scaling behavior of gas permeability measurements in volcanic tuffs

    International Nuclear Information System (INIS)

    Tidwell, V.C.

    1994-01-01

    One of the critical issues facing the Yucca Mountain site characterization and performance assessment programs is the manner in which property scaling is addressed. Property scaling becomes an issue whenever heterogeneous media properties are measured at one scale but applied at another. A research program has been established to challenge current understanding of property scaling with the aim of developing and testing models that describe scaling behavior in a quantitative manner. Scaling of constitutive rock properties is investigated through physical experimentation involving the collection of suites of gas-permeability data measured over a range of discrete scales. The approach is to systematically isolate those factors believed to influence property scaling and investigate their relative contributions to overall scaling behavior. Two blocks of tuff, each exhibiting differing heterogeneity structure, have recently been examined. Results of the investigation show very different scaling behavior, as exhibited by changes in the distribution functions and variograms, for the two tuff samples. Even for the relatively narrow range of measurement scales employed significant changes in the distribution functions, variograms, and summary statistics occurred. Because such data descriptors will likely play an important role in calculating effective media properties, these results demonstrate both the need to understand and accurately model scaling behavior

  3. Fission gas release in LWR fuel measured during nuclear operation

    International Nuclear Information System (INIS)

    Appelhans, A.D.; Skattum, E.; Osetek, D.J.

    1980-01-01

    A series of fuel behavior experiments are being conducted in the Heavy Boiling Water Reactor in Halden, Norway, to measure the release of Xe, Kr, and I fission products from typical light water reactor design fuel pellets. Helium gas is used to sweep the Xe and Kr fission gases out of two of the Instrumented Fuel Assembly 430 fuel rods and to a gamma spectrometer. The measurements of Xe and Kr are made during nuclear operation at steady state power, and for 135 I following reactor scram. The first experiments were conducted at a burnup of 3000 MWd/t UO 2 , at bulk average fuel temperatures of approx. 850 K and approx. 23 kW/m rod power. The measured release-to-birth ratios (R/B) of Xe and Kr are of the same magnitude as those observed in small UO 2 specimen experiments, when normalized to the estimated fuel surface-to-volume ratio. Preliminary analysis indicates that the release-to-birth ratios can be calculated, using diffusion coefficients determined from small specimen data, to within a factor of approx. 2 for the IFA-430 fuel. The release rate of 135 I is shown to be approximately equal to that of 135 Xe

  4. Radon measurements over a natural-gas contaminated aquifer

    International Nuclear Information System (INIS)

    Palacios, D.; Fusella, E.; Avila, Y.; Salas, J.; Teixeira, D.; Fernández, G.; Salas, A.; Sajo-Bohus, L.; Greaves, E.; Barros, H.; Bolívar, M.; Regalado, J.

    2013-01-01

    Radon and thoron concentrations in soil pores in a gas production region of the Anzoategui State, Venezuela, were determined by active and passive methods. In this region, water wells are contaminated by natural gas and gas leaks exist in the nearby river. Based on soil gas Radon data surface hydrocarbon seeps were identified. Radon and thoron concentration maps show anomalously high values near the river gas leaks decreasing in the direction of water wells where natural gas is also detected. The area where the highest concentrations of 222 Rn were detected seems to indicate the surface projection of the aquifer contaminated with natural gas. The Radon/Thoron ratio revealed a micro-localized anomaly, indicating the area where the gas comes from deep layers of the subsoil. The radon map determined by the passive method showed a marked positive anomaly around abandoned gas wells. The high anomalous Radon concentration localized near the trails of ascending gas bubbles at the river indicates the zone trough where natural gases are ascending with greater ease, associated with a deep geological fault, being this the main source of methane penetration into the aquifer. It is suggested that the source of the natural gas may be due to leaks at deep sites along the structure of some of the abandoned wells located at the North-East of the studied area. - Highlights: ► High Radon/Thoron ratios were localized near the natural-gas emanations in a river. ► Natural gases are ascending trough a deep geological fault. ► Apparently, the radon anomaly shows the site where natural gas enters the aquifer. ► Natural gas source may be related to leaks in the structure of abandoned gas wells

  5. The two-phase flow IPTT method for measurement of nonwetting-wetting liquid interfacial areas at higher nonwetting saturations in natural porous media.

    Science.gov (United States)

    Zhong, Hua; Ouni, Asma El; Lin, Dan; Wang, Bingguo; Brusseau, Mark L

    2016-07-01

    Interfacial areas between nonwetting-wetting (NW-W) liquids in natural porous media were measured using a modified version of the interfacial partitioning tracer test (IPTT) method that employed simultaneous two-phase flow conditions, which allowed measurement at NW saturations higher than trapped residual saturation. Measurements were conducted over a range of saturations for a well-sorted quartz sand under three wetting scenarios of primary drainage (PD), secondary imbibition (SI), and secondary drainage (SD). Limited sets of experiments were also conducted for a model glass-bead medium and for a soil. The measured interfacial areas were compared to interfacial areas measured using the standard IPTT method for liquid-liquid systems, which employs residual NW saturations. In addition, the theoretical maximum interfacial areas estimated from the measured data are compared to specific solid surface areas measured with the N 2 /BET method and estimated based on geometrical calculations for smooth spheres. Interfacial areas increase linearly with decreasing water saturation over the range of saturations employed. The maximum interfacial areas determined for the glass beads, which have no surface roughness, are 32±4 and 36±5 cm -1 for PD and SI cycles, respectively. The values are similar to the geometric specific solid surface area (31±2 cm -1 ) and the N 2 /BET solid surface area (28±2 cm -1 ). The maximum interfacial areas are 274±38, 235±27, and 581±160 cm -1 for the sand for PD, SI, and SD cycles, respectively, and ~7625 cm -1 for the soil for PD and SI. The maximum interfacial areas for the sand and soil are significantly larger than the estimated smooth-sphere specific solid surface areas (107±8 cm -1 and 152±8 cm -1 , respectively), but much smaller than the N 2 /BET solid surface area (1387±92 cm -1 and 55224 cm -1 , respectively). The NW-W interfacial areas measured with the two-phase flow method compare well to values measured using the standard

  6. PIV Measurements of Gas Flow Fields from Burning End

    Science.gov (United States)

    Huang, Yifei; Wu, Junzhang; Zeng, Jingsong; Tang, Darong; Du, Liang

    2017-12-01

    To study the influence of cigarette gas on the environment, it is necessary to know the cigarette gas flow fields from burning end. By using PIV technique, in order to reveal velocity characteristics of gas flow fields, the velocities of cigarette gas flow fields was analyzed with different stepping motor frequencies corresponding to suction pressures, and the trend of velocity has been given with image fitting. The results shows that the velocities of the burning end increased with suction pressures; Between velocities of the burning end and suction pressures, the relations present polynomial rule; The cigarette gas diffusion in combustion process is faster than in the smoldering process.

  7. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  8. Introduction to wetting phenomena

    International Nuclear Information System (INIS)

    Indekeu, J.O.

    1995-01-01

    In these lectures the field of wetting phenomena is introduced from the point of view of statistical physics. The phase transition from partial to complete wetting is discussed and examples of relevant experiments in binary liquid mixtures are given. Cahn's concept of critical-point wetting is examined in detail. Finally, a connection is drawn between wetting near bulk criticality and the universality classes of surface critical phenomena. (author)

  9. Control of oral malodour by dentifrices measured by gas chromatography.

    Science.gov (United States)

    Newby, Evelyn E; Hickling, Jenneth M; Hughes, Francis J; Proskin, Howard M; Bosma, Marylynn P

    2008-04-01

    To evaluate the effect of toothpaste treatments on levels of oral volatile sulphur compounds (VSCs) measured by gas chromatography in two clinical studies. These were blinded, randomised, controlled, crossover studies with 16 (study A) or 20 (study B) healthy volunteers between the ages of 19-54. Study A: breath samples were collected at baseline, immediately and lhr after brushing. Four dentifrices (Zinc A, Zinc B, commercially available triclosan dentifrice and zinc free control) were evaluated. Study B: breath samples were collected at baseline, immediately, 1, 2, 3 and 7 hours after treatment. Subjects consumed a light breakfast then provided an additional breath sample between baseline assessment and treatment. Two dentifrices (gel-to-foam and a commercially available triclosan dentrifrice) were evaluated. Breath samples were collected in syringes and analysed for VSCs (hydrogen sulphide, methyl mercaptan and Total VSCs) utilising gas chromatography (GC) with flame photometric detection. Study A: immediately after treatment, a statistically significant reduction in VSCs from baseline was observed for Zinc A product only. A statistically significant reduction in VSCs from baseline was observed after 1 hour for all products. Both zinc products exhibited a significantly greater reduction from baseline VSCs than Colgate Total and Control at all time points. Study B: a statistically significant reduction in VSCs from baseline was observed at all time points for both products. The gel-to-foam product exhibited significantly greater reduction from baseline Total VSC concentration than Colgate Total at all time points from 1 hour post-treatment. Control of oral malodour by toothpaste treatment, evaluated as VSC levels using GC, has been demonstrated. Zinc is effective at reducing VSCs and the efficacy of zinc is formulation dependent. A gel-to-foam dentifrice was more effective at reducing VSCs than Colgate Total up to 7 hours.

  10. Haptic perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Dolfine Kosters, N.; Daanen, h.a.m.; Kappers, A.M.L.

    2012-01-01

    In daily life, people interact with textiles of different degrees of wetness, but little is known about the me-chanics of wetness perception. This paper describes an experiment with six conditions regarding haptic dis-crimination of the wetness of fabrics. Three materials were used: cotton wool,

  11. Haptic perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Kappers, Astrid M.L.; Daanen, H.A.M.

    2012-01-01

    In daily life, people interact with textiles of different degrees of wetness, but little is known about the mechanics of wetness perception. This paper describes an experiment with six conditions regarding haptic discrimination of the wetness of fabrics. Three materials were used: cotton wool,

  12. Spatial variations of wet deposition rates in an extended region of complex topography deduced from measurements of 210Pb soil inventories

    International Nuclear Information System (INIS)

    Branford, D.; Mourne, R.W.; Fowler, D.

    1998-01-01

    The radionuclide 210 Pb derived from gaseous 222 Rn present in the atmosphere becomes attached to the same aerosols as the bulk of the main pollutants sulphur and nitrogen. When scavenged from the atmosphere by precipitation, the 210 Pb is readily attached to organic matter in the surface horizons of the soil. Inventories of 210 Pb in soil can thus be used to measure the spatial variations in wet (or cloud) deposition due to orography averaged over many precipitation events (half-life of 210 Pb is 22·3 year). Measurements of soil 210 Pb inventories were made along a transect through complex terrain in the Scottish Highlands to quantify the orographic enhancement of wet deposition near the summits of the three mountains Ben Cruachan, Beinn Dorain and Ben Lawers, which, respectively, lie at distances of approximately 30, 55 and 80 km from the coast in the direction of the prevailing wind. The inventory of 210 Pb on the wind-facing slopes of Ben Cruachan shows an increase with altitude that rises faster than the precipitation rate, which is indicative of seeder-feeder scavenging of orographic cloud occurring around the summit. Results for Beinn Dorain show a smaller rise with altitude whereas those for Ben Lawers give no indication of a rise. It is concluded that the seeder-feeder mechanism in regions of complex topology decreases in effectiveness as a function of distance inland along the direction of the prevailing wind. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Greenhouse Gas Source Attribution: Measurements Modeling and Uncertainty Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Safta, Cosmin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sargsyan, Khachik [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Najm, Habib N. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-CA), Livermore, CA (United States); LaFranchi, Brian W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ivey, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Schrader, Paul E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michelsen, Hope A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bambha, Ray P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    In this project we have developed atmospheric measurement capabilities and a suite of atmospheric modeling and analysis tools that are well suited for verifying emissions of green- house gases (GHGs) on an urban-through-regional scale. We have for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate atmospheric CO2 . This will allow for the examination of regional-scale transport and distribution of CO2 along with air pollutants traditionally studied using CMAQ at relatively high spatial and temporal resolution with the goal of leveraging emissions verification efforts for both air quality and climate. We have developed a bias-enhanced Bayesian inference approach that can remedy the well-known problem of transport model errors in atmospheric CO2 inversions. We have tested the approach using data and model outputs from the TransCom3 global CO2 inversion comparison project. We have also performed two prototyping studies on inversion approaches in the generalized convection-diffusion context. One of these studies employed Polynomial Chaos Expansion to accelerate the evaluation of a regional transport model and enable efficient Markov Chain Monte Carlo sampling of the posterior for Bayesian inference. The other approach uses de- terministic inversion of a convection-diffusion-reaction system in the presence of uncertainty. These approaches should, in principle, be applicable to realistic atmospheric problems with moderate adaptation. We outline a regional greenhouse gas source inference system that integrates (1) two ap- proaches of atmospheric dispersion simulation and (2) a class of Bayesian inference and un- certainty quantification algorithms. We use two different and complementary approaches to simulate atmospheric dispersion. Specifically, we use a Eulerian chemical transport model CMAQ and a Lagrangian Particle Dispersion Model - FLEXPART-WRF. These two models share the same WRF

  14. Apparatus using radioactive particles for measuring gas temperatures

    International Nuclear Information System (INIS)

    Compton, W.A.; Duffy, T.E.; Seegall, M.I.

    1975-01-01

    Apparatus for producing a signal indicative of the temperature of a heated gas is described comprising a beta particle source; a beta particle detector which intercepts particles emitted from said source; circuitry for converting the detector output to a signal indicative of the density of the gas; a pressure transducer for generating a signal indicative of the pressure on the gas; and circuitry for dividing the pressure signal by the density signal to produce a signal indicative of the average temperature of the gas along the path between the beta particle source and the beta particle detector. (auth)

  15. Portable rapid gas content measurement - an opportunity for a step change in the coal industry?

    International Nuclear Information System (INIS)

    Beamish, Basil; Kizil, Mehmet; Gu, Ming

    2013-01-01

    The last major advance in gas content measurement for coal seams was the introduction of the quick crush technique in the early 1990s. This is a laboratory test method that has proven very reliable over the years. Recent laboratory testing using a portable quick crushing device, known as the portable gas content analyser, has produced consistent gas content results for a set of core samples obtained from a single borehole that intersected four coal seams. The retained gas content values obtained for the seams show the same increasing gas content pattern and gas composition change with depth as the standard quick crush technique. Use of the portable gas content analyser provides the opportunity to produce rapid, reliable gas content measurement of coal that could be developed for assessing gas compliance cores and outburst-prone conditions at a mine site.

  16. LHCb: A novel method for an absolute luminosity measurement at LHCb using beam-gas imaging

    CERN Multimedia

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used van der Meer scan method (VDM). This poster presents the principles of the Beam Gas Imaging method used to measure the beam overlap integral. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch.

  17. New Measures to Safeguard Gas Centrifuge Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Jr., James [ORNL; Garner, James R [ORNL; Whitaker, Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA; Gilligan, Kimberly V [ORNL; Younkin, James R [ORNL; Hooper, David A [ORNL; Henkel, James J [ORNL; Krichinsky, Alan M [ORNL

    2011-01-01

    As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

  18. Development of recommended practices and guidance documents for upstream oil and gas flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Eivind; Scheers, Lex; Ting, Frank; Letton, Chip

    2005-07-01

    As first stated in the Introduction, improvements in multiphase flow meters during the last 15 years have resulted in their increased usage in upstream oil and gas applications, especially in difficult offshore locations both topside and deep subsea. To address user needs for information and standardization in the area, documentation has recently been created under the auspices of the NFOGM, API, and ISO. Our intent here was to familiarize potential users with the three new documents, which should be helpful in a number of respects, e.g., (a) distribution of best knowledge and operational practices on the subject, (b) provision of a common language for discussing multiphase flow, and (c) accounting for the requirements of governing regulatory authorities. At this stage of completion of NFOGM, API, and ISO reports, a natural question arises as to what the future holds for another round of flow measurement documentation. Candidate areas include: 1) In Situ Verification of Multiphase Flow Meters. 2) Wet Gas Flow Measurement. 3) Flare Gas Meters. 4) Virtual Metering. 5) Composition and Phase Behavior Issues In Measurement. 6) Flow Measurement Uncertainty. Addressing certain of these is already being proposed in several possible venues, among which are (1) the DeepStar Consortium, (2) a JIP for investigating total system (meter + flowline + separator) uncertainty organized by a group at Tulsa University, and (3) a program for development of drilling and production capabilities in ultradeep water to be sponsored by the US Department of Energy. The creation of the three documents discussed in this paper demonstrates the benefits that strong international cooperation can achieve in producing standardization documents, ensuring their true global input and acceptance. On the other hand, it should also be questioned why two or more documents are required, which are the result of much duplication of effort. For example, although there are differences between API RP86 and the

  19. Wetting and adhesion evaluation of cosmetic ingredients and products: correlation of in vitro-in vivo contact angle measurements.

    Science.gov (United States)

    Capra, P; Musitelli, G; Perugini, P

    2017-08-01

    The aim of this work was to use the contact angle measurement in order to predict the behaviour of ingredients and finished cosmetic products on skin to improve skin feel and product texture. Different classes of cosmetic ingredients and formulations were evaluated. The contact angle measurements were carried out by the sessile drop method using an apparatus, designed and set up in laboratory. Glass, Teflon and human skin were the reference substrates. In a preliminary phase, TEWL parameter, sebum content and hydration of human skin were measured to set up method. Data demonstrated that glass substrate may be used as replacement of the skin:critical surface tension of skin and glass were about of 27 and 31 dyne cm -1 , respectively. Non-ionic surfactant with increasing HLB was evaluated: a correlation between contact angle measured and HLB was not observed because of different and complex molecular structure. In detail, ethylhexyl hydroxystearate (θ glass = 17.1°) showed lower contact angle value with respect to Polysorbate 20 (θ glass = 28.1°). Sodium laureth sulphate and stearalkonium chloride were also evaluated: anionic molecule showed more affinity for glass with respect to Teflon (θ glass = 21.7° and θ Teflon = 52.3°). Lipids and silicones showed different affinity for substrate according to hydrophilic groups and hydrocarbon chain: contact angles of silicones remained unchanged independently from substrate. Finished cosmetic products (O/W, W/O emulsions, cleansing oil, dry skin oil) showed different profiles according to surfactant and its affinity for continuous phase of the formulation. Comparing the values of the contact angle on skin of non-ionic surfactants, as ethylhexyl hydroxystearate and Polysorbate 20, they showed values lower (near to zero) than ones of sodium laureth sulphate and Stearalkonium Chloride (21.7° and 66.8°, respectively). Finally, finished cosmetic products tested on human skin showed different profile: corresponded contact

  20. Wettability determination by contact angle measurements: hvbB coal-water system with injection of synthetic flue gas and CO2.

    Science.gov (United States)

    Shojai Kaveh, Narjes; Rudolph, E Susanne J; Wolf, Karl-Heinz A A; Ashrafizadeh, Seyed Nezameddin

    2011-12-01

    Geological sequestration of pure carbon dioxide (CO(2)) in coal is one of the methods to sequester CO(2). In addition, injection of CO(2) or flue gas into coal enhances coal bed methane production (ECBM). The success of this combined process depends strongly on the wetting behavior of the coal, which is function of coal rank, ash content, heterogeneity of the coal surface, pressure, temperature and composition of the gas. The wetting behavior can be evaluated from the contact angle of a gas bubble, CO(2) or flue gas, on a coal surface. In this study, contact angles of a synthetic flue gas, i.e. a 80/20 (mol%) N(2)/CO(2) mixture, and pure CO(2) on a Warndt Luisenthal (WL) coal have been determined using a modified pendant drop cell in a pressure range from atmospheric to 16 MPa and a constant temperature of 318 K. It was found that the contact angles of flue gas on WL coal were generally smaller than those of CO(2). The contact angle of CO(2) changes from water-wet to gas-wet by increasing pressure above 8.5 MPa while the one for the flue gas changes from water-wet to intermediate-wet by increasing pressure above 10 MPa. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. PREFACE: Dynamics of wetting Dynamics of wetting

    Science.gov (United States)

    Grest, Gary S.; Oshanin, Gleb; Webb, Edmund B., III

    2009-11-01

    Capillary phenomena associated with fluids wetting other condensed matter phases have drawn great scientific interest for hundreds of years; consider the recent bicentennial celebration of Thomas Young's paper on equilibrium contact angles, describing the geometric shape assumed near a three phase contact line in terms of the relevant surface energies of the constituent phases [1]. Indeed, nearly a century has passed since the seminal papers of Lucas and Washburn, describing dynamics of capillary imbibition [2, 3]. While it is generally appreciated that dynamics of fluid wetting processes are determined by the degree to which a system is out of capillary equilibrium, myriad complications exist that challenge the fundamental understanding of dynamic capillary phenomena. The topic has gathered much interest from recent Nobel laureate Pierre-Gilles de Gennes, who provided a seminal review of relevant dissipation mechanisms for fluid droplets spreading on solid surfaces [4] Although much about the dynamics of wetting has been revealed, much remains to be learned and intrinsic technological and fundamental interest in the topic drives continuing high levels of research activity. This is enabled partly by improved experimental capabilities for resolving wetting processes at increasingly finer temporal, spatial, and chemical resolution. Additionally, dynamic wetting research advances via higher fidelity computational modeling capabilities, which drive more highly refined theory development. The significance of this topic both fundamentally and technologically has resulted in a number of reviews of research activity in wetting dynamics. One recent example addresses the evaluation of existing wetting dynamics theories from an experimentalist's perspective [5]. A Current Opinion issue was recently dedicated to high temperature capillarity, including dynamics of high temperature spreading [6]. New educational tools have recently emerged for providing instruction in wetting

  2. How to choose methods for lake greenhouse gas flux measurements?

    Science.gov (United States)

    Bastviken, David

    2017-04-01

    Lake greenhouse gas (GHG) fluxes are increasingly recognized as important for lake ecosystems as well as for large scale carbon and GHG budgets. However, many of our flux estimates are uncertain and it can be discussed if the presently available data is representative for the systems studied or not. Data are also very limited for some important flux pathways. Hence, many ongoing efforts try to better constrain fluxes and understand flux regulation. A fundamental challenge towards improved knowledge and when starting new studies is what methods to choose. A variety of approaches to measure aquatic GHG exchange is used and data from different methods and methodological approaches have often been treated as equally valid to create large datasets for extrapolations and syntheses. However, data from different approaches may cover different flux pathways or spatio-temporal domains and are thus not always comparable. Method inter-comparisons and critical method evaluations addressing these issues are rare. Emerging efforts to organize systematic multi-lake monitoring networks for GHG fluxes leads to method choices that may set the foundation for decades of data generation and therefore require fundamental evaluation of different approaches. The method choices do not only regard the equipment but also for example consideration of overall measurement design and field approaches, relevant spatial and temporal resolution for different flux components, and accessory variables to measure. In addition, consideration of how to design monitoring approaches being affordable, suitable for widespread (global) use, and comparable across regions is needed. Inspired by discussions with Prof. Dr. Cristian Blodau during the EGU General Assembly 2016, this presentation aims to (1) illustrate fundamental pros and cons for a number of common methods, (2) show how common methodological approaches originally adapted for other environments can be improved for lake flux measurements, (3) suggest

  3. Metal oxide-based gas sensor and microwave broad-band measurements: an innovative approach to gas sensing

    International Nuclear Information System (INIS)

    Jouhannaud, J; Rossignol, J; Stuerga, D

    2007-01-01

    We outline the development of a gas sensor using microwave technology (0.3 MHz to 3 GHz). The sensor is a coaxial structure into which is introduced a sensitive material. An electromagnetic field (microwave), sent out through the sensor by a vectorial network analyzer, solicits the sensitive material exposed to a gas. The observed variation in the sensor response is due to the variation in the adsorption of this gas. SrTiO 3 , demonstrated to be the highly sensitive to water vapour, is exposed to different gases (saturated vapour of water, ethanol and toluene). The response of the sensor is quantitative and typical for each gas. This method of measurement leads to the development of an alternative to the current gas sensor

  4. Energy Demodulation Algorithm for Flow Velocity Measurement of Oil-Gas-Water Three-Phase Flow

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    Full Text Available Flow velocity measurement was an important research of oil-gas-water three-phase flow parameter measurements. In order to satisfy the increasing demands for flow detection technology, the paper presented a gas-liquid phase flow velocity measurement method which was based on energy demodulation algorithm combing with time delay estimation technology. First, a gas-liquid phase separation method of oil-gas-water three-phase flow based on energy demodulation algorithm and blind signal separation technology was proposed. The separation of oil-gas-water three-phase signals which were sampled by conductance sensor performed well, so the gas-phase signal and the liquid-phase signal were obtained. Second, we used the time delay estimation technology to get the delay time of gas-phase signals and liquid-phase signals, respectively, and the gas-phase velocity and the liquid-phase velocity were derived. At last, the experiment was performed at oil-gas-water three-phase flow loop, and the results indicated that the measurement errors met the need of velocity measurement. So it provided a feasible method for gas-liquid phase velocity measurement of the oil-gas-water three-phase flow.

  5. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  6. Prediction of forage intake using in vitro gas production methods: Comparison of multiphase fermentation kinetics measured in an automated gas test, and combined gas volume and substrate degradability measurements in a manual syringe system

    NARCIS (Netherlands)

    Blümmel, M.; Cone, J.W.; Gelder, van A.H.; Nshalai, I.; Umunna, N.N.; Makkar, H.P.S.; Becker, K.

    2005-01-01

    This study investigated two approaches to in vitro analysis of gas production data, being a three phase model with long (¿72 h) incubation times, to obtain kinetics and asymptotic values of gas production, and combination of gas volume measurements with residue determinations after a relatively

  7. Measures for the explosion protection for gas systems; Massnahmen des Explosionsschutzes fuer Gasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Wolfgang [Thyssengas GmbH, Duisburg (Germany). Anlagentechnik Nord; Seemann, Albert [BG ETEM Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse, Koeln (Germany)

    2012-04-15

    In order to protect employees, technical and organizational measures for explosion protection have to be provided to gas plants with potentially explosive areas. These measures have to be documented in the explosion protection document in accordance with paragraph 6 section 1 of the regulation of industrial safety. The contribution under consideration presents an overview on the measures for explosion protection for gas systems.

  8. Study on Method of Ultrasonic Gas Temperature Measure Based on FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Wen, S H; Xu, F R [Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004 (China)

    2006-10-15

    It is always a problem to measure instantaneous temperature of high-temperature and high-pressure gas. There is difficulty for the conventional method of measuring temperature to measure quickly and exactly, and the measuring precision is low, the ability of anti-jamming is bad, etc. So the article introduces a method of measuring burning gas temperature using ultrasonic based on Field-Programmable Gate Array (FPGA). The mathematic model of measuring temperature is built with the relation of velocity of ultrasonic transmitting and gas Kelvin in the ideal gas. The temperature can be figured out by measuring the difference of ultrasonic frequency {delta}f. FPGA is introduced and a high-precision data acquisition system based on digital phase-shift technology is designed. The feasibility of proposed above is confirmed more by measuring pressure of burning gas timely. Experimental result demonstrates that the error is less than 12.. and the precision is heightened to 0.8%.

  9. Wetting of Water on Graphene

    KAUST Repository

    Bera, Bijoyendra; Shahidzadeh, Noushine; Mishra, Himanshu; Bonn, Daniel

    2016-01-01

    The wetting properties of graphene have proven controversial and difficult to assess. The presence of a graphene layer on top of a substrate does not significantly change the wetting properties of the solid substrate, suggesting that a single graphene layer does not affect the adhesion between the wetting phase and the substrate. However, wetting experiments of water on graphene show contact angles that imply a large amount of adhesion. Here, we investigate the wetting of graphene by measuring the mass of water vapor adsorbing to graphene flakes of different thickness at different relative humidities. Our experiments unambiguously show that the thinnest of graphene flakes do not adsorb water, from which it follows that the contact angle of water on these flakes is ~180o. Thicker flakes of graphene nanopowder, on the other hand, do adsorb water. A calculation of the van der Waals (vdW) interactions that dominate the adsorption in this system confirms that the adhesive interactions between a single atomic layer of graphene and water are so weak that graphene is superhydrophobic. The observations are confirmed in an independent experiment on graphene-coated water droplets that shows that it is impossible to make liquid 'marbles' with molecularly thin graphene.

  10. Wetting of Water on Graphene

    KAUST Repository

    Bera, Bijoyendra

    2016-11-28

    The wetting properties of graphene have proven controversial and difficult to assess. The presence of a graphene layer on top of a substrate does not significantly change the wetting properties of the solid substrate, suggesting that a single graphene layer does not affect the adhesion between the wetting phase and the substrate. However, wetting experiments of water on graphene show contact angles that imply a large amount of adhesion. Here, we investigate the wetting of graphene by measuring the mass of water vapor adsorbing to graphene flakes of different thickness at different relative humidities. Our experiments unambiguously show that the thinnest of graphene flakes do not adsorb water, from which it follows that the contact angle of water on these flakes is ~180o. Thicker flakes of graphene nanopowder, on the other hand, do adsorb water. A calculation of the van der Waals (vdW) interactions that dominate the adsorption in this system confirms that the adhesive interactions between a single atomic layer of graphene and water are so weak that graphene is superhydrophobic. The observations are confirmed in an independent experiment on graphene-coated water droplets that shows that it is impossible to make liquid \\'marbles\\' with molecularly thin graphene.

  11. IR and UV gas absorption measurements during NOx reduction on an industrial natural gas fired power plant

    DEFF Research Database (Denmark)

    Stamate, Eugen; Chen, Weifeng; Jørgensen, L.

    2010-01-01

    NOx reduction of flue gas by plasma-generated ozone was investigated in pilot test experiments on an industrial power plant running on natural gas. Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx slightly below two. Fourier transform infrared and ultraviolet absorption...... spectroscopy were used for spatial measurements of stable molecules and radicals along the reduction reactor. Reactions of O3 injected in the flue gas in the reduction reactor were also modeled. Experiments are in good agreement with numerical simulations. The operation costs for NOx reduction were estimated...

  12. In situ gas temperature measurements by UV-absorption spectroscopy

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    2009-01-01

    The absorption spectrum of the NO A(2)Sigma(+) uniform and stable gas temperatures over a 0.533 m path....... The accuracy of both methods is discussed. Validation of the classical Lambert-Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 degrees C over an optical absorption path length of 0.533 m....

  13. THERMAL TRANSFERS IN WET HYPERBARIC ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Tamara STANCIU

    2014-05-01

    Full Text Available The heat losses of human body are greater in underwater environment than in dry, normal atmosphere, due to the great heat capacity of water. Body temperature of divers in immersion was studied taking into account the pressure the divers are subjected to. The theoretic equation that describes the total heat transfer- at both levels: skin and respiratory system- was established, considering conduction, convection and respiratory gas heating and humidification. The body temperature of the divers was measured in a series of dives at different depths of immersion, conducted in the wet simulator of the Diving Center, in Constanta. The experimental results were in good accordance with the temperature predicted by the mathematical model.

  14. The action of cellulose-based and conventional flotation reagents under dry and wet conditions correlating inverse gas chromatography to microflotation studies

    OpenAIRE

    Hartmann, R. (R.); Rudolph, M. (M.); Ämmälä, A. (A.); Illikainen, M. (M.)

    2017-01-01

    Abstract The fundamental formation of the three phase contact in flotation is an intensively and controversially discussed phenomenon and the contact angle method is usually employed to characterise the wettability of solid surfaces. A more recent technique to explore the hydrophobicity of solid particulate phases is inverse gas chromatography (iGC) which is used to quantify the wettability of solid surfaces through thermodynamic parameters. In this article, the recently introduced net fre...

  15. Characterization and measurement of hybrid gas journal bearings

    Science.gov (United States)

    Lawrence, Tom Marquis

    This thesis concentrates on the study of hybrid gas journal bearings (bearings with externally pressurized mass addition). It differs from most work in that it goes back to "basics" to explore the hydrodynamic phenomena in the bearing gap. The thesis compares geometrically identical bearings with 2 configurations of external pressurization, porous liners where mass-addition compensation is varied by varying the liner's permeability, and bushings with 2 rows of 6 feedholes where the mass-addition compensation is varied by the feedhole diameter. Experimentally, prototype bearings with mass-addition compensation that spans 2 orders of magnitude with differing clearances are built and their aerostatic properties and mass addition characteristics are thoroughly tested. The fundamental equations for compressible, laminar, Poiseuille flow are used to suggest how the mass flow "compensation" should be mathematically modeled. This is back-checked against the experimental mass flow measurements and is used to determine a mass-addition compensation parameter (called Kmeas) for each prototype bushing. In so doing, the methodology of modeling and measuring the mass addition in a hybrid gas bearing is re-examined and an innovative, practical, and simple method is found that makes it possible to make an "apples-to-apples" comparison between different configurations of external pressurization. This mass addition model is used in conjunction with the Reynolds equation to perform theory-based numerical analysis of virtual hybrid gas journal bearings (CFD experiments). The first CFD experiments performed use virtual bearings modeled to be identical to the experimental prototypes and replicate the experimental work. The results are compared and the CFD model is validated. The ontological significance of appropriate dimensionless similitude parameters is re-examined and a, previously lacking, complete set of similitude factors is found for hybrid bearings. A new practical method is

  16. Measurement of sulphur-35 in the coolant gas of the Windscale Advanced Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Sandalls, F.J.

    1978-03-01

    Sulphur is an important element in some food chains and the release of radioactive sulphur to the environment must be closely controlled if the chemical form is such that it is available or potentially available for entering food chains. The presence of sulphur-35 in the coolant gas of the Windscale Advanced Gas-Cooled Reactor warranted a study to assess the quantity and chemical form of the radioactive sulphur in order to estimate the magnitude of the potential environmental hazard which might arise from the release of coolant gas from Civil Advanced Gas-Cooled Reactors. A combination of gas chromatographic and radiochemical analyses revealed carbonyl sulphide to be the only sulphur-35 compound present in the coolant gas of the Windscale Reactor. The concentration of carbonyl sulphide was found to lie in the range 40 to 100 x 10 -9 parts by volume and the sulphur-35 specific activity was about 20 mCi per gramme. The analytical techniques are described in detail. The sulphur-35 appears to be derived from the sulphur and chlorine impurities in the graphite. A method for the preparation of carbonyl sulphide labelled with sulphur-35 is described. (author)

  17. The role of measured data in a free natural gas market

    International Nuclear Information System (INIS)

    Ter Horst, G.J.P.; Fransen, T.

    2000-01-01

    As from 2002 medium-scale customers connected to the distribution network of the regional natural gas distribution companies will be able to purchase their gas from third parties. In order to calculate the energy (gas) transmission, distribution and supply costs, it is necessary to measure and record the offtakes of all the customers with freedom of choice on an hourly basis. The Dutch natural gas trading company Gasunie usually carries out these measurements for the present 350 medium-scale customers, but for the 14,000 customers by 2002 a different solution probably must be chosen. This is because most offtakes do not have any provision for measuring consumption on an hourly basis. Following the electricity market, offtake profiles will be prepared for most customers. If the parties cannot reach agreement on those profiles, expensive measuring equipment has to be installed on site. The Standard Online Information Server (Solis) is used in a project to transfer the data measured online from a remote customer to the electricity supplier. Solis will also be used for transferring gas data. The Dutch natural gas research institute Gastec has carried out a definition study into the use of gas consumption profiles for assessing the gas balance. Gastec and KEMA (research institute for the Dutch electric power companies) will jointly further develop this gas consumption model for both the gas and electricity market

  18. Use of argon to measure gas exchange in turbulent mountain streams

    Science.gov (United States)

    Hall, Robert O., Jr.; Madinger, Hilary L.

    2018-05-01

    Gas exchange is a parameter needed in stream metabolism and trace gas emissions models. One way to estimate gas exchange is via measuring the decline of added tracer gases such as sulfur hexafluoride (SF6). Estimates of oxygen (O2) gas exchange derived from SF6 additions require scaling via Schmidt number (Sc) ratio, but this scaling is uncertain under conditions of high gas exchange via bubbles because scaling depends on gas solubility as well as Sc. Because argon (Ar) and O2 have nearly identical Schmidt numbers and solubility, Ar may be a useful tracer gas for estimating stream O2 exchange. Here we compared rates of gas exchange measured via Ar and SF6 for turbulent mountain streams in Wyoming, USA. We measured Ar as the ratio of Ar : N2 using a membrane inlet mass spectrometer (MIMS). Normalizing to N2 confers higher precision than simply measuring [Ar] alone. We consistently enriched streams with Ar from 1 to 18 % of ambient Ar concentration and could estimate gas exchange rate using an exponential decline model. The mean ratio of gas exchange of Ar relative to SF6 was 1.8 (credible interval 1.1 to 2.5) compared to the theoretical estimate 1.35, showing that using SF6 would have underestimated exchange of Ar. Steep streams (slopes 11-12 %) had high rates of gas exchange velocity normalized to Sc = 600 (k600, 57-210 m d-1), and slope strongly predicted variation in k600 among all streams. We suggest that Ar is a useful tracer because it is easily measured, requires no scaling assumptions to estimate rates of O2 exchange, and is not an intense greenhouse gas as is SF6. We caution that scaling from rates of either Ar or SF6 gas exchange to CO2 is uncertain due to solubility effects in conditions of bubble-mediated gas transfer.

  19. Upper Paleozoic coal measures and unconventional natural gas systems of the Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    2012-11-01

    Full Text Available Upper Paleozoic coal measures in the Ordos Basin consist of dark mudstone and coal beds and are important source rocks for gas generation. Gas accumulations include coal-bed methane (CBM, tight gas and conventional gas in different structural areas. CBM accumulations are mainly distributed in the marginal area of the Ordos Basin, and are estimated at 3.5 × 1012 m3. Tight gas accumulations exist in the middle part of the Yishan Slope area, previously regarded as the basin-centered gas system and now considered as stratigraphic lithologic gas reservoirs. This paper reviews the characteristics of tight gas accumulations: poor physical properties (porosity < 8%, permeability < 0.85 × 10−3 μm2, abnormal pressure and the absence of well-defined gas water contacts. CBM is a self-generation and self-reservoir, while gas derived from coal measures migrates only for a short distance to accumulate in a tight reservoir and is termed near-generation and near-reservoir. Both CBM and tight gas systems require source rocks with a strong gas generation ability that extends together over wide area. However, the producing area of the two systems may be significantly different.

  20. Soil gas radon and thoron measurements in some Venezuelan oilfields

    International Nuclear Information System (INIS)

    Fernandez, Daniel Palacios; Yininber Avila; Teixeira, Diana; Sajo-Bohus, Laszlo; Greaves, Eduardo; Barros, Haydn; Fusella, Emidio; Salas, Johnny; Fernandez, Guillermo; Bolivar, Manuel; Regalado, Jimmy

    2016-01-01

    Radon and thoron concentrations in soil gas were studied in some Venezuelan oilfields using passive and active methods. In some cases, investigations indicated a strong correlation between oil production areas and the intensity of radon signals, while in others a decrease in radon concentration was observed. This behavior was explained on the basis of different geological structures of the associated reservoir traps. Geological faults associated with petroleum systems were well recognized by the radon and thoron anomalies. Possible conduits and sources responsible for the occurrence of natural gas in a river and in an aquifer were identified and localized. (author)

  1. Waste Gas And Particulate Control Measures For Laser Cutters In The Automotive Cloth Industry

    Science.gov (United States)

    Ball, R. D.; Kulik, B. F.; Stoncel, R. J.; Tan, S. L.

    1986-11-01

    Demands for greater flexibility and accuracy in the manufacture of automobile trim parts has made single-ply laser cutting an attractive proposition. Lasers are able to cut a large variety of cloth types, from vinyls to velours. Unlike mechanically cut parts, which in the case of velours produce rough edges and dust problems, laster cutting of parts produces smooth edges, fumes and fine particulate. A detailed study of the nature of the laser effluent from a cross section of typical synthetic cloth found in an automotive trim plant was undertaken. Most samples were cut by a fast axial flow, 500 Watt, continuous wave CO2 laser. A 254 mm (10-inch) focussing optics package was used. The width of the kerf varied with the material, and values were determined at between 0.2 and 0.7 mm. Particle size distribution analysis and rates of particulate emission for each cloth were determined. Gases were collected in gas sample bags and analyzed using Fourier transform infrared analysis. Low boiling point organics were collected on activated charcoal tubes, identified on a gas chromatograph mass spectrometer, and quantified on a gas chromatograph. Inorganic contaminants were collected on filter paper and analysed on an inductively coupled plasma atomic emission spectrometer. A number of different effluent control systems were evaluated. Due to the very fine and sticky nature of the particulate, filters capable of removing particulate sizes in the 10 μm or lower range, tend to clog rapidly. Laboratory scale models of wet scrubbers, and electrostatic precipitators were built and tested. The most effective dust and effluent gas control was given by a wet electrostatic precipitator. This system, in conjunction with a scrubber, should maintain emission levels within environmental standards.

  2. A comparison of contemporary and retrospective radon gas measurements in high radon dwellings in Ireland

    International Nuclear Information System (INIS)

    Kelleher, K.; McLaughlin, J.P.; Fenton, D.; Colgan, P.A.

    2006-01-01

    Little correlations has been found between contemporary radon gas measurements made in the past and retrospective radon gas measurements in Irish dwellings. This would suggest that these two techniques would result in two significantly different cumulative radon exposure estimates. Contemporary radon gas measurements made a few years apart in the same room of a dwelling were found to be significantly different. None of these differences could be explained by known changes to the rooms themselves., such ventilation or structural alterations to the room. This highlights the limitations of the contemporary radon gas measurements as a surrogate measurement for use in residential radon epidemiology. The contemporary radon gas measurements made by the Radiological Protection Institute of Ireland (R.P.I.I.) and University College of Dublin (U.C.D.) do not cover the same exposure period as the retrospective estimates and so the accuracy of the retrospective measurements cannot be demonstrated. A weak correlation can be seen between the retrospective radon gas estimates and a combination of the two contemporary radon gas estimates. It is not unreasonable to expect improvement in the correlation if further contemporary radon gas measurements were made in these rooms. (N.C.)

  3. Characterization of the mechanical and hydraulic damage in the excavation damaged zone of MHM with gas permeability measurement

    International Nuclear Information System (INIS)

    Yang, D.

    2008-09-01

    water retention curve, the kinetic dehydration, the dehydration shrink and wetting crack in samples were measured and analyzed. The coefficient of hydraulic diffusion determined from the evolution of mass is about 5.10 -10 m 2 .s -1 . The gas permeability (k) under the isotropic stress of 5 MPa increases from 10 -21 to 10 -18 m 2 when the imposed relative humidity decreases from 98 % to 25 %. A quasi-linear relation between log(k) and Saturation has been observed and mathematically formulated. The gas permeability as a function of deviator stress has also been studied and the results confirm that the effect of the deviator is not evident, even when the deviator excesses the damage threshold. These results coincide with Zhang's observations on the same rock of MHM. The deformation and the acoustics velocity of samples have been traced during the tests and the microstructure of mudstone has been studied with the method of mercury intrusion. The factors influencing the measure of gas permeability, such as the Klinkenberg effect, the variation of saturation during the tests, the dissolution of gas in water and the water transformation due to the gas pressure, especially the leak tightness of the testing system, have been discussed in the study. (author)

  4. Device for precision measurement of speed of sound in a gas

    Science.gov (United States)

    Kelner, Eric; Minachi, Ali; Owen, Thomas E.; Burzynski, Jr., Marion; Petullo, Steven P.

    2004-11-30

    A sensor for measuring the speed of sound in a gas. The sensor has a helical coil, through which the gas flows before entering an inner chamber. Flow through the coil brings the gas into thermal equilibrium with the test chamber body. After the gas enters the chamber, a transducer produces an ultrasonic pulse, which is reflected from each of two faces of a target. The time difference between the two reflected signals is used to determine the speed of sound in the gas.

  5. Particle-assisted wetting

    International Nuclear Information System (INIS)

    Xu Hui; Yan Feng; Tierno, Pietro; Marczewski, Dawid; Goedel, Werner A

    2005-01-01

    Wetting of a solid surface by a liquid is dramatically impeded if either the solid or the liquid is decorated by particles. Here it is shown that in the case of contact between two liquids the opposite effect may occur; mixtures of a hydrophobic liquid and suitable particles form wetting layers on a water surface though the liquid alone is non-wetting. In these wetting layers, the particles adsorb to, and partially penetrate through, the liquid/air and/or the liquid/water interface. This formation of wetting layers can be explained by the reduction in total interfacial energy due to the replacement of part of the fluid/fluid interfaces by the particles. It is most prominent if the contact angles at the fluid/fluid/particle contact lines are close to 90 0

  6. Technical measurement of small fission gas inventory in fuel rod with laser puncturing system

    International Nuclear Information System (INIS)

    Kim, Hee Moon; Kim, Sung Ryul; Lee, Byoung Oon; Yang, Yong Sik; Baek, Sang Ryul; Song, Ung Sup

    2012-01-01

    The fission gas release cause degradation of fuel rod. It influences fuel temperature and internal pressure due to low thermal conductivity. Therefore, fission gas released to internal void of fuel rod must be measured with burnup. To measure amount of fission gas, fuel rod must be punctured by a steel needle in a closed chamber. Ideal gas law(PV=nRT) is applied to obtain atomic concentration(mole). Steel needle type is good for large amount of fission gas such as commercial spent fuel rod. But, some cases with small fuel rig in research reactor for R/D program are not available to use needle type because of large chamber volume. The laser puncturing technique was developed to solve measurement of small amount of fission gas. This system was very rare equipment in other countries. Fine pressure gage and strong vacuum system were installed, and the chamber volume was reduced at least. Fiber laser was used for easy operation

  7. Method for online measurement of the CHON composition of raw gas from biomass gasifier

    International Nuclear Information System (INIS)

    Neves, Daniel; Thunman, Henrik; Tarelho, Luís; Larsson, Anton; Seemann, Martin; Matos, Arlindo

    2014-01-01

    Highlights: • Measuring the CHON composition of a raw gas by current methods is challenging. • An alternative method is to burn the raw gas before measuring the CHON composition. • The CHON contents of the raw gas can be accurately measured by the alternative method. • Measuring the CHON contents of the raw gas is now performed in a “one-step” analysis. • The new method is used to evaluate the operation of a dual fluidised bed gasifier. - Abstract: For unattended biomass gasification processes, rapid methods for monitoring the elemental composition (CHON) of the raw gas leaving the gasifier are needed. Conventional methods rely on time-consuming and costly laboratory procedures for analysing the condensable part of the raw gas. An alternative method, presented in this work, assesses the CHON composition of raw gas in a “one step” analysis without the need to previously characterise its chemical species composition. Our method is based on the quantitative conversion of a raw gas of complex chemical composition into CO 2 , H 2 O, and N 2 in a small combustor. The levels of these simple species can be measured with high accuracy and good time resolution, and the CHON composition of the raw gas can be determined from the mass balance across the combustor. To evaluate this method, an online combustion facility was built and used to analyse the raw gas from the Chalmers 2-MW th dual fluidised bed steam gasifier. Test runs of the developed facility demonstrated complete combustion of the raw gas and the measurements were both fast and reliable. The new method used in combination with zero-dimensional reactor modelling provides valuable data for the operational monitoring of gasification processes, such as the degree of fuel conversion, composition of the char exiting the gasifier, oxygen transport by catalytic bed material, and amount of condensables in raw gas

  8. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills

    International Nuclear Information System (INIS)

    Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei; Yazdani, Ramin; Imhoff, Paul T.

    2012-01-01

    Highlights: ► Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. ► Measurement errors for tracer gases were 1–3% in landfill gas. ► Background signals from landfill gas result in elevated limits of detection. ► Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF 6 ), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1–3% in landfill gas but 4–5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3–4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

  9. Measurement of thorium content in gas mantles produced in India

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, P K [Bhabha Atomic Research Centre, Mumbai (India). Radiological Physics Div.; Chury, A J; Venkataraman, G [Bhabha Atomic Research Centre, Mumbai (India). Radiation Protection Services Div.

    1994-04-01

    Incandescent gas mantles, processed with thorium nitrate, were monitored for thorium content, using a 2 inch thick Nal(Tl) detector and detecting medium energy gamma radiations emitted by thorium daughters. Thirty different brands, manufactured in the country have been counted and most of them were found to contain thorium within the permissible limit specified by Atomic Energy Regulatory Board (AERB). (author). 5 refs., 1 fig., 3 tabs.

  10. Requirements on sealing measures due to gas production

    Energy Technology Data Exchange (ETDEWEB)

    Arens, G.; Hoeglund, L.; Wiborgh, M.

    1995-03-01

    Since 1981 the former rock salt mine Bartensleben near Morsleben (former GDR) ERAM has been in operation as a repository for low and intermediate level radioactive waste. As a result of the reunification and the changed licensing situation a new closure concept for the repository has to be developed. During the post-operational phase of a repository for radioactive waste gas may be produced by corrosion of metals, microbial degradation and radiolytic decomposition. In the process of developing the concept to be used for backfilling and sealing in ERAM it is important that gas formed in the repository will not disrupt the barrier against radionuclide escape or enhance the radionuclide release. To evaluate the performance and the properties for a bentonite plug as the main element of the sealings gas transport modelling with TOUGH were performed. Due to the lack of site-specific data literature data were used. Consequently, large uncertainties in data remain at present, which were taken into account by a great number of parameter variations. To handle this a course discretisation for the calculations were developed. Started with a two-dimensional grid at the end the calculations were performed with a coarse one-dimensional grid. The primary question to answer in these calculations is if there is a risk for excessive pressurization of the repository caverns as a result of gas generation. In the reference case a maximum pressure of approximately 10 Mpa inside a cavern is reached after 1000 years which seems not to jeopardize the integrity of the repository.

  11. Atmospheric Gas Tracers in Groundwater: Theory, Sampling. Measurement and Interpretation

    International Nuclear Information System (INIS)

    Bayari, C.S.

    2002-01-01

    Some of the atmospheric gasses posses features that are sought in an environmental tracer of hydrogeologic interest. Among these, chlorofluorocarbons, sulfur hegzafluoride, carbon tetrachloride, methyl chloroform, krypton-85 etc. have found increasing use in groundwater age dating studies during the last ten years. This paper explains the theory of their use as tracer and discusses the major concerns as related to their sampling and analyses. Factors affecting their applicability and the approach to interpret tracer gas data is briefly outlined

  12. Effects of Anti-G Measures on Gas Exchange.

    Science.gov (United States)

    1981-05-01

    position (+lGz), and the endotracheal tube was connected to a Rudolf valve arranged so that expired gas passed through a heated pneumotachograph and a... Steiner , 1960; Peterson, Bishop and Erickson, 1977). Data presented in Table 111-I suggest that application of the G-sult abdominal bladder tended to...accelerations. Aerospace Med. 31: 213-219, 1960. 18. Hershgold, E.J. and S.H. Steiner . Cardiovascular changes during acceleration stress in dogs. J

  13. Estimating retained gas volumes in the Hanford tanks using waste level measurements

    International Nuclear Information System (INIS)

    Whitney, P.D.; Chen, G.; Gauglitz, P.A.; Meyer, P.A.; Miller, N.E.

    1997-09-01

    The Hanford site is home to 177 large, underground nuclear waste storage tanks. Safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate and trap flammable gases. This report focuses on understanding and improving the quality of retained gas volume estimates derived from tank waste level measurements. While direct measurements of gas volume are available for a small number of the Hanford tanks, the increasingly wide availability of tank waste level measurements provides an opportunity for less expensive (than direct gas volume measurement) assessment of gas hazard for the Hanford tanks. Retained gas in the tank waste is inferred from level measurements -- either long-term increase in the tank waste level, or fluctuations in tank waste level with atmospheric pressure changes. This report concentrates on the latter phenomena. As atmospheric pressure increases, the pressure on the gas in the tank waste increases, resulting in a level decrease (as long as the tank waste is open-quotes softclose quotes enough). Tanks with waste levels exhibiting fluctuations inversely correlated with atmospheric pressure fluctuations were catalogued in an earlier study. Additionally, models incorporating ideal-gas law behavior and waste material properties have been proposed. These models explicitly relate the retained gas volume in the tank with the magnitude of the waste level fluctuations, dL/dP. This report describes how these models compare with the tank waste level measurements

  14. Method and apparatus for real-time measurement of fuel gas compositions and heating values

    Science.gov (United States)

    Zelepouga, Serguei; Pratapas, John M.; Saveliev, Alexei V.; Jangale, Vilas V.

    2016-03-22

    An exemplary embodiment can be an apparatus for real-time, in situ measurement of gas compositions and heating values. The apparatus includes a near infrared sensor for measuring concentrations of hydrocarbons and carbon dioxide, a mid infrared sensor for measuring concentrations of carbon monoxide and a semiconductor based sensor for measuring concentrations of hydrogen gas. A data processor having a computer program for reducing the effects of cross-sensitivities of the sensors to components other than target components of the sensors is also included. Also provided are corresponding or associated methods for real-time, in situ determination of a composition and heating value of a fuel gas.

  15. Gas measurements from the Costa Rica-Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry

    Science.gov (United States)

    Aiuppa, A.; Robidoux, P.; Tamburello, G.; Conde, V.; Galle, B.; Avard, G.; Bagnato, E.; De Moor, J. M.; Martínez, M.; Muñóz, A.

    2014-12-01

    Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes at Poás (0.30±0.06, mean ± SD), Rincón de la Vieja (27.0±15.3), and Turrialba (2.2±0.8) in Costa Rica, and at Telica (3.0±0.9) and San Cristóbal (4.2±1.3) in Nicaragua (all ratios on molar basis). By scaling these plume compositions to simultaneously measured SO2 fluxes, we estimate that the CO2 outputs at CNVS volcanoes range from low (25.5±11.0 tons/day at Poás) to moderate (918 to 1270 tons/day at Turrialba). These results add a new information to the still fragmentary volcanic CO2 output data set, and allow estimating the total CO2 output from the CNVS at 2835±1364 tons/day. Our novel results, with previously available information about gas emissions in Central America, are suggestive of distinct volcanic gas CO2/ST (= SO2 + H2S)-ratio signature for magmatic volatiles in Nicaragua (∼3) relative to Costa Rica (∼0.5-1.0). We also provide additional evidence for the earlier theory relating the CO2-richer signature of Nicaragua volcanism to increased contributions from slab-derived fluids, relative to more-MORB-like volcanism in Costa Rica. The sizeable along-arc variations in magmatic gas chemistry that the present study has suggested indicate that additional gas observations are urgently needed to more-precisely confine the volcanic CO2 from the CAVA, and from

  16. Measuring method for amount of fissionable gas in spent fuel pellet

    International Nuclear Information System (INIS)

    Kashibe, Shinji.

    1992-01-01

    The method of the present invention separately measures the amount of both of a fission product (FP) gas accumulated in bubbles at the crystal grain boundary of spent fuel pellets and an FP gas accumulated in the crystal grains. That is, in a radial position of the spent fuel pellet, a microfine region is mechanically destroyed. The amount of the FP gas released by the destruction from the crystal grains is measured by using a mass analyzer. Then, when the destroyed pieces formed by the destruction are recovered and dissolved, FP gas accumulated in the crystal grains of the pellet is released. The amount released is measured by the mass analyzer. With such procedures, the amount of FP gas accumulated in the bubbles at the crystal grain boundary and in the crystal grains at the radial position of the spent fuel pellet can be measured discriminately. Accordingly, the integrity of the fuel pellet can be recognized appropriately. (I.S.)

  17. Test plan for measuring ventilation rates and combustible gas levels in TWRS active catch tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-05-20

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by Tank Waste Remediation System (TWRS). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  18. Test plan for measuring ventilation rates and combustible gas levels in RPP active catch tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-06-03

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by River Protection Project (RPP). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  19. Measuring gas concentration and wind intensity in a turbulent wind tunnel with a mobile robot

    OpenAIRE

    Martínez Lacasa, Daniel; Moreno Blanc, Javier; Tresánchez, Marcel; Clotet Bellmunt, Eduard; Jiménez-Soto, Juan M.; Magrans, Rudys; Pardo Martínez, Antonio; Marco Colás, Santiago; Palacín Roca, Jordi

    2016-01-01

    This paper presents themeasurement of gas concentration and wind intensity performed with amobile robot in a customturbulent wind tunnel designed for experimentation with customizable wind and gas leak sources.This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber...

  20. Measuring the exhaust gas dew point of continuously operated combustion plants

    Energy Technology Data Exchange (ETDEWEB)

    Fehler, D.

    1985-07-16

    Low waste-gas temperatures represent one means of minimizing the energy consumption of combustion facilities. However, condensation should be prevented to occur in the waste gas since this could result in a destruction of parts. Measuring the waste-gas dew point allows to control combustion parameters in such a way as to be able to operate at low temperatures without danger of condensation. Dew point sensors will provide an important signal for optimizing combustion facilities.

  1. ACCENT-BIAFLUX workshop 2005, trace gas and aerosol flux measurement and techniques. Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Werner, A.; Soerensen, L.L. (eds.)

    2005-04-01

    The woorkshop trace gas and aerosol flux measurement techniques in the second meeting within the Biosphere Atmosphere Exchange of Pollutions (BIAFLUX) group in the EU-network project Atmospheric Composition Change (ACCENT). The goal of the workshop is to obtain an overview of techniques for measurements of gas and aerosol fluxes and to gather the knowledge of uncertainties in flux measurements and calculations. The workshop is funded by ACCENT. The abstract book presents abstracts of 21 oral presentations and 26 poster presentations. (LN)

  2. Nonintrusive performance measurement of a gas turbine engine in real time

    Science.gov (United States)

    DeSilva, Upul P.; Claussen, Heiko

    2017-08-29

    Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculated from the gas density and the volumetric flow rate.

  3. Diffusivity measurements in some organic solvents by a gas-liquid diaphragm cell

    NARCIS (Netherlands)

    Littel, R.J.; Littel, R.J.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    A diaphragm cell has been developed for the measurement of diffusion coefficients of gases In liquids. The diaphragm cell is operated batchwise with respect to both gas and liquid phases, and the diffusion process Is followed by means of the gas pressure decrease which is recorded by means of a

  4. Diffusivity Measurements in Some Organic Solvents by a Gas-Liquid Diaphragm Cell

    NARCIS (Netherlands)

    Littel, Rob J.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1992-01-01

    A diaphragm cell has been developed for the measurement of diffusion coefficients of gases in liquids. The diaphragm cell is operated batchwise with respect to both gas and liquid phases, and the diffusion process is followed by means of the gas pressure decrease which is recorded by means of a

  5. Gas-solid heat exchange in a fibrous metallic material measured by a heat regenerator technique

    NARCIS (Netherlands)

    Golombok, M.; Jariwala, H.; Shirvill, C.

    1990-01-01

    The convective heat transfer properties of a porous metallic fibre material used in gas surface combustion burners are studied. The important parameter governing the heat transfer between hot gas and metal fibre—the heat transfer coefficient—is measured using a non-steady-state method based on

  6. Optimal sensor locations for the backward Lagrangian stochastic technique in measuring lagoon gas emission

    Science.gov (United States)

    This study evaluated the impact of gas concentration and wind sensor locations on the accuracy of the backward Lagrangian stochastic inverse-dispersion technique (bLS) for measuring gas emission rates from a typical lagoon environment. Path-integrated concentrations (PICs) and 3-dimensional (3D) wi...

  7. The 2010 calibration campaign for radon gas measuring instruments at PSI

    International Nuclear Information System (INIS)

    Butterweck, G.; Schuler, Ch.; Mayer, S.

    2011-01-01

    Twenty radon measurement services or the respective analytical laboratories participated in the 2010 Radon Intercomparison Exercise performed at the Reference Laboratory for Radon Gas Activity Concentration Measurements at the Paul Scherrer Institute (PSI) from August 27 th to August 31 st , 2010 on behalf of the Swiss Federal Office of Public Health (FOPH). Twelve of these laboratories were approved by the FOPH and their participation in the intercomparison exercise was a requirement to warrant quality of measurement. Radon gas dosemeters (track-etch, electronic and electret) and instruments (ionisation chambers) were exposed in the PSI Radon Chamber in a reference atmosphere with an average radon gas concentration of 595 Bq m -3 leading to a radon gas exposure of 57 kBq h m -3 . The exposure of 57 kBq h m -3 was close to the lower value of the measuring range defined in the Radon Measurement Ordinance ('Radon-Messmittelverordnung'). (authors)

  8. Measurement Of Ultrafast Ionisation From Intense Laser Interactions With Gas-Jets

    International Nuclear Information System (INIS)

    Gizzi, Leonida A.; Galimberti, Marco; Giulietti, Antonio; Giulietti, Danilo; Koester, Petra; Labate, Luca; Tomassini, Paolo; Martin, Philippe; Ceccotti, Tiberio; De Oliveira, Pascal; Monot, Pascal

    2006-01-01

    Interaction of an intense, ultrashort laser pulse with a gas-jet target is investigated through femtosecond optical interferometry to study the dynamics of ionization of the gas. Experimental results are presented in which the propagation of the pulse in the gas and the consequent plasma formation is followed step by step with high temporal and spatial resolution. We demonstrate that, combining the phase shift with the measurable depletion of fringe visibility associated with the transient change of refractive index in the ionizing region and taking into account probe travel time can provide direct information on gas ionization dynamics

  9. A new remote optical wetness sensor and its applications

    NARCIS (Netherlands)

    Heusinkveld, B.G.; Berkowicz, S.M.; Jacobs, A.F.G.; Hillen, W.C.A.M.; Holtslag, A.A.M.

    2008-01-01

    An optical wetness sensor (OWS) was developed for continuous surface wetness measurements. The sensor is an all-weather instrument that does not interfere with the surface wetting and drying process and is unaffected by solar radiation. It is equipped with its own light source with which it can scan

  10. Fast gas adsorption measurements for complicated adsorption mechanisms

    NARCIS (Netherlands)

    Robens, E.; Poulis, J.A.; Massen, C.H.

    2000-01-01

    Jäntti introduced a method to reduce the time required for the stepwise measurement of adsorption isotherms. After each pressure change he measured the adsorbed mass three times and calculated its equilibrium value at the new pressure. In the present paper, we discuss the applicability of this

  11. Multi-spectral pyrometer for gas turbine blade temperature measurement

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi

    2014-09-01

    To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.

  12. Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada

    Science.gov (United States)

    Atherton, Emmaline; Risk, David; Fougère, Chelsea; Lavoie, Martin; Marshall, Alex; Werring, John; Williams, James P.; Minions, Christina

    2017-10-01

    North American leaders recently committed to reducing methane emissions from the oil and gas sector, but information on current emissions from upstream oil and gas developments in Canada are lacking. This study examined the occurrence of methane plumes in an area of unconventional natural gas development in northwestern Canada. In August to September 2015 we completed almost 8000 km of vehicle-based survey campaigns on public roads dissecting oil and gas infrastructure, such as well pads and processing facilities. We surveyed six routes 3-6 times each, which brought us past over 1600 unique well pads and facilities managed by more than 50 different operators. To attribute on-road plumes to oil- and gas-related sources we used gas signatures of residual excess concentrations (anomalies above background) less than 500 m downwind from potential oil and gas emission sources. All results represent emissions greater than our minimum detection limit of 0.59 g s-1 at our average detection distance (319 m). Unlike many other oil and gas developments in the US for which methane measurements have been reported recently, the methane concentrations we measured were close to normal atmospheric levels, except inside natural gas plumes. Roughly 47 % of active wells emitted methane-rich plumes above our minimum detection limit. Multiple sites that pre-date the recent unconventional natural gas development were found to be emitting, and we observed that the majority of these older wells were associated with emissions on all survey repeats. We also observed emissions from gas processing facilities that were highly repeatable. Emission patterns in this area were best explained by infrastructure age and type. Extrapolating our results across all oil and gas infrastructure in the Montney area, we estimate that the emission sources we located (emitting at a rate > 0.59 g s-1) contribute more than 111 800 t of methane annually to the atmosphere. This value exceeds reported bottom

  13. Diode Laser-Based Sensor for Fast Measurement of Binary Gas Mixtures

    National Research Council Canada - National Science Library

    McNesby, Kevin

    1999-01-01

    The development and characterization of a gas sensor to measure binary mixtures of oxygen and the vapor from a series of volatile organic compounds, with a time resolution of 10 milliseconds, is described...

  14. Stopped-flow technique for transit time measurement in a gas jet

    International Nuclear Information System (INIS)

    Rengan, K.; Lin, J.; Lim, T.; Meyer, R.A.; Harrell, J.

    1985-01-01

    A 'stopped-flow' technique for the measurement of transit time of reaction products in a gas jet is described. The method involved establishing the gas flow through the jet system when the reactor is operating steadily and allowing the pressure to reach equilibrium values. The gas flow is stopped by means of electrically operated valves. The transit-time measurement is achieved by opening the valves and initiating the multiscanning of total activity simultaneously. The value obtained agrees well with the transit time measured by pulsing the reactor. The 'stopped-flow' technique allows on-line measurement of transit time in any gas jet system where the physical transportation time is the major component of the transit time. This technique is especially useful for systems installed in reactors which do not have pulsing capability. (orig.)

  15. Technical Efficiency of Wet Season Melon Farming

    Directory of Open Access Journals (Sweden)

    Ananti Yekti

    2017-03-01

    Full Text Available Melon is one of high-value horticulture commodity which is cultivated widely in Kulon Progo regency. The nature of agricultural products is heavily dependent on the season, so it causes the prices of agricultural products always fluctuated every time. In wet season the price of agricultural products tends to be more expensive. Melon cultivation in wet season provide an opportunity to earn higher profits than in the dry season. The price of agricultural products tends to be more expensive in wet season, thus melon cultivation in wet season prospectively generate high profits. In order to achieve high profitability, melon farming has to be done efficiently. Objective of this study was to 1 determined the factors that influence melon production in wet season 2 measured technical efficiency of melon farming and 3 identified the factors that influanced technical efficiency. Data collected during April – June 2014. Location determined by multistage cluster sampling. 45 samples of farmers who cultivated melon during wet season obtained based on quota sampling technique. Technical efficiency was measured using Cobb-Douglas Stochastic Frontier. The result reveals that 1 land use, quantity of seed, K fertilizer contributed significantly increasing melon production, while N fertilizer decreased melon production significantly 2 technical efficiency indeces ranged from 0.40 to 0.99, with a mean of  0.77; 3 farmer’s experience gave significant influence to technical efficiency of melon farming in wet season.

  16. Measuring Greenhouse Gas Emissions and Sinks Across California Land Cover

    Science.gov (United States)

    Fischer, M. L.

    2017-12-01

    Significant reductions in greenhouse gas (GHG) emissions are needed to limit rising planetary temperatures that will otherwise limit Earth's capacity to support life, introducing geopolitical instability. To help mitigate this threat, California has legislated landmark reductions in state-level greenhouse gas (GHG) emissions that set an example for broader action. Beginning with relatively assured reduction of current emissions to 1990 levels by 2020, future goals are much more challenging with 40% and 80% reductions below 1990 emissions by 2030 and 2050, respectively. While the majority of the reductions must focus on fossil fuels, inventory estimates of non-CO2 GHG emissions (i.e., CH4, N2O, and industrial compounds) constitute 15% of the total, suggesting reductions are required across multiple land use sectors. However, recent atmospheric inversion studies show methane and nitrous oxide (CH4 & N2O) emissions exceed current inventory estimates by factors of 1.2-1.8 and 1.6-2.6 (at 95% confidence), respectively, perhaps constituting up to 30% of State total emissions. The discrepancy is likely because current bottom-up models used for inventories do not accurately capture important management or biophysical factors. In the near term, process level experiments and sector-specific inversions are being planned to quantify the factors controlling non-CO2 GHG emissions for several of the dominant emission sectors. For biosphere carbon, California forests lands, which also depend on the combination of management, climate, and weather, lost above ground carbon from 2001-2010, and may be expected to lose soil and root carbon as a longer-term result. Here, it is important to identify and apply the best principles in forestry and agriculture to increase carbon stocks in depleted forest and agricultural areas, focusing on approaches that provide resilience to future climate and weather variations. Taken together, improved atmospheric, plant, and soil observations, together

  17. Acoustic transducer in system for gas temperature measurement in gas turbine engine

    Science.gov (United States)

    DeSilva, Upul P.; Claussen, Heiko

    2017-07-04

    An apparatus for controlling operation of a gas turbine engine including at least one acoustic transmitter/receiver device located on a flow path boundary structure. The acoustic transmitter/receiver device includes an elongated sound passage defined by a surface of revolution having opposing first and second ends and a central axis extending between the first and second ends, an acoustic sound source located at the first end, and an acoustic receiver located within the sound passage between the first and second ends. The boundary structure includes an opening extending from outside the boundary structure to the flow path, and the second end of the surface of revolution is affixed to the boundary structure at the opening for passage of acoustic signals between the sound passage and the flow path.

  18. Study of Influencing Factors of Dynamic Measurements Based on SnO2 Gas Sensor

    Directory of Open Access Journals (Sweden)

    Jinhuai Liu

    2004-08-01

    Full Text Available Abstract: The gas-sensing behaviour based on a dynamic measurement method of a single SnO2 gas sensor was investigated by comparison with the static measurement. The influencing factors of nonlinear response such as modulation temperature, duty ratio, heating waveform (rectangular, sinusoidal, saw-tooth, pulse, etc. were also studied. Experimental data showed that temperature was the most essential factor because the changes of frequency and heating waveform could result in the changes of temperature essentially.

  19. A simple method for the measurement of radioactivity of samples separated by gas chromatography

    International Nuclear Information System (INIS)

    Farkas, T.

    1981-01-01

    Gas chromatographs with flame ionization detector can be used to determine the radioactivity ( 14 C) of separated peaks. After a suitable change in the detector output the combustion product 14 CO 2 can be trapped by hyamine hydroxyde and measured by liquid scintigraphy. 90% of peak activity can be collected and measured, thus the method can be applied to determine the distribution and specific radioactivity of the components separated by gas chromatography. (author)

  20. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    OpenAIRE

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma def...

  1. Impact of ultra-viscous drops: air-film gliding and extreme wetting

    KAUST Repository

    Langley, Kenneth

    2017-01-23

    A drop impacting on a solid surface must push away the intervening gas layer before making contact. This entails a large lubricating air pressure which can deform the bottom of the drop, thus entrapping a bubble under its centre. For a millimetric water drop, the viscous-dominated flow in the thin air layer counteracts the inertia of the drop liquid. For highly viscous drops the viscous stresses within the liquid also affect the interplay between the drop and the gas. Here the drop also forms a central dimple, but its outer edge is surrounded by an extended thin air film, without contacting the solid. This is in sharp contrast with impacts of lower-viscosity drops where a kink in the drop surface forms at the edge of the central disc and makes a circular contact with the solid. Larger drop viscosities make the central air dimple thinner. The thin outer air film subsequently ruptures at numerous random locations around the periphery, when it reaches below 150 nm thickness. This thickness we measure using high-speed two-colour interferometry. The wetted circular contacts expand rapidly, at orders of magnitude larger velocities than would be predicted by a capillary-viscous balance. The spreading velocity of the wetting spots is independent of the liquid viscosity. This may suggest enhanced slip of the contact line, assisted by rarefied-gas effects, or van der Waals forces in what we call extreme wetting. Myriads of micro-bubbles are captured between the local wetting spots.

  2. The application of dynamic method for the temperature measurement of gas destruction in a plasma reactor

    International Nuclear Information System (INIS)

    Ryszard, Sarba

    2009-01-01

    This paper presents an experimental and theoretical study of the conversion of measuring probe temperature into hot gas temperature. The author gives a solution to the problem of a destruction temperature measurement in a plasma reactor. The temperature conversion is based on the thermodynamic similarity theory and statistical thermodynamics verification. The experimental measurements of the hot gas temperature have been made in the place where it considerably exceeds the melting point of the measuring probe material. The heat exchange phenomenon on the measuring probe's surface with the hot gas surrounding it is described by a forced convection equation. An analysis has been made of the heat flowing in and out of the measuring probe. The experimental part of the paper includes: an experimental measurement of gas velocity by means of luminous particles, a hot gas measurement for one distance from a nozzle and different diameters of the measuring probe, as well as different probing velocities. Numerical simulations have been made of the temperature distribution in a plasma jet. The experimental results are congruent with theoretical predictions. The aim of this research is a contribution to the structuring of a mathematical model of mass and energy balance in the processes of NHF 2 CL waste destruction.

  3. Measurement of flow characteristics of solid particles mixed with gas in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Siberev, S P; Nazarov, S I; Soldatkin, G I

    1983-01-01

    A mathematical model of the interaction of solid particles in a gas stream flowing through a pipeline comprises equations for the energy and material balances in the system and for force and energy interactions between the solid particles and transducers located within the pipeline. Soviet researchers confirmed that the average value of stress recorded by a transducer is proportional to the average kinetic energy of the particles; for a constant particle speed, the stress is proportional to the mass flow of the particles. The analysis and flow transducer measurements are valuable in measuring and controlling flowline sand and soil in natural gas transport from gas wells and undergound storage facilities.

  4. Comparing and assessing different measurement techniques for mercury in coal systhesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, D.P.; Richardson, C.F. [Radian Corporation, Austin, TX (United States)

    1995-11-01

    Three mercury measurement techniques were performed on synthesis gas streams before and after an amine-based sulfur removal system. The syngas was sampled using (1) gas impingers containing a nitric acid-hydrogen peroxide solution, (2) coconut-based charcoal sorbent, and (3) an on-line atomic absorption spectrophotometer equipped with a gold amalgamation trap and cold vapor cell. Various impinger solutions were applied upstream of the gold amalgamation trap to remove hydrogen sulfide and isolate oxidized and elemental species of mercury. The results from these three techniques are compared to provide an assessment of these measurement techniques in reducing gas atmospheres.

  5. Test Plan for Measuring Ventilation Rates and Combustible Gas Levels in TWRS Active Catch Tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-10-25

    The purpose of this sampling activity is to obtain data to support an initial evaluation of potential hazards due to the presence of combustible gas in catch tanks that are currently operated by the River Protection Project (RPP). Results of the hazard analysis will be used to support closure of the flammable gas unreviewed safety question for these facilities. The data collection will be conducted in accordance with the Tank Safety Screening Data Quality Objective (Dukelow et al. 1995). Combustible gas, ammonia, and organic vapor levels in the headspace of the catch tanks will be field-measured using hand-held instruments. If a combustible gas level measurement in a tank exceeds an established threshold, gas samples will he collected in SUMMA' canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flowing through the tanks. This test plan identifies the sample collection, laboratory analysis, quality assurance, and reporting objectives for this data collection effort. The plan also provides the procedures for field measurement of combustible gas concentrations and ventilation rates.

  6. The effect of an exceptionally wet summer on methane effluxes from a 15-year re-wetted fen in north-east Germany

    Directory of Open Access Journals (Sweden)

    V. Huth

    2013-10-01

    Full Text Available Re-wetting minerotrophic fens has become an important strategy to mitigate climate change in Germany. However, recent studies report raised methane (CH4 effluxes during the first years after flooding. A minerotrophic fen in north-east Germany that was re-wetted 15 years ago was exposed to exceptionally heavy rainfall and freshwater flooding in August 2011. We measured CH4 effluxes from wetland vegetation stands dominated by Phragmites australis (Cav. Trin. ex Steud., Typha latifolia L. and Carex acutiformis Ehrh., using the closed-chamber method, fortnightly from March 2011 to March 2012 with extra sampling during the flooding. The respective annual effluxes of CH4 (mean ± 1 standard error from the three vegetation types were 18.5 ± 1.3, 21.1 ± 1.2 and 47.5 ± 5.0 g m-2 a-1, with the August effluxes contributing 40 %, 50 % and 10 % of the annual effluxes. Despite the freshwater flooding in August, annual CH4 effluxes from the 15-year re-wetted fen are similar to those reported from pristine fens. These results are promising because they indicate that, although CH4 effluxes are elevated after re-wetting, they may return to values typical for pristine fens after 15 years. Hence, re-wetting can achieve the purpose of reducing greenhouse gas effluxes from drained minerotrophic fens.

  7. Nuclear tracks in solids and gas radon measurements

    International Nuclear Information System (INIS)

    Espinosa, G.

    2007-01-01

    Full text: The Department of Energy (DOE), the Environmental Protection Agency (EPA) in USA, and the European Community, have dedicated significant budget to the Radon study, its health effects and remedial actions for controlling and achieving lower levels, in these cases, nationwide research programs have been organized. With the aim to contribute on the radon levels knowledge in our country, the Applied Dosimetry Project at the Physics Institute of the University of Mexico has developed an indoor and outdoor radon measurement methodology. In this paper a passive radon detector device based on CR-39 polycarbonate for use in radon research and routine measurements is presented. As well the methodology for the track formation, automatic reading system, calibration procedure and measurements in a different location, are shown in this work. The results had been compared with dynamic detection systems, and another methodologies and research groups in order to have a high confidence in the radon levels reported. (Author)

  8. Parallel measurements of organic and elemental carbon dry (PM1, PM2.5) and wet (rain, snow, mixed) deposition into the Baltic Sea.

    Science.gov (United States)

    Witkowska, Agnieszka; Lewandowska, Anita; Falkowska, Lucyna M

    2016-03-15

    Parallel studies on organic and elemental carbon in PM1 and PM2.5 aerosols and in wet deposition in various forms of its occurrence were conducted in the urbanised coastal zone of the Baltic Sea. The carbon load introduced into the sea water was mainly affected by the form of precipitation. Dry deposition load of carbon was on average a few orders of magnitude smaller than wet deposition. The suspended organic carbon was more effectively removed from the air with rain than snow, while an inverse relationship was found for elemental carbon. However the highest flux of water insoluble organic carbon was recorded in precipitation of a mixed nature. The atmospheric cleaning of highly dissolved organic carbon was observed to be the most effective on the first day of precipitation, while the hydrophobic elemental carbon was removed more efficiently when the precipitation lasted longer than a day. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  10. Analysis of problems and failures in the measurement of soil-gas radon concentration.

    Science.gov (United States)

    Neznal, Martin; Neznal, Matěj

    2014-07-01

    Long-term experience in the field of soil-gas radon concentration measurements allows to describe and explain the most frequent causes of failures, which can appear in practice when various types of measurement methods and soil-gas sampling techniques are used. The concept of minimal sampling depth, which depends on the volume of the soil-gas sample and on the soil properties, is shown in detail. Consideration of minimal sampling depth at the time of measurement planning allows to avoid the most common mistakes. The ways how to identify influencing parameters, how to avoid a dilution of soil-gas samples by the atmospheric air, as well as how to recognise inappropriate sampling methods are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Geographical information system for radon gas from soil measurement

    International Nuclear Information System (INIS)

    Orlando, P.; Amici, M.; Altieri, A.; Massari, P.; Miccadei, E.; Onofri, A.; Orlando, C.; Paolelli, C.; Paron, P.; Perticaroli, P.; Piacentini, T.; Silvestri, C.; Minach, L.; Verdi, L.; Bertolo, A.; Trotti, F.

    2000-03-01

    The working program foresees the realization of an geographical information system for the check in field of the geological parameters and determination of uranium and radium contents in various type of rocks. It is here also pointed out a measuring method for radon concentration in soil [it

  12. Measurement of gas flow velocities by laser-induced gratings

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B; Stampanoni-Panariello, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kozlov, A D.N. [General Physics Institute, Moscow (Russian Federation)

    1999-08-01

    Time resolved light scattering from laser-induced electrostrictive gratings was used for the determination of flow velocities in air at room temperature. By measuring the velocity profile across the width of a slit nozzle we demonstrated the high spatial resolution (about 200 mm) of this novel technique. (author) 3 figs., 1 ref.

  13. Spectrograph dedicated to measuring tropospheric trace gas constituents from space

    NARCIS (Netherlands)

    Vries, J. de; Laan, E.C.; Deutz, A.F.; Escudero-Sanz, I.; Bokhove, H.; Hoegee, J.; Aben, I.; Jongma, R.; Landgraf, J.; Hasekamp, O.P.; Houweling, S.; Weele, M. van; Oss, R. van; Oord, G. van den; Levelt, P.

    2005-01-01

    Several organizations in the Netherlands are cooperating to develop user requirements and instrument concepts in the line of SCIAMACHY and OMI but with an increased focus on measuring tropospheric constituents from space. The concepts use passive spectroscopy in dedicated wavelength sections in the

  14. Consistent measurements comparing the drift features of noble gas mixtures

    CERN Document Server

    Becker, U; Fortunato, E M; Kirchner, J; Rosera, K; Uchida, Y

    1999-01-01

    We present a consistent set of measurements of electron drift velocities and Lorentz deflection angles for all noble gases with methane and ethane as quenchers in magnetic fields up to 0.8 T. Empirical descriptions are also presented. Details on the World Wide Web allow for guided design and optimization of future detectors.

  15. WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Jill S. Buckley; Norman R. Morrow; Chris Palmer; Purnendu K. Dasgupta

    2003-02-01

    The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting the onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying

  16. Wet storage integrity update

    International Nuclear Information System (INIS)

    Bailey, W.J.; Johnson, A.B. Jr.

    1983-09-01

    This report includes information from various studies performed under the Wet Storage Task of the Spent Fuel Integrity Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. An overview of recent developments in the technology of wet storage of spent water reactor fuel is presented. Licensee Event Reports pertaining to spent fuel pools and the associated performance of spent fuel and storage components during wet storage are discussed. The current status of fuel that was examined under the CSFM Program is described. Assessments of the effect of boric acid in spent fuel pool water on the corrosion and stress corrosion cracking of stainless steel and the stress corrosion cracking of stainless steel piping containing stagnant water at spent fuel pools are discussed. A list of pertinent publications is included. 84 references, 21 figures, 11 tables

  17. Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy.

    Science.gov (United States)

    Lou, Xiutao; Somesfalean, Gabriel; Chen, Bin; Zhang, Zhiguo

    2009-02-10

    Multimode diode laser (MDL)-based correlation spectroscopy (COSPEC) was used to measure oxygen in ambient air, thereby employing a diode laser (DL) having an emission spectrum that overlaps the oxygen absorption lines of the A band. A sensitivity of 700 ppm m was achieved with good accuracy (2%) and linearity (R(2)=0.999). For comparison, measurements of ambient oxygen were also performed by tunable DL absorption spectroscopy (TDLAS) technique employing a vertical cavity surface emitting laser. We demonstrate that, despite slightly degraded sensitivity, the MDL-based COSPEC-based oxygen sensor has the advantages of high stability, low cost, ease-of-use, and relaxed requirements in component selection and instrument buildup compared with the TDLAS-based instrument.

  18. Gas temperature measurements in short duration turbomachinery test facilities

    Science.gov (United States)

    Cattafesta, L. N.; Epstein, A. H.

    1988-07-01

    Thermocouple rakes for use in short-duration turbomachinery test facilities have been developed using very fine thermocouples. Geometry variations were parametrically tested and showed that bare quartz junction supports (76 microns in diameter) yielded superior performance, and were rugged enough to survive considerable impact damage. Using very low cost signal conditioning electronics, temperature accuracies of 0.3 percent were realized yielding turbine efficiency measurements at the 1-percent level. Ongoing work to improve this accuracy is described.

  19. [Effect of physical properties of respiratory gas on pneumotachographic measurement of ventilation in newborn infants].

    Science.gov (United States)

    Foitzik, B; Schmalisch, G; Wauer, R R

    1994-04-01

    The measurement of ventilation in neonates has a number of specific characteristics; in contrast to lung function testing in adults, the inspiratory gas for neonates is often conditioned. In pneumotachographs (PNT) based on Hagen-Poiseuille's law, changes in physical characteristics of respiratory gas (temperature, humidity, pressure and oxygen fraction [FiO2]) produce a volume change as calculated with the ideal gas equation p*V/T = const; in addition, the viscosity of the gas is also changed, thus leading to measuring errors. In clinical practice, the effect of viscosity on volume measurement is often ignored. The accuracy of these empirical laws was investigated in a size 0 Fleisch-PNT using a flow-through technique and variously processed respiratory gas. Spontaneous breathing was simulated with the aid of a calibration syringe (20 ml) and a rate of 30 min-1. The largest change in viscosity (11.6% at 22 degrees C and dry gas) is found with an increase in FiO2 (21...100%). A rise in temperature from 24 to 35 degrees C (dry air) produced an increase in viscosity of 5.2%. An increase of humidity (0...90%, 35 degrees C) decreased the viscosity by 3%. A partial compensation of these viscosity errors is thus possible. Pressure change (0...50 mbar, under ambient conditions) caused no measurable viscosity error. With the exception of temperature, the measurements have shown good agreement between the measured volume measuring errors and those calculated from viscosity changes. If the respiratory gas differs from ambient air (e.g. elevated FiO2) or if the PNT is calibrated under BTPS conditions, changes in viscosity must not be neglected when performing accurate ventilation measurements. On the basis of the well-known physical laws of Dalton, Thiesen and Sutherland, a numerical correction of adequate accuracy is possible.

  20. Erosion corrosion in wet steam

    International Nuclear Information System (INIS)

    Tavast, J.

    1988-03-01

    The effect of different remedies against erosion corrosion in wet steam has been studied in Barsebaeck 1. Accessible steam systems were inspected in 1984, 1985 and 1986. The effect of hydrogen peroxide injection of the transport of corrosion products in the condensate and feed water systems has also been followed through chemical analyses. The most important results of the project are: - Low alloy chromium steels with a chromium content of 1-2% have shown excellent resistance to erosion corrosion in wet steam. - A thermally sprayed coating has shown good resistance to erosion corrosion in wet steam. In a few areas with restricted accessibility minor attacks have been found. A thermally sprayed aluminium oxide coating has given poor results. - Large areas in the moisture separator/reheater and in steam extraction no. 3 have been passivated by injection of 20 ppb hydrogen peroxide to the high pressure steam. In other inspected systems no significant effect was found. Measurements of the wall thickness in steam extraction no. 3 showed a reduced rate of attack. - The injection of 20 ppb hydrogen peroxide has not resulted in any significant reduction of the iron level result is contrary to that of earlier tests. An increase to 40 ppb resulted in a slight decrease of the iron level. - None of the feared disadvantages with hydrogen peroxide injection has been observed. The chromium and cobalt levels did not increase during the injection. Neither did the lifetime of the precoat condensate filters decrease. (author)

  1. Estimation of uncertainty in tracer gas measurement of air change rates.

    Science.gov (United States)

    Iizuka, Atsushi; Okuizumi, Yumiko; Yanagisawa, Yukio

    2010-12-01

    Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of air change rate can be avoided. The proposed estimation method will be useful in practical ventilation measurements.

  2. Gas permeation measurement under defined humidity via constant volume/variable pressure method

    KAUST Repository

    Jan Roman, Pauls

    2012-02-01

    Many industrial gas separations in which membrane processes are feasible entail high water vapour contents, as in CO 2-separation from flue gas in carbon capture and storage (CCS), or in biogas/natural gas processing. Studying the effect of water vapour on gas permeability through polymeric membranes is essential for materials design and optimization of these membrane applications. In particular, for amine-based CO 2 selective facilitated transport membranes, water vapour is necessary for carrier-complex formation (Matsuyama et al., 1996; Deng and Hägg, 2010; Liu et al., 2008; Shishatskiy et al., 2010) [1-4]. But also conventional polymeric membrane materials can vary their permeation behaviour due to water-induced swelling (Potreck, 2009) [5]. Here we describe a simple approach to gas permeability measurement in the presence of water vapour, in the form of a modified constant volume/variable pressure method (pressure increase method). © 2011 Elsevier B.V.

  3. Soil gas and radon entry potential measurements in central Florida houses

    International Nuclear Information System (INIS)

    Turk, B.H.

    1993-01-01

    A technique to quantify the various parameters associated with the pressure-driven entry rate of soil gas and radon into buildings has been applied to five central Florida houses with slab-on-grade construction. Results indicate that the slabs of these Florida houses are more resistant to soil gas flow than slabs in previously studied New Jersey and New Mexico houses. The data for locations near the slab perimeter show that the resistance to soil gas flow is greater for the slab than for the underlying materials/soils, implying that the slab resistance is a slightly dominant factor controlling soil gas entry in these houses. As in the New Jersey and New Mexico houses, soil gas and radon entry potentials were highest near the slab perimeters. In contrast to the earlier studies, geometric mean radon entry potentials did not correlate well with measured indoor radon levels. (orig.). (4 refs., 1 fig., 2 tabs.)

  4. Calibration method based on direct radioactivity measurement for radioactive gas monitoring instruments

    International Nuclear Information System (INIS)

    Yoshida, Makoto; Ohi, Yoshihiro; Chida, Tohru; Wu, Youyang.

    1993-01-01

    A calibration method for radioactive gas monitoring instruments was studied. In the method, gaseous radioactivity standards were provided on the basis of the direct radioactivity measurement by the diffusion-in long proportional counter method (DLPC method). The radioactivity concentration of the gas mixture through a monitoring instrument was determined by sampling the known volume of the gas mixture into the proportional counter used for the DLPC method. Since oxygen in the gas mixture decreased the counting efficiency in a proportional counter, the influence on calibration was experimentally estimated. It was not serious and able to be easily corrected. By the present method, the relation between radioactivity concentration and ionization current was determined for a gas-flow ionization chamber with 1.5 l effective volume. It showed good agreement with the results in other works. (author)

  5. Measurements of the initial density distribution of gas puff liners by using Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Yu G; Shashkov, A Yu [Kurchatov Institute, Moscow (Russian Federation)

    1997-12-31

    Rayleigh scattering of a laser beam in a gas jet is proposed for the measurements of initial density distribution of gas-puff liners. The scattering method has several advantages when compared with interferometry. In particular, it provides information on the local gas density, it is more sensitive, and the output data can be absolutely calibrated. Theoretical background of the method is briefly discussed in the paper and the optical setup used in real experiments is described. Imaging of the scattering object make it possible to detect detailed profiles of the investigated gas jet, as illustrated by several examples taken from the experiment. In some cases even the gas jet stratification has been observed. (J.U.). 1 tab., 3 figs., 1 ref.

  6. Electron temperature measurement of tungsten inert gas arcs

    International Nuclear Information System (INIS)

    Tanaka, Manabu; Tashiro, Shinichi

    2008-01-01

    In order to make clear the physical grounds of deviations from LTE (Local Thermodynamic Equilibrium) in the atmospheric helium TIG arcs electron temperature and LTE temperature obtained from electron number density were measured by using of line-profile analysis of the laser scattering method without an assumption of LTE. The experimental results showed that in comparison with the argon TIG arcs, the region where a deviation from LTE occurs tends to expand in higher arc current because the plasma reaches the similar state to LTE within shorter distance from the cathode due to the slower cathode jet velocity

  7. Method to make accurate concentration and isotopic measurements for small gas samples

    Science.gov (United States)

    Palmer, M. R.; Wahl, E.; Cunningham, K. L.

    2013-12-01

    Carbon isotopic ratio measurements of CO2 and CH4 provide valuable insight into carbon cycle processes. However, many of these studies, like soil gas, soil flux, and water head space experiments, provide very small gas sample volumes, too small for direct measurement by current constant-flow Cavity Ring-Down (CRDS) isotopic analyzers. Previously, we addressed this issue by developing a sample introduction module which enabled the isotopic ratio measurement of 40ml samples or smaller. However, the system, called the Small Sample Isotope Module (SSIM), does dilute the sample during the delivery with inert carrier gas which causes a ~5% reduction in concentration. The isotopic ratio measurements are not affected by this small dilution, but researchers are naturally interested accurate concentration measurements. We present the accuracy and precision of a new method of using this delivery module which we call 'double injection.' Two portions of the 40ml of the sample (20ml each) are introduced to the analyzer, the first injection of which flushes out the diluting gas and the second injection is measured. The accuracy of this new method is demonstrated by comparing the concentration and isotopic ratio measurements for a gas sampled directly and that same gas measured through the SSIM. The data show that the CO2 concentration measurements were the same within instrument precision. The isotopic ratio precision (1σ) of repeated measurements was 0.16 permil for CO2 and 1.15 permil for CH4 at ambient concentrations. This new method provides a significant enhancement in the information provided by small samples.

  8. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    Science.gov (United States)

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-07

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  9. Evaluating measurements of carbon dioxide emissions using a precision source--A natural gas burner.

    Science.gov (United States)

    Bryant, Rodney; Bundy, Matthew; Zong, Ruowen

    2015-07-01

    A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurements-predicted emissions measurements, and direct measurement of emissions quantities in the flue gas-direct emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of ±4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources. Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions.

  10. Alternate method for gas measurement to offshore wells producing by plunger lift

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sergio Jose Goncalves e [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao; Mota, Francisco das Chagas [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The purpose of this paper is to describe an alternate method for gas measurement to wells producing by conventional plunger lift to a two phase separator in offshore production systems. The principle of the plunger lift is basically the use of a free piston acting as a mechanical interface between the formation gas and the produced liquids, greatly increasing the well's lifting efficiency. However, when the piston reaches the surface a liquid slug is produced through the flowline and it propagates into the separator where the phases are measured. Usually, orifice meter is widely used in separators to measure steady-state gas flow rate, but when intermittent flow is present, the gas causes the signal saturation of the differential pressure element ({delta}P), resulting in measurement distortion. The solution proposed in this work to estimate the gas flow rate during the liquid slug it was obtained through the mathematical modeling of the separator and with the use of System Identification Theory. Applying the ARX model it was possible to get the best fit to the collected data. So, with this model and its recursive variant (RARX) it was possible to prove that, with reasonable forecast degree, the signal of the gas flow rate can be recovered by starting from the signal of the pressure control valve of the separator. (author)

  11. Flow characteristics of helium gas going through a 90°elbow for flow measurement

    International Nuclear Information System (INIS)

    Feng Beibei; Wang Shiming; Yang Xingtuan; Jiang Shengyao

    2014-01-01

    Numerical simulation is performed to investigate the pressure distribution of He-gas under high pressure and high temperature for 10MW High Temperature Gas-cooled Reactor (HTGR-10). Experimental measurements of wall pressure through a self-built test system are carried out to validate the credibility of the computational approach. We present a study for complex flow structure of He-gas using the case of an structurally 90°elbow that is reconstructed from the steam generator of HTGR-10. Pressure measurement of inner wall and outer wall is used to compare with the numerical results. Distribution of wall pressure of He-gas flowing through 90° elbow based on the numerical and experimental approaches show good agreement. Wall pressure distribution of eight cross sections of the elbow is given in detail to represent the entire region of elbow. (author)

  12. Wetting of real surfaces

    CERN Document Server

    Bormashenko, Edward Yu

    2013-01-01

    The problem of wetting and drop dynamics on various surfaces is very interesting from both the scientificas well as thepractical viewpoint, and subject of intense research.The results are scattered across papers in journals, sothis workwill meet the need for a unifying, comprehensive work.

  13. Wet oxidation of quinoline

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Kilen, H.H.

    1998-01-01

    The influence of oxygen pressure (0.4 and 2 MPa). reaction time (30 and 60 min) and temperature (260 and 280 degrees C) on the wet oxidation of quinoline has been studied. The dominant parameters for the decomposition of quinoline were oxygen pressure and reaction temperature. whereas the reactio...

  14. Experiments to Evaluate and Implement Passive Tracer Gas Methods to Measure Ventilation Rates in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Lunden, Melissa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Heredia, Elizabeth [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cohn, Sebastian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dickerhoff, Darryl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Noris, Federico [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Logue, Jennifer [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-01

    This report documents experiments performed in three homes to assess the methodology used to determine air exchange rates using passive tracer techniques. The experiments used four different tracer gases emitted simultaneously but implemented with different spatial coverage in the home. Two different tracer gas sampling methods were used. The results characterize the factors of the execution and analysis of the passive tracer technique that affect the uncertainty in the calculated air exchange rates. These factors include uncertainties in tracer gas emission rates, differences in measured concentrations for different tracer gases, temporal and spatial variability of the concentrations, the comparison between different gas sampling methods, and the effect of different ventilation conditions.

  15. Measurements of gas velocity in supersonic flow using a laser beam

    International Nuclear Information System (INIS)

    Airoldi, V.J.T.; Santos, R. dos

    1982-01-01

    A study of measurements of supersonic velocities in a wind tunnel using a laser beam was performed. Techniques using lasers are most suitable because they do not disturb the gas flow. This work presents the technique entitled as fringe technique. It works using interference patterns due to two perpendicular laser beams crossing the sample (i.e. the gas flow). Experimental results are compared with other usual techniques. (R.S.)

  16. Estimation of Uncertainty in Tracer Gas Measurement of Air Change Rates

    Directory of Open Access Journals (Sweden)

    Atsushi Iizuka

    2010-12-01

    Full Text Available Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of

  17. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    International Nuclear Information System (INIS)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander; Clausen, Sønnik

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1–200 bar and temperature range 300–1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients of a CO_2–N_2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated spectra, as well as published experimental data. - Highlights: • A ceramic gas cell designed for gas measurements up to 1300 K and 200 bar. • The first recorded absorption spectrum of CO_2 at 1000 K and 101 bar is presented. • Voigt profiles might suffice in the modeling of radiation from CO_2 in combustion.

  18. A review on measuring methods of gas-liquid flow rates

    International Nuclear Information System (INIS)

    Minemura, Kiyoshi; Yamashita, Masato

    2000-01-01

    This paper presents a review on the state of current measuring techniques for gas-liquid multiphase flow rates. After briefly discussing the basic idea on measuring methods for single-phase and two-phase flows, existing methods for the two-phase flow rates are classified into several types, that is, with or without a homogenizing device, single or combined method of several techniques, with intrusive or non-intrusive sensors, and physical or software method. Each methods are comparatively reviewed in view of measuring accuracy and manageability. Its scope also contains the techniques developed for petroleum-gas-water flow rates. (author)

  19. A simple technique for the measurement of 222Rn in soil gas using LLRDS

    International Nuclear Information System (INIS)

    Karunakara, N.

    2010-01-01

    The details of the technique of soil gas measurement using LLRDS and results obtained for field measurements at different locations of Mangalore and the results of comparative study with the AlphaGuard along with the possible scope for the improvisation are presented and discussed in this paper

  20. Analyzer for measuring gas contained in the pore space of rocks

    Science.gov (United States)

    Kudasik, Mateusz; Skoczylas, Norbert

    2017-10-01

    In the present paper, the authors discussed the functioning of their own analyzer for measuring gas contained in the pore space of high strength rocks. A sample is placed inside a hermetic measuring chamber, and then undergoes impact milling as a result of colliding with the vibrating blade of a knife which is rotationally driven by a high-speed brushless electric motor. The measuring chamber is equipped with all the necessary sensors, i.e. gas, pressure, and temperature sensors. Trial tests involving the comminution of dolomite and anhydrite samples demonstrated that the constructed device is able to break up rocks into grains so fine that they are measured in single microns, and the sensors used in the construction ensure balancing of the released gas. The tests of the analyzer showed that the metrological concept behind it, together with the way it was built, make it fit for measurements of the content and composition of selected gases from the rock pore space. On the basis of the conducted tests of balancing the gases contained in the two samples, it was stated that the gas content of Sample no. 1 was (0.055  ±  0.002) cm3 g-1, and Sample no. 2 contained gas at atmospheric pressure, composed mostly of air.

  1. A Wet Chemistry Laboratory Cell

    Science.gov (United States)

    2008-01-01

    This picture of NASA's Phoenix Mars Lander's Wet Chemistry Laboratory (WCL) cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. In-reactor measurements of thermo mechanical behaviour and fission gas release of water reactor fuel

    International Nuclear Information System (INIS)

    Kolstad, E.; Vitanza, C.

    1983-01-01

    the fuel performance during and after a power ramp can be investigated by direct in-pile measurements related to the thermal, mechanical and fission gas release behaviour. The thermal response is examined by thermocouples placed at the centre of the fuel. Such measurements allow the determination of thermal feedback effects induced by the simultaneous liberation of fission gases. The thermal feedback effect is also being separately studied out-of-pile in a specially designed rod where the fission gas release is simulated by injecting xenon in known quantities at different axial positions within the rod. Investigations on the mechanical behaviour are based on axial and diametral cladding deformation measurements. This enables the determination of the amount of local cladding strain and ridging during ramping, the extent of relaxation during the holding time and the amount of residual (plastic) deformation. Gap width measurements are also performed in operating fuel rods using a cladding deflection technique. Fission gas release data are obtained, besides from post-irradiation puncturing, by continuous measurements of the rod internal pressure. This type of measurement leads to the description of the kinetics of the fission gas release process at different powers. The data tend to indicate that the time-dependent release can be reasonably well described by simple diffusion. The paper describes measuring techniques developed and currently in use in Halden, and presents and discusses selected experimental results obtained during various power ramps and transients. (author)

  3. Wet precipitators for sulphuric acid plants

    International Nuclear Information System (INIS)

    Ojanpera, R.O.

    1989-01-01

    Both the service requirements and design construction details have changed considerably in recent years for wet electrostatic precipitators as used for gas cleaning ahead of metallurgical sulphuric acid plants. Increased concern over acid quality has resulted in more emphasis on dust efficiencies compared to collection of acid mist. Also, higher static operating pressures have caused large structural loads on casing and internal components. In this paper these two issues are addressed in the following ways: Recognition that all dusts do not collect similarly. The mechanism by which various dusts collect affect the design of the entire wet gas cleaning system. Use of both traditional and newer materials of construction to accommodate the higher design pressures while still maintaining corrosion resistance

  4. Examining Methods to Reduce Wall-Wetting under HCCI conditions

    Energy Technology Data Exchange (ETDEWEB)

    Van Erp, D.D.T.M.

    2009-01-15

    HCCI engines (Homogeneous Charge Compression Ignition) are very promising in the reduction of soot and NOx, but several problems must be tackled. Collision of the liquid fuel spray against the cylinder wall (Wall-wetting) is a major problem. Low gas temperatures and low gas densities (typical 600 - 800 K and 5 - 7.4 kg/m{sup 3}) at the moment of the fuel injection slow down the evaporation process of the liquid fuel in the spray and causes wall-wetting. This report investigates different promising measures that can reduce the penetration of the liquid fuel core, in order to prevent wall-wetting. From literature it turns out that the measures, listed below, are the most promising for liquid core length (LL) reduction without changing the design of the injector or the engine design: Increasing the fuel temperature, Changing the fuel pressure, Decrease of injector hole diameter, Multiple injections (first very short injections are examined). Each of the measures will be investigated by a liquid length prediction model (Siebers) and in an experimental setup, the EHPC (Eindhoven High Pressure Cell). A high pressure vessel with optical access makes it possible to visualize the liquid core and the vapor phase of the fuel spray by Mie and Schlieren, respectively. Changes to the setup are made to heat up the fuel up to 120C. Furthermore, changes to the fuel spray visualization techniques have been made. Where in previous experiments the Mie and Schlieren techniques were carried out separately from each other, in this work both visualization techniques are combined to save measurement time and to deal with the same experimental conditions. The combined recording of Mie and Schlieren works well for high gas temperatures and densities. But the combined technique fails for low gas temperatures and densities (below 700K and 7.4 kg/m3), due to the poor contrast between the liquid core and the vapor phase. In further examination of liquid length reducing measures, only the Mie

  5. Measuring Gas Concentration and Wind Intensity in a Turbulent Wind Tunnel with a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Dani Martínez

    2016-01-01

    Full Text Available This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms.

  6. Metrological and operational performance of measuring systems used in vehicle compressed natural gas filling stations

    Energy Technology Data Exchange (ETDEWEB)

    Velosa, Jhonn F.; Abril, Henry; Garcia, Luis E. [CDT de GAS (Venezuela). Gas Technological Development Center Corporation

    2008-07-01

    Corporation CDT GAS financially supported by the Colombian government through COLCIENCIAS, carried out a study aimed at designing, developing and implementing in Colombia a calibration and metrological verification 'specialized service' for gas meters installed at dispensers of filling stations using compressed natural gas. The results permitted the identification of improving opportunities (in measuring systems, equipment and devices used to deliver natural gas) which are focused on achieving the highest security and reliability of trading processes of CNG for vehicles. In the development of the first stage of the project, metrological type variables were initially considered, but given the importance of the measuring system and its interaction with the various elements involving gas supply to the filling station, the scope of the work done included aspects related to the operational performance, that is, those influencing the security of the users and the metrological performance of the measuring system. The development of the second stage counted on the collaboration of national companies from the sector of CNG for vehicles, which permitted the carrying out of multiple calibrations to the measuring systems installed in the CNG dispensers, thus achieving, in a concrete way, valid and reliable technological information of the implemented procedures. (author)

  7. Combination scattering of dissociating gas applied to measurements of temperature and concentration of components

    International Nuclear Information System (INIS)

    Pashkov, V.A.; Kurganova, F.I.; Grishchuk, M.Kh.

    1987-01-01

    The method to calculate the combination scattering power of the components of the dissociating N 2 O 4 ↔ 2NO 2 → 2NO+O 2 gas subjected to the laser radiation effect is given. The combination scattering power has been calculated for temperatures 400-600 K, pressures 1-3 MPa, with the neodymium laser (λ=1.06 μm) as a source and the possibility of measuring the local temperatures and concentration of the given gas components with the help of the combination scattering has been analysed. It follows from the calculated data that combination scattering power of N 2 O 4 ↔ 2NO 2 ↔ 2NO+O 2 gas in excitation with the neodymium laser as a source is sufficient for detection. Gas temperature is likely to be measured with the minimum error relative to stokes and anti-stokes bands of the combination scattering, produced by nitrogen tetroxide. From calculated data it also follows that measurement of NO 2 concentration in the range 400-600 K is possible. At the same time combination scattering power, produced by NO and O 2 components is sufficient for measurement merely with the concentration of the components of the order of 10 18 molecules/cm 3 guaranteed in static conditions only at N 2 O 4 ↔ 2NO 2 ↔ 2NO+O 2 gas temperature 500 K and higher

  8. Opening the gas market - Effects on energy consumption, energy prices and the environment and compensation measures

    International Nuclear Information System (INIS)

    Dettli, R.; Signer, B.; Kaufmann, Y.

    2001-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) examines the effects of a future liberalisation of the gas market in Switzerland. The report first examines the current situation of the gas supply industry in Switzerland. The contents of European Union Guidelines are described and their implementation in Switzerland is discussed. Experience already gained in other countries is looked at, including market opening already implemented in the USA and Great Britain. The effect of market-opening on gas prices is discussed; the various components of the gas price are examined and comparisons are made with international figures. The pressure of competition on the individual sectors of the gas industry are looked at and the perspectives in the gas purchasing market are examined. The report presents basic scenarios developed from these considerations. Further effects resulting from a market opening are discussed, including those on the structure of the gas industry, its participants, electricity generation, energy use and the environment, consumers in general, security of supply and the national economy. Possible compensatory measures are discussed and factors for increasing efficiency and the promotion of a competitive environment are discussed. In the appendix, two price scenarios are presented

  9. Current situation and control measures of groundwater pollution in gas station

    Science.gov (United States)

    Wu, Qiong; Zhang, Xiaofeng; Zhang, Qianjin

    2017-11-01

    In recent years, pollution accidents caused by gas station leakage has occurred worldwide which can be persistent in groundwater. Numerous studies have demonstrated that the contaminated groundwater is threatening the ecological environment and human health. In this article, current status and sources of groundwater pollution by gas station are analyzed, and experience of how to prevent groundwater pollution from gas stations are summarized. It is demonstrated that installation of secondary containment measures for the oil storage of the oil tank system, such as installation of double-layer oil tanks or construction of impermeable ponds, is a preferable method to prevent gas stations from groundwater pollution. Regarding to the problems of groundwater pollution caused by gas station, it is proposed that it is urgent to investigate the leakage status of gas station. Relevant precise implementation regulations shall be issued and carried out, and supervision management of gas stations would need to be strengthened. Then single-layer steel oil tanks shall be replaced by double-layer tanks, and the impermeable ponds should be constructed according to the risk ranking. From the control methodology, the groundwater environment monitoring systems, supervision level, laws and regulations as well as pollution remediation should also be carried out and strengthened.

  10. Methods and techniques for measuring gas emissions from agricultural and animal feeding operations.

    Science.gov (United States)

    Hu, Enzhu; Babcock, Esther L; Bialkowski, Stephen E; Jones, Scott B; Tuller, Markus

    2014-01-01

    Emissions of gases from agricultural and animal feeding operations contribute to climate change, produce odors, degrade sensitive ecosystems, and pose a threat to public health. The complexity of processes and environmental variables affecting these emissions complicate accurate and reliable quantification of gas fluxes and production rates. Although a plethora of measurement technologies exist, each method has its limitations that exacerbate accurate quantification of gas fluxes. Despite a growing interest in gas emission measurements, only a few available technologies include real-time, continuous monitoring capabilities. Commonly applied state-of-the-art measurement frameworks and technologies were critically examined and discussed, and recommendations for future research to address real-time monitoring requirements for forthcoming regulation and management needs are provided.

  11. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    Science.gov (United States)

    Zhao, H.; Zhang, S.

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O2, H2O, CO2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine.

  12. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    International Nuclear Information System (INIS)

    Zhao, H; Zhang, S

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O 2 , H 2 O, CO 2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine

  13. Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry.

    Science.gov (United States)

    Schenk, H Jochen; Espino, Susana; Visser, Ate; Esser, Bradley K

    2016-04-01

    A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples. © 2015 John Wiley & Sons Ltd.

  14. Natural gas facility methane emissions: measurements by tracer flux ratio in two US natural gas producing basins

    Directory of Open Access Journals (Sweden)

    Tara I. Yacovitch

    2017-11-01

    Full Text Available Methane (CH4 emission rates from a sample of natural gas facilities across industry sectors were quantified using the dual tracer flux ratio methodology. Measurements were conducted in study areas within the Fayetteville shale play, Arkansas (FV, Sept–Oct 2015, 53 facilities, and the Denver-Julesburg basin, Colorado, (DJ, Nov 2014, 21 facilities. Distributions of methane emission rates at facilities by type are computed and statistically compared with results that cover broader geographic regions in the US (Allen et al., 2013, Mitchell et al., 2015. DJ gathering station emission rates (kg CH4 hr–1 are lower, while FV gathering and production sites are statistically indistinguishable as compared to these multi-basin results. However, FV gathering station throughput-normalized emissions are statistically lower than multi-basin results (0.19% vs. 0.44%. This implies that the FV gathering sector is emitting less per unit of gas throughput than would be expected from the multi-basin distribution alone. The most common emission rate (i.e. mode of the distribution for facilities in this study is 40 kg CH4 hr–1 for FV gathering stations, 1.0 kg CH4 hr–1 for FV production pads, and 11 kg CH4 hr–1 for DJ gathering stations. The importance of study design is discussed, including the benefits of site access and data sharing with industry and of a scientist dedicated to measurement coordination and site choice under evolving wind conditions.

  15. Summary of 1988 WIPP [Waste Isolation Pilot Plant] Facility horizon gas flow measurements

    International Nuclear Information System (INIS)

    Stormont, J.C.

    1990-11-01

    Numerous gas flow measurements have been made at the Waste Isolation Pilot Plant (WIPP) Facility horizon during 1988. All tests have been pressure decay or constant pressure tests from single boreholes drilled from the underground excavations. The test fluid has been nitrogen. The data have been interpreted as permeabilities and porosities by means of a transient numerical solution method. A closed-form steady-state approximation provides a reasonable order-of-magnitude permeability estimate. The effective resolution of the measurement system is less than 10 -20 m 2 . Results indicate that beyond 1 to 5 m from an excavation, the gas flow is very small and the corresponding permeability is below the system resolution. Within the first meter of an excavation, the interpreted permeabilities can be 5 orders of magnitude greater than the undisturbed or far-field permeability. The interpreted permeabilities in the region between the undisturbed region and the first meter from an excavation are in the range of 10 -16 to 10 -20 m 2 . Measurable gas flow occurs to a greater depth into the roof above WIPP excavations of different sizes and ages than into the ribs and floor. The gas flows into the formation surrounding the smallest excavation tested are consistently lower than those at similar locations surrounding larger excavations of comparable age. Gas flow measured in the interbed layers near the WIPP excavations is highly variable. Generally, immediately above and below excavations, relatively large gas flow is measured in the interbed layers. These results are consistent with previous measurements and indicate a limited disturbed zone surrounding WIPP excavations. 31 refs., 99 figs., 5 tabs

  16. Measurements of hydrogen concentration in liquid sodium by using an inert gas carrier method

    International Nuclear Information System (INIS)

    Funada, T.; Nihei, I.; Yuhara, S.; Nakasuji, T.

    1979-01-01

    A technique was developed to measure the hydrogen level in liquid sodium using an inert gas carrier method. Hydrogen was extracted into an inert gas from sodium through a thin nickel membrane in the form of a helically wound tube. The amount of hydrogen in the inert gas was analyzed by gas chromatography. The present method is unique in that it can be used over the wide range of sodium temperatures (150 to 700 0 C) and has no problems associated with vacuum systems. The partial pressure of hydrogen in sodium was determined as a function of cold-trap temperature (T/sub c/). Sieverts' constant (K/sub s/) was determined as a function of sodium temperature (T). From Sieverts' constant, the solubility of hydrogen in sodium is calculated. It was found that other impurities in sodium, such as (O) and (OH), have little effect on the hydrogen pressure in the sodium loop

  17. Gas permeability of bentonite barriers: development, construction and testing of a measurement system

    Directory of Open Access Journals (Sweden)

    Heraldo Nunes Pitanga

    Full Text Available Abstract This article proposes a testing device to quickly and reliably estimate the gas permeability of bentonite-based clay barriers used in landfill cover systems. The testing methodology is based on a transient gas flow regime that passes through the barrier, therefore not requiring the use of sophisticated equipment that aim to maintain constant differential pressure and measure the gas flow, common requirements for testing methods under a permanent flow regime. To confirm the feasibility of the proposed technique, tests were performed on a pure hydrated bentonite layer, which subsequently encompassed samples of geosynthetic clay liner (GCL at different moisture contents. Geosynthetic clay liners are often selected as a part of the barrier layer for cover systems in solid waste landfills to prevent infiltration of rainfall and migration of biogas into the atmosphere. The results confirmed the equipment reliability and differentiate the different responses of the gas flow barriers studied, considering their different compositions and different moistures.

  18. The Huber’s Method-based Gas Concentration Reconstruction in Multicomponent Gas Mixtures from Multispectral Laser Measurements under Noise Overshoot Conditions

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2016-01-01

    Full Text Available Laser gas analysers are the most promising for the rapid quantitative analysis of gaseous air pollution. A laser gas analysis problem is that there are instable results in reconstruction of gas mixture components concentration under real noise in the recorded laser signal. This necessitates using the special processing algorithms. When reconstructing the quantitative composition of multi-component gas mixtures from the multispectral laser measurements are efficiently used methods such as Tikhonov regularization, quasi-solution search, and finding of Bayesian estimators. These methods enable using the single measurement results to determine the quantitative composition of gas mixtures under measurement noise. In remote sensing the stationary gas formations or in laboratory analysis of the previously selected (when the gas mixture is stationary air samples the reconstruction procedures under measurement noise of gas concentrations in multicomponent mixtures can be much simpler. The paper considers a problem of multispectral laser analysis of stationary gas mixtures for which it is possible to conduct a series of measurements. With noise overshoots in the recorded laser signal (and, consequently, overshoots of gas concentrations determined by a single measurement must be used stable (robust estimation techniques for substantial reducing an impact of the overshoots on the estimate of required parameters. The paper proposes the Huber method to determine gas concentrations in multicomponent mixtures under signal overshoot. To estimate the value of Huber parameter and the efficiency of Huber's method to find the stable estimates of gas concentrations in multicomponent stationary mixtures from the laser measurements the mathematical modelling was conducted. Science & Education of the Bauman MSTU 108 The mathematical modelling results show that despite the considerable difference among the errors of the mixture gas components themselves a character of

  19. Approach for Self-Calibrating CO2 Measurements with Linear Membrane-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Detlef Lazik

    2016-11-01

    Full Text Available Linear membrane-based gas sensors that can be advantageously applied for the measurement of a single gas component in large heterogeneous systems, e.g., for representative determination of CO2 in the subsurface, can be designed depending on the properties of the observation object. A resulting disadvantage is that the permeation-based sensor response depends on operating conditions, the individual site-adapted sensor geometry, the membrane material, and the target gas component. Therefore, calibration is needed, especially of the slope, which could change over several orders of magnitude. A calibration-free approach based on an internal gas standard is developed to overcome the multi-criterial slope dependency. This results in a normalization of sensor response and enables the sensor to assess the significance of measurement. The approach was proofed on the example of CO2 analysis in dry air with tubular PDMS membranes for various CO2 concentrations of an internal standard. Negligible temperature dependency was found within an 18 K range. The transformation behavior of the measurement signal and the influence of concentration variations of the internal standard on the measurement signal were shown. Offsets that were adjusted based on the stated theory for the given measurement conditions and material data from the literature were in agreement with the experimentally determined offsets. A measurement comparison with an NDIR reference sensor shows an unexpectedly low bias (<1% of the non-calibrated sensor response, and comparable statistical uncertainty.

  20. Approach for Self-Calibrating CO₂ Measurements with Linear Membrane-Based Gas Sensors.

    Science.gov (United States)

    Lazik, Detlef; Sood, Pramit

    2016-11-17

    Linear membrane-based gas sensors that can be advantageously applied for the measurement of a single gas component in large heterogeneous systems, e.g., for representative determination of CO₂ in the subsurface, can be designed depending on the properties of the observation object. A resulting disadvantage is that the permeation-based sensor response depends on operating conditions, the individual site-adapted sensor geometry, the membrane material, and the target gas component. Therefore, calibration is needed, especially of the slope, which could change over several orders of magnitude. A calibration-free approach based on an internal gas standard is developed to overcome the multi-criterial slope dependency. This results in a normalization of sensor response and enables the sensor to assess the significance of measurement. The approach was proofed on the example of CO₂ analysis in dry air with tubular PDMS membranes for various CO₂ concentrations of an internal standard. Negligible temperature dependency was found within an 18 K range. The transformation behavior of the measurement signal and the influence of concentration variations of the internal standard on the measurement signal were shown. Offsets that were adjusted based on the stated theory for the given measurement conditions and material data from the literature were in agreement with the experimentally determined offsets. A measurement comparison with an NDIR reference sensor shows an unexpectedly low bias (sensor response, and comparable statistical uncertainty.

  1. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope

    International Nuclear Information System (INIS)

    Colby, R.; Alsem, D.H.; Liyu, A.; Kabius, B.

    2015-01-01

    Environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ∼20 mbar achievable with a differentially pumped environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. However, the relationship between the pressure at the sample and the pressure drop across the system is not clear for some geometries. We demonstrate a method for measuring the gas pressure at the sample by measuring the ratio of elastic to inelastic scattering and the defocus of the pair of thin windows. This method requires two energy filtered high-resolution TEM images that can be performed during an ongoing experiment, at the region of interest. The approach is demonstrated to measure greater than atmosphere pressures of N 2 gas using a commercially available gas-flow stage. This technique provides a means to ensure reproducible sample pressures between different experiments, and even between very differently designed gas-flow stages. - Highlights: • Method developed for measuring gas pressure within a gas-flow stage in the TEM. • EFTEM and CTF-fitting used to calculate amount and volume of gas. • Requires only a pair of images without leaving region of interest. • Demonstrated for P > 1 atm with a common commercial gas-flow stage

  2. Ultrasonic measurement process of the ratio volume of gas in an enclosure containing a gas-liquid mixture to the total volume of the enclosure

    International Nuclear Information System (INIS)

    Marini, J.; Heinrich, J.P.

    1983-01-01

    Ultrasonic waves with two different frequencies are sent through the fluid in the containment. Time of propagation are measured and the difference is calculated. If propagation times are identical the gas phase forms a layer on the top of the liquid phase and void fraction is determined from propagation speeds in the gas and in the liquid. If propagation times are different, part of the gas forms bubbles and void fraction is the sum of gas on top of the liquid and gas bubbles in the liquid determined separatly. Void fraction coming from the gas over the liquid is determined by waves reflected at the interface gas-liquid. Void fraction coming from the bubbles is determined by relations between the speed of ultrasonic waves and their frequency as a function of pressure and void fraction [fr

  3. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    OpenAIRE

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-01-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip bounda...

  4. Measurements of Plasma Expansion due to Background Gas in the Electron Diffusion Gauge Experiment

    International Nuclear Information System (INIS)

    Morrison, Kyle A.; Paul, Stephen F.; Davidson, Ronald C.

    2003-01-01

    The expansion of pure electron plasmas due to collisions with background neutral gas atoms in the Electron Diffusion Gauge (EDG) experiment device is observed. Measurements of plasma expansion with the new, phosphor-screen density diagnostic suggest that the expansion rates measured previously were observed during the plasma's relaxation to quasi-thermal-equilibrium, making it even more remarkable that they scale classically with pressure. Measurements of the on-axis, parallel plasma temperature evolution support the conclusion

  5. Position sensitive proportional counter for measurement of tritium labelled gas movement

    International Nuclear Information System (INIS)

    Mori, Chizuo; Nakamoto, Makihiko; Uritani, Akira; Watanabe, Tamaki

    1984-01-01

    A position sensitive proportional counter of a charge division type with a single resistive anode wire was constructed for the measurement of the movement of 3 H labelled gas which is flowing or diffusing in a pipe. The introduction of resistors between the anode wire and pre-amplifiers brought a uniform detection efficiency for 3 H β-rays throughout the counter. The position resolution was 3.1 mm FWHM. Detection efficiency was almost 100% uniformly over about 700 mm in the total anode length of 740 mm. The movement of 3 H labelled gas could be measured effectively. (author)

  6. Schottky barriers measurements through Arrhenius plots in gas sensors based on semiconductor films

    Directory of Open Access Journals (Sweden)

    F. Schipani

    2012-09-01

    Full Text Available The oxygen adsorption effects on the Schottky barriers height measurements for thick films gas sensors prepared with undoped nanometric SnO2 particles were studied. From electrical measurements, the characteristics of the intergranular potential barriers developed at intergrains were deduced. It is shown that the determination of effective activation energies from conduction vs. 1/temperature curves is not generally a correct manner to estimate barrier heights. This is due to gas adsorption/desorption during the heating and cooling processes, the assumption of emission over the barrier as the dominant conduction mechanism, and the possible oxygen diffusion into or out of the grains.

  7. Tuneable diode laser gas analyser for methane measurements on a large scale solid oxide fuel cell

    Science.gov (United States)

    Lengden, Michael; Cunningham, Robert; Johnstone, Walter

    2011-10-01

    A new in-line, real time gas analyser is described that uses tuneable diode laser spectroscopy (TDLS) for the measurement of methane in solid oxide fuel cells. The sensor has been tested on an operating solid oxide fuel cell (SOFC) in order to prove the fast response and accuracy of the technology as compared to a gas chromatograph. The advantages of using a TDLS system for process control in a large-scale, distributed power SOFC unit are described. In future work, the addition of new laser sources and wavelength modulation will allow the simultaneous measurement of methane, water vapour, carbon-dioxide and carbon-monoxide concentrations.

  8. Measurements made in the SPS with a rest gas profile monitor by collecting electrons

    International Nuclear Information System (INIS)

    Fischer, C.; Koopman, J.

    2000-01-01

    Measurements have regularly been performed during the 1999 run, using the Rest Gas Monitor installed in the SPS. The exploited signal resulted from electrons produced by ionization of the rest gas during the circulating beam passage. A magnetic field parallel to the electric extraction field was applied to channel the electrons. Proton beam horizontal transverse distributions were recorded during entire SPS acceleration cycles, between 14 GeV/c and 450 GeV/c and for different beam structures and bunch intensities. The influence of several parameters on the measured beam profiles was investigated. Results are presented and analyzed in order to determine the performance that can be expected

  9. Leaf wetness distribution within a potato crop

    Science.gov (United States)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  10. Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements

    Science.gov (United States)

    Peltola, O.; Mammarella, I.; Haapanala, S.; Burba, G.; Vesala, T.

    2013-06-01

    Performances of four methane gas analyzers suitable for eddy covariance measurements are assessed. The assessment and comparison was performed by analyzing eddy covariance data obtained during summer 2010 (1 April to 26 October) at a pristine fen, Siikaneva, Southern Finland. High methane fluxes with pronounced seasonality have been measured at this fen. The four participating methane gas analyzers are commercially available closed-path units TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and an early prototype open-path unit Prototype-7700 (LI-COR Biosciences, USA). The RMT-200 functioned most reliably throughout the measurement campaign, during low and high flux periods. Methane fluxes from RMT-200 and G1301-f had the smallest random errors and the fluxes agree remarkably well throughout the measurement campaign. Cospectra and power spectra calculated from RMT-200 and G1301-f data agree well with corresponding temperature spectra during a high flux period. None of the gas analyzers showed statistically significant diurnal variation for methane flux. Prototype-7700 functioned only for a short period of time, over one month, in the beginning of the measurement campaign during low flux period, and thus, its overall accuracy and season-long performance were not assessed. The open-path gas analyzer is a practical choice for measurement sites in remote locations due to its low power demand, whereas for G1301-f methane measurements interference from water vapor is straightforward to correct since the instrument measures both gases simultaneously. In any case, if only the performance in this intercomparison is considered, RMT-200 performed the best and is the recommended choice if a new fast response methane gas analyzer is needed.

  11. Electron density and gas density measurements in a millimeter-wave discharge

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, S. C., E-mail: sschaub@mit.edu; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology 167 Albany St., Bldg. NW16, Cambridge, Massachusetts 02139 (United States)

    2016-08-15

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.

  12. Electron density and gas density measurements in a millimeter-wave discharge

    International Nuclear Information System (INIS)

    Schaub, S. C.; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J.

    2016-01-01

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.

  13. Acoustic sensor for in-pile fuel rod fission gas release measurement

    International Nuclear Information System (INIS)

    Fourmentel, D.; Villard, J. F.; Ferrandis, J. Y.; Augereau, F.; Rosenkrantz, E.; Dierckx, M.

    2009-01-01

    We have developed a specific acoustic sensor to improve the knowledge of fission gas release in Pressurized Water Reactor (PWR) fuel rods when irradiated in materials testing reactors. In order to perform experimental programs related to the study of the fission gas release kinetics, the CEA (French Nuclear Energy Commission) acquired the ability to equip a pre-irradiated PWR fuel rod with three sensors, allowing the simultaneous on-line measurements of the following parameters: - fuel temperature with a centre-line thermocouple type C, - internal pressure with a specific counter-pressure sensor, - fraction of fission gas released in the fuel rod with an innovative acoustic sensor. The third detector is the subject of this paper. This original acoustic sensor has been designed to measure the molar mass and pressure of the gas contained in the fuel rod plenum. For in-pile instrumentation, the fraction of fission gas, such as Krypton and Xenon, in Helium, can be deduced online from this measurement. The principle of this acoustical sensor is the following: a piezoelectric transducer generates acoustic waves in a cavity connected to the fuel rod plenum. The acoustic waves are propagated and reflected in this cavity and then detected by the transducer. The data processing of the signal gives the velocity of the acoustic waves and their amplitude, which can be related respectively to the molar mass and to the pressure of the gas. The piezoelectric material of this sensor has been qualified in nuclear conditions (gamma and neutron radiations). The complete sensor has also been specifically designed to be implemented in materials testing reactors conditions. For this purpose some technical points have been studied in details: - fixing of the piezoelectric sample in a reliable way with a suitable signal transmission, - size of the gas cavity to avoid any perturbation of the acoustic waves, - miniaturization of the sensor because of narrow in-pile experimental devices

  14. Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines

    Science.gov (United States)

    Manara, J.; Zipf, M.; Stark, T.; Arduini, M.; Ebert, H.-P.; Tutschke, A.; Hallam, A.; Hanspal, J.; Langley, M.; Hodge, D.; Hartmann, J.

    2017-01-01

    The objective of the EU project "Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)" is the development of a suite of advanced sensors, instrumentation and related systems in order to contribute to the developing of the next generation of green and efficient gas turbine engines. One work package of the project deals with the design and development of a long wavelength infrared (LWIR) radiation thermometer for the non-contact measurement of the surface temperature of thermal barrier coatings (TBCs) during the operation of gas turbine engines. For opaque surfaces (e.g. metals or superalloys) radiation thermometers which are sensitive in the near or short wavelength infrared are used as state-of-the-art method for non-contact temperature measurements. But this is not suitable for oxide ceramic based TBCs (e.g. partially yttria stabilized zirconia) as oxide ceramics are semi-transparent in the near and short wavelength infrared spectral region. Fortunately the applied ceramic materials are non-transparent in the long wavelength infrared and additionally exhibit a high emittance in this wavelength region. Therefore, a LWIR pyrometer can be used for non-contact temperature measurements of the surfaces of TBCs as such pyrometers overcome the described limitation of existing techniques. For performing non-contact temperature measurements in gas turbines one has to know the infrared-optical properties of the applied TBCs as well as of the hot combustion gas in order to properly analyse the measurement data. For reaching a low uncertainty on the one hand the emittance of the TBC should be high (>0.9) in order to reduce reflections from the hot surrounding and on the other hand the absorbance of the hot combustion gas should be low (<0.1) in order to decrease the influence of the gas on the measured signal. This paper presents the results of the work performed by the authors with focus on the implementation of the LWIR pyrometer and the

  15. A critical analysis of one standard and five methods to monitor surface wetness and time-of-wetness

    Science.gov (United States)

    Camuffo, Dario; della Valle, Antonio; Becherini, Francesca

    2018-05-01

    Surface wetness is a synergistic factor to determine atmospheric corrosion, monument weathering, mould growth, sick buildings, etc. However, its detection and monitoring are neither easy nor homogeneous, for a number of factors that may affect readings. Various types of methods and sensors, either commercial or prototypes built in the lab, have been investigated and compared, i.e. the international standard ISO 9223 to evaluate corrosivity after wetness and time-of-wetness; indirect evaluation of wetness, based on the dew point calculated after the output of temperature and relative humidity sensors and direct measurements by means of capacitive wetness sensors, safety sensors, rain sensors (also known as leaf wetness sensors), infrared reflection sensors and fibre optic sensors. A comparison between the different methods is presented, specifying physical principles, forms of wetting to which they are respondent (i.e. condensation, ice melting, splashing drops, percolation and capillary rise), critical factors, use and cost.

  16. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    Science.gov (United States)

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-09-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.

  17. Spatially Resolved Gas Temperature Measurements in an Atmospheric Pressure DC Glow Microdischarge with Raman Scattering

    Science.gov (United States)

    Belostotskiy, S.; Wang, Q.; Donnelly, V.; Economou, D.; Sadeghi, N.

    2006-10-01

    Spatially resolved rotational Raman spectroscopy of ground state nitrogen N2(X^1σg^+) was used to measure the gas temperature (Tg) in a nitrogen dc glow microdischarge (gap between electrodes d˜500 μm). An original backscattering, confocal optical system was developed for collecting Raman spectra. Stray laser light and Raleigh scattering were blocked by using a triple grating monochromator and spatial filters, designed specifically for these experiments. The optical system provided a spatial resolution of electrodes, Tg increased linearly with jd, reaching 500 K at 1000 mA/cm^2 jd for a pressure of 720 Torr. Spatially resolved gas temperature measurements will also be presented and discussed in combination with a mathematical model for gas heating in the microplasma. This work is supported by DoE/NSF.

  18. Measurement of the surface tension by the method of maximum gas bubble pressure

    International Nuclear Information System (INIS)

    Dugne, Jean

    1971-01-01

    A gas bubble method for measuring surface tension was studied. Theoretical investigations demonstrated that the maximum pressure can be represented by the envelope of a certain family of curves and that the physical nature of the capillary tube imposes an upper limit to its useful radius. With a given tube and a specified liquid, the dynamic evolution of the gas bubble depends only upon the variation of the mass of gas contained with time; this fact may restrict the choice of tubes. The use of one single tube requires important corrections. Computer treatment of the problem led to some accurate equations for calculating γ. Schroedinger equations and Sudgen's table are examined. The choice of tubes, the necessary corrections, density measurement, and the accuracy attainable are discussed. Experiments conducted with water and mercury using the sessile drop method and continuous recording of the pressure verified the theoretical ideas. (author) [fr

  19. Natural gas measurement process development in PETROBRAS system: new concepts and challenges; Desenvolvimento do processo de medicao de gas natural no sistema PETROBRAS: novos conceitos e desafios

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Carlos Alexandre L [PETROBRAS, Rio de Janeiro, RJ (Brazil); Mercon, Eduardo G [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Considering the wide increase of natural gas participation in the Brazilian energetic source matrix, this paper describes, comments and analyzes how the natural gas flow measurement process has been structured in PETROBRAS, so that it become a potential factor of this increase. Initially, the work makes a metrological approach of measured volumes, based on volumetric balance of the gas flow in the two principals pipe segments of PETROBRAS gas line network, localized in the Brazilian southeast and northeast systems. This approach runs through the investigation of several parameters that have influence on that balance, considering field installation improvement and normative adjustments, sketching aims and suggesting best practices for its optimization. Further, it will be described PETROBRAS' systems being in use to provide natural gas flow measurement control and management, from available data in transporters' SCADA system to billing, and to integrate the processes of: shipping scheduling; transmission and delivering; real time supervision; and consolidation of these information for invoicing. (author)

  20. Development of a New Fundamental Measuring Technique for the Accurate Measurement of Gas Flowrates by Means of Laser Doppler Anemometry

    Science.gov (United States)

    Dopheide, D.; Taux, G.; Krey, E.-A.

    1990-01-01

    In the Physikalisch-Technische Bundesanstalt (PTB), a research test facility for the accurate measurement of gas (volume and mass) flowrates has been set up in the last few years on the basis of a laser Doppler anemometer (LDA) with a view to directly measuring gas flowrates with a relative uncertainty of only 0,1%. To achieve this, it was necessary to develop laser Doppler anemometry into a precision measuring technique and to carry out detailed investigations on stationary low-turbulence nozzle flow. The process-computer controlled test facility covers the flowrate range from 100 to 4000 m3/h (~0,03 - 1,0 m3/s), any flowrate being measured directly, immediately and without staggered arrangement of several flow meters. After the development was completed, several turbine-type gas meters were calibrated and international comparisons carried out. The article surveys the most significant aspects of the work and provides an outlook on future developments with regard to the miniaturization of optical flow and flowrate sensors for industrial applications.

  1. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    Science.gov (United States)

    Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  2. Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements

    DEFF Research Database (Denmark)

    Bjerg, B; Zhang, Guoqiang; Madsen, J

    2012-01-01

    Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat pr...... to investigate the influence of feed composition on methane emission in a relative large number of operating cattle buildings and consequently it can support a development towards reduced greenhouse gas emission from cattle production.......Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat...... ventilated, 150 milking cow building. The results showed that the methane emission can be determined with much higher precision than ammonia or laughing gas emissions, and, for methane, relatively precise estimations can be based on measure periods as short as 3 h. This result makes it feasible...

  3. Precise measurements of neutral gas temperature using Fiber Bragg Grating sensor in Argon capacitively coupled plasmas

    Science.gov (United States)

    Han, Daoman; Liu, Zigeng; Liu, Yongxin; Peng, Wei; Wang, Younian

    2016-09-01

    Neutral gas temperature was measured using Fiber Bragg Grating sensor (FBGs) in capacitively coupled argon plasmas. Thermometry is based on the thermal equilibrium between the sensor and neutral gases, which is found to become faster with increasing pressure. It is also observed that the neutral gas temperature is higher than the room temperature by 10 120 °depending on the experiental conditions, and gas temperature shows significant non-uniformity in space. In addition, radial profiles of neutral temperature at different pressures, resemble these of ion density, obtained by a floating double probe. Specifically, at low pressure, neutral gas temperature and ion density peak at the center of the reactor, while the peak appears at the edge of the electrode at higher pressure. The neutral gas heating is mainly caused by the elastic collisions of Ar + with neutral gas atoms in the sheath region after Ar + gaining a certain energy. This work was supported by the National Natural Science Foundation of China (NSFC) (Grants No. 11335004, 11405018, and 61137005).

  4. Fully integrated microfluidic measurement system for real-time determination of gas and liquid mixtures composition

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Groenesteijn, Jarno; van der Wouden, E.J.; Sparreboom, Wouter; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2015-01-01

    We have designed and realised a fully integrated microfluidic measurement system for real-time determination of both flow rate and composition of gas- and liquid mixtures. The system comprises relative permittivity sensors, pressure sensors, a Coriolis flow and density sensor, a thermal flow sensor

  5. Seasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements

    DEFF Research Database (Denmark)

    Frederiksen, Marie; Bergsøe, Niels Christian; Kolarik, Barbara

    2011-01-01

    in five dwellings in Greater Copenhagen, Denmark. A passive tracer gas technique (Perfluorocarbon) was used to measure ACR in a seven-month period. Considerable differences were observed between the dwellings with monthly ACRs ranging from 0.21 to 1.75 h-1. Only smaller seasonal variations, generally less...... driving forces for natural ventilation is partially compensated by changed occupant behaviour....

  6. Measuring the respiratory gas exchange of grazing cattle using the GreenFeed emissions monitoring system

    Science.gov (United States)

    Ruminants are a significant source of enteric methane, which has been identified as a powerful greenhouse gas that contributes to climate change. With interest in developing technologies to decrease enteric methane emission, systems are currently being developed to measure the methane emission by c...

  7. The influence of gas-to-particle conversion on measurements of ammonia exchange over forest

    NARCIS (Netherlands)

    Oss, R. van; Duyzer, J.; Wyers, P.

    1998-01-01

    Measurements of vertical gradients of ammonium nitrate aerosol and NH3 are used together with HNO3 concentrations to study the influence of gas-to-particle conversion (gtpc) on surface exchange processes above a forest. A numerical model of surface exchange, in which a description of gtpc was

  8. Determination of gas pressure in voids in epoxy casting using an ultrasonic measuring technique

    DEFF Research Database (Denmark)

    Larsen, Esben; Petersen, C. Bak; Henriksen, Mogens

    1990-01-01

    Results of measurements performed on a large open void, where pressure can be controlled from the outside, are compared to the theory of ultrasound transmission. The results verify the theory that the attenuation of transmitted ultrasonic signals through a void depends on the gas pressure inside ...

  9. Measurement of the 232Th-series activity in gas sockets

    International Nuclear Information System (INIS)

    Sutarman, I.

    1995-01-01

    The activity of 232 Th and its daughters in Th-based gas sockets is required for health risk assessment. By absolute measurement of the 228 Ac-and 212 Pb/ 208 Tl-activities, the total activity of the sockets can be assessed. It is governed by 228 Ra and 228 Th and the product age. (author) 1 fig.; 2 tabs

  10. Direct Measurement of the Band Structure of a Buried Two-Dimensional Electron Gas

    DEFF Research Database (Denmark)

    Miwa, Jill; Hofmann, Philip; Simmons, Michelle Y.

    2013-01-01

    We directly measure the band structure of a buried two dimensional electron gas (2DEG) using angle resolved photoemission spectroscopy. The buried 2DEG forms 2 nm beneath the surface of p-type silicon, because of a dense delta-type layer of phosphorus n-type dopants which have been placed there...

  11. Measuring and modelling in-vitro gas production kinetics to evaluate ruminal fermentation of feedstuffs

    NARCIS (Netherlands)

    Beuvink, J.M.W.

    1993-01-01

    In this thesis, the possibilities of kinetic gas production measurements for the evaluation of ruminant feedstuffs have been examined. Present in-vitro methods were mostly end- point methods. There was a need for a kinetic in-vitro method that described ruminal fermentation, due to new

  12. Measurements of gas parameters in plasma-assisted supersonic combustion processes using diode laser spectroscopy

    International Nuclear Information System (INIS)

    Bolshov, Mikhail A; Kuritsyn, Yu A; Liger, V V; Mironenko, V R; Leonov, S B; Yarantsev, D A

    2009-01-01

    We report a procedure for temperature and water vapour concentration measurements in an unsteady-state combustion zone using diode laser absorption spectroscopy. The procedure involves measurements of the absorption spectrum of water molecules around 1.39 μm. It has been used to determine hydrogen combustion parameters in M = 2 gas flows in the test section of a supersonic wind tunnel. The relatively high intensities of the absorption lines used have enabled direct absorption measurements. We describe a differential technique for measurements of transient absorption spectra, the procedure we used for primary data processing and approaches for determining the gas temperature and H 2 O concentration in the probed zone. The measured absorption spectra are fitted with spectra simulated using parameters from spectroscopic databases. The combustion-time-averaged (∼50 ms) gas temperature and water vapour partial pressure in the hot wake region are determined to be 1050 K and 21 Torr, respectively. The large signal-to-noise ratio in our measurements allowed us to assess the temporal behaviour of these parameters. The accuracy in our temperature measurements in the probed zone is ∼40 K. (laser applications and other topics in quantum electronics)

  13. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  14. A New, Noninvasive Method of Measuring Impaired Pulmonary Gas Exchange in Lung Disease: An Outpatient Study.

    Science.gov (United States)

    West, John B; Crouch, Daniel R; Fine, Janelle M; Makadia, Dipen; Wang, Daniel L; Prisk, G Kim

    2018-02-13

    It would be valuable to have a noninvasive method of measuring impaired pulmonary gas exchange in patients with lung disease and thus reduce the need for repeated arterial punctures. This study reports the results of using a new test in a group of outpatients attending a pulmonary clinic. Inspired and expired partial pressure of oxygen (PO 2 ) and Pco 2 are continually measured by small, rapidly responding analyzers. The arterial PO 2 is calculated from the oximeter blood oxygen saturation level and the oxygen dissociation curve. The PO 2 difference between the end-tidal gas and the calculated arterial value is called the oxygen deficit. Studies on 17 patients with a variety of pulmonary diseases are reported. The mean ± SE oxygen deficit was 48.7 ± 3.1 mm Hg. This finding can be contrasted with a mean oxygen deficit of 4.0 ± 0.88 mm Hg in a group of 31 normal subjects who were previously studied (P gas in determining ventilation-perfusion ratio inequality. This factor is largely ignored in the classic index of impaired pulmonary gas exchange using the ideal alveolar PO 2 to calculate the alveolar-arterial oxygen gradient. The results previously reported in normal subjects and the present studies suggest that this new noninvasive test will be valuable in assessing abnormal gas exchange in the clinical setting. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  15. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters...

  16. Theoretical analysis of stack gas emission velocity measurement by optical scintillation

    International Nuclear Information System (INIS)

    Yang Yang; Dong Feng-Zhong; Ni Zhi-Bo; Pang Tao; Zeng Zong-Yong; Wu Bian; Zhang Zhi-Rong

    2014-01-01

    Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously. (general)

  17. Radon gas sampler for indoor and soil measurements and its applications

    International Nuclear Information System (INIS)

    Azimi-Garakani, D.; Flores, B.; Piermattei, S.; Susanna, A.F.; Seidel, J.L.; Tommasino, L.; Torri, G.

    1988-01-01

    A national large scale survey of indoor radon (based on an optimised sampling strategy) is needed in Italy to obtain average population dose for use in epidemiological studies. Since in the great majority of cases, one of the most important radon sources is the soil and rock beneath the houses, it would be interesting to combine this survey with measurements of bed-soil radon. With these objectives in mind, a new radon monitor device has been developed consisting of two etched track detectors enclosed in a heat-sealed polyethylene bag. When compared with existing techniques, this radon gas sampler presents several advantages for both indoor and outdoor measurements. As a pilot project, radon gas measurements have been carried out in hundreds of different sites and for several locations; measurements have been made for different years. Typical houses with relatively high radon concentrations have also been thoroughly investigated. (author)

  18. Inversion of double-difference measurements from optical levelling for the Groningen gas field

    Directory of Open Access Journals (Sweden)

    P. A. Fokker

    2015-11-01

    Full Text Available Hydrocarbon extraction lead to compaction of the gas reservoir which is visible as subsidence on the surface. Subsidence measurements can therefore be used to better estimate reservoir parameters. Total subsidence is derived from the result of the measurement of height differences between optical benchmarks. The procedure from optical height difference measurements to absolute subsidence is an inversion, and the result is often used as an input for consequent inversions on the reservoir. We have used the difference measurements directly to invert for compaction of the Groningen gas reservoir in the Netherlands. We have used a linear inversion exercise to update an already existing reservoir compaction model of the field. This procedure yielded areas of increased and decreased levels of compaction compared to the existing compaction model in agreement with observed discrepancies in porosity and aquifer activity.

  19. Measurements of gas filled halfraum energetics at the national ignition facility using a single quad

    Energy Technology Data Exchange (ETDEWEB)

    Kline, J.L.; Fernandez, J.C.; Goldman, S.R.; Gautier, D.C.; Hegelich, B.M.; Montgomery, D.S.; Lanier, N.E.; Rose, H.A.; Workman, J.B. [Los Alamos National Laboratory, Los Alamos, NM (United States); Braun, D.; Landen, O.; Niemann, C.; Campbell, K.; Celeste, J.; Dewald, E.; Glenzer, S.; Hinkel, D.; Holder, J.; Kalantar, D.; Kamperschroer, J.; Kimbrough, J.; Kirkwood, R.; Lee, F.D.; MacGowan, B.; MacKinnon, A.; McDonald, J.; Schein, J.; Schneider, M.; Suter, L.; Young, B. [Lawrence Livermore National Lab., CA (United States)

    2006-06-15

    Gas filled halfraum experiments were conducted at the National Ignition Facility which provided an excellent test of the tools needed to understand halfraum energetics in an ignition relevant regime. The experiments used a highly shaped laser pulse and measured large levels of backscattered laser energy. These two components challenge the ability of radiation hydrodynamic simulations to model the experiments. The results show good agreement between experimental measurements and simulations. (authors)

  20. Measurements of gas filled halfraum energetics at the national ignition facility using a single quad

    International Nuclear Information System (INIS)

    Kline, J.L.; Fernandez, J.C.; Goldman, S.R.; Gautier, D.C.; Hegelich, B.M.; Montgomery, D.S.; Lanier, N.E.; Rose, H.A.; Workman, J.B.; Braun, D.; Landen, O.; Niemann, C.; Campbell, K.; Celeste, J.; Dewald, E.; Glenzer, S.; Hinkel, D.; Holder, J.; Kalantar, D.; Kamperschroer, J.; Kimbrough, J.; Kirkwood, R.; Lee, F.D.; MacGowan, B.; MacKinnon, A.; McDonald, J.; Schein, J.; Schneider, M.; Suter, L.; Young, B.

    2006-01-01

    Gas filled halfraum experiments were conducted at the National Ignition Facility which provided an excellent test of the tools needed to understand halfraum energetics in an ignition relevant regime. The experiments used a highly shaped laser pulse and measured large levels of backscattered laser energy. These two components challenge the ability of radiation hydrodynamic simulations to model the experiments. The results show good agreement between experimental measurements and simulations. (authors)

  1. Thermo-fluid dynamic analysis of wet compression process

    International Nuclear Information System (INIS)

    Mohan, Abhay; Kim, Heuy Dong; Chidambaram, Palani Kumar; Suryan, Abhilash

    2016-01-01

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV γ = constant) are analyzed

  2. Thermo-fluid dynamic analysis of wet compression process

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Abhay; Kim, Heuy Dong [School of Mechanical Engineering, Andong National University, Andong (Korea, Republic of); Chidambaram, Palani Kumar [FMTRC, Daejoo Machinery Co. Ltd., Daegu (Korea, Republic of); Suryan, Abhilash [Dept. of Mechanical Engineering, College of Engineering Trivandrum, Kerala (India)

    2016-12-15

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV{sup γ} = constant) are analyzed.

  3. Laboratory investigations of Titan haze formation: In situ measurement of gas and particle composition

    Science.gov (United States)

    Hörst, Sarah M.; Yoon, Y. Heidi; Ugelow, Melissa S.; Parker, Alex H.; Li, Rui; de Gouw, Joost A.; Tolbert, Margaret A.

    2018-02-01

    Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan's atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, measurements taken by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and Cassini Plasma Spectrometer (CAPS) indicate that haze formation initiates in the thermosphere where there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2. The discovery of previously unpredicted nitrogen species in measurements of Titan's atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini. The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan's atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (Tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ real-time measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase products. These two techniques allow us to investigate the effect of energy source and initial CH4 concentration on the degree of nitrogen incorporation in both the gas and solid phase products. The results presented here confirm that FUV photons produce not only solid phase nitrogen bearing products but also gas phase nitrogen species. We find that in both the gas and solid phase, nitrogen is found in nitriles rather than amines and that both the

  4. Measurements of hydrogen gas stopping efficiency for tin ions from laser-produced plasma

    Science.gov (United States)

    Abramenko, D. B.; Spiridonov, M. V.; Krainov, P. V.; Krivtsun, V. M.; Astakhov, D. I.; Medvedev, V. V.; van Kampen, M.; Smeets, D.; Koshelev, K. N.

    2018-04-01

    Experimental studies of stopping of ion fluxes from laser-produced plasma by a low-pressure gas atmosphere are presented. A modification of the time-of-flight spectroscopy technique is proposed for the stopping cross-sectional measurements in the ion energy range of 0.1-10 keV. The application of the proposed technique is demonstrated for Sn ion stopping by H2 gas. This combination of elements is of particular importance for the development of plasma-based sources of extreme ultraviolet radiation for lithographic applications.

  5. Electric field measurement in an atmospheric or higher pressure gas by coherent Raman scattering of nitrogen

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Mueller, Sarah; Luggenhoelscher, Dirk; Czarnetzki, Uwe

    2009-01-01

    The feasibility of electric field measurement based on field-induced coherent Raman scattering is demonstrated for the first time in a nitrogen containing gas at atmospheric or higher pressure, including open air. The technique is especially useful for the determination of temporal and spatial profiles of the electric field in air-based microdischarges, where nitrogen is abundant. In our current experimental setup, the minimum detectable field strength in open air is about 100 V mm -1 , which is sufficiently small compared with the average field present in typical microdischarges. No further knowledge of other gas/plasma parameters such as the nitrogen density is required. (fast track communication)

  6. Rapid X-ray crystal structure analysis in few second measurements using microstrip gas chamber

    CERN Document Server

    Ochi, A; Tanimori, T; Ohashi, Y; Toyokawa, H; Nishi, Y; Nishi, Y; Nagayoshi, T; Koishi, S

    2001-01-01

    X-ray crystal structure analysis using microstrip gas chamber was successfully carried out in a measurement time within a few seconds. The continuous rotation photograph method, in which most of the diffraction peaks can be obtained within one continuous rotation of the sample crystal (without stopping or oscillation), was applied for this measurement. As an example, the structure of a single crystal of ammonium bitartrate (r=1 mm, spherical) was measured. Diffraction spots from the sample, which were sufficient to obtain crystal structure, were successfully obtained by taking only 2 s measurements with a commercially available laboratory X-ray source.

  7. A black-hole mass measurement from molecular gas kinematics in NGC4526.

    Science.gov (United States)

    Davis, Timothy A; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2013-02-21

    The masses of the supermassive black holes found in galaxy bulges are correlated with a multitude of galaxy properties, leading to suggestions that galaxies and black holes may evolve together. The number of reliably measured black-hole masses is small, and the number of methods for measuring them is limited, holding back attempts to understand this co-evolution. Directly measuring black-hole masses is currently possible with stellar kinematics (in early-type galaxies), ionized-gas kinematics (in some spiral and early-type galaxies) and in rare objects that have central maser emission. Here we report that by modelling the effect of a black hole on the kinematics of molecular gas it is possible to fit interferometric observations of CO emission and thereby accurately estimate black-hole masses. We study the dynamics of the gas in the early-type galaxy NGC 4526, and obtain a best fit that requires the presence of a central dark object of 4.5(+4.2)(-3.1) × 10(8) solar masses (3σ confidence limit). With the next-generation millimetre-wavelength interferometers these observations could be reproduced in galaxies out to 75 megaparsecs in less than 5 hours of observing time. The use of molecular gas as a kinematic tracer should thus allow one to estimate black-hole masses in hundreds of galaxies in the local Universe, many more than are accessible with current techniques.

  8. Wetting Behavior in Colloid-Polymer Mixtures at Different Substrates.

    Science.gov (United States)

    Wijting, Willem K; Besseling, Nicolaas A M; Cohen Stuart, Martien A

    2003-09-25

    We present experimental observations on wetting phenomena in depletion interaction driven, phase separated colloidal dispersions. The contact angle of the colloidal liquid-gas interface at a solid substrate was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting. The interaction with the substrate was manipulated by modifying the substrate with a polymer. In that case, a transition from partial to complete drying is observed upon approach to the critical point.

  9. Identification studies about take measures for mitigate of gas emissions greenhouse effect in energy Sector

    International Nuclear Information System (INIS)

    1999-11-01

    In the Unit Nations Convention about Climatic change has get stability of greenhouse effects in atmosphere concentrations. In the framework to Uruguay Project URU/95/631 have been defined the need to identify, measures, practices, process and technologies for reduce some emissions furthermore in Energy sector. Emission impact, cost-benefit, direct or iundirect, national programs, factibility such as social, politics and Institutional agreements was considered in the present work. It was given emissions proyected for 15 years period 1999-2013 of the following atmospheric pollutants: carbon dioxide,carbon monoxide, nitrogen oxides, sulfur oxides and methane.Eight stages was applied the emission evaluation: natural gas; without natural gas; transport; industrial; Montevidean bus- car demand; natural gas uses in bus-taxi; nitrogen oxides control in thermic centrals; catalytic converters in gasoline cars

  10. Dynamic measurement of mercury adsorption and oxidation on activated carbon in simulated cement kiln flue gas

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian

    2012-01-01

    of the sulfite converter is short and typically within 2min. Dynamic mercury adsorption and oxidation tests on commercial activated carbons Darco Hg and HOK standard were performed at 150°C using simulated cement kiln gas and a fixed bed reactor system. It is shown that the converter and analyzer system...... are still under development and are investigated in this work. A commercial red brass converter was tested at 180°C and it was found that the red brass chips work in nitrogen atmosphere only, but do not work properly under simulated cement kiln flue gas conditions. Test of the red brass converter using only...... elemental mercury shows that when HCl is present with either SO2 or NOx the mercury measurement after the converter is unstable and lower than the elemental mercury inlet level. The conclusion is that red brass chips cannot fully reduce oxidized mercury to elemental mercury when simulated cement kiln gas...

  11. Gas Gain Measurement Of GEM-Foil In Argon-Carbon Dioxide Mixture

    International Nuclear Information System (INIS)

    Nguyen Ngoc Duy; Vuong Huu Tan; Le Hong Khiem

    2011-01-01

    Nuclear reaction measurement with radioactive beam at low energy plays an important role in nuclear astrophysics and nuclear structure. The trajectory of particle beams can be obtained by using an active gas target, multiple-sampling and tracking proportional chamber (MSTPC), as a proportional counter. Because of intensity of low energy radioactive beam, in the stellar reaction such as (α, p), (p, α), it is necessary to increase the gain for the counter. In this case, a gas electrons multiplier (GEM) foil will be used, so the proportional counter is called GEM-MSTPC. The efficient gas gain of GEM foils which relates to foil thickness and operating pressure was investigated with two type of the foils, 400 μm and 200 μm, in Argon (70%) + Carbon dioxide (30%) mixture. (author)

  12. Study on agroecology contamination from 125I gas and control measures in a simulated ecosystem

    International Nuclear Information System (INIS)

    Zhao Wenhu; Li Chuanzhao; Xu Shiming; Hou Lanxin; Shang Zhaorong; Li Xia

    1995-09-01

    The study was made in an air-tight space in which a simulated agricultural ecosystem was contaminated from 125 I gas. The contents of the study were summarized as follows: The space and time distribution of 125 I gas, contamination of foliage of the plants, accumulation and transfer of 125 I fallen on the soil and entered into the plants from the roots of crops and vegetables, the time distribution of 125 I in crops in water contaminated from 125 I fallout, distribution, accumulation and transfer of 125 I in chickens and rabbits which inhaled 125 I gas or fed the fodder contaminated from 125 I. The control measures of contamination in agroenvironment from 125 I were discussed. (7 refs., 20 figs., 29 tabs.)

  13. Increasing of MERARG experimental performances: on-line fission gas release measurement by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pontillon, Y.; Capdevila, H.; Clement, S. [CEA, DEN, DEC, SA3C, LAMIR, F-13108 Saint Paul lez Durance, (France); Guigues, E.; Janulyte, A.; Zerega, Y.; Andre, J. [Aix-Marseille Universite, LISA EA 4672, 13397 MARSEILLE cedex 20, (France)

    2015-07-01

    The MERARG device - implemented at the LECASTAR Hot Laboratory, at the CEA Cadarache - allows characterizing nuclear fuels with respect to the behaviour of fission gases during thermal transients representative of normal or off normal operating nuclear power plant conditions. The fuel is heated in order to extract a part or the total gas inventory it contains. Fission Gas Release (FGR) is actually recorded by mean of both on-line gamma spectrometry station and micro gas chromatography. These two devices monitor the quantity and kinetics of fission gas release rate. They only address {sup 85}Kr radioactive isotope and the elemental quantification of Kr, Xe and He (with a relatively low detection limit in the latter case, typically 5-10 ppm). In order to better estimate the basic mechanisms that promote fission gas release from irradiated nuclear fuels, the CEA fuel study department decided to improve its experimental facility by modifying MERARG to extend the studies of gamma emitter fission gases to all gases (including Helium) with a complete isotopic distribution capability. To match these specifications, a Residual Gas Analyser (RGA) has been chosen as mass spectrometer. This paper presents a review of the main aspects of the qualification/calibration phase of the RGA type analyser. In particular, results recorded over three mass ranges 1-10 u, 80-90 u and 120-140 u in the two classical modes of MERARG, i.e. on-line and off-line measurements are discussed. Results obtained from a standard gas bottle show that the quantitative analysis at a few ppm levels can be achieved for all isotopes of Kr and Xe, as well as masses 2 and 4 u. (authors)

  14. Time resolved mass flow measurements for a fast gas delivery system

    International Nuclear Information System (INIS)

    Ruden, E.L.; Degnan, J.H.; Hussey, T.W.; Scott, M.C.; Graham, J.D.; Coffey, S.K.

    1992-01-01

    A technique is demonstrated whereby the delivered mass and flow rate vs. time of a short rise time gas delivery system may be accurately determined. The gas mass M which flows past a point in a gas delivery system by an arbitrary time t may be accurately measured if that point is sealed off within a time interval short compared to the mass flow time scale. If the ejected mass is allowed to equilibrate in a known volume after being cut off from its source, a conventional static pressure measurement before and after injection, and application of the ideal gas law suffices. Assuming reproducibility, a time history M(t) may be generated, allowing the flow rate vs. time dM(t)/dt to be determined. Mass flow measurements are presented for a fast delivery system in which the flow of argon through a 3.2 mm I.D., 0.76 mm thick copper tube is cut off by imploding (θ pinching) the tube using a single turn tungsten magnetic field coil. Pinch discharge parameters are 44 μf, 20 kV, 47 nH, 3.5 mΩ, 584 kA, and 8.63 ps current period. Optical measurements of the tube's internal area vs. time indicate that the tube is sealed 2 ps from the time the tube is still 90% open (7 μs from the start of pinch current). The pinch delay is varied from 500--1,500 ps from the valve trigger (0--1,000 ps from the start of gas flow). The mass injected into the test volume is ∼ 100 μg during this interval. The leak rate of the sealed tube results in a mass increase of only ∼ 0.1 μg by the time the pressure gauge stabilizes (6 s). Results are correlated with piezoelectric probe measurements of the gas flow and 2-D axisymmetric numerical simulations of the θ pinch process. Simulations of a θ pinch suitable for characterizing an annular supersonic nozzle typical of those used in gas puff z pinches are discussed

  15. Design Aspects of Wet Scrubber System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun-Chul; Bang, Young-suk; Jung, Woo-Young; Lee, Doo-Yong [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    The water pool in the wet scrubber system has advantage to cope with decay heat based on the thermal hydraulic balance such as condensation and evaporation inside it. This study focuses on the design aspects of the wet scrubber system to estimate the required water pool mass during the mission time and size of the scrubbing tank including inner structures. The design of the wet scrubber system include the estimation of the required water mass during the mission time and sizing of the scrubber vessel to contain the water pool. The condensation due to the inlet steam and evaporation due to the steam and non-condensable gas superheat and decay heat from filtered fission products should be considered to estimate the water mass required to maintain its function during the mission time. On the other hand, the level swelling due to the noncondensable gas is another important design aspect on the sizing of the scrubber vessel and determination of the entry elevation of the filtration components such as the droplet separator or filter. The minimum water level based on the minimum collapsed water level should be higher than the exit of scrubber nozzle.

  16. Design Aspects of Wet Scrubber System

    International Nuclear Information System (INIS)

    Lee, Hyun-Chul; Bang, Young-suk; Jung, Woo-Young; Lee, Doo-Yong

    2015-01-01

    The water pool in the wet scrubber system has advantage to cope with decay heat based on the thermal hydraulic balance such as condensation and evaporation inside it. This study focuses on the design aspects of the wet scrubber system to estimate the required water pool mass during the mission time and size of the scrubbing tank including inner structures. The design of the wet scrubber system include the estimation of the required water mass during the mission time and sizing of the scrubber vessel to contain the water pool. The condensation due to the inlet steam and evaporation due to the steam and non-condensable gas superheat and decay heat from filtered fission products should be considered to estimate the water mass required to maintain its function during the mission time. On the other hand, the level swelling due to the noncondensable gas is another important design aspect on the sizing of the scrubber vessel and determination of the entry elevation of the filtration components such as the droplet separator or filter. The minimum water level based on the minimum collapsed water level should be higher than the exit of scrubber nozzle

  17. Measurement of denitrification on grassland using gas chromatography and 15N tracer technique

    International Nuclear Information System (INIS)

    Lippold, H.; Foerster, I.; Hagemann, O.; Matzel, W.

    1981-01-01

    Alternative covering of grassland micro-plots fertilized with 15 NH 4 15 NO 3 allowed on the basis on N 2 and N 2 O quantities released within several weeks to measure denitrification and to calculate it by means of methane as gas tracer. Thus the gas exchange was rendered visible and the N quantities measured could be corrected. In some variants, the acetylene blocking technique was successfully applied by adding acetylene to the soil air. The losses measured at 6 dates are discussed together with the 15 N balance and atmospherical conditions. The method is suited for recording the high losses occurring mainly in the second quarter of the year immediately after fertilization. Under the conditions mentioned soil N losses were small (3 kg N/ha). The immobilized fertilizer N quantities reached 20 to 30 kg/ha (fertilizer rate 100 kg N/ha) and were comparably independent of the date of fertilization. (author)

  18. Measurement of gas phase characteristics using new monofiber optical probes and real time signal processing

    International Nuclear Information System (INIS)

    Cartellier, A.

    1998-01-01

    Single optical or impedance phase detection probes are able to measure gas velocities provided that their sensitive length L is accurately known. In this paper, it is shown that L can be controlled during the manufacture of optical probes. Beside, for a probe geometry in the form of a cone + a cylinder + a cone, the corresponding rise time / velocity correlation becomes weakly sensitive to uncontrollable parameter such as the angle of impact on the interface. A real time signal processing performing phase detection as well as velocity measurements is described. Since its sensitivity to the operator inputs is less than the reproducibility of measurements, it is a fairly objective tool. Qualifications achieved in air/water flows with various optical probes demonstrate that the void fraction is detected with a relative error less than 10 %. For bubbly flows, the gas flux is accurate within ±10%, but this uncertainty increases when large bubbles are present in the flow. (author)

  19. Online Measurements of Highly Oxidized Organics in the Gas and Particle phase during SOAS and SENEX

    Science.gov (United States)

    Lopez-Hilfiker, F.; Lee, B. H.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Thornton, J. A.

    2014-12-01

    We present measurements of a large suite of gas and particle phase organic compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington and with airborne HR-ToF-CIMS measurements. The FIGAERO instrument was deployed on the Jülich Plant Atmosphere Chamber to study α-pinene oxidation, and subsequently at the SMEAR II forest station in Hyytiälä, Finland and the SOAS ground site, in Brent Alabama. During the Southern Atmosphere Study, a gas-phase only version of the HR-ToF-CIMS was deployed on the NOAA WP-3 aircraft as part of SENEX. We focus here on highly oxygenated organic compounds derived from monoterpene oxidation detected both aloft during SENEX and at the ground-based site during SOAS. In both chamber and the atmosphere, many highly oxidized, low volatility compounds were observed in the gas and particles and many of the same compositions detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition such as O/C ratios, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. The detailed structure in the thermograms reveals a significant contribution from large molecular weight organics and/or oligomers in both chamber and ambient aerosol samples. Approximately 50% of the measured organics in the particle phase are associated with compounds having effective vapour pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. We discuss the implications of these findings for measurements of gas-particle partitioning and for evaluating the contribution of monoterpene oxidation to organic aerosol formation and growth. We also use the aircraft measurements and a

  20. Multi Parameter Flow Meter for On-Line Measurement of Gas Mixture Composition

    Directory of Open Access Journals (Sweden)

    Egbert van der Wouden

    2015-04-01

    Full Text Available In this paper we describe the development of a system and model to analyze the composition of gas mixtures up to four components. The system consists of a Coriolis mass flow sensor, density, pressure and thermal flow sensor. With this system it is possible to measure the viscosity, density, heat capacity and flow rate of the medium. In a next step the composition can be analyzed if the constituents of the mixture are known. This makes the approach universally applicable to all gasses as long as the number of components does not exceed the number of measured properties and as long as the properties are measured with a sufficient accuracy. We present measurements with binary and ternary gas mixtures, on compositions that range over an order of magnitude in value for the physical properties. Two platforms for analyses are presented. The first platform consists of sensors realized with MEMS fabrication technology. This approach allows for a system with a high level of integration. With this system we demonstrate a proof of principle for the analyses of binary mixtures with an accuracy of 10%. In the second platform we utilize more mature steel sensor technology to demonstrate the potential of this approach. We show that with this technique, binary mixtures can be measured within 1% and ternary gas mixtures within 3%.

  1. An experimental device for measurement of gas permeation in solid matrices

    International Nuclear Information System (INIS)

    De Salve, M.; Mazzi, E.; Zucchetti, M.

    1996-01-01

    The inventory in and the permeation through fusion reactor structures of hydrogen and its isotopes play an important role in the machine operation, evolution of material properties, and safety. An experimental and research activity for the determination of permeability (and derived parameters) of gases in solid matrices is described. It uses a gas permeation method, that basically consists in the measure of the time evolution of the gas pressure in a chamber in which vacuum has been previously made (downstream volume). This chamber is separated from another one, full of the gas in exam (upstream volume), by means of a membrane of the material under study. The experimental installation is described. The first stage of the experimental activity has dealt with the set-up of the device, the volume calibration, and the definition of the parameters range for which the installation can give reliable measurements. The subsequent stage of the activity has consisted in the measurement of the permeability, and then of the diffusion coefficient, of nitrogen in some materials at room temperature. Concurrently with the experimental activity, a model has been set-up and implemented in a computer code: this code permits to evaluate the time evolution of the pressure in the downstream chamber. With this code, using the measured parameters, the time evolution of the pressure experimentally measured has been satisfactorily reproduced. (author)

  2. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    Energy Technology Data Exchange (ETDEWEB)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  3. Continuous measurement of air-water gas exchange by underwater eddy covariance

    Science.gov (United States)

    Berg, Peter; Pace, Michael L.

    2017-12-01

    Exchange of gases, such as O2, CO2, and CH4, over the air-water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique - originally developed for benthic O2 flux measurements - right below the air-water interface (˜ 4 cm) to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2-temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the air-water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air-water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air-water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds - two main drivers of lotic gas exchange - but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature-density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent

  4. Continuous measurement of air–water gas exchange by underwater eddy covariance

    Directory of Open Access Journals (Sweden)

    P. Berg

    2017-12-01

    Full Text Available Exchange of gases, such as O2, CO2, and CH4, over the air–water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique – originally developed for benthic O2 flux measurements – right below the air–water interface (∼ 4 cm to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2–temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz. By combining these data, concurrent vertical fluxes of O2 and heat across the air–water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600 in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air–water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air–water heat fluxes and not by biological activity (primary production and respiration. This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds – two main drivers of lotic gas exchange – but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature–density gradients in the surface water driven by the heat flux into or

  5. Measurement of water absorption capacity in wheat flour by a headspace gas chromatographic technique.

    Science.gov (United States)

    Xie, Wei-Qi; Yu, Kong-Xian; Gong, Yi-Xian

    2018-04-17

    The purpose of this work is to introduce a new method for quantitatively analyzing water absorption capacity in wheat flour by a headspace gas chromatographic technique. This headspace gas chromatographic technique was based on measuring the water vapor released from a series of wheat flour samples with different contents of water addition. According to the different trends between the vapor and wheat flour phase before and after the water absorption capacity in wheat flour, a turning point (corresponding to water absorption capacity in wheat flour) can be obtained by fitting the data of the water gas chromatography peak area from different wheat flour samples. The data showed that the phase equilibrium in the vial can be achieved in 25 min at desired temperature (35°C). The relative standard deviation of the reaction headspace gas chromatographic technique in water absorption capacity determination was within 3.48%, the relative differences has been determined by comparing the water absorption capacity obtained from this new analytical technique with the data from the reference technique (i.e., the filtration method), which are less than 8.92%. The new headspace gas chromatographic method is automated, accurate and be a reliable tool for quantifying water absorption capacity in wheat flour in both laboratory research and mill applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comparison of gas clearance and radioactive microspheres for pancreatic blood flow measurement

    International Nuclear Information System (INIS)

    DeMar, A.R.; Graham, L.S.; Lake, R.; Fink, A.S.

    1989-01-01

    Measurement of pancreatic blood flow (PBF) is technically demanding. Although radiolabeled microspheres are considered the gold standard for PBF assessment, they have practical limitations. In the current study, H 2 and xenon-133 gas clearance techniques were adapted to PBF measurement and compared to radiolabeled microsphere techniques. Simultaneous measurements of PBF were made using either hydrogen or xenon gas washout and radiolabeled microspheres. Measurements were made under basal, vasoconstricted (vasopressin 2U i.v. or nicotine 4 micrograms/kg/h) and stimulated (secretin 125 ng/kg/h or 2 U/kg i.v.) conditions (random order). Mean PBF was 26.9 +/- 5.3, 50.5 +/- 2.3 and 27.6 +/- 5.2 ml/min/100 g basally, 36.9 +/- 8.0, 90.1 +/- 18.9, and 81.7 +/- 14.5 ml/min/100 g in the stimulated state, and 24.2 +/- 7.8, 25.0 +/- 3.5, and 14.9 +/- 7.5 ml/min/100 g in the vasoconstricted state for hydrogen gas clearance, xenon gas clearance, and radiolabeled microspheres, respectively. The H 2 clearance technique resulted in tissue trauma, was complicated by frequent electrode displacement, and correlated poorly (r2 = 0.36, p greater than 0.05) with microsphere values. In contrast, xenon clearance measurement had no apparent effect on the pancreas and correlated well (r2 = 0.83, p less than 0.01) with microsphere data. We conclude that xenon clearance offers an attractive, validated alternative to radiolabeled microspheres for measuring pancreatic blood flow

  7. Measurement of Gas Velocities in the Presence of Solids in the Riser of a Cold Flow Circulating Fluidized Bed

    International Nuclear Information System (INIS)

    Spenik, J.; Ludlow, J.C.; Compston, R.; Breault, R.W.

    2007-01-01

    The local gas velocity and the intensity of the gas turbulence in a gas/solid flow are a required measurement in validating the gas and solids flow structure predicted by computational fluid dynamic (CFD) models in fluid bed and transport reactors. The high concentration and velocities of solids, however, make the use of traditional gas velocity measurement devices such as pitot tubes, hot wire anemometers and other such devices difficult. A method of determining these velocities has been devised at the National Energy Technology Laboratory employing tracer gas. The technique developed measures the time average local axial velocity gas component of a gas/solid flow using an injected tracer gas which induces changes in the heat transfer characteristics of the gas mixture. A small amount of helium is injected upstream a known distance from a self-heated thermistor. The thermistor, protected from the solids by means of a filter, is exposed to gases that are continuously extracted from the flow. Changes in the convective heat transfer characteristics of the gas are indicated by voltage variations across a Wheatstone bridge. When pulsed injections of helium are introduced to the riser flow the change in convective heat transfer coefficient of the gas can be rapidly and accurately determined with this instrument. By knowing the separation distance between the helium injection point and the thermistor extraction location as well as the time delay between injection and detection, the gas velocity can easily be calculated. Variations in the measured gas velocities also allow the turbulence intensity of the gas to be estimated

  8. Natural Gas Seepage Along the Edge of the Aquitaine Shelf (France): Origin and Flux Measurements

    Science.gov (United States)

    Ruffine, L.; Donval, J. P.; Battani, A.; Bignon, L.; Croguennec, C.; Caprais, J. C.; Birot, D.; Bayon, G.; Lantéri, N.; Levaché, D.; Dupré, S.

    2014-12-01

    A newly discovered and highly active seepage area has been acoustically mapped at the western edge of the Aquitaine Shelf in the Bay of Biscay [Dupré et al., 2014]. Three selected seeping sites have been investigated with a Remotely Operated Vehicle. All sites were characterized by vigorous gas emissions, and the occurrence of massive carbonate crusts and bacterial mats at the seafloor. Nine seeps have been sampled with the PEGAZ sampler. The latter allowed gas-bubble sampling and preservation at in situpressure, together with gas-flux measurement through its graduated transparent cone. The C2+ fraction of the gas samples accounts for less than 0.06 %-mol of the total composition. Both the abundance of methane and dD and d13C isotopic analyses of the hydrocarbons indicate a biogenic source generated by microbial reduction of carbon dioxide [Whiticar et al., 1986]. The analyses of the associated noble gases also provide further support for a shallow-depth generation. While sharing the same origin, the collected samples are different in other respects, such as the measured d13C values for carbon dioxide and the hydrocarbons. This is the case in particular for methane, with displays values in between -66.1 and -72.7 ‰. We hypothesized that such variations are the result of multiple gas-transport processes along with the occurrence of hydrocarbon oxidation at different rates within the sedimentary column. The measured gas fluxes are extremely heterogeneous from one seep to another, ranging from 18 to 193 m3.yr-1. These values will be discussed in detail by comparing them with values obtained from different measurement techniques at other gas-seeping sites. The GAZCOGNE study is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. References:Dupré, S., L. Berger, N. Le Bouffant, C. Scalabrin, and J. F. Bourillet (2014), Fluid emissions at the Aquitaine Shelf (Bay of Biscay, France): a biogenic origin or

  9. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.

    2012-08-07

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  10. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2012-01-01

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  11. Application of a vortex shedding flowmeter to the wide range measurement of high temperature gas flow

    International Nuclear Information System (INIS)

    Baker, S.P.; Ennis, R.M. Jr.; Herndon, P.G.

    1981-01-01

    A single flowmeter was required for helium gas measurement in a Gas Cooled Fast Breeder Reactor loss of coolant simulator. Volumetric flow accuracy of +-1.0% of reading was required over the Reynolds Number range 6 x 10 3 to 1 x 10 6 at flowing pressures from 0.2 to 9 MPa (29 to 1305 psia) at 350 0 C (660 0 F) flowing temperature. Because of its inherent accuracy and rangeability, a vortex shedding flowmeter was selected and specially modified to provide for a remoted thermal sensor. Experiments were conducted to determine the relationship between signal attenuation and sensor remoting geometry, as well as the relationship between gas flow parameters and remoted thermal sensor signal for both compressed air and helium gas. Based upon the results of these experiments, the sensor remoting geometry was optimized for this application. The resultant volumetric flow rangeability was 155:1. The associated temperature increase at the sensor position was 9 0 C above ambient (25 0 F) at a flowing temperature of 350 0 C. The volumetric flow accuracy was measured over the entire 155:1 flow range at parametric values of flowing density. A volumetric flow accuracy of +- % of reading was demonstrated

  12. Identification and measurement of chlorinated organic pesticides in water by electron-capture gas chromatography

    Science.gov (United States)

    Lamar, William L.; Goerlitz, Donald F.; Law, LeRoy M.

    1965-01-01

    Pesticides, in minute quantities, may affect the regimen of streams, and because they may concentrate in sediments, aquatic organisms, and edible aquatic foods, their detection and their measurement in the parts-per-trillion range are considered essential. In 1964 the U.S. Geological Survey at Menlo Park, Calif., began research on methods for monitoring pesticides in water. Two systems were selected--electron-capture gas chromatography and microcoulometric-titration gas chromatography. Studies on these systems are now in progress. This report provides current information on the development and application of an electron-capture gas chromatographic procedure. This method is a convenient and extremely sensitive procedure for the detection and measurement of organic pesticides having high electron affinities, notably the chlorinated organic pesticides. The electron-affinity detector is extremely sensitive to these substances but it is not as sensitive to many other compounds. By this method, the chlorinated organic pesticide may be determined on a sample of convenient size in concentrations as low as the parts-per-trillion range. To insure greater accuracy in the identifications, the pesticides reported were separated and identified by their retention times on two different types of gas chromatographic columns.

  13. Kinetics parameter measurements on RSG-GAS, a low-enriched fuel reactor

    International Nuclear Information System (INIS)

    Jujuratisbela, U; Arbie, B; Pinem, S.; Tukiran; Suparlina, L.; Singh, O.P.

    1995-01-01

    Kinetics parameter measurements, such as reactivity worths of control rods and fuel elements, beam tube void reactivity, power reactivity coefficient and xenon poisoning reactivity have been performed on different cores of Reaktor Serba Guna G.A. Siwabessy (RSG-GAS). In parallel, a programme was also initiated to measure the other kinetics parameters like effective delayed neutron life time, prompt neutron decay constant, validation of period reactivity relationship and zero power frequency response function. The paper provides the results of these measurements. (author)

  14. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  15. Dynamics of Wetting of Ultra Hydrophobic Surfaces

    Science.gov (United States)

    Mohammad Karim, Alireza; Kim, Jeong-Hyun; Rothstein, Jonathan; Kavehpour, Pirouz; Mechanical and Industrial Engineering, University of Massachusetts, Amherst Collaboration

    2013-11-01

    Controlling the surface wettability of hydrophobic and super hydrophobic surfaces has extensive industrial applications ranging from coating, painting and printing technology and waterproof clothing to efficiency increase in power and water plants. This requires enhancing the knowledge about the dynamics of wetting on these hydrophobic surfaces. We have done experimental investigation on the dynamics of wetting on hydrophobic surfaces by looking deeply in to the dependency of the dynamic contact angles both advancing and receding on the velocity of the three-phase boundary (Solid/Liquid/Gas interface) using the Wilhelmy plate method with different ultra-hydrophobic surfaces. Several fluids with different surface tension and viscosity are used to study the effect of physical properties of liquids on the governing laws.

  16. Measurement of percent hydrogen in the mechanical vacuum pump gas stream during BWR startup

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    All U.S BWRs use a Mechanical Vacuum Pump (MVP) to establish condenser vacuum during start-ups, normally from the initial heat-up to the point where sufficient reactor steam pressure and flow is available to place the Steam Jet Air Ejector (SJAE) and off-gas treatment system in service. MVP operation is restricted to <5% power and gas stream concentrations of <4% H 2 , the lower flammability limit (LFL) for hydrogen/air mixtures. For a particular plant startup prior to hydrogen injection for hydrogen water chemistry (HWC), the MVP %H 2 would depend on the air in-leakage rate, the H 2 gas generation rate from radiolysis and the gas/steam transport rate from the reactor vessel to the main condenser. The radiolysis rate at low power, which is not precisely known and has not been modeled for the BWR, is normally assumed to increase in proportion to thermal power. Two thirds of the radiolytic gas by volume would be H 2 and one third O 2 . The MVP is not equipped with %H 2 sampling and measurement capability, and many MVP systems include no flow measurement. No U.S plant or literature data on MVP %H 2 were found. The industry-first Early Hydrogen Water Chemistry (EHWC) demonstration at the Peach Bottom 3 nuclear power plant involved hydrogen gas injection into the reactor vessel during startup while the MVP was in service. To support the EHWC project, it was necessary to collect baseline MVP %H 2 data during a startup without hydrogen injection and to monitor MVP %H 2 during the startup with EHWC. The MVP system had no normal sample point, but included test taps in the suction and discharge piping. A sampling method and apparatus was invented (EPRI patent pending), designed, built and applied to obtain %H 2 measurements in the MVP gas stream. The apparatus allowed a gas sample stream to be taken from either the suction (vacuum) or discharge side of the MVP. The gas sample stream was preconditioned to remove moisture (the MVP uses water as a liquid compressant), flowed to

  17. Wet-cupping removes oxidants and decreases oxidative stress.

    Science.gov (United States)

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Velikorodov, Viktor; Pfeifer, Herbert

    2006-01-01

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently

  19. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kirschen, Marcus [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)]. E-mail: kirschen@iob.rwth-aachen.de; Velikorodov, Viktor [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany); Pfeifer, Herbert [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)

    2006-11-15

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently.

  20. Wetting of alkanes on water

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, E.; Bonn, D.; Meunier, J.; Shahidzadeh, N. [Ecole Normale Superieure, Laboratoire de Physique Statistique, 24 rue Lhomond, 75231, Cedex 05 Paris (France); Broseta, D.; Ragil, K. [Institut Francais du Petrole, 1-4 avenue de Bois Preau, 92852 Rueil-Malmaison Cedex (France); Dobbs, H.; Indekeu, J.O. [Katholieke Universiteit Leuven, Laboratorium voor Vaste-Stoffysica en Magnetisme, B-3001 Leuven (Belgium)

    2002-04-01

    The wetting behavior of oil on water (or brine) has important consequences for the transport properties of oil in water-containing porous reservoirs, and consequently for oil recovery. The equilibrium wetting behavior of model oils composed of pure alkanes or alkane mixtures on brine is reviewed in this paper. Intermediate between the partial wetting state, in which oil lenses coexist on water with a thin film of adsorbed alkane molecules, and the complete wetting state, in which a macroscopically thick oil layer covers the water, these systems display a third, novel wetting state, in which oil lenses coexist with a mesoscopic (a few-nanometers-thick) oil film. The nature and location of the transitions between these wetting regimes depend on oil and brine compositions, temperature and pressure.