WorldWideScience

Sample records for wet cooling systems

  1. Description and cost analysis of a deluge dry/wet cooling system.

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; Bamberger, J.A.; Braun, D.J.; Braun, D.J.; Faletti, D.W.; Willingham, C.E.

    1978-06-01

    The use of combined dry/wet cooling systems for large base-load power plants offers the potential for significant water savings as compared to evaporatively cooled power plants and significant cost savings in comparison to dry cooled power plants. The results of a detailed engineering and cost study of one type of dry/wet cooling system are described. In the ''deluge'' dry/wet cooling method, a finned-tube heat exchanger is designed to operate in the dry mode up to a given ambient temperature. To avoid the degradation of performance for higher ambient temperatures, water (the delugeate) is distributed over a portion of the heat exchanger surface to enhance the cooling process by evaporation. The deluge system used in this study is termed the HOETERV system. The HOETERV deluge system uses a horizontal-tube, vertical-plate-finned heat exchanger. The delugeate is distributed at the top of the heat exchanger and is allowed to fall by gravity in a thin film on the face of the plate fin. Ammonia is used as the indirect heat transfer medium between the turbine exhaust steam and the ambient air. Steam is condensed by boiling ammonia in a condenser/reboiler. The ammonia is condensed in the heat exchanger by inducing airflow over the plate fins. Various design parameters of the cooling system have been studied to evaluate their impact on the optimum cooling system design and the power-plant/utility-system interface. Annual water availability was the most significant design parameter. Others included site meteorology, heat exchanger configuration and air flow, number and size of towers, fan system design, and turbine operation. It was concluded from this study that the HOETERV deluge system of dry/wet cooling, using ammonia as an intermediate heat transfer medium, offers the potential for significant cost savings compared with all-dry cooling, while achieving substantially reduced water consumption as compared to an evaporatively cooled power plant. (LCL)

  2. Engineering and economic evaluation of wet/dry cooling towers for water conservation

    International Nuclear Information System (INIS)

    Hu, M.C.

    1976-11-01

    The results are presented of a design and cost study for wet/dry tower systems used in conjunction with 1000 MWe nuclear power plants to reject waste heat while conserving water. Design and cost information for wet/dry tower systems are presented, and these cooling system alternatives are compared with wet and dry tower systems to determine whether the wet/dry tower concept is an economically viable alternative. The wet/dry cooling tower concept investigated is one which combines physically separated wet towers and dry towers into an operational unit. In designing the wet/dry tower, a dry cooling tower is sized to carry the plant heat load at low ambient temperatures, and a separate wet tower is added to augment the heat rejection of the dry tower at higher ambient temperatures. These wet/dry towers are designed to operate with a conventional low back pressure turbine commercially available today. The component wet and dry towers are state-of-the-art designs. From this study it was concluded that: wet/dry cooling systems can be designed to provide a significant economic advantage over dry cooling yet closely matching the dry tower's ability to conserve water, a wet/dry system which saves as much as 99 percent of the make-up water required by a wet tower can maintain that economic advantage, and therefore, for power plant sites where water is in short supply, wet/dry cooling is the economic choice over dry cooling

  3. Concept of CFD model of natural draft wet-cooling tower flow

    Directory of Open Access Journals (Sweden)

    Hyhlík T.

    2014-03-01

    Full Text Available The article deals with the development of CFD model of natural draft wet-cooling tower flow. The physical phenomena taking place within a natural draft wet cooling tower are described by the system of conservation law equations along with additional equations. The heat and mass transfer in the counterflow wet-cooling tower fill are described by model [1] which is based on the system of ordinary differential equations. Utilization of model [1] of the fill allows us to apply commonly measured fill characteristics as shown by [2].The boundary value problem resulting from the fill model is solved separately. The system of conservation law equations is interlinked with the system of ordinary differential equations describing the phenomena occurring in the counterflow wet-cooling tower fill via heat and mass sources and via boundary conditions. The concept of numerical solution is presented for the quasi one dimensional model of natural draft wet-cooling tower flow. The simulation results are shown.

  4. Thermal dimensioning of wet natural draft cooling systems

    International Nuclear Information System (INIS)

    Bourillot, Claudine.

    1975-01-01

    The conventional models of calculating wet natural draft cooling systems include two different parts. First, the thermal calculation of the dispersion is made either with an ''exact'' method of separating convection and evaporation phenomena and taking account for the steam in exces in the saturated air, or with a ''simplified'' method considering the heat transfer in the whole as resulting of a difference in enthalpies. (The latter is the Merkel theory). Secondly, the draft equation is solved for calculating air flow rate. Values of the mass transfer coefficients and pressure drops of the dispersion being needed for the computation, test bench measurements are made by the designers. As for counter-current cooling systems the models of the dispersion calculation are one-dimensional models not allowing the radial flow and air temperature distributions to be simulated; exchanges inside the rain zone are also neglected. As for crossed-current cooling systems the flow geometry entails a more complicated two-dimensional model to be used for the dispersion. In both cases, the dependence on meteorological factors such as wind, height gradients of temperature, or sunny features are disregarded [fr

  5. Computer optimization of dry and wet/dry cooling tower systems for large fossil and nuclear power plants

    International Nuclear Information System (INIS)

    Choi, M.; Glicksman, L.R.

    1979-02-01

    This study determined the cost of dry cooling compared to the conventional cooling methods. Also, the savings by using wet/dry instead of all-dry cooling were determined. A total optimization was performed for power plants with dry cooling tower systems using metal-finned-tube heat exchangers and surface condensers. The optimization minimizes the power production cost. The program optimizes the design of the heat exchanger and its air and water flow rates. In the base case study, the method of replacing lost capacity assumes the use of gas turbines. As a result of using dry cooling towers in an 800 MWe fossil plant, the incremental costs with the use of high back pressure turbine and conventional turbine over all-wet cooling are 11 and 15%, respectively. For a 1200 MWe nuclear plant, these are 22 and 25%, respectively. Since the method of making up lost capacity depends on the situation of a utility, considerable effort has been placed on testing the effects of using different methods of replacing lost capacity at high ambient temperatures by purchased energy. The results indicate that the optimization is very sensitive to the method of making up lost capacity. It is, therefore, important to do an accurate representation of all possible methods of making up capacity loss when optimizating power plants with dry cooling towers. A solution for the problem of losing generation capability by a power plant due to the use of a dry cooling tower is to supplement the dry tower during the hours of peak ambient temperatures by a wet tower. A separate wet/dry cooling tower system with series tower arrangement was considered in this study, and proved to be an economic choice over all-dry cooling where some water is available but supplies are insufficient for a totally evaporative cooling tower

  6. Energy and exergy analysis of counter flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Saravanan Mani

    2008-01-01

    Full Text Available Cooling tower is an open system direct contact heat exchanger, where it cools water by both convection and evaporation. In this paper, a mathematical model based on heat and mass transfer principle is developed to find the outlet condition of water and air. The model is solved using iterative method. Energy and exergy analysis infers that inlet air wet bulb temperature is found to be the most important parameter than inlet water temperature and also variation in dead state properties does not affect the performance of wet cooling tower. .

  7. Future needs for dry or peak shaved dry/wet cooling and significance to nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Clukey, H.V.; McNelly, M.J.; Mitchell, R.C.

    1976-02-01

    U.S. requirements for uncommitted nuclear installations in water scarce areas that might require dry cooling tower systems are minimal through the year 2000 (6 to 23 GWe). In these areas it appears that peak-shaved dry/wet cooling systems are more attractive than all-dry tower cooling unless water costs were to approach the high level of several cents per gallon. The differential cooling system evaluated cost of peak-shaved dry/wet cooling systems above wet towers is typically $20 to $30/kWe for steam turbines; whereas, dry towers can represent an incremental burden of as much as $80/kWe. Gas turbine (Brayton Cycle) systems show similar benefits from an evaporative heat sink to those for steam turbine cycles--lower cooling system evaluated costs for peak-shaved dry/wet cooling systems than for conventional wet towers. These cooling system cost differentials do not reflect total costs for Brayton Cycle gas turbine plants. Together these added costs and uncertainties may substantially exceed the dollar incentives available for development of the Brayton Cycle for power generation needs for water deficient sites

  8. Characteristics of wetting temperature during spray cooling

    International Nuclear Information System (INIS)

    Mitsutake, Yuichi; Monde, Masanori; Hidaka, Shinichirou

    2006-01-01

    An experimental study has been done to elucidate the effects of mass flux and subcooling of liquid and thermal properties of solid on the wetting temperature during cooling of a hot block with spray. A water spray was impinged at one of the end surfaces of a cylindrical block initially heated at 400 or 500degC. The experimental condition was mass fluxes G=1-9 kg/m 2 s and degrees of subcooling ΔT sub =20, 50, 80 K. Three blocks of copper, brass and carbon steel were prepared. During spray cooling internal block temperature distribution and sputtering sound pressure level were recorded and the surface temperature and heat flux were evaluated with 2D inverse heat conducting analysis. Cooling process on cooling curves is divided into four regimes categorized by change in a flow situation and the sound level. The wetting temperature defined as the wall temperature at a minimum heat flux point was measured over an extensive experimental range. The wetting wall temperature was correlated well with the parameter of GΔT sub . The wetting wall temperature increases as GΔT sub increases and reaches a constant value depending on the material of the surface at higher region of GΔT sub . (author)

  9. Forced draft wet cooling systems

    International Nuclear Information System (INIS)

    Daubert, A.; Caudron, L.; Viollet, P.L.

    1975-01-01

    The disposal of the heat released from a 1000MW power plant needs a natural draft tower of about 130m of diameter at the base, and 170m height, or a cooling system with a draft forced by about forty vans, a hundred meters in diameter, and thirty meters height. The plumes from atmospheric cooling systems form, in terms of fluid mechanics, hot jets in a cross current. They consist in complex flows that must be finely investigated with experimental and computer means. The study, currently being performed at the National Hydraulics Laboratory, shows that as far as the length and height of visible plumes are concerned, the comparison is favorable to some types of forced draft cooling system, for low and medium velocities, (below 5 or 6m/s at 10m height. Beyond these velocities, the forced draft sends the plume up to smaller heights, but the plume is generally more dilute [fr

  10. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    International Nuclear Information System (INIS)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.; Faletti, D.W.; Wiles, L.E.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code is a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant

  11. The transfer function model for dynamic response of wet cooling coils

    International Nuclear Information System (INIS)

    Yao Ye; Liu Shiqing

    2008-01-01

    This paper mainly concerned about the dynamic response model of wet cooling coils that is developed by the Laplace transform method. The theoretic equations are firstly established based on the theory of energy conservation. Then, the transfer functions on the transient responses of wet cooling coils have been deduced using the method of Laplace transform. The transfer functions reveal the dynamic relationships between the inlet variables and the outlet ones of the cooling coils. Partial-fraction method and Newton-Raphson method are both used in the inversion of the transfer functions from the s-domain to τ-domain. To make the dynamic model of wet cooling coils more adaptive, RBFNN method is employed to determine the coefficients of heat and mass transfer. Experiments have been done and manifested that the coefficients of heat and mass transfer by RBFNN will be of great value to the validity of the transient response model of wet cooling coils in this study

  12. Large wet-type cooling towers and their influence on the environment

    International Nuclear Information System (INIS)

    Schiffers, A.

    1977-01-01

    Large wet-type cooling towers with natural draft are said to be ecologically beneficial today, especially concerning the heat emission from power plants. A description is given of the influence of such cooling towers on the environment and the possible climatic influences are considered in detail. Recent investigations have shown that wet-type cooling towers represent no danger of any kind for fauna and flora as to the bacterial radiation. Physical studies have shown that neither the emitted water vapour nor the heat emitted into the atmosphere, can significantly change the macroclimate and microclimate. At present, wet-type cooling towers cannot be replaced by dry-type or so-called hybrid-type cooling towers, the technical development of which for large units being not yet guaranteed. (orig.) [de

  13. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.; Faletti, D.W.; Wiles, L.E.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code is a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant.

  14. Cooling systems for waste heat. Cooling systems, review and selection criteria. Kuehlsysteme fuer Abwaerme. Kuehlsysteme, Ueberblick und Auswahlkriterien

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W. (Jaeggi, Wallisellen (Switzerland))

    1990-05-01

    In many areas of ventilation, air-conditioning and refrigeration engineering, chemical and process engineering and energy production waste heat occurs. If a reduction in energy losses or heat recovery is not possible waste heat has to be drawn off through cooling systems. For this the following systems can be used: dry cooling systems, dry cooler with spray system, open-cycle wet cooler, hybrid dry cooler, and closed-cycle wet cooler. Particularly hybrid cooling systems can give acceptable solutions when the results with other systems are only unsatisfactory. (BWI).

  15. Modern cooling systems in thermal power plants relieve environmental pollution. Pt. 2

    International Nuclear Information System (INIS)

    Brosche, D.

    1983-01-01

    Direct and indirect dry recirculation cooling, wet cooling tower, natural-draught wet cooling tower, combined cooling processes, hybrid cooling systems, cell cooling systems, auxiliary water preparation, cooling process design, afterheat removal in nuclear power plants, environmental effects, visible plumes as a function of weather conditions, environmental protection and energy supply assurance. (orig.) [de

  16. Thermodynamic analysis of cooling systems for nuclear power stations condenser

    International Nuclear Information System (INIS)

    Beck, A.

    1985-06-01

    This work is an attempt to concentrate on the thermodynamic theory, the engineering solution and the quantities of water needed for the operation of a wet as well as a wet/dry cooling towers coupled to a nuclear turbine condenser,. About two hundred variables are needed for the design of a condenser - cooling tower system. In order to make the solution fast and handy, a computer model was developed. The amount of water evaporation from cooling towers is a function of the climate conditions prevailing around the site. To achieve an authentic analysis, the meteorological data of the northern Negev was used. The total amount of water necessary to add to the system in a year time of operation is large and is a function of both the blow-down rate and the evaporation. First estimations show that the use of a combined system, wet/dry cooling tower, is beneficial in the northern Negev area. Such a system can reduce significantly the amount of wasted fresh water. Lack of international experience is the major problem in the acceptability of wet/dry cooling towers. The technology of a wet cooling tower using sea water is also discussed where no technical or engineering limitations were found. This work is an attempt to give some handy tools for making the choice of cooling systems for nuclear power plants easier

  17. Modeling of Direct Contact Wet Cooling Tower in ETRR-2

    International Nuclear Information System (INIS)

    El Khatib, H.H.; Ismail, A.L.; ElRefaie, M.E.

    2008-01-01

    The Egyptian Testing and Research Reactor no.2 (ETRR-2) was commissioned at 1997 with maximum power 22 MW for research purposes; an induced draft wet cooling tower (counter flow type) was putted in operation in 2003 instead of the first one. Investigations are achieved to evaluate cooling tower performance to guarantee that the cooling tower capable to dissipate heat generated in reactor core. Merkel and Poppe analysis was applied to simulate this cooling tower packing. Merkel analysis was applied to predict water outlet temperature from cooling tower and also to show the effect of ambient conditions on this temperature. Poppe analysis was applied to predict Merkel number which evaluate cooling tower. The Runge-Kutta numerical method was applied to solve the differential equations in this model and an engineering equation solver (EES) is the language used to model the cooling tower. This research illustrates that the cooling tower achieves good performance in various sever ambient condition at maximum operating condition of reactor power. The results show that at severe summer condition of wet bulb temperature equals 24 degree c and tower inlet temperature equals 37 degree c, the outlet water temperature equals 30.4 degree c from cooling tower, while the Merkel number is be found 1.253

  18. Measurement and analysis of the re-wetting front velocity during quench cooling of hot horizontal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Takrouri, Kifah, E-mail: takroukj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Luxat, John, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Hamed, Mohamed [Thermal Processing Laboratory (TPL), Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada)

    2017-01-15

    Highlights: • Two phase flow & re-wetting front velocity were studied for quench of hot tubes. • The velocity decreased as temperature difference between tube and coolant decreased. • Increasing surface curvature was found to decrease the re-wetting front velocity. • Increasing tube thermal conductivity decreased the velocity. • Correlations were developed to predict the front velocity. - Abstract: When a liquid is put into contact with a hot dry surface, there exists a maximum temperature called the re-wetting temperature below which the liquid is in actual contact with the surface. Re-wetting occurs after destabilization of a vapor film that exists between the hot surface and the liquid. If re-wetting is established at a location on the hot surface, a wet patch appears at that location and starts to spread to cover and cool the entire surface. The outer edge of the wet patch is called the re-wetting front and can proceed only if the surface ahead of it cools down to the re-wetting temperature. Study of re-wetting heat transfer is very important in nuclear reactor safety for limiting the extent of core damage during the early stages of severe accidents after loss of coolant accidents LOCA and is essential for predicting the rate at which the coolant cools an overheated core. One of the important parameters in re-wetting cooling is the velocity at which the re-wetting front moves on the surface. In this study, experimental tests were carried out to investigate the re-wetting front velocity on hot horizontal cylindrical tubes being cooled by a vertical rectangular water multi-jet system. Effects of initial surface temperature in the range 400–740 °C, water subcooling in the range 15–80 °C and jet velocity in the range 0.17–1.43 m/s on the re-wetting front velocity were investigated. The two-phase flow behavior was observed by using a high-speed camera. The re-wetting front velocity was found to increase by increasing water subcooling, decreasing

  19. Mixing systems for wet and dry plumes and cleaning equipment for the heat exchangers of the dry section. Two indispensible components of an effective and safe hybrid cooling tower

    International Nuclear Information System (INIS)

    Alt, W.

    1990-01-01

    At first glance, the hybrid cooling tower seems to be an ingenious combination of the well known components of an evaporative cooling tower and a dry cooling tower. The calculation of the air mass flows for both the wet and dry sections required to achieve an invisible plume does not represent an unsolvable problem to the engineer experienced in thermodynamics. The same also applies to the dimensioning of the heat exchangers and cooling fills. The hybrid cooling tower requires a well designed mixing system in order to ideally mix, the dry plume into the wet plume. If the cooling tower proves its efficiency during commissioning it is important that the ratio of the performance of the wet section to that of the dry section be maintained also in the long term. The performance of the fill in a wet cooling tower is consistently stable. Dirt deposits can form very quickly on the inner and outer surfaces of the heat exchangers of the dry section. In this case the thermal resistance increases rapidly. The respective performance of the wet and dry sections is then no longer balanced and the invisibility of the plume is no longer assured. This can be avoided by providing appropriate cleaning equipment

  20. Radiofrequency ablation in the liver using two cooled-wet electrodes in the bipolar mode

    International Nuclear Information System (INIS)

    Han, Joon Koo; Lee, Jeong Min; Kim, Se Hyung; Lee, Jae Young; Park, Hee Sun; Eo, Hong; Choi, Byung Ihn

    2005-01-01

    The purpose of this study was to demonstrate the efficacy of bipolar radiofrequency ablation (RFA) using cooled-wet electrodes inducing coagulation in ex vivo bovine livers and in in vivo canine livers. In ex vivo experiments, 20 coagulations were created by monopolar (group A), and bipolar RFA (group B) using a 200 W generator (Valleylab) and one or two cooled-wet electrodes. In in vivo experiments, one coagulation was created by bipolar RFA in each of eight dogs via laparotomy. In ex vivo and in vivo experiments, RF was applied to one or two electrodes at 100 W for 10 min. The dimensions of the coagulations were compared in the two groups. In ex vivo experiments, the mean volumes of the coagulations produced in group B (54.0±16.5 cm 3 ) were greater than those produced in group A (33.9±12.7 cm 3 ) (P=0.007). In in vivo experiments, bipolar RFA produced a coagulation of 39.4±15.6 cm 3 without a major complication. The present study showed that a RF electrode system using two cooled-wet electrodes in the bipolar mode created larger coagulation volumes than the monopolar mode, and this system can be used to create large coagulation without major complications. (orig.)

  1. Present state of combined wet/dry cooling in the FRG and preliminary experience with the different methods

    International Nuclear Information System (INIS)

    Vodicka, V.

    1976-01-01

    The physical reasons for the generation of the visible cooling tower plumes are explained. Today, there are several methods by which the visibility of the plumes can be suppressed. As the studies carried out show, a parallel connection of the wet and dry system on the air side is the most economical solution. Models for large-scale plants are presented, their operational performance is explained, and the cost is discussed. It is shown that wet/dry cooling is more economical than dry cooling alone, even with a relatively high proportion of dry heat discharge. (orig.) [de

  2. An analytical model on thermal performance evaluation of counter flow wet cooling tower

    Directory of Open Access Journals (Sweden)

    Wang Qian

    2017-01-01

    Full Text Available This paper proposes an analytical model for simultaneous heat and mass transfer processes in a counter flow wet cooling tower, with the assumption that the enthalpy of the saturated air is a linear function of the water surface temperature. The performance of the proposed analytical model is validated in some typical cases. The validation reveals that, when cooling range is in a certain interval, the proposed model is not only comparable with the accurate model, but also can reduce computational complexity. In addition, with the proposed analytical model, the thermal performance of the counter flow wet cooling towers in power plants is calculated. The results show that the proposed analytical model can be applied to evaluate and predict the thermal performance of counter flow wet cooling towers.

  3. Thermodynamic study of the effects of ambient air conditions on the thermal performance characteristics of a closed wet cooling tower

    International Nuclear Information System (INIS)

    Papaefthimiou, V.D.; Rogdakis, E.D.; Koronaki, I.P.; Zannis, T.C.

    2012-01-01

    A thermodynamic model was developed and used to assess the sensitivity of thermal performance characteristics of a closed wet cooling tower to inlet air conditions. In the present study, three cases of different ambient conditions are considered: In the first case, the average mid-winter and mid-summer conditions as well as the extreme case of high temperature and relative humidity, in Athens (Greece) during summer are considered according to the Greek Regulation for Buildings Energy Performance. In the second case, the varied inlet air relative humidity while the inlet air dry bulb temperature remains constant were taken into account. In the last case, the effects on cooling tower thermal behaviour when the inlet air wet bulb temperature remains constant were examined. The proposed model is capable of predicting the variation of air thermodynamic properties, sprayed water and serpentine water temperature inside the closed wet cooling tower along its height. The reliability of simulations was tested against experimental data, which were obtained from literature. Thus, the proposed model could be used for the design of industrial and domestic applications of conventional air-conditioning systems as well as for sorption cooling systems with solid and liquid desiccants where closed wet cooling towers are used for precooling the liquid solutions. The most important result of this theoretical investigation is that the highest fall of serpentine water temperature and losses of sprayed water are observed for the lowest value of inlet wet bulb temperature. Hence, the thermal effectiveness, which is associated with the temperature reduction of serpentine water as well as the operational cost, which is related to the sprayed water loss due to evaporation, of a closed wet cooling tower depend predominantly on the degree of saturation of inlet air.

  4. Exergy transfer and parametric study of counter flow wet cooling towers

    International Nuclear Information System (INIS)

    Wang Li; Li Nianping

    2011-01-01

    A thermodynamic analysis of the counter flow wet cooling tower (CWCT) is performed in this paper. Both energy and exergy formulations are developed and validated for the system. Four types of exergy transfer processes occurring inside the CWCT are investigated schematically. A parametric study is conducted under various operating conditions in order to investigate the effects of thermal efficiency and water-to-air ratio on the exergy performance of the CWCT. Unlike past studies, the transiting exergy contained in the inlet and outlet water is not considered. It is found that the exergy efficiency is always less than 25%. The exergy parameters including evaporation water loss, exergy efficiency, exergy input, internal and external exergy losses are very sensitive to the thermal efficiency when it is very close to 1.0 at lower water-to-air ratios. - Research highlights: → We model counter flow wet cooling towers and make a detailed exergy analysis. → Four types of exergy transfer processes are investigated schematically. → Only a small part of exergy input, less than 25%, is effectively utilized.

  5. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Chul; Lee, Young Sub; Jung, Hoan Sung; Lim, In Chul [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power.

  6. The influence and analysis of natural crosswind on cooling characteristics of the high level water collecting natural draft wet cooling tower

    Science.gov (United States)

    Ma, Libin; Ren, Jianxing

    2018-01-01

    Large capacity and super large capacity thermal power is becoming the main force of energy and power industry in our country. The performance of cooling tower is related to the water temperature of circulating water, which has an important influence on the efficiency of power plant. The natural draft counter flow wet cooling tower is the most widely used cooling tower type at present, and the high cooling tower is a new cooling tower based on the natural ventilation counter flow wet cooling tower. In this paper, for high cooling tower, the application background of high cooling tower is briefly explained, and then the structure principle of conventional cooling tower and high cooling tower are introduced, and the difference between them is simply compared. Then, the influence of crosswind on cooling performance of high cooling tower under different wind speeds is introduced in detail. Through analysis and research, wind speed, wind cooling had little impact on the performance of high cooling tower; wind velocity, wind will destroy the tower inside and outside air flow, reducing the cooling performance of high cooling tower; Wind speed, high cooling performance of cooling tower has increased, but still lower than the wind speed.

  7. Crosswinds Effect on the Thermal Performance of Wet Cooling Towers Under Variable Operating Conditions

    Science.gov (United States)

    Chen, You Liang; Shi, Yong Feng; Hao, Jian Gang; Chang, Hao; Sun, Feng Zhong

    2018-01-01

    In order to quantitatively analyze the influence of the variable operating parameters on the cooling performance of natural draft wet cooling towers (NDWCTs), a hot model test system was set up with adjustable ambient temperature and humidity, circulating water flowrate and temperature. In order to apply the hot model test results to the real tower, the crosswind Froude number is defined. The results show that the crosswind has a negative effect on the thermal performance of the cooling tower, and there is a critical crosswind velocity corresponding to the lowest cooling efficiency. According to the crosswind Froude number similarity, when the ambient temperature decreases, or the circulating water flowrate and temperature increase, the cooling tower draft force will increase, and the critical crosswind velocity will increase correspondingly.

  8. Performance Analyses of Counter-Flow Closed Wet Cooling Towers Based on a Simplified Calculation Method

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wei

    2017-02-01

    Full Text Available As one of the most widely used units in water cooling systems, the closed wet cooling towers (CWCTs have two typical counter-flow constructions, in which the spray water flows from the top to the bottom, and the moist air and cooling water flow in the opposite direction vertically (parallel or horizontally (cross, respectively. This study aims to present a simplified calculation method for conveniently and accurately analyzing the thermal performance of the two types of counter-flow CWCTs, viz. the parallel counter-flow CWCT (PCFCWCT and the cross counter-flow CWCT (CCFCWCT. A simplified cooling capacity model that just includes two characteristic parameters is developed. The Levenberg–Marquardt method is employed to determine the model parameters by curve fitting of experimental data. Based on the proposed model, the predicted outlet temperatures of the process water are compared with the measurements of a PCFCWCT and a CCFCWCT, respectively, reported in the literature. The results indicate that the predicted values agree well with the experimental data in previous studies. The maximum absolute errors in predicting the process water outlet temperatures are 0.20 and 0.24 °C for the PCFCWCT and CCFCWCT, respectively. These results indicate that the simplified method is reliable for performance prediction of counter-flow CWCTs. Although the flow patterns of the two towers are different, the variation trends of thermal performance are similar to each other under various operating conditions. The inlet air wet-bulb temperature, inlet cooling water temperature, air flow rate, and cooling water flow rate are crucial for determining the cooling capacity of a counter-flow CWCT, while the cooling tower effectiveness is mainly determined by the flow rates of air and cooling water. Compared with the CCFCWCT, the PCFCWCT is much more applicable in a large-scale cooling water system, and the superiority would be amplified when the scale of water

  9. A Dimensioning Methodology for a Natural Draft Wet Cooling Tower

    Directory of Open Access Journals (Sweden)

    Ioana Opriș

    2017-05-01

    Full Text Available The paper proposes a methodology for the dimensioning of a natural draft wet cooling tower. The main geometrical dimensions depend on the packing type, the cooling and the weather conditions. The study is based on splitting the tower in three main zones: the spray and packing zone, the rain zone and the natural draft zone. The methodology is developed on modular bases, by using block-modules both for the three main zones of the cooling tower and for the inlet/outlet air properties. It is useful in explaining to the students the complex physical phenomena within the cooling tower but also for the development of a computer program to be used in engineering, management and education.

  10. Performance characteristics of counter flow wet cooling towers

    International Nuclear Information System (INIS)

    Khan, Jameel-Ur-Rehman; Yaqub, M.; Zubair, Syed M.

    2003-01-01

    Cooling towers are one of the biggest heat and mass transfer devices that are in widespread use. In this paper, we use a detailed model of counter flow wet cooling towers in investigating the performance characteristics. The validity of the model is checked by experimental data reported in the literature. The thermal performance of the cooling towers is clearly explained in terms of varying air and water temperatures, as well as the driving potential for convection and evaporation heat transfer, along the height of the tower. The relative contribution of each mode of heat transfer rate to the total heat transfer rate in the cooling tower is established. It is demonstrated with an example problem that the predominant mode of heat transfer is evaporation. For example, evaporation contributes about 62.5% of the total rate of heat transfer at the bottom of the tower and almost 90% at the top of the tower. The variation of air and water temperatures along the height of the tower (process line) is explained on psychometric charts

  11. Analytical solutions for evaluating the thermal performances of wet air cooling coils under both unit and non-unit Lewis Factors

    International Nuclear Information System (INIS)

    Xia Liang; Chan, M.Y.; Deng, S.M.; Xu, X.G.

    2010-01-01

    Analytical solutions for evaluating the thermal performances of both chilled water wet cooling coils and direct expansion (DX) wet cooling coils, respectively, under both unit and non-unit Lewis Factors are developed and reported in this paper. The analytical solution was validated by comparing its predictions with those from numerically solving the fundamental governing equations of heat and mass transfer taking place in a wet cooling coil. With the analytical solutions, the distributions of air temperature and humidity ratio along air flow direction in a wet cooling coil can be predicted, and the differences in the thermal performances of the cooling coils under both unit and non-unit Lewis Factors can be identified. The analytical solutions, on one hand, can be a low-cost replacement to numerically solving the fundamental heat and mass transfer governing equations, and on the other hand, is able to deal with evaluating thermal performance for wet air cooling coils operated under both unit and non-unit Lewis Factors.

  12. Parametric study of closed wet cooling tower thermal performance

    Science.gov (United States)

    Qasim, S. M.; Hayder, M. J.

    2017-08-01

    The present study involves experimental and theoretical analysis to evaluate the thermal performance of modified Closed Wet Cooling Tower (CWCT). The experimental study includes: design, manufacture and testing prototype of a modified counter flow forced draft CWCT. The modification based on addition packing to the conventional CWCT. A series of experiments was carried out at different operational parameters. In view of energy analysis, the thermal performance parameters of the tower are: cooling range, tower approach, cooling capacity, thermal efficiency, heat and mass transfer coefficients. The theoretical study included develops Artificial Neural Network (ANN) models to predicting various thermal performance parameters of the tower. Utilizing experimental data for training and testing, the models simulated by multi-layer back propagation algorithm for varying all operational parameters stated in experimental test.

  13. Emission of a natural-draught wet cooling tower and flow conditions at the brim of the cooling tower

    International Nuclear Information System (INIS)

    Baer, E.; Billet, W.; Dittrich, H.; Ernst, G.; Roller, W.; Wurz, D.

    1975-01-01

    Between July 1973 and September 1974, measurements were carried out around a natural-draught wet cooling tower during different weather conditions. The results of these measurements are to serve as basic material for the calculation of plume diffusion. (orig./TK) [de

  14. Strainer device for an emergency cooling system in a nuclear power plant

    International Nuclear Information System (INIS)

    Trybom, J.

    1997-01-01

    The invention relates to a strainer device for separating contaminants from water in an emergency cooling system for a nuclear power plant. The nuclear power plant has a wet-well for water in the emergency cooling system and the strainer device comprises at least one strainer device, which is arranged in the wet-well. According to the invention the strainer is suspended in a desired position in the wet-well by means of at least a group of at least three tie rods arranged at angles to each other, each tie rod being fixed at one end to the strainer and its other end to the container or an anchor ring joined thereto. (author) figs

  15. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    results in relatively low water withdrawal. Typical heat sink options for closed-cycle systems are wet cooling system (mechanical or natural draft cooling towers, and cooling ponds). When water availability is low, a dry cooling system may be utilized. Dry cooling can be either direct or indirect and in each case uses convective heat transfer to provide cooling, eliminating evaporation losses. An innovative indirect dry cooling system is the Heller{sup R} System. The Heller{sup R} System air moving equipment can be either a natural draft or a mechanical draft. The Heller{sup R} System design concepts and equipment provides the maximum possible availability and minimum maintenance. Also, it is totally environmental-friend as saves water equivalent to the consumption of a town of 50,000 inhabitants for each 100 MWe facilitating the licensing of power projects. (authors)

  16. Optimum dry-cooling sub-systems for a solar air conditioner

    Science.gov (United States)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  17. Control of droplet size in rain-zone in wet cooling tower

    Directory of Open Access Journals (Sweden)

    Vitkovicova Rut

    2018-01-01

    Full Text Available The performance of the wet cooling tower is significantly affected by the droplet size occurring in the rain zone. In order to effectively manage the size of these droplets, it was necessary to experimentally determine the effect of the fills of the cooling towers on droplets. Five types of cooling fillers were used for experimental measurements: 3 film fills and 2 splash fills - trickle and grid. Drop size measurements were performed using the LIF method. Histograms of droplets size were obtained from measured droplet sizes under each fill, and for each fill, the Sauter droplet diameter was then calculated. According to a theoretical analysis of a breakdown of droplets, the combinations of some fills and the effect of their surface treatment on the droplet diameter were then measured for comparison.

  18. An experimental study of a novel dew point evaporative cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Riangvilaikul, B.; Kumar, S. [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120 (Thailand)

    2010-05-15

    A novel dew point evaporative cooling system for sensible cooling of the ventilation air for air conditioning application was constructed and experiments were carried out to investigate the outlet air conditions and the system effectiveness at different inlet air conditions (temperature, humidity and velocity) covering dry, temperate and humid climates. The results showed that wet bulb effectiveness ranged between 92 and 114% and the dew point effectiveness between 58 and 84%. A continuous operation of the system during a typical day of summer season in a hot and humid climate showed that wet bulb and dew point effectiveness were almost constant at about 102 and 76%, respectively. The experiment results were compared with some recent studies in literature. (author)

  19. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  20. Atmospheric wet-type cooling tower with antifreeze system

    International Nuclear Information System (INIS)

    Coic, P.

    1985-01-01

    The cooling tower has air inlets at its base, a network of pipes which distributes the air to be cooled above the packing, and valves to isolate a part of the network. It includes also a bypass circuit, provided with means to control the flow rate fraction which is by-passed [fr

  1. Power plant cooling systems: trends and challenges

    International Nuclear Information System (INIS)

    Rittenhouse, R.C.

    1979-01-01

    A novel design for an intake and discharge system at the Belle River plant is described followed by a general discussion of water intake screens and porous dikes for screening fish and zooplankton. The intake system for the San Onofre PWR plant is described and the state regulations controlling the use of water for power plants is discussed. The use of sewage effluent as a source of cooling water is mentioned with reference to the Palo Verde plant. Progress in dry cooling and a new wet/dry tower due to be installed at the San Juan plant towards the end of this year, complete the survey

  2. Thermal performance analysis of heat exchanger for closed wet cooling tower using heat and mass transfer analogy

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Han, Kyu Hyun; Kim, Jin Hyuck

    2010-01-01

    In closed wet cooling towers, the heat transfer between the air and external tube surfaces can be composed of the sensible heat transfer and the latent heat transfer. The heat transfer coefficient can be obtained from the equation for external heat transfer of tube banks. According to experimental data, the mass transfer coefficient was affected by the air velocity and spray water flow rate. This study provides the correlation equation for mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental data. The results from this correlation equation showed fairly good agreement with experimental data. The cooling capacity and thermal efficiency of the closed wet cooling tower were calculated from the correlation equation to analyze the performance of heat exchanger for the tower

  3. Prediction of a Visible Plume from a Dry and Wet Combined Cooling Tower and Its Mechanism of Abatement

    Directory of Open Access Journals (Sweden)

    Kazutaka Takata

    2016-04-01

    Full Text Available Heated moist air from a cooling tower forms a visible plume and needs to be predicted, not only for the performance design of the cooling tower, but also for environmental impact assessments. In this study, a computational fluid dynamics analysis is conducted to predict the scale of a visible plume rising from a cross flow cooling tower with mechanical draft (provided by a rotating fan. The results of computational fluid dynamics analysis are verified by comparing predictions with an actual observed plume. The results show that the predicted visible plume represents the observed plume in an error range of 15%–20%, which is permissible for designing a cooling tower. Additionally, the mixing condition of heated dry air and moist air under dry and wet combined operation is examined, and the condition is thought to affect the scale of the visible plume. It is found that, in the case of a mechanical-draft cooling tower, the fan has a mixing function which performs the complete mixing of wet and dry air, and this suggests that the generation of the plume can be determined by the intersection of the operation line and saturation line. Additionally, the effect of external wind on the scale of the visible plume is large, especially for dry and wet combined operation.

  4. Dynamics of liquid nitrogen cooling process of solid surface at wetting contact coefficient

    International Nuclear Information System (INIS)

    Smakulski, P; Pietrowicz, S

    2015-01-01

    Liquid cryogens cooling by direct contact is very often used as a method for decreasing the temperature of electronic devices or equipment i.e. HTS cables. Somehow, cooldown process conducted in that way could not be optimized, because of cryogen pool boiling characteristic and low value of the heat transfer coefficient. One of the possibilities to increase the efficiency of heat transfer, as well as the efficiency of cooling itself, it is to use a spray cooling method. The paper shows dynamics analysis of liquid nitrogen cooling solid surface process. The model of heat transfer for the single droplet of liquid nitrogen, which hits on a flat and smooth surface with respect to the different Weber numbers, is shown. Temperature profiles in calculation domains are presented, as well as the required cooling time. The numerical calculations are performed for different initial and boundary conditions, to study how the wetting contact coefficient is changing, and how it contributed to heat transfer between solid and liquid cryogen. (paper)

  5. Unsteady-state analysis of a counter-flow dew point evaporative cooling system

    KAUST Repository

    Lin, J.

    2016-07-19

    Understanding the dynamic behavior of the dew point evaporative cooler is crucial in achieving efficient cooling for real applications. This paper details the development of a transient model for a counter-flow dew point evaporative cooling system. The transient model approaching steady conditions agreed well with the steady state model. Additionally, it is able to accurately predict the experimental data within 4.3% discrepancy. The transient responses of the cooling system were investigated under different inlet air conditions. Temporal temperature and humidity profiles were analyzed for different transient and step responses. The key findings from this study include: (1) the response trend and settling time is markedly dependent on the inlet air temperature, humidity and velocity; (2) the settling time of the transient response ranges from 50 s to 300 s when the system operates under different inlet conditions; and (3) the average transient wet bulb effectiveness (1.00–1.06) of the system is observed to be higher than the steady state wet bulb effectiveness (1.01) for our range of study. © 2016 Elsevier Ltd

  6. Modeling and Optimization of a CoolingTower-Assisted Heat Pump System

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wei

    2017-05-01

    Full Text Available To minimize the total energy consumption of a cooling tower-assisted heat pump (CTAHP system in cooling mode, a model-based control strategy with hybrid optimization algorithm for the system is presented in this paper. An existing experimental device, which mainly contains a closed wet cooling tower with counter flow construction, a condenser water loop and a water-to-water heat pump unit, is selected as the study object. Theoretical and empirical models of the related components and their interactions are developed. The four variables, viz. desired cooling load, ambient wet-bulb temperature, temperature and flow rate of chilled water at the inlet of evaporator, are set to independent variables. The system power consumption can be minimized by optimizing input powers of cooling tower fan, spray water pump, condenser water pump and compressor. The optimal input power of spray water pump is determined experimentally. Implemented on MATLAB, a hybrid optimization algorithm, which combines the Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS algorithm with the greedy diffusion search (GDS algorithm, is incorporated to solve the minimization problem of energy consumption and predict the system’s optimal set-points under quasi-steady-state conditions. The integrated simulation tool is validated against experimental data. The results obtained demonstrate the proposed operation strategy is reliable, and can save energy by 20.8% as compared to an uncontrolled system under certain testing conditions.

  7. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Helm, M.; Keil, C.; Hiebler, S.; Mehling, H.; Schweigler, C. [Bavarian Center for Applied Energy Research (ZAE Bayern) (Germany)

    2009-06-15

    Absorption cooling systems based on water/lithium bromide (LiBr) solution typically require an open wet cooling tower to transfer the reject heat to the ambient. Yet, water consumption, the need for water make-up and cleaning, formation of fog, and the risk of Legionella bacteria growth are hindering factors for the implementation of small solar cooling systems. The application of a latent heat storage supporting the heat rejection of the absorption chiller in conjunction with a dry cooling system allows eliminating the wet cooling tower. By that means heat rejection of the chiller is shifted to periods with lower ambient temperatures, i.e. night time or off-peak hours. The system concept and the hydraulic scheme together with an analysis of the energetic performance of the system are presented, followed by a report on the operation of a first pilot installation. (author)

  8. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  9. Experimental investigation of the hydraulic characteristics of a counter flow wet cooling tower

    International Nuclear Information System (INIS)

    Lemouari, M.; Boumaza, M.; Kaabi, A.

    2011-01-01

    Thermal and nuclear electric power plants as well as several industrial processes invariably discharge considerable energy to their surrounding by heat transfer. Although water drawn from a nearby river or lake can be employed to carry away this energy, cooling towers offer an excellent alternative particularly in locations where sufficient cooling water cannot be easily obtained from natural sources or where concern for the environment imposes some limits on the temperature at which cooling water can be returned to the surrounding. This paper concerns an experimental investigation of the hydraulic characteristics of a counter flow wet cooling tower. The tower contains a 'VGA.' (Vertical Grid Apparatus) type packing which is 0.42 m high and consists of four (04) galvanised sheets having a zigzag form, between which are disposed three (03) metallic vertical grids in parallel with a cross sectional test area of 0.15 m x 0.148 m. The present investigation is focused mainly on the effect of the air and water flow rates on the hydraulic characteristics of the cooling tower, for different inlet water temperatures. The two hydrodynamic operating regimes which were observed during the air/water contact operation within the tower, namely the Pellicular Regime (PR) and the Bubble and Dispersion Regime (BDR) have enabled to distinguish two different states of pressure drop characteristics. The first regime is characterized by low pressure drop values, while in the second regime, the pressure drop values are relatively much higher than those observed in the first one. The dependence between the pressure drop characteristics and the combined heat and mass transport (air-water) through the packing inside the cooling tower is also highlighted. The obtained results indicate that this type of tower possesses relatively good hydraulic characteristics. This leads to the saving of energy. -- Highlights: → Cooling towers are widely used to reject waste heat from thermal and nuclear

  10. N3S-AERO: a multidimensional model for numerical simulation of all wet cooling tower systems

    International Nuclear Information System (INIS)

    Razafindrakoto, E.; Hofmann, F.

    1997-01-01

    3D model is more required to optimize the design of new cooling tower by way of parameters studies, to improve the performance of the existing ones from changes in fill zone or water distribution. Therefore, the Directions des Etudes et Recherches with collaboration of the Direction de l'Equipement of EDF, has developed a specific version of the finite element CFD code N3S, denoted N3S-AERO, for the simulation of natural or mechanical draught wet cooling towers. It solves mass, momentum, heat and humidity averaged Navier-Stokes equations including buoyancy terms with variable density for air flow in the whole domain mass, heat equations for water flow in exchange zones. With standard results of N3S as air velocity and scalar fields, N3S-AERO gives in return water temperature fields mean values of variables at inlet or outlet of each exchange zone and thermal performance of the tower. 2D axisymmetrical and 3D industrial cases have soon been done. Major flow phenomena are well predicted and averaged cold water values are in good agreement with ID-TEFERI code or measurements

  11. Experimental investigation of the performance characteristics of a counterflow wet cooling tower

    International Nuclear Information System (INIS)

    Lemouari, M.; Boumaza, M.

    2010-01-01

    An experimental investigation of the performance characteristics of a counter flow wet cooling tower represented by the heat rejected by the tower and its thermal effectiveness is presented in this paper. The tower is filled with a 'VGA.' (Vertical Grid Apparatus) type packing which is 0.42 m high and contains four (04) galvanized sheets having a zigzag form, between which are disposed three (03) metallic vertical grids in parallel with a cross-sectional test area of 0.15 m - 0.148 m. The investigation is concerned mainly on the effect of the air, water flow rates and the inlet water temperatures on the thermal effectiveness of the cooling tower as well as the heat rejected by this tower from water to be cooled to the air stream discharged into the atmosphere. The two operating regimes which were observed during the air/water contact inside the tower, a Pellicular Regime (PR) and a Bubble and Dispersion Regime (BDR) appear to be important, as The BDR regime enables to cool larger amount of water flow rates, while the Pellicular regime results with higher thermal effectiveness. (authors)

  12. Quasi One-Dimensional Model of Natural Draft Wet-Cooling Tower Flow, Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2015-01-01

    Full Text Available The article deals with the development of CFD (Computational Fluid Dynamics model of natural draft wet-cooling tower flow, heat and mass transfer. The moist air flow is described by the system of conservation laws along with additional equations. Moist air is assumed to be homogeneous mixture of dry air and water vapour. Liquid phase in the fill zone is described by the system of ordinary differential equations. Boundary value problem for the system of conservation laws is discretized in space using Kurganov-Tadmor central scheme and in time using strong stability preserving Runge-Kutta scheme. Initial value problems in the fill zone is solved by using standard fourth order Runge-Kutta scheme. The interaction between liquid water and moist air is done by source terms in governing equations.

  13. Effect of TOC [total organic carbon] on a PWR secondary cooling water system

    International Nuclear Information System (INIS)

    Gau, J.Y.; Oung, J.C.; Wang, T.Y.

    1989-01-01

    Increasing the amount of total organic carbon (TOC) during the wet layup of the steam generator was a problem in PWR nuclear power plant in Taiwan. The results of surveys of TOC in PWR secondary cooling water systems had shown that the impurity of hydrazine and the bacteria were the main reasons that increase TOC. These do not have a corrosion effect on Inconel 600 and carbon steel when the secondary cooling water containing the TOC is below 200 ppb. But the anaerobic bacteria from the steam generator in wet layup will increase corrosion rate of carbon steel and crevice corrosion of Inconel 600. (author)

  14. Mathematical Model and Program for the Sizing of Counter-flow Natural Draft Wet Cooling Towers

    Directory of Open Access Journals (Sweden)

    Victor-Eduard Cenușă

    2017-08-01

    Full Text Available Assuring the necessary temperature and mass flow rate of the cooling water to the condenser represents an essential condition for the efficient operation of a steam power plant. The paper presents equations which describe the physical phenomena and the mathematical model for the design of counter-flow natural draft wet cooling towers. Following is given the flow-chart of the associated computer program. A case study is made to show the results of the computer program and emphasize the interdependence between the main design parameters.

  15. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    Science.gov (United States)

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  16. Experimental Research on Optimizing Inlet Airflow of Wet Cooling Towers under Crosswind Conditions

    Science.gov (United States)

    Chen, You Liang; Shi, Yong Feng; Hao, Jian Gang; Chang, Hao; Sun, Feng Zhong

    2018-01-01

    A new approach of installing air deflectors around tower inlet circumferentially was proposed to optimize the inlet airflow and reduce the adverse effect of crosswinds on the thermal performance of natural draft wet cooling towers (NDWCT). And inlet airflow uniformity coefficient was defined to analyze the uniformity of circumferential inlet airflow quantitatively. Then the effect of air deflectors on the NDWCT performance was investigated experimentally. By contrast between inlet air flow rate and cooling efficiency, it has been found that crosswinds not only decrease the inlet air flow rate, but also reduce the uniformity of inlet airflow, which reduce NDWCT performance jointly. After installing air deflectors, the inlet air flow rate and uniformity coefficient increase, the uniformity of heat and mass transfer increases correspondingly, which improve the cooling performance. In addition, analysis on Lewis factor demonstrates that the inlet airflow optimization has more enhancement of heat transfer than mass transfer, but leads to more water evaporation loss.

  17. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    Science.gov (United States)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  18. Analysis of the evaporative towers cooling system of a coal-fired power plant

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2012-01-01

    Full Text Available The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.

  19. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    Science.gov (United States)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  20. Analytical modeling of wet compression of gas turbine systems

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Ko, Hyung-Jong; Perez-Blanco, Horacio

    2011-01-01

    Evaporative gas turbine cycles (EvGT) are of importance to the power generation industry because of the potential of enhanced cycle efficiencies with moderate incremental cost. Humidification of the working fluid to result in evaporative cooling during compression is a key operation in these cycles. Previous simulations of this operation were carried out via numerical integration. The present work is aimed at modeling the wet-compression process with approximate analytical solutions instead. A thermodynamic analysis of the simultaneous heat and mass transfer processes that occur during evaporation is presented. The transient behavior of important variables in wet compression such as droplet diameter, droplet mass, gas and droplet temperature, and evaporation rate is investigated. The effects of system parameters on variables such as droplet evaporation time, compressor outlet temperature and input work are also considered. Results from this work exhibit good agreement with those of previous numerical work.

  1. The results of the measurements of mass- and heat-transfer in the wet cooling tower

    International Nuclear Information System (INIS)

    Fabjan, Lj.; Gaspersic, B.

    1979-01-01

    These are the results of our investigations carried out on a packing inside a wet cooling tower for the purpose of studying the mass and heat transfer at the counterflow of water and humid air. The measurements on the experimental tower of the corresponding mathematical model reflect the average coefficient of mass and heat transfer for the unity of the active volume. Further the measurements of pressure drop at the air flow were carried out and thus the coefficient of aerodynamic losses were obtained. The results of measurements are given in the corresponding equations with the dimensionless numbers and diagrams. They will be of great use for the planning of new cooling towers. (author)

  2. A novel approach for energy and water conservation in wet cooling towers by using MWNTs and nanoporous graphene nanofluids

    International Nuclear Information System (INIS)

    Askari, S.; Lotfi, R.; Seifkordi, A.; Rashidi, A.M.; Koolivand, H.

    2016-01-01

    Highlights: • Stable MWNTs and graphene nanofluids were used in a mechanical wet cooling tower. • Thermal and rheological properties of nanofluids were investigated. • Nanofluids enhanced the efficiency, cooling range and tower characteristic. • Water consumption reduced significantly for both MWNTs and graphene nanofluids. - Abstract: This study deals with an experimental investigation on the thermal performance of a mechanical wet cooling tower with counter flow arrangement by using multi-walled carbon nanotubes (MWNTs) and nanoporous graphene nanofluids. Stable nanofluids were prepared through two-step procedure by using water with properties taken from a working cooling tower in the South of Iran. Zeta potential revealed suitable stability of MWNTs and nanoporous graphene nanofluids. Thermal and rheological properties of the nanofluids were investigated. It was found that thermal conductivity increases by 20% and 16% at 45 °C for MWNTs and nanoporous graphene nanofluids, respectively. The increase in density and viscosity, particularly in low concentrations of nanoparticles, was insignificant enough for industrial applications. Moreover, it was found that by using nanofluids, efficiency, cooling range and tower characteristic (KaV/L) are enhanced in comparison to water. For instance, at inlet water temperature of 45 °C and water/air (L/G) flow ratio of 1.37, the cooling range increases by 40% and 67% for MWNTs and nanoporous graphene nanofluids (0.1 wt.%), respectively. On the other hand water consumption is reduces by 10% and 19% at inlet water temperature of 45 °C for MWNTs and nanoporous graphene nanofluids, respectively.

  3. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    Energy Technology Data Exchange (ETDEWEB)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to

  4. Emergency Cooling of Nuclear Power Plant Reactors With Heat Removal By a Forced-Draft Cooling Tower

    Energy Technology Data Exchange (ETDEWEB)

    Murav’ev, V. P., E-mail: murval1@mail.ru

    2016-07-15

    The feasibility of heat removal during emergency cooling of a reactor by a forced-draft cooling tower with accumulation of the peak heat release in a volume of precooled water is evaluated. The advantages of a cooling tower over a spray cooling pond are demonstrated: it requires less space, consumes less material, employs shorter lines in the heat removal system, and provides considerably better protection of the environment from wetting by entrained moisture.

  5. Natural-draught wet-type cooling tower of the Philippsburg 1 nuclear power plant

    International Nuclear Information System (INIS)

    Ernst, G.; Schnabel, G.; Bhargava, N.; Brog, P.; Caneill, J.Y.; Carhart, R.A.; Dorwarth, G.; Egler, W.; Fiedler, F.; Gassmann, F.; Haschke, D.; Hodin, A.; Hofmann, W.; Huebschmann, W.; Nester, K.; Policastro, A.J.; Rudolf, B.; Schatzmann, M.; Tinguely, M.; Vignolo, C.; Zaidineraite, M.

    1984-01-01

    In spring 1980, comprehensive field measurements were performed on the natural-draught wet type, cooling tower of Philippsburg I nuclear power plant. Performance in service and emission of cooling tower, condition of ambient atmosphere and spread of plume were studied in seven subprojects. The report on hand contains the results of the 8th subproject within which plume spreading was calculated by means of mathematical models. Efforts were made to win the participation of as large as circle of scientists as possible in order to obtain an overview on the efficiencies of the existing models. The size of visible plumes were calculated by means of emission data and ambient data and were compared with those dimensions resulting from photograph. The models and the results are described in individual reports. Results were summarized for B models. Complete data on the 16'Philippsburg incidents' are contained in the annex to the program report. (orig./HP) [de

  6. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic

  7. Effect of solar radiation on the performance of cross flow wet cooling tower in hot climate of Iran

    Science.gov (United States)

    Banooni, Salem; Chitsazan, Ali

    2016-11-01

    In some cities such as Ahvaz-Iran, the solar radiation is very high and the annual-mean-daily of the global solar radiation is about 17.33 MJ m2 d-1. Solar radiation as an external heat source seems to affect the thermal performance of the cooling towers. Usually, in modeling cooling tower, the effects of solar radiation are ignored. To investigate the effect of sunshade on the performance and modeling of the cooling tower, the experiments were conducted in two different states, cooling towers with and without sunshade. In this study, the Merkel's approach and finite difference technique are used to predict the thermal behavior of cross flow wet cooling tower without sunshade and the results are compared with the data obtained from the cooling towers with and without sunshade. Results showed that the sunshade is very efficient and it reduced the outlet water temperature, the approach and the water exergy of the cooling tower up to 1.2 °C, 15 and 1.1 %, respectively and increased the range and the efficiency of the cooling tower up to 29 and 37 %, respectively. Also, the sunshade decreased the error between the experimental data of the cooling tower with sunshade and the modeling results of the cooling tower without sunshade 1.85 % in average.

  8. Water conservation and improved production efficiency using closed-loop evaporative cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Marchetta, C. [Niagara Blower Co., Buffalo, NY (United States)

    2009-07-01

    This paper described wet surface air coolers (WSAC) that can be used in refineries and hydrocarbon processing plants to address water use issues. These closed-loop evaporative cooling systems are a cost-effective technology for both heat transfer and water conservation. WSACs can help deliver required cooling water temperatures and improve plant performance while using water streams currently considered to be unusable with conventional towers and heat exchangers. WSACs are versatile and can provide solutions to water use, water quality, and outlet temperature. The benefits of the WSAC include capital cost savings, reduced system pressures, lower carbon footprint, and the ability to use poor quality water as makeup. Water makeup can be blowdown from other equipment, plant effluent, reclaimed water, produced water, flue gas desulphurization (FGD) wastewater, and even seawater. Units can be manufactured with a wide variety of materials depending on water quality, water treatment, and cycles of concentration. This paper also provided comparisons to other alternative technologies, capital and operating cost savings, and site specific case studies. Two other system designs can accommodate closed-loop heat transfer applications, notably an open tower with a heat exchanger and a dry, air-cooled system. A WSAC system is an efficient and effective heat rejection technology for several reasons. The WSAC cooler or condenser utilizes latent cooling, which is far more efficient than sensible cooling. This means that a WSAC system can cool the same heat load with a smaller footprint than all-dry systems. 6 figs.

  9. Hybrid cooling tower Neckarwestheim 2 cooling function, emission, plume dispersion

    International Nuclear Information System (INIS)

    Braeuning, G.; Ernst, G.; Maeule, R.; Necker, P.

    1990-01-01

    The fan-assisted hybrid cooling tower of the 1300 MW power plant Gemeinschafts-Kernkraftwerk Neckarwestheim 2 was designed and constructed based on results from theoretical and experimental studies and experiences from a smaller prototype. The wet part acts in counterflow. The dry part is arranged above the wet part. Each part contains 44 fans. Special attention was payed to the ducts which mix the dry into the wet plume. The cooling function and state, mass flow and contents of the emission were measured. The dispersion of the plume in the atmosphere was observed. The central results are presented in this paper. The cooling function corresponds to the predictions. The content of drifted cooling water in the plume is extremely low. The high velocity of the plume in the exit causes an undisturbed flow into the atmosphere. The hybrid operation reduces visible plumes strongly, especially in warmer and drier ambient air

  10. Reducing water consumption of an industrial plant cooling unit using hybrid cooling tower

    International Nuclear Information System (INIS)

    Rezaei, Ebrahim; Shafiei, Sirous; Abdollahnezhad, Aydin

    2010-01-01

    Water consumption is an important problem in dry zones and poor water supply areas. For these areas use of a combination of wet and dry cooling towers (hybrid cooling) has been suggested in order to reduce water consumption. In this work, wet and dry sections of a hybrid cooling tower for the estimation of water loss was modeled. A computer code was also written to simulate such hybrid cooling tower. To test the result of this simulation, a pilot hybrid tower containing a wet tower and 12 compact air cooled heat exchangers was designed and constructed. Pilot data were compared with simulation data and a correction factor was added to the simulation. Ensuring that the simulation represents the actual data, it was applied to a real industrial case and the effect of using a dry tower on water loss reduction of this plant cooling unit was investigated. Finally feasibility study was carried out to choose the best operating conditions for the hybrid cooling tower configuration proposed for this cooling unit.

  11. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  12. Impact of the use of a hybrid turbine inlet air cooling system in arid climates

    International Nuclear Information System (INIS)

    Al-Ansary, Hany A.; Orfi, Jamel A.; Ali, Mohamed E.

    2013-01-01

    Graphical abstract: Cooling the air entering the compressor section of a gas turbine is a proven method of increasing turbine power output, especially during peak summer demand, and it is increasingly being used in powerplants worldwide. Two turbine inlet air cooling (TIAC) systems are widely used: evaporative cooling and mechanical chilling. In this work, the prospects of using a hybrid turbine inlet air cooling (TIAC) system are investigated. The hybrid system consists of mechanical chilling followed by evaporative cooling. Such a system is capable of achieving a significant reduction in inlet air temperature that satisfies desired power output levels, while consuming less power than conventional mechanical chilling and less water than conventional evaporative cooling, thus combining the benefits of both approaches. Two hybrid system configurations are studied. In the first configuration, the first stage of the system uses water-cooled chillers that are coupled with dry coolers such that the condenser cooling water remains in a closed loop. In the second configuration, the first stage of the system uses water-cooled chillers but with conventional cooling towers. An assessment of the performance and economics of those two configurations is made by comparing them to conventional mechanical chilling and using realistic data. It was found that the TIAC systems are capable of boosting the power output of the gas turbine by 10% or more (of the power output of the ISO conditions). The cost operation analysis shows clearly the hybrid TIAC method with wet cooling has the advantage over the other methods and It would be profitable to install it in the new gas turbine power plants. The figure below shows a comparison of the water consumption for the three different cases. - Highlights: • New hybrid system for the turbine inlet air cooling is studied. • Hybrid system of mechanical chilling followed by evaporative cooling is used. • Hybrid turbine inlet air cooling

  13. Effects of evaporative cooling on reproductive performance and milk production of dairy cows in hot wet conditions

    Science.gov (United States)

    Khongdee, S.; Chaiyabutr, N.; Hinch, G.; Markvichitr, K.; Vajrabukka, C.

    2006-05-01

    Fourteen animals of second and third lactation of Thai Friesian crossbred cows (87.5% Friesian × 12.5% Bos indicus) located at Sakol Nakhon Research and Breeding Centre, Department of Livestock Development, Ministry of Agriculture and Cooperatives, were divided randomly into two groups of seven each to evaluate the effects of evaporative cooling on reproductive and physiological traits under hot, humid conditions. Results indicated that installation of evaporating cooling in the open shed gave a further improvement in ameliorating heat stress in dairy cows in hot-wet environments by utilising the low humidity conditions that naturally occur during the day. The cows housed in an evaporatively cooled environment had both a rectal temperature and respiration rate (39.09°C, 61.39 breaths/min, respectively) significantly lower than that of the non-cooled cows (41.21°C; 86.87 breaths/min). The former group also had higher milk yield and more efficient reproductive performance (pregnancy rate and reduced days open) than the latter group. It is suggested that the non-evaporatively cooled cows did not gain benefit from the naturally lower heat stress during night time.

  14. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2016-01-01

    Full Text Available The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  15. Performance analysis of a ground-assisted direct evaporative cooling air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Heidarinejad, Ghassem; Khalajzadeh, Vahid [Department of Mechanical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran); Delfani, Shahram [Building and Housing Research Center (BHRC), P O Box 13145-1696, Tehran (Iran)

    2010-11-15

    In this paper, the results of performance analysis of a ground-assisted hybrid evaporative cooling system in Tehran have been discussed. A Ground Coupled Circuit (GCC) provides the necessary pre-cooling effects, enabling a Direct Evaporative Cooler (DEC) that cools the air even below its wet-bulb temperature. The GCC includes four vertical ground heat exchangers (GHE) which were arrayed in series configuration. In order to have an accurate prediction of the optimum performance of a GCC, a computational fluid dynamic simulation was performed. Simulation results revealed that the combination of GCC and DEC system could provide comfort condition whereas DEC alone did not. Based on the simulation results the cooling effectiveness of a hybrid system is more than 100%. Thus, this novel hybrid system could decrease the air temperature below the ambient wet-bulb temperature. This environmentally clean and energy efficient system can be considered as an alternative to the mechanical vapor compression systems. (author)

  16. Fuel assembly cooling experience at the FFTF/IEM cell

    International Nuclear Information System (INIS)

    McGuinness, P.W.

    1985-01-01

    In the Fast Flux Test Facility (FFTF), sodium wetted irradiated fuel assemblies are discharged to the Interim Examination and Maintenance (IEM) Cell for disassembly and post-irradiation examination in an inert argon atmosphere. While in the IEM Cell, fuel assemblies are cooled by the IEM Cell Subassembly Cooling System. This paper describes the cooling system design, performance, and lessons learned, including a discussion of two overtemperature incidents. 2 refs., 6 figs

  17. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  18. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  19. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  20. Design considerations for wet flue gas desulfurization systems - wet scrubber hardware issues

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, H.

    1994-12-31

    About 20 years ago the first wet flue gas desulfurization systems installed on coal fired utility boilers in the United States were experiencing extreme operating problems. In addition to their failure to achieve the necessary SO{sub 2} removal efficiencies, these FGD systems required a major investment in maintenance, both material and labor, just to remain operational. These first generation systems demonstrated that a lack of understanding of the chemistry and operating conditions of wet flue gas desulfurization can lead to diastrous results. As the air pollution control industry developed, both in the United States and in Japan, a second generation of FGD systems was introduced. These designs incorporated major improvements in both system chemistry control and in the equipment utilized in the process. Indeed, the successful introduction of utility gas desulfurization systems in Germany was possible only through the transfer of the technology improvements developed in the US and in Japan. Today, technology has evolved to a third generation of wet flue gas desulfurication systems and these systems are now offered worldwide through a series of international licensing agreements. The rapid economic growth and development in Asia and the Pacific Rim combined with existing problems in ambient air quality in these same geographic areas, has resulted in the use of advanced air pollution control systems; including flue gas desulfurization both for new utility units and for many retrofit projects. To meet the requirements of the utility industry, FGD systems must meet high standards of reliability, operability and performance. Key components in achieving these objectives are: FGD System reliability/operability/performance; FGD system supplier qualifications; process design; equipment selection. This paper will discuss each of the essential factors with a concentration on the equipment selection and wet scrubber hardware issues.

  1. Study on dew point evaporative cooling system with counter-flow configuration

    International Nuclear Information System (INIS)

    Lin, J.; Thu, K.; Bui, T.D.; Wang, R.Z.; Ng, K.C.; Chua, K.J.

    2016-01-01

    Highlights: • Numerical model for a dew point evaporative cooler verified with experiments. • Saturation point of the working air is independent of the inlet air conditions. • The intensity of cooling capacity and water evaporation are studied. • The overall heat transfer coefficient for the working air is analyzed. • The conditions to achieve sub-wet bulb cooling are examined. - Abstract: Dew point evaporative cooling has great potential as a disruptive process for sensible cooling of air below its entering wet bulb temperature. This paper presents an improved mathematical model for a single-stage dew point evaporative cooler in a counter-flow configuration. Longitudinal heat conduction and mass diffusion of the air streams, channel plate and water film, as well as the temperature difference between the plate and water film, are accounted for in the model. Predictions of the product air temperature are validated using three sets of experimental data within a discrepancy of 4%. The cooler’s heat and mass transfer process is analyzed in terms of its cooling capacity intensity, water evaporation intensity, and overall heat transfer coefficient along the channel. Parametric studies are conducted at different geometric and operating conditions. For the conditions evaluated, the study reveals that (1) the saturation point of the working air occurs at a fixed point regardless of the inlet air conditions, and it is mainly influenced by the working air ratio and channel height; (2) the intensity of the water evaporation approaches a minimum at 0.2 to 0.3 m from the entrance; (3) the wet channel can be separated into two zones, and the overall heat transfer coefficient is above 100 W/(m"2·K) after the temperature of water film becomes higher than the working air temperature.

  2. Energy and heat balance in wet DCT

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Viren; Moser, Alexander; Schaefer, Michael; Ritschel, Michael [BorgWarner Drivetrain Engineering GmbH, Ketsch (Germany)

    2012-11-01

    Wet clutch systems are well known for their thermal robustness and versatility in a wide range of automotive applications. Conventional automatics have used them for a long time as torque converter lock-up clutches, shift elements and launch clutches. With the development of DCTs, wet clutch technology has evolved in terms of launch and shift performance, controllability, robustness and efficiency. This paper discusses improvements in the wet clutch and their impact on today's vehicle applications in terms of heat and energy management. Thermal robustness is a crucial aspect for an automatic transmission. In addition to the clutch thermal performance, the influence of transmission oil cooler and oil sump warm-up behavior are discussed. Based on our latest development activities, test results and simulations, we shall discuss the latest friction material enhancement and its impact on DCTs in terms of efficiency and performance. Drag loss is a much-discussed topic during the development of wet clutch systems. This paper discusses in detail the cause and break-up of various energy losses in a wet DCT. Efficient energy management strategies for actuation systems, cooling, and lubrication, clutch apply, and pre-selection in modern power trains with engine start / stop are evaluated based on the latest test and simulation results. Finally, the paper summarizes the performance and efficiency optimized moist clutch system. (orig.)

  3. Cooling system for auxiliary reactor component

    International Nuclear Information System (INIS)

    Fujihira, Tomoko.

    1991-01-01

    A cooling system for auxiliary reactor components comprises three systems, that is, two systems of reactor component cooling water systems (RCCW systems) and a high pressure component cooling water system (HPCCW system). Connecting pipelines having partition valves are intervened each in a cooling water supply pipeline to an emmergency component of each of the RCCW systems, a cooling water return pipeline from the emmergency component of each of the RCCW systems, a cooling water supply pipeline to each of the emmergency components of one of the RCCW system and the HPCCW system and a cooling water return pipeline from each of the emmergency components of one of the RCCW system and the HPCCW system. With such constitution, cooling water can be supplied also to the emmergency components in the stand-by system upon periodical inspection or ISI, thereby enabling to improve the backup performance of the emmergency cooling system. (I.N.)

  4. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  5. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  6. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  7. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  8. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  9. Simulations of floor cooling system capacity

    International Nuclear Information System (INIS)

    Odyjas, Andrzej; Górka, Andrzej

    2013-01-01

    Floor cooling system capacity depends on its physical and operative parameters. Using numerical simulations, it appears that cooling capacity of the system largely depends on the type of cooling loads occurring in the room. In the case of convective cooling loads capacity of the system is small. However, when radiation flux falls directly on the floor the system significantly increases productivity. The article describes the results of numerical simulations which allow to determine system capacity in steady thermal conditions, depending on the type of physical parameters of the system and the type of cooling load occurring in the room. Moreover, the paper sets out the limits of system capacity while maintaining a minimum temperature of the floor surface equal to 20 °C. The results are helpful for designing system capacity in different type of cooling loads and show maximum system capacity in acceptable thermal comfort condition. -- Highlights: ► We have developed numerical model for simulation of floor cooling system. ► We have described floor system capacity depending on its physical parameters. ► We have described floor system capacity depending on type of cooling loads. ► The most important in the obtained cooling capacities is the type of cooling loads. ► The paper sets out the possible maximum cooling floor system capacity

  10. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  11. Cooling towers: a bibliography

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1981-02-01

    This bibliography cites 300 selected references containing information on various aspects of large cooling tower technology, including design, construction, operation, performance, economics, and environmental effects. The towers considered include natural-draft and mechanical-draft types employing wet, dry, or combination wet-dry cooling. A few references deal with alternative cooling methods, principally ponds or spray canals. The citations were compiled for the DOE Energy Information Data Base (EDB) covering the period January to December 1980. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators

  12. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  13. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    Science.gov (United States)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  14. Design Aspects of Wet Scrubber System

    International Nuclear Information System (INIS)

    Lee, Hyun-Chul; Bang, Young-suk; Jung, Woo-Young; Lee, Doo-Yong

    2015-01-01

    The water pool in the wet scrubber system has advantage to cope with decay heat based on the thermal hydraulic balance such as condensation and evaporation inside it. This study focuses on the design aspects of the wet scrubber system to estimate the required water pool mass during the mission time and size of the scrubbing tank including inner structures. The design of the wet scrubber system include the estimation of the required water mass during the mission time and sizing of the scrubber vessel to contain the water pool. The condensation due to the inlet steam and evaporation due to the steam and non-condensable gas superheat and decay heat from filtered fission products should be considered to estimate the water mass required to maintain its function during the mission time. On the other hand, the level swelling due to the noncondensable gas is another important design aspect on the sizing of the scrubber vessel and determination of the entry elevation of the filtration components such as the droplet separator or filter. The minimum water level based on the minimum collapsed water level should be higher than the exit of scrubber nozzle

  15. Design Aspects of Wet Scrubber System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun-Chul; Bang, Young-suk; Jung, Woo-Young; Lee, Doo-Yong [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    The water pool in the wet scrubber system has advantage to cope with decay heat based on the thermal hydraulic balance such as condensation and evaporation inside it. This study focuses on the design aspects of the wet scrubber system to estimate the required water pool mass during the mission time and size of the scrubbing tank including inner structures. The design of the wet scrubber system include the estimation of the required water mass during the mission time and sizing of the scrubber vessel to contain the water pool. The condensation due to the inlet steam and evaporation due to the steam and non-condensable gas superheat and decay heat from filtered fission products should be considered to estimate the water mass required to maintain its function during the mission time. On the other hand, the level swelling due to the noncondensable gas is another important design aspect on the sizing of the scrubber vessel and determination of the entry elevation of the filtration components such as the droplet separator or filter. The minimum water level based on the minimum collapsed water level should be higher than the exit of scrubber nozzle.

  16. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  17. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  18. Cooling methods of station blackout scenario for LWR plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The objective of this study is to analyze the cooling method of station blackout scenario for both the BWR and PWR plants by RELAP5 code and to check the validity of the cooling method proposed by the utilities. In the BWR plant cooling scenario, the Reactor Core Isolation Cooling System (RCIC), which is operated with high pressure steam from the reactor, injects cooling water into the reactor to keep the core water level. The steam generated in the core is released into the suppression pool at containment vessel to condense. To restrict the containment vessel pressure rising, the ventilation from the wet-well is operated. The scenario is analyzed by RELAP5 code. In the PWR plant scenario, the primary pressure is decreased by the turbine-driven auxiliary feed water system operated with secondary side steam of the steam generators (SGs). And the core cooling is kept by the natural circulation flow at the primary loop. From the RELAP5 code analysis, it was shown that the primary system cooling was practicable by using the turbine-driven auxiliary feed water system. (author)

  19. Assessment of cooling tower impact

    International Nuclear Information System (INIS)

    1986-01-01

    This guideline describes the state of the art of the meteorological impact of wet cooling towers that are about 80 m to 170 m high, and have a waste heat power in the range of 1000 MW and 2500 MW. The physical processes occurring in the lowest layer of the atmosphere and their impact in the dispersion of cooling tower emissions are represented. On the basis of these facts, the impact on weather or climate in the vicinity of a high wet cooling tower is estimated. Thereby the results of the latest investigations (observations, measurements, and modeling) on the different locations of plants as well as their different power and construction types are taken into consideration. (orig.) [de

  20. Cooling power technology at a turning point

    International Nuclear Information System (INIS)

    Hese, L.H.

    1978-01-01

    From freshwater cooling and efflux condenser cooling to wet recirculation cooling, hybrid and dry cooling towers, cooling tower technology has seen a development characterized by higher cooling tower costs and reduced power plant efficiency. Therefore, all research work done at the moment concentrates on making up for the economic losses connected with improved environmental protection. (orig.) [de

  1. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  2. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  3. Dry and mixed air cooling systems

    International Nuclear Information System (INIS)

    Gutner, Gidali.

    1975-01-01

    The various dry air cooling systems now in use or being developed are classified. The main dimensioning parameters are specified and the main systems already built are given with their characteristics. The available data allow dry air cooling to be situated against the other cooling modes and so specify the aim of the research or currently developed works. Some systems at development stages are briefly described. The interest in mixed cooling (assisted draft) and the principal available systems is analyzed. A program of research is outlined [fr

  4. Emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Nobuaki.

    1993-01-01

    A reactor comprises a static emergency reactor core cooling system having an automatic depressurization system and a gravitationally dropping type water injection system and a container cooling system by an isolation condenser. A depressurization pipeline of the automatic depressurization system connected to a reactor pressure vessel branches in the midway. The branched depressurizing pipelines are extended into an upper dry well and a lower dry well, in which depressurization valves are disposed at the top end portions of the pipelines respectively. If loss-of-coolant accidents should occur, the depressurization valve of the automatic depressurization system is actuated by lowering of water level in the pressure vessel. This causes nitrogen gases in the upper and the lower dry wells to transfer together with discharged steams effectively to a suppression pool passing through a bent tube. Accordingly, the gravitationally dropping type water injection system can be actuated faster. Further, subsequent cooling for the reactor vessel can be ensured sufficiently by the isolation condenser. (I.N.)

  5. Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.; Riffat, S.B. [School of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Li, J.M. [Department of Thermal Engineering, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2008-10-15

    The paper presents numerical investigation of a novel counter-flow heat and mass exchanger used in the indirect evaporative dew point cooling systems, a potential alternative to the conventional mechanical compression air conditioning systems. Numeric simulation was carried out to optimise the geometrical sizes and operating conditions of the exchanger in order to enhance the cooling (dew point and wet bulb) effectiveness of the exchanger and maximise the energy efficiency of the dew point cooling system. The results of the simulations indicated that cooling (dew point and wet bulb) effectiveness and energy efficiency are largely dependent on the dimensions of the airflow passages, air velocity and working-to-intake-air ratio, and less dependent on the temperature of the feed water. It is recommended that exchanger intake air velocity should be controlled to a value below 0.3-0.5 m/s; height of air passage (channel) should be set to 6 mm or below and the length of the passage should be 200 time the height; the working-to-intake-air ratio should be around 0.4. Under the UK summer design condition, i.e., 28{sup o}C of dry bulb temperature, 20{sup o}C of wet bulb temperature and 16{sup o}C of dew point temperature, the exchanger can achieve wet-bulb effectiveness of up to 1.3 and dew-point effectiveness of up to 0.9. (author)

  6. Design of SMART waste heat removal dry cooling tower using solar energy

    International Nuclear Information System (INIS)

    Choi, Yong Jae; Jeong, Yong Hoon

    2014-01-01

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed

  7. Design of SMART waste heat removal dry cooling tower using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Jae; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed.

  8. Smart Cooling Controlled System Exploiting Photovoltaic Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Ahmad Atieh

    2018-03-01

    Full Text Available A smart cooling system to control the ambient temperature of a premise in Amman, Jordan, is investigated and implemented. The premise holds 650 people and has 14 air conditioners with the cooling capacity ranging from 3 to 5 ton refrigerant (TR each. The control of the cooling system includes implementing different electronics circuits that are used to sense the ambient temperature and humidity, count the number of people in the premise and then turn ON/OFF certain air conditioner(s. The data collected by different electronic circuits are fed wirelessly to a microcontroller, which decides which air conditioner will be turned ON/OFF, its location and its desired set cooling temperature. The cooling system is integrated with an on-grid solar photovoltaic energy system to minimize the operational cost of the overall cooling system.

  9. Experimental investigation of filled bed effect on the thermal performance of a wet cooling tower by using ZnO/water nanofluid

    International Nuclear Information System (INIS)

    Imani-Mofrad, Peyman; Saeed, Zeinali Heris; Shanbedi, Mehdi

    2016-01-01

    Highlights: • Effect of filled bed on performance of cooling tower with ZnO nanofluid evaluated. • Applying metal reticular bed is the best choice when ZnO/water nanofluid is used. • Metal reticular bed showed lowest fouling and agglomeration of nanoparticles. • Nanofluid improved cooling range, characteristic & effectiveness of cooling tower. - Abstract: This study deals with an experimental investigation on the effect of different types of filled beds on the thermal performance of a wet cooling tower by using zinc oxide (ZnO)/water nanofluid. Different concentrations of ZnO/water nanofluid were prepared through two-step procedure by using pure water with electrical conductivity of 2 μS/cm. First, by using ZnO/water nanofluid (0.08 wt%), effect of six different filled beds were investigated on the thermal performance of the cooling tower. Moreover, after each experiment the applied filled bed was reviewed in order to observe any aggregation or settlement of nanoparticles on the surfaces of the bed. It was found that applying metal reticular bed (Bed 1) is the best choice when ZnO/water nanofluid is used. In the other word Bed 1 results better thermal characteristics for cooling tower and less settlement of nanofluids. Then different concentrations of ZnO/water nanofluid in the range of 0.02–0.1 wt% is employed in the cooling tower by utilizing Bed 1. The results showed that by using nanofluids, cooling range, tower characteristic (TC) and effectiveness of cooling tower are enriched compared to water. For example, TC enhanced by 21.5% and 22.5% for ZnO/water nanofluid with concentration of 0.02 wt% and 0.05 wt%, respectively.

  10. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS's heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis

  11. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  12. Developments in power plant cooling systems

    International Nuclear Information System (INIS)

    Agarwal, N.K.

    1993-01-01

    A number of cooling systems are used in the power plants. The condenser cooling water system is one of the most important cooling systems in the plant. The system comprises a number of equipment. Plants using sea water for cooling are designed for the very high corrosion effects due to sea water. Developments are taking place in the design, materials of construction as well as protection philosophies for the various equipment. Power optimisation of the cycle needs to be done in order to design an economical system. Environmental (Protection) Act places certain limitations on the effluents from the plant. An attempt has been made in this paper to outline the developing trends in the various equipment in the condenser cooling water systems used at the inland as well as coastal locations. (author). 5 refs., 6 refs

  13. A preliminary study on HTGR with air-cooled condenser at Riyadh, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa; Lee, Wonjae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    N GNP reactor plant adopted a Rank in steam cycle for early deployment and for reducing R and D risk and cost. Original plant design is based on a wet cooling tower with wet bulb temperature of 34 .deg. C. This cooling environment may be sufficient for most area in North America. However, we should consider air temperature of 45 .deg. C and no available cooling water for any site near Riyadh, Saudi Arabia. A plausible option in such arid area is using an air-cooled condenser(ACC) which is widely used in a combined cycle plant in arid region. ACC is also suitable for freezing area such as northern territory or high elevation remote area. We have studied impact of the cooling method on the power generation efficiency and the annual average power production referencing N GNP steam turbine. Even though condenser split is assumed to be the same between ACC and wet cooling tower, large difference in air temperature and wet bulb temperature makes large efficiency loss in the ACC. The ACC efficiency is lower than that of the wet cooling tower by 1.12%. To make up this loss, we proposed the variable steam extraction rates operation. An air cooled condenser is a practical.

  14. Phase Change Materials and the perception of wetness.

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kappers, A.M.L.; Daanen, H.A.M.

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead

  15. Phase change materials and the perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Kappers, A.M.L.; Daanen, H.A.M.

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead

  16. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  17. Investigations of combined used of cooling ponds with cooling towers or spraying systems

    International Nuclear Information System (INIS)

    Farforovsky, V.B.

    1990-01-01

    Based on a brief analysis of the methods of investigating cooling ponds, spraying systems and cooling towers, a conclusion is made that the direct modelling of the combined use of cooling systems listed cannot be realized. An approach to scale modelling of cooling ponds is proposed enabling all problems posed by the combined use of coolers to be solved. Emphasized is the importance of a proper choice of a scheme of including a cooler in a general water circulation system of thermal and nuclear power plants. A sequence of selecting a cooling tower of the type and spraying system of the size ensuring the specified temperature regime in a water circulation system is exemplified by the water system of the Ghorasal thermal power plant in Bangladesh

  18. Westinghouse containment filtered venting system wet scrubber technology

    International Nuclear Information System (INIS)

    Kristensson, S.; Nilsson, P-O.

    2014-01-01

    Following the Fukushima event Westinghouse has further developed and enhanced its filtered containment venting system (FCVS) product line. The filtration efficiency of the proven FILTRA-MVSS system installed at all Swedish NPPs as well as at the Muhelberg plant in Switzerland has been enhanced and a new wet scrubber design, SVEN (Safety Venting), based on the FILTRA-MVSS tradition, developed. To meet increased filtration requirements for organic iodine these two wet scrubber products have been complemented with a zeolite module. The offering of a select choice of products allows for a better adjustment to the specific constraints and needs of each nuclear power station that is planning for the installation of such a system. The FILTRA-MVSS (MVSS=Multi Venturi Scrubber System) is a wet containment filtered vent system that uses multiple venturies to create an interaction between the vent gases and the scrubber media allowing for removal of aerosols and gaseous iodines in a very efficient manner. The FILTRA-MVSS was originally developed to meet stringent requirements on autonomy and maintained filtration efficiency over a wide range of venting conditions. The system was jointly developed in the late 80's by ABB Atom and ABB Flaekt, today Westinghouse and Alstom. Following installations in Sweden and Switzerland the system was further developed by replacement of the gravel-bed moisture separator with a standard demister and by addition of a set of sintered metal fibre filter cartridges placed after the moisture separator step. The system is today offered as a modular steel tank design to simplify installation at site. To reduce complexity and delivery time Westinghouse has developed an alternative design in which the venturi module is replaced by a submerged metal fibre filter cartridges module. This new wet scrubber design, SVEN (patent pending), provides a flexible, compact, and lower weight system, while still preserving and even enhancing the filtration

  19. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  20. Study on dew point evaporative cooling system with counter-flow configuration

    KAUST Repository

    Lin, J.

    2015-12-18

    Dew point evaporative cooling has great potential as a disruptive process for sensible cooling of air below its entering wet bulb temperature. This paper presents an improved mathematical model for a single-stage dew point evaporative cooler in a counter-flow configuration. Longitudinal heat conduction and mass diffusion of the air streams, channel plate and water film, as well as the temperature difference between the plate and water film, are accounted for in the model. Predictions of the product air temperature are validated using three sets of experimental data within a discrepancy of 4%. The cooler’s heat and mass transfer process is analyzed in terms of its cooling capacity intensity, water evaporation intensity, and overall heat transfer coefficient along the channel. Parametric studies are conducted at different geometric and operating conditions. For the conditions evaluated, the study reveals that (1) the saturation point of the working air occurs at a fixed point regardless of the inlet air conditions, and it is mainly influenced by the working air ratio and channel height; (2) the intensity of the water evaporation approaches a minimum at 0.2 to 0.3m from the entrance; (3) the wet channel can be separated into two zones, and the overall heat transfer coefficient is above 100W/(m2·K) after the temperature of water film becomes higher than the working air temperature.

  1. The development of air cooled condensation systems

    International Nuclear Information System (INIS)

    Bodas, J.

    1990-01-01

    EGI - Contracting/Engineering has had experience with the development of air cooled condensing systems since the 1950's. There are two accepted types of dry cooling systems,the direct and the indirect ones. Due to the fact that the indirect system has several advantages over the direct one, EGI's purpose was to develop an economic, reliable and efficient type of indirect cooling system, both for industrial and power station applications. Apart from system development, the main components of dry cooling plant have been developed as well. These are: the water-to-air heat exchangers; the direct contact (DC, or jet) condenser; the cooling water circulating pumps and recovery turbines; and the peak cooling/preheating units. As a result of this broad development work which was connected with intensive market activity, EGI has supplied about 50% of the dry cooling plants employed for large power stations all over the world. This means that today the cumulated capacity of power units using Heller type dry cooling systems supplied and contracted by EGI is over 6000 MW

  2. An experimental study on the design, performance and suitability of evaporative cooling system using different indigenous materials

    Science.gov (United States)

    Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur

    2017-06-01

    relationship with air Velocity. Water consumption or evaporation rate increases with the increase in air velocity. Finally, the present study indicated that the coconut coir pads perform better than the other evaporative cooling pads and have higher potential as wetted-pad material. The outcomes of this study can provide an effective and low-cost solution in the form of evaporative cooling system, especially in an agricultural country like Bangladesh.

  3. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

    International Nuclear Information System (INIS)

    Shin, Sangwoo; Choi, Geehong; Kim, Beom Seok; Cho, Hyung Hee

    2014-01-01

    Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior. - Highlights: • Observation of suppressed wettability in the presence of surface roughness (nanowires). • Significant reduction of critical heat flux in the presence of nanowires. • Nonmonotonic behavior of heat transfer coefficient vs. nanowire length and Reynolds number

  4. Potential weather modification caused by waste heat release from large dry cooling towers

    International Nuclear Information System (INIS)

    Lee, J.

    1979-01-01

    A numerical model of a cooling tower plume is employed to study the possible atmospheric effects of thermal plumes from natural draft dry cooling towers. Calculations are performed for both single and multiple towers, each of which can dissipate the waste heat from a nominal 1000 MWe power generating unit, and the results are compared with those for wet cooling towers associated with plants of the same generating capacity. Dry cooling tower plumes are found to have a higher potential for inducing convective clouds than wet cooling tower plumes, under most summertime meteorological conditions. This is due to the fact that both the sensible heat and momentum fluxes from a dry tower in summer are approximately one order of magnitude larger than those from a wet cooling tower

  5. Phase change materials and the perception of wetness.

    Science.gov (United States)

    Tiest, Wouter M Bergmann; Kosters, N Dolfine; Kappers, Astrid M L; Daanen, Hein A M

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead of cold. In order to investigate if this phenomenon occurs when manipulating textiles, nine subjects were asked to touch or manipulate PCM-treated and untreated fabrics. In 75% of the cases, the subjects indicated that the treated material felt wetter than the untreated material independent of the way the textiles were manipulated. We conclude that incorporating PCMs in textiles may lead to a feeling of wetness which might be uncomfortable. Therefore, we recommend investigating a change in cooling properties to minimise this feeling. This article describes a psychophysical experiment into the sensation of wetness of textiles treated with phase change materials. It was found that in 75% of the cases, subjects found the treated fabric to feel wetter than the untreated. This may affect the comfort of wearing clothes made of these textiles.

  6. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  7. SNS Resonance Control Cooling Systems and Quadrupole Magnet Cooling Systems DIW Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Magda, Karoly [ORNL

    2018-01-01

    This report focuses on control of the water chemistry for the Spallation Neutron Source (SNS) Resonance Control Cooling System (RCCS)/Quadrupole Magnet Cooling System (QMCS) deionized water (DIW) cooling loops. Data collected from spring 2013 through spring 2016 are discussed, and an operations regime is recommended.It was found that the RCCS operates with an average pH of 7.24 for all lines (from 7.0 to 7.5, slightly alkaline), the average low dissolved oxygen is in the area of < 36 ppb, and the main loop average resistivity of is > 14 MΩ-cm. The QMCS was found to be operating in a similar regime, with a slightly alkaline pH of 7.5 , low dissolved oxygen in the area of < 45 ppb, and main loop resistivity of 10 to 15 MΩ-cm. During data reading, operational corrections were done on the polishing loops to improve the water chemistry regime. Therefore some trends changed over time.It is recommended that the cooling loops operate in a regime in which the water has a resistivity that is as high as achievable, a dissolved oxygen concentration that is as low as achievable, and a neutral or slightly alkaline pH.

  8. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Laboratory; Zhang, Hongbin [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety

  9. Emergency reactor cooling systems for the experimental VHTR

    International Nuclear Information System (INIS)

    Mitake, Susumu; Suzuki, Katsuo; Miyamoto, Yoshiaki; Tamura, Kazuo; Ezaki, Masahiro.

    1983-03-01

    Performances and design of the panel cooling system which has been proposed to be equipped as an emergency reactor cooling system for the experimental multi purpose very high temperature gas-cooled reactor are explained. Effects of natural circulation flow which would develop in the core and temperature transients of the panel in starting have been precisely investigated. Conditions and procedures for settling accidents with the proposed panel cooling system have been also studied. Based on these studies, it has been shown that the panel cooling system is effective and useful for the emergency reactor cooling of the experimental VHTR. (author)

  10. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  11. Enamel Wetness Effects on Microshear Bond Strength of Different Bonding Agents (Adhesive Systems): An in vitro Comparative Evaluation Study.

    Science.gov (United States)

    Kulkarni, Girish; Mishra, Vinay K

    2016-05-01

    The purpose of this study was to compare the effect of enamel wetness on microshear bond strength using different adhesive systems. To evaluate microshear bond strength of three bonding agents on dry enamel; to evaluate microshear bond strength of three bonding agents on wet enamel; and to compare microshear bond strength of three different bonding agents on dry and wet enamel. Sixty extracted noncarious human premolars were selected for this study. Flat enamel surfaces of approximately 3 mm were obtained by grinding the buccal surfaces of premolars with water-cooled diamond disks. This study evaluated one etch-and-rinse adhesive system (Single Bond 2) and two self-etching adhesive systems (Clearfil SE Bond and Xeno-V). The specimens were divided into two groups (n = 30). Group I (dry) was air-dried for 30 seconds and in group II (wet) surfaces were blotted with absorbent paper to remove excess water. These groups were further divided into six subgroups (n = 10) according to the adhesives used. The resin composite, Filtek Z 250, was bonded to flat enamel surfaces that had been treated with one of the adhesives, following the manufacturer's instructions. After being stored in water at 37°C for 24 hours, bonded specimens were stressed in universal testing machine (Fig. 3) at a crosshead speed of 1 mm/min. The data were evaluated with one-way and two-way analysis of variance (ANOVA), t-test, and Tukey's Multiple Post hoc tests (a = 0.05). The two-way ANOVA and Tukey's Multiple Post hoc tests showed significant differences among adhesive systems, but wetness did not influence microshear bond strength (p = 0.1762). The one-way ANOVA and t-test showed that the all-in-one adhesive (Xeno-V) was the only material influenced by the presence of water on the enamel surface. Xeno-V showed significantly higher microshear bond strength when the enamel was kept wet. Single Bond 2 adhesive showed significantly higher microshear bond strength as compared with Xeno-V adhesive but no

  12. TPX heating and cooling system

    International Nuclear Information System (INIS)

    Kungl, D.J.; Knutson, D.S.; Costello, J.; Stoenescu, S.; Yemin, L.

    1995-01-01

    TPX, while having primarily super-conducting coils that do not require water cooling, still has very significant water cooling requirements for the plasma heating systems, vacuum vessel, plasma facing components, diagnostics, and ancillary equipment. This is accentuated by the 1000-second pulse requirement. Two major design changes, which have significantly affected the TPX Heating and Cooling System, have been made since the conceptual design review in March of 1993. This paper will discuss these changes and review the current status of the conceptual design. The first change involves replacing the vacuum vessel neutron shielding configuration of lead/glass composite tile by a much simpler and more reliable borated water shield. The second change reduces the operating temperature of the vacuum vessel from 150 C to ≥50 C. With this temperature reduction, all in-vessel components and the vessel will be supplied by coolant at a common ≥50 C inlet temperature. In all, six different heating and cooling supply requirements (temperature, pressure, water quality) for the various TPX components must be met. This paper will detail these requirements and provide an overview of the Heating and Cooling System design while focusing on the ramifications of the TPX changes described above

  13. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  14. Cooling methods of station blackout scenario for LWR plants

    International Nuclear Information System (INIS)

    2012-01-01

    The objective of this study is to analyze the cooling method of station blackout scenario for both the BWR and PWR plants by RELAP5 code and to check the validity of the cooling method proposed by the utilities. In the BWR plant cooling scenario, the Reactor Core Isolation Cooling System (RCIC), which is operated with high pressure steam from the reactor, injects cooling water into the reactor to keep the core water level. The steam generated in the core is released into the suppression pool at containment vessel to condense. To restrict the containment vessel pressure rising, the ventilation from the wet-well is operated. The scenario is analyzed by RELAP5 and CONTEMPT-LT code. In the PWR plant scenario, the primary pressure is decreased by the turbine-driven auxiliary feed water system operated with secondary side steam of the steam generators (SGs). And the core cooling is kept by the natural circulation flow at the primary loop. The analytical method of un-uniform flow behavior among the SG U-tubes, which affects the natural circulation flow rate, is developed. (author)

  15. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  16. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2018-01-30

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  17. System performance and economic analysis of solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.; Wu, J.H.; Yen, R.H.; Wang, J.H.; Hsu, H.Y.; Hsia, C.J.; Yen, C.W.; Chang, J.M.

    2011-01-01

    The long-term system simulation and economic analysis of solar-assisted cooling/heating system (SACH-2) was carried out in order to find an economical design. The solar heat driven ejector cooling system (ECS) is used to provide part of the cooling

  18. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  19. Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower

    Science.gov (United States)

    Wang, Miao; Wang, Jin; Wang, Jiajin; Shi, Cheng

    2018-02-01

    A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.

  20. Evaporative cooling enhanced cold storage system

    Science.gov (United States)

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  1. Cooling system for the IFMIF-EVEDA radiofrequency system

    International Nuclear Information System (INIS)

    Perez Pichel, G. D.

    2012-01-01

    The IFMIF-EVEDA project consists on an accelerator prototype that will be installed at Rokkasho (Japan). Through CIEMAT, that is responsible of the development of many systems and components. Empresarios Agrupados get the responsibility of the detailed design of the cooling system for the radiofrequency system (RF system) that must feed the accelerator. the RF water cooling systems is the water primary circuit that provides the required water flow (with a certain temperature, pressure and water quality) and also dissipates the necessary thermal power of all the radiofrequency system equipment. (Author) 4 refs.

  2. Fundamental research on the cooling characteristic of passive containment cooling system

    International Nuclear Information System (INIS)

    Kawakubo, M.; Kikura, H.; Aritomi, M.; Inaba, N.; Yamauchi, T.

    2004-01-01

    The objective of this experimental study is to clarify the heat transfer characteristics of the Passive Containment Cooling System (PCCS) with vertical heat transfer tubes for investigating the influence of non-condensable gas on condensation. Furthermore, hence we obtained new experimental correlation formula to calculate the transients in system temperature and pressure using the simulation program of the PCCS. The research was carried out using a forced circulation experimental loop, which simulates atmosphere inside PCCS with vertical heat transfer tubes if a loss of coolant accident (LOCA) occurs. The experimental facility consists of cooling water supply systems, an orifice flowmeter, and a tank equipped with the heat transfer pipe inside. Cooling water at a constant temperature is injected to the test part of heat transfer pipe vertically installed in the tank by forced circulation. At that time, the temperature of the cooling water between inlet and outlet of the pipe was measured to calculate the overall heat transfer coefficient between the cooling water and atmosphere in the tank. Thus, the heat transfer coefficient between heat transfer surface and the atmosphere in the tank considering the influence of the non-condensable gas was clarified. An important finding of this study is that the amount of condensation in the steamy atmosphere including non-condensable gas depends on the cooling water Reynolds number, especially the concentration of non-condensable gas that has great influence on the amount of condensation. (authors)

  3. ABB wet flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Niijhawan, P.

    1994-12-31

    The wet limestone process for flue gas desulfurization (FGD) is outlined. The following topics are discussed: wet flue gas desulfurization, wet FGD characteristics, wet scrubbers, ABB wet FGD experience, wet FGD forced oxidation, advanced limestone FGD systems, key design elements, open spray tower design, spray tower vs. packed tower, important performance parameters, SO{sub 2} removal efficiency, influence by L/G, limestone utilization, wet FGD commercial database, particulate removal efficiencies, materials of construction, nozzle layout, spray nozzles, recycle pumps, mist elimination, horizontal flow demister, mist eliminator washing, reagent preparation system, spray tower FGDS power consumption, flue gas reheat options, byproduct conditioning system, and wet limestone system.

  4. On the prospects for dry cooling tower building in FRG

    International Nuclear Information System (INIS)

    Dzhurinskij, M.B.; Zlotin, A.A.

    1982-01-01

    Advantages and disadvantages of dry cooling towers for NPPs are considered. Construction of a number of cooling towers in FRY are described. The advisability of building cooling towers of a combined type - with wet aud dry sections is noted

  5. Cooling system for auxiliary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Maerker, W.; Mueller, K.; Roller, W.

    1981-01-01

    From the reactor auxiliary and ancillary systems of a nuclear facility heat has to be removed without the hazard arising that radioactive liquids or gases may escape from the safe area of the nuclear facility. A cooling system is described allowing at every moment to make available cooling fluid at a temperature sufficiently low for heat exchangers to be able to remove the heat from such auxiliary systems without needing fresh water supply or water reservoirs. For this purpose a dry cooling tower is connected in series with a heat exchanger that is cooled on the secondary side by means of a refrigerating machine. The cooling pipes are filled with a nonfreezable fluid. By means of a bypass a minimum temperature is guaranteed at cold weather. (orig.) [de

  6. Analysis of a solid desiccant cooling system with indirect evaporative cooling

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo

    investigates the performance of a solid desiccant cooling system implementing in-direct evaporative cooling processes. The aim is to quantify the system thermal and electrical performance for varying component dimensions and operating conditions, and to identify its range of applicability. This information...... evaporative cooler. Detailed steady state numerical models are developed and implemented in MATLAB. The models need to be accurate and require low computational effort, for analysing the internal heat and mass transfer processes, as well as carrying out repetitive design and optimization simulations......-to-air heat exchanger for enhancing cooling capacity and thermal performance. The system perfor-mance is investigated considering regeneration temperatures between 50 ºC and 90 ºC, which enable low temperature heat sources, such as solar energy or waste heat, to be used. The effects of several geometrical...

  7. The stochastic-cooling system for COSY-Juelich

    International Nuclear Information System (INIS)

    Brittner, P.; Danzglock, R.; Hacker, H.U.; Maier, R.; Pfister, U.; Prasuhn, D.; Singer, H.; Spiess, W.; Stockhorst, H.

    1991-01-01

    The cooling in the Cooler Synchrotron COSY will work in the ranges: Band 1: 1 to 1.8 GHz, Band 2: 1.8 to 3 GHz. The system allows cooling in the energy range of 0.8 to 2.5 GeV. The stochastic-cooling system is under development. Cooling characteristics have been calculated. The tanks are similar to those of the CERN-AC. But the COSY parameters have required changes of the tank design. Active RF components have been developed for COSY. Measured results are presented

  8. Exergy optimization of cooling tower for HGSHP and HVAC applications

    International Nuclear Information System (INIS)

    Singh, Kuljeet; Das, Ranjan

    2017-01-01

    Highlights: • Development of new correlations for outlet parameters with all inlet parameters. • Simultaneous achievement of required heat load and minimum exergy destruction. • Multiple combinations of parameters found for same heat load at minimized exergy. • Study useful for optimum control of cooling tower under varying ambient conditions. • Generalized optimization study can be implemented for any mechanical cooling tower. - Abstract: In the present work, a constrained inverse optimization method for building cooling applications is proposed to control the mechanical draft wet cooling tower by minimizing the exergy destruction and satisfying an imposed heat load under varying environmental conditions. The optimization problem is formulated considering the cooling dominated heating, ventilation and air conditioning (HVAC) and hybrid ground source heat pump (HGSHP). As per the requirement, new second degree correlations for the tower outlet parameters (water temperature, air dry and wet-bulb temperatures) with five inlet parameters (dry-bulb temperature, relative humidity, water inlet temperature, water and air mass flow rates) are developed. The Box–Behnken design response surface method is implemented for developing the correlations. Subsequently, the constrained optimization problem is solved using augmented Lagrangian genetic algorithm. This work further developed optimum inlet parameters operating curves for the HGSHP and the HVAC systems under varying environmental conditions aimed at minimizing the exergy destruction along with the fulfillment of the required heat load.

  9. Conceptual design study on simplified and safer cooling systems for sodium cooled FBRs

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Shimakawa, Yoshio; Ishikawa, Hiroyasu; Kubota, Kenichi; Kobayashi, Jun; Kasai, Shigeo

    2000-06-01

    The objective of this study is to create the FBR plant concepts increasing economy and safety for the Phase-I 'Feasibility Studies on Commercialized Fast Reactor System'. In this study, various concepts of simplified 2ry cooling system for sodium cooled FBRs are considered and evaluated from the view points of technological feasibility, economy, and safety. The concepts in the study are considered on the basis of the following points of view. 1. To simplify 2ry cooling system by moderating and localizing the sodium-water reaction in the steam generator of the FBRs. 2. To simplify 2ry cooling system by eliminating the sodium-water reaction using integrated IHX-SG unit. 3. To simplify 2ry cooling system by eliminating the sodium-water reaction using a power generating system other than the steam generator. As the result of the study, 12 concepts and 3 innovative concepts are proposed. The evaluation study for those concepts shows the following technical prospects. 1. 2 concepts of integrated IHX-SG unit can eliminate the sodium-water reaction. Separated IHX and SG tubes unit using Lead-Bismuth as the heat transfer medium. Integrated IHX-SG unit using copper as the heat transfer medium. 2. Cost reduction effect by simplified 2ry cooling system using integrated IHX-SG unit is estimated 0 to 5%. 3. All of the integrated IHX-SG unit concepts have more weight and larger size than conventional steam generator unit. The weight of the unit during transporting and lifting would limit capacity of heat transfer system. These evaluation results will be compared with the results in JFY 2000 and used for the Phase-II study. (author)

  10. Performance comparison between a solar driven rotary desiccant cooling system and conventional vapor compression system (performance study of desiccant cooling)

    International Nuclear Information System (INIS)

    Ge, T.S.; Ziegler, F.; Wang, R.Z.; Wang, H.

    2010-01-01

    Solar driven rotary desiccant cooling systems have been widely recognized as alternatives to conventional vapor compression systems for their merits of energy-saving and being eco-friendly. In the previous paper, the basic performance features of desiccant wheel have been discussed. In this paper, a solar driven two-stage rotary desiccant cooling system and a vapor compression system are simulated to provide cooling for one floor in a commercial office building in two cities with different climates: Berlin and Shanghai. The model developed in the previous paper is adopted to predict the performance of the desiccant wheel. The objectives of this paper are to evaluate and compare the thermodynamic and economic performance of the two systems and to obtain useful data for practical application. Results show that the desiccant cooling system is able to meet the cooling demand and provide comfortable supply air in both of the two regions. The required regeneration temperatures are 55 deg. C in Berlin and 85 deg. C in Shanghai. As compared to the vapor compression system, the desiccant cooling system has better supply air quality and consumes less electricity. The results of the economic analysis demonstrate that the dynamic investment payback periods are 4.7 years in Berlin and 7.2 years in Shanghai.

  11. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Wang Yiping; Cui Yong; Zhu Li; Han Lijun

    2008-01-01

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m 2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m 2 . As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m 2 and 36 W/m 2 , respectively

  12. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Won [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Nguyen, Thanh Hung [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ha, Kwang Soon; Kim, Hwan Yeol; Song, Jinho [Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Park, Hyun Sun [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Revankar, Shripad T., E-mail: shripad@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2017-05-15

    Highlights: • Two-phase flow regimes and transition behavior were observed in the coolant channel. • Test were conducted for natural circulation with air-water. • Data were obtained on flow regime, void fraction, flow rates and re-wetting time. • The data were related to a cooling capability of core catcher system. - Abstract: Ex-vessel core catcher cooling system driven by natural circulation is designed using a full scaled air-water system. A transparent half symmetric section of a core catcher coolant channel of a pressurized water reactor was designed with instrumentations for local void fraction measurement and flow visualization. Two designs of air-water top separator water tanks are studied including one with modified ‘super-step’ design which prevents gas entrainment into down-comer. In the experiment air flow rates are set corresponding to steam generation rate for given corium decay power. Measurements of natural circulation flow rate, spatial local void fraction distribution and re-wetting time near the top wall are carried out for various air flow rates which simulate boiling-induced vapor generation. Since heat transfer and critical heat flux are strongly dependent on the water mass flow rate and development of two-phase flow on the heated wall, knowledge of two-phase flow characteristics in the coolant channel is essential. Results on flow visualization showing two phase flow structure specifically near the high void accumulation regions, local void profiles, rewetting time, and natural circulation flow rate are presented for various air flow rates that simulate corium power levels. The data are useful in assessing the cooling capability of and safety of the core catcher system.

  13. On the optimum performance of forced draft counter flow cooling towers

    International Nuclear Information System (INIS)

    Soeylemez, M.S.

    2004-01-01

    A thermo-hydraulic performance optimization analysis is presented, yielding simple algebraic formula for estimating the optimum performance point of counter current mechanical draft wet cooling towers. The effectiveness-Ntu method is used in the present study, together with the derivation of psychometric properties of moist air based on a numerical approximation method, for thermal performance analysis of wet cooling towers of the counter flow type

  14. System performance and economic analysis of solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2011-11-01

    The long-term system simulation and economic analysis of solar-assisted cooling/heating system (SACH-2) was carried out in order to find an economical design. The solar heat driven ejector cooling system (ECS) is used to provide part of the cooling load to reduce the energy consumption of the air conditioner installed as the base-load cooler. A standard SACH-2 system for cooling load 3.5. kW (1. RT) and daily cooling time 10 h is used for case study. The cooling performance is assumed only in summer seasons from May to October. In winter season from November to April, only heat is supplied. Two installation locations (Taipei and Tainan) were examined.It was found from the cooling performance simulation that in order to save 50% energy of the air conditioner, the required solar collector area is 40m2 in Taipei and 31m2 in Tainan, for COPj=0.2. If the solar collector area is designed as 20m2, the solar ejector cooling system will supply about 17-26% cooling load in Taipei in summer season and about 21-27% cooling load in Tainan. Simulation for long-term performance including cooling in summer (May-October) and hot water supply in winter (November-April) was carried out to determine the monthly-average energy savings. The corresponding daily hot water supply (with 40°C temperature rise of water) for 20m2 solar collector area is 616-858L/day in Tainan and 304-533L/day in Taipei.The economic analysis shows that the payback time of SACH-2 decreases with increasing cooling capacity. The payback time is 4.8. years in Tainan and 6.2. years in Taipei when the cooling capacity >10. RT. If the ECS is treated as an additional device used as a protective equipment to avoid overheating of solar collectors and to convert the excess solar heat in summer into cooling to reduce the energy consumption of air conditioner, the payback time is less than 3 years for cooling capacity larger than 3. RT. © 2011 Elsevier Ltd.

  15. Performance of water distribution systems in a pilot cooling tower

    International Nuclear Information System (INIS)

    Tognotti, L.; Giacomelli, A.; Zanelli, S.; Bellagamba, B.; Lotti, G.; Mattachini, F.

    1990-01-01

    An experimental study has been carried out on the water distribution system of a Pilot cooling tower of 160 m 3 /hr The performances of different industrial water distributors have been evaluated by changing the operative conditions of the pilot tower. In particular, the efficiency and the uniformity of the water distribution have been investigated and compared with the results obtained in a small-scale loop, in which the single nozzles were tested. Measurements in both systems, pilot tower and small scale loop, included the geometric characteristics of the jet umbrella by ensemble photography, the wetted zone by measuring the specific flowrate, the drop-size distribution and liquid concentration by high-speed photography. The results show that correlations exist between the nozzle behaviour in single and pilot tower configuration. The uniformity of water distribution in the pilot tower is strongly related to the nozzle installation pattern and to the operative conditions. Coalescence plays an important role on the drop size distribution in the pilot-tower. Comments upon the influence of these parameters on tower behaviour are also included

  16. Cooling methods for power plants

    International Nuclear Information System (INIS)

    Gaspersic, B.; Fabjan, L.; Petelin, S.

    1977-01-01

    There are some results of measurements carried out on the wet cooling tower 275 MWe at TE Sostanj and on the experimental cooling tower at Jozef Stefan Institute, as well. They are including: the measurements of the output air conditions, the measurements of the cross current of water film and vapour-air flowing through two plates, and the distribution of velocity in boundary layer measured by anemometer

  17. The atmospheric cooling of nuclear power stations

    International Nuclear Information System (INIS)

    Leuenberger, J.M.; Mayor, J.C.; Gassmann, F.; Lieber, K.

    1978-08-01

    Four different types of nuclear reactor are considered: light water reactors, high temperature reactors with steam circulation and with direct gas turbine circulation, and fast breeder reactors. Wet and dry cooling towers are described and experimental studies carried out using cooling tower models are presented. (G.T.H.)

  18. Evaluation of heat exchange performance for the auxiliary component cooling water system cooling tower in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Kameyama, Yasuhiko; Shimizu, Atsushi; Inoi, Hiroyuki; Yamazaki, Kazunori; Shimizu, Yasunori; Aragaki, Etsushi; Ota, Yukimaru; Fujimoto, Nozomu

    2006-09-01

    The auxiliary component cooling water system (ACCWS) is one of the cooling system in High Temperature Engineering Test Reactor (HTTR). The ACCWS has main two features, many facilities cooling, and heat sink of the vessel cooling system which is one of the engineering safety features. Therefore, the ACCWS is required to satisfy the design criteria of heat removal performance. In this report, heat exchange performance data of the rise-to-power-up test and the in-service operation for the ACCWS cooling tower was evaluated. Moreover, the evaluated values were compared with the design values, and it is confirmed that ACCWS cooling tower has the required heat exchange performance in the design. (author)

  19. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  20. On synthesis and optimization of cooling water systems with multiple cooling towers

    CSIR Research Space (South Africa)

    Gololo, KV

    2011-01-01

    Full Text Available -1 On Synthesis and Optimization of Cooling Water Systems with Multiple Cooling Towers Khunedi Vincent Gololo?? and Thokozani Majozi*? ? Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa ? Modelling...

  1. PEP cooling water systems and underground piped utilities design criteria report

    International Nuclear Information System (INIS)

    Hall, F.; Robbins, D.

    1975-10-01

    This paper discusses the cooling systems required by the PEP Storage Ring. Particular topics discussed are: Cooling tower systems, RF cavity and vacuum chamber LCW cooling systems, klystron and ring magnet LLW cooling systems, Injection magnet LCW Cooling Systems; PEP interaction area detector LCW Cooling Systems; and underground piped utilities. 1 ref., 20 figs

  2. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  3. Method of injecting cooling water in emergency core cooling system (ECCS) of PWR type reactor

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Adachi, Michihiro; Tasaka, Kanji; Suzuki, Mitsuhiro.

    1979-01-01

    Purpose: To provide a cooling water injection method in an ECCS, which can perform effective cooling of the reactor core. Method: In a method of injecting cooling water in an ECCS as a countermeasure against a rupture accident of a pwr type reactor, cooling water in the first pressure storage injection system is injected into the upper plenum of the reactor pressure vessel at a set pressure of from 50 to 90 atg. and a set temperature of from 80 to 200 0 C, cooling water in the second pressure storage injection system is injected into the lower plenum of the reactor pressure vessel at a pressure of from 25 to 60 atg. which is lower than the set pressure and a temperature less than 60 0 C, and further in combination with these procedures, cooling water of less than 60 0 C is injected into a high-temperature side piping, in the high-pressure injection system of upstroke of 100 atg. by means of a pump and the low-pressure injection system of upstroke of 20 atg. also by means of a pump, thereby cooling the reactor core. (Aizawa, K.)

  4. ELECTRONIC CIRCUIT BOARDS NON-UNIFORM COOLING SYSTEM MODEL

    Directory of Open Access Journals (Sweden)

    D. V. Yevdulov

    2016-01-01

    Full Text Available Abstract. The paper considers a mathematical model of non-uniform cooling of electronic circuit boards. The block diagram of the system implementing this approach, the method of calculation of the electronic board temperature field, as well as the principle of its thermal performance optimizing are presented. In the considered scheme the main heat elimination from electronic board is produced by the radiator system, and additional cooling of the most temperature-sensitive components is produced by thermoelectric batteries. Are given the two-dimensional temperature fields of the electronic board during its uniform and non-uniform cooling, is carried out their comparison. As follows from the calculations results, when using a uniform overall cooling of electronic unit there is a waste of energy for the cooling 0f electronic board parts which temperature is within acceptable temperature range without the cooling system. This approach leads to the increase in the cooling capacity of used thermoelectric batteries in comparison with the desired values. This largely reduces the efficiency of heat elimination system. The use for electronic boards cooling of non-uniform local heat elimination removes this disadvantage. The obtained dependences show that in this case, the energy required to create a given temperature is smaller than when using a common uniform cooling. In this approach the temperature field of the electronic board is more uniform and the cooling is more efficient. 

  5. Modelling and analysis of a desiccant cooling system using the regenerative indirect evaporative cooling process

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    2013-01-01

    This paper focuses on the numerical modeling and analysis of a Desiccant Cooling (DEC) system with regenerative indirect evaporative cooling, termed Desiccant Dewpoint Cooling (DDC) system. The DDC system includes a Desiccant Wheel (DW), Dew Point Coolers (DPCs), a heat recovery unit and a heat...... in different climates: temperate in Copenhagen and Mediterranean in Venice. Cheap and clean heat sources (e.g. solar energy) strongly increase the attractiveness of the DDC system. For the Mediterranean climate the DDC system represents a convenient alternative to chiller-based systems in terms of energy costs...... and CO2 emissions. The electricity consumption for auxiliaries in the DDC system is higher than in the chiller-based systems. The number of commercial-size DPC units required to cover the cooling load during the whole period is high: 8 in Copenhagen and 12 in Venice....

  6. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  7. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  8. Review on Water Distribution of Cooling Tower in Power Station

    Science.gov (United States)

    Huichao, Zhang; Lei, Fang; Hao, Guang; Ying, Niu

    2018-04-01

    As the energy sources situation is becoming more and more severe, the importance of energy conservation and emissions reduction gets clearer. Since the optimization of water distribution system of cooling tower in power station can save a great amount of energy, the research of water distribution system gets more attention nowadays. This paper summarizes the development process of counter-flow type natural draft wet cooling tower and the water distribution system, and introduces the related domestic and international research situation. Combining the current situation, we come to the conclusion about the advantages and disadvantages of the several major water distribution modes, and analyze the problems of the existing water distribution ways in engineering application, furthermore, we put forward the direction of water distribution mode development on the basis knowledge of water distribution of cooling tower. Due to the water system can hardly be optimized again when it’s built, choosing an appropriate water distribution mode according to actual condition seems to be more significant.

  9. MEMS Device Being Developed for Active Cooling and Temperature Control

    Science.gov (United States)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  10. Augmented cooling vest system subassembly: Design and analysis

    International Nuclear Information System (INIS)

    D’Angelo, Maurissa; D’Angelo, Joseph; Almajali, Mohammad; Lafdi, Khalid; Delort, Antoine; Elmansori, Mohamed

    2014-01-01

    Highlights: • Thermoelectric cooler (TEC) was employed to provide cooling air to cooling vest. • Aluminum cooling fins were used to exchange heat for hot and cold sides of TEC. • Performance of the system was determined and the experimental technique was described. • Heat sink is capable to remove additional heat and heat exchanger provides cooling air. • Future work is proposed to optimize the efficiency of the system. - Abstract: A prototype cooling engine consisting of thermoelectric coolers (TECs) was developed and designed. In this prototype, aluminum cooling fins were employed as the heat exchange method for both the hot and cold sides of the TEC. Aluminum fins were used to cool the ambient air through a heat exchanger and dissipate heat build up from the heat sink. This system was modeled and performance capabilities were determined. The experimental technique used to monitor parameters affecting the efficiency of the designed system was described. These parameters include the temperatures of the inlets and outlets of both heat exchanger and heat sink and the flow rate of the cooled air. The experiment was run under three input DC powers; 15 V, 18 V, and 21 V. As the power increased, both the flow rate and the temperature difference between the hot and cold side of thermoelectric cooler increased, demonstrating the heat sink capability to remove the additional heat. However, the temperature difference between the inlet and outlet of the heat exchanger decreases as the power increase. The findings demonstrated the effectiveness of this cooling system and future work is proposed to optimize the heat

  11. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  12. Preoperational test report, recirculation condenser cooling systems

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  13. An exergy analysis on the performance of a counterflow wet cooling tower

    International Nuclear Information System (INIS)

    Muangnoi, Thirapong; Asvapoositkul, Wanchai; Wongwises, Somchai

    2007-01-01

    Cooling towers are used to extract waste heat from water to atmospheric air. An energy analysis is usually used to investigate the performance characteristics of cooling tower. However, the energy concept alone is insufficient to describe some important viewpoints on energy utilization. In this study, an exergy analysis is used to indicate exergy and exergy destruction of water and air flowing through the cooling tower. Mathematical model based on heat and mass transfer principle is developed to find the properties of water and air, which will be further used in exergy analysis. The model is validated against experimental data. It is noted from the results that the amount of exergy supplied by water is larger than that absorbed by air, because the system produces entropy. To depict the utilizable exergy between water and air, exergy of each working fluid along the tower are presented. The results show that water exergy decreases continuously from top to bottom. On the other hand, air exergy is expressed in terms of convective and evaporative heat transfer. Exergy of air via convective heat transfer initially loses at inlet and slightly recovers along the flow before leaving the tower. However, exergy of air via evaporative heat transfer is generally high and able to consume exergy supplied by water. Exergy destruction is defined as the difference between water exergy change and air exergy change. It reveals that the cooling processes due to thermodynamics irreversibility perform poorly at bottom and gradually improve along the height of the tower. The results show that the lowest exergy destruction is located at the top of the tower

  14. Turbine airfoil with laterally extending snubber having internal cooling system

    Science.gov (United States)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  15. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  16. Dry cooling systems with plastic surfaces

    International Nuclear Information System (INIS)

    Roma, Carlo; Leonelli, Vincenzo

    1975-01-01

    Research and experiments made on dry cooling systems with plastic surfaces are described. The demonstration program planned in Italy for a 100Gcal/h dry cooling system is exposed, and an installation intended for a large 1300Mwe nuclear power station is described with reference to the assembly (exploitation and maintenance included). The performance and economic data relating to this installation are also exposed [fr

  17. Post-accident cooling capacity analysis of the AP1000 passive spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Su Xia

    2013-01-01

    The passive design is used in AP1000 spent fuel pool cooling system. The decay heat of the spent fuel is removed by heating-boiling method, and makeup water is provided passively and continuously to ensure the safety of the spent fuel. Based on the analysis of the post-accident cooling capacity of the spent fuel cooling system, it is found that post-accident first 72-hour cooling under normal refueling condition and emergency full-core offload condition can be maintained by passive makeup from safety water source; 56 hours have to be waited under full core refueling condition to ensure the safety of the core and the spent fuel pool. Long-term cooling could be conducted through reserved safety interface. Makeup measure is available after accident and limited operation is needed. Makeup under control could maintain the spent fuel at sub-critical condition. Compared with traditional spent fuel pool cooling system design, the AP1000 design respond more effectively to LOCA accidents. (authors)

  18. Preoperational test report, primary ventilation condenser cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  19. Preoperational test report, primary ventilation condenser cooling system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  20. CAREM 25: Suppression pool cooling and purification system

    International Nuclear Information System (INIS)

    Carlevaris, Rodolfo; Patrignani, Alberto; Vindrola, Carlos; Palmerio, Hector D.; Quiroz, Horacio; Ramilo, Lucia B.

    2000-01-01

    The suppression pool cooling and purification system has the following main functions: purify and cool water from the suppression pool, cool and send water to the residual heat extraction system, and transfer water to the fuel element transference channel. In case of Loss of Coolant Accident (LOCA), the system sends water from the suppression pool to the spray network, thus cooling and reducing pressure in the primary containment. The system has been designed in accordance with the requirements of the following standards: ANSI/ANS 52.1; ANSI/ANS 57.2; ANSI/ANS 56.2; ANSI/ANS 59.1; ANSI/ANS 58.3; ANSI/ANS 58.9; and ANSI/ANS 56.5. The design of the system fulfils all the assigned functions. (author)

  1. Simultaneous heat and mass transfer to air from a compact heat exchanger with water spray precooling and surface deluge cooling

    International Nuclear Information System (INIS)

    Zhang, Feini; Bock, Jessica; Jacobi, Anthony M.; Wu, Hailing

    2014-01-01

    Various methods are available to enhance heat exchanger performance with evaporative cooling. In this study, evaporative mist precooling, deluge cooling, and combined cooling schemes are examined experimentally and compared to model predictions. A flexible model of a compact, finned-tube heat exchanger with a wetted surface is developed by applying the governing conservation and rate equations and invoking the heat and mass transfer analogy. The model is applicable for dry, partially wet, or fully wet surface conditions and capable of predicting local heat/mass transfer, wetness condition, and pressure drop of the heat exchanger. Experimental data are obtained from wind tunnel experiments using a louver-fin flat-tube heat exchanger with single-phase tube-side flow. Total capacity, pressure drop, and water drainage behavior under various water usage rates and air face velocities are analyzed and compared to data for dry-surface conditions. A heat exchanger partitioning method for evaporative cooling is introduced to study partially wet surface conditions, as part of a consistent and general method for interpreting wet-surface performance data. The heat exchanger is partitioned into dry and wet portions by introducing a wet surface factor. For the wet part, the enthalpy potential method is used to determine the air-side sensible heat transfer coefficient. Thermal and hydraulic performance is compared to empirical correlations. Total capacity predictions from the model agree with the experimental results with an average deviation of 12.6%. The model is also exercised for four water augmentation schemes; results support operating under a combined mist precooling and deluge cooling scheme. -- Highlights: • A new spray-cooled heat exchanger model is presented and is validated with data. • Heat duty is shown to be asymptotic with spray flow rate. • Meaningful heat transfer coefficients for partially wet conditions are obtained. • Colburn j wet is lower than j dry

  2. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  3. Environmental management system case study: textile wet processes

    Energy Technology Data Exchange (ETDEWEB)

    Nasreldin, A A [Engineering Researches and Industrial Technologies Council, Sudan Academy of Sciences, Khartoum (Sudan)

    2008-10-15

    Textile industry is one of the oldest industries, it started very early in the ancient ages, its grows and improves gradually at the first and then rapidly to satisfy other different need of the mankind, even for luxury purposes, this development caused damage to environment, then its need the treatment. Textile wet processes used significant quantities of water and various kind of chemicals marketed under the name textile auxiliaries, to enhance the appearance of the fabric, serviceability, and durability. The chemical contamination of textile wet processes can be a health risk for the mill workers, consumers and for the environment as well. A number of schemes have been proposed in different countries to control the textile wet processes to create better environment and protect the ecosystem from further degradation, the developing countries need to apply their designed policies from the beginning. A theoretical study for probability of application of environmental management system in textile industry, to prevent or eliminate textile industry pollution that considered as one of the largest polluters in Sudanese environment, especially after the government (industrial ministry) support and facilitate to textile industry development. Applying environmental management system can appreciably reduce the textile industry pollution as founded from the study.(Author)

  4. Environmental management system case study: textile wet processes

    International Nuclear Information System (INIS)

    Nasreldin, A.A.

    2008-10-01

    Textile industry is one of the oldest industries, it started very early in the ancient ages, its grows and improves gradually at the first and then rapidly to satisfy other different need of the mankind, even for luxury purposes, this development caused damage to environment, then its need the treatment. Textile wet processes used significant quantities of water and various kind of chemicals marketed under the name textile auxiliaries, to enhance the appearance of the fabric, serviceability, and durability. The chemical contamination of textile wet processes can be a health risk for the mill workers, consumers and for the environment as well. A number of schemes have been proposed in different countries to control the textile wet processes to create better environment and protect the ecosystem from further degradation, the developing countries need to apply their designed policies from the beginning. A theoretical study for probability of application of environmental management system in textile industry, to prevent or eliminate textile industry pollution that considered as one of the largest polluters in Sudanese environment, especially after the government (industrial ministry) support and facilitate to textile industry development. Applying environmental management system can appreciably reduce the textile industry pollution as founded from the study.(Author)

  5. Understanding aging in containment cooling systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1993-01-01

    A study has been performed to assess the effects of aging in nuclear power plant containment cooling systems. Failure records from national databases, as well as plant specific data were reviewed and analyzed to identify aging characteristics for this system. The predominant aging mechanisms were determined, along with the most frequently failed components and their associated failure modes. This paper discusses the aging mechanisms present in the containment spray system and the containment fan cooler system, which are two systems used to provide the containment cooling function. The failure modes, along with the relative frequency of each is also discussed

  6. Moisture separators and reheaters for wet steam turbines

    International Nuclear Information System (INIS)

    Gibbins, J.

    1979-01-01

    Moisture separator reheater (M.S.R.) units are now a well established feature of the wet steam cycle as associated with the various types of water cooled reactor. This paper describes the development of M.S.Rs. as supplied by GEC for turbine generators of up to 1200 MW ratings covering the design procedures used and the features required to ensure efficient and reliable operation. In addition to details of the M.S.R. design, the desirable features of the steam supply, venting and drain control systems are also discussed. The recent developments, as provided on current projects, are described. (author)

  7. New Protective Measures for Cooling Systems

    International Nuclear Information System (INIS)

    Carter, D. Anthony; Nonohue, Jonh M.

    1974-01-01

    Cooling water treatments have been updated and improved during the last few years. Particularly important are the nontoxic programs which conform plant cooling water effluents to local water quality standards without expenditures for capital equipment. The relationship between scaling and corrosion in natural waters has been recognized for many years. This relationship is the basis for the Langelier Saturation Index control method which was once widely applied to reduce corrosion in cooling water systems. It used solubility characteristics to maintain a very thin deposit on metal surfaces for preventing corrosion. This technique was rarely successful. That is, the solubility of calcium carbonate and most other inorganic salts depends on temperature. If good control exists on cold surfaces, excessive deposition results on the heat transfer tubes. Also, because water characteristic normally vary in a typical cooling system, precise control of scaling at both hot and cold surfaces is virtually impossible

  8. Operation method and operation control device for emergency core cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Shoichiro; Takahashi, Toshiyuki; Fujii, Tadashi [Hitachi Ltd., Tokyo (Japan); Mizutani, Akira

    1996-05-07

    The present invention provides a method of reducing continuous load capacity of an emergency cooling system of a BWR type reactor and a device reducing a rated capacity of an emergency power source facility. Namely, the emergency core cooling system comprises a first cooling system having a plurality of power source systems based on a plurality of emergency power sources and a second cooling system having a remaining heat removing function. In this case, when the first cooling system is operated the manual starting under a predetermined condition that an external power source loss event should occur, a power source division different from the first cooling system shares the operation to operate the secondary cooling system simultaneously. Further, the first cooling system is constituted as a high pressure reactor core water injection system and the second cooling system is constituted as a remaining heat removing system. With such a constitution, a high pressure reactor core water injection system for manual starting and a remaining heat removing system of different power source division can be operated simultaneously before automatic operation of the emergency core cooling system upon loss of external power source of a nuclear power plant. (I.S.)

  9. Development of the interactive model between Component Cooling Water System and Containment Cooling System using GOTHIC

    International Nuclear Information System (INIS)

    Byun, Choong Sup; Song, Dong Soo; Jun, Hwang Yong

    2006-01-01

    In a design point of view, component cooling water (CCW) system is not full-interactively designed with its heat loads. Heat loads are calculated from the CCW design flow and temperature condition which is determined with conservatism. Then the CCW heat exchanger is sized by using total maximized heat loads from above calculation. This approach does not give the optimized performance results and the exact trends of CCW system and the loads during transient. Therefore a combined model for performance analysis of containment and the component cooling water(CCW) system is developed by using GOTHIC software code. The model is verified by using the design parameters of component cooling water heat exchanger and the heat loads during the recirculation mode of loss of coolant accident scenario. This model may be used for calculating the realistic containment response and CCW performance, and increasing the ultimate heat sink temperature limits

  10. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  11. Computational Fluid Dynamics Analysis of an Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Kapilan N.

    2016-11-01

    Full Text Available The use of chlorofluorocarbon based refrigerants in the air-conditioning system increases the global warming and causes the climate change. The climate change is expected to present a number of challenges for the built environment and an evaporative cooling system is one of the simplest and environmentally friendly cooling system. The evaporative cooling system is most widely used in summer and in rural and urban areas of India for human comfort. In evaporative cooling system, the addition of water into air reduces the temperature of the air as the energy needed to evaporate the water is taken from the air. Computational fluid dynamics is a numerical analysis and was used to analyse the evaporative cooling system. The CFD results are matches with the experimental results.

  12. RAMI analysis for DEMO HCPB blanket concept cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo N., E-mail: danilo.dongiovanni@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Pinna, Tonio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Carloni, Dario [KIT, Institute of Neutron Physics and Reactor Technology (INR) – KIT (Germany)

    2015-10-15

    Highlights: • RAMI (reliability, availability, maintainability and inspectability) preliminary assessment for HCPB blanket concept cooling system. • Reliability block diagram (RBD) modeling and analysis for HCPB primary heat transfer system (PHTS), coolant purification system (CPS), pressure control system (PCS), and secondary cooling system. • Sensitivity analysis on system availability performance. • Failure models and repair models estimated on the base of data from the ENEA fusion component failure rate database (FCFRDB). - Abstract: A preliminary RAMI (reliability, availability, maintainability and inspectability) assessment for the HCPB (helium cooled pebble bed) blanket cooling system based on currently available design for DEMO fusion power plant is presented. The following sub-systems were considered in the analysis: blanket modules, primary cooling loop including pipework and steam generators lines, pressure control system (PCS), coolant purification system (CPS) and secondary cooling system. For PCS and CPS systems an extrapolation from ITER Test Blanket Module corresponding systems was used as reference design in the analysis. Helium cooled pebble bed (HCPB) system reliability block diagrams (RBD) models were implemented taking into account: system reliability-wise configuration, operating schedule currently foreseen for DEMO, maintenance schedule and plant evolution schedule as well as failure and corrective maintenance models. A simulation of plant activity was then performed on implemented RBDs to estimate plant availability performance on a mission time of 30 calendar years. The resulting availability performance was finally compared to availability goals previously proposed for DEMO plant by a panel of experts. The study suggests that inherent availability goals proposed for DEMO PHTS system and Tokamak auxiliaries are potentially achievable for the primary loop of the HCPB concept cooling system, but not for the secondary loop. A

  13. CAREM-25. Suppression Pool Cooling and Purification System

    International Nuclear Information System (INIS)

    Carlevaris, Rodolfo; Palmerio, D.; Patrignani, A.; Quiroz, H.; Ramilo, L.; Vindrola, C.

    2000-01-01

    The Suppression Pool Cooling and Purification System has the following main functions: purify and cool water from the Suppression Pool, cool and send water to the Residual Heat Extraction System, and transfer water to the Fuel Element Transference Channel. In case of Loss of Coolant Accident (LOCA), the system sends water from the Suppression Pool to the spray network, thus cooling and reducing pressure in the primary containment.The system has been designed in accordance with the requirements of the following standards ANSI/ANS 52.1 [1], ANSI/ANS 57.2 [2], ANSI/ANS 56.2 [3], ANSI/ANS 59.1 [4] ANSI/ANS 58.3 [5], ANSI/ANS 58.9 [6], and ANSI/ANS 56.5 [7]. The design of the system fulfils all the assigned functions

  14. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  15. The Role of Absorption Cooling for Reaching Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Susanne

    2005-07-01

    This thesis focuses on the role and potential of absorption cooling in future energy systems. Two types of energy systems are investigated: a district energy system based on waste incineration and a distributed energy system with natural gas as fuel. In both cases, low temperature waste heat is used as driving energy for the absorption cooling. The main focus is to evaluate the absorption technology in an environmental perspective, in terms of reduced CO{sub 2} emissions. Economic evaluations are also performed. The reduced electricity when using absorption cooling instead of compression cooling is quantified and expressed as an increased net electrical yield. The results show that absorption cooling is an environmentally friendly way to produce cooling as it reduces the use of electrically driven cooling in the energy system and therefore also reduces global CO{sub 2} emissions. In the small-scale trigeneration system the electricity use is lowered with 84 % as compared to cooling production with compression chillers only. The CO{sub 2} emissions can be lowered to 45 CO{sub 2}/MWh{sub c} by using recoverable waste heat as driving heat for absorption chillers. However, the most cost effective cooling solution in a district energy system is a combination between absorption and compression cooling technologies according to the study. Absorption chillers have the potential to be suitable bottoming cycles for power production in distributed systems. Net electrical yields over 55 % may be reached in some cases with gas motors and absorption chillers. This small-scale system for cogeneration of power and cooling shows electrical efficiencies comparable to large-scale power plants and may contribute to reducing peak electricity demand associated with the cooling demand.

  16. Integrated cooling system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Johnson, B.; Chang, Y.

    1979-01-01

    The MFTF components that require water cooling include the neutral beam dumps, ion dumps, plasma dumps, baffle plates, magnet liners, gas boxes, streaming guns, and the neutral beam injectors. A total heat load of nearly 500 MW for 0.5 s dissipates over 4-min intervals. A steady-flow, closed-loop system is utilized. The design of the cooling system assumes that all components require cooling simultaneously. The cooling system contains process instrumentation for loop control. Alarms and safety interlocks are incorporated for the safe operation of the system

  17. Atmospheric impacts of evaporative cooling systems

    International Nuclear Information System (INIS)

    Carson, J.E.

    1976-10-01

    The report summarizes available information on the effects of various power plant cooling systems on the atmosphere. While evaporative cooling systems sharply reduce the biological impacts of thermal discharges in water bodies, they create (at least, for heat-release rates comparable to those of two-unit nuclear generating stations) atmospheric changes. For an isolated site such as required for a nuclear power plant, these changes are rather small and local, and usually environmentally acceptable. However, one cannot say with certainty that these effects will remain small as the number of reactors on a given site increases. There must exist a critical heat load for a specific site which, if exceeded, can create its own weather patterns, and thus create inadvertent weather changes such as rain and snow, severe thunderstorms, and tornadoes. Because proven mathematical models are not available, it is not now possible to forecast precisely the extent and frequency of the atmospheric effects of a particular heat-dissipation system at a particular site. Field research on many aspects of cooling system operation is needed in order to document and quantify the actual atmospheric changes caused by a given cooling system and to provide the data needed to develop and verify mathematical and physical models. The more important topics requiring field study are plume rise, fogging and icing (from certain systems), drift emission and deposition rates, chemical interactions, cloud and precipitation formation and critical heat-release rates

  18. Load calculations of radiant cooling systems for sizing the plant

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The aim of this study was, by using a building simulation software, to prove that a radiant cooling system should not be sized based on the maximum cooling load but at a lower value. For that reason six radiant cooling models were simulated with two control principles using 100%, 70% and 50......% of the maximum cooling load. It was concluded that all tested systems were able to provide an acceptable thermal environment even when the 50% of the maximum cooling load was used. From all the simulated systems the one that performed the best under both control principles was the ESCS ceiling system. Finally...... it was proved that ventilation systems should be sized based on the maximum cooling load....

  19. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  20. Evaluation of Active Cooling Systems for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  1. Cross-winds effect on the performance of natural draft wet cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Al-Waked, R. [Dhofar Univ., Mechanical Engineering Dept., College of Engineering, Sultanate of Oman (Oman)

    2010-01-15

    Effects of cross-winds on the thermal performance of natural draft wet cooling towers (NDWCTs) have been investigated. A three-dimensional CFD model has been used to determine the effect of cross-winds on NDWCTs performance surrounded by power plant building structures. The three-dimensional CFD model has utilized the standard k-{epsilon} turbulence model as the turbulence closure. Two cases have been investigated: a stand-alone NDWCT and two NDWCTs within a proposed power plant structures (PPS). It has been found that regardless of the cross-winds direction, an increase of 1.3 k or more could be predicted at cross-winds speeds greater than 4 m/s. Furthermore, the performance of NDWCTs under cross-winds has been found to be dependent on the three major factors: the structure of the approaching cross-winds and whether it is disturbed or undisturbed, the location of the NDWCT in the wake of the other NDWCT, and the location of the NDWCT in front of/in the wake of the PPS. When comparing results from the stand-alone and from the NDWCTs within PPS simulations, differences in {delta}T{sub wo} were found to be less than 1 K for the whole span of cross-winds speeds and could be decreased to 0.7 K for speeds less than 8 m/s. Finally, results obtained from the simulation of a stand-alone NDWCT could be used instead of those from NDWCTs within PPS at a certain cross-winds direction for qualitative comparisons. (authors)

  2. Cross-winds effect on the performance of natural draft wet cooling towers

    International Nuclear Information System (INIS)

    Al-Waked, R.

    2010-01-01

    Effects of cross-winds on the thermal performance of natural draft wet cooling towers (NDWCTs) have been investigated. A three-dimensional CFD model has been used to determine the effect of cross-winds on NDWCTs performance surrounded by power plant building structures. The three-dimensional CFD model has utilized the standard k-ε turbulence model as the turbulence closure. Two cases have been investigated: a stand-alone NDWCT and two NDWCTs within a proposed power plant structures (PPS). It has been found that regardless of the cross-winds direction, an increase of 1.3 k or more could be predicted at cross-winds speeds greater than 4 m/s. Furthermore, the performance of NDWCTs under cross-winds has been found to be dependent on the three major factors: the structure of the approaching cross-winds and whether it is disturbed or undisturbed, the location of the NDWCT in the wake of the other NDWCT, and the location of the NDWCT in front of/in the wake of the PPS. When comparing results from the stand-alone and from the NDWCTs within PPS simulations, differences in ΔT wo were found to be less than 1 K for the whole span of cross-winds speeds and could be decreased to 0.7 K for speeds less than 8 m/s. Finally, results obtained from the simulation of a stand-alone NDWCT could be used instead of those from NDWCTs within PPS at a certain cross-winds direction for qualitative comparisons. (authors)

  3. System for Cooling of Electronic Components

    Science.gov (United States)

    Vasil'ev, L. L.; Grakovich, L. P.; Dragun, L. A.; Zhuravlev, A. S.; Olekhnovich, V. A.; Rabetskii, M. I.

    2017-01-01

    Results of computational and experimental investigations of heat pipes having a predetermined thermal resistance and a system based on these pipes for air cooling of electronic components and diode assemblies of lasers are presented. An efficient compact cooling system comprising heat pipes with an evaporator having a capillary coating of a caked copper powder and a condenser having a developed outer finning, has been deviced. This system makes it possible to remove, to the ambient air, a heat flow of power more than 300 W at a temperature of 40-50°C.

  4. Moist air state above counterflow wet-cooling tower fill based on Merkel, generalised Merkel and Klimanek & Białecky models

    Science.gov (United States)

    Hyhlík, Tomáš

    2017-09-01

    The article deals with an evaluation of moist air state above counterflow wet-cooling tower fill. The results based on Klimanek & Białecky model are compared with results of Merkel model and generalised Merkel model. Based on the numerical simulation it is shown that temperature is predicted correctly by using generalised Merkel model in the case of saturated or super-saturated air above the fill, but the temperature is underpredicted in the case of unsaturated moist air above the fill. The classical Merkel model always under predicts temperature above the fill. The density of moist air above the fill, which is calculated using generalised Merkel model, is strongly over predicted in the case of unsaturated moist air above the fill.

  5. Transient Performance of Air-cooled Condensing Heat Exchanger in Long-term Passive Cooling System during Decay Heat Load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In the event of a 'loss of coolant accident'(LOCA) and a non-LOCA, the secondary passive cooling system would be activated to cool the steam in a condensing heat exchanger that is immersed in an emergency cooldown tank (ECT). Currently, the capacities of these ECTs are designed to be sufficient to remove the sensible and residual heat from the reactor coolant system for 72 hours after the occurrence of an accident. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. Therefore, the tank should be refilled regularly from an auxiliary water supply system when the system is used for more than 72 hours. Otherwise, the system would fail to dissipate heat from the condensing heat exchanger due to the loss of the cooling water. Ultimately, the functionality of the passive cooling system would be seriously compromised. As a passive means of overcoming the water depletion in the tank, Kim et al. applied for a Korean patent covering the concept of a long-term passive cooling system for an ECT even after 72 hours. This study presents transient performance of ECT with installing air-cooled condensing heat exchanger under decay heat load. The cooling capacity of an air-cooled condensing heat exchanger was evaluated to determine its practicality.

  6. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  7. Misting-cooling systems for microclimatic control in public space

    OpenAIRE

    Nunes, Joao; Zoilo, Inaki; Jacinto, Nuno; Nunes, Ana; Torres-Campos, Tiago; Pacheco, Manuel; Fonseca, David

    2011-01-01

    Misting-cooling systems have been used in outdoor spaces mainly for aesthetic purposes, and punctual cooling achievement. However, they can be highly effective in outdoor spaces’ bioclimatic comfort, in terms of microclimatic control, as an evaporative cooling system. Recent concerns in increasing bioclimatic standards in public outdoor spaces, along with more sustainable practices, gave origin to reasoning where plastic principles are combined with the study of cooling efficacy, in order to ...

  8. A solar cooling system for greenhouse food production in hot climates

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P.A. [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2005-12-01

    This study is motivated by the difficulty of cultivating crops in very hot countries and by the tendency for some such countries to become dependent on imported food. Liquid desiccation with solar regeneration is considered as maintained at or above room temperature, and this was confirgreenhouses. Previous studies demonstrated the technical feasibility of the desiccation-evaporation process, but mainly in the context of human dwellings. In the proposed cycle, the air is dried prior to entering the evaporative cooler. This lowers the wet-bulb temperature of the air. The cooling is assisted by using the regenerator to partially shade the greenhouse. The heat of desiccation is transferred and rejected at the outlet of the greenhouse. The cycle is analysed and results given for the climate of the The Gulf, based on weather data from Abu Dhabi. Taking examples of a temperate crop (lettuce), a tropical crop (tomato) and a tropical crop resistant to high temperatures (cucumber) we estimate the extension in growing seasons relative to (i) a greenhouse with simple fan ventilation (ii) a greenhouse with conventional evaporative cooling. Compared to option (ii), the proposed system lowers summers maximum temperatures by 5{sup o}C. This will extend the optimum season for lettuce cultivation from 3 to 6 months of the year and, for tomato and cucumber, from 7 months to the whole year. (author)

  9. Integrated systems for power plant cooling and wastewater management

    International Nuclear Information System (INIS)

    Haith, D.A.

    1975-01-01

    The concept of integrated management of energy and water resources, demonstrated in hydropower development, may be applicable to steam-generated power, also. For steam plants water is a means of disposing of a waste product, which is unutilized energy in the form of heat. One framework for the evolution of integrated systems is the consideration of possible technical linkages between power plant cooling and municipal wastewater management. Such linkages include the use of waste heat as a mechanism for enhancing wastewater treatment, the use of treated wastewater as make-up for evaporative cooling structures, and the use of a pond or reservoir for both cooling and waste stabilization. This chapter reports the results of a systematic evaluation of possible integrated systems for power plant cooling and waste water management. Alternatives were analyzed for each of three components of the system--power plant cooling (condenser heat rejection), thermally enhanced waste water treatment, and waste water disposal. Four cooling options considered were evaporative tower, open cycle, spray pond, and cooling pond. Three treatment alternatives considered were barometric condenser-activated sludge, sectionalized condenser-activated sludge, and cooling/stabilization pond. Three disposal alternatives considered were ocean discharge, land application (spray irrigation), and make-up (for evaporative cooling). To facilitate system comparisons, an 1100-MW nuclear power plant was selected. 31 references

  10. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    International Nuclear Information System (INIS)

    Qi, Zhao-gang; Chen, Jiang-ping; Chen, Zhi-jiu

    2007-01-01

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  11. Containment atmosphere cooling system for experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Sasaki, Mikio; Hoshi, Akio; Sato, Morihiko; Takeuchi, Kaoru

    1979-01-01

    The experimental fast reactor ''JOYO'', the first sodium-cooled fast reactor in Japan, achieved the initially licensed full power operation (50 MW) in July 1978 and is now under steady operation. Toshiba has participated in the construction of this reactor as a leading manufacturer and supplied various systems. This article outlines the design philosophy, system concepts and the operating experience of the containment atmosphere cooling system which has many design interfaces throughout the whole plant and requires especially high reliability. The successful performance of this system during the reactor full-power operation owes to the spot cooling design philosophy and to the preoperational adjustment of heat load during the preheating period of reactor cooling system peculiar to FBR. (author)

  12. A Mathematical Model of a Thermally Activated Roof (TAR Cooling System Using a Simplified RC-Thermal Model with Time Dependent Supply Water Temperature

    Directory of Open Access Journals (Sweden)

    Khalid Ahmed Joudi

    2017-01-01

    Full Text Available This paper presents a computer simulation model of a thermally activated roof (TAR to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time dependent with the variation of the ambient wet bulb temperature. Results from RC-thermal modeling were compared with experimental measurements for a second story room measuring 5.5 m x 4 m x 3 m at Amarah city/ Iraq (31.865 ˚N, 47.128 ˚E for 21 July, 2013. The roof was constructed of 200 mm concrete slab, 150 mm turf and 50 mm insulation. Galvanized 13 mm steel pipe coils were buried in the roof slab with a pipe occupation ratio of 0.12. The walls were constructed of 240 mm common brick with 10mm cement plaster on the inside and outside surfaces and 20 mm Styrofoam insulation on the inside surface and covered with PVC panel. Thermistors were used to measure the indoor and outdoor temperatures, TAR system water inlet and outlet temperatures and temperature distribution inside the concrete slab. The effect of pipe spacing and water mass flow rate were evaluated. Agreement was good between the experimental and RC-thermal model. Concrete core temperature reaches the supply water temperature faster for lower pipe spacing. Heat extracted from the space increased with water mass flow rate to an optimum of 0.0088 kg/s.m².

  13. Passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  14. Percutaneous radiofrequency ablation of osteoid osteoma using cool-tip electrodes without the cooling system

    International Nuclear Information System (INIS)

    Miyazaki, Masaya; Miyazaki, Akiko; Nakajima, Takahito; Koyama, Yoshinori; Shinozaki, Tetsuya; Endo, Keigo; Aoki, Jun

    2011-01-01

    The aim of this study was to evaluate the efficacy of percutaneous radiofrequency ablation (RFA) for osteoid osteoma (OO) using cool-tip electrodes without the cooling system. A total of 17 patients (13 males, 4 females; mean age 19.1 years; range 7-49 years) with OO (tibia, n=7; femur, n=5; acetabulum, n=2; radius, n=1; talus, n=1; lumbar spine, n=1) underwent RFA. Using a cool-tip electrode without the cooling system, the lesion was heated to 90degC for 4 or 5 min. Procedures were considered technically successful if the electrode was placed into the nidus and the target temperature was reached and maintained for at least 4 min. Clinical success of the treatment was defined as complete or partial pain relief after RFA. All procedures were considered technically successful, although two patients encountered complications (pes equinus contracture, skin burn). Altogether, 16 of the 17 patients (94.1%) achieved complete or partial pain relief after primary RFA. Two patients had pain recurrence, with one of them treated successfully with a second RFA. The overall clinical success rate was 88.2%. Histological findings confirmed the presence of OO in 13 patients (76.5%). Percutaneous RFA of OO using cool-tip electrodes without the cooling system is a safe, effective procedure. (author)

  15. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    International Nuclear Information System (INIS)

    Park, Yong Chul; Ryu, Jeong Soo

    2007-12-01

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  16. Cooling System Design Options for a Fusion Reactor

    Science.gov (United States)

    Natalizio, Antonio; Collén, Jan; Vieider, Gottfried

    1997-06-01

    The objective of a fusion power reactor is to produce electricity safely and reliably. Accordingly, the design, objective of the heat transport system is to optimize power production, safety, and reliability. Such an optimization process, however, is constrained by many factors, including, among others: public safety, worker safety, steam cycle efficiency, reliability, and cost. As these factors impose conflicting requirements, there is a need to find an optimum design solution, i.e., one that satisfies all requirements, but not necessarily each requirement optimally. The SEAFP reactor study developed helium-cooled and water-cooled models for assessment purposes. Among other things, the current study demonstrates that neither model offers an optimum solution. Helium cooling offers a high steam cycle efficiency but poor reliability for the cooling of high heat flux components (divertor and first wall). Alternatively, water cooling offers a low steam cycle efficiency, but reasonable reliability for the cooling of such components. It is concluded that an optimum solution includes helium cooling of low heat flux components and water cooling of high heat flux components. Relative to the SEAFP helium model, this hybrid system enhances safety and reliability, while retaining the high steam cycle efficiency of that model.

  17. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  18. A parametric study of solar operated cooling system

    International Nuclear Information System (INIS)

    Zagalei, Abdullatif Salin

    2006-01-01

    Because of energy for air conditioning has been the fastest-growing segment of energy of consumption market in Libya and generally in north Africa, and with the realization depleting nature of fossil fuel, solar cooling of buildings which leads to the improvement of human comfort represents a potentially significant application of solar energy where the availability of solar radiation meets with the cooling load demand. This application has been shown to be technically feasible but the equipment needs further investigative research to improve its performance and feasibility. A solar operated absorption cooling system with energy storage is selected. A latent heat storage would be a space saver for such application for solar energy. A system modeling is an essential activity in order to go for system simulation. A complete solar cooling system to be modeled through the thermodynamic analysis of each system components. Resulting a package of equations used directly to the system simulation in order to predict the system performance to obtain the optimum working conditions for the selected cooling system. A computer code which is used to simulate a series of calculations was written in Fortran language according to the constructed information flow diagram and simulation program flow char. For a typical input data a set of results are reported and discussed and shows that the selected system promises to be a good choice for air conditioning application in Libya specially for large building as storehouses, shopping centers, public administrative.(Author)

  19. Cooling system for superconducting magnet

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  20. Experimental Investigation of Double Effect Evaporative Cooling Unit

    Directory of Open Access Journals (Sweden)

    Ahmed Abd Mohammad Saleh

    2018-03-01

    Full Text Available This work presents the experimental investigation of double effect evaporative cooling unit with approximate capacity 7 kW. The unit consisted of two stages, the sensible heat exchanger and the cooling tower composing the external indirect regenerative evaporative cooling stage where a direct evaporative cooler represent the second stage. Testing results showed a maximum capacity and lowest supplied air temperature when the water flow rate in heat exchanger was 0.1 L/s. The experiment recorded the unit daily readings at two airflow rates (0.425 m3/s, 0.48 m3/s. The reading shows that unit inlet DBT is effect positively on unit wet bulb effectiveness and unit COP at constant humidity ratio. The air extraction ratio effected positively on the unit wet bulb effectiveness within a certain limit where maximum COP recorded 11.4 when the extraction ratio equal to 40%.

  1. A geothermal recycling system for cooling and heating in deep mines

    International Nuclear Information System (INIS)

    Guo, Pingye; He, Manchao; Zheng, Liange; Zhang, Na

    2017-01-01

    Highlights: • A geothermal recycling system for cooling and heating was presented in coal mines. • The COP of this cooling subsystem is 30% higher than that of others. • The COP is 20% higher with the parallel running of cooling and heating systems. - Abstract: In the operation of deep coal mines, cooling systems must be built (in most cases) because of the high-temperature working environment within such mines. Once the coal is mined, it is often used to supply heat for buildings and domestic hot water. In either instance, the energy consumed can create environmental pollution. As a potential solution to this problem, we present a geothermal recycling system for mines (GRSM) for parallel mine cooling and surface heating. The performance of this system is investigated based on the observed data. Compared with traditional cooling systems, the most obvious feature of this system is the removal of a cooling tower, which contributes to a 30% increase in performance. Moreover, the parallel running of cooling and heating systems can effectively recover waste heat, improving energy efficiency by 20%.

  2. CoolPack – Simulation tools for refrigeration systems

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.; Andersen, Simon Engedal

    1999-01-01

    CoolPack is a collection of programs used for energy analysis and optimisation of refrigeration systems. CoolPack is developed at the Department of Energy Engineering at the Technical University of Denmark. The Danish Energy Agency finances the project. CoolPack is freeware and can be downloaded...

  3. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y.F. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Graduate School of Chinese Academy of Sciences, Beijing (China); Gong, L.H.; Xu, X.D.; Li, L.F.; Zhang, L. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Xiao, L.Y. [Chinese Academy of Sciences, Beijing (China). Institute of Electrical Engineering

    2005-04-01

    A 10 m long, three-phase AC high-temperature superconducting (HTS) power cable had been fabricated and tested in China August 2003. The sub-cooled liquid nitrogen (LN{sub 2}) was used to cool the HTS cable. The sub-cooled LN{sub 2} circulation was built by means of a centrifugal pump through a heat exchanger in the sub-cooler, the three-phase HTS cable cryostats and a LN{sub 2} gas-liquid separator. The LN{sub 2} was cooled down to 65 K by means of decompressing, and the maximum cooling capacity was about 3.3 kW and the amount of consumed LN{sub 2} was about 72 L/h at 1500 A. Cryogenic system design, test and some experimental results would be presented in this paper. (author)

  4. Dry-type cooling systems in electric power production

    International Nuclear Information System (INIS)

    Li, K.W.

    1973-01-01

    This study indicates that the dry-type cooling tower could be adopted in this country as an alternative method for removing waste heat from power plants. The use of dry cooling towers would not only lead to a change of cooling system design, but also to a change of overall thermal design in a power generating system. The principal drawbacks to using dry cooling towers in a large steam-turbine plant are the generating capacity loss, increased fuel consumption and the high capital cost of the dry cooling towers. These economic penalties must be evaluated in each specific case against the benefits that may result from the use of dry cooling towers. The benefits are principally these: (1) Fewer constraints in the selection of power plant sites, (2) No thermal discharge to the natural water bodies, (3) Elimination of vapor plumes and water evaporation loss, and (4) Freedom of adding new units to an existing facility where inadequate water supply may otherwise rule out this possibility

  5. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  6. Cooling Grapple System for FMEF hot cell

    International Nuclear Information System (INIS)

    Semmens, L.S.; Frandsen, G.B.; Tome, R.

    1983-01-01

    A Cooling Grapple System was designed and built to handle fuel assemblies within the FMEF hot cell. The variety of functions for which it is designed makes it unique from grapples presently in use. The Cooling Grapple can positively grip and transport assemblies vertically, retrieve assemblies from molten sodium where six inches of grapple tip is submerged, cool 7 kw assemblies in argon, and service an in-cell area of 372 m 2 (4000 ft 2 ). Novel and improved operating and maintenance features were incorporated in the design including a shear pin and mechanical catcher system to prevent overloading the grapple while allowing additional reaction time for crane shutdown

  7. System design package for the solar heating and cooling central data processing system

    Science.gov (United States)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  8. Passive cooling systems in power reactors

    International Nuclear Information System (INIS)

    Aharon, J.; Harrari, R.; Weiss, Y.; Barnea, Y.; Katz, M.; Szanto, M.

    1996-01-01

    This paper reviews several R and D activities associated with the subject of passive cooling systems, conducted by the N.R.C.Negev thermohydraulic group. A short introduction considering different types of thermosyphons and their applications is followed by a detailed description of the experimental work, its results and conclusions. An ongoing research project is focused on the evaluation of the external dry air passive containment cooling system (PCCS) in the AP-600 (Westinghouse advanced pressurized water reactor). In this context some preliminary theoretical results and planned experimental research are for the fature described

  9. Unit thermal performance of atmospheric spray cooling systems

    International Nuclear Information System (INIS)

    Porter, R.W.; Jain, M.; Chaturvedi, S.K.

    1980-01-01

    Thermal performance of an open atmospheric spray pond or canal depends on the direct-contact evaporative cooling of an individual spray unit (spray nozzle or module) and the interference caused by local heating and humidification. Droplet parameters may be combined into a dimensionless group, number of transfer units (NTU) or equivalent, whereas large-scale air-vapor dynamics determine interference through the local wet-bulb temperature. Quantity NTU were implied from field experiments for a floating module used in steam-condenser spray canals. Previous data were available for a fixed-pipe nozzle assembly used in spray ponds. Quantity NTU were also predicted using the Ranz-Marshall correlations with the Sauter-mean diameter used as the characteristic length. Good agreement with experiments was shown for diameters of 1--1.1 cm (module) and 1.9 mm

  10. Numerical modelling of series-parallel cooling systems in power plant

    Directory of Open Access Journals (Sweden)

    Regucki Paweł

    2017-01-01

    Full Text Available The paper presents a mathematical model allowing one to study series-parallel hydraulic systems like, e.g., the cooling system of a power boiler's auxiliary devices or a closed cooling system including condensers and cooling towers. The analytical approach is based on a set of non-linear algebraic equations solved using numerical techniques. As a result of the iterative process, a set of volumetric flow rates of water through all the branches of the investigated hydraulic system is obtained. The calculations indicate the influence of changes in the pipeline's geometrical parameters on the total cooling water flow rate in the analysed installation. Such an approach makes it possible to analyse different variants of the modernization of the studied systems, as well as allowing for the indication of its critical elements. Basing on these results, an investor can choose the optimal variant of the reconstruction of the installation from the economic point of view. As examples of such a calculation, two hydraulic installations are described. One is a boiler auxiliary cooling installation including two screw ash coolers. The other is a closed cooling system consisting of cooling towers and condensers.

  11. Overpower transient in the first wall cooling system of NET/ITER

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1993-09-01

    The overpower transient from a plasma power excursion. The overpower transient considered in this report results from a postulated linear increase of the plasma power from the nominal generated power to four times this nominal power in 30 s. The Next European Torus (NET) design or the International Thermonuclear Experimental Reactor (ITER) design will be cooled by a number of separate cooling systems. The most important cooling systems are: The first wall cooling system, the blanket cooling system, the divertor cooling system, and the shield cooling system. In this report, the thermal-hydraulic analysis of the above-mentioned overpower transient will be presented for the first wall cooling system of NET/ITER. During overpower transients, the fusion power will increase to less than four times the nominal power. For this reason, the overpower transient considered in this report is the worst case scenario. The analysis of the thermal-hydraulic system behaviour during the considered overpower transient has been performed for a coolant temperature of 333 K (60 C) in the first wall inlet manifolds and 433 K (160 C) in the first wall outlet manifolds. The analysis has been performed using the thermal-hydraulic system analysis code RELAP5/MOD3. In the analysis, special attention has been paid to the transient thermal-hydraulic behaviour of the cooling system and the temperature development in the first wall. (orig.)

  12. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non-linearitie......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  13. MHD/gas turbine systems designed for low cooling water requirements

    International Nuclear Information System (INIS)

    Annen, K.D.; Eustis, R.H.

    1983-01-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consist of a coal-fired MHD plant with an air turbine bottoming plant and require no cooling water. In addition to the base case systems, systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems require a small amount of cooling water. The results show that the MHD/gas turbine systems have very good thermal and economic performances. The base case I MHD/gas turbine system (782 MW /SUB e/ ) requires no cooling water, has a heat rate which is 13% higher, and a cost of electricity which is only 7% higher than a comparable MHD/steam system (878 MW /SUB e/ ) having a cooling tower heat load of 720 MW. The case I vapor cycle bottomed systems have thermal and economic performances which approach and even exceed those of the MHD/steam system, while having substantially lower cooling water requirements. Performances of a second-generation MHD/gas turbine system and an oxygen-enriched, early commercial system are also evaluated. An analysis of nitric oxide emissions shows compliance with emission standards

  14. Instrumentation for NBI SST-1 cooling water system

    International Nuclear Information System (INIS)

    Qureshi, Karishma; Patel, Paresh; Jana, M.R.

    2015-01-01

    Neutral Beam Injector (NBI) System is one of the heating systems for Steady state Superconducting Tokamak (SST-1). It is capable of generating a neutral hydrogen beam of power 0.5 MW at 30 kV. NBI system consists of following sub-systems: Ion source, Neutralizer, Deflection Magnet and Magnet Liner (ML), Ion Dump (ID), V-Target (VT), Pre Duct Scraper (PDS), Beam Transmission Duct (BTD) and Shine Through (ST). For better heat removal management purpose all the above sub-systems shall be equipped with Heat Transfer Elements (THE). During beam operation these sub-systems gets heated due to the received heat load which requires to be removed by efficient supplying water. The cooling water system along with the other systems (External Vacuum System, Gas Feed System, Cryogenics System, etc.) will be controlled by NBI Programmable Logic Control (PLC). In this paper instrumentation and its related design for cooling water system is discussed. The work involves flow control valves, transmitters (pressure, temperature and water flow), pH and conductivity meter signals and its interface with the NBI PLC. All the analog input, analog output, digital input and digital output signals from the cooling water system will be isolated and then fed to the NBI PLC. Graphical Users Interface (GUI) needed in the Wonderware SCADA for the cooling water system shall also be discussed. (author)

  15. Application of fuzzy control in cooling systems save energy design

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.L.; Liang, H.Y. [Chienkuo Technology Univ., Changhua, Taiwan (China). Dept. of Electrical Engineering

    2005-07-01

    A fuzzy logic programmable logic controller (PLC) was used to control the cooling systems of frigorific equipment. Frigorific equipment is used to move unwanted heat outside of building in order to control indoor temperatures. The aim of the fuzzy logic PLC was to improve the energy efficiency of the cooling system. Control of the cooling pump and cooling tower in the system was based on the water temperature of the condenser during frigorific system operation. A human computer design for the cooling system control was used to set speeds and to automate and adjust the motor according to the fuzzy logic controller. It was concluded that if fuzzy logic controllers are used with all components of frigorific equipment, energy efficiency will be significantly increased. 5 refs., 3 tabs., 9 figs.

  16. Energy saving potential of an indirect evaporative cooler as a pre-cooling unit for mechanical cooling systems in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Delfani, Shahram; Esmaeelian, Jafar; Karami, Maryam [Department of Installation, Building and Housing Research Center (BHRC), PO Box 13145-1696, Tehran (Iran, Islamic Republic of); Pasdarshahri, Hadi [Department of Mechanical Engineering, Tarbiat Modares University, PO Box 14115-143, Tehran (Iran, Islamic Republic of)

    2010-11-15

    The performance of indirect evaporative cooling system (IEC) to pre-cool air for a conventional mechanical cooling system has been investigated for four cities of Iran. For this purpose, a combined experimental setup consisting of an IEC unit followed by a packaged unit air conditioner (PUA) was designed, constructed and tested. Two air simulators were designed and used to simulate indoor heating load and outdoor design conditions. Using of experimental data and an appropriate analytical method, the performance and energy reduction capability of combined system has been evaluated through the cooling season. The results indicate IEC can reduce cooling load up to 75% during cooling seasons. Also, 55% reduction in electrical energy consumption of PUA can be obtained. (author)

  17. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237783; The ATLAS collaboration; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-01-01

    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  18. PREFACE: Dynamics of wetting Dynamics of wetting

    Science.gov (United States)

    Grest, Gary S.; Oshanin, Gleb; Webb, Edmund B., III

    2009-11-01

    Capillary phenomena associated with fluids wetting other condensed matter phases have drawn great scientific interest for hundreds of years; consider the recent bicentennial celebration of Thomas Young's paper on equilibrium contact angles, describing the geometric shape assumed near a three phase contact line in terms of the relevant surface energies of the constituent phases [1]. Indeed, nearly a century has passed since the seminal papers of Lucas and Washburn, describing dynamics of capillary imbibition [2, 3]. While it is generally appreciated that dynamics of fluid wetting processes are determined by the degree to which a system is out of capillary equilibrium, myriad complications exist that challenge the fundamental understanding of dynamic capillary phenomena. The topic has gathered much interest from recent Nobel laureate Pierre-Gilles de Gennes, who provided a seminal review of relevant dissipation mechanisms for fluid droplets spreading on solid surfaces [4] Although much about the dynamics of wetting has been revealed, much remains to be learned and intrinsic technological and fundamental interest in the topic drives continuing high levels of research activity. This is enabled partly by improved experimental capabilities for resolving wetting processes at increasingly finer temporal, spatial, and chemical resolution. Additionally, dynamic wetting research advances via higher fidelity computational modeling capabilities, which drive more highly refined theory development. The significance of this topic both fundamentally and technologically has resulted in a number of reviews of research activity in wetting dynamics. One recent example addresses the evaluation of existing wetting dynamics theories from an experimentalist's perspective [5]. A Current Opinion issue was recently dedicated to high temperature capillarity, including dynamics of high temperature spreading [6]. New educational tools have recently emerged for providing instruction in wetting

  19. Legionella safety in cooling towers; Legionellaveiligheid in koeltorens

    Energy Technology Data Exchange (ETDEWEB)

    Kordes, B. [Kordes Advies, (Netherlands); De Bok, F. [KBBL Wijhe, (Netherlands); De Zeeuw, L. [Holland Environment Group, (Netherlands); Settels, P. [Safety, Health Services and Ergonomics, ING, (Netherlands); Oesterholt, F.; Wullings, B. [KWR Watercycle Research Institute, (Netherlands); Guiot, P. [Tevan, Gorinchem (Netherlands); Brands, R. [Cumulus Nederland, Cuijk (Netherlands); Nuijten, O. [Kennisinstituut ISSO, Rotterdam (Netherlands); Wijne, R. [Beer advocaten, Amsterdam (Netherlands)

    2010-04-15

    In 9 articles attention is paid to several aspects with regard to Legionella in cooling towers: representative sampling, the use of copper and silver ionization or hydrogen peroxide to prevent Legionella growth and biofilms, the use of a zero-tolerance model to control a cooling tower installation, detection of DNA of Legionella Pneumophila, legionella safety in air conditioners, the model Legionella risk analysis and control of cooling tower installations, legislation and regulations for the control of cooling tower installations with regard to the Dutch Occupational Health and Safety Act ('Arbo-wet'), and an article about a lawsuit for victims of a Legionella outbreak, caused by careless owners of a cooling tower in Amsterdam, Netherlands. [Dutch] In 9 artikelen wordt in deze aflevering aandacht besteed aan verschillende aspecten m.b.t. Legionella in koeltorens: representatieve monstername, de toepassing van koper en zilver-ionisatie of waterstofperoxide om de groei van Legionella en biofilms te voorkomen, het gebruik van een zero-tolerance model om een koeltoren installatie te controleren, detectie van DNA van Legionella Pneumophila, Legionella veiligheid in luchtbehandelingsinstallaties, het model Legionella risicoanalyse en beheersplan voor koeltoreninstallaties, de rol van de Arbo-wet, en een artikel over een rechtszaak voor slachtoffers van Legionella door onzorgvuldig beheer van een koeltoren in Amsterdam.

  20. Simulation of solar-powered absorption cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Atmaca, I.; Yigit, A. [Uludag Univ., Bursa (Turkey). Dept. of Mechanical Engineering

    2003-07-01

    With developing technology and the rapid increase in world population, the demand for energy is ever increasing. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling. In this study, a solar-powered, single stage, absorption cooling system, using a water-lithium bromide solution, is simulated. A modular computer program has been developed for the absorption system to simulate various cycle configurations and solar energy parameters for Antalya, Turkey. So, the effects of hot water inlet temperatures on the coefficient of performance (COP) and the surface area of the absorption cooling components are studied. In addition, reference temperatures which are the minimum allowable hot water inlet temperatures are determined and their effect on the fraction of the total load met by non-purchased energy (FNP) and the coefficient of performance are researched. Also, the effects of the collector type and storage tank mass are investigated in detail. (author)

  1. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.; Wu, J.H.; Hsu, H.Y.; Wang, J.H.

    2010-01-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  2. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  3. ABWR2. Innovative passive containment cooling system for the innovative ABWR

    International Nuclear Information System (INIS)

    Sato, Takashi; Matsumoto, Keiji

    2015-01-01

    iB1350 stands for an innovative, intelligent and inexpensive BWR 1350. The iB1350 uses innovative passive containment cooling system (iPCCS). The iPCCS is a part of the in-containment filtered venting system (IFVS). The vent pipe is submerged in the IFVS tank in the outer well (OW) of the Mark W containment. The conventional PCCS has a suction pipe only from the dry well (DW). On the contrary, the iPCCS has two suction pipes. One is normally opened to the wet well (WW) and another normally closed to the DW. The suction pipe in the conventional design cannot be connected to the WW because the PCCS vent pipe is connected to the WW. A PCCS functions using differential pressure between two nodes to discharge noncondensable gases in a PCCS heat exchanger (Hx). A suction pipe and a vent pipe must be connected to different nodes to use differential pressure. Therefore, the conventional PCCS never can cool the S/P. Although the S/P is the in-containment heat sink, heat up of the S/P is the most unfavorable for the conventional PCCS. In order to use the PCCS the conventional design must discharge steam directly into the DW instead of the S/P. Therefore, the conventional PCCS must open depressurization valves (DPV) at a SBO if the isolation condenser (IC) fails. On the contrary, the iPCCS can cool the S/P directly using the suction pipe connected to the WW and without DPV. Instead of DPV the iB1350 has modulating valves (MV) of which discharge lines are submerged in the S/P. Even if the IC fails at a SBO, the iB1350 can cool the core using the severe accident feedwater system (SAFWS), the SRV or the MV, and the iPCCS. The SAFWS makes up the core. The decay heat is carried by steam to the S/P through the SRV or the MV. The S/P works as in-containment heat sink. Once the S/P starts boiling the iPCCS automatically initiates cooling of the steam from the S/P. In the case of a core melt accident, a certain amount of FP is released into the S/P and heats up the S/P. Once the S

  4. Wet gas sampling

    Energy Technology Data Exchange (ETDEWEB)

    Welker, T.F.

    1997-07-01

    The quality of gas has changed drastically in the past few years. Most gas is wet with hydrocarbons, water, and heavier contaminants that tend to condense if not handled properly. If a gas stream is contaminated with condensables, the sampling of that stream must be done in a manner that will ensure all of the components in the stream are introduced into the sample container as the composite. The sampling and handling of wet gas is extremely difficult under ideal conditions. There are no ideal conditions in the real world. The problems related to offshore operations and other wet gas systems, as well as the transportation of the sample, are additional problems that must be overcome if the analysis is to mean anything to the producer and gatherer. The sampling of wet gas systems is decidedly more difficult than sampling conventional dry gas systems. Wet gas systems were generally going to result in the measurement of one heating value at the inlet of the pipe and a drastic reduction in the heating value of the gas at the outlet end of the system. This is caused by the fallout or accumulation of the heavier products that, at the inlet, may be in the vapor state in the pipeline; hence, the high gravity and high BTU. But, in fact, because of pressure and temperature variances, these liquids condense and form a liquid that is actually running down the pipe as a stream or is accumulated in drips to be blown from the system. (author)

  5. Cooling of nuclear power stations with high temperature reactors and helium turbine cycles

    International Nuclear Information System (INIS)

    Foerster, S.; Hewing, G.

    1977-01-01

    On nuclear power stations with high temperature reactors and helium turbine cycles (HTR-single circuits) the residual heat from the energy conversion process in the primary and intermediate coolers is removed from cycled gas, helium. Water, which is circulated for safety reasons through a closed circuit, is used for cooling. The primary and intermediate coolers as well as other cooling equipment of the power plant are installed within the reactor building. The heat from the helium turbine cycle is removed to the environment most effectively by natural draught cooling towers. In this way a net plant efficiency of about 40% is attainable. The low quantities of residual heat thereby produced and the high (in comparison with power stations with steam turbine cycles) cooling agent pressure and cooling water reheat pressure in the circulating coolers enable an economically favourable design of the overall 'cold end' to be expected. In the so-called unit range it is possible to make do with one or two cooling towers. Known techniques and existing operating experience can be used for these dry cooling towers. After-heat removal reactor shutdown is effected by a separate, redundant cooling system with forced air dry coolers. The heat from the cooling process at such locations in the power station is removed to the environment either by a forced air dry cooling installation or by a wet cooling system. (orig.) [de

  6. Nuclear reactor, its cooling facility, nuclear power plant, and method of operating the same

    International Nuclear Information System (INIS)

    Tate, Hitoshi; Tominaga, Kenji; Fujii, Tadashi.

    1993-01-01

    The upper surface of inner structural materials in a container is partitioned by concrete structural walls to form an upper space portion. A pressure relief plate is disposed on the concrete structural walls. If an accident occurs, the pressure relief plate is operated to form a circulation path for a gas to return to the upper space portion again from the upper space portion. The temperature of cooling water in a pressure suppression chamber, that is, a wet well liquid phase portion is elevated by after heat of a reactor core. Evaporated steams transfer from the wet well gas phase portion to the upper space portion passing through pipelines and are mixed with N 2 gas present in the upper space portion. The mixed gas is cooled by a container inner wall cooled by air passing through an air cooling duct, flows downward by way of the pressure relief plate and reaches the wet well gas phase portion again. Since the gases in the upper space circulate by a driving force caused by the after heat, reliability of cooling performance can be improved upon occurrence of an accident without using an active driving force. (I.N.)

  7. Cooling system with automated seasonal freeze protection

    Science.gov (United States)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing

    2016-05-24

    An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  8. Thermal analysis of the conduction cooling system for HTS SMES system of 600 kJ class

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Yeom, Han Kil; Park, Seong Je; Kim, Hyo Bong; Koh, Deuk Yong

    2007-01-01

    SMES systems need cryogenic cooling systems. Conduction cooling system has more effective, compact structure than cryogen. In general, 2 stage GM cryocoolers are used for conduction cooling of HTS SMES system. 1st stages of cryocoolers are used for the cooling of current leads and radiation shields, and 2nd stages of cryocoolers for HTS coil. For the effective conduction cooling of the HTS SMES system, the temperature difference between the cryocooler and HTS coil should be minimized. In this paper, a cryogenic conduction cooling system for HTS SMES is analyzed to evaluate the performance of the cooling system. The analysis is carried out for the steady state with the heat generation of the HTS coil and effects of the thermal contact resistance. The results show the effects of the heat generation and thermal contact resistance on the temperature distribution

  9. System and method for pre-cooling of buildings

    Science.gov (United States)

    Springer, David A.; Rainer, Leo I.

    2011-08-09

    A method for nighttime pre-cooling of a building comprising inputting one or more user settings, lowering the indoor temperature reading of the building during nighttime by operating an outside air ventilation system followed, if necessary, by a vapor compression cooling system. The method provides for nighttime pre-cooling of a building that maintains indoor temperatures within a comfort range based on the user input settings, calculated operational settings, and predictions of indoor and outdoor temperature trends for a future period of time such as the next day.

  10. ­Assessing the causes of 20th century wetting in the eastern United States

    Science.gov (United States)

    Bishop, D. A.; Williams, P.; Seager, R.; Fiore, A. M.; Cook, B.; Mankin, J. S.; Singh, D.; Smerdon, J. E.; Rao, M. P.

    2017-12-01

    During the 20th century, a large area of the eastern United States (US) experienced increases in precipitation and reduced warming, with seasonal cooling of daytime temperatures. These trends are in stark contrast with observed drying and warming globally, particularly with those in the western US. While the reduced temperature trends, termed the eastern US `warming hole,' are well documented and have been linked to reduced insolation from aerosols, evaporative cooling from increased precipitation, and natural climate variability, there is little research evaluating the timing, spatial extent, and physical origins of the historical eastern US precipitation trends. Here we investigate: (1) hydroclimate trends and variability across the continental US for 1895-2016 for all seasons, (2) mechanistic links between wetting and cooling trends in the Southeast US, and (3) dynamical links between wetting trends and large-scale atmospheric circulation changes. Our analyses of hydroclimatic trends indicate strong positive trends in fall precipitation in the Southeast and Northeast US, and positive trends in summer precipitation in the Northeast and Midwest US. The Southeast and Midwest wetting trends are coincident with negative trends in mean daily maximum temperatures (TMax), whereas the Northeast US wetting coincides with warming. Cross-wavelet analysis indicates low-frequency anti-phasing between summer precipitation and TMax, particularly in the Southeast US, but there is little coherence in the fall-season relationship. These results support a positive link between precipitation and evaporative cooling, as this mechanism is expected to be most focused in the boreal summer season. To investigate the shift to wetter conditions in the eastern US, we evaluate moisture transport across multiple reanalysis products, surface observations, and CMIP5 model runs. We find a step-shift toward enhanced southerly flow from the Gulf of Mexico into the Southeast and Midwest US that

  11. FTU cooled liquid lithium upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Iafrati, M., E-mail: matteo.iafrati@enea.it [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Apicella, M.L.; Boncagni, L. [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Lyublinski, I. [JSC “RED STAR”, Moscow (Russian Federation); Mazzitelli, G. [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Vertkov, A. [JSC “RED STAR”, Moscow (Russian Federation)

    2017-04-15

    In the framework of the liquid lithium limiter experiment in Frascati a new auxiliary system was developed in order to provide a better control of the energy fluid vector. The cooled liquid lithium system (CLL) was installed for the first time at the end of 2013, it uses overheated water to heat the lithium and to extract, at the same time, the heat from the metal surface when it gets wet by the plasma. A first version of the system, developed and presented in previous papers, has been modified to optimize the heat flux measurement on the liquid lithium surface. The changes include a new power supply logic for the heating system, new sensors and new read-out electronics compatible with the implementation of a real time control system. The prototype was updated with the aim of achieving a low cost and versatile control system.

  12. Active cooling system for Tokamak in-vessel operation manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jianjun, E-mail: yuanjj@sjtu.edu.cn; Chen, Tan; Li, Fashe; Zhang, Weijun; Du, Liang

    2015-10-15

    Highlights: • We summarized most of the challenges of fusion devices to robot systems. • Propose an active cooling system to protect all of the necessary components. • Trial design test and theoretical analysis were conducted. • Overall implementation of the active cooling system was demonstrated. - Abstract: In-vessel operation/inspection is an indispensable task for Tokamak experimental reactor, for a robot/manipulator is more capable in doing this than human being with more precise motion and less risk of damaging the ambient equipment. Considering the demanding conditions of Tokamak, the manipulator should be adaptable to rapid response in the extreme conditions such as high temperature, vacuum and so on. In this paper, we propose an active cooling system embedded into such manipulator. Cameras, motors, gearboxes, sensors, and other mechanical/electrical components could then be designed under ordinary conditions. The cooling system cannot only be a thermal shield since the components are also heat sources in dynamics. We carry out a trial test to verify our proposal, and analyze the active cooling system theoretically, which gives a direction on the optimization by varying design parameters, components and distribution. And based on thermal sensors monitoring and water flow adjusting a closed-loop feedback control of temperature is added to the system. With the preliminary results, we believe that the proposal gives a way to robust and inexpensive design in extreme environment. Further work will concentrate on overall implementation and evaluation of this cooling system with the whole inspection manipulator.

  13. Numerical study of a novel dew point evaporative cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Riangvilaikul, B.; Kumar, S. [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120 (Thailand)

    2010-11-15

    Dew point evaporative cooling system is an alternative to vapor compression air conditioning system for sensible cooling of ventilation air. This paper presents the theoretical performance of a novel dew point evaporative cooling system operating under various inlet air conditions (covering dry, moderate and humid climate) and influence of major operating parameters (namely, velocity, system dimension and the ratio of working air to intake air). A model of the dew point evaporative cooling system has been developed to simulate the heat and mass transfer processes. The outlet air conditions and system effectiveness predicted by the model using numerical method for known inlet parameters have been validated with experimental findings and with recent literature. The model was used to optimize the system parameters and to investigate the system effectiveness operating under various inlet air conditions. (author)

  14. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  15. Performance test of solar-assisted ejector cooling system

    KAUST Repository

    Huang, Bin-Juine

    2014-03-01

    A solar-assisted ejector cooling/heating system (SACH-2k) is built and test result is reported. The solar-driven ejector cooling system (ECS) is connected in series with an inverter-type air conditioner (IAC). Several advanced technologies are developed in SACH-k2, including generator liquid level control in ECS, the ECS evaporator temperature control, and optimal control of fan power in cooling tower of ECS. From the field test results, the generator liquid level control performs quite well and keeps stable performance of ejector. The ECS evaporator temperature control also performs satisfactorily to keep ejector performance normally under low or fluctuating solar radiation. The fan power control system cooling tower performs stably and reduces the power consumption dramatically without affecting the ECS performance. The test results show that the overall system COPo including power consumptions of peripheral increases from 2.94-3.3 (IAC alone) to 4.06-4.5 (SACH-k2), about 33-43%. The highest COPo is 4.5. © 2013 Elsevier Ltd and IIR. All rights reserved.

  16. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  17. Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR

    International Nuclear Information System (INIS)

    Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan

    2014-01-01

    Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)

  18. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    . To prevent wet discomfort, the T-shirt was made of a polyester material having a water-repellent silicon coating on the inner surface. The chest, front upper arms, and nape of the neck were adopted as the cooling areas of the human body. We conducted human subject experiments in an office with air......We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  19. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    high costs. However heat sinks are unavoidable from a system perspective and there are potential cost savings since a low-pressure steam turbines will not be required if heat driven cooling is implemented. The fuel utilization for some technologies (not necessarily the best technology) was evaluated in two different scenarios: 1) with electricity production from coal; and 2) with electricity production from natural gas. It is shown in the scenarios that the heat driven cooling technologies give lower fuel consumption as compared producing electricity as an intermediate product before cooling is produced. Further it should be noted that electricity is produced, not consumed, if heat is used directly for the production of cooling. We claim that cost effective solutions for district heat driven chillers and/or combined production of electricity and district cooling can be found in all climates with high enough density of heating and cooling demands. It was found that district heat driven chillers can be very energy efficient in warm and humid climates since desiccant systems are an effective way of handling latent cooling loads. In dry climates, with low latent loads, water distributed cooling has a large potential and absorption cooling will give high fuel utilization seen from a system perspective. In climates where water shortage is a problem it is possible that the temperature lift of the conventional absorption chiller has to be increased in order to be able to use dry cooling towers. The temperature lift can be increased by changing the chiller design or by using a different working pair. Heat driven cooling can be integrated into an energy system in different ways. In USA and Japan, district heating is not well developed. Instead small, distributed combined heat and power (CHP) plants with high exhaust temperatures are widespread. Cooling is often produced, in these regions, through absorption cooling (using heat from CHP) or compression chillers depending on

  20. Replacement inhibitors for tank farm cooling coil systems

    International Nuclear Information System (INIS)

    Hsu, T.C.

    1995-01-01

    Sodium chromate has been an effective corrosion inhibitor for the cooling coil systems in Savannah River Site (SRS) waste tanks for over 40 years. Due to their age and operating history, cooling coils occasionally fail allowing chromate water to leak into the environment. When the leaks spill 10 lbs. or more of sodium chromate over a 24-hr period, the leak incidents are classified as Unusual Occurrences (UO) per CERCLA (Comprehensive Environmental Response, Compensation and Liability Act). The cost of reporting and cleaning up chromate spills prompted High Level Waste Engineering (HLWE) to initiate a study to investigate alternative tank cooling water inhibitor systems and the associated cost of replacement. Several inhibitor systems were investigated as potential alternatives to sodium chromate. All would have a lesser regulatory impact, if a spill occurred. However, the conversion cost is estimated to be $8.5 million over a period of 8 to 12 months to convert all 5 cooling systems. Although each of the alternative inhibitors examined is effective in preventing corrosion, there is no inhibitor identified that is as effective as chromate. Assuming 3 major leaks a year (the average over the past several years), the cost of maintaining the existing inhibitor was estimated at $0.5 million per year. Since there is no economic or regulatory incentive to replace the sodium chromate with an alternate inhibitor, HLWE recommends that sodium chromate continue to be used as the inhibitor for the waste tank cooling systems

  1. Turbine airfoil with an internal cooling system having vortex forming turbulators

    Science.gov (United States)

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  2. Lamination cooling system formation method

    Science.gov (United States)

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  3. Liquid Cooling System for CPU by Electroconjugate Fluid

    Directory of Open Access Journals (Sweden)

    Yasuo Sakurai

    2014-06-01

    Full Text Available The dissipated power of CPU for personal computer has been increased because the performance of personal computer becomes higher. Therefore, a liquid cooling system has been employed in some personal computers in order to improve their cooling performance. Electroconjugate fluid (ECF is one of the functional fluids. ECF has a remarkable property that a strong jet flow is generated between electrodes when a high voltage is applied to ECF through the electrodes. By using this strong jet flow, an ECF-pump with simple structure, no sliding portion, no noise, and no vibration seems to be able to be developed. And then, by the use of the ECF-pump, a new liquid cooling system by ECF seems to be realized. In this study, to realize this system, an ECF-pump is proposed and fabricated to investigate the basic characteristics of the ECF-pump experimentally. Next, by utilizing the ECF-pump, a model of a liquid cooling system by ECF is manufactured and some experiments are carried out to investigate the performance of this system. As a result, by using this system, the temperature of heat source of 50 W is kept at 60°C or less. In general, CPU is usually used at this temperature or less.

  4. Calculating the evaporated water flow in a wet cooling tower

    International Nuclear Information System (INIS)

    Grange, J.L.

    1994-04-01

    On a cooling tower, it is necessary to determine the evaporated water flow in order to estimate the water consumption with a good accuracy according to the atmospheric conditions, and in order to know the characteristics of the plume. The evaporated flow is small compared to the circulating flow. A direct measurement is very inaccurate and cannot be used. Only calculation can give a satisfactory valuation. The two usable theories are the Merkel's one in which there are some simplifying assumptions, and the Poppe's one which is more exact. Both theories are used in the numerical code TEFERI which has been developed and is run by Electricite de France. The results obtained by each method are compared and validated by measurements made in the hot air of a cooling tower. The consequences of each hypothesis of Merkel's theory are discussed. This theory does not give the liquid water content in the plume and it under-estimates the evaporated flow all the lower the ambient temperature is. On the other hand, the Poppe's method agrees very closely with the measurements as well for the evaporated flow than for the liquid water concentration. This method is used to establish the specific consumption curves of the great nuclear plants cooling towers as well as to calculate the emission of liquid water drops in the plumes. (author). 11 refs., 9 figs

  5. Cooling the intact loop of primary heat transport system using shut down cooling system after events such as LOCA

    International Nuclear Information System (INIS)

    Icleanu, D.L.

    2015-01-01

    The purpose of this paper is to model the Shutdown Cooling System operation for CANDU 6 NPP in case of LOCA accident, using Flowmaster calculation code by delimiting models and setting calculation assumptions and input data for hydraulic analysis, and and assumptions for the calculation and input data for calculating thermal performance check heat exchangers that are part of this system. The Flowmaster V7.8 code provides system engineers with a powerful tool to investigate pressure surge, pressure drop, flow rate, temperature and system response times - removing the uncertainty from fluid flow systems. Flowmaster is a one-dimensional thermal-hydraulic calculation code for dimensioning, analyzing and verifying the pipeline systems operation. Each component of Flowmaster is a mathematical model for an equipment that is included in a facility. Selected components are connected via nodes in order to form a network, which constitutes a computerized model of the system. Analyzing the parameters of the cooling system for all cooling processes considered it was found that the values obtained for thermal-hydraulic parameters, as well as the duration up to reaching specified limits fall within the design values of the system. This document is made up of an abstract and the slides of the presentation

  6. The optimal operation of cooling tower systems with variable-frequency control

    Science.gov (United States)

    Cao, Yong; Huang, Liqing; Cui, Zhiguo; Liu, Jing

    2018-02-01

    This study investigates the energy performance of chiller and cooling tower systems integrated with variable-frequency control for cooling tower fans and condenser water pumps. With regard to an example chiller system serving an office building, Chiller and cooling towers models were developed to assess how different variable-frequency control methods of cooling towers fans and condenser water pumps influence the trade-off between the chiller power, pump power and fan power under various operating conditions. The matching relationship between the cooling tower fans frequency and condenser water pumps frequency at optimal energy consumption of the system is introduced to achieve optimum system performance.

  7. Improvement of Cooling Performance of a Compact Thermoelectric Air Conditioner Using a Direct Evaporative Cooling System

    Science.gov (United States)

    Tipsaenporm, W.; Lertsatitthanakorn, C.; Bubphachot, B.; Rungsiyopas, M.; Soponronnarit, S.

    2012-06-01

    This paper presents the results of tests carried out to investigate the potential application of a direct evaporative cooling (DEC) system for improving the performance of a compact thermoelectric (TE) air conditioner. The compact TE air conditioner is composed of three TE modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The DEC system produced cooling air that was used to assist the release of heat from the heat sinks at the hot side of the TE modules. The results showed that the cooling air dry bulb temperature from the DEC system achieved drops of about 5.9°C in parallel with about a 33.4% rise in relative humidity. The cooling efficiency of the DEC system varies between 72.1% and 81.5%. It increases the cooling capacity of the compact TE air conditioner from 53.0 W to 74.5 W. The 21.5 W (40.6%) increase represents the difference between the compact air conditioner operating with ambient air flowing through the TE module's heat sinks, and the compact air conditioner operating with the cooler air from the DEC system flowing through the TE module's heat sinks. In both scenarios, electric current of 4.5 A was supplied to the TE modules. It also has been experimentally proven that the coefficient of performance (COP) of the compact TE air conditioner can be improved by up to 20.9% by incorporating the DEC system.

  8. Modeling conductive cooling for thermally stressed dairy cows.

    Science.gov (United States)

    Gebremedhin, Kifle G; Wu, Binxin; Perano, K

    2016-02-01

    Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  10. Numerical investigation of wet-bulb effectiveness and water consumption in one-and two-stage indirect evaporative coolers

    International Nuclear Information System (INIS)

    Moshari, Shahab; Heidarinejad, Ghassem; Fathipour, Aida

    2016-01-01

    Highlights: • Wet bulb effectiveness of indirect/indirect evaporative cooling systems are 76–81%. • Dimensionless water evaporation rate decreases as the primary air flow rate increases. • Water evaporation rate increases with increase of inlet dry bulb temperature. - Abstract: In this study, three configuration for two-stage indirect/indirect evaporative cooling systems (IEC/IEC) were proposed (Type A, Type B and Type C) to determine what configuration produces a better wet-bulb effectiveness (or better energy-saving). For this purpose, six cities with a variety of hot weather conditions with the dry-bulb in range of 31.9–46.66 °C were selected. Results show that under these three configuration, the wet-bulb effectiveness of Type A, Type B and Type C varies over ranges of 62–68%, 76–81% and 85–91% respectively, whereas the effectiveness of a one stage IEC varies over a range of 54–60%. There is a common misconceive belief in the concept of water evaporation rate of an evaporative cooling system, which were fueled by many articles; this belief is, if a cooler consumes less water it is an environmentally friendly cooler for dry areas. A more accurate and practical definition is proposed in this article named Dimensionless Water Evaporation Rate (DWER). The numerical results showed that Type B is the optimum configuration, because of a range of 4–24% DWER saving could be obtained by Type B in comparison with Type C whereas Type B increases the product air up to 32%. As well as IEC, in a counter-flow regenerative evaporative cooler the DWER decreases as the primary airflow rate increases whereas water consumption increases. Moreover, using Type B the index of thermal comfort was investigated which showed that Type B could meet thermal comfort condition in two climatic zones of temperate-dry and hot-dry.

  11. 4. Meeting on cooling towers. From practice - for practice; 4. Kuehlturm-Tagung. Aus der Praxis - Fuer die Praxis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The 4th Cooling Tower meeting brought into focus aspects of economic efficiency of the water cooling system, i.e. the papers analyse investment cost and operating cost taking into account environmental policy and interests. Numerous examples from practice are discussed in the papers showing how wet cooling tower design and application-specific selection of design features can influence the performance of the entire system. (orig./CB) [Deutsch] Im Mittelpunkt der 4. Kuehlturm-Tagung steht die Wirtschaftlichkeit der Wasserrueckkuehlanlage, d.h. die Betrachtung der Investitions- und Betriebskosten unter Beruecksichtigung der Belange des Umweltschutzes. Mit Beispielen aus der Praxis zeigen die Referenten, wie sich die Auslegung und Auswahl eines Nasskuehlturms auf das Betriebsergebnis der Anlage auswirken. (orig./GL)

  12. Aplikasi Root Zone Cooling System Untuk Perbaikan Pembentukan Umbi Bawang Merah (Allium cepa var. aggregatum

    Directory of Open Access Journals (Sweden)

    Nurwahyuningsih

    2017-08-01

    Full Text Available Abstract The aim of this research can be formulated as follows: to analyze the effect of different root zone temperature to some extent the temperature is 10oC, 15oC, control and vernalization of plant growth and the formation of shallot bulbs by using aeroponic system. The experimental design used was a draft Plots Divided (Split Plot Design, which is arranged in a randomized block design with four replications. The main plot is a vernalization treatment (without vernalization and with vernalization. The subplots in the form of a nutrient solution temperature at 10oC, 15oC, and without cooling system as a control. The parameters measured were the number of leaves, the number of tillers, the number of bulbs, the weight of bulbs and the wet weight of root. There are no interaction between the annealing temperature by vernalization to the number of leaves, the bulb number, the weight of bulbs, and the weight of the roots. Cooling temperatures nutrient solution to improving root growth and bulb formation of shallot. Optimal root growth can improve nutrient uptaken by plants then can improve plant growth and bulb yield larger and heavier. Temperatures suitable for shallot cultivation in lowland tropical for producing tubers with quenching temperature is 10°C, non vernalization.

  13. Performance analysis of solar air cooled double effect LiBr/H2O absorption cooling system in subtropical city

    International Nuclear Information System (INIS)

    Li, Zeyu; Ye, Xiangyang; Liu, Jinping

    2014-01-01

    Highlights: • The meteorological data during the working period of air conditioning was measured. • The suitable working range of collector temperature of system was gotten. • The characteristic of hourly and monthly total efficiency of system were obtained. • The yearly performance of system was calculated. - Abstract: Due to the absence of cooling tower and independent on water, the air cooled solar double effect LiBr/H 2 O absorption cooling system is more convenient to be used in commercial building and household use. The performance with collector temperature is an important field for such system. The paper mainly deals with the performance with collector temperature for the solar air cooled double effect LiBr/H 2 O absorption cooling system in subtropical city. The parameters of system are: aperture area of collector array is 27 m 2 , tilted angle of collector with respect to the horizontal plane is 20 toward to south evaporator temperature is 5 °C and the cooling capacity is 20 kW. The simulation is based on the meteorological data of monthly typical day which was summarized from a year round measured data. A corresponding parametric model was developed. The hourly and average performance with the collector temperature for monthly typical day was obtained and discussed. It was found that the suitable working range of inlet temperature of collector is 110–130 °C to improve performance and lower the risk of crystallization. The difference of hourly total efficiency in 9:00–16:00 is less, and the monthly total efficiency from May to October is approximate. The yearly performance of system including total efficiency, cooling capacity per area of collector and solar fraction was given. Furthermore, the effect of effectiveness of heat exchanger and pressure drop on total efficiency and solar fraction was studied and compared. The paper can serve as a preliminary investigation of solar air cooled double effect LiBr/H 2 O absorption cooling system in

  14. A systemic approach for optimal cooling tower operation

    International Nuclear Information System (INIS)

    Cortinovis, Giorgia F.; Paiva, Jose L.; Song, Tah W.; Pinto, Jose M.

    2009-01-01

    The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate.

  15. Novel dry cryotherapy system for cooling the equine digit

    Science.gov (United States)

    Stefanovski, Darko; Lenfest, Margret; Chatterjee, Sraboni; Orsini, James

    2018-01-01

    Objectives Digital cryotherapy is commonly used for laminitis prophylaxis and treatment. Currently validated methods for distal limb cryotherapy involve wet application or compression technology. There is a need for a practical, affordable, dry cryotherapy method that effectively cools the digit. The objective of this study was to evaluate the hoof wall surface temperatures (HWSTs) achieved with a novel dry cryotherapy technology. Design Repeated-measures in vivo experimental study. Setting Experimental intervention at a single site. Participants 6 systemically healthy horses (3 mares, 3 geldings). Interventions Cryotherapy was applied to six horses for eight hours with a commercially available rubber and rubber and welded fabricice boot, which extended proximally to include the foot and pastern. Reusable malleable cold therapy packs were secured against the foot and pastern with the three built-in hook-and-loop fastener panels. Primary and secondary outcome measures HWST and pastern surface temperature of the cryotherapy-treated limb, HWST of the control limb and ambient temperature were recorded every five minutes throughout the study period. Results Results were analysed with mixed-effects multivariable regression analysis. The HWST (median 11.1°C, interquartile range 8.6°C–14.7°C) in the cryotherapy-treated limb was significantly decreased compared with the control limb (median 29.7°C, interquartile range 28.9°C–30.4°C) (P≤0.001). Cryotherapy limb HWST reached a minimum of 6.75°C (median) with an interquartile range of 4.1°C–9.3°C. Minimum HWST was achieved 68 minutes after cryotherapy pack application. Conclusions Dry application of cryotherapy significantly reduced HWST and reached minimums below the therapeutic target of 10°C. This cryotherapy method might offer an effective alternative for digital cooling. PMID:29344364

  16. Simulation of an active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Abdelhakim, Lotfi

    2016-01-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  17. Simulation of an active cooling system for photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhakim, Lotfi [Széchenyi István University of Applied Sciences, Department of Mathematics, P.O.Box 701, H-9007 Győr (Hungary)

    2016-06-08

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  18. Wetting Behavior of Calcium Ferrite Slags on Cristobalite Substrates

    Science.gov (United States)

    Yang, Mingrui; Lv, Xuewei; Wei, Ruirui; Xu, Jian; Bai, Chenguang

    2018-03-01

    Calcium ferrite (CF) is a significant intermediate adhesive phase in high-basicity sinters. The wettability between calcium ferrite (CF) and gangue plays an important role in the assimilation process. The wettability of CF-based slags, in which a constant amount (2 mass pct.) of Al2O3, MgO, SiO2, and TiO2 was added, on solid SiO2 (cristobalite) substrates at 1523 K (1250 °C) was investigated. The interfacial microstructure and spreading mechanisms were discussed for each sample. All the tested slag samples exhibited good wettability on the SiO2 substrate. The initial apparent contact angles were in the range of 20 to 50 deg, while the final apparent contact angles were 5 deg. The wetting process could be divided into three stages on the basis of the change in diameter, namely the "linear spreading" stage, "spreading rate reduction" stage, and "wetting equilibrium" stage. It was found that the CF-SiO2 wetting system exhibits dissolutive wetting and the dissolution of SiO2 into slag influences its spreading process. The spreading rate increases with a decrease in the ratio of viscosity to interfacial tension, which is a result of the addition of Al2O3, MgO, SiO2, and TiO2. After cooling, a deep corrosion pit was formed in the substrate and a diffusion layer was generated in front of the residual slag zone; further, some SiO2 and Fe2O3 solid solutions precipitated in the slag.

  19. Study on performance prediction and energy saving of indirect evaporative cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Yeon; Kim, Tae Ho; Kim, Myung Ho [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-15

    The purpose of this study is to predict the performance of an indirect evaporative cooling system, and to evaluate its energy saving effect when applied to the exhaust heat recovery system of an air-handling unit. We derive the performance correlation of the indirect evaporative cooling system using a plastic heat exchanger based on experimental data obtained in various conditions. We predict the variations in the performance of the system for various return and outdoor air conditioning systems using the obtained correlation. We also analyze the energy saving of the system realized by the exhaust heat recovery using the typical meteorological data for several cities in Korea. The average utilization rate of the sensible cooling system for the exhaust heat recovery is 44.3% during summer, while that of the evaporative cooling system is 96.7%. The energy saving of the evaporative cooling system is much higher compared to the sensible cooling system, and was about 3.89 times the value obtained in Seoul.

  20. Structural optimization of a microjet based cooling system for high power LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Liu; Zhiyin Gan [Institute for Microsystems, School of Mechanical Engineering, Huazhong University of Science and Technology, Wuhan (China); Wuhan National Lab of Optoelectronics, Huazhong University of Science and Technology, Wuhan (China); Jianghui Yang [School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan (China); Xiaobing Luo [Wuhan National Lab of Optoelectronics, Huazhong University of Science and Technology, Wuhan (China); School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2008-08-15

    Based on the previous experiments and simulations reported by the present authors, it was found the cooling system could be optimized to obtain better performance. In this paper, the microjet cooling systems with three different microjet structures were numerically investigated. The numerical model was proven by the experiments. The optimization results demonstrate that the microjet structure with one single inlet but two outlets can achieve better cooling performance. The simulation results show that the maximum temperature of the LED substrate cooled by the optimized microjet cooling device was 23 K lower than that of the LED substrate cooled by the present experimental cooling system. (author)

  1. Industrial cooling tower design and operation in the moderate-continental climate conditions

    OpenAIRE

    Laković Mirjana S.; Banjac Miloš J.; Laković Slobodan V.; Jović Milica M.

    2016-01-01

    A large number of producers offer a wide choice of various types of industrial cooling towers. Usually, a proper choice of pre-fabricated cooling tower satisfies end-user needs. However, if there are specific end-user requirements, it is necessary to design cooling tower according to those requirements. For the adhesive factory located in southern region of Serbia, 350 kW mechanical draught wet cooling tower was designed and built. Dimensioning of the cooli...

  2. Thermal Performance for Wet Cooling Tower with Different Layout Patterns of Fillings under Typical Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2017-01-01

    Full Text Available A thermal-state model experimental study was performed in lab to investigate the thermal performance of a wet cooling tower with different kinds of filling layout patterns under windless and 0.4 m/s crosswind conditions. In this paper, the contrast analysis was focused on comparing a uniform layout pattern and one kind of optimal non-uniform layout pattern when the environmental crosswind speed is 0 m/s and 0.4 m/s. The experimental results proved that under windless conditions, the heat transfer coefficient and total heat rejection of circulating water for the optimal non-uniform layout pattern can enhance by approximately 40% and 28%, respectively, compared with the uniform layout pattern. It was also discovered that the optimal non-uniform pattern can dramatically relieve the influence of crosswind on the thermal performance of the tower when the crosswind speed is equal to 0.4 m/s. For the uniform layout pattern, the heat transfer coefficient under 0.4 m/s crosswind conditions decreased by 9.5% compared with the windless conditions, while that value lowered only by 2.0% for the optimal non-uniform layout pattern. It has been demonstrated that the optimal non-uniform layout pattern has the better thermal performance under 0.4 m/s crosswind condition.

  3. Process options for treatment of organic containing ILWs by wet oxidation

    International Nuclear Information System (INIS)

    Holman, D.J.

    1989-01-01

    The process chemistry, applications and experience with several wet oxidation options are reviewed along with criteria for the selection of viable systems and plant designs, covering a range of organic wastes, including solvents, cellulosic filters, chelant decontamination reagents and ion exchange resins. The use of hydrogen peroxide to treat water-cooled reactor residues containing mixed inorganic and organic filter materials with ion exchange resins is examined in further detail along with treatment of secondary arisings. The technical and financial justifications for treatment are examined along with the engineering requirements to retro-fit the required plant to an existing cement encapsulation facility. (author)

  4. Shock and vibration protection of submerged jet impingement cooling systems: Theory and experiment

    International Nuclear Information System (INIS)

    Haji Hosseinloo, Ashkan; Tan, Siow Pin; Yap, Fook Fah; Toh, Kok Chuan

    2014-01-01

    In the recent years, advances in high power density electronics and computing systems have pushed towards more advanced thermal management technologies and higher-capacity cooling systems. Among different types of cooling systems, jet impingement technology has gained attention and been widely used in different industries for its adaptability, cooling uniformity, large heat capacity, and ease of its localization. However, these cooling systems may not function properly in dynamically harsh environment inherent in many applications such as land, sea and air transportation. In this research article, a novel double-chamber jet impingement cooling system is fabricated and its performance is studied in harsh environment. Using the authors' previous studies, isolators with optimum properties are selected to ruggedize the chassis containing the cooling chamber against shock and random vibration. Experiments are conducted on both hard-mounted and isolated chassis and the cooling performance of the system is assessed using the inlet, and impingement surface temperatures of the cooling chamber. The experimental results show the isolation system prevents any failure that otherwise would occur, and also does not compromise the thermal performance of the system. - Highlights: • A novel double-chamber jet impingement cooling system was designed and fabricated. • Comprehensive set of random vibration and shock tests are conducted. • The isolation system proved to protect the cooling system properly against mechanical failure. • Cooling system performance was not significantly affected by the input random vibration and shock

  5. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  6. Carbon-based nanostructured surfaces for enhanced phase-change cooling

    Science.gov (United States)

    Selvaraj Kousalya, Arun

    . Nanostructured samples having a thicker copper coating provided a considerable increase in dryout heat flux while maintaining lower surface superheat temperatures compared to a bare sintered powder sample; this enhancement is attributed primarily to the improved surface wettability. Dynamic contact angle measurements are conducted to quantitatively compare the surface wetting trends for varying copper coating thicknesses and confirm the increase in hydrophilicity with increasing coating thickness. The second and relatively new carbon nanostructured coating, carbon nanotubes decorated with graphitic nanopetals, are used as a template to manufacture boiling surfaces with heterogeneous wettability. Heat transfer surfaces with parallel alternating superhydrophobic and superhydrophilic stripes are fabricated by a combination of oxygen plasma treatment, Teflon coating and shadow masking. Such composite wetting surfaces exhibit enhanced flow-boiling performance compared to homogeneous wetting surfaces. Flow visualization studies elucidate the physical differences in nucleate boiling mechanisms between the different heterogeneous wetting surfaces. The third and the final carbon nanomaterial, graphene, is examined as an oxidation barrier coating for liquid and liquid-vapor phase-change cooling systems. Forced convection heat transfer experiments on bare and graphene-coated copper surfaces reveal nearly identical liquid-phase and two-phase thermal performance for the two surfaces. Surface analysis after thermal testing indicates significant oxide formation on the entire surface of the bare copper substrate; however, oxidation is observed only along the grain boundaries of the graphene-coated substrate. Results suggest that few-layer graphene can act as a protective layer even under vigorous flow boiling conditions, indicating a broad application space of few-layer graphene as an ultra-thin oxidation barrier coating.

  7. Energy and water management in evaporative cooling systems in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Abdel-wahab S. (Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Hassa (Saudi Arabia))

    1994-11-01

    A mathematical model was developed to estimate water evaporation rate, airflow rate and cooling effect in an evaporative cooling system for farm structures. The model was only applied to evaporative cooling systems for greenhouses. The effect of ambient air temperature, solar radiation and system efficiency on water evaporation rate, airflow rate and the resulting cooling effect were studied. Generally, water flow rate and air flow rate are adjusted based on daily maximum temperature. However, a substantial saving in energy and water consumption in the cooling system would be achieved by regulating water flow rate and air flow rate to follow the diurnal variation on temperature. Improving the cooling efficiency and covering the roof of the greenhouse with an external shading would save an appreciable amount of energy and water consumption. The model could also be applied to other farm structures such as animal shelters

  8. Analysis of hybrid electric/thermofluidic inputs for wet shape memory alloy actuators

    Science.gov (United States)

    Flemming, Leslie; Mascaro, Stephen

    2013-01-01

    A wet shape memory alloy (SMA) actuator is characterized by an SMA wire embedded within a compliant fluid-filled tube. Heating and cooling of the SMA wire produces a linear contraction and extension of the wire. Thermal energy can be transferred to and from the wire using combinations of resistive heating and free/forced convection. This paper analyzes the speed and efficiency of a simulated wet SMA actuator using a variety of control strategies involving different combinations of electrical and thermofluidic inputs. A computational fluid dynamics (CFD) model is used in conjunction with a temperature-strain model of the SMA wire to simulate the thermal response of the wire and compute strains, contraction/extension times and efficiency. The simulations produce cycle rates of up to 5 Hz for electrical heating and fluidic cooling, and up to 2 Hz for fluidic heating and cooling. The simulated results demonstrate efficiencies up to 0.5% for electric heating and up to 0.2% for fluidic heating. Using both electric and fluidic inputs concurrently improves the speed and efficiency of the actuator and allows for the actuator to remain contracted without continually delivering energy to the actuator, because of the thermal capacitance of the hot fluid. The characterized speeds and efficiencies are key requirements for implementing broader research efforts involving the intelligent control of electric and thermofluidic networks to optimize the speed and efficiency of wet actuator arrays.

  9. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger.

  10. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin

    2014-01-01

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  11. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio, E-mail: romanato@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade

    2011-07-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  12. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2011-01-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  13. Wetting Behavior and Reactivity of Molten Silicon with h-BN Substrate at Ultrahigh Temperatures up to 1750 °C

    Science.gov (United States)

    Polkowski, Wojciech; Sobczak, Natalia; Nowak, Rafał; Kudyba, Artur; Bruzda, Grzegorz; Polkowska, Adelajda; Homa, Marta; Turalska, Patrycja; Tangstad, Merete; Safarian, Jafar; Moosavi-Khoonsari, Elmira; Datas, Alejandro

    2017-12-01

    For a successful implementation of newly proposed silicon-based latent heat thermal energy storage systems, proper ceramic materials that could withstand a contact heating with molten silicon at temperatures much higher than its melting point need to be developed. In this regard, a non-wetting behavior and low reactivity are the main criteria determining the applicability of ceramic as a potential crucible material for long-term ultrahigh temperature contact with molten silicon. In this work, the wetting of hexagonal boron nitride (h-BN) by molten silicon was examined for the first time at temperatures up to 1750 °C. For this purpose, the sessile drop technique combined with contact heating procedure under static argon was used. The reactivity in Si/h-BN system under proposed conditions was evaluated by SEM/EDS examinations of the solidified couple. It was demonstrated that increase in temperature improves wetting, and consequently, non-wetting-to-wetting transition takes place at around 1650 °C. The contact angle of 90° ± 5° is maintained at temperatures up to 1750 °C. The results of structural characterization supported by a thermodynamic modeling indicate that the wetting behavior of the Si/h-BN couple during heating to and cooling from ultrahigh temperature of 1750 °C is mainly controlled by the substrate dissolution/reprecipitation mechanism.

  14. Wetting in a Colloidal Liquid-Gas System

    Science.gov (United States)

    Wijting, W. K.; Besseling, N. A.; Stuart, M. A.

    2003-05-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  15. Wetting in a colloidal liquid-gas system

    OpenAIRE

    Wijting, W.K.; Besseling, N.A.M.; Cohen Stuart, M.A.

    2003-01-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  16. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  17. Interface reaction and wetting in the CaF2/Me systems

    International Nuclear Information System (INIS)

    Barzilai, S.; Aizenshtein, M.; Lomberg, M.; Froumin, N.; Frage, N.

    2008-01-01

    Wetting experiments using the sessile drop method were performed in the CaF 2 -Me systems (Me = Cu, Ge, Al, In and Ga). Liquid Cu, Ge, In and Ga, do not wet the CaF 2 substrate and contact angles are significantly higher than 90 deg. No condensed products were found at the metal/ceramic interface. In the CaF 2 /Al system, evidence of an interface interaction was detected and the contact angle is about 92 deg. It was established that the spreading behavior and the values of the apparent contact angle depend on the rate of evaporation of the molten metals, the rate of sublimation of the substrate and on the value of the work of adhesion at the interface. The experimental observations are well accounted for by a thermodynamic analysis of the ternary Ca-Me-F systems

  18. Ultra-low-vibration pulse-tube cryocooler system - cooling capacity and vibration

    Science.gov (United States)

    Ikushima, Yuki; Li, Rui; Tomaru, Takayuki; Sato, Nobuaki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira

    2008-09-01

    This report describes the development of low-vibration cooling systems with pulse-tube (PT) cryocoolers. Generally, PT cryocoolers have the advantage of lower vibrations in comparison to those of GM cryocoolers. However, cooling systems for the cryogenic laser interferometer observatory (CLIO), which is a gravitational wave detector, require an operational vibration that is sufficiently lower than that of a commercial PT cryocooler. The required specification for the vibration amplitude in cold stages is less than ±1 μm. Therefore, during the development of low-vibration cooling systems for the CLIO, we introduced advanced countermeasures for commercial PT cryocoolers. The cooling performance and the vibration amplitude were evaluated. The results revealed that 4 K and 80 K PT cooling systems with a vibration amplitude of less than ±1 μm and cooling performance of 4.5 K and 70 K at heat loads of 0.5 W and 50 W, respectively, were developed successfully.

  19. Development and application of online Stelmor Controlled Cooling System

    International Nuclear Information System (INIS)

    Yu Wanhua; Chen Shaohui; Kuang Yonghai; Cao Kaichao

    2009-01-01

    An online Stelmor Controlled Cooling System (SCCS) has been developed successfully for the Stelmor production line, which can communicate with the material flow management system and Program Logic Control System (PLCs) automatically through local network. This online model adopts Implicit Finite Difference Time Domain (FDTD) method to calculate temperature evolution and phase transformation during the production process and predicts final properties. As Continuous Cooling Temperature (CCT) curves of various steels can be coupled in the model, it can predict the latent heat rise and range of phase transformation for various steels, which can provide direct guidance for new steel development and optimization of present Stelmor cooling process. This unique online system has been installed in three Stelmor production lines at present with good results.

  20. High ca-hardness treatment program of secondary cooling system in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Ryu, J. S.; Cho, Y. K.; Jeon, B. J.

    2002-01-01

    The secondary cooling water in HANARO had been treated with a low ca-hardness treatment program. The program has now been altered to a high ca-hardness treatment program to reduce the consumption of service water and the maintenance cost. After the alteration of the water treatment method, the water quality of the secondary cooling system is maintained below the limit of water quality control as same as before the alteration. This means indirectly that the secondary cooling system is not much affected by the water quality. To confirm this fact, it is necessary to analyze the effects of corrosion, scale, sludgy and slime that the water qualities are directly interfered with the secondary cooling system. We analyzed the deteriorating effects with a water monitoring equipment connected to the secondary cooling system to measure the monitoring parameters every 6 months. As a result, it is confirmed through this examination that the effects are maintained below the control limits and the high ca-hardness treatment program is applicable to treatment of the water quality of the secondary cooling system in HANARO

  1. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  2. Comparative study of the performance of the M-cycle counter-flow and cross-flow heat exchangers for indirect evaporative cooling – Paving the path toward sustainable cooling of buildings

    International Nuclear Information System (INIS)

    Zhan, Changhong; Duan, Zhiyin; Zhao, Xudong; Smith, Stefan; Jin, Hong; Riffat, Saffa

    2011-01-01

    This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research

  3. The Modification of Sodium Polyacrylate Water Solution Cooling Properties by AL2O3

    Directory of Open Access Journals (Sweden)

    Wojciech Gęstwa

    2010-01-01

    Based on cooling curves, it can be concluded that for the water solution of sodium polyacrylate with AL2O3 nanoparticles in comparison to water and 10% polymer water solution lower cooling speed is obtained. The cooling medium containing nanoparticles provides lower cooling speed in the smallest surface austenite occurance (500–600 C in the charts of the CTP for most nonalloy structural steels and low-alloy steels. However lower cooling temperature at the beginning of martensitic transformation causes the formation of smaller internal stresses, leading to smaller dimensional changes and hardening deformation. For the quenching media the wetting angle was appointed by the drop-shape method. These studies showed the best wettability of polymer water solution (sodium polyacrylate with the addition of AL2O3 nanoparticles, whose wetting angle was about 65 degrees. Obtaining the smallest wetting angle for the medium containing nanoparticles suggests that the heat transfer to the cooling medium is larger. This allows slower cooling at the same time ensuring its homogeneity. The obtained values of wetting angle confirm the conclusions drawn on the basis of cooling curves and allowus to conclude that in the case of the heat transfer rate it will have a lower value than for water and 10% polymer water solution. In the research on hardened carburized steel samples C10 and 16MnCr5 surface hardness, impact strength and changes in the size of cracks in Navy C-ring sample are examined. On this basis of the obtained results it can be concluded that polymer water solution with nanoparticles allows to obtain a better impact strength at comparable hardness on the surface. Research on the dimensional changes on the basis of the sample of Navy C-ring also shows small dimensional changes for samples carburized and hardened in 10% polymer water solution with the addition of nanoparticles AL2O3. Smaller dimensional changes were obtained for samples of steel 16MnCr5 thanfar C10. The

  4. Performance of cold compressors in a cooling system of an R and D superconducting coil cooled with subcooled helium

    International Nuclear Information System (INIS)

    Hamaguchi, S.; Imagawa, S.; Yanagi, N.; Takahata, K.; Maekawa, R.; Mito, T.

    2006-01-01

    The helical coils of large helical device (LHD) have been operated in saturated helium at 4.4 K and plasma experiments have been carried out at magnetic fields lower than 3 T for 8 years. Now, it is considered that the cooling system of helical coils will be improved to enhance magnetic fields in 2006. In the improvement, the helical coils will be cooled with subcooled helium and the operating temperature of helical coils will be lowered to achieve the designed field of 3 T and enhance cryogenic stabilities. Two cold compressors will be used in the cooling system of helical coils to generate subcooled helium. In the present study, the performance of cold compressors has been investigated, using a cooling system of R and D coil, to apply cold compressors to the cooling system of helical coils. Actual surge lines of cold compressors were observed and the stable operation area was obtained. Automatic operations were also performed within the area. In the automatic operations, the suitable pressure of a saturated helium bath, calculated from the rotation speed of the 1st cold compressor, was regulated by bypass valve. From these results, stable operations will be expected in the cooling system of helical coils

  5. Replacement of the cooling system of the TRIGA Mainz reactor

    International Nuclear Information System (INIS)

    Menke, H.

    1988-01-01

    The inspection of the reactor facility resulted in a recommendation to install a new heat exchanger and at the same time to separate the primary cooling circuit and the water purification system. Due to possible the deposition of lime and organic matter on the tubes, the heat transfer rate has decreased. In the meantime a rule has been introduced, according to which the pressure in the secondary cooling circuit must be permanently higher than in the primary cooling circuit which prompted the design of a new cooling system. The detail planning was completed in December 1987. In response to the regulatory requirements a motion for a replacement of the cooling system was submitted to the authorities. The start of the procedure is possible a year after the obtaining of the licenses. In the planning of the changes an upgrading of the steady state power to 300 kW is envisioned

  6. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    Science.gov (United States)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  7. Natural circulating passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  8. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  9. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  10. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  11. performance evaluation of a composite-padded evaporative cooling

    African Journals Online (AJOL)

    user

    average temperature drop and saturation efficiency in the evaporative cooler during the no-load test were 5°C and 42%, ... flow rate wetting the pad and the construction material .... principle of evaporation which results in a cooling effect.

  12. Some tests of wet tropospheric calibration for the CASA Uno Global Positioning System experiment

    Science.gov (United States)

    Dixon, T. H.; Wolf, S. Kornreich

    1990-01-01

    Wet tropospheric path delay can be a major error source for Global Positioning System (GPS) geodetic experiments. Strategies for minimizing this error are investigted using data from CASA Uno, the first major GPS experiment in Central and South America, where wet path delays may be both high and variable. Wet path delay calibration using water vapor radiometers (WVRs) and residual delay estimation is compared with strategies where the entire wet path delay is estimated stochastically without prior calibration, using data from a 270-km test baseline in Costa Rica. Both approaches yield centimeter-level baseline repeatability and similar tropospheric estimates, suggesting that WVR calibration is not critical for obtaining high precision results with GPS in the CASA region.

  13. Body mapping of cutaneous wetness perception across the human torso during thermo-neutral and warm environmental exposures.

    Science.gov (United States)

    Filingeri, Davide; Fournet, Damien; Hodder, Simon; Havenith, George

    2014-10-15

    Sensing skin wetness is linked to inputs arising from cutaneous cold-sensitive afferents. As thermosensitivity to cold varies significantly across the torso, we investigated whether similar regional differences in wetness perception exist. We also investigated the regional differences in thermal pleasantness and whether these sensory patterns are influenced by ambient temperature. Sixteen males (20 ± 2 yr) underwent a quantitative sensory test under thermo-neutral [air temperature (Tair) = 22°C; relative humidity (RH) = 50%] and warm conditions (Tair = 33°C; RH = 50%). Twelve regions of the torso were stimulated with a dry thermal probe (25 cm(2)) with a temperature of 15°C below local skin temperature (Tsk). Variations in Tsk, thermal, wetness, and pleasantness sensations were recorded. As a result of the same cold-dry stimulus, the skin-cooling response varied significantly by location (P = 0.003). The lateral chest showed the greatest cooling (-5 ± 0.4°C), whereas the lower back showed the smallest (-1.9 ± 0.4°C). Thermal sensations varied significantly by location and independently from regional variations in skin cooling with colder sensations reported on the lateral abdomen and lower back. Similarly, the frequency of perceived skin wetness was significantly greater on the lateral and lower back as opposed to the medial chest. Overall wetness perception was slightly higher under warm conditions. Significantly more unpleasant sensations were recorded when the lateral abdomen and lateral and lower back were stimulated. We conclude that humans present regional differences in skin wetness perception across the torso, with a pattern similar to the regional differences in thermosensitivity to cold. These findings indicate the presence of a heterogeneous distribution of cold-sensitive thermo-afferent information. Copyright © 2014 the American Physiological Society.

  14. Sensitivity of energy and exergy performances of heating and cooling systems to auxiliary components

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2017-01-01

    . Different forms of energy (electricity and heat) are used in heating and cooling systems, and therefore, a holistic approach to system design and analysis is needed. In particular, distribution systems use electricity as a direct input to pumps and fans, and to other components. Therefore, exergy concept......Heating and cooling systems in buildings consist of three main subsystems: heating/cooling plant, distribution system, and indoor terminal unit. The choice of indoor terminal unit determines the characteristics of the distribution system and the heating and cooling plants that can be used...... should be used in design and analysis of the whole heating and cooling systems, in addition to the energy analysis. In this study, water-based (floor heating and cooling, and radiator heating) and air-based (air heating and cooling) heating and cooling systems were compared in terms of their energy use...

  15. Wetting and interface interactions in the B4C/Al-Me (Me=Cu, Sn) systems

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Froumin, N.; Dariel, M.P.; Frage, N.

    2008-01-01

    The wettability of B 4 C in contact with non-carbide and non-boride forming liquid metals (such as Cu or Sn) has been the subject of several studies. These metals do not wet boron carbide unless a reactive element is added to the melt. The present study is concerned with the addition of Al which completes the series of reactive elements added to the non-wetting metals. While Si represents the elements that form stable carbides and Ti represents the elements that form stable borides, Al belongs to the group of elements that form ternary borocarbides. The wetting experiments in the B 4 C/(Me-Al, Me=Cu, Sn) systems have shown that a ternary product, namely Al 8 B 4 C 7 was formed at the interface and that wetting is governed by the thermodynamic properties of the binary liquid system

  16. Modeling the cool down of the primary heat transport system using shut down cooling system in normal operation and after events such as LOCA

    International Nuclear Information System (INIS)

    Icleanu, D.L.; Prisecaru, I.

    2015-01-01

    This paper aims at modeling the cooling of the primary heat transport system using shutdown cooling system (SDCS), for a CANDU 6 NPP in all operating modes, normal and abnormal (particularly in case of LOCA accident), using the Flowmaster calculation code. The modelling of heavy water flow through the shutdown cooling system and primary heat transport system was performed to determine the distribution of flows, pressure in various areas of the hydraulic circuit and the pressure loss corresponding to the components but also for the heat calculation of the heat exchangers related to the system. The results of the thermo-hydraulic analysis show that in all cases analyzed, normal operation and for LOCA accident regime, the performance requirements are confirmed by analysis

  17. Simulation Analysis of the Four Configurations of Solar Desiccant Cooling System Using Evaporative Cooling in Tropical Weather in Malaysia

    Directory of Open Access Journals (Sweden)

    M. M. S. Dezfouli

    2014-01-01

    Full Text Available A high demand for air conditioning systems exists in hot and humid regions because of the warm climate during the year. The high energy consumption of conventional air conditioning system is the reason for our investigation of the solar desiccant cooling system as an energy-efficient cooling system. Four model configurations were considered to determine the best configuration of a solar desiccant cooling system: one-stage ventilation, one-stage recirculation, two-stage ventilation, and two-stage recirculation. These models were stimulated for 8,760 hr of operation under hot and humid weather in Malaysia. Several parameters (i.e., coefficient of performance or COP, room temperature and humidity ratio, and the solar fraction of each system were evaluated by detecting the temperature and humidity ratio of the different points of each configuration by TRNSYS simulation. The latent and sensible loads of the test room were 0.875 kW and 2.625 kW, respectively. By investigating the simulation results of the four systems, the ventilation modes were found to be higher than the recirculation modes in the one- and two-stage solar desiccant cooling systems. The isothermal dehumidification COP of the two-stage ventilation was higher than that of the two-stage recirculation. Hence, the two-stage ventilation mode desiccant cooling system in a hot and humid area has higher efficiency than the other configurations.

  18. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunc-tional ventilation concept...... of Denmark. Through building integration in high performance offices the system is optimized to incorporate multiple functions like heating, cooling and ventilation, thus saving the expenses of separate cooling and heating systems. The simulation results are derived using the state-of-the-art building...

  19. Interfacial reactions in the Sb–Sn/(Cu, Ni) systems: Wetting experiments

    International Nuclear Information System (INIS)

    Novakovic, R.; Lanata, T.; Delsante, S.; Borzone, G.

    2012-01-01

    Interfacial reactions in the Sb–Sn/Cu and Sb–Sn/Ni systems have been investigated by means of wetting experiments. The wetting behaviour of two lead-free alloys, namely, Sb 2.5 Sn 97.5 and Sb 14.5 Sn 85.5 (at.%), in contact with Cu and Ni-substrates has been studied in view of possible applications as high-temperature solders in the electronics industry. The contact angle measurements on Cu and Ni plates were performed by using a sessile drop apparatus. The solder/substrate interface was characterised by the SEM-EDS analyses. -- Highlights: ► Sb–Sn alloys are used as high temperature lead-free solders. ► Sb–Sn alloys have good wetting properties on Cu and Ni substrates. ► Interfacial reactions and products are important for joint properties. ► Interfacial reactions/products data can be used to study the phase diagrams.

  20. A device for emergency cooling visualization

    International Nuclear Information System (INIS)

    Rezende, Hugo Cesar; Ladeira, Luiz Carlos Duarte

    1995-01-01

    A test facility for rewetting experiments, Emergency Cooling Visualization Device, has been erected at CDTN, with the objective of Emergency Cooling visualization device performing visual observations of basic phenomena that occur during the reflood phase of a Loss of Coolant Accident (LOCA), in a Pressurised Water Reactor (PWR), utilizing annular test sections. It permits to film or photograph the advance of a wetting front and the flow and heat transfer conditions. Then it is possible to observe the heat transfer regions and flow zones: steam convection, fog cooling, film boiling, nucleate boiling and fluid convection. Finally, this facility is the first test facility, in the Thermohydraulics Laboratory of CDTN, that uses a indirectly heated fuel rod simulator. (author). 3 refs, 5 figs

  1. Wetting and interface phenomena in the B4C/(Cu-B-Si) system

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Froumin, N.; Shapiro-Tsoref, E.; Dariel, M.P.; Frage, N.

    2005-01-01

    The addition of Si to a Cu-B liquid alloy improves wetting of the boron carbide substrate and allows maintaining a flat metal/ceramic interface. Improved wetting is associated with a shift of the boron content in the near surface layer of the substrate towards a higher B/C ratio. The experimental results are consistent with the thermodynamic analysis of the Cu-B-C-Si system

  2. Analisis Pindah Panas pada Pipa Pendingin untuk Root Zone Cooling System

    Directory of Open Access Journals (Sweden)

    Nurbaiti Araswati

    2017-12-01

    Full Text Available Root zone cooling system is needed to alleviate high-temperature injury for high-yield greenhouse vegetables production. Analysis of heat transfer along the cooling pipe is very important in designing the root zone cooling system. The objectives of this research were (1 to analyze heat transfer in cooling pipe for zone cooling in a hydroponic system, (2 to validate the heat transfer dynamics model to predict the water temperature at the outlet of the cooling pipe, and (3 to perform model simulations for various types of pipe materials and lengths in several thermal conditions in the greenhouse. Root zone cooling system was performed by flowing water (10oC through a steel pipe along 25 m to the root zone. The analysis showed a decrease up to 2.8oC in the planting medium temperature 28.6oC from control 31.4oC. The validation of heat transfer model was conducted by comparing the predicted water temperature to that of measured on linear regression plot. The result showed a straight line Y=1.0026X and the coefficient of determination (R2 0.9867. Based on data analysis, the temperature of water reaches 1oC in steel and copper cooling pipes along 40 m and significantly different from the PVC that is 0.8oC.

  3. System for cooling a cabinet

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a cooling system comprising an active magnetic regenerator having a cold side and a hot side, a hot side heat exchanger connected to the hot side of the magnetic regenerator, one or more cold side heat exchangers, and a cold store reservoir comprising a volume...

  4. Optimizing cooling systems in Egyptian arid urbans

    International Nuclear Information System (INIS)

    Medhat, Ahmed A.; Khalil, Essam E.

    2006-01-01

    Present study is devoted to climatic and site oriented investigations that were carried out in a new rural development in the Upper-Egypt. Bioclimatic classifications considered Upper Egypt region, near Sudan border, as a Hot and Dry climatic region. [1]. that is affected by solar heat intensities that can reach 900 W/m2 for a period ranged from 5-to-7 hours per day with the presence of study storms. Cooling season extends up to eight months per year having Upper-day-bulb temperature ranged from 400 degree centigrade - to - 470 degree centigrade while Lower-dry-bulb-temperature ranged from 280 degree centigrade - to - 320 degree centigrade with the relative humidity ranged from 10%-to-37% RH. [2]. Site surveys and field experimental and analyses of the commonly used cooling systems were investigated, evaluated and optimized for optimum indoor comfort conditions at efficient energy efficiency. [3]. Extensive analyses were performed based on Psychrometric formulae to evaluate the impact of energy consumptions related to different cooling systems such as direct expansion, chilled water, and evaporative systems. the present study enables the critical investigations of the influence of arid outdoor conditions and the required indoor thermal parameters on the energy efficiencies of HVAC-system. This work; focuses on the suggestion of suitable system that should be implemented by local energy codes in these arid urban.(Author)

  5. Experimental study of hybrid interface cooling system using air ventilation and nanofluid

    Science.gov (United States)

    Rani, M. F. H.; Razlan, Z. M.; Bakar, S. A.; Desa, H.; Wan, W. K.; Ibrahim, I.; Kamarrudin, N. S.; Bin-Abdun, Nazih A.

    2017-09-01

    The hybrid interface cooling system needs to be established to chill the battery compartment of electric car and maintained its ambient temperature inside the compartment between 25°C to 35°C. The air cooling experiment has been conducted to verify the cooling capacity, compressor displacement volume, dehumidifying value and mass flow rate of refrigerant (R-410A). At the same time, liquid cooling system is analysed theoretically by comparing the performance of two types of nanofluid, i.e., CuO + Water and Al2O3 + Water, based on the heat load generated inside the compartment. In order for the result obtained to be valid and reliable, several assumptions are considered during the experimental and theoretical analysis. Results show that the efficiency of the hybrid interface cooling system is improved as compared to the individual cooling system.

  6. Performance Evaluation of a Modular Design of Wind Tower with Wetted Surfaces

    Directory of Open Access Journals (Sweden)

    Sajad M.R. Khani

    2017-06-01

    Full Text Available Wind towers or wind catchers, as passive cooling systems, can provide natural ventilation in buildings located in hot, arid regions. These natural cooling systems can provide thermal comfort for the building inhabitants throughout the warm months. In this paper, a modular design of a wind tower is introduced. The design, called a modular wind tower with wetted surfaces, was investigated experimentally and analytically. To determine the performance of the wind tower, air temperature, relative humidity (RH and air velocity were measured at different points. Measurements were carried out when the wind speed was zero. The experimental results were compared with the analytical ones. The results illustrated that the modular wind tower can decrease the air temperature significantly and increase the relative humidity of airflow into the building. The average differences for air temperature and air relative humidity between ambient air and air exiting from the wind tower were approximately 10 °C and 40%, respectively. The main advantage of the proposed wind tower is that it is a modular design that can reduce the cost of wind tower construction.

  7. Rust Inhibitor And Fungicide For Cooling Systems

    Science.gov (United States)

    Adams, James F.; Greer, D. Clay

    1988-01-01

    Mixture of benzotriazole, benzoic acid, and fungicide prevents growth of rust and fungus. Water-based cooling mixture made from readily available materials prevents formation of metallic oxides and growth of fungi in metallic pipes. Coolant remains clear and does not develop thick sludge tending to collect in low points in cooling systems with many commercial rust inhibitors. Coolant compatible with iron, copper, aluminum, and stainless steel. Cannot be used with cadmium or cadmium-plated pipes.

  8. Air-cooled recirculation cooling systems. Technical and economic comparison; Luftgekuehlte Rueckkuehlsysteme. Technisch wirtschaftlicher Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Dierks, G. [Fa. Jaeggi/Guentner (Schweiz) AG, Trimbach (Switzerland)

    2000-03-01

    There are several air-cooled forced-circulation cooling systems for heat removal from refrigeration systems. Optimum solutions should not be selected on the basis of the cost factor alone; an integrative approach should be used instead. An exemplary investigation is presented. [German] Fuer die Waermeabfuhr aus kaeltetechnischen Anlagen stehen verschiedene luftgekuehlte, zwangsbelueftete Rueckkuehlsysteme zur Verfuegung. Die Auswahl des Systems ist oft von kurzfristigem Kostendenken gepraegt, was in technischer und wirtschaftlicher Hinsicht aber nicht immer der optimalen Loesung entspricht. Erst die genauere Kenntnis der verschiedenen Systeme und eine ganzheitliche Betrachtungsweise ermoeglichen die optimale Wahl fuer den einzelnen Fall. Die hier praesentierte Untersuchung wird anhand eines konkreten Falls dargestellt, wobei Preise und technische Produktdaten auf realen Anfragen beruhen. Der Autor ist um objetive Bewertung bemueht, der Leser moege aber selbst urteilen. (orig./AKF)

  9. Experimental study on the thermal performance of a mechanical cooling tower with different drift eliminators

    International Nuclear Information System (INIS)

    Lucas, M.; Martinez, P.J.; Viedma, A.

    2009-01-01

    Cooling towers are equipment devices commonly used to dissipate heat from power generation units, water-cooled refrigeration, air conditioning and industrial processes. Water drift emitted from cooling towers is objectionable for several reasons, mainly due to human health hazards. It is common practice to fit drift eliminators to cooling towers in order to minimize water loss from the system. It is foreseeable that the characteristics of the installed drift eliminators, like their pressure drop, affect the thermal performance of the cooling tower. However, no references regarding this fact have been found in the reviewed bibliography. This paper studies the thermal performance of a forced draft counter-flow wet cooling tower fitted with different drift eliminators for a wide range of air and water mass flow rates. The data registered in the experimental set-up were employed to obtain correlations of the tower characteristic, which defines the cooling tower's thermal performance. The outlet water temperature predicted by these correlations was compared with the experimentally registered values obtaining a maximum difference of ±3%

  10. Bipolar Radiofrequency Ablation Using Dual Internally Cooled Wet Electrodes: Experimental Study in Ex Vivo Bovine Liver

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Joon; Byun, Jae Young [Dept. of Radiology, Seoul St. Mary' s Hospital, The Catholic University of Korea, College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    To determine the optimized protocol for bipolar radiofrequency ablation (RFA), using dual internally cooled wet (ICW) electrodes in the ex vivo bovine liver. RFA was applied to the explanted bovine liver, using two 3 cm active tip electrodes with 3.5 cm spacing. A total of 25 ablation zones were created by five groups; group A: 70 W-20 minute (min), group B: 70 W-25 min, group C: 90 W-15 min, group D: 90 W-20 min, and group E: 90 W-25 min. We measured the total energy and size of ablation zones with a color of grey or pink. Statistical analysis was done using Kruskal Wallis test and Mann Whitney U-test. The mean energy, mean volume of ablation zone with grey and pink color of groups A to E were 16.7, 23.9, 16.7, 21.8, 29.2 kcal, 25.7, 34.3, 29.5, 36.2, 45.2 cm{sup 3}, and 60.0, 88.0, 71.5, 87.4, 104.5 cm{sup 3}, respectively. Those were significantly different (p < 0.05). The volume of ablation zone of group E with grey color was larger than groups A, B and C (p < 0.05). Bipolar RFA, using dual ICW electrodes, can produce a large ablation zone with the protocol of 90 W-25 min.

  11. Bipolar Radiofrequency Ablation Using Dual Internally Cooled Wet Electrodes: Experimental Study in Ex Vivo Bovine Liver

    International Nuclear Information System (INIS)

    Lee, Young Joon; Byun, Jae Young

    2012-01-01

    To determine the optimized protocol for bipolar radiofrequency ablation (RFA), using dual internally cooled wet (ICW) electrodes in the ex vivo bovine liver. RFA was applied to the explanted bovine liver, using two 3 cm active tip electrodes with 3.5 cm spacing. A total of 25 ablation zones were created by five groups; group A: 70 W-20 minute (min), group B: 70 W-25 min, group C: 90 W-15 min, group D: 90 W-20 min, and group E: 90 W-25 min. We measured the total energy and size of ablation zones with a color of grey or pink. Statistical analysis was done using Kruskal Wallis test and Mann Whitney U-test. The mean energy, mean volume of ablation zone with grey and pink color of groups A to E were 16.7, 23.9, 16.7, 21.8, 29.2 kcal, 25.7, 34.3, 29.5, 36.2, 45.2 cm 3 , and 60.0, 88.0, 71.5, 87.4, 104.5 cm 3 , respectively. Those were significantly different (p < 0.05). The volume of ablation zone of group E with grey color was larger than groups A, B and C (p < 0.05). Bipolar RFA, using dual ICW electrodes, can produce a large ablation zone with the protocol of 90 W-25 min.

  12. Environmental effects of cooling system alternatives at inland and coastal sites

    International Nuclear Information System (INIS)

    Miner, R.M.; Warrick, J.W.

    1975-01-01

    The environmental effects of alternative cooling systems for power plants in California were analyzed. At inland sites evaporative cooling systems must be used, with fresh water or waste water used as makeup. Because fresh water is scarce, most new plants would need to use agricultural or municipal waste waters. For agricultural waste water systems, disposing of the blowdown and dispersion of drift containing total dissolved solids are two significant problems requiring resolution. At coastal sites, once-through cooling systems or recirculating systems could be used. Once--through cooling causes fewer effects on the marine environment than do recirculating systems on the air and marine environment when oceans water makeup is used. In general, for a recirculating system, dispersing high-salinity blowdown in marine waters and the effects of salt water drift on the terrestrial ecology outweigh the effects of once-through warm water on marine life. (U.S.)

  13. Methanol wetting enthalpy on few-layer graphene decorated hierarchical carbon foam for cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Paul, R., E-mail: paul24@purdue.edu [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Zemlyanov, D. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Voevodin, A.A.; Roy, A.K. [Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States); Fisher, T.S. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2014-12-01

    Vertical few-layer thick graphene petals are grown on macro-porous carbon foam surfaces having an intrinsic open porosity of 75%. This provides a hierarchical porous structure with a potential for surface adsorption/desorption or wetting/dewetting based thermal energy storage applications. Carbon foams have a combined advantage of large surface area and high thermal conductivity critical for thermal energy storage, but they are prone to oxidation and exhibit low adsorption enthalpies for lightweight hydrocarbons. Here we report graphene petal decoration of carbon foam surfaces and subsequent chemical modification through boron nitride incorporation in hexagonal carbon planes of both carbon foams and graphene petals. This chemically reactive hierarchical structure is characterized with FESEM, Raman, XRD, and XPS measurements. Methanol wetting enthalpy of this three-dimensional hierarchical material was measured with a solution calorimeter, and had shown a six fold increase (from 78 to 522 J/g of foam) as compared to the carbon foam prior to the surface modification. Influences of petal decoration on the surface morphology of carbon foam, BN chemical modification, structure and stoichiometry of the hierarchical material surface, and methanol wetting enthalpy improvement are discussed in detail. The applicability of this hierarchical porous material for thermal energy applications is established. - Highlights: • 500 nm thick few layer graphene petals decoration vertically on macroporous carbon foam surface. • Microwave heating assisted chemical treatment for boron-nitride modification. • Defective petals edges due to boron nitride domain formation. • 20 at. % boron and nitrogen incorporation. • Six fold increase in methanol wetting enthalpy on boron-nitride modification.

  14. Methanol wetting enthalpy on few-layer graphene decorated hierarchical carbon foam for cooling applications

    International Nuclear Information System (INIS)

    Paul, R.; Zemlyanov, D.; Voevodin, A.A.; Roy, A.K.; Fisher, T.S.

    2014-01-01

    Vertical few-layer thick graphene petals are grown on macro-porous carbon foam surfaces having an intrinsic open porosity of 75%. This provides a hierarchical porous structure with a potential for surface adsorption/desorption or wetting/dewetting based thermal energy storage applications. Carbon foams have a combined advantage of large surface area and high thermal conductivity critical for thermal energy storage, but they are prone to oxidation and exhibit low adsorption enthalpies for lightweight hydrocarbons. Here we report graphene petal decoration of carbon foam surfaces and subsequent chemical modification through boron nitride incorporation in hexagonal carbon planes of both carbon foams and graphene petals. This chemically reactive hierarchical structure is characterized with FESEM, Raman, XRD, and XPS measurements. Methanol wetting enthalpy of this three-dimensional hierarchical material was measured with a solution calorimeter, and had shown a six fold increase (from 78 to 522 J/g of foam) as compared to the carbon foam prior to the surface modification. Influences of petal decoration on the surface morphology of carbon foam, BN chemical modification, structure and stoichiometry of the hierarchical material surface, and methanol wetting enthalpy improvement are discussed in detail. The applicability of this hierarchical porous material for thermal energy applications is established. - Highlights: • 500 nm thick few layer graphene petals decoration vertically on macroporous carbon foam surface. • Microwave heating assisted chemical treatment for boron-nitride modification. • Defective petals edges due to boron nitride domain formation. • 20 at. % boron and nitrogen incorporation. • Six fold increase in methanol wetting enthalpy on boron-nitride modification

  15. The Design of Cooling System Model on The AP1000 Containment

    International Nuclear Information System (INIS)

    Daddy Setyawan; Yerri Noer Kartiko; Aryadi Suwono; Ari Darmawan Pasek; Nathanael P Tandian; Efrizon Umar

    2009-01-01

    The policy of national energy leads to the utilization of new energy as nuclear energy, and also contains some efforts to increase reactor safety and optimizing in the design of safety system component such as passive cooling system on reactor containment tank. Because of this, the assessment of safety level to passive safety system needs to be made. To increase the understanding it, the design of cooling system model on containment tank should be done to get safety level on cooling system in the AP1000 containment. To reach the similar model with reality and inexpensive cost, we should make assessment about similarity and dimensionless number. While the heat transfer of air natural circulation and water spray cooling system are a result of gravity approach, we can calculate Grashof modification number and Reynolds number respectively. By this approach, we have a factor of forty for laboratory model. From this model, we hope that we get characteristic correlation to heat transfer on the containment of AP1000 for both air natural circulation and water spray result from gravity. Finally, we can assess the safety level of passive cooling system on the AP1000 containment. (author)

  16. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of constructing a mathematical model for a specific type of marine cooling system. The system in question is used for cooling the main engine and main engine auxiliary components, such as diesel generators, turbo chargers and main engine air coolers for certain classes...

  17. Model-based energy monitoring and diagnosis of telecommunication cooling systems

    International Nuclear Information System (INIS)

    Sorrentino, Marco; Acconcia, Matteo; Panagrosso, Davide; Trifirò, Alena

    2016-01-01

    A methodology is proposed for on-line monitoring of cooling load supplied by Telecommunication (TLC) cooling systems. Sensible cooling load is estimated via a proportional integral controller-based input estimator, whereas a lumped parameters model was developed aiming at estimating air handling units (AHUs) latent heat load removal. The joint deployment of above estimators enables accurate prediction of total cooling load, as well as of related AHUs and free-coolers energy performance. The procedure was then proven effective when extended to cooling systems having a centralized chiller, through model-based estimation of a key performance metric, such as the energy efficiency ratio. The results and experimental validation presented throughout the paper confirm the suitability of the proposed procedure as a reliable and effective energy monitoring and diagnostic tool for TLC applications. Moreover, the proposed modeling approach, beyond its direct contribution towards smart use and conservation of energy, can be fruitfully deployed as a virtual sensor of removed heat load into a variety of residential and industrial applications. - Highlights: • Accurate cooling load prediction in telecommunication rooms. • Development of an input-estimator for sensible cooling load simulation. • Model-based estimation of latent cooling load. • Model-based prediction of centralized chiller energy performance in central offices. • Diagnosis-oriented application of proposed cooling load estimator.

  18. An active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Teo, H.G.; Lee, P.S.; Hawlader, M.N.A.

    2012-01-01

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  19. Investigation on flow stability of supercritical water cooled systems

    International Nuclear Information System (INIS)

    Cheng, X.; Kuang, B.

    2006-01-01

    Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in various fields, e.g. thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior of supercritical water cooled systems. Although many thermal-hydraulic research activities were carried out worldwide in the past as well as in the near present, studies on dynamic behavior and flow stability of SC water cooled systems are scare. Due to the strong density variation, flow stability is expected to be one of the key items which need to be taken into account in the design of a SCWR. In the present work, the dynamic behavior and flow stability of SC water cooled systems are investigated using both numerical and theoretical approaches. For this purpose a new computer code SASC was developed, which can be applied to analysis the dynamic behavior of systems cooled by supercritical fluids. In addition, based on the assumptions of a simplified system, a theoretical model was derived for the prediction of the onset of flow instability. A comparison was made between the results obtained using the theoretical model and those from the SASC code. A good agreement was achieved. This gives the first evidence of the reliability of both the SASC code and the theoretical model

  20. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Science.gov (United States)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  1. Environmental aspects of the district cooling system application

    International Nuclear Information System (INIS)

    Bitrakovski, Dragan

    2006-01-01

    The use of air-conditioning equipment based on CFC and HCFC fluids has a direct influence on the occurrence of the greenhouse effect and damage of the ozone layer. Besides the obligatory shift og HCF cooling fluids, the reduction of such negative influences may also be achieved by the application of the district cooling system to the air-conditioning plants in the area. The paper includes example of the application of the district system, with positive effect regarding the ozone layer protection and greenhouse effect prevention. (Author)

  2. Design of the cooling systems for the multiplicity and vertex detector

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Cunningham, R.

    1997-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is being constructed to investigate a phase of matter termed the quark-gluon plasma. The plasma will be produced through the collision of two heavy ions. The multiplicity and vertex detector (MVD) located in the center of PHENIX will characterize the events, determine the collision point, and act as a central trigger. This report presents the final mechanical designs of the cooling systems for the Multiplicity and Vertex Detector (MVD). In particular, the design procedure and layouts are discussed for two different air cooling systems for the multichip modules and MVD enclosure, and a liquid cooling system for the low dropout voltage regulators. First of all, experimental prototype cooling system test results used to drive the final mechanical designs are summarized and discussed. Next, the cooling system requirements and design calculation for the various subsystem components are presented along with detailed lists of supply vendors, components, and costs. Finally, safety measures incorporated in the final mechanical design and operation procedures for each of the subsystems are detailed

  3. Water cooling system for sintering furnaces of nuclear fuel pellets

    International Nuclear Information System (INIS)

    1996-01-01

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author)

  4. Wetting of alkanes on water

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, E.; Bonn, D.; Meunier, J.; Shahidzadeh, N. [Ecole Normale Superieure, Laboratoire de Physique Statistique, 24 rue Lhomond, 75231, Cedex 05 Paris (France); Broseta, D.; Ragil, K. [Institut Francais du Petrole, 1-4 avenue de Bois Preau, 92852 Rueil-Malmaison Cedex (France); Dobbs, H.; Indekeu, J.O. [Katholieke Universiteit Leuven, Laboratorium voor Vaste-Stoffysica en Magnetisme, B-3001 Leuven (Belgium)

    2002-04-01

    The wetting behavior of oil on water (or brine) has important consequences for the transport properties of oil in water-containing porous reservoirs, and consequently for oil recovery. The equilibrium wetting behavior of model oils composed of pure alkanes or alkane mixtures on brine is reviewed in this paper. Intermediate between the partial wetting state, in which oil lenses coexist on water with a thin film of adsorbed alkane molecules, and the complete wetting state, in which a macroscopically thick oil layer covers the water, these systems display a third, novel wetting state, in which oil lenses coexist with a mesoscopic (a few-nanometers-thick) oil film. The nature and location of the transitions between these wetting regimes depend on oil and brine compositions, temperature and pressure.

  5. Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Hongxing; Spitler, Jeffrey D.; Fang, Zhaohong

    2011-01-01

    Highlights: → Propose a novel HGCHP system with NCR works as supplemental heat rejecter. → Establish the analytical model and computer program of NCR and novel HGCHP system to simulate their operation performance. → Design the novel HGCHP system for a sample building located in Hong Kong. → It is found to be feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system. → The novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings. -- Abstract: When the ground coupled heat pump (GCHP) system is utilized for air conditioning in cooling load dominated buildings, the heat rejected into ground will accumulate around the ground heat exchangers (GHE) and results in system performance degradation. A novel hybrid ground coupled heat pump (HGCHP) system with nocturnal cooling radiator (NCR) works as supplemental heat rejecter is proposed in this paper to resolve this problem. The practical analytical model of NCR and novel HGCHP system are established. The computer program based on established model is developed to simulate the system operation performance. The novel HGCHP system is designed and simulated for a sample building located in Hong Kong, and a simple life cycle cost comparisons are carried out between this system and conventional GCHP system. The results indicate that it is feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system for cooling load dominated buildings even those located in humid subtropical climate areas. This novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings, and it is especially suitable for buildings with limited surface land areas.

  6. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  7. Noise from cooling towers of power parks

    International Nuclear Information System (INIS)

    Zakaria, J.; Moore, F.K.

    1975-01-01

    A study is presented of the noise pollution problem for large power parks proposed for the future. Such parks might have an area of about 75 sq. miles, and a generating capacity up to 48000 MW. A comparative analysis has been done for natural and mechanical-draft wet towers as the major sources of acoustic power. Noise radiation from single isolated towers as well as from a dispersed array of towers has been considered for both types of cooling systems. Major noise attenuation effects considered are due to the atmospheric absorption and A-weighting. Conditions of 60F and 70 percent relative humidity in a still atmosphere have been assumed

  8. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity.

    Science.gov (United States)

    Trujillo, Macarena; Bon, Jose; Berjano, Enrique

    2017-09-01

    (1) To analyse rehydration, thermal convection and increased electrical conductivity as the three phenomena which distinguish the performance of internally cooled electrodes (IC) and internally cooled wet (ICW) electrodes during radiofrequency ablation (RFA), (2) Implement a RFA computer model with an ICW which includes these phenomena and (3) Assess their relative influence on the thermal and electrical tissue response and on the coagulation zone size. A 12-min RFA in liver was modelled using an ICW electrode (17 G, 3 cm tip) by an impedance-control pulsing protocol with a constant current of 1.5 A. A model of an IC electrode was used to compare the ICW electrode performance and the computational results with the experimental results. Rehydration and increased electrical conductivity were responsible for an increase in coagulation zone size and a delay (or absence) in the occurrence of abrupt increases in electrical impedance (roll-off). While the increased electrical conductivity had a remarkable effect on enlarging the coagulation zone (an increase of 0.74 cm for differences in electrical conductivity of 0.31 S/m), rehydration considerably affected the delay in roll-off, which, in fact, was absent with a sufficiently high rehydration level. In contrast, thermal convection had an insignificant effect for the flow rates considered (0.05 and 1 mL/min). Computer results suggest that rehydration and increased electrical conductivity were mainly responsible for the absence of roll-off and increased size of the coagulation zone, respectively, and in combination allow the thermal and electrical performance of ICW electrodes to be modelled during RFA.

  9. Coupling model and solving approach for performance evaluation of natural draft counter-flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available When searching for the optimum condenser cooling water flow in a thermal power plant with natural draft cooling towers, it is essential to evaluate the outlet water temperature of cooling towers when the cooling water flow and inlet water temperature change. However, the air outlet temperature and tower draft or inlet air velocity are strongly coupled for natural draft cooling towers. Traditional methods, such as trial and error method, graphic method and iterative methods are not simple and efficient enough to be used for plant practice. In this paper, we combine Merkel equation with draft equation, and develop the coupled description for performance evaluation of natural draft cooling towers. This model contains two inputs: the cooling water flow, the inlet cooling water temperature and two outputs: the outlet water temperature, the inlet air velocity, equivalent to tower draft. In this model, we furthermore put forward a soft-sensing algorithm to calculate the total drag coefficient instead of empirical correlations. Finally, we design an iterative approach to solve this coupling model, and illustrate three cases to prove that the coupling model and solving approach proposed in our paper are effective for cooling tower performance evaluation.

  10. System for cooling the containment vessel of a nuclear reactor

    International Nuclear Information System (INIS)

    Costes, Didier.

    1982-01-01

    The invention concerns a post-accidental cooling system for a nuclear reactor containment vessel. This system includes in series a turbine fed by the moist air contained in the vessel, a condenser in which the air is dried and cooled, a compressor actuated by the turbine and a cooling exchanger. The cold water flowing through the condenser and in the exchanger is taken from a tank outside the vessel and injected by a pump actuated by the turbine. The application is for nuclear reactors under pressure [fr

  11. System and method for regulating EGR cooling using a rankine cycle

    Science.gov (United States)

    Ernst, Timothy C.; Morris, Dave

    2015-12-22

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  12. Structural design of the toroidal configuration of the HTS SMES cooling system

    International Nuclear Information System (INIS)

    Yeom, H.K.; Koh, D.Y.; Ko, J.S.; Kim, H.B.; Hong, Y.J.; Kim, S.H.; Seong, K.C.

    2011-01-01

    The superconducting magnetic energy storage (SMES) system is working on around 30 K, because the magnet is made of high temperature superconductor. To maintain the cryogenic temperature, the superconducting coil is cooled by cryogen, helium gas or liquid neon. But there are some weak points in the cryogen cooling system. For example periodic charge of the cryogen and size is big and so on. So, we have designed the conduction cooling system for toroidal configuration HTS SMES. The toroidal type HTS SMES has some merits, so it is very small magnetic field leakage, and magnetic field applied perpendicular to the tape surface can be reduced. Our system has 28 numbers of HTS double pancake coils and they are arrayed toroidal configuration. The toroidal inner radius is 162 mm, and outer radius is 599 mm, and height is about 162 mm. In this study, we have designed the cooling structure and analyzed temperature distribution of cooling path, thermal stress and deformation of the cooling structure.

  13. Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system

    International Nuclear Information System (INIS)

    Liu, Di; Zhao, Fu-Yun; Yang, Hong-Xing; Tang, Guang-Fa

    2015-01-01

    In the present study, a thermoelectric mini cooler coupling with a micro thermosiphon cooling system has been proposed for the purpose of CPU cooling. A mathematical model of heat transfer, depending on one-dimensional treatment of thermal and electric power, is firstly established for the thermoelectric module. Analytical results demonstrate the relationship between the maximal COP (Coefficient of Performance) and Q c with the figure of merit. Full-scale experiments have been conducted to investigate the effect of thermoelectric operating voltage, power input of heat source, and thermoelectric module number on the performance of the cooling system. Experimental results indicated that the cooling production increases with promotion of thermoelectric operating voltage. Surface temperature of CPU heat source linearly increases with increasing of power input, and its maximum value reached 70 °C as the prototype CPU power input was equivalent to 84 W. Insulation between air and heat source surface can prevent the condensate water due to low surface temperature. In addition, thermal performance of this cooling system could be enhanced when the total dimension of thermoelectric module matched well with the dimension of CPU. This research could benefit the design of thermal dissipation of electronic chips and CPU units. - Highlights: • A cooling system coupled with thermoelectric module and loop thermosiphon is developed. • Thermoelectric module coupled with loop thermosiphon can achieve high heat-transfer efficiency. • A mathematical model of thermoelectric cooling is built. • An analysis of modeling results for design and experimental data are presented. • Influence of power input and operating voltage on the cooling system are researched

  14. The use of hybrid dry cooling towers/condensors; Einsatz von hybriden Trockenkuehltuermen/Verfluessigern

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W. [Jaeggi/Guentner AG, Feldmeilen (Switzerland). Niederlassung Ostschweiz

    1998-03-01

    The hybride dry cooling tower/condenser has a closed circuit and an air side heat transfer surface which can be wetted. It is used for recooling of a liquide fluid (Water/Glycole) or for condensation of refrigerant by outdoor air and by evaporation of water from a secondary loop. This cooling tower concept has higher first costs, but considerably lower annual costs compared with similar cooling systems. The economy can be shown by a calculated example. (orig.) [Deutsch] Der hybride Trockenkuehlturm/Verfluessiger hat einen geschlossenen Kreislauf und eine wasserbenetzbare, luftseitige Waermeuebertragungsflaeche. Er dient der Rueckkuehlung eines fluessigen Mediums (Wasser/Glykol) oder der Verfluessigung von Kaeltemitteln mittels Umgebungsluft und durch Verdunstung von Wasser aus einem Sekundaerkreislauf. Dieser Kuehlturm hat hoehere Investitionskosten, aber wesentlich tiefere Jahreskosten als aehnliche Kuehlsysteme. Die Wirtschaftlichkeit wird anhand eines gerechneten Beispiels nachgewiesen. (orig.)

  15. Cooling system with compressor bleed and ambient air for gas turbine engine

    Science.gov (United States)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  16. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  17. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    International Nuclear Information System (INIS)

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial

  18. Wind turbine generators having wind assisted cooling systems and cooling methods

    Science.gov (United States)

    Bagepalli, Bharat [Niskayuna, NY; Barnes, Gary R [Delanson, NY; Gadre, Aniruddha D [Rexford, NY; Jansen, Patrick L [Scotia, NY; Bouchard, Jr., Charles G.; Jarczynski, Emil D [Scotia, NY; Garg, Jivtesh [Cambridge, MA

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  19. Experimental study on solar desiccant cooling system. 2nd Report; Taiyonetsu kudo desiccant cooling system no jikkenteki kento. 2

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Funato, H [Fukuoka Institute of Technology, Fukuoka (Japan); Kuma, T [Seibu Giken Co. Ltd., Fukuoka (Japan)

    1996-10-27

    Study has been made about a desiccant cleaning system using solar heated water for regenerating the dehumidifier. A dehumidifier and evaporation coolers are combined to attain a synergistic effect in dehumidifying and cooling the air in the house. The simultaneous control of humidity and temperature, however, is quite difficult. Under the circumstances, an evaporation cooler was removed from the outdoor air intake side, to leave a humidifier alone for the control of humidity only. In addition, the length of the dehumidifier was reduced into half for saving fan driving power and for downscaling the model. With only one evaporation cooler in operation that is installed at the exhaust side, the cooling effect is diminished by half. For dealing with the situation, ultrasonic atomization is performed at the exhaust side evaporation cooler for the improvement of the air cooling effect for the next sensible heat exchanger (intake side). The return air is heated by the solar heater water (approximately 60{degree}C hot), regenerates the dehumidifier, and then exhausted. The atomization process elevates the cooling effect, and the resultant cooling effect was as high as that expected from a 2-cooler setup. The dehumidification effect, however, lowers a little. Exclusion of the atomization process will enhance the dehumidification effect, but will reduce the cooling effect as well. 3 refs., 8 figs., 3 tabs.

  20. Stochastic cooling with a double rf system

    International Nuclear Information System (INIS)

    Wei, Jie.

    1992-01-01

    Stochastic cooling for a bunched beam of hadrons stored in an accelerator with a double rf system of two different frequencies has been investigated. The double rf system broadens the spread in synchrotron-oscillation frequency of the particles when they mostly oscillate near the center of the rf bucket. Compared with the ease of a single rf system, the reduction rates of the bunch dimensions are significantly increased. When the rf voltage is raised, the reduction rate, instead of decreasing linearly, now is independent of the ratio of the bunch area to the bucket area. On the other hand, the spread in synchrotron-oscillation frequency becomes small with the double rf system, if the longitudinal oscillation amplitudes of the particles are comparable to the dimension of the rf bucket. Consequently, stochastic cooling is less effective when the bunch area is close to the bucket area

  1. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele; Peretti, Clara

    2014-01-01

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  2. Strategy for the Operation of Cooling Towers with variable Speed Fans

    CERN Document Server

    Iñigo-Golfín, J

    2001-01-01

    Within the SPS Cooling Water Project at CERN aimed at the reduction of water consumption, this primary open cooling loop will be closed and all the primary cooling circuit components will be upgraded to the new required duty and brought to the necessary safety and operability standards. In particular the tower fans will be fitted with variable frequency drives to replace the existing two speed motors. This paper presents a study to optimize the operation of SPS cooling towers taking into account outdoor conditions (wet and dry bulb temperatures) and the entirety of the primary circuit in which they will operate.

  3. Investigation on integrity of JMTR concrete structures, cooling system and utility facilities

    International Nuclear Information System (INIS)

    Ebisawa, Hiroyuki; Tobita, Kenji; Fukasaku, Akitomi; Kaminaga, Masanori

    2010-02-01

    The condition of facilities and components to be used for re-operation of the Japan Materials Testing Reactor (JMTR) from FY2011, was investigated before the refurbishment work. An investigation of aged components (aged-investigation) was carried out for concrete structures of the JMTR reactor building, exhaust stack, trench, canal, filter banks and for aged components of tanks in the primary cooling system, heat exchangers, pipes in the secondary cooling system, cooling tower, emergency generators and so on, in order to identify their integrity. The aged-investigation was carried out from the beginning of FY2007. As a result, cracks of concrete structures such as the exhaust stack, a foundation of the UCL (Utility Cooling Line) elevated water tank were repaired and pipe linings of secondary cooling system were replaced. Motors of primary cooling pumps, pumps in the secondary cooling system and in other systems were decided to replace from viewpoints of future maintenance and improvement of reliability. Other components and the reactor building were decided to use continuously for a long-term by appropriate maintenance activities based on the long-term maintenance plan. In this paper, the aged-investigation for the JMTR reactor building, heat exchangers and emergency generators is presented. (author)

  4. Conceptual design of reactor TRIGA PUSPATI (RTP) spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Tonny Lanyau; Mazleha Maskin; Mohd Fazli Zakaria; Mohmammad Suhaimi Kassim; Ahmad Nabil Abdul Rahim; Phongsakorn Prak Tom; Mohd Fairus Abdul Farid; Mohd Huzair Hussain

    2012-01-01

    After undergo about 30 years of safe operation, Reactor TRIGA PUSPATI (RTP) was planned to be upgraded to ensure continuous operation at optimum safety condition. In the meantime, upgrading is essential to get higher flux to diversify the reactor utilization. Spent fuel pool is needed for temporary storage of the irradiated fuel before sending it back to original country for reprocessing, reuse after the upgrading accomplished or final disposal. The irradiated fuel elements need to be secure physically with continuous cooling to ensure the safety of the fuels itself. The decay heat probably still exist even though the fuel elements not in the reactor core. Therefore, appropriate cooling is required to remove the heat produced by decay of the fission product in the irradiated fuel element. The design of spent fuel pool cooling system (SFPCS) was come to mind in order to provide the sufficient cooling to the irradiated fuel elements and also as a shielding. The spent fuel pool cooling system generally equipped with pumps, heat exchanger, water storage tank, valve and piping. The design of the system is based on criteria of the primary cooling system. This paper provides the conceptual design of the spent fuel cooling system. (author)

  5. Commissioning of Fermilab's Electron Cooling System for 8-GeV Antiprotons

    CERN Document Server

    Nagaitsev, Sergei; Burov, Alexey; Carlson, Kermit; Gai, Wei; Gattuso, Consolato; Hu, Martin; Kazakevich, Grigory; Kramper, Brian J; Kroc, Thomas K; Leibfritz, Jerry; Prost, Lionel; Pruss, Stanley M; Saewert, Greg W; Schmidt, Chuck; Seletsky, Sergey; Shemyakin, Alexander V; Sutherland, Mary; Tupikov, Vitali; Warner, Arden

    2005-01-01

    A 4.3-MeV electron cooling system has been installed at Fermilab in the Recycler antiproton storage ring and is being currently commissioned. The cooling system is designed to assist accumulation of 8.9-GeV/c antiprotons for the Tevatron collider operations. This paper will report on the progress of the electron beam commissioning effort as well as on detailed plans of demonstrating the cooling of antiprotons.

  6. Preliminary design of the cooling system for a gas-cooled, high-fluence fast pulsed reactor (HFFPR)

    International Nuclear Information System (INIS)

    Monteith, H.C.

    1978-10-01

    The High-Fluence Fast Pulsed Reactor (HFFPR) is a research reactor concept currently being evaluated as a source for weapon effects experimentation and advanced reactor safety experiments. One of the designs under consideration is a gas-cooled design for testing large-scale weapon hardware or large bundles of full-length, fast reactor fuel pins. This report describes a conceptual cooling system design for such a reactor. The primary coolant would be helium and the secondary coolant would be water. The size of the helium-to-water heat exchanger and the water-to-water heat exchanger will be on the order of 0.9 metre (3 feet) in diameter and 3 metres (10 feet) in length. Analysis indicates that the entire cooling system will easily fit into the existing Sandia Engineering Reactor Facility (SERF) building. The alloy Incoloy 800H appears to be the best candidate for the tube material in the helium-to-water heat exchanger. Type 316 stainless steel has been recommended for the shell of this heat exchanger. Estimates place the cost of the helium-to-water heat exchanger at approximately $100,000, the water-to-water heat exchanger at approximately $25,000, and the helium pump at approximately $450,000. The overall cost of the cooling system will approach $2 million

  7. Field evaluation of performance of radiant heating/cooling ceiling panel system

    DEFF Research Database (Denmark)

    Li, Rongling; Yoshidomi, Togo; Ooka, Ryozo

    2015-01-01

    heating/coolingceiling panel system is used. However, no standard exists for the in situ performance evaluation of radiantheating/cooling ceiling systems; furthermore, no published database is available for comparison. Thus,this study aims to not only clarify the system performance but also to share our...... experience and our resultsfor them to serve as a reference for other similar projects. Here, the system performance in relation toits heating/cooling capacity and thermal comfort has been evaluated. The heat transfer coefficient fromwater to room was 3.7 W/(m2K) and 4.8 W/(m2K) for heating and cooling cases...

  8. Analytical and experimental investigation of closed-cycle sorption cooling systems

    Science.gov (United States)

    Liu, Lianquan

    1992-01-01

    The first part of the present thesis concerns the Coefficient of Performance (COP) of two types of closed-cycle sorption cooling systems: the Single Effect Liquid (SEL) absorption system and the Regenerative Solid (RS) adsorption system. When specific cycle configurations are considered, the COP is always less than that allowed by the second law. The potential of the two systems to approach the second law limit is considered in this work. The analysis shows that COP of a SEL system using LiBr-H2O is not limited by one, as believed before, and that the COP of a RS cooling system using zeolite-water is considerably larger than that of the SEL system. This is due to recovery of the heat of adsorption which is made possible by capturing the thermal wave in the solid adsorbent. In the second part, a one dimensional model has been developed for a real RS cooling system featured by finite heat transfer coefficients. The problem is solved numerically to yield the temperature and uptake profiles, COP, and cooling capacity and cooling rates. The effects of various design and operating parameters on system performance have been investigated by using the model. The convective heat transfer coefficient at the inner wall of the fluid channel passing through the zeolite columns, the flow rate of the heat transfer fluid, the condenser and evaporator temperature are identified as the most significant factors. A new correlation of adsorption equilibrium has been derived in this thesis. The derivation is based on established thermodynamic relationships and is shown to be able to well represent the data of three adsorption pairs widely used in sorption cooling applications: zeolite-water, silica gel-water and activated carbon-methanol. Finally, in the experimental part of the present work a test set-up of a zeolite-water heat and mass regenerator was designed, instrumented and built. Temperature profiles at various operating conditions were measured. The data of a 'single blow' mode

  9. Status of helium-cooled nuclear power systems. [Development potential

    Energy Technology Data Exchange (ETDEWEB)

    Melese-d' Hospital, G.; Simnad, M

    1977-09-01

    Helium-cooled nuclear power systems offer a great potential for electricity generation when their long-term economic, environmental, conservation and energy self-sufficiency features are examined. The high-temperature gas-cooled reactor (HTGR) has the unique capability of providing high-temperature steam for electric power and process heat uses and/or high-temperature heat for endothermic chemical reactions. A variation of the standard steam cycle HTGR is one in which the helium coolant flows directly from the core to one or more closed cycle gas turbines. The effective use of nuclear fuel resources for electric power and nuclear process heat will be greatly enhanced by the gas-cooled fast breeder reactor (GCFR) currently being developed. A GCFR using thorium in the radial blanket could generate sufficient U-233 to supply the fuel for three HTGRs, or enough plutonium from a depleted uranium blanket to fuel a breeder economy expanding at about 10% per year. The feasibility of utilizing helium to cool a fusion reactor is also discussed. The status of helium-cooled nuclear energy systems is summarized as a basis for assessing their prospects. 50 references.

  10. The development of a solar residential heating and cooling system

    Science.gov (United States)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  11. Emergency core cooling system in BWR type reactors

    International Nuclear Information System (INIS)

    Takizawa, Yoji

    1981-01-01

    Purpose: To rapidly recover the water level in the reactor upon occurrence of slight leakages in the reactor coolant pressure boundary, by promoting the depressurization in the reactor to thereby rapidly increase the high pressure core spray flow rate. Constitution: Upon occurrence of reactor water level reduction, a reactor isolation cooling system and a high pressure core spray system are actuated to start the injection of coolants into a reactor pressure vessel. In this case, if the isolation cooling system is failed to decrease the flow rate in a return pipeway, flow rate indicators show a lower value as compared with a predetermined value. The control device detects it and further confirms the rotation of a high pressure spray pump to open a valve. By the above operation, coolants pumped by the high pressure spray pump is flown by way of a communication pipeway to the return pipeway and sprayed from the top of the pressure vessel. This allows the vapors on the water surface in the pressure vessel to be cooled rapidly and increases the depressurization effects. (Horiuchi, T.)

  12. A passive cooling system proposal for multifunction and high-power displays

    Science.gov (United States)

    Tari, Ilker

    2013-03-01

    Flat panel displays are conventionally cooled by internal natural convection, which constrains the possible rate of heat transfer from the panel. On one hand, during the last few years, the power consumption and the related cooling requirement for 1080p displays have decreased mostly due to energy savings by the switch to LED backlighting and more efficient electronics. However, on the other hand, the required cooling rate recently started to increase with new directions in the industry such as 3D displays, and ultra-high-resolution displays (recent 4K announcements and planned introduction of 8K). In addition to these trends in display technology itself, there is also a trend to integrate consumer entertainment products into displays with the ultimate goal of designing a multifunction device replacing the TV, the media player, the PC, the game console and the sound system. Considering the increasing power requirement for higher fidelity in video processing, these multifunction devices tend to generate very high heat fluxes, which are impossible to dissipate with internal natural convection. In order to overcome this obstacle, instead of active cooling with forced convection that comes with drawbacks of noise, additional power consumption, and reduced reliability, a passive cooling system relying on external natural convection and radiation is proposed here. The proposed cooling system consists of a heat spreader flat heat pipe and aluminum plate-finned heat sink with anodized surfaces. For this system, the possible maximum heat dissipation rates from the standard size panels (in 26-70 inch range) are estimated by using our recently obtained heat transfer correlations for the natural convection from aluminum plate-finned heat sinks together with the surface-to-surface radiation. With the use of the proposed passive cooling system, the possibility of dissipating very high heat rates is demonstrated, hinting a promising green alternative to active cooling.

  13. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  14. Parametric study on the advantages of weather-predicted control algorithm of free cooling ventilation system

    International Nuclear Information System (INIS)

    Medved, Sašo; Babnik, Miha; Vidrih, Boris; Arkar, Ciril

    2014-01-01

    Predicted climate changes and the increased intensity of urban heat islands, as well as population aging, will increase the energy demand for the cooling of buildings in the future. However, the energy demand for cooling can be efficiently reduced by low-exergy free-cooling systems, which use natural processes, like evaporative cooling or the environmental cold of ambient air during night-time ventilation for the cooling of buildings. Unlike mechanical cooling systems, the energy for the operation of free-cooling system is needed only for the transport of the cold from the environment into the building. Because the natural cold potential is time dependent, the efficiency of free-cooling systems could be improved by introducing a weather forecast into the algorithm for the controlling. In the article, a numerical algorithm for the optimization of the operation of free-cooling systems with night-time ventilation is presented and validated on a test cell with different thermal storage capacities and during different ambient conditions. As a case study, the advantage of weather-predicted controlling is presented for a summer week for typical office room. The results show the necessity of the weather-predicted controlling of free-cooling ventilation systems for achieving the highest overall energy efficiency of such systems in comparison to mechanical cooling, better indoor comfort conditions and a decrease in the primary energy needed for cooling of the buildings. - Highlights: • Energy demand for cooling will increase due to climate changes and urban heat island • Free cooling could significantly reduce energy demand for cooling of the buildings. • Free cooling is more effective if weather prediction is included in operation control. • Weather predicted free cooling operation algorithm was validated on test cell. • Advantages of free-cooling on mechanical cooling is shown with different indicators

  15. Design change of tower cooling water system for proton accelerator research center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Song, I. T.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Han, Y. G.

    2012-01-01

    The Tower Cooling Water System (TC) is designed to reject the heat load generated by operating the accelerators and the utility facilities through the component cooling water (CCW) heat exchangers. The circulating water discharged from the circulating water pumps passes through the CCW heat exchangers, the Chiller condenser and the air compressor, and the heated circulating water is return to the cooling tower for the heat removal. In this study, The design of Tower Cooling Water System is changed as follows : At First, The quantity of cells is changed into six in order to operate the cooling tower accurately correspond with condition of each equipment of head loads. The fans of cooling tower are controlled by the signal of TEW installed in the latter parts of it. The type of circulation water pump is modified to centrifugal pump and debris filter system is deleted

  16. Design change of tower cooling water system for proton accelerator research center

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, G. P.; Kim, J. Y.; Song, I. T.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Han, Y. G. [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The Tower Cooling Water System (TC) is designed to reject the heat load generated by operating the accelerators and the utility facilities through the component cooling water (CCW) heat exchangers. The circulating water discharged from the circulating water pumps passes through the CCW heat exchangers, the Chiller condenser and the air compressor, and the heated circulating water is return to the cooling tower for the heat removal. In this study, The design of Tower Cooling Water System is changed as follows : At First, The quantity of cells is changed into six in order to operate the cooling tower accurately correspond with condition of each equipment of head loads. The fans of cooling tower are controlled by the signal of TEW installed in the latter parts of it. The type of circulation water pump is modified to centrifugal pump and debris filter system is deleted.

  17. Emergency cooling system for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Murata, Ryoichi; Fujiwara, Toshikatsu.

    1980-01-01

    Purpose: To suitably cool liquid metal as coolant in emergency in a liquid metal cooled reactor by providing a detector for the pressure loss of the liquid metal passing through a cooling device in a loop in which the liquid metal is flowed and communicating the detector with a coolant flow regulator. Constitution: A nuclear reactor is stopped in nuclear reaction by control element or the like in emergency. If decay heat is continuously generated for a while and secondary coolant is insufficiently cooled with water or steam flowed through a steam and water loop, a cooler is started. That is, low temperature air is supplied by a blower through an inlet damper to the cooler to cool the secondary coolant flowed into the cooler through a bypass pipe so as to finally safely stop an entire plant. Since the liquid metal is altered in its physical properties by the temperature at this time, it is detected to regulate the opening of the valve of the damper according to the detected value. (Sekiya, K.)

  18. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain...

  19. Electric drive systems including smoothing capacitor cooling devices and systems

    Energy Technology Data Exchange (ETDEWEB)

    Dede, Ercan Mehmet; Zhou, Feng

    2017-02-28

    An electric drive system includes a smoothing capacitor including at least one terminal, a bus bar electrically coupled to the at least one terminal, a thermoelectric device including a first side and a second side positioned opposite the first side, where the first side is thermally coupled to at least one of the at least one terminal and the bus bar, and a cooling element thermally coupled to the second side of the thermoelectric device, where the cooling element dissipates heat from the thermoelectric device.

  20. Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Anna Laura Pisello

    2015-03-01

    Full Text Available In recent years there has been a growing interest in the development and thermal-energy analysis of passive solutions for reducing building cooling needs and thus improving indoor thermal comfort conditions. In this view, several studies were carried out about cool roofs and cool coatings, producing acknowledged mitigation effects on urban heat island phenomenon. The purpose of this work is to investigate the thermal-energy performance of cool louvers of shutters, usually installed in residential buildings, compared to dark color traditional shading systems. To this aim, two full-scale prototype buildings were continuously monitored under summer conditions and the role of the cool shutter in reducing the overheating of the shading system and the energy requirements for cooling was analyzed. After an in-lab optical analysis of the cool coating, showing a huge solar reflectance increase with respect to the traditional configuration, i.e., by about 75%, field monitoring results showed that the cool shutter is able to decrease the indoor air temperature up to 2 °C under free floating conditions. The corresponding energy saving was about 25%, with even much higher peaks during very hot summer conditions.

  1. Unlimited cooling capacity of the passive-type emergency core cooling system of the MARS reactor

    International Nuclear Information System (INIS)

    Bandini, G.; Caira, M.; Naviglio, A.; Sorabella, L.

    1995-01-01

    The MARS nuclear plant is equipped with a 600 MWth PWR type nuclear steam supply system, with completely innovative engineered core safeguards. The most relevant innovative safety system of this plant is its Emergency Core Cooling System, which is completely passive (with only one non static component). The Emergency Core Cooling System (ECCS) of the MARS reactor is natural-circulation, passive-type, and its intervention follows a core flow decrease, whatever was the cause. The operation of the system is based on a cascade of three fluid systems, functionally interfacing through heat exchangers; the first fluid system is connected to the reactor vessel and the last one includes an atmospheric-pressure condenser, cooled by external air. The infinite thermal capacity of the final heat sink provides the system an unlimited autonomy. The capability and operability of the system are based on its integrity and on the integrity of the primary coolant boundary (both of them are permanently enclosed in a pressurized containment; 100% redundancy is also foreseen) and on the operation of only one non static component (a check valve), with 400% redundancy. In the paper, all main thermal hydraulic transients occurring as a consequence of postulated accidents are analysed, to verify the capability of the passive-type ECCS to intervene always in time, without causing undue conditions of reduced coolability of the core (DNB, etc.), and to verify its capability to guarantee a long-term (indefinite) coolability of the core without the need of any external intervention. (author)

  2. Thermoelectric self-cooling for power electronics: Increasing the cooling power

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Astrain, David; Aranguren, Patricia

    2016-01-01

    Thermoelectric self-cooling was firstly conceived to increase, without electricity consumption, the cooling power of passive cooling systems. This paper studies the combination of heat pipe exchangers and thermoelectric self-cooling, and demonstrates its applicability to the cooling of power electronics. Experimental tests indicate that source-to-ambient thermal resistance reduces by around 30% when thermoelectric self-cooling system is installed, compared to that of the heat pipe exchanger under natural convection. Neither additional electric power nor cooling fluids are required. This thermal resistance reaches 0.346 K/W for a heat flux of 24.1 kW/m"2, being one order of magnitude lower than that obtained in previous designs. In addition, the system adapts to the cooling demand, reducing this thermal resistance for increasing heat. Simulation tests have indicated that simple system modifications allow relevant improvements in the cooling power. Replacement of a thermoelectric module with a thermal bridge leads to 33.54 kW/m"2 of top cooling power. Likewise, thermoelectric modules with shorter legs and higher number of pairs lead to a top cooling power of 44.17 kW/m"2. These results demonstrate the applicability of thermoelectric self-cooling to power electronics. - Highlights: • Cooling power of passive systems increased. • No electric power consumption. • Applicable for the cooling of power electronics. • Up to 44.17 kW/m"2 of cooling power, one order of magnitude higher. • Source-to-ambient thermal resistance reduces by 30%.

  3. Solar cooling systems. Classification and energetic evaluation; Solare Kuehlsysteme. Klassifizierung und energetische Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Jakob [Technische Univ. Bergakademie Freiberg (Germany); Hafner, Armin [SINTEF Energy Research, Trondheim (Norway); Eikevik, Trygve M. [NTNU, Trondheim (Norway)

    2012-07-01

    The investigation of alternative, sustainable concepts for cold production is worthwhile in times of increasing energy demand for cooling and air conditioning applications. Energy sources such as solar radiation can help to reduce the burden on the environment and energy networks. Solar electricity from photovoltaic cells or solar power from solar collectors can be used in refrigerating equipment (such as cold vapor compression chiller, absorption chiller, adsorption chillers, open systems, thermo-mechanical systems or ejector-based systems) are fed in order to produce the desired coldness. In many cases, the temporal coincidence of radiation supply and cooling requirements makes the solar cooling to a promising concept, especially at sites with a high solar radiation, large cooling demand, high energy prices, or insufficient access to public power grids. A model-based investigation of different solar cooling systems with an equivalent cooling capacity was carried out. The results show that the performance potential strongly depends on the selected technology and the site of the system. A balanced daily energy balance can be achieved with an appropriately dimensioned solar power plant with cooling concept. Depending on the system and interpretation, primary energy savings or a primary energy overhead can be achieved within a year in comparison to a conventional system.

  4. Slab cooling system design using computer simulation

    NARCIS (Netherlands)

    Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.

    2007-01-01

    For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for

  5. Evaluation of two cooling systems under a firefighter coverall

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Wang, L.C.; Chou, S.N.; Huang, C.; Jou, G.T.; Daanen, H.A.M.

    2014-01-01

    Firemen often suffer from heat strain. This study investigated two chest cooling systems for use under a firefighting suit. In nine male subjects, a vest with water soaked cooling pads and a vest with water perfused tubes were compared to a control condition. Subjects performed 30 min walking and 10

  6. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high......-vacuumed cryostat. A two-stage GM cryocooler with a cooling power of 1.5 W at 4.2 K in the second stage is used to cool the system from room temperature to 4.2 K. In this paper, the detailed design, fabrication, thermal analysis and tests of the system are presented....

  7. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  8. Theoretical and experimental study of a cross-flow induced-draft cooling tower

    Directory of Open Access Journals (Sweden)

    Abo Elazm Mahmoud Mohamed

    2009-01-01

    Full Text Available The main objective of this study is to find a proper solution for the cross-flow water cooling tower problem, also to find an empirical correlation's controlling heat and mass transfer coefficients as functions of inlet parameters to the tower. This is achieved by constructing an experimental rig and a computer program. The computer simulation solves the problem numerically. The apparatus used in this study comprises a cross-flow cooling tower. From the results obtained, the 'characteristic curve' of cross-flow cooling towers was constructed. This curve is very helpful for designers in order to find the actual value of the number of transfer units, if the values of inlet water temperature or inlet air wet bulb temperature are changed. Also an empirical correlation was conducted to obtain the required number of transfer units of the tower in hot water operation. Another correlation was found to obtain the effectiveness in the wet bulb operation.

  9. Experimental results of a direct air-cooled ammonia–lithium nitrate absorption refrigeration system

    International Nuclear Information System (INIS)

    Llamas-Guillén, S.U.; Cuevas, R.; Best, R.; Gómez, V.H.

    2014-01-01

    Absorption thermal cooling systems driven by renewable energy are a viable option in order to reduce fossil fuel consumption and the associated emissions. This work shows the results of an air cooled absorption cooling prototype working with an ammonia–lithium nitrate mixture at high ambient temperatures. An absorption refrigeration system was designed and built. The prototype is a one stage ammonia–lithium nitrate air cooled chiller. The experimental system was instrumented to evaluate each component. This paper shows the operation conditions in the experimental unit as well as some of the heat loads encountered at different operating conditions. The system was operated successfully at ambient temperatures in the range of 25–35 °C. A series of test showed that even at ambient temperatures it can be operated at evaporator temperatures below 10 °C producing chilled water for air conditioning applications such as radiative cooling panels. The system proved to stabilize very quickly and no risk of crystallization was encountered so the first results are promising in order to continue with the development of a more advanced prototype. - Highlights: •Experimental results of a direct air-cooled ammonia–lithium nitrate system. •The prototype is a one stage ammonia–lithium nitrate air cooled chiller. •The absorption system was operated successfully at ambient temperatures. •Cooling loads of 4.5 kW were reached in the chilled water side

  10. Dry storage systems with free convection air cooling

    International Nuclear Information System (INIS)

    Kioes, S.R.

    1980-01-01

    Several design principles to remove heat from the spent fuel by free air convection are illustrated and described. The key safety considerations were felt to be: loss of coolant is impossible as the passive system uses air as a coolant; overheating is precluded because as the temperatures of the containers rises the coolant flow rate increases; mass of the storage building provides a large heat sink and therefore a rapid temperature rise is impossible; and lack of any active external support requirements makes the cooling process less likely to equipment or operator failures. An example of this type of storage already exists. The German HTGR is operated with spherical graphite fuel elements which are stored in canister and in storage cells. The concept is a double cooling system with free convection inside the cells and heat exchange via two side walls of the cell to the ambient air in the cooling ducts. Technical description of the TN 1300 cask is also presented

  11. Improvements in or relating to cooling systems for nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Ljubivy, A.G.; Batjukov, V.I.; Shkhian, T.G.; Fadeev, A.I.

    1980-01-01

    A cooling system is proposed which can be used to cool a set of nuclear fuel assemblies arranged in a reactor core or placed in a container for spent fuel assemblies. The object of the invention is to provide a system which would prevent leakage of coolant from the vessel in the event of a rupture of the coolant supply pipeline externally of the vessel. In the case of the reactor cooling system the level of the coolant is stopped from dropping below the level of the active portion of the fuel assemblies and thus prevents a breakdown of the reactor. (UK)

  12. Evaluation of conceptual Heat Exchanger Design for passive containment cooling system of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Ki; Hong, Soon Joon [FNC Tech., Yongin (Korea, Republic of); Kim, Young In; Kim, Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    PCCS(Passive containment cooling system) is the passive safety system which ultimately removes the reactor decay heat. Cooling performance of the air-cooled type and water-circulation cooling type of PCCS were analyzed using CAP version 2.21. The analysis results show the water-circulation cooling PCCS is more effective in lowering the peak pressure and temperature in the containment building. However, the air-cooled PCCS is more effective to the long-term cooling. From this study, the efficiency evaluation results for the two PCCS designs are obtained. These results may be applied in the PCCS design improvement. Moreover, these results will be used as a reference for the later PCCS design and analysis.

  13. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail: shamsulamri@tamu.edu; Dominguez-Ontiveros, E. E., E-mail: elvisdom@tamu.edu; Alhashimi, T., E-mail: jbudd123@tamu.edu; Budd, J. L., E-mail: dubaiboy@tamu.edu; Matos, M. D., E-mail: mailgoeshere@gmail.com; Hassan, Y. A., E-mail: yhasssan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  14. France uses the sun to cool its wine: the Banyuls winery solar cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-12-01

    The engineering consultancy Tecsol was asked to design a cooling system for a winery that would limit the variations in temperature during the year. Tecsol proposed a solar system. The total investment cost amounted to nearly two million French Francs (300,000 euros), almost double the cost of a conventional air-conditioning system. However, because the solar system reduced the conventional energy needs of the warehouse by about 40%, the French Agency for Environment and Energy Management (ADEME) provided a 37% subsidy for its rational use of energy. The 'Solarclim' solar installation has three functions: it produces hot water via 693 vacuum tube collectors with a useful surface of 130 m{sup 2}. The collectors are fixed to the roof of the wine cellar, which has an angle of 15 deg. Heat from the collectors is transferred to a 1000-litre hot water storage tank; it produces chilled water using a lithium bromide absorption plant with a nominal cooling capacity of 52 kW. This is housed in the technical premises on the lowest level and is used in conjunction with a 180 kW open-circuit cooling tower on the north facade; and the third function combines air-conditioning and, when necessary, space heating. The installation has been operating for 12 years with no particular problems. The equipment is environmentally friendly. The solar heat source avoids CO{sub 2} emissions, the absorption machine does not use CFCs or HCFCs, and the system is totally silent. (UK)

  15. Information technology equipment cooling system

    Science.gov (United States)

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  16. Cost comparison of dry-type and conventional cooling systems for representative nuclear generating plans

    International Nuclear Information System (INIS)

    Rossie, J.P.; Cecil, E.A.; Young, R.O.

    1974-01-01

    Results are presented of studies comparing the use of dry-type cooling towers with conventional cooling methods for representative pressurized-water-reactor nuclear power plants. The studies were based on the hypothetical use of dry-type cooling towers for three nuclear power plants now under construction which were designed and are being built to use conventional cooling methods. One of the plants is located in the northeastern United States, one in the Southeast and one in the West. The report also presents the results of comparisons based on a hypothetical plant at a typical eastern United States site. The three electric utilities which participated in these studies have furnished actual construction cost information for the conventional cooling systems being constructed, and the authors have made construction estimates for economically optimum dry cooling systems which might have been built in place of the conventional cooling systems being constructed. The report compares the physical and operating characteristics of dry-type and conventional cooling systems as well as the relative economics of the different cooling methods. The effect of dry cooling on the bus-bar cost of power has been computed for the three selected plants and for the typical eastern plant

  17. Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity

    International Nuclear Information System (INIS)

    Arabkoohsar, A.; Dremark-Larsen, M.; Lorentzen, R.; Andresen, G.B.

    2017-01-01

    Highlights: •A new configuration of compressed air energy storage system is proposed and analyzed. •This system, so-called subcooled-CAES, offers cogeneration of electricity, heat and cooling. •A pseudo-dynamic energy, exergy and economic analysis of the system for an entire year is presented. •The annual power, cooling and heat efficiencies of the system are around 31%, 32% and 92%. •The overall energy and exergy performance coefficients of the system are 1.55 and 0.48, respectively. -- Abstract: Various configurations of compressed air energy storage technology have received attention over the last years due to the advantages that this technology offers relative to other power storage technologies. This work proposes a new configuration of this technology aiming at cogeneration of electricity, heat and cooling. The new system may be very advantageous for locations with high penetration of renewable energy in the electricity grid as well as high heating and cooling demands. The latter would typically be locations with district heating and cooling networks. A thorough design, sizing and thermodynamic analysis of the system for a typical wind farm with 300 MW capacity in Denmark is presented. The results show a great potential of the system to support the local district heating and cooling networks and reserve services in electricity market. The values of power-to-power, power-to-cooling and power-to-heat efficiencies of this system are 30.6%, 32.3% and 92.4%, respectively. The exergy efficiency values are 30.6%, 2.5% and 14.4% for power, cooling and heat productions. A techno-economic comparison of this system with two of the most efficient previous designs of compressed air energy storage system proves the firm superiority of the new concept.

  18. COMMIX analysis of AP-600 Passive Containment Cooling System

    International Nuclear Information System (INIS)

    Chang, J.F.C.; Chien, T.H.; Ding, J.; Sun, J.G.; Sha, W.T.

    1992-01-01

    COMMIX modeling and basic concepts that relate components, i.e., containment, water film cooling, and natural draft air flow systems. of the AP-600 Passive Containment Cooling System are discussed. The critical safety issues during a postulated accident have been identified as (1) maintaining the liquid film outside the steel containment vessel, (2) ensuring the natural convection in the air annulus. and (3) quantifying both heat and mass transfer accurately for the system. The lack of appropriate heat and mass transfer models in the present analysis is addressed. and additional assessment and validation of the proposed models is proposed

  19. Energic, Exergic, Exergo‐economic investigation and optimization of auxiliary cooling system (ACS equipped with compression refrigerating system (CRS

    Directory of Open Access Journals (Sweden)

    Omid Karimi Sadaghiyani

    2017-09-01

    Full Text Available Heller main cooling tower as air-cooled heat exchanger is used in the combined cycle power plants (CCPP to reduce the temperature of condenser. In extreme summer heat, the efficiency of the cooling tower is reduced and it lessens performance of Steam Turbine Generation (STG unit of Combined Cycle Power Plant (CCPP. Thus, the auxiliary cooling system (ACS is equipped with compression refrigerating system (CRS. This auxiliary system is linked with the Heller main cooling tower and improves the performance of power plant. In other words, this auxiliary system increases the generated power of STG unit of CCPP by decreasing the temperature of returning water from cooling tower Therefore, in the first step, the mentioned auxiliary cooling system (ACS as a heat exchanger and compression refrigerating system (CRS have been designed via ASPEN HTFS and EES code respectively. In order to validate their results, these two systems have been built and theirs experimentally obtained data have been compared with ASPEN and EES results. There are good agreements between results. After that, exergic and exergo-economic analysis of designed systems have been carried out. Finally, the compression refrigerating system (CRS has been optimized via Genetic Algorithm (GA. Increasing in exergy efficiency (ε from 14.23% up to 36.12% and decreasing the total cost rate (ĊSystem from 378.2 ($/h to 308.2 ($/h are as results of multi-objective optimization.

  20. Performance analysis on utilization of sky radiation cooling energy for space cooling. Part 2; Hosha reikyaku riyo reibo system ni kansuru kenkyu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Marushima, S; Saito, T [Tohoku University, Sendai (Japan)

    1996-10-27

    Studies have been made about a heat accumulation tank type cooling system making use of radiation cooling that is a kind of natural energy. The daily operating cycle of the cooling system is described below. A heat pump air conditioner performs cooling during the daytime and the exhaust heat is stored in a latent heat accumulation tank; the heat is then used for the bath and tapwater in the evening; at night radiation cooling is utilized to remove the heat remnant in the tank for the solidification of the phase change material (PCM); the solidified PCM serves as the cold heat source for the heat pump air conditioner to perform cooling. The new system decelerates urban area warming because it emits the cooler-generated waste heat not into the atmosphere but into space taking advantage of radiation cooling. Again, the cooler-generated waste heat may be utilized for energy saving and power levelling. For the examination of nighttime radiation cooling characteristics, CaCl2-5H2O and Na2HPO4-12H2O were tested as the PCM. Water was used as the heating medium. In the case of a PCM high in latent heat capacity, some work has to be done for insuring sufficient heat exchange for it by, for instance, rendering the flow rate low. The coefficient of performance of the system discussed here is three times higher than that of the air-cooled type heat pump system. 8 refs., 5 figs., 4 tabs.

  1. Equilibrium positions due to different cooling processes in superconducting levitation systems

    International Nuclear Information System (INIS)

    Navau, C; Sanchez, A; Pardo, E; Chen, D-X

    2004-01-01

    The equilibrium position of a superconducting levitation device is determined not only by the geometry and electromagnetic properties of its components, but also by the cooling process of the superconductor. In this work we study the dependence of the equilibrium positions upon the cooling process by introducing diagrams of a new kind which display the different possibilities for a given levitation system. Using the critical state model and the principle of magnetic energy, we calculate different diagrams of this type for the case of a cylindrically symmetric permanent magnet-superconductor system. The results allow us to find out, for a given levitation system, which cooling process improves the capabilities of the system

  2. A water-cooled 13-kG magnet system

    International Nuclear Information System (INIS)

    Rossi, J.O.; Goncalves, J.A.N.; Barroso, J.J.; Patire Junior, H.; Spassovsky, I.P.; Castro, P.J.

    1993-01-01

    The construction, performance, and reliability of a high field magnet system are reported. The magnet is designed to generate a flat top 13 kG magnetic induction required for the operation of a 35 GHz, 100 k W gyrotron under development at INPE. The system comprises three solenoids, located in the gun, cavity, and collector regions, consisting of split pair magnets with the field direction vertical. The magnets are wound from insulated copper tube whose rectangular cross section has 5.0 mm-diameter hole leading the cooling water. On account of the high power (∼ 100 k W) supplied to the cavity coils, it turned out necessary to employ a cooling system which includes hydraulic pump a heat exchanger. The collector and gun magnets operate at lower DC current (∼ 150 A), and, in this case, flowing water provided by wall pipes is far enough to cool down the coils. In addition, a 250 k V A high power AC/DC Nutek converser is used to supply power to the cavity magnet. For the collector and gun magnets, 30 V/600 A DC power supplies are used. (author)

  3. SPREADING OF A FLUID JET ON THE CORRUGATED SURFACE OF THE STRUCTURED PACKING OF WET SCRUBBERS

    Directory of Open Access Journals (Sweden)

    Gorodilov A.A.

    2014-08-01

    Full Text Available The new packing for wet scrubbers for cooling exhaust gases of furnaces is presented. Spreading features of the fluid jet on the corrugated surface of the proposed packing have been studied. Flow rate of the liquid flowing through slits to the opposite side of the packing element was determined. Several regimes of a fluid flow on the surface of the proposed structured packing were determined. An optimal range of rational flow rates for more intense cooling of exhaust gases is proposed. It was discovered that the range of optimum flow rates may be extended if the surface of the packing element is pre-wetted. The way of increasing the rate of effective interfacial surface area for gas-liquid contact per unit volume of the packing of the scrubber is presented.

  4. Computer Aided Design of The Cooling System for Plastic Injection Molds

    Directory of Open Access Journals (Sweden)

    Hakan GÜRÜN

    2009-02-01

    Full Text Available The design of plastic injection molds and their cooling systems affect both the dimension, the shape, the quality of a plastic part and the cycle time of process and the cost of mold. In this study, the solid model design of a plastic injection mold and the design of cooling sysytem were possibly carried out without the designer interaction. Developed program permited the use of three types of the cooling system and the different cavity orientations and the multible plastic part placement into the mold cores. The program which was developed by using Visual LISP language and the VBA (Visual BASIC for Application modules, was applicated in the AutoCAD software domain. Trial studies were presented that the solid model design of plastic injection molds and the cooling systems increased the reliability, the flexibility and the speed of the design.

  5. Comparison of solar panel cooling system by using dc brushless fan and dc water

    International Nuclear Information System (INIS)

    Irwan, Y M; Leow, W Z; Irwanto, M; M, Fareq; Hassan, S I S; Amelia, A R; Safwati, I

    2015-01-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer. (paper)

  6. Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies

    Directory of Open Access Journals (Sweden)

    Weijia Wang

    2017-12-01

    Full Text Available The cooling efficiency of natural draft dry cooling system (NDDCS are vulnerable to ambient winds, so the implementation of measures against the wind effects is of great importance. This work presents the combined air leading strategies to recover the flow and heat transfer performances of NDDCS. Following the energy balance among the exhaust steam, circulating water, and cooling air, numerical models of natural draft dry cooling systems with the combined air leading strategies are developed. The cooling air streamlines, volume effectiveness, thermal efficiency and outlet water temperature for each cooling delta of the large-scale heat exchanger are obtained. The overall volume effectiveness, average outlet water temperature of NDDCS and steam turbine back pressure are calculated. The results show that with the air leading strategies inside or outside the dry-cooling tower, the thermo-flow performances of natural draft dry cooling system are improved under all wind conditions. The combined inner and outer air leading strategies are superior to other single strategy in the performance recovery, thus can be recommended for NDDCS in power generating units.

  7. Experimental Investigation of Air Conditioner using the Desiccant Cooling System in Equatorial Climates

    Directory of Open Access Journals (Sweden)

    Abdullah Kamaruddin

    2018-01-01

    Full Text Available Indonesia lies in the tropical climate which requires air conditioning to increase working productivity of the people. Up to now people are still using the compressive cooling system which uses Freon as the refrigerant, which have been known to have a negative environmental impact. Therefore, new cooling system which is environmentally friendly is now needed. Desiccant cooling system manipulates the humidity condition of outside air in such a way so that the final temperature should become at 25 °C and RH of 65 %. Since it does not require refrigerant, a desiccant cooling has the potential to be developed in a tropical country like Indonesia. In this study an experimental desiccant cooling system has been designed and constructed and tested under laboratory condition. Experimental results have shown that the resulting air temperature was 26.1 °C with RH of 55.6 %, and average cooling capacity was 0.425 kW. The COP was found to be 0.44.

  8. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  9. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, R.J.; Wright, S.A.; Lenard, R.X.; Harms, G.A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars. copyright 1999 American Institute of Physics

  10. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars

  11. A Gas-Cooled Reactor Surface Power System

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  12. Techno-economic studies on hybrid energy based cooling system for milk preservation in isolated regions

    International Nuclear Information System (INIS)

    Edwin, M.; Joseph Sekhar, S.

    2014-01-01

    Highlights: • Performance studies on biomass and biogas based milk cooling systems in remote areas. • Economic analysis of milk cooling system operated with locally available renewable energy sources. • Payback period for replacing conventional milk cooling systems with renewable energy based cooling system. • Identification of the suitable combination of locally available renewable energy sources for milk cooling. • Hybrid energy based milk cooling system for regions that have rubber and paddy cultivation, in India. - Abstract: In developing countries like India, about 70% of the population is engaged in the production of milk, fruits and vegetables. Due to the lack of proper storage and transit facilities, the agricultural produce, in remote areas loses its value. This spoilage could be prevented at the local village level, by providing cooling units for short term preservation. In this paper, the possibility of a hybrid energy based thermally operated cold storage has been considered to meet the cooling needs of the villages in the southern parts of India, where biomass, biogas and gobar gas are available in abundance. A milk cooling system that uses various combinations of locally available renewable energy sources to operate an aqua ammonia vapour absorption cooling system has been analysed using the Matlab software. The impact of various combinations of renewable energy sources on the Coefficient of Performance (COP), Net Present Value (NPV) and payback period of the total cooling system has been studied. The analysis shows that the COP and payback period of the proposed hybrid renewable energy based milk cooling system are 0.16–0.23 and 4–6 years respectively

  13. A technical assistance on data collection on subdivision of wet-system apparatuses

    International Nuclear Information System (INIS)

    2001-09-01

    In the Ningyo-Toge Environmental Engineering Center, development on subdivision engineering system for abolition of nuclear fuel facilities has been promoted. However, data on subdivision of instruments and apparatuses to be carried out as a part of the abolition was insufficient. Therefore, here was intended to investigate data collections so as to use subdivision of a wet-system apparatuses of the smelting conversion facility begun on June, 2000, as a field of data collection as effectively as possible, on construction of the system rationally supporting abolition of nuclear fuel facility promoted at the Ningyo-Toge Environmental Engineering Center. This subdivision of the wet-system apparatuses of the facility is programmed to carry out the subdivision for two years of 2000 and 2001 fiscal years. Its working procedure is begun from non-polluted matters (electrics, instruments, and utility pipings) at every rooms to carry out appliances using uranium. Here were reported on present states survey of the subdivision, kinds and frequencies of data at the subdivision, data collection manual, and rationalization of data recording method. (G.K.)

  14. Energy management techniques: SRP cooling water distribution system

    International Nuclear Information System (INIS)

    Edenfield, A.B.

    1979-10-01

    Cooling water for the nuclear reactors at the Savannah River Plant is supplied by a pumping and distribution system that includes about 50 miles of underground pipeline. The energy management program at SRP has thus far achieved a savings of about 5% (186 x 10 9 Btu) of the energy consumed by the electrically powered cooling water pumps; additional savings of about 14% (535 x 10 9 Btu) can be achieved by capital expenditures totaling about $3.7 million. The present cost of electricity for operation of this system is about $25 million per year. A computer model of the system was adapted and field test data were used to normalize the program to accurately represent pipeline physical characteristics. Alternate pumping schemes are analyzed to determine projected energy costs and impact on system safety and reliability

  15. Effect of closed loop cooling water transit time on containment cooling

    International Nuclear Information System (INIS)

    Smith, R.P.; Vossahlik, J.E.; Goodwin, E.F.

    1996-01-01

    Long term containment cooling analyses in nuclear plant systems are usually conducted assuming a quasi steady-state process, that is, a steady state evaluation of the cooling system is completed for each calculational step. In reality, fluid transport in the system, and heat addition to system components may affect the heat removal rate of the system. Transient effects occurring during system startup may affect the maximum temperatures experienced in the system. It is important to ensure that such transient effects do not affect operation of the system (e.g., cause a high temperature trip). To evaluate the effect of fluid transit delays, a closed loop cooling water system model has been developed that incorporates the fluid transport times when determining the closed loop cooling system performance. This paper describes the closed loop cooling system model as implemented in the CONTEMPT-LT/028 code. The evaluation of the transient temperature response of the closed loop cooling system using the model is described. The paper also describes the effect of fluid transit time on the overall containment cooling performance

  16. Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.

  17. Method of fabricating a cooled electronic system

    Science.gov (United States)

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2014-02-11

    A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  18. Closed-cycle cooling systems for nuclear power plants

    International Nuclear Information System (INIS)

    Santini, Lorenzo

    2006-01-01

    The long experience in the field of closed-cycle cooling systems and high technological level of turbo machines and heat exchangers concurs to believe in the industrial realizability of nuclear systems of high thermodynamic efficiency and intrinsic safety [it

  19. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  20. Experimental investigation of quench and re-wetting temperatures of hot horizontal tubes well above the limiting temperature for solid–liquid contact

    Energy Technology Data Exchange (ETDEWEB)

    Takrouri, Kifah, E-mail: takroukj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Luxat, John, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Hamed, Mohamed [Thermal Processing Laboratory (TPL), Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada)

    2017-01-15

    Highlights: • Quench and re-wetting temperatures were measured upon jet quenching of hot cylindrical tubes. • Correlations have been developed and provided good fit of data. • Quench and re-wetting temperatures were found to greatly depend on water subcooling. • Stagnation point showed higher quench and re-wetting temperatures than other locations. • Quench temperature decreased by increasing surface curvature and tube conductivity. • Re-wetting temperature is a weak function of both variables. - Abstract: Quench cooling of a hot dry surface involves the rapid decrease in surface temperature resulting from bringing the hot surface into sudden contact with a coolant at a lower temperature. Quench temperature is the onset of the rapid decrease in surface temperature and corresponds to the onset of destabilization of a vapor film that exists between the hot surface and the coolant. Situations involving quench cooling are encountered in a number of postulated accidents in Canada Deuterium Uranium CANDU reactors, such as the quench of a hot calandria tube in certain Loss of Coolant Accidents LOCA. If the calandria tube temperature is not reduced by initiation of quench heat transfer, then this may lead to subsequent fuel channel failure and for this accident knowledge of quench heat transfer characteristics is of great importance. In this study, a Water Quench Facility WQF has been designed and built at the Thermal Processing Laboratory TPL at McMaster University and a series of experimental tests were carried out to investigate the quench of hot horizontal tubes using a vertical rectangular water multi-jet system. The tubes were heated to a temperature between 380 and 780 °C then cooled to the jet temperature. The temperature variation with time in tube circumferential and axial directions was measured. The two-phase flow behavior and the propagation of the re-wetting front around and along the tubes were simultaneously observed using a high-speed camera

  1. Modeling and characteristics analysis of hybrid cooling-tower-solar-chimney system

    International Nuclear Information System (INIS)

    Zou, Zheng; He, Suoying

    2015-01-01

    Highlights: • A 3-D model for hybrid cooling-tower-solar-chimney system is developed. • The inclusion of heat exchangers into solar chimney boosts the power output. • The huge jump in power output is at the expense of heat dissipation capacity. • The heat exchanger as second heat source has greater impact on system performance. - Abstract: The hybrid cooling-tower-solar-chimney system (HCTSC), combining solar chimney with natural draft dry cooling tower, generates electricity and dissipates waste heat for the coupled geothermal power plant simultaneously. Based on a developed 3-D model, performance comparisons between the HCTSC system, solar chimney and natural draft dry cooling tower were performed in terms of power output of turbine and heat dissipation capacity. Results show that compared to the traditional solar chimney with similar geometric dimensions, HCTSC system can achieve over 20 times increase in the power output of turbine. However, this huge jump in power output is at the expense of heat dissipation capacity, which may lead to the malfunction of the coupled thermal power plant. By increasing the heat transfer area of the heat exchanger, the HCTSC system can manage to recover its heat dissipation capacity

  2. Theory and design of heat exchanger : air cooled plate, spiral heat exchanger

    International Nuclear Information System (INIS)

    Min, Ui Dong

    1960-02-01

    This book deals with air cooled heat exchanger, which introduces heat rejection system, wet surface cooler in new from, explanation of structure and design, materials, basic design like plenums chambers and fan ring, finned tube fouling factor, airflow in forced draft and fan design. It also tells of plate heat exchanger and spiral heat exchanger giving descriptions of summary, selection, basic design, device and safety function, maintenance, structure of plate heat exchanger, frames and connector plate and, basic things of spiral tube heat exchanger.

  3. Economical Efficiency of Combined Cooling Heating and Power Systems Based on an Enthalpy Method

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2017-11-01

    Full Text Available As the living standards of Chinese people have been improving, the energy demand for cooling and heating, mainly in the form of electricity, has also expanded. Since an integrated cooling, heating and power supply system (CCHP will serve this demand better, the government is now attaching more importance to the application of CCHP energy systems. Based on the characteristics of the combined cooling heating and power supply system, and the method of levelized cost of energy, two calculation methods for the evaluation of the economical efficiency of the system are employed when the energy production in the system is dealt with from the perspective of exergy. According to the first method, fuel costs account for about 75% of the total cost. In the second method, the profits from heating and cooling are converted to fuel costs, resulting in a significant reduction of fuel costs, accounting for 60% of the total cost. Then the heating and cooling parameters of gas turbine exhaust, heat recovery boiler, lithium-bromide heat-cooler and commercial tariff of provincial capitals were set as benchmark based on geographic differences among provinces, and the economical efficiency of combined cooling heating and power systems in each province were evaluated. The results shows that the combined cooling heating and power system is economical in the developed areas of central and eastern China, especially in Hubei and Zhejiang provinces, while in other regions it is not. The sensitivity analysis was also made on related influencing factors of fuel cost, demand intensity in heating and cooling energy, and bank loans ratio. The analysis shows that the levelized cost of energy of combined cooling heating and power systems is very sensitive to exergy consumption and fuel costs. When the consumption of heating and cooling energy increases, the unit cost decreases by 0.1 yuan/kWh, and when the on-grid power ratio decreases by 20%, the cost may increase by 0.1 yuan

  4. Air conditioning system with supplemental ice storing and cooling capacity

    Science.gov (United States)

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  5. Environmental effects of cooling systems

    International Nuclear Information System (INIS)

    1980-01-01

    Since the International Atomic Energy Agency published in 1974 Thermal Discharges at Nuclear Power Stations (Technical Reports Series No.155), much progress has been made in the understanding of phenomena related to thermal discharges. Many studies have been performed in Member States and from 1973 to 1978 the IAEA sponsored a co-ordinated research programme on 'Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations'. Seven laboratories from Canada, the Federal Republic of Germany, India and the United States of America were involved in this programme, and a lot of new information has been obtained during the five years' collaboration. The progress of the work was discussed at annual co-ordination meetings and the results are presented in the present report. It complements the previous report mentioned above as it deals with several questions that were not answered in 1974. With the conclusion of this co-ordinated programme, it is obvious that some problems have not yet been resolved and that more work is necessary to assess completely the impact of cooling systems on the environment. It is felt, however, that the data gathered here will bring a substantial contribution to the understanding of the subject

  6. Electromechanically cooled germanium radiation detector system

    International Nuclear Information System (INIS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-01-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++, GAMANL, GRPANL and MGAU, typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service . The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted

  7. Proteomic effects of wet cupping (Al-hijamah).

    Science.gov (United States)

    Almaiman, Amer A

    2018-01-01

    Wet cupping (Al-hijamah) is a therapeutic technique practiced worldwide as a part of the Unani system of medicine. It involves bloodletting from acupoints on a patient's skin to produce a therapeutic outcome. A thorough review of research articles on wet cupping with relevance to proteomics field that are indexed by Google Scholar, PubMed, and/or Science Direct databases was performed. Eight original research articles were summarized in this paper. Overall, wet cupping did not have a significant effect on C-reactive protein, Hsp-27, sister chromatid exchanges, and cell replication index. In contrast, wet cupping was found to produce higher oxygen saturation, eliminate lactate from subcutaneous tissues, remove blood containing higher levels of malondialdehyde and nitric oxide, and produce higher activity of myeloperoxidase. The proteomic effects of wet cupping therapy have not been adequately investigated. Thus, future studies on wet cupping that use systemic and sound protocols to avoid bias should be conducted.

  8. Proteomic effects of wet cupping (Al-hijamah

    Directory of Open Access Journals (Sweden)

    Amer A. Almaiman

    2018-01-01

    Full Text Available Wet cupping (Al-hijamah is a therapeutic technique practiced worldwide as a part of the Unani system of medicine. It involves bloodletting from acupoints on a patient’s skin to produce a therapeutic outcome. A thorough review of research articles on wet cupping with relevance to proteomics field that are indexed by Google Scholar, PubMed, and/or Science Direct databases was performed. Eight original research articles were summarized in this paper. Overall, wet cupping did not have a significant effect on C-reactive protein, Hsp-27, sister chromatid exchanges, and cell replication index. In contrast, wet cupping was found to produce higher oxygen saturation, eliminate lactate from subcutaneous tissues, remove blood containing higher levels of malondialdehyde and nitric oxide, and produce higher activity of myeloperoxidase. The proteomic effects of wet cupping therapy have not been adequately investigated. Thus, future studies on wet cupping that use systemic and sound protocols to avoid bias should be conducted.

  9. The Cold Mass Support System and the Helium Cooling System for the MICE Focusing Solenoid

    International Nuclear Information System (INIS)

    Yang, Stephanie Q.; Green, Michael A.; Lau, Wing W.; Senanayake, Rohan S.; Witte, Holger

    2006-01-01

    The heart of the absorber focus coil (AFC) module for the muon ionization cooling experiment (MICE) is the two-coil superconducting solenoid that surrounds the muon absorber. The superconducting magnet focuses the muons that are cooled using ionization cooling, in order to improve the efficiency of cooling. The coils of the magnet may either be run in the solenoid mode (both coils operate at the same polarity) or the gradient (the coils operate at opposite polarity). The AFC magnet cold mass support system is designed to carry a longitudinal force up to 700 kN. The AFC module will be cooled using three pulse tube coolers that produce 1.5 W of cooling at 4.2 K. One of the coolers will be used to cool the liquid (hydrogen or helium) absorber used for ionization cooling. The other two coolers will cool the superconducting solenoid. This report will describe the MICE AFC magnet. The cold mass supports will be discussed. The reasons for using a pulsed tube cooler to cool this superconducting magnet will also be discussed

  10. A portable solar-powered air-cooling system based on phase-change materials for a vehicle cabin

    International Nuclear Information System (INIS)

    Qi, Lingfei; Pan, Hongye; Zhu, Xin; Zhang, Xingtian; Salman, Waleed; Zhang, Zutao; Li, Li; Zhu, Miankuan; Yuan, Yanping; Xiang, Bo

    2017-01-01

    Graphical abstract: This paper proposed a portable solar-powered air cooling system for a vehicle cabin based on Phase-change Materials. The cooling system contains three main parts: a solar-energy collection module, an energy-storage module and a phase-change cooling module. The operating principle can be described as follows. For energy input, the solar-energy-collection module harvests solar energy and converts it to electricity. The power-storage module stores the electrical energy in the supercapacitor to power the electrical equipment, mainly the air pump (AP) and water pump (WP) of the phase-change cooling module. Finally, the phase-change cooling module provides cold air for the vehicle cabin to create a comfortable vehicle interior in a hot summer. The proposed system is demonstrated through thermal simulations, which show the long-duration cooling effect of the system. Temperature drops of were obtained in field tests, predicting that the proposed cooling system is beneficial and practical for cooling vehicle cabins. - Highlights: • A novel portable air cooling system based on PCMs is presented. • Solar energy was adopted to power the proposed air cooling system. • This proposed system is used for cooling vehicle cabins exposed to the sun. • Experimental results show that the proposed system has a good cooling effect. - Abstract: In summer, the temperature is very high inside vehicles parked under the hot sun. This causes consuming more fossil energy to power the air conditioner and generation of harmful gases. There is currently no effective method to address this problem in an energy-saving and environmentally friendly manner. In this paper, a novel solar-powered air-cooling system for vehicle cabins is proposed based on Phase-change Materials (PCMs); the system prevents the temperature inside a vehicle cabin from rising too high when the vehicle is parked outdoor exposure to the sun. The proposed system consists of three main parts: a solar

  11. Hybrid dry cooling: development project ''System Jaeggi'' 1987-1991. Final report, short version. Hybride Trockenkuehlung: Entwicklungsprojekt ''System Jaeggi'' 1987-1991: Abschluss-Kurzbericht

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W.

    1992-06-01

    The capacity of a dryer-cooler can be increased by a factor of 2-3 by wetting the cooling fins. This account reports on the development of such a cooler. The development was carried out through the co-operation of private companies with Swiss engineering schools and the Paul Scherrer Institute. 25 figs., tabs.

  12. Kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems

    International Nuclear Information System (INIS)

    Lietzke, M.H.

    1977-01-01

    The results of applying a kinetic model to the chlorination data supplied by Commonwealth Edison on the once-through cooling system at the Quad Cities Nuclear Station provide a validation of the model. The two examples given demonstrate that the model may be applied to either once-through cooling systems or to cooling systems involving cooling towers

  13. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces. A slip-velocity-controlled, pressure-bias-modulated system

    Science.gov (United States)

    Stubbs, S. M.; Tanner, J. A.; Smith, E. G.

    1979-01-01

    The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined.

  14. Decontamination using the high-pressure wet jet system

    International Nuclear Information System (INIS)

    Brandt, D.

    1985-01-01

    For decontaminating machine components, tools, instruments and scrap in nuclear plants the most varying decontamination procedures are used. At the nuclear power plant Wuergassen a mobile high-pressure wet jet unit, developed by Ernst Schmutz GmbH, was successfully used for the first time in extensive decontamination work. The recycling system integrated in the decontamination unit substantially reduces secondary waste, which is usually produced in large quantities by the dry jet method, and continually extracts the contaminated dirt thus guaranteeing full utilisation of the jet agent while preventing secondary contamination of the components to be treated. (orig.) [de

  15. What can go wrong in stochastic cooling systems

    CERN Document Server

    AUTHOR|(CDS)2108502

    2016-01-01

    This paper discusses very practical aspects of stochastic cooling systems both during construction, running-in, operation and trouble shooting. Due to the high electronic gain, high sensitivity and large bandwidth of such systems, precautions have to be taken to avoid all sorts of EMI/EMC related problems as well as crosstalk and self-oscillations. Since un-intended beam heating is always much more efficient than the desired cooling the overall performance depends critically on avoiding this heating which often takes places outside the nominal frequency band of operation. Another important aspect is “cross heating”, i.e., unavoidable crosstalk from longitudinal to transverse systems and vice versa. Obviously adequate measurement procedures with beam for gain phase and optimum delay are mandatory and certain caveats and hints are given. The paper concludes with a listing of unusual and unexpected problems found during many years of operation of such systems at CERN.

  16. Load Distribution of Semi-Central Evaporative Cooling Air-Conditioning System Based on the TRNSYS Platform

    Directory of Open Access Journals (Sweden)

    Ji Li

    2018-05-01

    Full Text Available Evaporative cooling is a green, energy-efficient cooling technology adopted in hot and dry regions, which has wider application in the field of air-conditioning systems. Outdoor meteorological parameters have a great influence on the operation mode and control strategy of evaporative cooling air-conditioning systems, and the system load distribution and system configuration will be affected. This paper aims at investigating the load distribution of semi-central evaporative cooling air-conditioning systems under the condition of hourly outdoor meteorological parameters. Firstly, this paper introduced the design partition, operation mode, controlling strategy and load distribution method on semi-central evaporative cooling air-conditioning system. Then, taking an office building in Lanzhou (China as an example, the evaporative cooling air-conditioning system was divided into five regions and the load distribution was simulated by TRNSYS (The Transient Energy System Simulation Tool under the condition of hourly outdoor meteorological parameters. Finally, the results have shown that the evaporative cooling air-conditioning system can provide 25.46% of the building loads, which was of great significance to reduce the energy consumption of air-conditioning system.

  17. Energy Performance of Water-based and Air-based Cooling Systems in Plus-energy Housing

    DEFF Research Database (Denmark)

    Andersen, Mads E.; Schøtt, Jacob; Kazanci, Ongun Berk

    2016-01-01

    -space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on the system energy performance were investigated while achieving the same thermal indoor conditions. The results show that the water-based floor cooling system performed better than the air-based cooling system in terms of energy...... energy use reductions. The coupling of radiant floor with the ground enables to obtain “free” cooling, although the brine pump power should be kept to a minimum to fully take advantage of this solution. By implementing a ground heat exchanger instead of the heat pump and use the crawl-space air as intake...... air an improvement of 37% was achieved. The cooling demand should be minimized in the design phase as a priority and then the resulting cooling load should be addressed with the most energy efficient cooling strategy. The floor cooling coupled with a ground heat exchanger was shown to be an effective...

  18. Development of a higher power cooling system for lithium targets.

    Science.gov (United States)

    Phoenix, B; Green, S; Scott, M C; Bennett, J R J; Edgecock, T R

    2015-12-01

    The accelerator based Boron Neutron Capture Therapy beam at the University of Birmingham is based around a solid thick lithium target cooled by heavy water. Significant upgrades to Birmingham's Dynamitron accelerator are planned prior to commencing a clinical trial. These upgrades will result in an increase in maximum achievable beam current to at least 3 mA. Various upgrades to the target cooling system to cope with this increased power have been investigated. Tests of a phase change coolant known as "binary ice" have been carried out using an induction heater to provide a comparable power input to the Dynamitron beam. The experimental data shows no improvement over chilled water in the submerged jet system, with both systems exhibiting the same heat input to target temperature relation for a given flow rate. The relationship between the cooling circuit pumping rate and the target temperature in the submerged jet system has also been tested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Thermo-dynamical measurements for ATLAS Inner Detector (evaporative cooling system)

    CERN Document Server

    Bitadze, Alexander; Buttar, Craig

    During the construction, installation and initial operation of the Evaporative Cooling System for the ATLAS Inner Detector SCT Barrel Sub-detector, some performance characteristics were observed to be inconsistent with the original design specifications, therefore the assumptions made in the ATLAS Inner Detector TDR were revisited. The main concern arose because of unexpected pressure drops in the piping system from the end of the detector structure to the distribution racks. The author of this theses made a series of measurements of these pressure drops and the thermal behavior of SCT-Barrel cooling Stave. Tests were performed on the installed detector in the pit, and using a specially assembled full scale replica in the SR1 laboratory at CERN. This test setup has been used to perform extensive tests of the cooling performance of the system including measurements of pressure drops in different parts of system, studies of the thermal profile along the stave pipe for different running conditions / parameters a...

  20. Convective Performance of Nanofluids in Commercial Electronics Cooling Systems

    International Nuclear Information System (INIS)

    Roberts, N.A.; Walker, D.G.

    2010-01-01

    Nanofluids are stable engineered colloidal suspensions of a small fraction of nanoparticles in a base fluid. Nanofluids have shown great promise as heat transfer fluids over typically used base fluids and fluids with micron sized particles. Suspensions with micron sized particles are known to settle rapidly and cause clogging and damage to the surfaces of pumping and flow equipment. These problems are dramatically reduced in nanofluids. In the current work we investigate the performance of different volume loadings of water-based alumina nanofluids in a commercially available electronics cooling system. The commercially available system is a water block used for liquid cooling of a computational processing unit. The size of the nanoparticles in the study is 20-30 nm. Results show an enhancement in convective heat transfer due to the addition of nanoparticles in the commercial cooling system with volume loadings of nanoparticles up to 1.5% by volume. The enhancement in the convective performance observed is similar to what has been reported in well controlled and understood systems and is commensurate with bulk models. The current nanoparticle suspensions showed visible signs of settling which varied from hours to weeks depending on the size of the particles used.

  1. Upgrade of the cooling water temperature measures system for HLS

    International Nuclear Information System (INIS)

    Guo Weiqun; Liu Gongfa; Bao Xun; Jiang Siyuan; Li Weimin; He Duohui

    2007-01-01

    The cooling water temperature measures system for HLS (Hefei Light Source) adopts EPICS to the developing platform and takes the intelligence temperature cruise instrument for the front control instrument. Data of temperatures are required by IOCs through Serial Port Communication, archived and searched by Channel Archiver. The system can monitor the real-time temperatures of many channels cooling water and has the function of history data storage, and data network search. (authors)

  2. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, Ralph J.; /Fermilab

    2001-12-18

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  3. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    International Nuclear Information System (INIS)

    Pasquinelli, Ralph J.

    2001-01-01

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  4. Cooling system upgrading from 250 kW to 1 MW

    International Nuclear Information System (INIS)

    Anderson, T.V.; Johnson, A.G.; Ringle, J.C.

    1972-01-01

    The Oregon State TRIGA reactor (OSTR) power capability was upgraded from 250 KW to 1 MW in 1969; however, funds were not available for simultaneous upgrading of the cooling system. Since then, the OSTR has been selectively operating at full power with the original 250 KW cooling system. After funds were made available in 1971 the construction on the new heat exchanger building began. The new cooling system was installed, equipment was checked out, corrections were made, and acceptance tests were run. In addition, several days were required to clean up the primary system water, since increased water flow (350 gpm) swirled 4 year's collection of sediment off the reactor tank bottom and into the primary system. Three interesting items have been noticed, which are apparently a result of the cooling system upgrading: (1) the radiation levels above the reactor tank have been reduced by a factor of 2 to 3, (2) a low resonance vibration in the reactor core occurs at 1 MW. The vibration is attributed to a combination of increased water turbulence and subcooled (surface) nucleate boiling, and (3) direct radiation levels from the demineralizer tank have increased approximately 8-fold. This resulted in a relocation of the tank and the use of supplemental shielding. Increased operating time at higher average power levels, plus disturbance of; sediment on the bottom of the reactor tank are believed to be the main sources of the higher radiation levels

  5. Optimal control and performance test of solar-assisted cooling system

    KAUST Repository

    Huang, B.J.

    2010-10-01

    The solar-assisted cooling system (SACH) was developed in the present study. The ejector cooling system (ECS) is driven by solar heat and connected in parallel with an inverter-type air conditioner (A/C). The cooling load can be supplied by the ECS when solar energy is available and the input power of the A/C can be reduced. In variable weather, the ECS will probably operate at off-design condition of ejector and the cooling capability of the ECS can be lost completely. In order to make the ejector operate at critical or non-critical double-choking condition to obtain a better performance, an electronic expansion valve was installed in the suction line of the ejector to regulate the opening of the expansion valve to control the evaporator temperature. This will make the SACH always produce cooling effect even at lower solar radiation periods while the ejector performs at off-design conditions. The energy saving of A/C is experimentally shown 50-70% due to the cooling performance of ECS. The long-term performance test results show that the daily energy saving is around 30-70% as compared to the energy consumption of A/C alone (without solar-driven ECS). The total energy saving of A/C is 52% over the entire test period. © 2010 Elsevier Ltd. All rights reserved.

  6. Cooling towers

    International Nuclear Information System (INIS)

    Boernke, F.

    1975-01-01

    The need for the use of cooling systems in power plant engineering is dealt with from the point of view of a non-polluting form of energy production. The various cooling system concepts up to the modern natural-draught cooling towers are illustrated by examples. (TK/AK) [de

  7. Development of a CO{sub 2} cooling system for the CBM silicon tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Rosado, Jorge; Degirmenciler, Burak; Heuser, Johann; Sturm, Christian [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Lymanets, Anton; Schmidt, Hans Rudolf [Eberhard Karls Universitaet Tuebingen (Germany)

    2015-07-01

    The demanding requirements of current high-energy physics experiments curiously bring back the idea of using a well-known and present refrigerant in nature: CO{sub 2}. As an outcome of previous studies and effort made within the current upgrade programs of detectors like ATLAS or CMS, this refrigerant is the optimum solution. Due to its highest volumetric heat transfer coefficient, it fulfills the requirements in this kind of detectors such as reduction of mass budget and the use of smaller diameter for cooling pipes. A two-phase (evaporative) CO{sub 2} cooling system is taken as the first choice to extract the 42 kW dissipated by the electronics of the Silicon Tracking System, the central detector of the CBM experiment at FAIR that will be installed in the gap of the 1 T super-conducting dipole magnet in a confined volume of 2 m{sup 3}. As a step towards the final design of this a cooling system, a 1 kW cooling unit called TRACI-XL was conceived at GSI in cooperation with CERN. This scaled prototype allows gaining insight into the behavior of the full system with valuable conclusions in terms of thermodynamics, process engineering and automation.

  8. Theoretical analysis of the performance of different cooling strategies with the concept of cool exergy

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air for the v......The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air...... for the ventilation system being outdoor air vs. air from the crawl-space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on system exergy performance were investigated. It is crucial to minimize the cooling demand because it is possible to use a wide range of heat sinks (ground, lake, sea......-water, etc.) and indoor terminal units, only with a minimized demand. The water-based floor cooling system performed better than the air-based cooling system; when an air-to-water heat pump was used as the cooling source, the required exergy input was 28% smaller for the floor cooling system. The auxiliary...

  9. Feasibility test of the concept of long-term passive cooling system of emergency cooldown tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Lee, Hee Joon

    2015-01-01

    Highlights: • The concept of long-term passive cooling system of emergency cooldown tank (ECT). • Existing natural circulation of steam from ECT and measurement of its condensing flow. • Evaluation of cooling capacity and heat transfer of air-cooled condensing heat exchanger. - Abstract: When a passive cooling system is activated in the accident of a nuclear reactor, the water in the emergency cooldown tank of that system will eventually be fully depleted by evaporation. If, however, the evaporating water could be returned to the tank through an air-cooled condensing heat exchanger mounted on top of the tank, the passive cooling system could provide cooling for an extended period. This feasibility of new concept of long-term passive cooling with an emergency cooldown tank was tested by performing an energy balance test with a scaled-down experimental setup. As a result, it was determined that a naturally circulating steam flow can be used to refill the tank. For an air-cooled heat exchanger, the cooling capacity and air-side natural convective heat transfer coefficient were obtained to be 37% of the heat load and between 9 and 10.2 W/m 2 /K depending on the heat load, respectively. Moreover, it was clearly verified that the water level in the emergency cooldown tank could be maintained over the long-term operation of the passive cooling system

  10. Operation of a forced two phase cooling system on a large superconducting magnet

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Eberhard, P.H.; Gibson, G.H.; Pripstein, M.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Van Slyke, H.

    1980-05-01

    This paper describes the operation of a forced two phase cooling system on a two meter diameter superconducting solenoid. The magnet is a thin high current density superconducting solenoid which is cooled by forced two phase helium in tubes around the coil. The magnet, which is 2.18 meters in diameter and 3.4 meters long, has a cold mass of 1700 kg. The two phase cooling system contains less than 300 liters of liquid helium, most of which is contained in a control dewar. This paper describes the operating characteristics of the LBL two phase forced cooling system during cooldown and warm up. The paper presents experimental data on operations of the magnet using either a helium pump or the refrigerator compressor to circulate two phase helium through the superconducting coil cooling tubes

  11. Effect of annealing conditions on the molecular properties and wetting of viscoelastic bitumen substrates by liquids

    Directory of Open Access Journals (Sweden)

    Salomé dos Santos

    2017-01-01

    Full Text Available Typically, in the production of asphalt concrete, bitumen and mineral aggregates are heated and mixed at temperatures above 100 °C. After the mixing process bitumen ideally coats the mineral aggregates and remains in the form of thin films. Because bitumen is highly temperature sensitive, the study of its properties in terms of chemistry, microstructure and rheology as a function of different annealing conditions is very relevant. The resultant molecular properties have a direct correlation to bitumen macroscopic response to liquids such as water, which is of extreme relevance to the understanding of the detrimental effect of water on asphalt pavements. The wetting characteristics play a crucial role on the extension of detachment of bitumen from the mineral aggregates when asphalt is exposed to wet conditions. Therefore, in this work, the effect of the annealing temperature and cooling history on the chemistry, microstructure and wetting of bitumen films was studied. Crystalline microstructures were identified in bulk and on the surface of the bitumen films. Larger crystals presenting higher crystallinity degree were identified when the annealed bitumen films were cooled slowly. Moreover, higher annealing temperatures increased the oxidation level. The change of the rheological properties due to the alterations of the annealing conditions produced changes in the wetting characteristics. For instance, the advancing motion of a liquid drop on the viscoelastic bitumen substrate presented an intermittent behaviour due to the deformation of bitumen at the liquid-bitumen-air contact line. Consequently, changes in the contact angles were also observed. Keywords: Bitumen, Crystallization, Oxidation, Advancing contact angle, Wetting

  12. Influence of different outdoor design conditions on design cooling load and design capacities of air conditioning equipments

    International Nuclear Information System (INIS)

    Aktacir, Mehmet Azmi; Bueyuekalaca, Orhan; Bulut, Huesamettin; Yilmaz, Tuncay

    2008-01-01

    Outdoor design conditions are important parameters for energy efficiency of buildings. The result of incorrect selection of outdoor design conditions can be dramatic in view of comfort and energy consumption. In this study, the influence of different outdoor design conditions on air conditioning systems is investigated. For this purpose, cooling loads and capacities of air conditioning equipments for a sample building located in Adana, Turkey are calculated using different outdoor design conditions recommended by ASHRAE, the current design data used in Turkey and the daily maximum dry and wet bulb temperatures of July 21st, which is generally accepted as the design day. The cooling coil capacities obtained from the different outdoor design conditions considered in this study are compared with each other. The cost analysis of air conditioning systems is also performed. It is seen that the selection of outdoor design conditions is a very critical step in calculation of the building cooling loads and design capacities of air conditioning equipments

  13. 30 CFR 36.47 - Tests of exhaust-gas cooling system.

    Science.gov (United States)

    2010-07-01

    ... water consumption, high-water level when the system sprays excess water, and low-water level when the... Section 36.47 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... cooling water shall be filled with the quantity of water recommended by the applicant. No cooling air...

  14. Mechanisms of wet oxidation by hydrogen peroxide

    International Nuclear Information System (INIS)

    Baxter, R.A.

    1987-08-01

    A research programme is currently under way at BNL and MEL to investigate the possible use of Hydrogen Peroxide with metal ion catalysts as a wet oxidation treatment system for CEGB organic radioactive wastes. The published literature relating to the kinetics and mechanism of oxidation and decomposition reactions of hydrogen peroxide is reviewed and the links with practical waste management by wet oxidation are examined. Alternative wet oxidation systems are described and the similarities to the CEGB research effort are noted. (author)

  15. Design and Construction of the NSTX Bakeout, Cooling and Vacuum Systems

    International Nuclear Information System (INIS)

    Dudek, L.E.; Kalish, M.; Gernhardt, R.; Parsells, R.F.; Blanchard, W.

    1999-01-01

    This paper will describe the design, construction and initial operation of the NSTX bakeout, water cooling and vacuum systems. The bakeout system is designed for two modes of operation. The first mode allows heating of the first wall components to 350 degrees C while the external vessel is cooled to 150 degrees C. The second mode cools the first wall to 150 degrees C and the external vessel to 50 degrees C. The system uses a low viscosity heat transfer oil which is capable of high temperature low pressure operation. The NSTX Torus Vacuum Pumping System (TVPS) is designed to achieve a base pressure of approximately 1x10 (superscript -8) Torr and to evacuate the plasma fuel gas loads in less than 5 minutes between discharges. The vacuum pumping system is capable of a pumping speed of approximately 3400 l/s for deuterium. The hardware consists of two turbo molecular pumps (TMPs) and a mechanical pump set consisting of a mechanical and a Roots blower pump. A PLC is used as the control system to provide remote monitoring, control and software interlock capability. The NSTX cooling water provides chilled, de ionized water for heat removal in the TF, OH and PF, power supplies, bus bar systems, and various diagnostics. The system provides flow monitoring via a PLC to prevent damage due to loss of flow

  16. Reactor-core isolation cooling system with dedicated generator

    International Nuclear Information System (INIS)

    Nazareno, E.V.; Dillmann, C.W.

    1992-01-01

    This patent describes a nuclear reactor complex. It comprises a dual-phase nuclear reactor; a main turbine for converting phase-conversion energy stored by vapor into mechanical energy for driving a generator; a main generator for converting the mechanical energy into electricity; a fluid reservoir external to the reactor; a reactor core isolation cooling system with several components at least some of which require electrical power. It also comprises an auxiliary pump for pumping fluid from the reservoir into the reactor pressure vessel; an auxiliary turbine for driving the pump; control means for regulating the rotation rate of the auxiliary turbine; cooling means for cooling the control means; and an auxiliary generator coupled to the auxiliary turbine for providing at least a portion of the electrical power required by the components during a blackout condition

  17. Solar heating and cooling system installed at Leavenworth, Kansas

    Science.gov (United States)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  18. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  19. Spent fuel pool spray cooling system for the AP1000 {sup registered}

    Energy Technology Data Exchange (ETDEWEB)

    Vujic, Zoran; Sassen, Felix; Tietsch, Wolfgang [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2013-07-01

    The AP1000 {sup registered} plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for Design Basis Events and Beyond Design Basis Accidents (BDBA). The AP1000 {sup registered} plant lines of defense with respect to Spent Fuel Pool (SFP) cooling are as follows: 1. During normal and abnormal conditions, defense-in-depth and duty systems provide highly reliable SFP cooling, supplied by offsite AC power or the onsite Standby Diesel Generators. 2. For unlikely events with extended loss of AC power (i.e. station black-out) and/or loss of heat sink, spent fuel cooling can be still provided indefinitely by: 2a. Passive systems, requiring minimal or no operator actions, sufficient for at least 72 hours under all possible loading conditions. 2b. After 3 days, several different means are provided to continue SFP cooling using installed plant equipment as well as off-site equipment with built-in connections. 3. Even for BDBA with postulated SFP damage and multiple failures in the passive safety-related systems and in the defense-in-depth active systems, the AP1000 {sup registered} SFP Spray System provides an additional line of defense to prevent spent fuel damage. (orig.)

  20. Comparative analysis of thermally activated, environmentally friendly cooling systems

    International Nuclear Information System (INIS)

    Gupta, Y.; Metchop, L.; Frantzis, A.; Phelan, P.E.

    2008-01-01

    This paper compares the relative performances of three different thermally activated, environmentally friendly cooling systems, e.g. a silica-gel-water adsorption system, a LiBr-H 2 O absorption system and a desiccant air system. The adsorption and absorption systems in the current study employ water as the refrigerant, while the desiccant system cools atmospheric air directly. Each of these systems can be utilized at relatively low heat source temperatures such as achieved by flat plate solar collectors, but it is unclear which of these systems is best suited to what range of heat source temperature. Our study explores answers to this question by generating quantitative results comparing their relative thermal performance, i.e. COP and refrigeration capacity, and a qualitative comparison based on the size, maturity of technology, safe operation etc. In order to provide a fair comparison between the fundamentally different systems, a UA (overall heat transfer coefficient multiplied by the heat transfer area) value of 1.0 kW deg. C -1 is considered for the heat exchanger that transfers heat from the supplied hot water. Furthermore, to compare systems of similar size, the mass of silica-gel in the adsorption and desiccant systems and the mass of LiBr-H 2 O solution in the absorption system were specified such that each system provides the same amount of refrigeration (8.0 kW) at a source temperature of 90 deg. C. It is found that the absorption and adsorption cooling systems have a higher refrigeration capacity at heat source temperatures below 90 deg. C, while the desiccant air system outperforms the others at temperatures above 90 deg. C

  1. Solar heating and cooling technical data and systems analysis

    Science.gov (United States)

    Christensen, D. L.

    1977-01-01

    The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.

  2. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems

    Science.gov (United States)

    2016-01-01

    34 Massachusetts Institute of Technology , 1989. [3] FedBizOps.Gov, " Integrated Vehicle Energy Technology (INVENT) Development Program for the 6th...AFRL-RQ-WP-TR-2016-0043 EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS Evan M. Racine...TITLE AND SUBTITLE EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS 5a. CONTRACT NUMBER In-house

  3. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Ken.

    1989-01-01

    In PWR type reactors, a cooling water spray portion of emergency core cooling pipelines incorporated into pipelines on high temperature side is protruded to the inside of an upper plenum. Upon rupture of primary pipelines, pressure in a pressure vessel is abruptly reduced to generate a great amount of steams in the reactor core, which are discharged at a high flow rate into the primary pipelines on high temperature side. However, since the inside of the upper plenum has a larger area and the steam flow is slow, as compared with that of the pipelines on the high temperature side, ECCS water can surely be supplied into the reactor core to promote the re-flooding of the reactor core and effectively cool the reactor. Since the nuclear reactor can effectively be cooled to enable the promotion of pressure reduction and effective supply of coolants during the period of pressure reduction upon LOCA, the capacity of the pressure accumulation vessel can be decreased. Further, the re-flooding time for the reactor is shortened to provide an effect contributing to the improvement of the safety and the reduction of the cost. (N.H.)

  4. Integrated thermal control and system assessment in plug-chip spray cooling enclosure

    International Nuclear Information System (INIS)

    Zhang, Wei-Wei; Cheng, Wen-Long; Shao, Shi-Dong; Jiang, Li-Jia; Hong, Da-Liang

    2016-01-01

    Highlights: • A novel multi-heat source plug-chip spray cooling enclosure was designed. • Enhanced surfaces with different geometric were analyzed in integrated enclosure. • Overall thermal control with adjustable parameters in enclosure was studied. • Temperature disequilibrium of multi-heat source in enclosure was tested. • A comprehensive assessment system used to evaluate the practicality was proposed. - Abstract: Practical and integrated spray cooling system is urgently needed for the cooling of high-performance electronic chips due to the growth requirements of thermal management in workstation. The integration of multi heat sources and the management of integral system are particularly lacking. In order to fill the vacancies in the study of plug-chip spray cooling, an integrated cooling enclosure was designed in this paper. Multi heat sources were placed in sealed space and the heat was removed by spray. The printed circuit board plug-ins and radio frequency resistors were used as analog motherboards and chips, respectively. The enhanced surfaces with four different geometries and the plain surface were studied under the conditions of different inclination angles. The results were compared and the maximum critical heat flux (CHF) was obtained. Moreover, with the intention of the overall management of multi-heat source in integrated enclosure, the effect of the flow rate and the temperature disequilibrium, and the pulse heating in the process of transient cooling were also analyzed. In addition, a comprehensive assessment system, used to evaluate the practicality of spray cooling experimental devices, was proposed and the performance of enclosure was evaluated.

  5. Intra-Abdominal Cooling System Limits Ischemia-Reperfusion Injury During Robot-Assisted Renal Transplantation.

    Science.gov (United States)

    Meier, R P H; Piller, V; Hagen, M E; Joliat, C; Buchs, J-B; Nastasi, A; Ruttimann, R; Buchs, N C; Moll, S; Vallée, J-P; Lazeyras, F; Morel, P; Bühler, L

    2018-01-01

    Robot-assisted kidney transplantation is feasible; however, concerns have been raised about possible increases in warm ischemia times. We describe a novel intra-abdominal cooling system to continuously cool the kidney during the procedure. Porcine kidneys were procured by standard open technique. Groups were as follows: Robotic renal transplantation with (n = 11) and without (n = 6) continuous intra-abdominal cooling and conventional open technique with intermittent 4°C saline cooling (n = 6). Renal cortex temperature, magnetic resonance imaging, and histology were analyzed. Robotic renal transplantation required a longer anastomosis time, either with or without the cooling system, compared to the open approach (70.4 ± 17.7 min and 74.0 ± 21.5 min vs. 48.7 ± 11.2 min, p-values system compared to the open approach group (6.5 ± 3.1°C vs. 22.5 ± 6.5°C; p = 0.001) or compared to the robotic group without the cooling system (28.7 ± 3.3°C; p system that suppresses the noncontrolled rewarming of donor kidneys during the transplant procedure and prevents ischemia-reperfusion injuries. © 2017 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of American Society of Transplant Surgeons.

  6. Emergency cooling method and system for gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1982-01-01

    For emergency cooling of gas-cooled fast breeder reactors (GSB), which have a core consisting of a fission zone and a breeding zone, water is sprayed out of nozzles on to the core from above in the case of an incident. The water which is not treated with boron is taken out of a reservoir in the form of a storage tank in such a maximum quantity that the cooling water gathering in the space below the core rises at most up to the lower edge of the fission zone. (orig./GL) [de

  7. A simpler, safer, higher performance cooling system arrangement for water cooled divertors

    International Nuclear Information System (INIS)

    Carelli, M.D.; Kothmann, R.E.; Green, L.; Zhan, N.J.; Stefani, F.; Roidt, R.M.

    1994-01-01

    A cooling system arrangement is presented which is specifically designed for high heat flux water cooled divertors. The motivation behind the proposed open-quotes unichannelclose quotes configuration is to provide maximum safety; this design eliminates flow instabilities liable to occur in parallel channel designs, it eliminates total blockage, it promotes cross flow to counteract the effects of partial blockage and/or local hot spots, and it is much more tolerant to the effects of debonding between the beryllium armor and the copper substrate. Added degrees of freedom allow optimization of the design, including the possibility of operating at very high heat transfer coefficients associated with nucleate boiling, while at the same time providing ample margin against departure from nucleate boiling. Projected pressure drop, pumping power, and maximum operating temperatures are lower than for conventional parallel channel designs

  8. How changes in top water bother big turning packs of up-going wet air

    Science.gov (United States)

    Wood, K.

    2017-12-01

    Big turning packs of up-going wet air form near areas of warm water at the top of big bodies of water. After these turning packs form, they usually get stronger if the top water stays warm. If the top water becomes less warm, the turning packs usually get less strong. Other things can change how strong a turning pack gets, like how wet the air around it is and if that air moves faster higher up than lower down. When these turning packs hit land, their rain and winds can hurt people and the stuff they own, especially if the turning pack is really strong. But it's hard to know how much stronger or less strong it will become before it hits land. Warm top water gives a turning pack of up-going wet air a lot of power, but cool top water doesn't, so we need to know how warm the top water is. Because I can't go into every turning pack myself, flying computers in outer space tell me what the top water is doing. I look at the top water near turning packs that get strong and see how it's different from the top water near those that get less strong. Top water that changes from warm to cool in a small area bothers a turning pack of up-going wet air, which then gets less strong. If we see these top water changes ahead of time, that might help us know what a turning pack will do before it gets close to land.

  9. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems.

    Science.gov (United States)

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems.

  10. Optimization Tool for Direct Water Cooling System of High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Blaabjerg, Frede

    2016-01-01

    important issue for thermal design engineers. This paper aims to present a user friendly optimization tool for direct water cooling system of a high power module which enables the cooling system designer to identify the optimized solution depending on customer load profiles and available pump power. CFD...

  11. Conceptual adsorption system of cooling and heating supplied by solar energy

    Directory of Open Access Journals (Sweden)

    Turski Michał

    2016-06-01

    Full Text Available This paper presents the possibility of reducing the demand for nonrenewable primary energy for buildings using a new conceptual adsorption system of cooling and heating supplied by solar energy. Moreover, the aim of this study is to shorten the payback time of investment in the standard adsorption cooling system through its integration with the heating system. Research has been carried out for an energy-efficient medium-sized single-family building with a floor area of 140 m2 and a heat load of 4.2 kW and cold load of 4.41 kW. It has been shown that the use of an adsorption system of cooling and heating supplied by solar energy decreased the demand for nonrenewable primary energy by about 66% compared to the standard building that meets the current requirements.

  12. Design and implementation of cooling system for beam pipe of BESIII

    International Nuclear Information System (INIS)

    Li Xunfeng; Zheng Lifang; Dong Sujun

    2008-01-01

    Cooling system for beam pipe is designed, based on the properties of structure, the surrounding and the required temperature of beam pipe in BESIII. The main devices are double for spare parts, and Siemens program logic control is used in the cooling system, which realize the reliability of the equipment and assure the system long time running. OPC is used to communicate between Upper computer and program logic control as the third-party communication protocol, which resolve the problem of communication for complex multi-station, the upper computer assist the program logic control to detect and control the equipment. The cooling system have reasonable structure, comprehensive function, good precision; it can take away the heat from inner wall of beam pipe in time, and control the temperature on inner wall and outer wall in the required range. (authors)

  13. Improving the performance of power-limited transverse stochastic cooling systems

    International Nuclear Information System (INIS)

    Goldberg, D.A.; Lambertson, G.R.

    1989-08-01

    We present the formulas relevant to the behavior of (transverse) stochastic cooling systems which operate under the not uncommon condition that performance is limited by available output power, and contrast the operation of such systems with non-power-limited ones. In particular, we show that for power-limited systems, the two most effective improvements are the use of pickups/kickers which operate in both planes simultaneously and/or plunging of the cooling system electrodes, and present an example where increasing bandwidth is counter-productive. We apply our results to the proposed upgrade of the Fermilab bar p source. 4 refs., 1 fig., 2 tabs

  14. Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems

    International Nuclear Information System (INIS)

    Wang, L.; Chen, G.M.; Wang, Q.; Zhong, M.

    2007-01-01

    In China, the application of small size gas-fired air-cooled absorption refrigeration systems as an alternative for electric compression air conditioning systems has shown broad prospects due to occurrence of electricity peak demand in Chinese big cities and lack of water resources. However, for conventional air-cooled absorption refrigeration systems, it is difficult to enhance the heat and mass transfer process in the falling film absorber, and may cause problems, for example, remarkable increase of pressure, temperature and concentration in the generators, risk of crystallization, acceleration of corrosion, degradation of performance, and so on. This paper presents a gas-fired air-cooled adiabatic absorption refrigeration system using lithium bromide-water solutions as its working fluid, which is designed with a cooling capacity of 16 kW under standard conditions. The system has two new features of waste heat recovery of condensed water from generator and an adiabatic absorber with an air cooler. Performance simulation and characteristic analysis are crucial for the optimal control and reliability of operation in extremely hot climates. A methodology is presented to simulate thermodynamic performance of the system. The influences of outdoor air temperature on operation performances of the system are investigated

  15. Triangularly arranged heat exchanger bundles to restrain wind effects on natural draft dry cooling system

    International Nuclear Information System (INIS)

    Liao, H.T.; Yang, L.J.; Du, X.Z.; Yang, Y.P.

    2016-01-01

    Highlights: • Triangularly arranged heat exchanger around the dry-cooling tower is proposed. • By coupling condenser with dry cooling system, TACHE performance is obtained. • At low wind speeds, cooling performance with TACHE is inferior to that with CACHE. • Better performance can be achieved for cooling system with TACHE at high wind speeds. • TACHE can be applied to the region with the strong prevailing wind all year around. - Abstract: It has been commonly recognized that the crosswind may deteriorate the cooling performance of the natural draft dry cooling system with vertically arranged heat exchanger bundles around the circumference of dry-cooling tower. With the purpose for restraining the adverse effects of ambient winds, a novel triangular configuration of heat exchanger bundles is proposed in this work. The air-side flow and heat transfer models coupled with the circulating water heat transfer process are developed for two kinds of natural draft dry cooling systems with the conventional circularly arranged and novel triangularly arranged heat exchanger bundles, by which the flow and temperature fields, mass flow rate of cooling air, outlet water temperature of heat exchanger and turbine back pressure are obtained. Three wind directions of 0°, 90°, and 180° are investigated at various wind speeds for the natural draft dry cooling system with triangularly arranged heat exchanger bundles, which are compared with the conventional system with circularly arranged heat exchanger bundles. The results show that the thermo-flow performances of the natural draft dry cooling system with triangularly arranged heat exchanger get improved significantly at high wind speeds and in the wind direction of 180°, thus a low turbine back pressure can be achieved, which is of benefit to the energy efficiency of the power generating unit. The natural draft dry cooling system with triangularly arranged heat exchanger is recommended to apply to the regions with

  16. A system for cooling electronic elements with an EHD coolant flow

    International Nuclear Information System (INIS)

    Tanski, M; Kocik, M; Barbucha, R; Garasz, K; Mizeraczyk, J; Kraśniewski, J; Oleksy, M; Hapka, A; Janke, W

    2014-01-01

    A system for cooling electronic components where the liquid coolant flow is forced with ion-drag type EHD micropumps was tested. For tests we used isopropyl alcohol as the coolant and CSD02060 diodes in TO-220 packages as cooled electronic elements. We have studied thermal characteristics of diodes cooled with EHD flow in the function of a coolant flow rate. The transient thermal impedance of the CSD02060 diode cooled with 1.5 ml/min EHD flow was 7.8°C/W. Similar transient thermal impedance can be achieved by applying to the diode a large RAD-A6405A/150 heat sink. We found out that EHD pumps can be successfully applied for cooling electronic elements.

  17. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel

    Science.gov (United States)

    Ravi, S.; Pradeep Kumar, M.

    2011-09-01

    Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.

  18. Energetic and economic evaluation of solar thermal and photovoltaic cooling system in Cuban hotel

    International Nuclear Information System (INIS)

    Díaz Torres, Yamile; Valdivia Nodal, Yarelis; Castellanos Molina, Luis Miguel; Torres del Toro, Migdalia; Monteagudo Llanes, José

    2015-01-01

    The present paper discusses the energetic and economic feasibility of using two configurations of solar cooling in a Cuban Hotel. The air conditioning hybrid system schemes are: conventional system (Chiller) interconnected in parallel with a solar- powered absorption cooling system (SACS); and a photovoltaic cooling system (PCS). There were analyzed by methodologies and thermodynamic principles governing these technologies. The results show that their uses are alternatives for reducing energy consumption and environmental impact. (full text)

  19. Estimation on the Pressure Loss of the Conceptual Primary Cooling System and Design of the Primary Cooling Pump for a Research Reactor

    International Nuclear Information System (INIS)

    Seo, Kyoung Woo; Oh, Jae Min; Park, Jong Hark; Chae, Hee Taek; Seo, Jae Kwang; Park, Cheon Tae; Yoon, Ju Hyeon; Lee, Doo Jeong

    2009-01-01

    A new conceptual primary cooling system (PCS) for a research reactor has been designed for an adequate cooling to the reactor core which has various powers ranging from 30MW through 80MW. The developed primary cooling system consisted of decay tanks, pumps, heat exchangers, vacuum breakers, some isolation and check valves, connection piping, and instruments. Because the system flow rate should be determined by the thermal hydraulic design analysis for the core, the heads to design the primary cooling pumps (PCPs) in a PCS will be estimated by the variable system flow rates. The heads of the part of a research reactor vessel was evaluated by the previous study. The various pressure losses of the PCS can be calculated by the dimensional analysis of the pipe flow and the head loss coefficient of the components. The purpose of this research is to estimate the various pressure losses and to design the PCPs

  20. Cool Down Experiences with the SST-1 Helium Cryogenics System before and after Current Feeders System Modification

    Science.gov (United States)

    Patel, R.; Panchal, P.; Panchal, R.; Tank, J.; Mahesuriya, G.; Sonara, D.; Srikanth, G. L. N.; Garg, A.; Bairagi, N.; Christian, D.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Gupta, N. C.; Prasad, U.; Sharma, A. N.; Tanna, V. L.; Pradhan, S.

    The SST-1 machine comprises a superconducting magnet system (SCMS), which includes TF and PF magnets. In order to charge the SCMS, we need superconducting current feeders consisting of SC feeders and vapor cooled current leads (VCCLs). We have installed all 10 (+/-) pairs of VCCLs for the TF and PF systems. While conducting initial engineering validation of the SST-1 machine, our prime objective was to produce circular plasma using only the TF system. During the SST-1 campaign I to VI, we have to stop the PF magnets cooling in order to get the cryo- stable conditions for current charging of the TF magnets system. In that case, the cooling of the PF current leads is not essential. It has been also observed that after aborting the PF system cooling, there was a limited experimental window of TF operation. Therefore, in the recent SST-1 campaign-VII, we removed the PF current leads (9 pairs) and kept only single (+/-) pair of the 10,000 A rated VCCLs to realize the charging of the TF system for the extended window of operation. We have observed a better cryogenic stability in the TF magnets after modifications in the CFS. In this paper, we report the comparison of the cool down performance for the SST-1 machine operation before and after modifications of the current feeders system.

  1. Emergency cooling system for the PHENIX reactor

    International Nuclear Information System (INIS)

    Megy, J.M.; Giudicelli, A.G.; Robert, E.A.; Crette, J.P.

    Among various engineered safeguards of the reactor plant, the authors describe the protective system designed to remove the decay heat in emergency, in case of complete loss of all normal decay heat removal systems. First the normal decay heat rejection systems are presented. Incidents leading to the loss of these normal means are then analyzed. The protective system and its constructive characteristics designed for emergency cooling and based on two independent and highly reliable circuits entirely installed outside the primary containment vessel are described

  2. Development of a prototype thermoelectric space cooling system using phase change material to improve the performance

    Science.gov (United States)

    Zhao, Dongliang

    The thermoelectric cooling system has advantages over conventional vapor compression cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no refrigerant, being powered by direct current, and easily switching between cooling and heating modes. However, it has been long suffering from its relatively high cost and low energy efficiency, which has restricted its usage to niche applications, such as space missions, portable cooling devices, scientific and medical equipment, where coefficient of performance (COP) is not as important as reliability, energy availability, and quiet operation environment. Enhancement of thermoelectric cooling system performance generally relies on two methods: improving thermoelectric material efficiency and through thermoelectric cooling system thermal design. This research has been focused on the latter one. A prototype thermoelectric cooling system integrated with phase change material (PCM) thermal energy storage unit for space cooling has been developed. The PCM thermal storage unit used for cold storage at night, functions as the thermoelectric cooling system's heat sink during daytime's cooling period and provides relatively lower hot side temperature for the thermoelectric cooling system. The experimental test of the prototype system in a reduced-scale chamber has realized an average cooling COP of 0.87, with the maximum value of 1.22. Another comparison test for efficacy of PCM thermal storage unit shows that 35.3% electrical energy has been saved from using PCM for the thermoelectric cooling system. In general, PCM faces difficulty of poor thermal conductivity at both solid and liquid phases. This system implemented a finned inner tube to increase heat transfer during PCM charging (melting) process that directly impacts thermoelectric system's performance. A simulation tool for the entire system has been developed including mathematical models for a single thermoelectric module

  3. Rotary engine cooling system

    Science.gov (United States)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  4. Wet granular matter a truly complex fluid

    CERN Document Server

    Herminghaus, Stephan

    2013-01-01

    This is a monograph written for the young and advanced researcher who is entering the field of wet granular matter and keen to understand the basic physical principles governing this state of soft matter. It treats wet granulates as an instance of a ternary system, consisting of the grains, a primary, and a secondary fluid. After addressing wetting phenomena in general and outlining the basic facts on dry granular systems, a chapter on basic mechanisms and their effects is dedicated to every region of the ternary phase diagram. Effects of grain shape and roughness are considered as well. Rather than addressing engineering aspects such as existing books on this topic do, the book aims to provide a generalized framework suitable for those who want to understand these systems on a more fundamental basis. Readership: For the young and advanced researcher entering the field of wet granular matter.

  5. Validation of cooling effect of insulated containers for the shipment of corneal tissue and recommendations for transport.

    Science.gov (United States)

    Miller, Thomas D; Maxwell, Andrew J; Lindquist, Thomas D; Requard, Jake

    2013-01-01

    To determine the cooling effect of generic insulated shipping containers in ambient and high-temperature environments. Twenty-seven shipping containers were packed with wet ice according to industry standards. The ice in each container was weighed. Ambient temperatures were recorded by data loggers affixed to the exterior. Internal temperatures were recorded by data loggers packed inside the containers, for as long as the data loggers remained at ≤8°C. The cooling effect, or minutes per gram of ice a data logger maintained a temperature of ≤8°C, was calculated using linear regression; 8 similar containers were subjected to elevated summer temperatures. Small, medium, and large containers held mean masses of wet ice of 685, 1929, and 4439 g, respectively. The linear regression equation for grams of ice to duration of time at ≤8°C was y = 0.1994x + 385.13 for small containers, y = 0.1854x + 1273.3 for medium, and y = 0.5892x + 1410.3 for large containers, resulting in a cooling effect of 25.1 hours for small, 58.9 hours for medium, and 85.7 hours for large containers at ambient temperature. The duration of cooling effect in the summer profile group was consistent with that of the ambient temperature group. All of the container sizes successfully maintained proper cooling when packed with the appropriate grams of wet ice for the needed time interval. This study validates current practice for the shipment of corneal tissue in inexpensive, generic containers that can maintain effective cooling for the duration required for local, national, and international shipment.

  6. Thermodynamic assessment of power requirements and impact of different gas-turbine inlet air cooling techniques at two different locations in Oman

    International Nuclear Information System (INIS)

    Dawoud, B.; Zurigat, Y.H.; Bortmany, J.

    2005-01-01

    Gas-turbine inlet air cooling has been considered for boosting the power output during hot seasons. In this paper, the power requirements of several inlet air cooling techniques for gas-turbine power plants in two locations; namely, Marmul and Fahud, in Oman have been evaluated using typical meteorological year (TMY) data. The considered techniques are evaporative cooling, fogging cooling, absorption cooling using both LiBr-H 2 O and aqua-ammonia, and vapour-compression cooling systems. For evaporative cooling, an 88% approach to the wet-bulb temperature has been considered, compared with a 98% approach for fogging cooling. A design compressor inlet air temperature of 14 deg C has been assigned to LiBr-water chilling systems. For both aqua-ammonia absorption and vapour-compression refrigerating systems, a design compressor inlet air temperature of 8 deg C has been selected to avoid the formation of ice fragments as the air is drawn into the mouth of the compressor. These technologies have been compared with respect to their effectiveness in power boosting of small-size gas-turbine power plants used in two oil fields at Marmul and Fahud in the Sultanate of Oman. Fogging cooling is accompanied with 11.4% more electrical energy in comparison with evaporative cooling in both locations. The LiBr-H 2 O cooling offers 40% and 55% more energy than fogging cooling at Fahud and Marmul, respectively. Applying aqua-ammonia-water and vapour-compression cooling, a further annual energy production enhancement of 39% and 46% is expected in comparison with LiBr-H 2 O cooling at Fahud and Marmul, respectively

  7. Hybrid Cooling System for Industrial Application | Ezekwe | Nigerian ...

    African Journals Online (AJOL)

    Hybrid Cooling System for Industrial Application. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... more than five times over that achieved by using the gas (air) phase alone. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  8. AUTOMOTIVE DIESEL MAINTENACE 1. UNIT XV, I--MAINTAINING THE COOLING SYSTEM, CUMMINS DIESEL ENGINE, I--UNIT INSTALLATION--TRANSMISSION.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM AND THE PROCEDURES FOR TRANSMISSION INSTALLATION. TOPICS ARE (1) IMPORTANCE OF THE COOLING SYSTEM, (2) COOLING SYSTEM COMPONENTS, (3) EVALUATING COOLING SYSTEM FAILURES, (4) CARING FOR THE COOLING SYSTEM,…

  9. Supplementary report: cooling water systems for Darlington G.S

    International Nuclear Information System (INIS)

    1975-08-01

    This report summarizes Ontario Hydro's existing aquatic environmental programs, presents results of these investigations, and outlines plans and activities for expanded aquatic environment studies including the evaluation of alternative cooling systems. This report outlines specific considerations regarding possible alternative cooling arrangements for the Darlington station. It concludes with a recommendation that a study be initiated to examine the potential benefits of using the heated discharge water in a warm water recreational centre. (author)

  10. Justification of the evaluation indicators and the criteria of the technical systems of air cooling