WorldWideScience

Sample records for westinghouse recycle fuels plant

  1. Westinghouse fuel manufacturing systems: a step change in performance improvements

    International Nuclear Information System (INIS)

    Mutyala, Meena

    2009-01-01

    Today's competitive electrical generation industry demands that nuclear power plant operators minimize total operating costs, including fuel cycle cost while maintaining flawless fuel performance. The mission of Westinghouse Nuclear Fuel is to be the industry's most responsive supplier of flawless, value added fuel products and services, as judged by our customers. As nuclear is fast becoming the choice of many countries, existing manufacturing plants and facilities are once again running at full capacity. In this context Westinghouse Nuclear Fuel is committed to deliver a step change in performance improvement worldwide through its manufacturing operations by the introduction of a set of fundamentals collectively named the 'Westinghouse Fuel Manufacturing System' (WFMS), whose key principles are discussed in this paper. (author)

  2. Drop testing of the Westinghouse fresh nuclear fuel package

    International Nuclear Information System (INIS)

    Shappert, L.B.; Sanders, C.F.

    1992-01-01

    In recent years, the Westinghouse Columbia Fuel Fabrication Facility has been faced with increasing pressure from utilities that wished to take the fuel in their nuclear power plants to higher burnups. To help accommodate this trend, Westinghouse has determined that it needs the ability to increase the enrichment of the fresh fuel it delivers to its customers. One critical step in this process is to certify a new (Type A, fissile) fresh fuel package design that has the capability to transport fuel with a higher enrichment than was previously available. A prototype package was tested in support of the Safety Analysis Report of the Packaging. This paper provides detailed information on those tests and their results

  3. Status of Westinghouse coal-fueled combustion turbine programs

    International Nuclear Information System (INIS)

    Scalzo, A.J.; Amos, D.J.; Bannister, R.L.; Garland, R.V.

    1992-01-01

    Developing clean, efficient, cost effective coal utilization technologies for future power generation is an essential part of our National Energy Strategy. Westinghouse is actively developing power plants utilizing advanced gasification, atmospheric fluidized beds (AFB), pressurized fluidized beds (PFB), and direct firing technology through programs sponsored by the U.S. Dept. of Energy (DOE). The DOE Office of Fossil Energy is sponsoring the Direct Coal-Fired Turbine program. This paper presents the status of current and potential Westinghouse Power Generation Business Unit advanced coal-fueled power generation programs as well as commercial plans

  4. Overview of expert systems applications in Westinghouse Nuclear Fuel Activities

    International Nuclear Information System (INIS)

    Leech, W.J.

    1989-01-01

    Expert system applications have been introduced in several nuclear fuel activities, including engineering and manufacturing. This technology has been successfully implemented on the manufacturing floors to provide on-line process control at zirconium tubing and fuel fabrication plants. This paper provides an overview of current applications at Westinghouse with respect to fuel fabrication, zirconium tubing, zirconium production, and core design

  5. Performance of the Westinghouse WWER-1000 fuel design

    International Nuclear Information System (INIS)

    Hoglund, J.; Riznychenko, O.; Latorre, R.; Lashevych, P.

    2011-01-01

    In 2005 six (6) Westinghouse WWER-1000 Lead Test Assemblies (LTAs) were loaded in the South Ukraine Unit 3. This design has demonstrated full compatibility with resident fuel designs and all associated fuel handling and reactor components. Operations have further demonstrated adequacy of performance margins and the reliability requirements for multiple cycles of operation. The LTA's have now been discharged after completing the planned four cycles of operation and having reached an average assembly burnup in excess of 43 MWd/kgU. Post Irradiation Examinations were performed after completion of each cycle. The final LTA inspection program at end of Cycle 20 in 2010 yielded satisfactory results on all counts, and it was concluded that the 6 Westinghouse LTA's performed as expected during their operational regimes. Very good performance was demonstrated in the WWER-1000 reactor environment for the Zr-1%Nb as grid material, and ZIRLO fuel cladding and structural components. Control Rod Assemblies drop times and drag forces were all within the accepted values. The LTA program demonstrated that this fuel design is suitable for full core applications. However, the topic of fuel assembly distortion resistance was re-visited and Westinghouse therefore considered operational experience and design features from multiple development programs to enhance the basic Westinghouse WWER-1000 fuel design for Ukrainian reactors. The design now includes features that further mitigate assembly bow while at the same time improving the fuel cycle economy. This paper describes briefly the development of the Westinghouse WWER-1000 fuel design and how test results and operational experiences from multiple sources have been utilized to produce a most suitable fuel design. Early in 2011 a full region of the Westinghouse WWER-1000 design completed another full cycle of operation at South Ukraine Unit 3, all with excellent results. All 42 fuel assemblies were examined for visible damage or non

  6. Mox fuels recycling

    International Nuclear Information System (INIS)

    Gay, A.

    1998-01-01

    This paper will firstly emphasis that the first recycling of plutonium is already an industrial reality in France thanks to the high degree of performance of La Hague and MELOX COGEMA's plants. Secondly, recycling of spent Mixed OXide fuel, as a complete MOX fuel cycle, will be demonstrated through the ability of the existing plants and services which have been designed to proceed with such fuels. Each step of the MOX fuel cycle concept will be presented: transportation, reception and storage at La Hague and steps of spent MOX fuel reprocessing. (author)

  7. Fuel management for the Beznau nuclear power plant in Switzerland

    International Nuclear Information System (INIS)

    Clausen, A.

    1988-01-01

    The Beznau nuclear power plant consists of two 350 MW(e) PWRs of Westinghouse design. A number of special features characterize the nuclear industry in Switzerland: there is no fuel cycle industry; nuclear materials must be moved through several countries before they arrive in our country, it is therefore important that agreements are in place between those countries and Switzerland; nearly all of the materials and services required have to be paid in foreign currencies; the interest rate in Switzerland is traditionally low. Aspects of fuel management at the Beznau plant discussed against this background are: the procurement of natural uranium, its conversion and enrichment; fuel fabrication, in-core management, reprocessing and plutonium recycling; and fuel cycle costs. (author)

  8. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    Energy Technology Data Exchange (ETDEWEB)

    Memmott, M. J.; Stansbury, C.; Taylor, C. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

  9. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    International Nuclear Information System (INIS)

    Memmott, M. J.; Stansbury, C.; Taylor, C.

    2012-01-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

  10. MOX fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    Guillet, J.L.

    1990-01-01

    This paper is devoted to the reprocessing of MOX fuel in UP2-800 plant at La Hague, and to the MOX successive reprocessing and recycling. 1. MOX fuel reprocessing. In a first step, the necessary modifications in UP2-800 to reprocess MOX fuel are set out. Early in the UP2-800 project, actions have been taken to reprocess MOX fuel without penalty. They consist in measures regarding: Dissolution; Radiological shieldings; Nuclear instrumentation; Criticality. 2. Mox successive reprocessing and recycling. The plutonium recycling in the LWR is now a reality and, as said before, the MOX fuel reprocessing is possible in UP2-800 plant at La Hague. The following actions in this field consist in verifying the MOX successive reprocessing and recycling possibilities. After irradiation, the fissile plutonium content of irradiated MOX fuel is decreased and, in this case, the re-use of plutonium in the LWR need an important increase of initial Pu enrichment inconsistent with the Safety reactor constraints. Cogema opted for reprocessing irradiated MOX fuel in dilution with the standard UO2 fuel in appropriate proportions (1 MOX for 4 UO2 fuel for instance) in order to save a fissile plutonium content compatible with MOX successive recycling (at least 3 recyclings) in LWR. (author). 2 figs

  11. Current status of Westinghouse tubular solid oxide fuel cell program

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W.G. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States)

    1996-04-01

    In the last ten years the solid oxide fuel cell (SOFC) development program at Westinghouse has evolved from a focus on basic material science to the engineering of fully integrated electric power systems. Our endurance for this cell is 5 to 10 years. To date we have successfully operated at power for over six years. For power plants it is our goal to have operated before the end of this decade a MW class power plant. Progress toward these goals is described.

  12. Westinghouse introduces new fuel for PWRs and BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Orr, W L; McClintock, D C

    1985-09-01

    In response to utility demands for improved fuel performance, reduced fuel cycle costs, and enhanced operating margins, Westinghouse recently introduced advanced fuel assembly designs for both types of LWR - Vantage 5 for PWRs, and Quad+ for BWRs.

  13. Integrated Nuclear Recycle Plant

    International Nuclear Information System (INIS)

    Patodi, Anuj; Parashar, Abhishek; Samadhiya, Akshay K.; Ray, Saheli; Dey, Mitun; Singh, K.K.

    2017-01-01

    Nuclear Recycle Board (NRB), Tarapur proposes to set up an 'Integrated Nuclear Recycle Plant' at Tarapur. This will be located in the premises of BARC facilities. The project location is at coastal town of Tarapur, 130 Km north of Mumbai. Project area cover of INRP is around 80 hectares. The plant will be designed to process spent fuel received from Pressurized Heavy Water Reactors (PHWRs). This is the first large scale integrated plant of the country. INRP will process spent fuel obtained from indigenous nuclear power plants and perform left over nuclear waste disposal

  14. Verification test of advanced LWR fuel components of Westinghouse type nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Young Ho

    2004-08-01

    The purpose of this project is to independently conduct the performance test of the spacer grids and the cladding material of the 16x16 and 17x17 advanced fuels for Westinghouse type plants, and to improve the relevant test technology. Major works and results of the present research are as follows. 1. The design and structural features of the spacer grids were investigated, especially the finally determined I-spring was thoroughly analyzed in the point of the mechanical damage and characteristic. 2. As for the mechanical tests of the space grids, the characterization, the impact and the fretting wear tests were carried out. The block as well as the in-grid tests were conducted for the spring/dimple characterization, from which a simple method was developed that simulated the boundary conditions of the assembled grid straps. The impact tester was modified and improved to accommodate a full size grid assembly. The impact result showed that the grid assembly fulfilled the design criteria. As for the fretting wear tests, a sliding test under the room temperature air/water, a sliding/impact test under the room temperature air and a sliding/impact tests under the high temperature and pressure environments were carried out. To this end, a high temperature and pressure fretting wear tester was newly developed. The wear characteristic and the resistibility of the advanced grid spring/dimple were analyzed in detail. The test results were verified through comparing those with the test results by the Westinghouse company. 3. The properties and performance of the newly adopted material for the cladding, Low Sn Zirlo was investigated by a room and high temperature tensile tests and a corrosion tests under the environments of 360 .deg. C water, 400 steam and 360 .deg. C 70ppm LiOH. Through the present project, all the test equipment and technologies for the fuel components were procured, which will be used for future domestic development of a new fuel

  15. Westinghouse Reference Safety Analysis Report, RESAR-414. License application, preliminary safety analysis report (RESAR-414) volume 1

    International Nuclear Information System (INIS)

    1976-01-01

    Westinghouse's standardized four-loop, single unit NSSS for a pressurized water reactor is described including the core, coolant system, ECCS, emergency boration, chemical and volume control, RHR system, boron recycle, fuel handling, spent fuel pool and associated instrumentation and controls. This reactor is applicable to a plant with a core power level of 3800 MW(t) and 1295 MW(e). The reactor is controlled by temperature coefficients of reactivity; control rod motion, and by a soluble neutron absorber-boric acid

  16. Validating Westinghouse atom 16 x 16 and 18 x 18 PWR fuel performance

    International Nuclear Information System (INIS)

    Andersson, S.; Gustafson, J.; Jourdain, P.; Lindstroem, L.; Hallstadius, L.; Hofling, C.G.

    2001-01-01

    Westinghouse Atom designs and fabricates PWR fuel for all major European fuel types: 17 x 17 standard (12 ft) and 17 x 17 XL (14 ft) for Westinghouse type PWRs, and 16 x 16 and 18 x 18 fuel for Siemens type PWRs. The W Atom PWR fuel designs are based on the extensive Westinghouse CE PWR fuel experience from combustion engineering type PWRs. The W atom designs utilise basic design features from the W CE fuel tradition, such as all-Zircaloy mid grids and the proven ( 6 rod years) Guardian TM debris catcher, which is integrated in the bottom Inconel grid. Several new features have been developed to meet with stringent European requirements originating from requirements on very high burnup, in combination with low-leakage core operating strategies and high coolant temperatures. The overall reliability of the Westinghouse Atom PWR fuel is very high; no fuel failure has been detected since 1997. (orig.)

  17. Use of Pilot Plants for Developing Used Nuclear Fuel Recycling Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Chris; Arm, Stuart [EnergySolutions LLC (United States); Banfield, Zara; Jeapes, Andrew; Taylor, Richard [National Nuclear Laboratory (United Kingdom)

    2009-06-15

    EnergySolutions and its teaming partners are working with the US Department of Energy (DOE) to develop processes, equipment and facilities for recycling used nuclear fuel (UNF). Recycling significantly reduces the volume of wastes that ultimately will be consigned to the National Geologic Repository, enables the re-use in new fuel of the valuable uranium and plutonium in the UNF, and allows the long-lived minor actinides to be treated separately so they do not become long term heat emitters in the Repository. A major requirement of any new UNF recycling facility is that pure plutonium is not separated anywhere in the process, so as to reduce the nuclear proliferation attractiveness of the facility. EnergySolutions and its team partner the UK National Nuclear Laboratory (NNL) have developed the NUEX process to achieve this and to handle appropriately the treatment of other species such as krypton, tritium, neptunium and technetium. NUEX is based on existing successful commercial UNF recycling processes deployed in the UK, France and imminently in Japan, but with a range of modifications to the flowsheet to keep some uranium with the plutonium at all times and to minimize aerial and liquid radioactive discharges. NNL's long-term experience in developing the recycling and associated facilities at the Sellafield site in the UK, and its current duties to support technically the operation of the Thermal Oxide Reprocessing Plant (THORP) at Sellafield provides essential input to the design of the US NUEX-based facility. Development work for THORP and other first-of-kind nuclear plants employed miniature scale fully radioactive through large scale inactive pilot plants. The sequence of development work that we have found most successful is to (i) perform initial process development at small (typically 1/5000) scale in gloveboxes using trace active materials, (ii) demonstrate the processes at the same small scale with actual irradiated fuel in hot cells and (iii

  18. Uranium-236 in light water reactor spent fuel recycled to an enriching plant

    International Nuclear Information System (INIS)

    de la Garza, A.

    1977-01-01

    The introduction of 236 U to an enriching plant by recycling spent fuel uranium results in enriched products containing 236 U, a parasitic neutron absorber in reactor fuel. Convenient approximate methodology determines 235 236 U, and total uranium flowsheets with associated separative work requirements in enriching plant operations for use by investigators of the light water reactor fuel cycle not having recourse to specialized multicomponent cascade technology. Application of the methodology has been made to compensation of an enriching plant product for 236 U content and to the value at an enriching plant of spent fuel uranium. The approximate methodology was also confirmed with more exact calculations and with some experience with 236 U in an enriching plant

  19. Performance of the Westinghouse WWER-1000 fuel design

    International Nuclear Information System (INIS)

    Höglund, J.; Jansson, A.; Latorre, R.; Davis, D.

    2015-01-01

    In 2005, six (6) Westinghouse WWER-1000 Lead Test Assemblies (LTAs) were loaded in South Ukraine Unit 3 (SU3). The LTAs completed the planned four cycles of operation and reached an average assembly burnup in excess of 43 MWd/ kgU. Post Irradiation Examination (PIE) inspections were performed after completion of each cycle and it was concluded that the 6 Westinghouse LTAs performed as expected during their operational regimes. In 2010, a full region of 42 assemblies of an enhanced WWER-1000 fuel design for Ukrainian reactors, designated WFA, was loaded in SU3. The WFA includes features that further mitigate assembly bow while at the same time improving the fuel cycle economy. In 2015, 26 WFAs completed their planned four cycles of operation reaching an average assembly burnup in excess of 42 MWd/ kgU. Currently 36 WFAs continue operating their fourth cycle in SU3. In addition, South Ukraine Unit 2 (SU2) has been loaded with WFAs and 27 assemblies have completed two cycles of operation reaching an average assembly burnup above 24 MWd/kgU. PIE for the WFAs has been completed after each cycle of operation. All assemblies have been examined for visible damage or non-standard position of fuel assembly components during unloading and reloading. All WFAs have also been subject to the standard leak testing process, with all fuel rods found to be hermetically sealed and non-leaking. Each outage, six WFAs have been subject to a more extensive inspection program. In 2012, 2013, and 2015, the Westinghouse Fuel Inspection and Repair Equipment (FIRE) workstation were used for the SU3 inspections. Excellent irradiation fuel performance has been observed and measured on all WFAs. The fuel assembly growth, rod cluster control assembly (RCCA) drag forces, oxide thickness, total fuel rod-to-nozzle gap channel closure, and fuel assembly bow data were within the bounds of the Westinghouse experience database. Results and concluding remarks from the PIEs are provided in this paper. In

  20. Westinghouse accident tolerant fuel program. Current results and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Sumit; Xu, Peng; Lahoda, Edward; Hallstadius, Lars; Boylan, Frank [Westinghouse Electric Company LLC, Hopkins, SC (United States)

    2016-07-15

    This paper discusses the current status, results from initial tests, as well as the future direction of the Westinghouse's Accident Tolerant Fuel (ATF) program. The current preliminary testing is addressed that is being performed on these samples at the Massachusetts Institute of Technology (MIT) test reactor, initial results from these tests, as well as the technical learning from these test results. In the Westinghouse ATF approach, higher density pellets play a significant role in the development of an integrated fuel system.

  1. MHI - Westinghouse joint FBR tank plant design

    International Nuclear Information System (INIS)

    Arnold, W.H.; Vijuk, R.M.; Aoki, I.; Messhil, T.

    1988-01-01

    Mitsubishi Heavy Industries and Westinghouse Advanced Energy Systems Division have combined their experience and capabilities to design a tank type fast breeder reactor plant. This tank type reactor has been refined and improved during the last three years to better compete in cost, safety, and operation with alternative power plants. This Mitsubishi/Westinghouse joint design offers economic advantages due to the use of steel structures, modular construction, nitrogen cells for the intermediate loops, reactor cavity air cooling and the use of the guard vessel as the containment vessel. Inherent characteristics in the reactor design provide protection to the public and the plant investment

  2. Westinghouse Small Modular Reactor (SMR) Programe

    International Nuclear Information System (INIS)

    Shulyak, Nick

    2014-01-01

    -pressure, compact design that normally operates at a partial vacuum. This facilitates heat removal from the containment during LOCA events. This compact containment will be completely submerged in water during power operation providing a heat sink for postulated accidents which also aides the heat removal and provides an additional radionuclide filter. For protection against external threats, the containment vessel and plant safety systems are located below ground level. At a diameter of 32 feet, approximately 25 of the Westinghouse SMR containment vessels can fit within the envelope of the AP1000 containment building. The Westinghouse SMR NTSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and will be fueled by a derivative of the successful 17x17 Robust Fuel Assembly (RFA) product. An 89 assembly core with an active height of 2,4 m (8 feet) will provide a 24 month operating cycle with a power output of 800 MWt. Derived from the AP1000 plant and adapted to operate inside the reactor pressure vessel, 37 control rod drive mechanisms provide reactor shutdown and reactivity control capabilities. Eight seal less pumps provide a nominal reactor coolant flow of 100,000 gallons per minute. An innovative evolution of a straight tube steam generator produces a saturated mixture that is delivered to a steam separating drum located outside of the containment vessel. The steam generator along with the integral pressurizer is attached to the reactor vessel with a single closure flange located near the center of gravity of the reactor assembly and is designed to be removed during refueling operations. Like the AP1000 plant, the Westinghouse SMR relies on the natural forces of gravity and natural circulation to provide core and containment cooling during accident conditions. At approximately one fifth the net electrical output of the AP1000 plant, the Westinghouse SMR is designed to address infrastructure

  3. MHI-Westinghouse joint FBR tank plant design

    International Nuclear Information System (INIS)

    Arnold, W.H.; Vijuk, R.M.; Aoki, I.; Meshii, T.

    1987-01-01

    Mitsubishi Heavy Industries and Westinghouse Advanced Energy Systems Division have combined their experience and capabilities to design a tank type fast breeder reactor plant. This tank type reactor has been refined and improved during the last three years to better compete in cost, satety, and operation with alternative power plants. This Mitsubishi/Westinghouse joint design offers economic advantages due to the use of steel structures, modular construction, nitrogen cells for the intermediate loops, reactor cavity air cooling and the use of the guard vessel as the containment vessel. Inherent characteristics in the reactor design provide protection to the public and the plant investment. (author)

  4. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    Science.gov (United States)

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2015-07-14

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  5. Development of an advanced 16x165 Westinghouse type PWR fuel assembly for Slovenia

    International Nuclear Information System (INIS)

    Boone, M. L.; King, S. J.; Pulver, E. F.; Jeon, K.-L.; Esteves, R.; Kurincic, B.

    2004-01-01

    Industrias Nucleares do Brasil (INB), KEPCO Nuclear Fuel Company, Ltd. (KNFC), and Westinghouse Electric Company (Westinghouse) have jointly designed an advanced 16x16 Westinghouse type PWR fuel assembly. This advanced 16x16 Westinghouse type PWR fuel assembly, which will be implemented in both Kori Unit 2 (in Korea) and Angra Unit 1 (in Brazil) in January and March 2005, respectively, is an integral part of the utilities fuel management strategy. This same fuel design has also been developed for future use in Krsko Unit 1 (in Slovenia). In this paper we will describe the front-end nuclear fuel management activities utilized by the joint development team and describe how these activities played an integral part in defining the direction of the advanced 16x16 Westinghouse type PWR fuel assembly design. Additionally, this paper will describe how this design demonstrates improved margins under high duty plant operating conditions. The major reason for initiating this joint development program was to update the current 16x16 fuel assembly, which is also called 16STD. The current 16STD fuel assembly contains a non-optimized fuel rod diameter for the fuel rod pitch (i.e. 9.5 mm OD fuel rods at a 0.485 inch pitch), non-neutronic efficient components (i.e. Inconel Mid grids), no Intermediate Flow Mixer (IFM) grids, and other mechanical features. The advanced 16x16 fuel assembly is being designed for peak rod average burnups of up to 75 MWd/kgU and will use an optimized fuel rod diameter (i.e. 9.14 mm OD ZIRLO TM fuel rods), neutronic efficient components (i.e. ZIRLO TM Mid grids), ZIRLO TM Intermediate Flow Mixer (IFM) grids to improve Departure from Nucleate Boiling (DNB) margin, and many other mechanical features that improve design margins. Nuclear design activities in the areas of fuel cycle cost and fuel management were performed in parallel to the fuel assembly design efforts. As the change in reactivity due to the change in the fuel rod diameter influences directly

  6. Drop testing of the Westinghouse fresh nuclear fuel package

    International Nuclear Information System (INIS)

    Shappert, L.B.; Sanders, C.F.

    1993-01-01

    The Westinghouse Columbia Fuel Fabrication Facility has decided to develop and certify a new fresh fuel package design (type A, fissile) that has the capability to transport more highly enriched fuel than was previously possible. A prototype package was tested in support of the Safety Analysis Report of the Packaging (SARP). This paper provides detailed information on the tests and test results. A first prototype test was carried out at the STF, and the design did not give the safety margin that Westinghouse wanted for their containers. The data from the test were used to redesign the connection between the clamping frame and the pressure pad, and the tests were reinitiated. Three packages were then tested at the STF. All packages met the acceptance criteria and acceleration information was obtained that provided an indication of the behavior of the cradle and strongback which holds the fuel assemblies and nuclear poison in place. (J.P.N.)

  7. Standard Technical Specifications, Westinghouse plants

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for Westinghouse Plants and documents the positions of the Nuclear Regulatory Commission based on the Westinghouse Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. This document, Volume 3, contains the Bases for Sections 3.4--3.9 of the improved STS

  8. Standard Technical Specifications, Westinghouse Plants

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for Westinghouse Plants and documents the positions of the Nuclear Regulatory Commission based on the Westinghouse Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the unproved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS which contain information on safety limits, reactivity control systems, power distribution limits, and instrumentation

  9. Standard Technical Specifications, Westinghouse plants

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for Westinghouse Plants and documents the positions of the Nuclear Regulatory Commission based on the Westinghouse Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. This document, Volume 1, contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS

  10. Material control and accountability aspects of safeguards for the USA 233U/Th fuel recycle plant

    International Nuclear Information System (INIS)

    Carpenter, J.A. Jr.; McNeany, S.R.; Angelini, P.; Holder, N.D.; Abraham, L.

    1978-01-01

    The materials control and accountability aspects of the reprocessing and refabrication of a conceptual large-scale HTGR fuel recycle plant have been discussed. Two fuel cycles were considered. The traditional highly enriched uranium cycle uses an initial or makeup fuel element with a fissile enrichment of 93% 235 U. The more recent medium enriched uranium cycle uses initial or makeup fuel elements with a fissile enrichment less than 20% 235 U. In both cases, 233 U bred from the fertile thorium is recycled. Materials control and accountability in the plant will be by means of a real-time accountability method. Accountability data will be derived from monitoring of total material mass through the processes and a system of numerous assays, both destructive and nondestructive

  11. Enhanced Westinghouse WWER-1000 fuel design for Ukraine reactors

    International Nuclear Information System (INIS)

    Dye, M.; Shah, H.

    2015-01-01

    Westinghouse has completed design, development, and region quantity delivery of an enhanced Westinghouse fuel assembly for WWER-1000 reactors to support continued safe reactor operations. The enhanced design builds on the successful performance of an earlier generation design which has operated in the South Ukraine 3 reactor for multiple cycles without any fuel rod failures. Incorporated design enhancements include a thicker spacer grid outer strap, an enhanced spacer grid outer strap profile to limit the risk for, and impact of, mechanical interaction/interference with coresident fuel, an all Alloy 718 grid structure for improved stability and strength, and improvements to the top and bottom nozzles. Capable of meeting increased lateral loads generated from using a higher axial trip limit for the refueling machine crane, the design was verified by extensive mechanical and thermalhydraulic testing, which included a newly developed fuel assembly-to-fuel assembly handling test rig to assess performance during bounding core loading and unloading conditions. Through these extensive design enhancements and comprehensive testing program, the enhanced WWER-1000 design provides additional performance, handling, and reliability margins for safe reactor operation. (authors)

  12. Westinghouse AP600 advanced nuclear plant design

    International Nuclear Information System (INIS)

    Gangloff, W.

    1999-01-01

    As part of the cooperative US Department of Energy (DOE) Advanced Light Water Reactor (ALWR) Program and the Electric Power Research Institute (EPRI), the Westinghouse AP600 team has developed a simplified, safe, and economic 600-megawatt plant to enter into a new era of nuclear power generation. Designed to satisfy the standards set by DOE and defined in the ALWR Utility Requirements Document (URD), the Westinghouse AP600 is an elegant combination of innovative safety systems that rely on dependable natural forces and proven technologies. The Westinghouse AP600 design simplifies plant systems and significant operation, inspections, maintenance, and quality assurance requirements by greatly reducing the amount of valves, pumps, piping, HVAC ducting, and other complex components. The AP600 safety systems are predominantly passive, depending on the reliable natural forces of gravity, circulation, convection, evaporation, and condensation, instead of AC power supplies and motor-driven components. The AP600 provides a high degree of public safety and licensing certainty. It draws upon 40 years of experience in light water reactor components and technology, so no demonstration plant is required. During the AP600 design program, a comprehensive test program was carried out to verify plant components, passive safety systems components, and containment behavior. When the test program was completed at the end of 1994, the AP600 became the most thoroughly tested advanced reactor design ever reviewed by the US Nuclear Regulatory Commission (NRC). The test results confirmed the exceptional behavior of the passive systems and have been instrumental in facilitating code validations. Westinghouse received Final Design Approval from the NRC in September 1998. (author)

  13. INEL design studies in support of the Westinghouse EPRI small plant study

    International Nuclear Information System (INIS)

    Burtt, J.D.; Kullberg, C.M.

    1986-03-01

    In support of the design effort of a Westinghouse EPRI small plant study, several analyses were performed at the Idaho National Engineering Laboratory. An analysis was performed to study fuel behavior under conditions of a limiting flow coastdown transient. Depressurization capabilities for the reactor coolant system were studied. The post-accident heat removal for the current containment design was studied. The results of all three studies are reported. 31 figs

  14. Radiotoxicity Characterization of Multi-Recycled Thorium Fuel - 12394

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, F.; Wenner, M. [Westinghouse Electric Company, Cranberry Township, PA (United States); Fiorina, C. [Polytechnic of Milano, Milan (Italy); Paul Sherrer Institute (Switzerland); Huang, M.; Petrovic, B. [Georgia Technology University, Atlanta, GA (United States); Krepel, J. [Paul Sherrer Institute (Switzerland)

    2012-07-01

    As described in companion papers, Westinghouse is proposing the implementation of a thorium based fuel cycle to burn the transuranic (TRU) contained in the used nuclear fuel. The potential of thorium as a TRU burner is described in another paper presented at this conference. This paper analyzes the long-term impact of thorium on the front-end and backend of the fuel cycle. This is accomplished by an assessment of the isotopic make-up of Th in a closed cycle and its impact on representative metrics, such as radiotoxicity, decay heat and gamma heat. The behavior in both thermal and fast neutron energy ranges has been investigated. Irradiation in a Th fuel PWR has been assumed as representative of the thermal range, while a Th fuel fast reactor (FR) has been employed to characterize the behavior in the high-energy range. A comparison with a U-fuel closed-cycle FR has been undertaken in an attempt of a more comprehensive evaluation of each cycle's long-term potential. As the Th fuel undergoes multiple cycles of irradiation, the isotopic composition of the recycled fuel changes. Minor Th isotopes are produced; U-232 and Pa-231 build up; the U vector gradually shifts towards increasing amounts of U-234, U-235 etc., eventually leading to the production of non negligible amounts of TRU isotopes, especially Pu-238. The impact of the recycled fuel isotopic makeup on the in-core behavior is mild, and for some aspects beneficial, i.e. the reactivity swing during irradiation is reduced as the fertile characteristics of the fuel increase. On the other hand, the front and the back-end of the fuel cycle are negatively affected due to the presence of Th-228 and U-232 and the build-up of higher actinides (Pu-238 etc.). The presence of U-232 can also be seen as advantageous as it represents an obstacle to potential proliferators. Notwithstanding the increase in the short-term radiotoxicity and decay heat in the multi-recycled fuel, the Th closed cycle has some potentially

  15. A consortium approach to commercialized Westinghouse solid oxide fuel cell technology

    Science.gov (United States)

    Casanova, Allan

    Westinghouse is developing its tubular solid oxide fuel cells (SOFCs) for a variety of applications in stationary power generation markets. By pressurizing a SOFC and integrating it with a gas turbine (GT), power systems with efficiencies as high as 70-75% can be obtained. The first such system will be tested in 1998. Because of their extraordinarily high efficiency (60-70%) even in small sizes the first SOFC products to be offered are expected to be integrated SOFC/GT power systems in the 1-7 MW range, for use in the emerging distributed generation (DG) market segment. Expansion into larger sizes will follow later. Because of their modularity, environmental friendliness and expected cost effectiveness, and because of a worldwide thrust towards utility deregulation, a ready market is forecasted for baseload distributed generation. Assuming Westinghouse can complete its technology development and reach its cost targets, the integrated SOFC/GT power system is seen as a product with tremendous potential in the emerging distributed generation market. While Westinghouse has been a leader in the development of power generation technology for over a century, it does not plan to manufacture small gas turbines. However, GTs small enough to integrate with SOFCs and address the 1-7 MW market are generally available from various manufacturers. Westinghouse will need access to a new set of customers as it brings baseload plants to the present small market mix of emergency and peaking power applications. Small cogeneration applications, already strong in some parts of the world, are also gaining ground everywhere. Small GT manufacturers already serve this market, and alliances and partnerships can enhance SOFC commercialization. Utilities also serve the DG market, especially those that have set up energy service companies and seek to grow beyond the legal and geographical confines of their current regulated business. Because fuel cells in general are a new product, because small

  16. The Westinghouse Advanced Passive Pressurized Water Reactor, AP1000

    International Nuclear Information System (INIS)

    Schene, R.

    2009-01-01

    Featuring proven technology and innovative passive safety systems, the Westinghouse AP1000 pressurized water reactor can achieve competitive generation costs in the current electricity market without emitting harmful greenhouse gases and further harming the environment. Westinghouse Electric Company, the pioneer in nuclear energy once again sets a new industry standard with the AP1000. The AP1000 is a two-loop pressurized water reactor that uses simplified, innovative and effective approach to safety. With a gross power rating of 3415 megawatt thermal and a nominal net electrical output of 1117 megawatt electric, the AP1000 is ideal for new base load generation. The AP1000 is the safest and most economical nuclear power plant available in the worldwide commercial marketplace, and is the only Generation III+ reactor to receive a design certification from the U.S. Nuclear Regulatory Commission (NRC). Based on nearly 20 years of research and development, the AP1000 builds and improves upon the established technology of major components used in current Westinghouse designed plants. These components, including steam generators, digital instrumentation and controls, fuel, pressurizers, and reactor vessels, are currently in use around the world and have years of proven, reliable operating experience. Historically, Westinghouse plant designs and technology have forged the cutting edge technology of nuclear plant around the world. Today, nearly 50 percent of the world's 440 nuclear plants are based on Westinghouse technology. Westinghouse continues to be the nuclear industry's global leader. (author)

  17. Design study on advanced nuclear fuel recycle system. Conceptual design study of recycle system using molten salt

    International Nuclear Information System (INIS)

    Kasai, Y.; Kakehi, I.; Moro, T.; Higashi, T.; Tobe, K.; Kawamura, F.; Yonezawa, S.; Yoshiuji, T.

    1998-10-01

    Advanced recycle system engineering group of OEC (Oarai Engineering Center) has being carried out a design study of the advanced nuclear fuel recycle system using molten salt (electro-metallurgical process). This system is aiming for improvements of fuel cycle economy and reduction of environmental burden (MA recycles, Minimum of radioactive waste disposal), and also improvement of safety and nuclear non-proliferation. This report describes results of the design study that has been continued since December 1996. (1) A design concept of the advanced nuclear fuel recycle system, that is a module type recycles system of pyrochemical reprocessing and fuel re-fabrication was studied. The module system has advantage in balance of Pu recycle where modules are constructed in coincidence with the construction plan of nuclear power plants, and also has flexibility for technology progress. A demonstration system, minimum size of the above module, was studies. This system has capacity of 10 tHM/y and is able to demonstrate recycle technology of MOX fuel, metal fuel and nitride fuel. (2) Each process of the system, which are pyrochemical electrorefining system, cathode processor, de-cladding system, waste disposal system, etc., were studied. In this study, capacity of an electrorefiner was discussed, and vitrification experiment of molten salt using lead-boric acid glass was conducted. (3) A hot cell system and material handling system of the demonstration system was studied. A robot driven by linear motor was studied for the handling system, and an arrangement plan of the cell system was made. Criticality analysis in the cell system and investigation of material accountancy system of the recycle plant were also made. This design study will be continued in coincidence with design study of reactor and fuel, aiming to establish the concept of FBR recycle system. (author)

  18. Development and application of special instrumentation for materials accountancy and process control in spent fuel recycle plants

    International Nuclear Information System (INIS)

    Clark, P.A.; Gardner, N.; Merrill, N.H.; Whitehouse, K.R.

    1996-01-01

    Safe and optimum operations of spent fuel recycle plants rely on the availability of real time measurement systems at key points in the process. More than thirty types of special instrument systems have been developed and commissioned on the THORP reprocessing plant at Sellafield. These systems are compiled together with the associated information on measurement purpose, measurement technique and plant performance. A number of these measurement systems are of interest to support Safeguards arrangements on the plant. A more detailed overview of two such instrument systems respectively within the Head End and Product Finishing Stages of THORP is provided. The first of these is the Hulls Monitor, based on high resolution gamma spectrometry, as well as active and passive neutron measurements, of the basket of leached fuel cladding. This provides vital data for criticality assurance, nuclear material accountancy and inventory determination for ultimate disposal of the cladding waste. The second system is the Plutonium Inventory Monitoring System (PIMS) which employs passive neutron counting from a distributed array of neutron detectors within the Pu Finishing Line. This provides a near real time estimate of Pu inventories both during operations and at clean out of the Finishing Line. Both the Hulls Monitor and PIMS technologies are applicable to MOX Fuel recycle. Both systems enhance the control of fissile material in key areas of the recycle process which are of interest to the Safeguards authorities. (author)

  19. Pneumatic transport system development: residuals and releases program at Westinghouse Cheswick site

    International Nuclear Information System (INIS)

    Larouere, P.J.; Shoulders, J.L.

    1979-01-01

    Plutonium oxide and uranium oxide powders are processed within glove boxes or within confinement systems during the fabrication of mixed oxide (MOX) pellets for recycle fuel. The release of these powders to the glove box or to the confinement results in some airborne material that is deposited in the enclosure or is carried in the air streams to the effluent air filtration system. Release tests on simulated leaks in pneumatic transport equipment and release tests on simulated failures with powder blending equipment were conducted. A task to develop pneumatic transport for the movement of powders within an MOX fabrication plant has been underway at the Westinghouse Research Laboratories. While testing and evaluating selected pneumatic transport components on a full scale were in progress, it was deemed necessary that final verification of the technology would have to be performed with plutonium-bearing powders because of the marked differences in certain properties of plutonium from those of uranium oxides. A smaller was designed and constructed for the planned installation in glove boxes at the Westinghouse Plutonium Fuel Development Laboratory. However, prior to use with plutonium it was agreed that this system be set up and tested with uranium oxide powder. The test program conducted at the Westinghouse Cheswick site was divided into two major parts. The first of these examined the residuals left as a result of the pneumatic transport of nuclear fuel powders and verified the operability of this one-third scale system. The second part of the program studied the amount of powder released to the air when off-standard process procedures or maintenance operations were conducted on the pneumatic transport system. Air samplers located within the walk-in box housing the transport loop were used to measure the solids concentration in the air. From this information, the total amount of airborne powder was determined

  20. Root cause of incomplete control rod insertions at Westinghouse reactors

    International Nuclear Information System (INIS)

    Ray, S.

    1997-01-01

    Within the past year, incomplete RCCA insertions have been observed on high burnup fuel assemblies at two Westinghouse PWRs. Initial tests at the Wolf Creek site indicated that the direct cause of the incomplete insertions observed at Wolf Creek was excessive fuel assembly thimble tube distortion. Westinghouse committed to the NRC to perform a root cause analysis by the end of August, 1996. The root cause analysis process used by Westinghouse included testing at ten sites to obtain drag, growth and other characteristics of high burnup fuel assemblies. It also included testing at the Westinghouse hot cell of two of the Wolf Creek incomplete insertion assemblies. A mechanical model was developed to calculate the response of fuel assemblies when subjected to compressive loads. Detailed manufacturing reviews were conducted to determine if this was a manufacturing related issue. In addition, a review of available worldwide experience was performed. Based on the above, it was concluded that the thimble tube distortion observed on the Wolf Creek incomplete insertion assemblies was caused by unusual fuel assembly growth over and above what would typically be expected as a result of irradiation exposure. It was determined that the unusual growth component is a combination of growth due to oxide accumulation and accelerated growth, and would only be expected in high temperature plants on fuel assemblies that see long residence times and high power duties

  1. Concept of the plant for the BN-800 fast reactor fuel recycling with application of pyro-process and vibro-packing technology

    International Nuclear Information System (INIS)

    Bychkov, A.V.; Skiba, O.V.; Mayorshin, A.A.; Demidova, L.S.; Kormilitzyna, L.A.; Ishunin, V.S.

    2000-01-01

    The conception of Plant was developed for MOX-fuel recycle at two BN-800 type fast reactors by pyrochemical reprocessing of irradiated nuclear fuel (INF) and production of vibro-pac fuel pins and SA. INF production process and stages of pyrochemical reprocessing were analyzed. Starting materials were chosen. Characteristics of irradiated SA and requirements for finished products were defined. Volumes of production were estimated. Procedure of waste management was defined. The following description was made: (1) general flow sheet of fuel recycling and partial schemes of single reprocessing; (2) composition of production process equipment; (3) arrangement of production process equipment; (4) lay out of Plant building and engineering communications. Principle economical assessments were made for production under design. (authors)

  2. Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania

    International Nuclear Information System (INIS)

    Duncan, D.; Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S.

    1994-04-01

    During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D ampersand D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews

  3. Japan's fuel recycling policy

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Atomic Energy Commission (AEC) has formulated Japanese nuclear fuel recycling plan for the next 20 years, based on the idea that the supply and demand of plutonium should be balanced mainly through the utilization of plutonium for LWRs. The plan was approved by AEC, and is to be incorporated in the 'Long term program for development and utilization of nuclear energy' up for revision next year. The report on 'Nuclear fuel recycling in Japan' by the committee is characterized by Japanese nuclear fuel recycling plan and the supply-demand situation for plutonium, the principle of the possession of plutonium not more than the demand in conformity with nuclear nonproliferation attitude, and the establishment of a domestic fabrication system of uranium-plutonium mixed oxide fuel. The total plutonium supply up to 2010 is estimated to be about 85 t, on the other hand, the demand will be 80-90 t. The treatment of plutonium is the key to the recycling and utilization of nuclear fuel. By around 2000, the private sector will commercialize the fabrication of the MOX fuel for LWRs at the annual rate of about 100 t. Commitment to nuclear nonproliferation, future nuclear fuel recycling program in Japan, MOX fuel fabrication system in Japan and so on are reported. (K.I.)

  4. Westinghouse Advances in Passive Plant Safety

    International Nuclear Information System (INIS)

    Bruschi, H. J.; Manager, General; Gerstenhaber, E.

    1993-01-01

    On June 26, 1992, Westinghouse submitted the Ap600 Standard Safety Analysis Report and comprehensive PIRA results to the U. S. NRC for review as part of the Ap600 design certification program. This major milestone was met on time on a schedule set more than 3 years before submittal and is the result of the cooperative efforts of the U. S. Department of Energy (DOE), the Electric Power Requirements Program, and the Westinghouse Ap600 design team. These efforts were initiated in 1985 to develop a 600 MW advanced light water reactor plant design based on specific technical requirements established to provide the safety, simplicity, reliability, and economics necessary for the next generation of nuclear power plants. The Ap600 design achieves the ALRR safety requirements through ample design margins, simplified safety systems based on natural driving forces, and on a human-engineered man-machine interface system. Extensive Probabilistic Risk evolution, have recently shown that even if none of the active defense-in-depth safety systems are available, the passive systems alone meet safety goals. Furthermore, many tests in an extensive test program have begun or have been completed. Early tests show that passive safety perform well and meet design expectations

  5. Need for Asian regional spent fuel recycle center (ARRC)

    International Nuclear Information System (INIS)

    Yamamura, Osamu

    2009-01-01

    Energy demand is increasing rapidly in the Asia-Pacific region. From the viewpoint of preventing global warming, countries in the region are expected to introduce more nuclear power plants (NPPs) which do not emit greenhouse gases (GHGs). At the end of this century, the capacity for NPPs is estimated to reach around 1600 GWe and around 300,000 tons of uranium (TU) as spent fuel will be accumulated. The spent fuel from the NPPs should be reprocessed and fabricated into MOX fuel to decrease the amounts of radioactive wastes and future fuel recycling should be supported in the Asian Regional Spent Fuel Recycle Center (ARRC) under international regulation. The ARRC will include a reprocessing plant, an MOX fuel fabrication plant, a high-activity vitrified solid waste storage facility, and sea discharge pipes for extremely low activity liquid wastes etc. Furthermore, the ARRC should be operated as a component in an international organization scheme, an ASIATOM and it should accept the full scope of IAEA safeguards to verify the nonproliferation of nuclear materials. When the ARRC is designed, knowledge obtained through experiences in the Tokai and the Rokkasho reprocessing plants in Japan, which is a non-nuclear weapons country, will be used. (author)

  6. Westinghouse AP1000® PWR: Meeting Customer Commitments and Market Needs

    International Nuclear Information System (INIS)

    Shulyak, Nick

    2014-01-01

    Westinghouse Electric Company once again sets a new industry standard with the AP1000 reactor. Historically, Westinghouse plant designs and technology have forged the cutting edge of worldwide nuclear technology. Today, about 50 percent of the world's 440 nuclear plants are based on Westinghouse technology. The AP1000 is the safest and most economical nuclear power plant available in the worldwide commercial marketplace, and is the only Generation III+ reactor to receive Design Certification from the U.S. Nuclear Regulatory Commission (NRC). The AP1000 features proven technology, innovative passive safety systems and offers: Unequalled safety, Economic competitiveness, Improved and more efficient operations. The AP1000 builds and improves upon the established technology of major components used in current Westinghouse-designed plants with proven, reliable operating experience over the past 50 years. These components include: Steam generators, Digital instrumentation and controls, Fuel, Pressurizers, Reactor vessels. Simplification was a major design objective for the AP1000. The simplified plant design includes overall safely systems, normal operating systems, the control room, construction techniques, and instrumentation and control systems. The result is a plant that is easier and less expensive to build, operate and maintain. The AP1000 design saves money and time with an accelerated construction time period of approximately 36 months, from the pouring of first concrete to the loading of fuel. Also, the innovative AP1000 features: 50% fewer safety-related valves, 80% less safety-related piping, 85% less control cable, 35% fewer pumps , 45% less seismic building volume. Eight AP1000 units under construction worldwide-Four units in China-Four units in the United States. (author)

  7. Thermodynamic and exergoeconomic analysis of biogas fed solid oxide fuel cell power plants emphasizing on anode and cathode recycling: A comparative study

    International Nuclear Information System (INIS)

    Mehr, A.S.; Mahmoudi, S.M.S.; Yari, M.; Chitsaz, A.

    2015-01-01

    Highlights: • Four biogas-fed solid oxide fuel cell power plants are proposed. • Performance of systems is compared with each other economically. • Efficiency of biogas fed fuel cell with anode–cathode recycling is the highest. • For current density of 6000 A/m"2 the optimum anode recycle ratio is around 0.25. • Unit product cost of biogas fed fuel cell with anode–cathode recycling is 19.07$/GJ. - Abstract: Four different configurations of natural gas and biogas fed solid oxide fuel cell are proposed and analyzed thermoeconomically, focusing on the influence of anode and/or cathode gas recycling. It is observed that the net output power is maximized at an optimum current density the value of which is lowered as the methane concentration in the biogas is decreased. Results indicate that when the current density is low, there is an optimum anode recycling ratio at which the thermal efficiency is maximized. In addition, an increase in the anode recycling ratio increases the unit product cost of the system while an increase in the cathode recycling ratio has a revers effect. For the same working conditions, the solid oxide fuel cell with anode and cathode recycling is superior to the other configurations and its thermal efficiency is calculated as 46.09% being 6.81% higher than that of the simple solid oxide fuel cell fed by natural gas. The unit product cost of the solid oxide fuel cell-anode and cathode recycling system is calculated as 19.07$/GJ which is about 35% lower than the corresponding value for the simple natural gas fed solid oxide fuel cell system.

  8. Westinghouse AP1000 advanced passive plant: design features and benefits

    International Nuclear Information System (INIS)

    Walls, S.J.; Cummins, W.E.

    2003-01-01

    The Westinghouse AP1000 Program is aimed at implementing the AP1000 plant to provide a further major improvement in plant economics while maintaining the passive safety advantages established by the AP600. An objective is to retain to the maximum extent possible the plant design of the AP600 so as to retain the licensing basis, cost estimate, construction schedule, modularization scheme, and the detailed design from the AP600 program. Westinghouse and the US Nuclear Regulatory Commission staff have embarked on a program to complete Design Certification for the AP1000 by 2004. A pre-certification review phase was completed in March 2002 and was successful in establishing the applicability of the AP600 test program and AP600 safety analysis codes to the AP1000 Design Certification. On March 28, 2002, Westinghouse submitted to US NRC the AP1000 Design Control Document and Probabilistic Risk Assessment, thereby initiating the formal design certification review process. The results presented in these documents verify the safety performance of the API 000 and conformance with US NRC licensing requirements. Plans are being developed for implementation of a series of AP1000 plants in the US. Key factors in this planning are the economics of AP1000, and the associated business model for licensing, constructing and operating these new plants. Similarly plans are being developed to get the AP1000 design reviewed for use in the UK. Part of this planning has been to examine the AP1000 design relative to anticipated UK safety and licensing issues. (author)

  9. Recycling as an option of used nuclear fuel management strategy for Europe

    International Nuclear Information System (INIS)

    Chiguer, M.; Casabianca, J.L.; Gros, J.P.

    2010-01-01

    As soon as the civil nuclear power age got underway, it became unthinkable to imagine generating nuclear electricity without recycling nuclear materials. In every country where this form of energy was being developed, construction programs involved not only power plants, but also fuel cycle facilities, notably dedicated to recovering and recycling nuclear material. Today, the nuclear renaissance coupled with growing concerns about energy security and public acceptance will provide a trigger for European nuclear countries to look back on three decades of Recycling used nuclear fuel excellent track record. In addition, back-end policy is more and more one of the major topics that nuclear countries and utilities have to face when managing existing as well as a new nuclear power plant. 'What will be done with the used fuel' is a key question, especially in terms of public acceptance. Countries that have previously postponed this topic now have to rethink the best solution for complete sustainable nuclear power. With several decades of experience and excellent feedback recycling has reached a maturity throughout all its supply chain and therefore constitutes the best response. The outcome is outstanding performance in reactors of recycled fuels and a robust, economical and optimized solution to ultimate waste management, in other words: - Recycling allows to significantly reduce the volume and toxicity of the ultimate waste to be interim stored and disposed of while enhancing proliferation resistance, - Recycling features competitive and predictable economics, - Recycling Used Nuclear Fuel supports the sustainable development of nuclear power allowing mitigating supply risks. All this helps to increase public support towards nuclear energy and insure the sustainable development of nuclear energy here and now. (authors)

  10. The Direct Internal Recycling concept to simplify the fuel cycle of a fusion power plant

    International Nuclear Information System (INIS)

    Day, Christian; Giegerich, Thomas

    2013-01-01

    Highlights: • The fusion fuel cycle is presented and its functions are discussed. • Tritium inventories are estimated for an early DEMO configuration. • The Direct Internal Recycling concept to reduce tritium inventories is described. • Concepts for its technical implementation are developed. -- Abstract: A new concept, the Direct Internal Recycling (DIR) concept, is proposed, which minimizes fuel cycle inventory by adding an additional short-cut between the pumped torus exhaust gas and the fuelling systems. The paper highlights quantitative modelling results derived from a simple fuel cycle spreadsheet which underline the potential benefits that can be achieved by implementation of the DIR concept into a fusion power plant. DIR requires a novel set-up of the torus exhaust pumping system, which replaces the batch-wise and cyclic operated cryogenic pumps by a continuous pumping solution and which offers at the same time an additional integral gas separation function. By that, hydrogen can be removed close to the divertor from all other gases and the main load to the fuel clean-up systems is a smaller, helium-rich gas stream. Candidate DIR relevant pump technology based on liquid metals (vapour diffusion and liquid ring pumps) and metal foils is discussed

  11. Overview of HTGR fuel recycle

    International Nuclear Information System (INIS)

    Notz, K.J.

    1976-01-01

    An overview of HTGR fuel recycle is presented, with emphasis placed on reprocessing and fuel kernel refabrication. Overall recycle operations include (1) shipment and storage, (2) reprocessing, (3) refabrication, (4) waste handling, and (5) accountability and safeguards

  12. Impact of minor actinide recycling on sustainable fuel cycle options

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T. K.; Taiwo, T. A.

    2017-11-01

    the repository performance. On the other hand, recycling minor actinides also results in an increase of the recycled fuel characteristics and therefore of the charged fuel. The radioactivity is slightly increased while the decay heat and radiotoxicities are very significantly increased. Despite these differences, the characteristics of the fuel at time of discharge remain similar whether minor actinides are recycled or not, with the exception of the inhalation radiotoxicity which is significantly larger with minor actinide recycling. After some cooling the characteristics of the discharged fuel become larger when minor actinides are recycled, potentially affecting the reprocessing plant requirements. Recycling minor actinides has a negative impact on the characteristics of the fresh fuel and will make it more challenging to fabricate fuel containing minor actinides.

  13. Thorium utilization program progress report for January 1, 1974--June 30, 1975. [Reprocessing; refabrication; recycle fuel irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Kasten, P.R.

    1976-05-01

    Work was carried out on the following: HTGR reprocessing development and pilot plant, refabrication development and pilot plant, recycle fuel irradiations, engineering and economic studies, and conceptual design of a commercial recycle plant. (DLC)

  14. Fuel cycle optimization. French industry experience with recycling, and perspectives

    International Nuclear Information System (INIS)

    Bernard, Patrice

    2005-01-01

    Treatment and recycling has been implemented in France from the very beginning of nuclear energy deployment. With the oil shocks in 1973 and 1979, very large scale industrial deployment of LWRs has then been conducted, with now 58 PWRs producing 80% of the total electricity. Modern large scale treatment and recycling facilities have been constructed in the same period: La Hauge treatment facilities and MELOX recycling plant. Important industrial feedback results from operation and optimization of fuel cycle backend facilities, which is summarized in the paper. Then are discussed perspectives with recycling. (author)

  15. Implementation of the Westinghouse WRB-2 CHF correlation in VIPRE

    International Nuclear Information System (INIS)

    Klasmier, L.K.; Haksoo Kim

    1992-01-01

    As part of the reload transient and thermal-hydraulic methods development effort within Commonwealth Edison Company (CECo), the WRB-2 critical heat flux (CHF) correlation has been implemented into the VIPRE-01 thermal-hydraulic analysis code to support Westinghouse 17X17 Vantage 5 fuel. CECo is in the process of switching from Westinghouse optimized fuel assembly (OFA) fuel to Vantage 5 fuel at CECo's six pressurized water reactors. CECo performs the neutronic portion of the reload analysis using Westinghouse's ANC/PHOENIX. The transient and thermal-hydraulic analysis will be performed using the RETRAN and VIPRE codes once the Nuclear Regulatory Commission has completed their review of CECo methodology. Previously, CECo had implemented and received NRC approval to use the Westinghouse WRB-1 CHF correlation in the VIPRE-01 code to support 15X15 and 17X17 OFA fuel designs. Since the WRB-1 CHF correlation is not applicable for 17X17 Vantage 5 fuel, it was necessary to implement the WRB-2 CHF correlation in the VIPRE code. The WRB-2 correlation was developed by Westinghouse using a database applicable to 17X17 OFA and Vantage 5 fuel and the THINC thermal-hydraulic analysis code. At CECo, the WRB-2 correlation had been implemented into VIPRE-01/MOD-02. The results produced at CECo have been statistically compared to those produced by Westinghouse. Owen's method was used to determine the VIPRE/WRB-02 thermal limit. The thermal limit for 17X17 OFA and Vantage 5 fuel use in VIPRE/WRB-2 is in excellent agreement with the value calculated by Westinghouse using THINC/WRB-2

  16. Tritium control by water recycle in a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hall, N.E.; Ward, G.N.

    1975-06-01

    A preliminary study was made of the use of water recycle within a reprocessing plant to control the escape of tritium and to consolidate it for disposal. Tritium distribution was evaluated in the leacher, high-level, and low-level systems for seven different flowsheet conditions. Tritium retention efficiency was also evaluated for these flowsheet conditions. Impact of tritiated water recycle on the plant design and operation is assessed. It is concluded that tritium control by water recycle is feasible. Achievement of satisfactory retention efficiencies and economic volumes of solidified tritium waste will require extension of existing technology and development of new technology. Evaluation of potential abnormal conditions indicate that releases from upsets need not be excessive. Some increase in occupational exposure will occur because of the pervasiveness, persistence, and ease of uptake of tritiated water vapor. Incentives for tritium control by water recycle may prove marginal if this increased exposure to plant personnel is significant compared to the small reduction in exposure to the general public. Recommendations are presented for further studies

  17. Recycling : The advanced fuel cycle for existing reactors

    International Nuclear Information System (INIS)

    Lamorlette, Guy

    1994-01-01

    In 1993, the Installed capacity of the world's 427 nuclear power plants was over 335 GWe. Additional plants representing 67 GWe were under construction or on order. Taking construction schedules into consideration, their start-up will stretch out over a period of ten years. Nuclear power will therefore increase by 20% at best in ten years, transiting into a relatively modest 2% average annual growth rate. Of these units, about 80% are light water reactors, whether PWR, BWR, or WER. All of these reactors utilize enriched uranium oxide fuel clad with zirconium alloy. From a fuel perspective, these reactors form a pretty homogeneous group. During reactor residence, energy is supplied by fission of three-fourths of the Initial uranium 235, but also by plutonium fission, which is formed in the fuel as soon as it is Irradiated. The plutonium supplies 40% of the generated power. When the fuel is unloaded, it consists of four elements : fission products and structural materials, such as cladding and end-fittings, which are the reel waste, and residual plutonium and uranium, which are energy materials that can be recycled in accordance with French legislation applicable to both non-nuclear and nuclear industries : 'the purpose of this law is to... make use of waste by reusing, recycling or otherwise obtaining reusable material or energy from.'. The nuclear power industry has entered a phase in which most of its capital-intensive projects are behind it. Now, It must depose Itself to ensuring the competitiveness of nuclear energy compared to other sources of power generation, while protecting the environment and respecting safety regulations. Significant gains have been achieved by improving fuel performance : optimization of fuel design, utilization of less neutron-absorbent materials, and increases in fuel burn-up have made it possible to increase the amount of energy derived from one kilogram of natural uranium by more than 50%. Recycling of the fuel in light water reactor

  18. Progress on Plant-Level Components for Nuclear Fuel Recycling: Commonality

    International Nuclear Information System (INIS)

    De Almeida, Valmor F.

    2011-01-01

    Progress made in developing a common mathematical modeling framework for plant-level components of a simulation toolkit for nuclear fuel recycling is summarized. This ongoing work is performed under the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which has an element focusing on safeguards and separations (SafeSeps). One goal of this element is to develop a modeling and simulation toolkit for used nuclear fuel recycling. The primary function of the SafeSeps simulation toolkit is to enable the time-dependent coupling of separation modules and safeguards tools (either native or third-party supplied) that simulate and/or monitor the individual separation processes in a separations plant. The toolkit integration environment will offer an interface for the modules to register in the toolkit domain based on the commonality of diverse unit operations. This report discusses the source of this commonality from a combined mathematical modeling and software design perspectives, and it defines the initial basic concepts needed for development of application modules and their integrated form, that is, an application software. A unifying mathematical theory of chemical thermomechanical network transport for physicochemical systems is proposed and outlined as the basis for developing advanced modules. A program for developing this theory from the underlying first-principles continuum thermomechanics will be needed in future developments; accomplishment of this task will enable the development of a modern modeling approach for plant-level models. Rigorous, advanced modeling approaches at the plant-level can only proceed from the development of reduced (or low-order) models based on a solid continuum field theory foundation. Such development will pave the way for future programmatic activities on software verification, simulation validation, and model uncertainty quantification on a scientific basis; currently, no satisfactory foundation exists for

  19. Progress on Plant-Level Components for Nuclear Fuel Recycling: Commonality

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-08-15

    Progress made in developing a common mathematical modeling framework for plant-level components of a simulation toolkit for nuclear fuel recycling is summarized. This ongoing work is performed under the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which has an element focusing on safeguards and separations (SafeSeps). One goal of this element is to develop a modeling and simulation toolkit for used nuclear fuel recycling. The primary function of the SafeSeps simulation toolkit is to enable the time-dependent coupling of separation modules and safeguards tools (either native or third-party supplied) that simulate and/or monitor the individual separation processes in a separations plant. The toolkit integration environment will offer an interface for the modules to register in the toolkit domain based on the commonality of diverse unit operations. This report discusses the source of this commonality from a combined mathematical modeling and software design perspectives, and it defines the initial basic concepts needed for development of application modules and their integrated form, that is, an application software. A unifying mathematical theory of chemical thermomechanical network transport for physicochemical systems is proposed and outlined as the basis for developing advanced modules. A program for developing this theory from the underlying first-principles continuum thermomechanics will be needed in future developments; accomplishment of this task will enable the development of a modern modeling approach for plant-level models. Rigorous, advanced modeling approaches at the plant-level can only proceed from the development of reduced (or low-order) models based on a solid continuum field theory foundation. Such development will pave the way for future programmatic activities on software verification, simulation validation, and model uncertainty quantification on a scientific basis; currently, no satisfactory foundation exists for

  20. Westinghouse Small Modular Reactor nuclear steam supply system design

    Energy Technology Data Exchange (ETDEWEB)

    Memmott, M. J.; Harkness, A. W.; Van Wyk, J. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam

  1. Plan for fully decontaminating and decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick, Revision 3

    International Nuclear Information System (INIS)

    1982-01-01

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. This volume contains the following 3 attachments: (1) Plan for Fully Decontamination and Decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick; (2) Environmental Assessment for Decontamination and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA; and (3) WARD-386, Quality Assurance Program Description for Decontamination and Decommissioning Activities

  2. Implications of plutonium and americium recycling on MOX fuel fabrication

    International Nuclear Information System (INIS)

    Renard, A.; Pilate, S.; Maldague, Th.; La Fuente, A.; Evrard, G.

    1995-01-01

    The impact of the multiple recycling of plutonium in power reactors on the radiation dose rates is analyzed for the most critical stage in a MOX fuel fabrication plant. The limitation of the number of Pu recycling in light water reactors would rather stem from reactor core physics features. The case of recovering americium with plutonium is also considered and the necessary additions of shielding are evaluated. A comparison between the recycling of Pu in fast reactors and in light water reactors is presented. (author)

  3. Irradiation performance of HTGR recycle fissile fuel

    International Nuclear Information System (INIS)

    Homan, F.J.; Long, E.L. Jr.

    1976-08-01

    The irradiation performance of candidate HTGR recycle fissile fuel under accelerated testing conditions is reviewed. Failure modes for coated-particle fuels are described, and the performance of candidate recycle fissile fuels is discussed in terms of these failure modes. The bases on which UO 2 and (Th,U)O 2 were rejected as candidate recycle fissile fuels are outlined, along with the bases on which the weak-acid resin (WAR)-derived fissile fuel was selected as the reference recycle kernel. Comparisons are made relative to the irradiation behavior of WAR-derived fuels of varying stoichiometry and conclusions are drawn about the optimum stoichiometry and the range of acceptable values. Plans for future testing in support of specification development, confirmation of the results of accelerated testing by real-time experiments, and improvement in fuel performance and reliability are described

  4. Generation of floor response spectra for mixed-oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Arthur, D.F.; Murray, R.C.; Tokarz, F.J.

    1975-01-01

    Floor or amplified response spectra are generally used as input motion for seismic analysis of critical equipment and piping in nuclear power plants and related facilities. The floor spectra are normally the result of a time-history calculation of building response to ground shaking. However, alternate approximate methods have been suggested by both Kapur and Biggs. As part of a study for the Nuclear Regulatory Commission horizontal floor response spectra were generated and compared by all three methods. The dynamic analyses were performed on a model of the Westinghouse Recycle Fuels Plant Manufacturing Building (MOFFP). Input to the time-history calculations was a synthesized accelerogram whose response spectrum is similar to that in Regulatory Guide 1.60. The response spectrum of the synthetic ground motion was used as input to the Kapur and Biggs methods. Calculations were performed for both hard (3500 fps) and soft (1500 fps) foundation soils. Results of comparison of the three methods indicate that although the approximate methods could easily be made acceptable from a safety standpoint, they would be overly conservative. The time-history method will yield floor spectra which are less uncertain and less conservative for a relatively modest additional effort. (auth)

  5. Survey report on the status of new energy in the U.S. On-site research centering on fuel cell, hydrogen energy, and wind energy (Westinghouse Electric Corporation); Beikoku shin energy jijo chosa hokokusho. Nenryo denchi, suiso furyoku energy wo chushin to suru jicchi chosa (Westinghouse Electric Corporation hen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-02-01

    Under the auspices of the New Energy Foundation and the New Energy Industrial Forum technical development committee, a survey team is sent to the U.S. and conducts investigations there about fuel cells, hydrogen production, wind power generation, etc. Visited in the U.S. are the Advanced Energy System Division of the Westinghouse Electric Corporation. As for the phosphoric acid fuel cell, research and development is under way so that two 7.5MW demonstration plants will start service operation by 1987. As for the solid oxide fuel cell, a performance test has completed for a 15-cell model, and a life test is now under way. There is a plan to construct a 500kW plant in 1988. In the production of hydrogen by means of the sulfur hybrid decomposition process, a laboratory model with a capacity of 2L/min was built in 1978, and a life test is now under way for the constituent materials and catalysts. In the field of wind power, the Westinghouse Electric Corporation has developed a 200kW generator, which is now in operation in Mexico, Puerto Rico, Rhode Island, and Hawaii. (NEDO)

  6. Pu-recycling in light water reactors: calculation of fuel burn-up data for the design of reprocessing plants as well as the influence on the demand of uranium

    International Nuclear Information System (INIS)

    Gasteiger, R.

    1977-02-01

    This report gives a detailed review on the composition of radionuclides in spent LWR fuel in the case of Pu-recycling. These calculations are necessary for the design of spent fuel reprocessing plants. Furthermore the influence of Pu-recycling on the demand of uranium for a single LWR as well as for a certain growing LWR-population is shown. (orig.) [de

  7. Conceptual design of a spent LWR fuel recycle complex

    International Nuclear Information System (INIS)

    Kirk, B.H.

    1980-01-01

    Purpose was to design a licensable facility, to make cost-benefit analyses of alternatives, and to aid in developing licensing criteria. The Savannah River Plant was taken to be the site for the recycle complex. The spent LWR fuel will be processed through the plant at the rate of 3000 metric tons of heavy metal per year. The following aspects of the complex are discussed: operation, maintenance, co-conversion (Coprecal), waste disposal, off-gas treatment, ventilation, safeguards, accounting, equipment and fuel fabrication. Differences between the co-processing case and the separated streams case are discussed. 44 figures

  8. The future fuel cycle plants

    International Nuclear Information System (INIS)

    Paret, L.; Touron, E.

    2016-01-01

    The future fuel cycle plants will have to cope with both the fuel for PWR and the fuel for the new generation of fast reactors. Furthermore, the MOX fuel, that is not recycled in PWR reactors will have the possibility to be recycled in fast reactors of 4. generation. Recycling MOX fuels will imply to handle nuclear fuels with higher concentration of Pu than today. The design of the nuclear fuel for the future fast reactors will be similar to that of the Astrid prototype. In order to simplify the fabrication of UPuO_2 pellets, all the fabrication process will take place in a dedicated glove box. Enhanced reality and virtual reality technologies have been used to optimize the glove-box design in order to have a better recovery of radioactive dust and to ease routine operations and its future dismantling. As a fuel assembly will contain 120 kg of UPuO_2 fuel, it will no longer be possible to mount these assemblies by hand contrary to what was done for Superphenix reactor. A new shielded mounting line has to be designed. Another point is that additive manufacturing for the fabrication of very small parts with a complex design will be broadly used. (A.C.)

  9. Final generic environmental statement on the use of recycle plutonium in mixed oxide fuel in light water cooled reactors. Volume 3

    International Nuclear Information System (INIS)

    1976-08-01

    An assessment is presented of the health, safety and environmental effects of the entire light water reactor fuel cycle, considering the comparative effects of three major alternatives: no recycle, recycle of uranium only, and recycle of both uranium and plutonium. The assessment covers the period from 1975 through the year 2000 and includes the cumulative effects for the entire period as well as projections for specific years. Topics discussed include: the light water reactor with plutonium recycle; mixed oxide fuel fabrication; reprocessing plant operations; supporting uranium fuel cycle; transportation of radioactive materials; radioactive waste management; storage of plutonium; radiological health assessment; extended spent fuel storage; and blending of plutonium and uranium at reprocessing plants

  10. Plutonium recycle. In-core fuel management

    International Nuclear Information System (INIS)

    Vincent, F.; Berthet, A.; Le Bars, M.

    1985-01-01

    Plutonium recycle in France will concern a dozen of PWR 900 MWe controlled in gray mode till 1995. This paper presents the main characteristics of fuel management with plutonium recycle. The organization of management studies will be copied from this developed for classical management studies. Up these studies, a ''feasibility report'' aims at establishing at each stage of the fuel cycle, the impact of the utilization of fuel containing plutonium [fr

  11. Assessment of the TASS 1-D neutronics model for the westinghouse and ABB-CE type PWR reactivity induced transients

    International Nuclear Information System (INIS)

    Choi, J.D.; Yoon, H.Y.; Um, K.S.; Kim, H.C.; Sim, S.K.

    1997-01-01

    Best estimate transient analysis code, TASS, has been developed for the normal and transient simulation of the Westinghouse and ABB-CE type PWRs. TASS thermal hydraulic model is based on the non-homogeneous, non-equilibrium two-phase continuity, energy and mixture momentum equations with constitutive relations for closure. Core neutronics model employs both the point kinetics and one-dimensional neutron diffusion model. Semi-implicit numerical scheme is used to solve the discretized finite difference equations. TASS one dimensional neutronics core model has been assessed through the reactivity induced transient analyses for the KORI-3, three loop Westinghouse PWR, and Younggwang-3 (YGN-3), two-loop ABB-CE PWR, nuclear power plants currently operating in Korea. The assessment showed that the TASS one dimensional neutronics core model can be applied for the Westinghouse and ABB-CE type PWRs to gain thermal margin which is necessary for a potential use of the high fuel burnup, extended fuel cycle, power upgrading and for the plant life extension

  12. Plant Performance of Solid Oxide Fuel Cell Systems Fed by Alternative Fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2016-01-01

    Different plant design for several fuel types such as natural gas, methanol, ethanol, DME, ammonia and pure hydrogen are presented and analysed. Anode recirculation which is an important issue in SOFC plants are also explored and studied. It is shown that depending on type of the fuel whether fuel...... recycle increases plant efficiency only if fuel utilization factor is low. Other important issues such as why plant efficiency is lower when it is fed with hydrogen or biogas compared to when it is fed by other fuels such as methanol, ethanol, DME and ammonia will also be discussed and explained....... For example, plant efficiency of 45%, 54% and 50.5% can be achieved if the hydrogen, ethanol and methanol are used respectively....

  13. Shield requirement estimation for pin storage room in fuel fabrication plant

    International Nuclear Information System (INIS)

    Shanthi, M.M.; Keshavamurthy, R.S.; Sivashankaran, G.

    2012-01-01

    Fast Reactor Fuel Cycle Facility (FRFCF) is an upcoming project in Kalpakkam. It has the facility to recycle the fuel from PFBR. It is an integrated facility, consists of fuel reprocessing plant, fuel fabrication plant (FFP), core subassembly plant, Reprocessed Uranium plant (RUP) and waste management plant. The spent fuel from PFBR would be reprocessed in fuel reprocessing plant. The reprocessed fuel material would be sent to fuel fabrication plant. The main activity of fuel fabrication plant is the production of MOX fuel pins. The fuel fabrication plant has a fuel pin storage room. The shield requirement for the pin storage room has been estimated by Monte Carlo method. (author)

  14. Disposition of weapons-grade plutonium in Westinghouse reactors

    International Nuclear Information System (INIS)

    Alsaed, A.A.; Adams, M.

    1998-03-01

    The authors have studied the feasibility of using weapons-grade plutonium in the form of mixed-oxide (MOX) fuel in existing Westinghouse reactors. They have designed three transition Cycles from an all LEU core to a partial MOX core. They found that four-loop Westinghouse reactors such as the Vogtle power plant are capable of handling up to 45 percent weapons-grade MOX loading without any modifications. The authors have also designed two kinds of weapons-grade MOX assemblies with three enrichments per assembly and four total enrichments. Wet annular burnable absorber (WABA) rods were used in all the MOX feed assemblies, some burned MOX assemblies, and some LEU feed assemblies. Integral fuel burnable absorber (IFBA) was used in the rest of the LEU feed assemblies. The average discharge burnup of MOX assemblies was over 47,000 MWD/MTM, which is more than enough to meet the open-quotes spent fuel standard.close quotes One unit is capable of consuming 0.462 MT of weapons-grade plutonium per year. Preliminary analyses showed that important reactor physics parameters for the three transitions cycles are comparable to those of LEU cores including boron levels, reactivity coefficients, peaking factors, and shutdown margins. Further transient analyses will need to be performed

  15. On recycling of nuclear fuel in Japan

    International Nuclear Information System (INIS)

    1992-01-01

    In Japan, atomic energy has become to accomplish the important role in energy supply. Recently the interest in the protection of global environment heightened, and the anxiety on oil supply has been felt due to the circumstances in Mideast. Therefore, the importance of atomic energy as an energy source for hereafter increased, and the future plan of nuclear fuel recycling in Japan must be promoted on such viewpoint. At present in Japan, the construction of nuclear fuel cycle facilities is in progress in Rokkasho, Aomori Prefecture. The prototype FBR 'Monju' started the general functional test in May, this year. The transport of the plutonium reprocessed in U.K. and France to Japan will be carried out in near future. This report presents the concrete measures of nuclear fuel recycling in Japan from the long term viewpoint up to 2010. The necessity and meaning of nuclear fuel recycling in Japan, the effort related to nuclear nonproliferation, the plan of nuclear fuel recycling for hereafter in Japan, the organization of MOX fuel fabrication in Japan and abroad, the method of utilizing recovered uranium and the reprocessing of spent MOX fuel are described. (K.I.)

  16. Westinghouse Electric. Know-how and top technology from Germany support non-polluting, safe, cost-effective power supply worldwide

    International Nuclear Information System (INIS)

    2011-01-01

    Westinghouse Electric Company LLC is one the world's leading firms in the commercial nuclear power field with a staff of approx. 15,000, of whom approx. 5,000 work in Europe. As part of the Toshiba Group, Westinghouse supports power utilities in the Americas, Asia, and EMEA (Europe, Middle East, Africa) regions with a broad range of products and services in nuclear power plants, nuclear fuel, nuclear services, and nuclear automation. The German-based company, Westinghouse Electric Germany GmbH, has more than 500 persons at the locations of Mannheim; Hamburg; Baden, Switzerland; and Metz, France. For more than 40 years, it has been successfully operating in field services, plant engineering, waste management, and nuclear automation. The Mannheim head office works the nuclear markets in Germany, Switzerland, the Czech Republic, Slovakia, and Hungary. Under global resource utilization and products schemes, staff from Germany is employed also in projects all over the world. Present construction of a large number of new plants of the AP1000 registered reactor line in China and USA as well as planning and licensing steps for the construction of new nuclear power plants in Europe constitute a major contribution by Westinghouse to the worldwide renaissance of nuclear power. As a partner of utilities, Westinghouse also upgrades existing plants by backfitting and modernizing components and systems, management of aging, safety analyses, non-destructive testing, replacement of safety and operations I and C etc. for plant life extension and safe, economically viable continued operation. (orig.)

  17. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    Slember, R.J.; Doshi, P.K.

    1987-01-01

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as 'high performance' fuel concepts now under development for delivery in the late 1980s. The paper also disusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability. (author)

  18. Hematite nuclear fuel cycle facility decommissioning

    International Nuclear Information System (INIS)

    Hayes, K.

    2004-01-01

    Westinghouse Electric Company LLC ('Westinghouse') acquired a nuclear fuel processing plant at Hematite, Missouri ('Hematite', the 'Facility', or the 'Plant') in April 2000. The plant has subsequently been closed, and its operations have been relocated to a newer, larger facility. Westinghouse has announced plans to complete its clean-up, decommissioning, and license retirement in a safe, socially responsible, and environmentally sound manner as required by internal policies, as well as those of its parent company, British Nuclear Fuels plc. ('BNFL'). Preliminary investigations have revealed the presence of environmental contamination in various areas of the facility and grounds, including both radioactive contamination and various other substances related to the nuclear fuel processing operations. The disparity in regulatory requirements for radiological and nonradiological contaminants, the variety of historic and recent operations, and the number of previous owners working under various contractual arrangements for both governmental and private concerns has resulted in a complex project. This paper discusses Westinghouse's efforts to develop and implement a comprehensive decontamination and decommissioning (D and D) strategy for the facility and grounds. (author)

  19. Westinghouse support for Spanish nuclear industry

    International Nuclear Information System (INIS)

    Rebollo, R.

    1999-01-01

    One of the major commitments Westinghouse has with the nuclear industry is to provide to the utilities the support necessary to have their nuclear units operating at optimum levels of availability and safety. This article outlines the organization the Energy Systems Business Unit of Westinghouse has in place to fulfill this commitment and describes the evolution of the support Westinghouse is providing to the operation o f the Spanish Nuclear Power plants. (Author)

  20. Design study of advanced nuclear fuel recycle system. Conceptual study of recycle system using molten salt

    International Nuclear Information System (INIS)

    Kakehi, I.; Shirai, N.; Hatano, M.; Kajitani, M.; Yonezawa, S.; Kawai, T.; Kawamura, F.; Tobe, K.; Takahashi, K.

    1996-12-01

    For the purpose of developing the future nuclear fuel recycle system, the design study of the advanced nuclear fuel recycle system is being conducted. This report describes intermediate accomplishments in the conceptual system study of the advanced nuclear fuel recycle system. Fundamental concepts of this system is the recycle system using molten salt which intend to break through the conventional concepts of purex and pellet fuel system. Contents of studies in this period are as follows, 1)feasibility study of the process by Cd-cathode for nitride fuel, 2)application study for the molten salt of low melting point (AlCl3+organic salt), 3)research for decladding (advantage of decladding by heat treatment), 4)behavior of FPs in electrorefining (behavior of iodine and volatile FP chlorides, FPs behavior in chlorination), 5)criticality analysis in electrorefiner, 6)drawing of off-gas flow diagram, 7)drawing of process machinery concept (cathode processor, vibration packing), 8)evaluation for the amounts of the high level radioactive wastes, 9)quality of the recycle fuels (FPs contamination of recycle fuel), 10)conceptual study of in-cell handling system, 11)meaning of the advanced nuclear fuel recycle system. The conceptual system study will be completed in describing concepts of the system and discussing issues for the developments. (author)

  1. Feasibility study for adapting ITREC plant to reprocessing LMFBR fuels

    International Nuclear Information System (INIS)

    Moccia, A.; Rolandi, G.

    1976-05-01

    The report evaluates the feasibility of adapting ITREC plant to the reprocessing LMFBR fuels, with the double purpose of: 1) recovering valuable Pu contained in these fuels and recycling it to the fabrication plant; 2) trying, on a pilot scale, the chemical process technology to be applied in a future industrial plant for reprocessing the fuel elements discharged from fast breeder power reactors

  2. Application of CASMO-4/MICROBURN-B2 methodology to mixed cores with Westinghouse Optima2 fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Ming Yuan; Wheeler, John K.; Hoz, Carlos de la [Nuclear Fuels, Warrenville (United States)

    2008-10-15

    The first application of CASMO-4/MICROBURN-B2 methodology to Westinghouse SVEA-96 Optima2 reload cycle is described in this paper. The first Westinghouse Optima2 reload cycle in the U.S. is Exelon's Quad Cities Unit 2 Cycle 19 (Q2C19). The core contains fresh Optima2 fuel and once burned and twice burned GE14 fuel. Although the licensing analyses for the reload cycle are performed by Westinghouse with Westinghouse methodology, the core is monitored with AREVA's POWERPLEX-III core monitoring system that is based on the CASMO-4/MICROBURN-B2 (C4/B2) methodology. This necessitates the development of a core model based on the C4/B2 methodology for both reload design and operational support purposes. In addition, as expected, there are many differences between the two vendors' methodologies; they differ not only in modeling some of the physical details of the Optima2 bundles but also in the modeling capability of the computer codes. In order to have high confidence that the online core monitoring results during the cycle startup and operation will comply with the Technical Specifications requirements (e.g., thermal limits, shutdown margins), the reload core design generated by Westinghouse design methodology was confirmed by the C4/B2 model. The C4/B2 model also assures that timely operational support during the cycle can be provided. Since this is the first application of C4/B2 methodology to an Optima2 reload in the US, many issues in the lattice design, bundle design, and reload core design phases were encountered. Many modeling issues have to be considered in order to develop a successful C4/B2 core model for the Optima2/GE14 mixed core. Some of the modeling details and concerns and their resolutions are described. The Q2C19 design was successfully completed and the 2 year cycle successfully started up in April 2006 and shut down in March 2008. Some of the operating results are also presented.

  3. Application of CASMO-4/MICROBURN-B2 methodology to mixed cores with Westinghouse Optima2 fuel

    International Nuclear Information System (INIS)

    Hsiao, Ming Yuan; Wheeler, John K.; Hoz, Carlos de la

    2008-01-01

    The first application of CASMO-4/MICROBURN-B2 methodology to Westinghouse SVEA-96 Optima2 reload cycle is described in this paper. The first Westinghouse Optima2 reload cycle in the U.S. is Exelon's Quad Cities Unit 2 Cycle 19 (Q2C19). The core contains fresh Optima2 fuel and once burned and twice burned GE14 fuel. Although the licensing analyses for the reload cycle are performed by Westinghouse with Westinghouse methodology, the core is monitored with AREVA's POWERPLEX-III core monitoring system that is based on the CASMO-4/MICROBURN-B2 (C4/B2) methodology. This necessitates the development of a core model based on the C4/B2 methodology for both reload design and operational support purposes. In addition, as expected, there are many differences between the two vendors' methodologies; they differ not only in modeling some of the physical details of the Optima2 bundles but also in the modeling capability of the computer codes. In order to have high confidence that the online core monitoring results during the cycle startup and operation will comply with the Technical Specifications requirements (e.g., thermal limits, shutdown margins), the reload core design generated by Westinghouse design methodology was confirmed by the C4/B2 model. The C4/B2 model also assures that timely operational support during the cycle can be provided. Since this is the first application of C4/B2 methodology to an Optima2 reload in the US, many issues in the lattice design, bundle design, and reload core design phases were encountered. Many modeling issues have to be considered in order to develop a successful C4/B2 core model for the Optima2/GE14 mixed core. Some of the modeling details and concerns and their resolutions are described. The Q2C19 design was successfully completed and the 2 year cycle successfully started up in April 2006 and shut down in March 2008. Some of the operating results are also presented

  4. Nuclear fuel recycling system

    International Nuclear Information System (INIS)

    Lee, H.R.; Koch, A.K.; Krawczyk, A.

    1981-01-01

    A process is provided for recycling sintered uranium dioxide fuel pellets rejected during fuel manufacture and the swarf from pellet grinding. The scrap material is prepared mechanically by crushing and milling as a high solids content slurry, using scrap sintered UO 2 pellets as the grinding medium under an inert atmosophere

  5. Qualification of a Vitrified High Level Waste Product to Support Used Nuclear Fuel Recycling in the US

    International Nuclear Information System (INIS)

    Murray, P.; Bailly, F.; Strachan, D.; Senentz, G.; Veyer, C.

    2009-01-01

    As part of the Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP), AREVA formed the International Nuclear Recycling Alliance (INRA) consisting of recognized world-leading companies in the area of used nuclear fuel (UNF) recycling,. The INRA team, consisting of AREVA, Mitsubishi Heavy Industries (MHI), Japan Nuclear Fuel Ltd (JNFL), Batelle Memorial Institute (BMI), URS Washington Division and Babcock and Wilcox (B and W), prepared a pre-conceptual design for an upgradable engineering-scale recycling plant with a nominal through put of 800 tHM/y. The pre-conceptual design of this leading-edge facility was based upon the extensive experience of the INRA team in recycling plant design and real world 'lessons learned' from actually building, commissioning, and operating recycling facilities in both France and Japan. The conceptual flowsheet, based upon the COEX TM separations process, separates the useful products for recycling into new fuel and sentences all the remaining fission products and minor actinides (MA) to the high level waste, (HLW) for vitrification. The proposed vitrified waste product will be similar to that currently produced in recycling plants in France. This wasteform has been qualified in France by conducting extensive studies and demonstrations. In the US, the qualification of vitrified glass products has been conducted by the US National Laboratories for the Defence Waste Processing Facility (DWPF), the West Valley Demonstration Plant (WVDP), and the Waste Treatment Plant (WTP). The vitrified waste product produced by recycling is sufficiently different from these current waste forms to warrant additional trials and studies. In this paper we review the differences in the vitrified waste forms previously qualified in the US with that produced from recycling of UNF in France. The lessons learned from qualifying a vitrified waste form in Europe is compared to the current US process for vitrified waste qualification including waste

  6. Core damage frequency prespectives for BWR 3/4 and Westinghouse 4-loop plants based on IPE results

    International Nuclear Information System (INIS)

    Dingman, S.; Camp, S.; LaChance, J.; Mary Drouin

    1995-01-01

    This paper discusses the core damage frequency (CDF) insights gained by analyzing the results of the Individual Plant Examinations (IPES) for two groups of plants: boiling water reactor (BWR) 3/4 plants with Reactor Core Isolation Cooling systems, and Westinghouse 4-loop plants. Wide variability was observed for the plant CDFs and for the CDFs of the contributing accident classes. On average, transients-with loss of injection, station blackout sequences, and transients with loss of decay heat removal are important contributors for the BWR 3/4 plants, while transients, station blackout sequences, and loss-of-coolant accidents are important for the Westinghouse 4-loop plants. The key factors that contribute to the variability in the results are discussed. The results are often driven by plant-specific design and operational characteristics, but differences in modeling approaches are also important for some accident classes

  7. Mixcore safety analysis approach used for introduction of Westinghouse fuel assemblies in Ukraine

    International Nuclear Information System (INIS)

    Abdullayev, A.; Baidullin, V.; Maryochin, A.; Sleptsov, S.; Kulish, G.

    2008-01-01

    Six Westinghouse Lead Test Assemblies (LTA) were installed in 2005 and are currently operated in Unit 3 of the South Ukraine NPP (SUNPP) under the Ukraine Nuclear Fuel Qualification Project. At the early stages of the LTAs implementation in Ukraine, there was no experience of licensing of new fuel types, which explains the need to develop approaches for safety substantiation of LTAs. This presentation considers some approaches for performing of safety analysis of the design basis Initiating Events (IE) for the LTA fuel cycles. These approaches are non-standard in terms of the established practices for obtaining the regulatory authorities' permission for the core operation. The analysis was based on the results of the FA and reactor core thermal hydraulic and nuclear design

  8. Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

    Science.gov (United States)

    for Solar Power Yellowstone Park Recycles Vehicle Batteries for Solar Power to someone by E -mail Share Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Facebook Tweet about Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

  9. Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel

    Science.gov (United States)

    Vehicles in Vermont Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont to someone by E -mail Share Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont on Facebook Tweet about Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in

  10. Safeguards and nonproliferation aspects of a dry fuel recycling technology

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities

  11. Westinghouse experience over the past 10 years in negotiating and constructing nuclear power plants

    International Nuclear Information System (INIS)

    Richards, D.E.

    1979-01-01

    Reason for delays in delivery times for nuclear plant are discussed in the light of Westinghouse experience. Today the lead time for the construction of the plant is no longer dictated by the lead time of the nuclear steam supply system. The increased complexity of contract negotiations and of standards and specifications contributes to the delays. Site work is constantly subject to delays due to various labour problems. The main delays stem from regulatory authorities, environmentalists and political considerations. Lateness on the plant causes problems of warranty, storage of equipment and of finance. Westinghouse procedures for alleviating delays during erection are outlined. As the start-up schedule dictates erection, purchasing and design, it should be established as early as possible. A typical overall schedule for a PWR is outlined. It is concluded that completion of plant within schedule requires decisions on basic principles and sufficient detailed planning and organisational structures to be established before the start of the project followed by strong project management. The discussion following the conference is also recorded. (U.K.)

  12. Feasibility Study on Nitrogen-15 Enrichment and Recycling System for Innovative FR Cycle System With Nitride Fuel

    International Nuclear Information System (INIS)

    Masaki Inoue; Kiyoshi Ono; Tsuna-aki Fujioka; Koji Sato; Takeo Asaga

    2002-01-01

    Highly-isotopically-enriched nitrogen (HE-N 2 ; 15 N abundance 99.9%) is indispensable for a nitride fueled fast reactor (FR) cycle to minimize the effect of carbon-14 ( 14 C) generated mainly by 14 N(n,p) 14 C reaction in the core on environmental burden. Thus, the development of inexpensive 15 N enrichment and recycling technology is one of the key aspects for the commercialization of a nitride fueled FR cycle. Nitrogen isotope separation by the gas adsorption technique was experimentally confirmed in order to obtain its technological perspective. A conventional pressure swing adsorption technique, which is already commercialized for recovering the nitrogen gas from multi-composition gas-mixture, would be suitable for recovering in both reprocessing and fuel fabrication to recycle the HE-N 2 gas. A couple of the nitride fuel cycle system concepts including the reprocessing and fuel fabrication process flow diagrams with the HE-N 2 gas recycling were newly designed for both aqueous and non-aqueous (pyrochemical) nitride fuel recycle plants, and also the effect of the HE-N 2 gas recycling on the economics of each concept was evaluated. (authors)

  13. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  14. Application of CASMO-4/MICROBURN-B2 methodology to mixed cores with Westinghouse Optima2 fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Ming Yuan; Wheeler, John K.; Hoz, Carlos de la [Nuclear Fuels, Warrenville (United States)

    2008-10-15

    The first application of CASMO-4/MICROBURN-B2 methodology to Westinghouse SVEA-96 Optima2 reload cycle is described in this paper. The first Westinghouse Optima2 reload cycle in the U.S. is Exelon's Quad Cities Unit 2 Cycle 19 (Q2C19). The core contains fresh Optima2 fuel and once burned and twice burned GE14 fuel. Although the licensing analyses for the reload cycle are performed by Westinghouse with Westinghouse methodology, the core is monitored with AREVA's POWERPLEX-III core monitoring system that is based on the CASMO-4/MICROBURN-B2 (C4/B2) methodology. This necessitates the development of a core model based on the C4/B2 methodology for both reload design and operational support purposes. In addition, as expected, there are many differences between the two vendors' methodologies; they differ not only in modeling some of the physical details of the Optima2 bundles but also in the modeling capability of the computer codes. In order to have high confidence that the online core monitoring results during the cycle startup and operation will comply with the Technical Specifications requirements (e.g., thermal limits, shutdown margins), the reload core design generated by Westinghouse design methodology was confirmed by the C4/B2 model. The C4/B2 model also assures that timely operational support during the cycle can be provided. Since this is the first application of C4/B2 methodology to an Optima2 reload in the US, many issues in the lattice design, bundle design, and reload core design phases were encountered. Many modeling issues have to be considered in order to develop a successful C4/B2 core model for the Optima2/GE14 mixed core. Some of the modeling details and concerns and their resolutions are described. The Q2C19 design was successfully completed and the 2 year cycle successfully started up in April 2006 and shut down in March 2008. Some of the operating results are also presented.

  15. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant: Preliminary summary

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Moussalli, G.; Naegele, G.; Ikonomou, P.; Hosoya, M.; Scott, P.; Fager, J.; Sanders, C.; Colwell, D.; Joyner, C.J.

    1994-01-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. This report details a six-month field test of the feasibility of such SNRIs which took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ''mailbox''. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. Items from both strata were verified during the SNRIs by means of nondestructive assay equipment. The field test demonstrated the feasibility and practicality of key elements of the SNRI approach for a large LEU fuel fabrication plant

  16. Westinghouse European trainee program

    International Nuclear Information System (INIS)

    Jimenez, G.

    2010-01-01

    Westinghouse Electric Company is proud of giving its employees the possibility to work and act globally. The company's European Trainee Program provides an opportunity to work within different fields of business within Westinghouse, participating in a wide range of projects and experiencing and learning from the different cultures of the company. In 2006 the first Trainee Program started with seven Swedish Trainees. During these eighteen months they worked 12 months in Sweden and then went off to six-month-assignments in France and in the US. In April 2008, the first European Trainee Program was launched with ten Trainees from four different countries: five from Sweden, two from Germany, two from Spain and one from Belgium. As with the previous program, its length was eighteen months. During the first year, the European Trainees had the opportunity to work in various areas within their country of hire, as well as to visit different Westinghouse headquarters in Europe and the US to learn more about the global business. Their kick-off session took place in Vaesteraas, Sweden in April 2008. During four days, the Trainees participated in group dynamic exercises as well as presentations of the business of Westinghouse abroad and in Sweden. Two of the most interesting parts of this session were the visits to the Fuel Factory and to the Field Services mock-ups. The second session took place in June 2008 in Monroeville, Pennsylvania (USA), where Westinghouse had its main headquarters, nowadays located in Cranberry, PA. During two weeks, the trainees got to know even more about Westinghouse through visits, lectures and forums for open discussions. The visits comprised for example the tubing factory at Blairsville, the Field Services main headquarters in Madison and the George Westinghouse Research and Technology Park near Pittsburgh. The meetings included presentations of each Westinghouse business unit, detailed information about future projects and round table discussions

  17. Benefit analysis of reprocessing and recycling light water reactor fuel

    International Nuclear Information System (INIS)

    1976-12-01

    The macro-economic impact of reprocessing and recycling fuel for nuclear power reactors is examined, and the impact of reprocessing on the conservation of natural uranium resources is assessed. The LWR fuel recycle is compared with a throwaway cycle, and it is concluded that fuel recycle is favorable on the basis of economics, as well as being highly desirable from the standpoint of utilization of uranium resources

  18. Piping benchmark problems for the Westinghouse AP600 Standardized Plant

    International Nuclear Information System (INIS)

    Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K.

    1997-01-01

    To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for the Westinghouse AP600 Standardized Plant, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the AP600 standard design. It will be required that the combined license licensees demonstrate that their solutions to these problems are in agreement with the benchmark problem set

  19. A systems approach to the management of a contaminated metal recycle project

    International Nuclear Information System (INIS)

    Pincock, L.; Wahnachaffe, S.

    1994-01-01

    Westinghouse Idaho Nuclear Company (WINCO) is working with private industry to recycle contaminated metal from the dismantling and decommissioning of Department of Energy sites and commercial reactors. The recycled metal could be used in many applications such as fabrication of canisters and waste boxes for the storage of spent nuclear fuel and radioactive waste. Management of technical projects similar to this is difficult because these projects consist of a myriad of complex and interrelated issues ranging from technical feasibility to stakeholder acceptance. Systems Analysis provides a way to deal with many complex issues and supports effective decision making

  20. The European experience in safeguarding nuclear fuel recycle processes and Pu stores

    International Nuclear Information System (INIS)

    Synetos, Sotiris

    2013-01-01

    Civil nuclear programs in the European Union member states have from their onset included fuel recycling as an option. The EURATOM Treaty gives to the European Commission the obligation to apply safeguards controls to all civil Nuclear Material in the European Union, and to facilitate the implementation of IAEA safeguards. The European Commission (EURATOM) has thus gained years of experience in safeguarding reprocessing plants, Pu storages, and MOX fuel fabrication plants and is currently participating in the development of approaches and measures for safeguarding long term repositories. The aim of this paper is to present the regulator's views and experience on safeguarding nuclear fuel recycle processes and Pu stores, which is based on the following principles: -) Early involvement of the control organizations in the design of the safeguards measures to be developed for a plant (currently referred to as Safeguards by Design); -) Early definition of a safeguards strategy including key measurement points; -) The design and development of plant specific Safeguards equipment, including an on site laboratory for sample analysis; -) The development by the operator of an appropriate Nuclear Material accountancy system to facilitate their declaration obligations; -) The introduction of an inspection regime allowing comprehensive controls under the restrictions imposed by financial and Human Resources limitations; -) Optimization of the inspection effort by using unattended measuring stations, containment and surveillance systems and secure remote transmission of data to the regulator's headquarters. The paper is followed by the slides of the presentation. (authors)

  1. Determination of enrichment of recycle uranium fuels for different burnup values

    International Nuclear Information System (INIS)

    Zabunoglu, Okan H.

    2008-01-01

    Uranium (U) recovered from spent LWR fuels by reprocessing, which contains small amounts of U-236, is to be enriched before being re-irradiated as the recycle U. During the enrichment of recovered U in U-235, the mass fraction of U-236 also increases. Since the existence of U-236 in the recycle U has a negative effect on neutron economy, a greater enrichment of U-235 in the recycle U is required for reaching the same burnup as can be reached by the fresh U fuel. Two burnup values play the most important role in determining the enrichment of recycle U: (1) discharge burnup of spent fuel from which the recycle U is obtained and (2) desired discharge burnup of the recycle U fuel. A step-by-step procedure for calculating the enrichment of the recycle U as a function of these two burnup values is introduced. The computer codes MONTEBURNS and ORIGEN-S are made use of and a three-component (U-235, U-236, U-238) enrichment scheme is applied for calculating the amount of U-236 in producing the recycle U from the recovered U. As was aimed, the resulting expression is simple enough for quick/hand calculations of the enrichment of the recycle U for any given discharge burnup of spent fuel and for any desired discharge burnup of the recycle U fuel, most accurately within the range of 33,000-50,000 MWd/tonU

  2. The unrivalled expertise for Pu recycling

    International Nuclear Information System (INIS)

    Fournier, W.; Pouilloux, M.

    1997-01-01

    Relying on the outstanding performances of the reprocessing facilities and the growing fabrication facilities, the in-reactor Pu recycling program in France and in other European countries is steadily implemented and has reached full-scale industrial operation. The RCR strategy -Reprocessing, Conditioning and Recycling- developed by COGEMA is now a well proven industrial reality. In 1997, plutonium recycling through MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants. In this field, COGEMA is the main actor, on operating simultaneously three complete multidesign fuel production plants: MELOX plant (in Marcoule), CADARACHE plant and DESSEL plant (in Belgium). Present MOX production capacity available to COGEMA fits 175 tHM per year and will be extended to reach about 325 tHM in the year 2000, that will represent 75% of the total MOX fabrication capacity in Europe. The industrial mastery and the high production level in MOX production assured by high technology processes confers COGEMA an unrivalled expertise for Pu recycling. This allows COGEMA to be a major actor in Pu-based fuels in the coming second nuclear era with advanced fuel cycles. The paper depicts the steps of the progressive advance of COGEMA to reach the Pu recycling expertise. (author)

  3. Superfund record of decision (EPA Region 3), Westinghouse Elevator Company Plant, Operable Unit 2, Cumberland Township, Adams County, Gettysburg, PA, March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This Record of Decision (ROD) presents the selected remedial action for Operable Unit 2 (Soils) at the Westinghouse Elevator Company Plant Site in Adams County, Pennsylvania. The selected remedy for the soils at the Westinghouse Elevator Plant is No Additional Action for this Operable Unit. The other alternatives evaluated would produce little or no environmental benefit at substantial cost.

  4. Energy Return on Investment from Recycling Nuclear Fuel

    International Nuclear Information System (INIS)

    2011-01-01

    This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

  5. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  6. Heterogeneous Recycle of Transuranics Fuels in Fast Reactors

    International Nuclear Information System (INIS)

    Hoffman, Edward; Taiwo, Temitope; Hill, Robert

    2008-01-01

    A preliminary physics evaluation of the impacts of heterogeneous recycle using Pu+Np driver and minor actinide target fuel assemblies in fast reactor cores has been performed by comparing results to those obtained for a reference homogeneous recycle core using driver assemblies containing grouped transuranic (TRU) fuel. Parametric studies are performed on the reference heterogeneous recycle core to evaluate the impacts of variations in the pre- and post-separation cooling times, target material type (uranium and non-uranium based), target amount and location, and other parameters on the system performance. This study focused on startup, single-pass cores for the purpose of quantifying impacts and also included comparisons to the option of simply storing the LWR spent nuclear fuel over a 50-year period. An evaluation of homogeneous recycle cores with elevated minor actinide contents is presented to illustrate the impact of using progressively higher TRU content on the core and transmutation performance, as a means of starting with known fuel technology with the aim of ultimately employing grouped TRU fuel in such cores. Reactivity coefficients and safety parameters are presented to indicate that the cores evaluated appear workable from a safety perspective, though more detailed safety and systems evaluations are required. (authors)

  7. Westinghouse small modular reactor design and application

    Energy Technology Data Exchange (ETDEWEB)

    Blinn, R.; Godfrey, M. [Westinghouse Electric Company, Cranberry Township, Pennsilvania (United States)

    2012-07-01

    The AP1000 is currently under construction in both China and the US with the first one scheduled to come on line in late 2013. Nuclear power is a proven, safe, plentiful and clean source of power generation, and Westinghouse Electric Company, the pioneer and global leader in nuclear plant design and construction, is ready with the AP1000™ pressurized water reactor (PWR). The AP1000, based on the proven performance of Westinghouse-designed PWRs, is an advanced 1154 MWe nuclear power plant that uses the forces of nature and simplicity of design to enhance plant safety and operations and reduce construction costs.

  8. Nuclear Proliferation Risk Mitigation Approaches and Impacts in the Recycle of Used Nuclear Fuel in the USA

    International Nuclear Information System (INIS)

    Hesketh, K.; Gregg, R.; Phillips, Ch.

    2009-01-01

    EnergySolutions and its team partners, which include the UK National Nuclear Laboratory (NNL), are one of four industry teams to have received an award from the US Department of Energy to carry out design studies in support of the US Global Nuclear Energy Partnership (GNEP). This team has developed a detailed scenario model for a future US nuclear fuel cycle based on a closed used nuclear fuel recycle as an alternative to the current once-though-and-store system. This scenario enables the uranium and plutonium in Light Water Reactor (LWR) used fuel from the current reactor fleet, and from a fleet of replacement LWRs, to be recycled as both Uranium Oxide and Mixed Oxide (MOX) fuel using reprocessing plants that conform to the requirements of GNEP. There is also a provision for 'burning' in thermal reactors certain long-lived transuranics (Np, Am, Cm) formed into targets. The residual fission product waste, without these long-term heat emitters, will be vitrified and consigned to the US National Geologic repository. Later in the scenario a fleet of Advanced Recycle Reactors (ARR), based on sodium cooled fast reactor technology, are introduced to enable full transmutation of all transuranics and thus attain the GNEP sustainability goal. The recycle scenario avoids the need for the Yucca Mountain repository to receive unprocessed used nuclear fuel and is effective at prolonging its lifetime and delaying the need for a second repository. This paper explains the process by which EnergySolutions selected the U-Pu and U-Pu-Np MOX products and the technological requirements for the recycle plants and describes materials flow analysis that has been carried for the US nuclear fuel cycle scenario using NNL's ORION scenario modelling program. One of the prime requisites of GNEP is to ensure that the risk of proliferation is minimized and the paper describes NNL's approach to objectively assessing the proliferation risk of the scenario relative to that of a conventional recycle

  9. 76 FR 73720 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000...

    Science.gov (United States)

    2011-11-29

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0272] Knowledge and Abilities Catalog for Nuclear Power...) is issuing for public comment a draft NUREG, NUREG-2103, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000 Pressurized-Water Reactors. DATES: Submit...

  10. Development of an innovative PWR for low cost fuel recycle and waste reduction

    International Nuclear Information System (INIS)

    Kanagawa, Takashi; Onoue, Masaaki

    2001-01-01

    In order to bear long-term and stable energy supply, it is important for nuclear power generation to realize establishment of energy security controlling dependence on natural resources and reduction of long-life radioactive wastes such as minor actinide elements (MA) and so on. For this, establishment of fast breeder reproducible on its fuel and of fuel recycling is essential and construction of the fuel recycling capable of repeatedly recycling of plutonium (Pu) and MA with low cost is required. Here were proposed a fuel recycling system combining recycling type PWR with advanced recycling system under development for Na cooling fast breeder reactor as a candidate filling such conditions, to show its characteristics and effects after its introduction. By this system, some facilities to realize flexible and low cost fuel recycling, to reduce longer-life radioactive wastes due to recycling burning of Pu and MA, and to realize an electric power supplying system independent on natural resources due to fuel breeding feature, were shown. (G.K.)

  11. Westinghouse AP1000 licensing maturity

    International Nuclear Information System (INIS)

    Schulz, T.; Vijuk, R.P.

    2005-01-01

    The Westinghouse AP1000 Program is aimed at making available a nuclear power plant that is economical in the U.S deregulated electrical power industry in the near-term. The AP1000 is two-loop 1000 MWe pressurizer water reactor (PWR). It is an up rated version of the AP600. The AP1000 uses passive safety systems to provide significant and measurable improvements in plant simplification, safety, reliability, investment protection and plant costs. The AP1000 uses proven technology, which builds on over 35 years of operating PWR experience. The AP1000 received Final Design Approval by the United States Nuclear Regulatory Commission (U.S. NRC) in September 2004. The AP1000 meets the US utility requirements. The AP1000 and its sister plant the AP600 have gone through a very through and complete licensing review. This paper describes the U.S. NRC review efforts of both the AP600 and the AP1000. The detail of the review and the independent calculations, evaluations and testing is discussed. The AP600 licensing documentation was submitted in 1992. The U.S. NRC granted Final Design Approval in 1999. During the intervening 7 years, the U.S. NRC asked thousands of questions, performed independent safety analysis, audited Westinghouse calculations and analysis, and performed independent testing. The more significant areas of discussion will be described. For the AP1000 Westinghouse first engaged the U.S. NRC in pre-certification discussions to define the extent of the review required, since the design is so similar to the AP600. The AP1000 licensing documentation was submitted in March 2002. The U.S. NRC granted Final Design Approval in September 2004. During the intervening 2 1/2 years, the U.S. NRC asked hundreds of questions, performed independent safety analysis, audited Westinghouse calculations and analysis, and performed independent testing. The more significant areas of discussion will be described. The implications of this review and approval on AP1000 applications in

  12. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving near constant input inventory of Pu and near stable Pu isotopic composition after a few recycles of the same fuel of the prototype fast breeder ...

  13. Westinghouse Small Modular Reactor passive safety system response to postulated events

    International Nuclear Information System (INIS)

    Smith, M. C.; Wright, R. F.

    2012-01-01

    reduce the reactor pressure in a controlled manner to facilitate the passive injection. Long-term decay heat removal is accomplished using the passive heat removal systems augmented by heat transfer through the containment vessel to the environment. The passive injection systems are designed so that the fuel remains covered and effectively cooled throughout the event. Like during the frequent faults, the passive systems provide effective cooling without the need for ac power for seven days following the accident. Connections are available to add additional water to indefinitely cool the plant. The response of the safety systems of the Westinghouse SMR to various initiating faults has been examined. Among them, two accidents; an extended station blackout event, and a LOCA event have been evaluated to demonstrate how the plant will remain safe in the unlikely event that either should occur. (authors)

  14. Westinghouse technologies and integration with Toshiba

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Tanazawa, Takeshi; Yoshida, Hiroyuki

    2007-01-01

    With Westinghouse Electric Company (WEC) now a member of the Toshiba Group, Toshiba is capable of supplying both boiling water reactor (BWR) and pressurized water reactor (PWR) systems. WEC is well experienced worldwide in the nuclear business and by integrating the technologies of both Toshiba and WEC. Toshiba will be able to provide a greater range of services in the global market. We will build a cooperative structure not only for the maintenance service and fuel businesses but also for the development of innovative reactors while aiming for global expansion with the AP 1000 PWR, the most advanced PWR in the nuclear power plant business. We will continue making efforts so as to be able to provide all types of products and services as one-stop solutions regardless of the type of reactor. (author)

  15. Safety evaluation report on Westinghouse Electric Company ECCS evaluation model for plants equipped with upper head injection

    International Nuclear Information System (INIS)

    Lauben, G.N.; Wagner, N.H.; Israel, S.L.; McPherson, G.D.; Hodges, M.W.

    1978-04-01

    For plants which include an ice condenser containment concept, Westinghouse has planned an additional safety system known as the upper head injection (UHI) system to augment the emergency core cooling system. This system is comprised of additional accumulator tanks and piping arranged to supply cooling water to the top of the core during the blowdown period following a postulated large-break loss-of-coolant accident (LOCA). The objective of UHI is to add to the core cooling provided by the conventional emergency core cooling system (ECCS) and so permit operation at linear heat rates comparable to those permitted in plants utilizing the dry containment concept. In this way, plants which include the UHI system would have greater operating flexibility while still meeting the acceptance criteria as defined in paragraph 50.46 of 10 CFR Part 50. This review is concerned with those changes to the Westinghouse ECCS evaluation model that have been proposed for the UHI-LOCA model

  16. Reprocessing-recycling, or the application of the selective sorting and recycling policy to nuclear activities

    International Nuclear Information System (INIS)

    1998-12-01

    In France, the reprocessing of spent fuels is the solution that has been retained for the management of the end-of-cycle. The sorting of the different components of spent fuels allows the recycling of uranium and plutonium for the further production of enriched uranium and mixed oxide fuels. This paper presents Cogema's advances in this domain (facilities and plants), the transfer of Cogema's reprocessing and recycling technologies in other countries (Japan, USA, Russia), the economical and environmental advantages of the recycling of spent fuels, the economical resources provided by this activity, and the cooperation with foreign countries for the reprocessing of their spent fuels at Cogema-La Hague. (J.S.)

  17. Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Stauff, N.E.; Klim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States); Fiorina, C. [Politecnico di Milano, Milan (Italy); Franceschini, F. [Westinghouse Electric Company LLC., Cranberry Township, Pennsylvania (United States)

    2013-07-01

    A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueled cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic

  18. Experience with thermal recycle of plutonium and uranium

    International Nuclear Information System (INIS)

    Beer, O.; Schlosser, G.; Spielvogel, F.

    1985-01-01

    The Federal Republic of Germany (FRG) decided to close the fuel cycle by erecting the reprocessing plant WA350 at Wackersdorf. As long as the plutonium supply from reprocessing plants exceeds the plutonium demand of fast breeder reactors, recycling of plutonium in LWR's is a convenient solution by which a significant advanced uranium utilization is achieved. The demonstration of plutonium recycling performed to date in the FRG in BWR's and PWR's shows that thermal plutonium recycling on an industrial scale is feasible and that the usual levels of reliability and safety can be achieved in reactor operation. The recycling of reprocessed uranium is presently demonstrated in the FRG, too. As regards fuel cycle economy thermal recycling allows savings in natural uranium and separative work. Already under present cost conditions the fuel cycle costs for mixed oxide or enriched reprocessed uranium fuel assemblies are equal or even lower than for usual uranium fuel assemblies

  19. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Moussalli, G.; Naegele, G.

    1995-01-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. Then a statistical inference can be made from verification results for items verified during SNRIs to the entire populations, i.e. the entire strata, even if inspectors were not present when many items were received or produced. A six-month field test of the feasibility of such SNRIs took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division during 1993. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ''mailbox''. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. They arrived unannounced at the plant, in most cases immediately after travel from Canada, where the IAEA maintains a regional office. Items from both strata were verified during the SNRIs by meant of nondestructive assay equipment

  20. A UK perspective on recycling

    International Nuclear Information System (INIS)

    Williams, T.

    1991-01-01

    The United Kingdom, through the recycling of depleted uranium from Magnox reactors into Advanced Gas-cooled Reactor (AGR) fuel, has already recycled significant quantities of reprocessed material in reactors owned by Nuclear Electric plc and Scottish Nuclear Limited. This AGR fuel has been satisfactorily irradiated and discharged over a decade or more, and will be reprocessed in the new Thermal Oxide Reprocessing Plant (THORP), currently under construction in the UK. British Nuclear Fuels plc (BNFL) and the UK Atomic Energy Authority (UKAEA) have also been exploiting the potential of plutonium recycled in mixed oxide (MOX) fuel, which they have been making since 1963. All of the UK nuclear companies are committed to further recycling of Magnox depleted uranium during the 1990s, and it is anticipated that oxide recycling will also become firmly established during the next decade. British Nuclear Fuels and Urenco Ltd, as the providers of fuel cycle services, are developing an infrastructure to close the fuel cycle for oxide nuclear fuel, using both the uranium and plutonium arising from reprocessing. (author)

  1. Thermophysical properties of the products of low-grade fuels thermal recycling

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman B.

    2015-01-01

    Full Text Available The relevance of the work is caused by reorientation of the modern power engineering to use of local low grade fuel resources. Some types of low grade fuels (peat, brown coal, sapropel, wood chips are considered in this work. Thermotechnical characteristics of the investigated fuels and products of their thermal recycling are determined. Thermal recycling process is accompanied by release of fuel dissociation heat (0.33-3.69 MJ/kg. The results of thermal low grade fuel recycling are solid carbonaceous product (semi-coke with a calorific value higher in 1.5-7 times than the value of natural fuels; pyrolysis resin with calorific value 29.4-36.8 MJ/kg; combustible gas with calorific value 15.16-19.06 MJ/m3.

  2. Westinghouse experience in the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Simpson, J.W.

    1977-01-01

    Westinghouse experience with transfer of technical information is two-sided. First is our experience in learning, and the second is our experience in teaching others. Westinghouse conducts a special school to which government, academic and industry people are invited. There are many problems involved in all technology transfers; these include: keeping information current, making certain changes are compatible with the supplier's manufacturing capability and also suitable to the receiver, patent right and proprietary information. The building, testing and maintenance of the unit on the line - and then a succession of its sister plant is the basis for the Westinghouse leadership

  3. Design study on advanced nuclear fuel recycling system by pyrometallurgical reprocessing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Yoshimitsu; Kakehi, Isao; Moro, Satoshi; Tobe, Kenji; Kawamura, Fumio; Higashi, Tatsuhiro; Yonezawa, Shigeaki [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Yoshiuji, Takahiro

    1998-12-01

    The Japan Nuclear Fuel Cycle Development Institute is conducting research and development on the nuclear fuel recycling system, which will improve the economy, safety, and environmental impact of the nuclear fuel recycling system in the age of the FBR. The System Engineering Division in the O-arai Engineering Center has conducted a design study on an advanced nuclear fuel recycling system for FBRs by using pyrometallurgical reprocessing technology. The system is an economical and compact module-type system, and can be used for reprocessing oxide fuel and also new types of fuel (metal fuel and nitride fuel). This report describes the concept of this system and results of the design study. (author)

  4. Design study on advanced nuclear fuel recycling system by pyrometallurgical reprocessing technology

    International Nuclear Information System (INIS)

    Kasai, Yoshimitsu; Kakehi, Isao; Moro, Satoshi; Tobe, Kenji; Kawamura, Fumio; Higashi, Tatsuhiro; Yonezawa, Shigeaki; Yoshiuji, Takahiro

    1998-01-01

    The Japan Nuclear Fuel Cycle Development Institute is conducting research and development on the nuclear fuel recycling system, which will improve the economy, safety, and environmental impact of the nuclear fuel recycling system in the age of the FBR. The System Engineering Division in the O-arai Engineering Center has conducted a design study on an advanced nuclear fuel recycling system for FBRs by using pyrometallurgical reprocessing technology. The system is an economical and compact module-type system, and can be used for reprocessing oxide fuel and also new types of fuel (metal fuel and nitride fuel). This report describes the concept of this system and results of the design study. (author)

  5. International collaborations about fuel studies for reactor recycling of military quality plutonium

    International Nuclear Information System (INIS)

    Bernard, H.; Chaudat, J.P.

    1997-01-01

    In November 1992, an agreement was signed between the French and Russian governments to use in Russia and for pacific purposes the plutonium recovered from the Russian nuclear weapons dismantling. This plutonium will be transformed into mixed oxide fuels (MOX) for nuclear power production. The French Direction of Military Applications (DAM) of the CEA is the operator of the French-Russian AIDA program. The CEA Direction of Fuel Cycle (DCC) and Direction of Nuclear Reactors (DRN) are involved in the transformation of metallic plutonium into sinterable oxide powder for MOX fuel manufacturing. The Russian TOMOX (Treatment of MOX powder Metallic Objects) and DEMOX (MOX Demonstration) plants will produce the MOX fuel assemblies for the 4 VVER 1000 reactors of Balakovo and the fast BN 600 reactor. The second part of the program will involve the German Siemens and GRS companies for the safety studies of the reactors and fuel cycle plants. The paper gives also a brief analysis of the US policy concerning the military plutonium recycling. (J.S.)

  6. Evaluation of selected parameters on exposure rates in Westinghouse designed nuclear power plants

    International Nuclear Information System (INIS)

    Bergmann, C.A.

    1989-01-01

    During the past ten years, Westinghouse under EPRI contract and independently, has performed research and evaluation of plant data to define the trends of ex-core component exposure rates and the effects of various parameters on the exposure rates. The effects of the parameters were evaluated using comparative analyses or empirical techniques. This paper updates the information presented at the Fourth Bournemouth Conference and the conclusions obtained from the effects of selected parameters namely, coolant chemistry, physical changes, use of enriched boric acid, and cobalt input on plant exposure rates. The trends of exposure rates and relationship to doses is also presented. (author)

  7. Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study

    International Nuclear Information System (INIS)

    Patterson, M.W.; Thompson, R.J.

    1994-01-01

    The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities

  8. Westinghouse, DOE see apples, oranges in IG staffing report

    International Nuclear Information System (INIS)

    Lobsenz, G.

    1994-01-01

    The operator of the Energy Department's Savannah River weapons plant has at least 1,800 more employees than it needs, and could save $400 million over a five-year period by cutting its staff accordingly, a DOE inspector general study says. Most of the boat - 1,206 employees - was attributed to excessive numbers of managers, with the inspector general concluding that Westinghouse Savannah River Co. had roughly twice as many layers of management than two other DOE weapons contractors. The study also concluded that Westinghouse in fiscal year 1992 significantly understated its actual staffing levels in reports to DOE, failing to disclose 1,765 full-time employees or the equivalent hours worked. Through such underreporting Westinghouse was able to open-quotes circumvent staffing ceilings established by the department,close quotes the study added. Overall, DOE Inspector General John Layton said Westinghouse's staff levels substantially exceeded those needed for efficient operation of the South Carolina nuclear weapons facility. Layton based his analysis on efficiency standards attained by other DOE weapons plant contractors, such as Martin Marietta Energy Systems at DOE's Oak Ridge, Tenn., plant and EG ampersand G Rocky Flats, as well as widely utilized worker performance requirements used by the Navy and private sector companies that perform work similar to that done at Savannah River

  9. Calculation Of Recycle And Open Cycle Nuclear Fuel Cost Using Lagistase Method

    International Nuclear Information System (INIS)

    Djoko Birmano, Moch

    2002-01-01

    . To be presented the calculation of recycle and open cycle nuclear fuel cost for LWR type that have net power of 600 MWe. This calculation using LEGECOST method developed by IAEA which have characteristics,where i.e. money is stated in constant money (no inflation),discount rate is equalized with interest rate and not consider tax and depreciation.As a conclusion is that open cycle nuclear fuel cost more advantage because it is cheaper than recycle nuclear fuel cost. This is caused that at present, reprocessing process disadvantage because it has not found yet more efficient and cheaper method, besides price of fresh uranium is still cheap. In future, the cost of recycle nuclear fuel cycle will be more competitive toward the cost of open nuclear fuel cycle if is found technology of reprocessing process that more advance, efficient and cheap. Increase of Pu use for reactor fuel especially MOX type will rise Pu price that finally will decrease the cost of recycle nuclear fuel cycle

  10. Energy profit ratio on LWR by uranium recycles

    International Nuclear Information System (INIS)

    Amano, Osamu; Uno, Takeki; Matsushima, Jun

    2009-01-01

    Energy profit ratio is defined as the ratio of output energy/input system total energy. In case of electric power generation, input energy is a total for fuel such as uranium mining and enrichment, fuel transportation, build nuclear power plant, M and O and for disposal waste and decommission of reactor vessel. Output energy is the total electricity on LWR during the plant life. EPR on both PWR and BWR is high value using gas centrifuge enrichment compared other type of electric power generation such as a thermal power, a hydraulic power, a wind power and a photovoltaic power. How is the EPR on LWR by MOX? We need understanding the energy of reprocessing spent fuel, MOX fuel fabrication, low level waste disposal and high level radioactive glass disposal. As we show the material balance for two cases, the first is the case of long term storage and reprocessing before FBR, the second is the MOX fuel cycle on LWR plant. The MOX fuel recycle is better EPR value rather than the case of long term storage and reprocessing before FBR (LTSRBF). At the gaseous diffusion enrichment case, MOX fuel recycle has 15 to 18% higher EPR value than LTSRBF. At the gas centrifuge enrichment case the MOX fuel recycle has 17 to 18 higher EPR value than LTSRBF. MOX fuel recycle decreases the uranium mining and refine mass, enrichment separative work and the spent fuel interim storage. It tells us the MOX fuel recycle is good way from view of EPR. (author)

  11. Study of the radiotoxicity of actinides recycling in boiling water reactors fuel

    International Nuclear Information System (INIS)

    Francois, J.L.; Guzman, J.R.; Martin-del-Campo, C.

    2009-01-01

    In this paper the production and destruction, as well as the radiotoxicity of plutonium and minor actinides (MA) obtained from the multi-recycling of boiling water reactors (BWR) fuel are analyzed. A BWR MOX fuel assembly, with uranium (from enrichment tails), plutonium and minor actinides is designed and studied using the HELIOS code. The actinides mass and the radiotoxicity of the spent fuel are compared with those of the once-through or direct cycle. Other type of fuel assembly is also analyzed: an assembly with enriched uranium and minor actinides; without plutonium. For this study, the fuel remains in the reactor for four cycles, where each cycle is 18 months length, with a discharge burnup of 48 MWd/kg. After this time, the fuel is placed in the spent fuel pool to be cooled during 5 years. Afterwards, the fuel is recycled for the next fuel cycle; 2 years are considered for recycle and fuel fabrication. Two recycles are taken into account in this study. Regarding radiotoxicity, results show that in the period from the spent fuel discharge until 1000 years, the highest reduction in the radiotoxicity related to the direct cycle is obtained with a fuel composed of MA and enriched uranium. However, in the period after few thousands of years, the lowest radiotoxicity is obtained using the fuel with plutonium and MA. The reduction in the radiotoxicity of the spent fuel after one or two recycling in a BWR is however very small for the studied MOX assemblies, reaching a maximum reduction factor of 2.

  12. An evaluation of the deployment of AIROX-recycled fuel in pressurized water reactors

    International Nuclear Information System (INIS)

    Jahshan, S.N.; McGeehan, T.J.

    1994-01-01

    An analytical evaluation is made of the pressurized water reactor (PWR) in-core performance of recycled light water reactor fuel that has been Atomics International reduction oxidation (AIROX) reprocessed and reenriched with fissile materials. The neutronics performance is shown to lie within the neutronics performance of existing high-performance and high-burnup fuels. Three AIROX-recycled fuels are compared with a high-burnup virgin fuel and an equivalent mixed-oxide (MOX) fuel. The AIROX-recycled fuel neutronics performance lies consistently between the virgin and the MOX fuel for both the pin power peaking and the reactivity response characteristics in PWRs. Among the attractive features of AIROX-recycled fuel is that it can optimize fissile and fertile fuel use, minimize final fuel disposal impact on the environment, and provide energy in the process of denaturing weapons-grade fissile materials. The fuel material performance may be anticipated from high-burnup virgin fuel and from MOX fuel performance. Recommendations for lead rod testing and for optimization of the AIROX-processing and resintering techniques are made

  13. Overview of the Westinghouse Small Modular Reactor building layout

    Energy Technology Data Exchange (ETDEWEB)

    Cronje, J. M. [Westinghouse Electric Company LLC, Centurion (South Africa); Van Wyk, J. J.; Memmott, M. J. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of the plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed

  14. COGEMA's national advertising campaign concerning nuclear fuel recycling

    International Nuclear Information System (INIS)

    Gallot, Christine

    1999-01-01

    Goals of COGEMA's advertising campaign concerning nuclear fuel recycling are to: speak out in an area where COGEMA has legitimacy and is expected; and to take part in the discussion to support and defend an activity that is important for COGEMA. Targets are: back up opinion relays by reaching the general public; and back COGEMA personnel. The advertising strategy can be defined as follows: what is recommended for other industries (sorting and then recycling) is COGEMA's practice for spent fuel, with very significant advantages for the community in terms of economy and ecology

  15. Westinghouse Hanford Company plan for certifying newly generated contact-handled transuranic waste for emplacement in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Sheehan, J.S.

    1992-07-01

    Westinghouse Hanford Company (Westinghouse Hanford) currently manages an interim storage site for Westinghouse Hanford and non-Westinghouse Hanford-generated transuranic (TRU) waste and operates TRU waste generating facilities within the Hanford Site in Washington State. Approval has been received from the Waste Acceptance Criteria Certification Committee (WACCC) and Westinghouse Hanford TRU waste generating facilities to certify newly generated contact-handled TRU (CH-TRU) solid waste to meet the Waste Acceptance Criteria (WAC). This document describes the plan for certifying newly generated CH-TRU solid waste to meet the WAC requirements for storage at the Waste Isolation Pilot Plant (WIPP) site. Attached to this document are facility-specific certification plans for the Westinghouse Hanford TRU waste generators that have received WACCC approval. The certification plans describe operations that generate CH-TRU solid waste and the specific procedures by which these wastes will be certified and segregated from uncertified wastes at the generating facilities. All newly generated CH-TRU solid waste is being transferred to the Transuranic Storage and Assay Facility (TRUSAF) and/or a controlled storage facility. These facilities will store the waste until the certified TRU waste can be sent to the WIPP site and the non-certified TRU waste can be sent to the Waste Receiving and Processing Facility. All non-certifiable TRU waste will be segregated and clearly identified

  16. Nuclear Fuel Leasing, Recycling and proliferation: Modeling a Global View

    International Nuclear Information System (INIS)

    Crozat, M P; Choi, J; Reis, V H; Hill, R

    2004-01-01

    On February 11, 2004, U.S. President George W. Bush, in a speech to the National Defense University stated: ''The world must create a safe, orderly system to field civilian nuclear plants without adding to the danger of weapons proliferation. The world's leading nuclear exporters should ensure that states have reliable access at reasonable cost to fuel for civilian reactors, so long as those states renounce enrichment and reprocessing. Enrichment and reprocessing are not necessary for nations seeking to harness nuclear energy for peaceful purposes.'' This concept would require nations to choose one of two paths for civilian nuclear development: those that only have reactors and those that contain one or more elements of the nuclear fuel cycle, including recycling. ''Fuel cycle'' states would enrich uranium, manufacture and lease fuel to ''reactor'' states and receive the reactor states' spent fuel. All parties would accede to stringent security and safeguard standards, embedded within a newly invigorated international regime. Reactor states would be relieved of the financial, environmental (and political) burden of enriching and manufacturing fuel and dealing with spent fuel. Fuel cycle states would potentially earn money on leasing the fuel and perhaps on sales of reactors to the reactor states. Such a leasing concept is especially interesting in scenarios which envision growth in nuclear power, and an important consideration for such a nuclear growth regime is the role of recycling of civilian spent fuel. Recycling holds promise for improved management of spent fuel and efficient utilization of resources, but continues to raise the specter of a world with uncontrolled nuclear weapons proliferation. If done effectively, a fuel-leasing concept could help create a political and economic foundation for significant growth of clean, carbon-free nuclear power while providing a mechanism for significant international cooperation to reduce proliferation concern. This

  17. Implementation of the Westinghouse nuclear design system for incore fuel management analysis

    International Nuclear Information System (INIS)

    Hoskins, K.C.; Kichty, M.J.; Liu, Y.S.; Nguyen, T.Q.

    1990-01-01

    Development of the Westinghouse Advanced Nuclear Design System, which includes PHOENIX-P and ANC, has been continued to improve the efficiency, reliability, accuracy, and flexibility of models. The new codes ALPHA and PHIRE provide complete automation and interface functions for PHOENIX-P, ANC, and other codes. PHOENIX-P has been modified to generate data for ANC based on single or multi-assembly calculations. ANC has several enhancements, including improved pin power reconstruction, automated 2D model generation, and rod burnup prediction capability. The excellent performance of PHOENIX-P/ANC models is demonstrated by the results of over 30 models covering the range of Westinghouse designs. This Nuclear Design System is now the standard Westinghouse methodology for core design and analysis

  18. MELOX fuel fabrication plant: Operational feedback and future prospects

    International Nuclear Information System (INIS)

    Hugelmann, D.; Greneche, D.

    2000-01-01

    As of December 1, 1998, 32 Europeans LWRs are loaded with MOX fuel. It clearly means that plutonium recycling in MOX fuels is a mature industry, with successful operational experience in fabrication plants in some European countries, especially in France. Indeed, the recycling of plutonium generated in LWRs is one of the objectives of the full Reprocessing-Conditioning-Recycling (RCR) strategy chosen by France in the 70's. The most impressive results of this strategy, is the fact that 31 of the 32 reactors are loaded with MOX fuels supplied by the COGEMA Group from the same efficient fabrication process, the MIMAS process, improved for the MELOX plant to become the A-MIMAS process. In France, 17 reactors are already loaded and 11 additional reactors are technically suited to do so. Indeed, the EDF MOX program plans to use MOX in 28 of its 57 reactors. An EDF 900 MWe reactor core contains 157 assemblies of 264 rods each. 52 fuel assemblies per year are necessary for a 'UO 2 3-batches-MOX 3-batches' core management. In this case, a third of the UO 2 and a third of the MOX assemblies are replaced yearly, that means 36 UO 2 fuel assemblies and 16 MOX fuel assemblies. Some MOX fuelled reactors have now switched from the previously described core management to a so-called 'hybrid core management'. In this case, a quarter of UO 2 assemblies is replaced yearly. The first EDF reactor loaded with MOX fuel was Saint-Laurent B1, in 1987. The in-core experience, based on several hundred assemblies loaded, with reloading on a 1/3 cycle basis, shows that there is no operational difference between UO 2 and MOX fuels, both in terms of performance and safety. MOX fueling of 900 MWe EDF's PWRs, with a limited in-core MOX ratio of 30%, has needed only minor adaptations, such as addition of control rods, modification of the boron concentration in the cooling system and precaution against radiation exposure, easy to set up (optimisation of the fresh MOX fuel handling process, remote

  19. Effects of natural phenomena on the Westinghouse Electric Corporation Plutonium Fuels Development Laboratory at Cheswick, Pennsylvania

    International Nuclear Information System (INIS)

    1979-11-01

    One aim of the analysis is to examine the plant with the objective of improving its ability to withstand adverse natural phenomena without loss of capability to protect the public. The relatively small risk to the public from the unlikely events discussed (earthquake, flood, tornado) would indicate that the public is not seriously threatened by the presence of the Westinghouse PFDL. Thus, it is the judgment of the staff that the benefits to be gained by substantial plant improvements to further mitigate against adverse natural phenomena are not cost effective

  20. Fuel cycle model and the cost of a recycling thorium in the CANDU reactor

    International Nuclear Information System (INIS)

    Choi, Hangbok; Park, Chang Je

    2005-01-01

    The dry process fuel technology has a high proliferation-resistance, which allows applications not only to the existing but also to the future nuclear fuel cycle systems. In this study, the homogeneous ThO 2 -UO 2 recycling fuel cycle in a Canada deuterium uranium (CANDU) reactor was assessed for a fuel cycle cost evaluation. A series of parametric calculations were performed for the uranium fraction, enrichment of the initial uranium fuel, and the fission product removal rated of the recycled fuel. The fuel cycle cost was estimated by the levelized lifetime cost model provided by the Organization for Economic Cooperation and Development/Nuclear Energy Agency. Though it is feasible to recycle the homogeneous ThO 2 -UO 2 fuel in the CANDU reactor from the viewpoint of a mass balance, the recycling fuel cycle cost is much higher than the conventional natural uranium fuel cycle cost for most cases due to the high fuel fabrication cost. (author)

  1. Compost in plant microbial fuel cell for bioelectricity generation

    NARCIS (Netherlands)

    Moqsud, M.A.; Yoshitake, J.; Bushra, Q.S.; Hyodo, M.; Omine, K.; Strik, D.P.B.T.B.

    2015-01-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells

  2. High-temperature gas-cooled reactor fuel recycle development. Annual progress report for period ending September 30, 1977

    International Nuclear Information System (INIS)

    Lotts, A.L.; Kasten, P.R.

    1978-09-01

    The status of the following tasks is reported: program management, studies and analysis, fuel processing, refabrication development, in-plant waste treatment, research general support, and major facilities including HTGR recycle reference facility, hot engineering test facility and cold prototype test facility-refabrication

  3. Generic risk insights for Westinghouse and Combustion Engineering pressurized water reactors

    International Nuclear Information System (INIS)

    Travis, R.; Taylor, J.; Fresco, A.; Chung, J.

    1990-11-01

    A methodology has been developed to extract generic risk-based information from probabilistic risk assessments (PRAs) of Westinghouse and Combustion Engineering (CE) pressurized water reactors (PWRs) and apply the insights gained to Westinghouse and Ce plants have not been subjected to a PRA. The available PRAs (five Westinghouse plants and one CE plant) were examined to identify the most probable, i.e., dominant accident sequences at each plant. The goal was to include all sequences which represented at least 80% of core damage frequency. If the same plant specific dominant accident sequence appeared within this boundary in at least two plant PRAs, the sequence was considered to be a representative sequence. Eleven sequences met this definition. From these sequences, the most important component failures and human errors that contributed to each sequence have been prioritized. Guidance is provided to prioritize the representative sequences and modify selected basic events that have been shown to be sensitive to the plant specific design or operating variations of the contributing PRAs. This risk-based guidance can be used for utility and NRC activities including operator training maintenance, design review, and inspections

  4. Design of a PWR for long cycle and direct recycling of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M.A., E-mail: mnader73@yahoo.com

    2015-12-15

    Highlights: • Single-batch loading PWR with a new fuel assembly for 36 calendar months cycle was designed. • The new fuel assembly is constructed from a number of CANDU fuel bundles. • This design enables to recycle the spent fuel directly in CANDU reactors for high burnup. • Around 56 MWd/kgU burnup is achieved from fuel that has average enrichment of 4.8 w/o U-235 using this strategy. • Safety parameters such as the power distribution and CANDU coolant void reactivity were considered. - Abstract: In a previous work, a new design was proposed for the Pressurized Water Reactor (PWR) fuel assembly for direct use of the PWR spent fuel without processing. The proposed assembly has four zircaloy-4 tubes contains a number of 61-element CANDU fuel bundles (8 bundles per tube) stacked end to end. The space between the tubes contains 44 lower enriched UO{sub 2} fuel rods and 12 guide tubes. In this paper, this assembly is used to build a single batch loading 36-month PWR and the spent CANDU bundles are recycled in the on power refueling CANDU reactors. The Advanced PWR (APWR) is considered as a reference design. The average enrichment in the core is 4.76%w U-235. IFBA and Gd{sub 2}O{sub 3} as burnable poisons are used for controlling the excess reactivity and to flatten the power distribution. The calculations using MCNPX showed that the PWR will discharge the fuel with average burnup of 31.8 MWd/kgU after 1000 effective full power days. Assuming a 95 days plant outage, 36 calendar months can be achieved with a capacity factor of 91.3%. Good power distribution in the core is obtained during the cycle and the required critical boron concentration is less than 1750 ppm. Recycling of the discharged CANDU fuel bundles that represents 85% of the fuel in the assembly, in CANDU-6 or in 700 MWe Advanced CANDU Reactor (ACR-700), an additional burnup of about 31 or 26 MWd/kgU burnup can be achieved, respectively. Averaging the fuel burnup on the all fuel in the PWR

  5. Cost benefit analysis of recycling nuclear fuel cycle in Korea

    International Nuclear Information System (INIS)

    Lee, Jewhan; Chang, Soonheung

    2012-01-01

    Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. The importance if nuclear waste management has been the main issue since the beginning of nuclear history. The recycling nuclear fuel cycle includes the fast reactor, which can burn the nuclear wastes, and the pyro-processing technology, which can reprocess the spent nuclear fuel. In this study, a methodology using Linear Programming (LP) is employed to evaluate the cost and benefits of introducing the recycling strategy and thus, to see the competitiveness of recycling fuel cycle. The LP optimization involves tradeoffs between the fast reactor capital cost with pyro-processing cost premiums and the total system uranium price with spent nuclear fuel management cost premiums. With the help of LP and sensitivity analysis, the effect of important parameters is presented as well as the target values for each cost and price of key factors

  6. IAEA physical inventory verification procedures implemented at US and Canadian fuel fabrication plants

    International Nuclear Information System (INIS)

    Gough, J.; Wredberg, L.; Zobor, E.; Zuccaro-Labellarte, G.

    1988-01-01

    IAEA has implemented safeguards at three Low Enriched Uranium (LEU) fuel fabrication plants in the USA during the period 1982 to 1987, and it is in the process of safeguarding a fourth plant from 01 January 1988. In Canada IAEA safeguards inspections were implemented at all Natural Uranium (NU) fuel fabrication plants form 1972 onwards, and there are, at present, three plants under safeguards. The direct responsibility for the implementation of safeguards inspections in the USA and Canada lies with the Division of Operations B (SGOB) within the IAEA Department of Safeguards. The senior staff that is at present directly engaged in the implementation activities has accumulated supervising inspection experience at about 50 Physical Inventory Verification (PIV) inspections at the Canadian and US fabrication plants during the period 1978 to 1987. This experience has been gained in close cooperation with the facility operators and with the support of the state authorities. The paper describes the latest PIV inspections at the Westinghouse Columbia plant and the Zircatec Precision Industries Inc. Port Hope plant. Furthermore, the paper describes the initial activities for the 1988 PIV inspection at the General Electric Wilmington plant including computerized book audit activities

  7. Fuel self-sufficient and low proliferation risk multi-recycling of spent fuel

    International Nuclear Information System (INIS)

    Cho, N. Z.; Hong, S. G.; Kim, T. H.; Greenspan, E.; Kastenberg, W. E.

    1998-01-01

    A preliminary feasibility study has been performed in search of promising nuclear energy systems which could make efficient use of the spent fuel from LWRs and be proliferation resistant. The energy considered consist of a dry process and a fuel-self-sufficient reactor which are synergistic. D 2 O, H 2 O and Pb (or Pb-Bi) are considered for the coolant. The most promising identified consists of Pb-cooled reactors with either an AIROX or an IFR-like reprocessing. H 2 O- (possibly mixed with D 2 O) cooled reactors can be designed to be fuel-self-sufficient and multi-recycle LWR spent fuel, provided they are accelerator driven. Moderator-free, D 2 O-cooled critical reactors can multi-recycle Th- 233 U fuel using IFR-type reprocessing; they are significantly more attractive than their thermal counterparts. H 2 O- (possibly mixed with D 2 O) cooled, accelerator-driven reactors appear attractive for converting Th into denatured 233 U using LWR spent fuel and the IFR process. The CANDU reactor technology appears highly synergistic with accelerator-driven systems. (author). 25 refs., 3 tabs., 6 figs

  8. Westinghouse experience in using mechanical cutting for reactor vessel internals segmentation

    International Nuclear Information System (INIS)

    Boucau, Joseph; Fallstroem, Stefan; Segerud, Per; Kreitman, Paul J.

    2010-01-01

    Some commercial nuclear power plants have been permanently shut down to date and decommissioned using dismantling methods. Other operating plants have decided to undergo an upgrade process that includes replacement of reactor internals. In both cases, there is a need to perform a segmentation of the reactor vessel internals with proven methods for long term waste disposal. Westinghouse has developed several concepts to dismantle reactor internals based on safe and reliable techniques. Mechanical cutting has been used by Westinghouse since 1999 for both PWRs and BWRs and its process has been continuously improved over the years. Detailed planning is essential to a successful project, and typically a 'Segmentation and Packaging Plan' is prepared to document the effort. The usual method is to start at the end of the process, by evaluating the waste disposal requirements imposed by the waste disposal agency, what type and size of containers are available for the different disposal options, and working backwards to select the best cutting tools and finally the cut geometry required. These plans are made utilizing advanced 3-D CAD software to model the process. Another area where the modelling has proven invaluable is in determining the logistics of component placement and movement in the reactor cavity, which is typically very congested when all the internals are out of the reactor vessel in various stages of segmentation. The main objective of the segmentation and packaging plan is to determine the strategy for separating the highly activated components from the less activated material, so that they can be disposed of in the most cost effective manner. Usually, highly activated components cannot be shipped off-site, so they must be packaged such that they can be dry stored with the spent fuel in an Independent Spent Fuel Storage Installation (ISFSI). Less activated components can be shipped to an off-site disposal site depending on space availability. Several of the

  9. Human plan of capital of Westinghouse; Plan de capital humano de Westinghouse

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, B.; Gutierrez Elso, J. E.

    2008-07-01

    After three decades of nuclear standstill, the Nuclear Renaissance resulted in a changing environment, Nuclear Companies should prepare and adapt to different challenges: the fast growing of the organization, the loss of talent to other more attractive industrial fields and the transfer and management of knowledge to young engineers that have not participated in the building of nuclear plants. In this article different Westinghouse initiatives in this respect are commented. (Author)

  10. Multi-recycling of transuranic elements in a PWR assembly with reduced fuel rod diameter

    International Nuclear Information System (INIS)

    Chambers, Alex; Ragusa, Jean C.

    2014-01-01

    Highlights: • Study of multiple recycling passes of transuranic elements: (a) without exceeding 5 wt.% on U-235 enrichment; (b) using PWR fuel assemblies compatible with current reactor core internals. • Isotopic concentrations tend towards an equilibrium after 15 recycle passes, suggesting that thermal recycling may be continued beyond that point. • Radiotoxicity comparisons for once-through UOX, once-recycle MOX-Pu, and multiple recycle passes of MOX-PuNpAm and MOX-PuNpAmCm are presented. - Abstract: This paper examines the multi-recycling of transuranic (TRU) elements (Pu-Np-Am-Cm) in standard Pressurized Water Reactor (PWR) assemblies. The original feed of TRU comes from legacy spent UOX fuel. For all subsequent recycling passes, TRU elements from the previous generation are employed, supplemented by TRU from legacy UOX fuel, as needed. The design criteria include: 235 U enrichment requirements to remain below 5 w/o, TRU loading limits to avoid return to criticality under voided conditions, and assembly power peaking factors. In order to carry out multiple recycling passes within the design envelope, additional neutron moderation is required and achieved by reducing the fuel pellet diameter by about 13%, thus keeping the assembly design compatible with current PWR core internals. TRU transmutation rates and long-term ingestion radiotoxicity results are presented for 15 recycling passes and compared to standard UOX and MOX once-through cycles. The results also show that TRU fuel isotopics and radiotoxicity tend towards an equilibrium, enabling further additional recycling passes

  11. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    International Nuclear Information System (INIS)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-01-01

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: (1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs; (2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs; (3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs; and (4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs

  12. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  13. A utility analysis of MOX recycling policy

    International Nuclear Information System (INIS)

    Pfaeffli, J.L.

    1990-01-01

    The author presents the advantages of recycling of plutonium and uranium from spent reactor fuel assemblies as follows: natural uranium and enrichment savings, mixed oxide fuel (MOX) fuel assembly cost, MOX compatibility with plant operation, high burnups, spent MOX reprocessing, and non-proliferation aspects.Disadvantages of the recycling effort are noted as well: plutonium degradation with time, plutonium availability, in-core fuel management, administrative authorizations by the licensings authorities, US prior consent, and MOX fuel fabrication capacity. Putting the advantages and disadvantages in perspective, it is concluded that the recycling of MOX in light water reactors represents, under the current circumstances, the most appropriate way of making use of the available plutonium

  14. Quantifying Tc-99 contamination in a fuel fabrication plant - 59024

    International Nuclear Information System (INIS)

    Darbyshire, Carol; Burgess, Pete

    2012-01-01

    The Springfields facility manufactures nuclear fuel products for the UK's nuclear power stations and for international customers. Fuel manufacture is scheduled to continue into the future. In addition to fuel manufacture, Springfields is also undertaking decommissioning activities. Today it is run and operated by Springfields Fuels Limited, under the management of Westinghouse Electric UK Limited. The site has been operating since 1946 manufacturing nuclear fuel. As part of the decommissioning activities, there was a need was to quantify contamination in a large redundant building. This building had been used to process uranium derived from uranium ore concentrate but had also processed a limited quantity of recycled uranium. The major non-uranic contaminant was Tc-99. The aim was to be able to identify any areas where the bulk activity exceeded 0.4 Bq/g Tc-99 as this would preclude the demolition rubble being sent to the local disposal facility. The problems associated with this project were the presence of significant uranium contamination, the realisation that both the Tc-99 and the uranium had diffused into the brickwork to a significant depth and the relatively low beta energy of Tc-99. The uranium was accompanied by Pa-234m, an energetic beta emitter. The concentration/depth profile was determined for several areas on the plant for Tc-99 and for uranium. The radiochemical analysis was performed locally but the performance of the local laboratory was checked during the initial investigation by splitting samples three ways and having confirmation analyses performed by 2 other laboratories. The results showed surprisingly consistent concentration gradients for Tc-99 and for uranium across the samples. Using that information, the instrument response was calculated for Tc-99 using the observed diffusion gradient and averaged through the full 225 mm of brick wall, as agreed by the regulator. The Tc-99 and uranium contributions to the detector signal were separated

  15. Advances in nuclear fuel technology. 3. Development of advanced nuclear fuel recycle systems

    International Nuclear Information System (INIS)

    Arie, Kazuo; Abe, Tomoyuki; Arai, Yasuo

    2002-01-01

    Fast breeder reactor (FBR) cycle technology has a technical characteristics flexibly easy to apply to diverse fuel compositions such as plutonium, minor actinides, and so on and fuel configurations. By using this characteristics, various feasibilities on effective application of uranium resources based on breeding of uranium of plutonium for original mission of FBR, contribution to radioactive wastes problems based on amounts reduction of transuranium elements (TRU) in high level radioactive wastes, upgrading of nuclear diffusion resistance, extremely upgrading of economical efficiency, and so on. In this paper, were introduced from these viewpoints, on practice strategy survey study on FBR cycle performed by cooperation of the Japan Nuclear Cycle Development Institute (JNC) with electric business companies and so on, and on technical development on advanced nuclear fuel recycle systems carried out at the Central Research Institute of Electric Power Industry, Japan Atomic Energy Research Institute, and so on. Here were explained under a vision on new type of fuels such as nitride fuels, metal fuels, and so on as well as oxide fuels, a new recycle system making possible to use actinides except uranium and plutonium, an 'advanced nuclear fuel cycle technology', containing improvement of conventional wet Purex method reprocessing technology, fuel manufacturing technology, and so on. (G.K.)

  16. Quantification of severe accident source terms of a Westinghouse 3-loop plant

    International Nuclear Information System (INIS)

    Lee Min; Ko, Y.-C.

    2008-01-01

    Integrated severe accident analysis codes are used to quantify the source terms of the representative sequences identified in PSA study. The characteristics of these source terms depend on the detail design of the plant and the accident scenario. A historical perspective of radioactive source term is provided. The grouping of radionuclides in different source terms or source term quantification tools based on TID-14844, NUREG-1465, and WASH-1400 is compared. The radionuclides release phenomena and models adopted in the integrated severe accident analysis codes of STCP and MAAP4 are described. In the present study, the severe accident source terms for risk quantification of Maanshan Nuclear Power Plant of Taiwan Power Company are quantified using MAAP 4.0.4 code. A methodology is developed to quantify the source terms of each source term category (STC) identified in the Level II PSA analysis of the plant. The characteristics of source terms obtained are compared with other source terms. The plant analyzed employs a Westinghouse designed 3-loop pressurized water reactor (PWR) with large dry containment

  17. Inductive Double-Contingency Analysis of UO2 Powder Bulk Blending Operations at a Commercial Fuel Plant (U)

    International Nuclear Information System (INIS)

    Skiles, S. K.

    1994-01-01

    An inductive double-contingency analysis (DCA) method developed by the criticality safety function at the Savannah River Site, was applied in Criticality Safety Evaluations (CSEs) of five major plant process systems at the Westinghouse Electric Corporation's Commercial Nuclear Fuel Manufacturing Plant in Columbia, South Carolina (WEC-Cola.). The method emphasizes a thorough evaluation of the controls intended to provide barriers against criticality for postulated initiating events, and has been demonstrated effective at identifying common mode failure potential and interdependence among multiple controls. A description of the method and an example of its application is provided

  18. Multi-recycling of transuranic elements in a PWR assembly with reduced fuel rod diameter

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, Alex, E-mail: acchamb@gmail.com; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu

    2014-04-01

    Highlights: • Study of multiple recycling passes of transuranic elements: (a) without exceeding 5 wt.% on U-235 enrichment; (b) using PWR fuel assemblies compatible with current reactor core internals. • Isotopic concentrations tend towards an equilibrium after 15 recycle passes, suggesting that thermal recycling may be continued beyond that point. • Radiotoxicity comparisons for once-through UOX, once-recycle MOX-Pu, and multiple recycle passes of MOX-PuNpAm and MOX-PuNpAmCm are presented. - Abstract: This paper examines the multi-recycling of transuranic (TRU) elements (Pu-Np-Am-Cm) in standard Pressurized Water Reactor (PWR) assemblies. The original feed of TRU comes from legacy spent UOX fuel. For all subsequent recycling passes, TRU elements from the previous generation are employed, supplemented by TRU from legacy UOX fuel, as needed. The design criteria include: {sup 235}U enrichment requirements to remain below 5 w/o, TRU loading limits to avoid return to criticality under voided conditions, and assembly power peaking factors. In order to carry out multiple recycling passes within the design envelope, additional neutron moderation is required and achieved by reducing the fuel pellet diameter by about 13%, thus keeping the assembly design compatible with current PWR core internals. TRU transmutation rates and long-term ingestion radiotoxicity results are presented for 15 recycling passes and compared to standard UOX and MOX once-through cycles. The results also show that TRU fuel isotopics and radiotoxicity tend towards an equilibrium, enabling further additional recycling passes.

  19. Westinghouse ICF power plant study

    International Nuclear Information System (INIS)

    Sucov, E.W.

    1980-10-01

    In this study, two different electric power plants for the production of about 1000 MWe which were based on a CO 2 laser driver and on a heavy ion driver have been developed and analyzed. The purposes of this study were: (1) to examine in a self consistent way the technological and institutional problems that need to be confronted and solved in order to produce commercially competitive electricity in the 2020 time frame from an inertial fusion reactor, and (2) to compare, on a common basis, the consequences of using two different drivers to initiate the DT fuel pellet explosions. Analytic descriptions of size/performance/cost relationships for each of the subsystems comprising the power plant have been combined into an overall computer code which models the entire plant. This overall model has been used to conduct trade studies which examine the consequences of varying critical design values around the reference point

  20. The use of nuclear data in the field of nuclear fuel recycling

    Directory of Open Access Journals (Sweden)

    Martin Julie-Fiona

    2017-01-01

    Full Text Available AREVA NC La Hague facility is the first step of the nuclear fuel recycling process implemented in France. The processing of the used fuel is governed by high standards of criticality-safety, and strong expectations on the quality of end-products. From the received used fuel assemblies, the plutonium and the uranium are extracted for further energy production purposes within the years following the reprocessing. Furthermore, the ultimate waste – fission products and minor actinides on the one hand, and hulls and end-pieces on the other hand – is adequately packaged for long term disposal. The used fuel is therefore separated into very different materials, and time scales which come into account may be longer than in some other nuclear fields of activity. Given the variety of the handled nuclear materials, as well as the time scales at stake, the importance given to some radionuclides, and hence to the associated nuclear data, can also be specific to the AREVA NC La Hague plant. A study has thus been led to identify a list of the most important radionuclides for the AREVA NC La Hague plant applications, relying on the running constraints of the facility, and the end-products expectations. The activities at the AREVA NC La Hague plant are presented, and the methodology to extract the most important radionuclides for the reprocessing process is detailed.

  1. The use of nuclear data in the field of nuclear fuel recycling

    Science.gov (United States)

    Martin, Julie-Fiona; Launay, Agnès; Grassi, Gabriele; Binet, Christophe; Lelandais, Jacques; Lecampion, Erick

    2017-09-01

    AREVA NC La Hague facility is the first step of the nuclear fuel recycling process implemented in France. The processing of the used fuel is governed by high standards of criticality-safety, and strong expectations on the quality of end-products. From the received used fuel assemblies, the plutonium and the uranium are extracted for further energy production purposes within the years following the reprocessing. Furthermore, the ultimate waste - fission products and minor actinides on the one hand, and hulls and end-pieces on the other hand - is adequately packaged for long term disposal. The used fuel is therefore separated into very different materials, and time scales which come into account may be longer than in some other nuclear fields of activity. Given the variety of the handled nuclear materials, as well as the time scales at stake, the importance given to some radionuclides, and hence to the associated nuclear data, can also be specific to the AREVA NC La Hague plant. A study has thus been led to identify a list of the most important radionuclides for the AREVA NC La Hague plant applications, relying on the running constraints of the facility, and the end-products expectations. The activities at the AREVA NC La Hague plant are presented, and the methodology to extract the most important radionuclides for the reprocessing process is detailed.

  2. Assessment of ISLOCA risk: Methodology and application to a Westinghouse four-loop ice condenser plant

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.L.; Auflick, J.L.; Haney, L.N. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-04-01

    Inter-system loss-of-coolant accidents (ISLOCAs) have been identified as important contributors to offsite risk for some nuclear power plants. A methodology has been developed for identifying and evaluating plant-specific hardware designs, human factors issues, and accident consequence factors relevant to the estimation of ISLOCA core damage frequency and risk. This report presents a detailed description of the application of this analysis methodology to a Westinghouse four-loop ice condenser plant. This document also includes appendices A through I which provide: System descriptions; ISLOCA event trees; human reliability analysis; thermal hydraulic analysis; core uncovery timing calculations; calculation of system rupture probability; ISLOCA consequences analysis; uncertainty analysis; and component failure analysis.

  3. Assessment of ISLOCA risk: Methodology and application to a Westinghouse four-loop ice condenser plant

    International Nuclear Information System (INIS)

    Kelly, D.L.; Auflick, J.L.; Haney, L.N.

    1992-04-01

    Inter-system loss-of-coolant accidents (ISLOCAs) have been identified as important contributors to offsite risk for some nuclear power plants. A methodology has been developed for identifying and evaluating plant-specific hardware designs, human factors issues, and accident consequence factors relevant to the estimation of ISLOCA core damage frequency and risk. This report presents a detailed description of the application of this analysis methodology to a Westinghouse four-loop ice condenser plant. This document also includes appendices A through I which provide: System descriptions; ISLOCA event trees; human reliability analysis; thermal hydraulic analysis; core uncovery timing calculations; calculation of system rupture probability; ISLOCA consequences analysis; uncertainty analysis; and component failure analysis

  4. Tailoring Vantage 5 (fuel) to suit each operator's need

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, D L; Secker, J R [Westinghouse Electric Corp., Philadelphia, PA (USA)

    1990-03-01

    By the end of 1989, Westinghouse Vantage 5 fuel had been reloaded into 36 nuclear power plants. The fuel offers a number of features operators can choose from to suit their own particular needs. Experience so far has shown the fuel to have performed well, with coolant activity levels remaining low. (author).

  5. Standard technical specifications, Westinghouse Plants: Bases (Sections 3.4--3.9). Volume 3, Revision 1

    International Nuclear Information System (INIS)

    1995-04-01

    This NUREG contains the improved Standard Technical Specifications (STS) for Westinghouse plants. Revision 1 incorporates the cumulative changes to Revision 0, which was published in September 1992. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, specifically the Westinghouse Owners Group (WOG), NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the extent practical and consistent with the licensing basis for the facility, to Revision 1 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency

  6. Standard technical specifications, Westinghouse Plants: Bases (Sections 2.0--3.3). Volume 2, Revision 1

    International Nuclear Information System (INIS)

    1995-04-01

    This NUREG contains the improved Standard Technical Specifications (STS) for Westinghouse plants. Revision 1 incorporates the cumulative changes to Revision 0, which was published in September 1992. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, specifically the Westinghouse Owners Group (WOG), NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the extent practical and consistent with the licensing basis for the facility, to Revision 1 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency

  7. Polyvalent fuel treatment facility (TCP): shearing and dissolution of used fuel at La Hague facility

    Energy Technology Data Exchange (ETDEWEB)

    Brueziere, J.; Tribout-Maurizi, A.; Durand, L.; Bertrand, N. [Recycling Business Unit, AREVA, 1 place de la coupole, 92084 Paris La defense Cedex (France)

    2013-07-01

    Although many used nuclear fuel types have already been recycled, recycling plants are generally optimized for Light Water Reactor (LWR) UO{sub x} fuel. Benefits of used fuel recycling are consequently restricted to those fuels, with only limited capacity for the others like LWR MOX, Fast Reactor (FR) MOX or Research and Test Reactor (RTR) fuel. In order to recycle diverse fuel types, an innovative and polyvalent shearing and dissolving cell is planned to be put in operation in about 10 years at AREVA's La Hague recycling plant. This installation, called TCP (French acronym for polyvalent fuel treatment) will benefit from AREVA's industrial feedback, while taking part in the next steps towards a fast reactor fuel cycle development using innovative treatment solutions. Feasibility studies and R/Development trials on dissolution and shearing are currently ongoing. This new installation will allow AREVA to propose new services to its customers, in particular in term of MOX fuel, Research Test Reactors fuel and Fast Reactor fuel treatment. (authors)

  8. Radiological considerations in the design of Reprocessing Uranium Plant (RUP) of Fast Reactor Fuel Cycle Facility (FRFCF), Kalpakkam

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    A Fast Reactor Fuel Cycle Facility (FRFCF) being planned at Indira Gandhi Centre for Atomic Research, Kalpakkam is an integrated facility with head end and back end of fuel cycle plants co-located in a single place, to meet the refuelling needs of the prototype fast breeder reactor (PFBR). Reprocessed uranium oxide plant (RUP) is one such plant in FRFCF to built to meet annual requirements of UO 2 for fabrication of fuel sub-assemblies (FSAs) and radial blanket sub-assemblies (RSAs) for PFBR. RUP receives reprocessed uranium oxide powder (U 3 O 8 ) from fast reactor fuel reprocessing plant (FRP) of FRFCF. Unlike natural uranium oxide plant, RUP has to handle reprocessed uranium oxide which is likely to have residual fission products activity in addition to traces of plutonium. As the fuel used for PFBR is recycled within these plants, formation of higher actinides in the case of plutonium and formation of higher levels of 232 U in the uranium product would be a radiological problem to be reckoned with. The paper discussed the impact of handling of multi-recycled reprocessed uranium in RUP and the radiological considerations

  9. Transmutation Dynamics: Impacts of Multi-Recycling on Fuel Cycle Performances

    Energy Technology Data Exchange (ETDEWEB)

    S. Bays; S. Piet; M. Pope; G. Youinou; A. Dumontier; D. Hawn

    2009-09-01

    From a physics standpoint, it is feasible to sustain continuous multi-recycle in either thermal or fast reactors. In Fiscal Year 2009, transmutaton work at INL provided important new insight, caveats, and tools on multi-recycle. Multi-recycle of MOX, even with all the transuranics, is possible provided continuous enrichment of the uranium phase to ~6.5% and also limitting the transuranic enrichment to slightly less than 8%. Multi-recycle of heterogeneous-IMF assemblies is possible with continuous enrichment of the UOX pins to ~4.95% and having =60 of the 264 fuel pins being inter-matrix. A new tool enables quick assessment of the impact of different cooling times on isotopic evolution. The effect of cooling time was found to be almost as controlling on higher mass actinide concentrations in fuel as the selection of thermal versus fast neutron spectra. A new dataset was built which provides on-the-fly estimates of gamma and neutron dose in MOX fuels as a function of the isotopic evolution. All studies this year focused on the impact of dynamic feedback due to choices made in option space. Both the equilibrium fuel cycle concentrations and the transient time to reach equilibrium for each isotope were evaluated over a range of reactor, reprocessing and cooling time combinations. New bounding cases and analysis methods for evaluating both reactor safety and radiation worker safety were established. This holistic collection of physics analyses and methods gives improved resolution of fuel cycle options, and impacts thereof, over that of previous ad-hoc and single-point analyses.

  10. Fires at storage sites of organic materials, waste fuels and recyclables.

    Science.gov (United States)

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  11. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier...... recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization unit...

  12. Japanese status-quo and our activities in the field of nuclear fuel recycle

    International Nuclear Information System (INIS)

    Sada, Masao; Imai, Osamu

    1983-01-01

    Nuclear energy is expected to take the place of current petroleum-base-energy in the near future. In order to effectively utilize the nuclear energy, nuclear fuel recycle system has to be established. The technology for reprocessing the spent fuel, which is a part of this recycle system, is very similar to the ones in chemical industry. Our company has been keeping its eyes on the field of such nuclear energy as one of the future promising businesses and recentrly established Nuclear Energy Department as a center for further expanding the business opportunity in the field of such spent fuel reprocessing as well as other fields of nuclear fuel recycle system. (author)

  13. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  14. Preliminary LOCA analysis of the westinghouse small modular reactor using the WCOBRA/TRAC-TF2 thermal-hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.; Kucukboyaci, V. N.; Nguyen, L.; Frepoli, C. [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using the WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)

  15. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured 235 U) startup fuels, first-recycle and equilibrium (denatured 233 U) thorium--uranium LWR fuels, and to recover the plutonium generated in the 238 U denaturant as well. 12 figures, 3 tables

  16. Evaluation of fuel cycle scenarios on MOX fuel recycling in PWRs and SFRs

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, B.; Caron-Charles, M.; Van Den Durpel, L. [AREVA, 1 place Jean Millier, Paris La Defense (France); Senentz, G. [AREVA, 33 rue La Lafayette, 75009 Paris (France); Serpantie, J.P. [AREVA, 10 rue Juliette Recamier, Lyon (France)

    2013-07-01

    Prospects on advanced fuel cycle scenario are considered for achieving a progressive integration of Sodium Fast Reactor (SFR) technology within the current French Pressurized Water Reactor (PWR) nuclear fleet, in a view to benefit from fissile material multi-recycling capability. A step by step process is envisioned, and emphasis is put on its potential implementation through the nuclear mass inventory calculations with the COSAC code. The overall time scale is not optimized. The first step, already implemented in several countries, the plutonium coming from the reprocessing of used Light Water Reactor (LWR) fuels is recycled into a small number of LWRs. The second step is the progressive introduction of the first SFRs, in parallel with the continuation of step 1. This second step lets to prepare the optimized multi recycling of MOX fuel which is considered in step 3. Step 3 is characterized by the introduction of a greater number of SFR and MOX management between EPR reactors and SFRs. In the final step 4, all the fleet is formed with SFRs. This study assesses the viability of each step of the overall scenario. The switch from one step to the other one could result from different constrains related to issues such as resources, waste, experience feedback, public acceptance, country policy, etc.

  17. Comparison of DNBR estimation methods in the Westinghouse and KWU reactor cores

    International Nuclear Information System (INIS)

    Camargo, C.T.M.; Pontedeiro, A.C.

    1984-11-01

    A method for foreseeing departure from nucleate boiling phenomenon in Westinghouse reator cores (OTΔT- signal for reator shut down) is described. The results from investigations done with the OTΔT system and in the efficiency of different methods used in the Westinghouse and KWU nuclear power plants to estimate thermohydraulic conditions of the PWR reactor cores, are presented. The investigations were done, by support of computer codes. The modifications, purposed by Westinghouse, in the original project of Angra-1 OTΔT system are analysed. (M.C.K.) [pt

  18. Energy Return on Investment - Fuel Recycle

    International Nuclear Information System (INIS)

    Halsey, W.; Simon, A.J.; Fratoni, M.; Smith, C.; Schwab, P.; Murray, P.

    2012-01-01

    This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community, and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.

  19. Impact of plant transient response on fuel management strategy at Virginia Power

    International Nuclear Information System (INIS)

    Bucheit, D.M.; Smith, N.A.

    1987-01-01

    Virginia Power has been performing in-house reload core design and safety analysis for several years. These analyses have been in support of North Anna units 1 and 2 and Surry units 1 and 2, all of which are three-loop pressurized water reactor plants designed and built by Westinghouse. Historically, Virginia Power first developed the capability to design and optimize its own core loading patterns in the early 1970's. This development effort was driven by the need to establish in-house control of the fuel management process, thereby ensuring that energy generation requirements are met in an economically optimum fashion. It soon became obvious that reload design and safety analysis processes are so integrally coupled that in order to perform the fuel management function in an effective manner, in-house capability in both areas needed to be developed. After reviewing the spectrum of economic, safety and operational constraints which affect the reload design and analysis process, an integrated model of the process is presented in flow chart format. This is followed by several specific examples which illustrate the interplay between sound fuel management practice and the assurance of plant safety using in-house analysis techniques

  20. The Westinghouse approach - an I and C modernization program for WWERs

    International Nuclear Information System (INIS)

    Werner, C.L.; Wassel, W.W.; Novak, V.

    1993-01-01

    When entering into a design program that is a marriage between two designs it is very difficult to separate self imposed design criteria from the requirements of the program. Therefore, the criteria of and the requirements for the Westinghouse modernization program will be discussed as one. These are outlined below: 1) The OSART Mission that was conducted by the IAEA at the Temelin Plant in 1990 identified the need to provide a new comprehensive Safety Analysis to verify the various aspects of the WWER safety system design. This recommendation is one that Westinghouse will provide as part of the WWER I and C Modernization Program. The design, no matter how well proven or verified from a hardware design point of view, is only as good as the basis for the system design; 2) Minimize the impact on the civil design aspects of the plant where possible and where this requirements do not affect the safety features of the design; 3) Ensure compatibility of the design to meet the latest US NRC requirements and those of the implementing country, applicable to the systems functional and hardware designs. This is a Westinghouse standard corporate requirement for all nuclear plant and systems design whether they be foreign or domestic; 4) Provide the most modern, proven design for the I and C systems. Application of the Westinghouse Instrumentation and Control microprocessor based design to the WWER Modernization Program will provide the basis for upgrading plants to meet western standards. (author) 6 figs., 1 ref

  1. Chemical-cleaning process evaluation: Westinghouse steam generators. Final report

    International Nuclear Information System (INIS)

    Cleary, W.F.; Gockley, G.B.

    1983-04-01

    The Steam Generator Owners Group (SGOG)/Electric Power Research Institute (EPRI) Steam Generator Secondary Side Chemical Cleaning Program, under develpment since 1978, has resulted in a generic process for the removal of accumulated corrosion products and tube deposits in the tube support plate crevices. The SGOG/EPRI Project S150-3 was established to obtain an evaluation of the generic process in regard to its applicability to Westinghouse steam generators. The results of the evaluation form the basis for recommendations for transferring the generic process to a plant specific application and identify chemical cleaning corrosion guidelines for the materials in Westinghouse Steam Generators. The results of the evaluation, recommendations for plant-specific applications and corrosion guidelines for chemical cleaning are presented in this report

  2. Recuperative aluminium recycling plant. A demonstration at J. McIntyre (Aluminium) Ltd. [Nottingham (GB)

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    Direct energy savings worth up to 470,000 pounds/year are being achieved by J McIntyre (Aluminium) Ltd in the United Kingdom as a result of the development of a recuperative aluminium recycling plant. The overall design incorporates a novel version of a closed-well furnace coupled with a radically improved design of dry hearth furnace. The plant not only treats clean scrap more efficiently than at present, but will also treat contaminated scrap which has not previously been recycled in an environmentally acceptable way. This is because the plant incorporates fume pyrolysis, afterburning of organics, recuperation and fume treatment. At 1987 prices the total installed plant cost was 1.3M.pounds. The direct energy saving at 1987 fuel prices was between 294,000 and 470,000pounds/year. Also, the improved melting technique has reduced metal lost as dross by 2 - 8% (420 -1,680 tonnes/year) when compared to other furnace operations. The improved metal recovery (1987 prices) was worth a further 400,000 pounds - 1,600,000 pounds. Taking median figures for the total fuel-plus-metal savings results in a payback on the project of only 14 months, some six months less than anticipated. Other consequential benefits which have also helped in reducing operating costs have been improvements in output per man, reductions in sickness and absenteeism, and reduced down-time for maintenance and repair. (author).

  3. The Westinghouse AP600 an advanced nuclear option for small or medium electricity grids

    International Nuclear Information System (INIS)

    Bruschi, H. J.; Novak, V.

    1996-01-01

    During the early days of commercial nuclear power, many countries looking to add nuclear power to their energy mix required large plants to meet the energy needs of rapidly growing populations and large industrial complexes. The majority of plants worldwide are in the range of 100 megawatts and beyond. During the 1970s, it became apparent that a smaller nuclear plants would appeal to utilities looking to add additional power capacity to existing grids, or to utilities in smaller countries which were seeking efficient, new nuclear generation capacity for the first time. For instance, the Westinghouse-designed 600 megawatt Krsko plant in Slovenia began operation in 1980, providing electricity to inhabitants of relatively small, yet industrial populations of Slovenia and Croatia. This plant design incorporated the best, proven technology available at that time, based on 20 years of Westinghouse PWR pioneering experience. Beginning in the early 1980s, Westinghouse began to build further upon that experience - in part through the advanced light water reactor programs established by the Electric Power Research institute (EPRI) and the U.S. Department of Energy (DOE) - to design a simplified, advanced nuclear reactor in the 600 megawatt range. Originally, Westinghouse's development of its AP600 (advanced, passive 600-megawatt) plants was geared towards the needs of U.S. utilities which specified smaller, simplified nuclear options for the decades ahead. It soon became evident that the small and medium sized electricity grids of international markets could benefit from this new reactor. From the earliest days of Westinghouse's AP600 development, the corporation invited members of the international nuclear community to take part in the design, development and testing of the AP600 - with the goal of designing a reactor that would meet the diverse needs of an international industry composed of countries with similar, yet different, concerns. (author)

  4. Westinghouse Electric Company experiences in chemistry on-line monitoring in Eastern European nuclear power plants

    International Nuclear Information System (INIS)

    Balavage, J.

    2001-01-01

    Westinghouse Electric Company has provided a number of Chemistry On-Line Monitoring (OLM) Systems to Nuclear Power Plants in Eastern Europe. Eleven systems were provided to the Temelin Nuclear Power Plant in the south of the Czech Republic. Four systems were provided to the Russian NPP at Novovoronezh. In addition, a system design was developed for primary side chemistry monitoring for units 5 and 6 of another eastern European VVER. The status of the Temelin OLM systems is discussed including updates to the Temelin designs, and the other Eastern European installations and designs are also described briefly. Some of the problems encountered and lessons learned from these projects are also discussed. (R.P.)

  5. Design information questionnaire for a model mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Glancy, J.E.

    1976-05-01

    The model fuel plant is based on the proposed Westinghouse Anderson, S.C., plant and is typical of plants that will be constructed and operated in 1980 to 1990. A number of plant systems and procedures are uncertain, and in these cases judgment was used in describing relevant parameters in order to provide a complete model on which to design an inspection plan. The model plant does not, therefore, strictly represent any planned facility nor does it strictly represent the ideas of Westinghouse on plant design and material accountability. This report is divided into two sections. The first section is the IAEA Design Information Questionnaire form that contains an outline of all information requested. The second section is a complete listing of design information

  6. Light water reactor fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    1977-07-01

    This document was originally intended to provide the basis for an environmental impact statement to assist ERDA in making decisions with respect to possible LWR fuel reprocessing and recycling programs. Since the Administration has recently made a decision to indefinitely defer reprocessing, this environmental impact statement is no longer needed. Nevertheless, this document is issued as a report to assist the public in its consideration of nuclear power issues. The statement compares the various alternatives for the LWR fuel cycle. Costs and environmental effects are compared. Safeguards for plutonium from sabotage and theft are analyzed

  7. External costs of material recycling strategies for fusion power plants

    International Nuclear Information System (INIS)

    Hallberg, B.; Aquilonius, K.; Lechon, Y.; Cabal, H.; Saez, R.M.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R.

    2003-01-01

    This paper is based on studies performed within the framework of the project Socio-Economic Research on Fusion (SERF3). Several fusion power plant designs (SEAFP Models 1-6) were compared focusing on part of the plant's life cycle: environmental impact of recycling the materials. Recycling was considered for materials replaced during normal operation, as well as materials from decommissioning of the plant. Environmental impact was assessed and expressed as external cost normalised with the total electrical energy output during plant operation. The methodology used for this study has been developed by the Commission of the European Union within the frame of the ExternE project. External costs for recycling, normalised with the energy production during plant operation, are very low compared with those for other energy sources. Results indicate that a high degree of recycling is preferable, at least when considering external costs, because external costs of manufacturing of new materials and disposal costs are higher

  8. Fuel recycling and 4. generation reactors

    International Nuclear Information System (INIS)

    Devezeaux de Lavergne, J.G.; Gauche, F.; Mathonniere, G.

    2012-01-01

    The 4. generation reactors meet the demand for sustainability of nuclear power through the saving of the natural resources, the minimization of the volume of wastes, a high safety standard and a high reliability. In the framework of the GIF (Generation 4. International Forum) France has decided to study the sodium-cooled fast reactor. Fast reactors have the capacity to recycle plutonium efficiently and to burn actinides. The long history of reprocessing-recycling of spent fuels in France is an asset. A prototype reactor named ASTRID could be entered into operation in 2020. This article presents the research program on the sodium-cooled fast reactor, gives the status of the ASTRID project and present the scenario of the progressive implementation of 4. generation reactors in the French reactor fleet. (A.C.)

  9. Westinghouse power distribution monitoring experience at Duke Power's McGuire Unit 1

    International Nuclear Information System (INIS)

    Grobmyer, L.R.; Cash, M.T.; Kitlan, M.S.; Impink, A.J. Jr.

    1987-01-01

    In the evolution of the Westinghouse methodology of assuring safe core power distributions, emphasis was placed on analysis and not on continuous detailed core monitoring. Power distribution monitoring is currently achieved by periodic surveillances using the movable in-core detector system (MIDS) and by continuous observations of the two-section excore power range detectors. Control of the power distribution is regulated by limits on the indications from these systems, by limits on control rod insertion, and by operational constraints on the position indication systems. As more plants come on line and as more utilities take over the fuel design function for themselves, the desire for better core monitoring becomes evident. Also, the need and desire by the utilities to have more control over their operating margin has motivated the industry to offer and/or upgrade core monitoring systems. Westinghouse and Duke Power are participants in a joint development program to finalize the development of the core on-line surveillance monitoring and operations system (COSMOS). This final stage of development consists of prototype field trials at the McGuire Nuclear Plant. The purpose of the prototype program is to determine how well the design objectives are met and how to improve the system based on the operating experience at McGuire. Another purpose of this prototype program is to generate the necessary experience and information to develop a topical report for the US Nuclear Regulatory Commission to obtain a licensing basis for technical specification relaxation

  10. Recycle and reuse of materials and components from waste streams of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2000-01-01

    All nuclear fuel cycle processes utilize a wide range of equipment and materials to produce the final products they are designed for. However, as at any other industrial facility, during operation of the nuclear fuel cycle facilities, apart from the main products some byproducts, spent materials and waste are generated. A lot of these materials, byproducts or some components of waste have a potential value and may be recycled within the original process or reused outside either directly or after appropriate treatment. The issue of recycle and reuse of valuable material is important for all industries including the nuclear fuel cycle. The level of different materials involvement and opportunities for their recycle and reuse in nuclear industry are different at different stages of nuclear fuel cycle activity, generally increasing from the front end to the back end processes and decommissioning. Minimization of waste arisings and the practice of recycle and reuse can improve process economics and can minimize the potential environmental impact. Recognizing the importance of this subject, the International Atomic Energy Agency initiated the preparation of this report aiming to review and summarize the information on the existing recycling and reuse practice for both radioactive and non-radioactive components of waste streams at nuclear fuel cycle facilities. This report analyses the existing options, approaches and developments in recycle and reuse in nuclear industry

  11. Regulatory analysis for the resolution of Generic Issue 115, enhancement of the reliability of the Westinghouse Solid State Protection System

    International Nuclear Information System (INIS)

    Basdekas, D.L.

    1989-05-01

    Generic Issue 115 addresses a concern related to the reliability of the Westinghouse reactor protection system for plants using the Westinghouse Solid State Protection System (SSPS). Several options for improving the reliability of the Westinghouse reactor trip function for these plants and their effect on core damage frequency (CDF) and overall risk were evaluated. This regulatory analysis includes a quantitative assessment of the costs and benefits associated with the various options for enhancing the reliability of the Westinghouse SSPS and provides insights for consideration and industry initiatives. No new regulatory requirements are proposed. 25 refs., 11 tabs

  12. Research on plant of metal fuel fabrication using casting process

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Mori, Yukihide

    2003-12-01

    This document presents the plant concept of metal fuel fabrication system (38tHM/y) using casting process in electrolytic recycle, which based on recent studies of its equipment design and quality control system. And we estimate the cost of its construction and operation, including costs of maintenance, consumed hardware and management of waste. The content of this work is as follows. (1) Designing of fuel fabrication equipment: We make material flow diagrams of the fuel fabrication plant and rough designs of the injection casting furnace, demolder and inspection equipment. (2) Designing of resolution system of liquid waste, which comes from analytical process facility. Increased analytical items, we rearrange analytical process facility, estimate its chemicals and amount of waste. (3) Arrangement of equipments: We made a arrangement diagram of the metal fuel fabrication equipments in cells. (4) Estimation of cost data: We estimated cost to construct the facility and to operate it. (author)

  13. Review of Reliability Assessment of Westinghouse SSPS Using SPC by WEC

    International Nuclear Information System (INIS)

    Kang, H. T.; Chung, H. Y.

    2007-01-01

    Westinghouse Electric Company (WEC) has accomplished the reliability assessment of Westinghouse Solid State Protection System (SSPS) in KORI no. 2, 3, 4, and YGN no. 1, 2. In their studies, it is reported that creating a cost-effective plan for improving the reliability of the SSPS and at KORI no. 2, 3 and 4, and YGN no. 1, 2 should be needed while reducing their maintenance cost. In this paper, we reviewed the reliability assessment of Westinghouse SSPS analyzed in two performance standards, availability, and the maintenance expense using Statistic Process Control (SPC). As a result, it is concluded all plants have several failures reported but no effect on the system's availability, and the maintenance expense analysis did not reduce the current maintenance expense by 30%. Therefore, overall review for the reliability assessment is that a new strategy for cost-effective plan and/or upgrade approach for improving the reliability of the aging Westinghouse SSPS should be needed

  14. Westinghouse AP1000 Electrical Generation Costs - Meeting Marketplace Requirements

    International Nuclear Information System (INIS)

    Paulson, C. Keith

    2002-01-01

    The re-emergence of nuclear power as a leading contender for new base-load electrical generation is not an occurrence of happenstance. The nuclear industry, in general, and Westinghouse, specifically, have worked diligently with the U.S. power companies and other nuclear industry participants around the world to develop future plant designs and project implementation models that address prior problem areas that led to reduced support for nuclear power. In no particular order, the issues that Westinghouse, as an engineering and equipment supply company, focused on were: safety, plant capital costs, construction schedule reductions, plant availability, and electric generation costs. An examination of the above criteria quickly led to the conclusion that as long as safety is not compromised, simplifying plant designs can lead to positive progress of the desired endpoints for the next and later generations of nuclear units. The distinction between next and later generations relates to the readiness of the plant design for construction implementation. In setting requirement priorities, one axiom is inviolate: There is no exception, nor will there be, to the Golden Rule of business. In the electric power generation industry, once safety goals are met, low generation cost is the requirement that rules, without exception. The emphasis in this paper on distinguishing between next and later generation reactors is based on the recognition that many designs have been purposed for future application, but few have been able to attain the design pedigree required to successfully meet the requirements for next generation nuclear units. One fact is evident: Another generation of noncompetitive nuclear plants will cripple the potential for nuclear to take its place as a major contributor to new electrical generation. Only two plant designs effectively meet the economic tests and demonstrate both unparalleled safety and design credibility due to extensive progress toward engineering

  15. Retrofitting a spent fuel pool spray system for alternative cooling as a strategy for beyond design basis events

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Christoph; Vujic, Zoran [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2017-06-15

    Due to requirements for nuclear power plants to withstand beyond design basis accidents, including events such as happened in 2011 in the Fukushima Daiichi Nuclear Power Plant in Japan, alternative cooling of spent fuel is needed. Alternative spent fuel cooling can be provided by a retrofitted spent fuel pool spray system based on the AP1000 plant design. As part of Krsko Nuclear Power Plant's Safety Upgrade Program, Krsko Nuclear Power Plant decided on, and Westinghouse successfully designed a retrofit of the AP1000 {sup registered} plant spent fuel pool spray system to provide alternative spent fuel cooling.

  16. Aging mechanisms in the Westinghouse PWR [Pressurized Water Reactor] Control Rod Drive system

    International Nuclear Information System (INIS)

    Gunther, W.; Sullivan, K.

    1991-01-01

    An aging assessment of the Westinghouse Pressurized Water Reactor (PWR) Control Rod System (CRD) has been completed as part of the US NRC's Nuclear Plant Aging Research, (NPAR) Program. This study examined the design, construction, maintenance, and operation of the system to determine its potential for degradation as the plant ages. Selected results from this study are presented in this paper. The operating experience data were evaluated to identify the predominant failure modes, causes, and effects. From our evaluation of the data, coupled with an assessment of the materials of construction and the operating environment, we conclude that the Westinghouse CRD system is subject to degradation which, if unchecked, could affect its safety function as a plant ages. Ways to detect and mitigate the effects of aging are included in this paper. The current maintenance for the control rod drive system at fifteen Westinghouse PWRs was obtained through a survey conducted in cooperation with EPRI and NUMARC. The results of the survey indicate that some plants have modified the system, replaced components, or expanded preventive maintenance. Several of these activities have effectively addressed the aging issue. 2 refs., 2 figs., 2 tabs

  17. Numerical analysis on reduction of radioactive actinides by recycling of nuclear fuel

    International Nuclear Information System (INIS)

    Balboa L, H. E.

    2014-01-01

    Worldwide, human growth has reached unparalleled levels historically, this implies a need for more energy, and just in 2007 was consumed in the USA 4157 x 10 9 kWh of electricity and there were 6 x 10 9 metric tons of carbon dioxide, which causes a devastating effect on our environment. To this problem, a solution to the demand for non-fossil energy is nuclear energy, which is one of the least polluting and the cheapest among non-fossil energy; however, a problem remains unresolved the waste generation of nuclear fuels. In this work the option of a possible transmutation of actinides in a nuclear reactor of BWR was analyzed, an example of this are the nuclear reactors at the Laguna Verde nuclear power plant, which have generated spent fuel stored in pools awaiting a decision for final disposal or any other existing alternative. Assuming that the spent fuel was reprocessed to separate useful materials and actinides such as plutonium and uranium remaining, could take these actinides and to recycle them inside the same reactor that produced them, so il will be reduced the radiotoxicity of spent fuel. The main idea of this paper is to evaluate by means of numeric simulation (using the Core Management System (CMS)) the reduction of minor actinides in the case of being recycled in fresh fuel of the type BWR. The actinides were introduced hypothetically in the fuel pellets to 6% by weight, and then use a burned in the range of 0-65 G Wd/Tm, in order to have a better panorama of their behavior and thus know which it is the best choice for maximum reduction of actinides. Several cases were studied, that is to say were used as fuels; the UO 2 and MOX. Six different cases were also studied to see the behavior of actinides in different situations. The CMS platform calculation was used for the analysis of the cases presented. Favorable results were obtained, having decreased from a range of 35% to 65% of minor actinides initially introduced in the fuel rods, reducing the

  18. Selective absorption pilot plant for decontamination of fuel reprocessing plant off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, M.J.; Eby, R.S.; Huffstetler, V.C.

    1977-10-01

    A fluorocarbon-based selective absorption process for removing krypton-85, carbon-14, and radon-222 from the off-gas of conventional light water and advanced reactor fuel reprocessing plants is being developed at the Oak Ridge Gaseous Diffusion Plant in conjunction with fuel recycle work at the Oak Ridge National Laboratory and at the Savannah River Laboratory. The process is characterized by an especially high tolerance for many other reprocessing plant off-gas components. This report presents detailed drawings and descriptions of the second generation development pilot plant as it has evolved after three years of operation. The test facility is designed on the basis of removing 99% of the feed gas krypton and 99.9% of the carbon and radon, and can handle a nominal 15 scfm (425 slm) of contaminated gas at pressures from 100 to 600 psig (7.0 to 42.2 kg/cm/sup 2/) and temperatures from minus 45 to plus 25/sup 0/F (-43 to -4/sup 0/C). Part of the development program is devoted to identifying flowsheet options and simplifications that lead to an even more economical and reliable process. Two of these applicative flowsheets are discussed.

  19. ERDA activities related to reprocessing and plutonium recycle

    International Nuclear Information System (INIS)

    Spurgeon, D.R.

    1977-01-01

    ERDA has redirected its program in support of the LWR fuel cycle from one emphasizing the commercialization of existing fuel cycle technology to a broader based assessment of alternative fuel cycle concepts with the emphasis on safeguardability and avoidance of proliferation risks. As part of this program, ERDA will evaluate a number of possible technical and institutional options to reduce proliferation risks. ERDA will continue its current program of LWR fuel reprocessing R and D with added emphasis on improved safeguards capability as well as the applicability of conventional reprocessing technology to large multinational plants. These activities and supporting design studies will provide the basis for a decision regarding the design of an optimized system for the management of spent LWR fuel. Such a system would provide a model for the development of future domestic and foreign facilities and programs. A recently completed ERDA study of the benefits of LWR reprocessing and recycle would also be expected to be factored into such a decision. The study concluded that based on currently available data, recycle of uranium and plutonium in LWR's is attractive from the standpoint of economics and resource utilization relative to the discarding of spent fuel. The LWR reprocessing/recycle picture today is clouded by several unresolved policy issues. These include the need for adequate spent fuel storage capacity for both domestic and foreign reactors; the possibility of foreign reprocessing of U.S. produced fuel; the possibility of the disposal of foreign fuel in the U.S.; the possible need to dispose of wastes generated by multinational reprocessing plants; and finally, determination of the optimum balance between recycling recovered plutonium and saving it for the breeder

  20. Fuel-pellet-fabrication experience using direct-denitration-recycle-PuO2-coprecipitated mixed oxide

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1980-01-01

    The fuel pellet fabrication experience described in this paper involved three different feed powders: coprecipitated PuO 2 -UO 2 which was flash calcined in a fluidized bed; co-direct denitrated PuO 2 -UO 2 ; and direct denitrated LWR recycle PuO 2 which was mechanically blended with natural UO 2 . The objectives of this paper are twofold; first, to demonstrate that acceptable quality fuel pellets were fabricated using feed powders manufactured by processes other than the conventional oxalate process; and second, to highlight some pellet fabrication difficulties experienced with the direct denitration LWR recycle PuO 2 feed material, which did not produce acceptable pellets. The direct denitration LWR recycle PuO 2 was available as a by-product and was not specifically produced for use in fuel pellet fabrication. Nevertheless, its characteristics and pellet fabrication behavior serve to re-emphasize the importance of continued process development involving both powder suppliers and fuel fabricators to close the fuel cycle in the future

  1. A proposal for an international program to develop dry recycle of spent nuclear fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    1999-01-01

    The dry oxidation-reduction process (called OREOX for Oxidation Reduction of Oxide Fuel) being developed by Korea and Canada, in cooperation with IAEA and the US State Department, is limited to recycle of spent LWR fuel into CANDU reactors (DUPIC). When first conceived and demonstrated via irradiation of test elements by Atomics International in 1965, (the process was called AIROX at that time) a wider range of applications was intended, including recycle of spent LWR fuel into LWRs. Studies sponsored by DOE's Idaho Office in 1992 confirmed the applicability of this technology to regions containing LWR's only, and described the potential advantages of such recycle from an environmental, waste management and economic point of view, as compared to the direct disposal option. Recent analyses conducted by the author indicates that such dry recycle may be one of the few acceptable paths remaining for resolution of the US spent fuel storage dilemma that remains consistent with US non-proliferation policy. It is proposed that a new US program be established to develop AIROX dry recycle for use in the US, and this become part of an international cooperative program, including the current Canadian - Korean program, and possibly including participation of other countries wishing to pursue alternatives to the once through cycle, and wet reprocessing. With shared funding of major project elements, such international cooperation would accelerate the demonstration and commercial deployment of dry recycle technology, as compared to separate and independent programs in each country. (author)

  2. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    International Nuclear Information System (INIS)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.; Carter, J.; Davis, H.L.; Devletian, J.H.; Scholl, M.R.; Turpin, R.B.; Webster, S.L.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel open-quotes scrapclose quotes metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques

  3. A Neutronic Feasibility Study on the Recycling of an Oxide Fuel in Sodium-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2006-06-15

    Neutronic feasibility was implemented for the recycling of a mixed oxide fuel in sodium-cooled fast reactors (SFR) through a thermal/mechanical dry process, which is recognized as one of the most proliferation- resistant recycling processes. In order to assess the applicability of a simple dry process which is not capable of completely removing all the fission products from a spent fuel, sensitivity calculations were performed for the reactor physics parameters with a dependency on the fission product removal rate of the recycled spent fuel. The equilibrium core calculations were performed by the REBUS-3 code for a BN-600 core without blanket fuels and a modified core with an increased fuel volume fraction. The reactor performance parameters such as the transuranic content, breeding ratio, peak linear power, burnup reactivity swing and reactivity coefficients were calculated for an equilibrium core under a fixed fuel management scheme. The results showed that a recycling of the oxide fuel in the SFR is feasible if the fission products are removed by more than 70% through the dry process as far as the material balance is concerned. However the physics analysis also showed that some of the physics design parameters are slightly deteriorated. The results of this study indicate that the recycling characteristics can be improved if the dry process can remove more fission products, and the reactor configuration is further optimized or the spent fuel composition is adjusted.

  4. A Neutronic Feasibility Study on the Recycling of an Oxide Fuel in Sodium-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2006-06-01

    Neutronic feasibility was implemented for the recycling of a mixed oxide fuel in sodium-cooled fast reactors (SFR) through a thermal/mechanical dry process, which is recognized as one of the most proliferation- resistant recycling processes. In order to assess the applicability of a simple dry process which is not capable of completely removing all the fission products from a spent fuel, sensitivity calculations were performed for the reactor physics parameters with a dependency on the fission product removal rate of the recycled spent fuel. The equilibrium core calculations were performed by the REBUS-3 code for a BN-600 core without blanket fuels and a modified core with an increased fuel volume fraction. The reactor performance parameters such as the transuranic content, breeding ratio, peak linear power, burnup reactivity swing and reactivity coefficients were calculated for an equilibrium core under a fixed fuel management scheme. The results showed that a recycling of the oxide fuel in the SFR is feasible if the fission products are removed by more than 70% through the dry process as far as the material balance is concerned. However the physics analysis also showed that some of the physics design parameters are slightly deteriorated. The results of this study indicate that the recycling characteristics can be improved if the dry process can remove more fission products, and the reactor configuration is further optimized or the spent fuel composition is adjusted

  5. Cost and availability of gadolinium for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1985-06-01

    Gadolinium is currently planned for use as a soluble neutron poison in nuclear fuel reprocessing plants to prevent criticality of solutions of spent fuel. Gadolinium is relatively rare and expensive. The present study was undertaken therefore to estimate whether this material is likely to be available in quantities sufficient for fuel reprocessing and at reasonable prices. It was found that gadolinium, one of 16 rare earth elements, appears in the marketplace as a by-product and that its present supply is a function of the production rate of other more prevalent rare earths. The potential demand for gadolinium in a fuel reprocessing facility serving a future fast reactor industry amounts to only a small fraction of the supply. At the present rate of consumption, domestic supplies of rare earths containing gadolinium are adequate to meet national needs (including fuel reprocessing) for over 100 years. With access to foreign sources, US demands can be met well beyond the 21st century. It is concluded therefore that the supply of gadolinium will quite likely be more than adequate for reprocessing spent fuel for the early generation of fast reactors. The current price of 99.99% pure gadolinium oxide lies in the range $50/lb to $65/lb (1984 dollars). By the year 2020, in time for reprocessing spent fuel from an early generation of large fast reactors, the corresponding values are expected to lie in the $60/lb to $75/lb (1984 dollars) price range. This increase is modest and its economic impact on nuclear fuel reprocessing would be minor. The economic potential for recovering gadolinium from the wastes of nuclear fuel reprocessing plants (which use gadolinium neutron poison) was also investigated. The cost of recycled gadolinium was estimated at over twelve times the cost of fresh gadolinium, and thus recycle using current recovery technology is not economical. 15 refs., 4 figs., 11 tabs

  6. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    International Nuclear Information System (INIS)

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J.

    2015-01-01

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  7. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    Energy Technology Data Exchange (ETDEWEB)

    Gug, JeongIn, E-mail: Jeongin_gug@student.uml.edu; Cacciola, David, E-mail: david_cacciola@student.uml.edu; Sobkowicz, Margaret J., E-mail: Margaret_sobkowiczkline@uml.edu

    2015-01-15

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  8. Human plan of capital of Westinghouse

    International Nuclear Information System (INIS)

    Alonso, B.; Gutierrez Elso, J. E.

    2008-01-01

    After three decades of nuclear standstill, the Nuclear Renaissance resulted in a changing environment, Nuclear Companies should prepare and adapt to different challenges: the fast growing of the organization, the loss of talent to other more attractive industrial fields and the transfer and management of knowledge to young engineers that have not participated in the building of nuclear plants. In this article different Westinghouse initiatives in this respect are commented. (Author)

  9. Energy implications of recycling packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., Washington, DC (United States)

    1994-03-01

    In 1992, Congress sought to rewrite the United States comprehensive solid waste legislation -- the Resource Conservation and Recovery Act (RCRA). Commodity-specific recycling rates were proposed for consumer-goods packaging materials and newsprint We compare the impacts on energy, materials use, and landfill volume of recycling at those rates to the impacts for alternative methods of material disposition to determine the optimum for each material. After products have served their intended uses, there are several alternative paths for material disposition. These include reuse, recycling to the same product, recycling to a lower-valued product, combustion for energy recovery, incineration without energy recovery, and landfill. Only options considered to be environmentally sound are Included. Both houses of Congress specifically excluded combustion for energy recovery from counting towards the recovery goats, probably because combustion is viewed as a form of disposal and is therefore assumed to waste resources and have n environmental effects. However, co-combustion in coal-fired plants or combustion in appropriately pollution-controlled waste-to-energy plants Is safe, avoids landfill costs, and can displace fossil fuels. In some cases, more fossil fuels can be displaced by combustion than by recycling. We compare the alternative life-cycle energies to the energies for producing the products from virgin materials. Results depend on the material and on the objective to be achieved. There are trade-offs among possible goals. For instance, paper packaging recycling conserves trees but may require greater fossil-fuel input than virgin production. Therefore, the objectives for proposed legislation must be examined to see whether they can most effectively be achieved by mandated recycling rates or by other methods of disposition. The optimal choices for the United States may not necessarily be the same as those for Europe and other parts of the world.

  10. Westinghouse employs advanced robotics in a state-of-the-art LWR line

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    To increase productivity while maintaining quality, Westinghouse's new Manufacturing Automation Process for oxide fuel features Integrated Dry Route conversion technology, a fully-integrated management information system, advanced robotics and enhanced materials handling practices. The new line is expected to begin operating in 1985.

  11. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    International Nuclear Information System (INIS)

    Bi, G.; Liu, C.; Si, S.

    2012-01-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade 233 U-Thorium (U 3 ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade 233 U extracted from burnt PuThOX fuel was used to fabrication of U 3 ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U 3 ThOX mixed core, the well designed U 3 ThOX FAs with 1.94 w/o fissile uranium (mainly 233 U) were located on the periphery of core as a blanket region. U 3 ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U 3 ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U 3 ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U 3 ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U 3 ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared

  12. TRAC analysis of an 80% pump-side, cold-leg, large-break loss-of-coolant accident for the Westinghouse AP600 advanced reactor design

    International Nuclear Information System (INIS)

    Lime, J.F.; Boyack, B.E.

    1996-01-01

    An updated TRAC 80% pump-side, cold-leg, large-break (LB) loss-of-coolant accident (LOCA) has been calculated for the Westinghouse AP600 advanced reactor design. The updated calculation incorporates major code error corrections, model corrections, and plant design changes. The break size and location were calculated by Westinghouse to be the most severe LBLOCA for the AP600 design. The LBLOCA transient was calculated to 280 s, which is the time of in-containment refueling water-storage-tank injection. All fuel rods were quenched completely by 240 s. Peak cladding temperatures (PCTs) were well below the licensing limit of 1,478 K (2,200 F) but were very near the cladding oxidation temperature of 1,200 K (1,700 F). Transient event times and PCTs for the TRAC calculation were in reasonable agreement with those calculated by Westinghouse using their WCOBRA/TRAC code. However, there were significant differences in the detailed phenomena calculated by the two codes, particularly during the blowdown and refill periods. The reasons for these differences are still being investigated

  13. Safety evaluation of a conceptual fuel recycle complex

    International Nuclear Information System (INIS)

    Hodges, M.E.

    1980-01-01

    A conceptual design integration study for an integrated Fuel Recycle Complex (FRC) has been completed. A safety evaluation of the radiation shielding, fire precautions, handling of nonradioactive hazardous materials, criticality hazards, operating errors, and the influence of natural phenomena on the FRC shows that all federal regulations are met or exceeded

  14. Licensing and advanced fuel designs

    International Nuclear Information System (INIS)

    Davidson, S.L.; Novendstern, E.H.

    1991-01-01

    For the past 15 years, Westinghouse has been actively involved in the development and licensing of fuel designs that contain major advanced features. These designs include the optimized fuel assembly, The VANTAGE 5 fuel assembly, the VANTAGE 5H, and most recently the VANTAGE+ fuel assembly. Each of these designs was supported by extensive experimental data, safety evaluations, and design efforts and required intensive interaction with the US Nuclear Regulatory Commission (NRC) during the review and approval process. This paper presents a description of the licensing approach and how it was utilized by the utilities to facilitate the licensing applications of the advanced fuel designs for their plants. The licensing approach described in this paper has been successfully applied to four major advanced fuel design changes ∼40 plant-specific applications, and >350 cycle-specific reloads in the past 15 years

  15. Feasibility studies of actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    Beaman, S.L.; Aitken, E.A.

    1976-01-01

    Actinide recycle in LMFBRs offers an attractive alternative on long-term storage of the actinides. The concept will not significantly affect the performance of the LMFBR, but will affect other parts of the nuclear fuel cycle. Assuming that hands-on maintenance will be allowed for Pu-recycle fuel fabrication facilities, the transplutonium actinides should be kept separate from the PuO 2 --UO 2 fuel. Thus, the ''reference'' recycle scheme should be defined as a scheme in which the actinides are recycled in target assemblies. The target assemblies should be reprocessed either in batches separate from spent-fuel batches or in a separate, relatively small, special purpose reprocessing plant. The target assemblies should be fabricated in a special purpose, remotely maintained facility

  16. A methodology for calculating the levelized cost of electricity in nuclear power systems with fuel recycling

    International Nuclear Information System (INIS)

    De Roo, Guillaume; Parsons, John E.

    2011-01-01

    In this paper we show how the traditional definition of the levelized cost of electricity (LCOE) can be extended to alternative nuclear fuel cycles in which elements of the fuel are recycled. In particular, we define the LCOE for a cycle with full actinide recycling in fast reactors in which elements of the fuel are reused an indefinite number of times. To our knowledge, ours is the first LCOE formula for this cycle. Others have approached the task of evaluating this cycle using an 'equilibrium cost' concept that is different from a levelized cost. We also show how the LCOE implies a unique price for the recycled elements. This price reflects the ultimate cost of waste disposal postponed through the recycling, as well as other costs in the cycle. We demonstrate the methodology by estimating the LCOE for three classic nuclear fuel cycles: (i) the traditional Once-Through Cycle, (ii) a Twice-Through Cycle, and (iii) a Fast Reactor Recycle. Given our chosen input parameters, we show that the 'equilibrium cost' is typically larger than the levelized cost, and we explain why.

  17. Simulator testing of the Westinghouse aware alarm management system

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, J P; Easter, J R; Roth, E M [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1997-09-01

    Over the last year, Westinghouse engineers and operators from the Beznau nuclear power station (KKB), owned by the Nordostschweizerische Krafwerke AG of Baden, Switzerland, have been installing and testing the Westinghouse AWARE Alarm Management System in Beznau/SNUPPS operator training simulator, owned and operated by the Westinghouse Electric Corp., in Waltz Mill, PA, USA. The testing has focused primarily on validating the trigger logic data base and on familiarizing the utility`s training department with the operation of the system in a real-time environment. Some of the tests have included plant process scenarios in which the computerized Emergency Procedures were available and used through the COMPRO (COMputerized PROcedures) System in conjunction with the AWARE System. While the results to date are qualitative from the perspective of system performance and improvement in message presentation, the tests have generally confirmed the expectations of the design. There is a large reduction in the number of messages that the control room staff must deal with during major process abnormalities, yet at times of relative minor disturbances, some additional messages are available which add clarification, e.g., ``Pump Trouble`` messages. The ``flow`` of an abnormality as it progresses from one part of the plant`s processes to another is quite visible. Timing of the messages and the lack of message avalanching is proving to give the operators additional time to respond to messages. Generally, the anxiety level to ``do something`` immediately upon a reactor trip appears to be reduced. (author). 8 refs.

  18. Recycling of MOX fuel for LWRs

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Oh, Soo Youl

    1992-01-01

    The status and issues related to the thermal recycling of reprocessed nuclear fuels have been reviewed. It is focused on the use of reprecessed plutonium in the form of mixed oxide (MOX) for a light water reactor and the review on reprocessing and fabrication processes is beyond the scope. In spite of the difference in the nuclear characteristics between plutonium and uranium isotopes, the neutronics behavior in a core with MOX fuels is similar to that with normal uranium fuels. However, since the neutron spectrum is hardened in a core with MOX, the Doppler, viod, and moderator temperature coefficients become more negative and the control rod and boron worths are slightly reduced. Therefore, the safety will be evaluated carefully in addition to the core neutronics analysis. The MOX fuel rod behavior related to the rod performance such as the pellet to clad interaction and fission gas release is also similar to that of uranium rods, and no specific problem arises. Substituting MOX fuels for a portion of uranium fuels, it is estimated that the savings be about 25% in uranium ore and 10% in uranium enrichment service requirements. The use of MOX fuel in LWRs has been commercialized in European countries including Germany, France, Belgium, etc., and a demonstration program has been pursued in Japan for the commercial utilization in the late 1990s. Such a worldwide trend indicates that the utilization of MOX fuel in LWRs is a proven technology and meets economics criteria. (Author)

  19. Design and optimization of a combined fuel reforming and solid oxide fuel cell system with anode off-gas recycling

    International Nuclear Information System (INIS)

    Lee, Tae Seok; Chung, J.N.; Chen, Yen-Cho

    2011-01-01

    Highlights: → In this work, an analytical, parametric study is performed to evaluate the feasibility and performance of a combined fuel reforming and SOFC system. → Specifically the effects of adding the anode off-gas recycling and recirculation components and the CO 2 absorbent unit are investigated. → The AOG recycle ratio increases with increasing S/C ratio and the addition of AOG recycle eliminates the need for external water consumption. → The key finding is that for the SOFC operating at 900 deg. C with the steam to carbon ratio at 5 and no AOG recirculation, the system efficiency peaks. - Abstract: An energy conversion and management concept for a combined system of a solid oxide fuel cell coupled with a fuel reforming device is developed and analyzed by a thermodynamic and electrochemical model. The model is verified by an experiment and then used to evaluate the overall system performance and to further suggest an optimal design strategy. The unique feature of the system is the inclusion of the anode off-gas recycle that eliminates the need of external water consumption for practical applications. The system performance is evaluated as a function of the steam to carbon ratio, fuel cell temperature, anode off gas recycle ratio and CO 2 adsorption percentage. For most of the operating conditions investigated, the system efficiency starts at around 70% and then monotonically decreases to the average of 50% at the peak power density before dropping down to zero at the limiting current density point. From an engineering application point of view, the proposed combined fuel reforming and SOFC system with a range of efficiency between 50% and 70% is considered very attractive. It is suggested that the optimal system is the one where the SOFC operates around 900 deg. C with S/C ratio higher than 3, maximum CO 2 capture, and minimum AOG recirculation.

  20. Recycling and surplus chemical programs

    International Nuclear Information System (INIS)

    Harper, T.J.

    1993-05-01

    In 1988, 45 years of defense production came to a close at the US Department of Energy (DOE) Hanford Site. The mission of the Hanford Site was formally changed to environmental restoration and remediation. Westinghouse Hanford Company (WHC) is the management and operations (M ampersand O) contractor leading the cleanup. Within the framework of future Site cleanup, Hanford recycling and surplus chemical programs are making a viable contribution today to waste minimization, diversion of materials from the waste stream, and setting a standard for future operations. This paper focuses on two successful efforts: paper recycling and surplus chemical sales

  1. Westinghouse employs advanced robotics in a state-of-the-art LWR line

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    To increase productivity while maintaining quality, Westinghouse's new Manufacturing Automation Process for oxide fuel features Integrated Dry Route conversion technology, a fully-integrated management information system, advanced robotics and enhanced materials handling practices. The new line is expected to begin operating in 1985. (author)

  2. Multiple recycling of fuel in prototype fast breeder reactor in a closed ...

    Indian Academy of Sciences (India)

    Our previous study in this regard for the prototype fast breeder reactor ... This study aims at finding the feasibility of multiple recycling of PFBR fuel with external ...... maximum allowable Pu content in fuel based on chemistry/metallurgical ...

  3. Reference thorium fuel cycle

    International Nuclear Information System (INIS)

    Driggers, F.E.

    1978-08-01

    In the reference fuel cycle for the TFCT program, fissile U will be denatured by mixing with 238 U; the plants will be located in secure areas, with Pu being recycled within these secure areas; Th will be recycled with recovered U and Pu; the head end will handle a variety of core and blanket fuel assembly designs for LWRs and HWRs; the fuel may be a homogeneous mixture either of U and Th oxide pellets or sol-gel microspheres; the cladding will be Zircaloy; and MgO may be added to the fuel to improve Th dissolution. Th is being considered as the fertile component of fuel in order to increase proliferation resistance. Spent U recovered from Th-based fuels must be re-enriched before recycle to prevent very rapid buildup of 238 U. Stainless steel will be considered as a backup to Zircaloy cladding in case Zr is incompatible with commercial aqueous dissolution. Storage of recovered irradiated Th will be considered as a backup to its use in the recycle of recovered Pu and U. Estimates are made of the time for introducing the Th fuel cycle into the LWR power industry. Since U fuel exposures in LWRs are likely to increase from 30,000 to 50,000 MWD/MT, the Th reprocessing plant should also be designed for Th fuel with 50,000 MWD/MT exposure

  4. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    International Nuclear Information System (INIS)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J.; Duncan, D.R.

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site's defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site's N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX's physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail

  5. Policy in France regarding the back-end of the fuel cycle reprocessing/recycling route

    International Nuclear Information System (INIS)

    Gloaguen, A.; Lenail, B.

    1991-01-01

    The decision taken in early 1970s to base the French power policy on the use of pressurized water reactors also included the strategy for the back end of the nuclear fuel cycle based on reprocessing, waste conditioning for the final disposal in the most suitable form in terms of safety and plutonium recycling to fast breeder reactors. Twenty years have elapsed, and substantial development and investment have been made. New evidences have emerged especially regarding breeder development, and the initial choice has been proved to be sound. EDF and COGEMA, the French utility and fuel cycle companies, respectively, are working together in order to take the best advantage of past efforts. The good behavior of MOX fuel in EDF reactors and the excellent start of the UP3 reprocessing plant of La Hague, which was completed and commissioned in August, 1990, made EDF and COGEMA extremely confident for future decision. The French choice made in favor of fuel reprocessing the history of fuel reprocessing in France, the policy concerning the back end of nuclear fuel cycle of EDF, and the present consideration and circumstances on this matter are reported. (K.I.)

  6. Fuel performance of DOE fuels in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-01-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. In April of 1992, the U.S. Department of Energy (DOE) decided to end the fuel reprocessing mission at ICPP. Fuel performance in storage received increased emphasis as the fuel now needs to be stored until final dispositioning is defined and implemented. Fuels are stored in four main areas: an original underwater storage facility, a modern underwater storage facility, and two dry fuel storage facilities. As a result of the reactor research mission of the DOE and predecessor agencies, the Energy Research and Development Administration and the Atomic Energy Commission, many types of nuclear fuel have been developed, used, and assigned to storage at the ICPP. Fuel clad with stainless steel, zirconium, aluminum, and graphite are represented. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels, resulting in 55 different fuel types in storage. Also included in the fuel storage inventory is canned scrap material

  7. Some aspects of nuclear fuel use at Ukrainian NPPs during last two years

    International Nuclear Information System (INIS)

    Bilodid, Y.; Shevchenko, I.; Ieremenko, M.; Ovdiienko, I.

    2015-01-01

    For many years SSTC NRS actively participates in licensing of fuel reloading and in the implementation of new nuclear fuel types at the nuclear power plants in Ukraine. Results of the nuclear fuel use for last years are presented in the paper. The results are based on NPP documentation submitted for licensing to the regulating body of Ukraine and based on our estimations and independent calculations. The first part of the paper contains a brief characteristic of the fuel cycles at Ukrainian NPPs. Types of loaded fuel are described also. Experience of new fuel type implementation is presented (Westinghouse FA and TVSA-12 for WWER-1000 reactors). The next part of the paper presents a new regulatory document under development and further new fuel implementation (WWER-1000 reactors). The last part of the paper describes some issues with fuel use. (authors) Keywords: WWER, TVSA, TVSA-12, TVS-W, TVS-WR, Westinghouse, NPP

  8. Development of recycling processes for clean rejected MOX fuel pellets

    International Nuclear Information System (INIS)

    Khot, P.M.; Singh, G.; Shelke, B.K.; Surendra, B.; Yadav, M.K.; Mishra, A.K.; Afzal, Mohd.; Panakkal, J.P.

    2014-01-01

    Highlights: • Dry and wet (MWDD) methods were developed for 100% recycling of CRO (0.4–44% PuO 2 ). • Dry method showed higher productivity and comparable powder/product characteristics. • MWDD batches demonstrated improved powder/product characteristics to that of virgin. • Second/multiple recycling is possible with MWDD with better powder/product characteristics. • MWDD batches prepared by little milling showed better macroscopic homogeneity to that of virgin. - Abstract: The dry and wet recycling processes have been developed for 100% recycling of Clean Reject Oxide (CRO) generated during the fabrication of MOX fuel, as CRO contains significant amount of plutonium. Plutonium being strategic material need to be circumvented from its proliferation issues related to its storage for long period. It was difficult to recycle CRO containing higher Pu content even with multiple oxidation and reduction steps. The mechanical recycling comprising of jaw crushing and sieving has been coupled with thermal pulverization for recycling CRO with higher Pu content in dry recycling technique. In wet recycling, MicroWave Direct Denitration (MWDD) technique has been developed for 100% recycling of CRO. The powder prepared by dry and wet (MWDD) recycling techniques was characterized by XRD and BET techniques and their effects on the pellets were evaluated. (U,21%Pu)O 2 pellets fabricated from virgin powder and MWDD were characterized using optical microscopy and α-autoradiography and the results obtained were compared

  9. Safeguards aspects for future fuel management alternatives

    International Nuclear Information System (INIS)

    Richter, B.; Stein, G.; Gerstler, R.

    1987-01-01

    In the future, more flexible fuel management strategies will be realized in light-water reactor power stations. The incentives for this development are based on considerations related to safe and economic plant operation, e.g. improved fuel strategies can save fuel resources and waste management efforts. A further important aspect of the nuclear fuel cycle deals with recycling strategies. At the back-end of the fuel cycle, the direct final disposal of spent fuel will have to be assessed as an alternative to recycling strategies. These major development fields will also have consequences for international safeguards. In particular, reactor fuel strategies may involve higher burn-up, conditioning of spent fuel directly in the power plant, gadolinium-poisoned fuel and different levels of enrichment. These strategies will have an impact on inspection activities, especially on the applicability of NDA techniques. The inspection frequency could also be affected in recycling strategies using MOX fuel. There may be problems with NDA methods if reprocessed feed is used in enrichment plants. On the other hand, the direct final disposal of spent fuel will raise safeguards problems regarding design verification, long-term safeguarding and the very feasibility of inaccessible nuclear material

  10. Recycled iron fuels new production in the eastern equatorial Pacific Ocean.

    Science.gov (United States)

    Rafter, Patrick A; Sigman, Daniel M; Mackey, Katherine R M

    2017-10-24

    Nitrate persists in eastern equatorial Pacific surface waters because phytoplankton growth fueled by nitrate (new production) is limited by iron. Nitrate isotope measurements provide a new constraint on the controls of surface nitrate concentration in this region and allow us to quantify the degree and temporal variability of nitrate consumption. Here we show that nitrate consumption in these waters cannot be fueled solely by the external supply of iron to these waters, which occurs by upwelling and dust deposition. Rather, a substantial fraction of nitrate consumption must be supported by the recycling of iron within surface waters. Given plausible iron recycling rates, seasonal variability in nitrate concentration on and off the equator can be explained by upwelling rate, with slower upwelling allowing for more cycles of iron regeneration and uptake. The efficiency of iron recycling in the equatorial Pacific implies the evolution of ecosystem-level mechanisms for retaining iron in surface ocean settings where it limits productivity.

  11. Proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the integral fast reactor

    International Nuclear Information System (INIS)

    Burris, L.; Steindler, M.; Miller, W.

    1984-01-01

    The pool-type Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory includes on-site recycle of discharged core and blanket fuel materials. The process and fabrication steps will be demonstrated in the EBR-II Fuel Cycle Facility with IFR fuel irradiated in EBR-II and the Fast Flux Test Facility. The proposed process consists of two major steps: a halide slagging step and an electrorefining step. The fuel is maintained in the metallic form to yield directly a metal product sufficiently decontaminated to allow recycle to the reactor as new fuel. The process is further described and available information to support its feasibility is presented

  12. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2011-01-01

    ) and biofuels have received the most attention, similar hydrocarbons can be produced without using fossil fuels or biomass. Using renewable and/or nuclear energy, carbon dioxide and water can be recycled into liquid hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse...... of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. This article critically reviews the many possible technological pathways for recycling CO2 into fuels using renewable or nuclear energy, considering three stages—CO2 capture, H2O and CO2...... by Fischer–Tropsch synthesis is identified as one of the most promising, feasible routes. An analysis of the energy balance and economics of this CO2 recycling process is presented. We estimate that the full system can feasibly operate at 70% electricity-to-liquid fuel efficiency (higher heating value basis...

  13. Signal validation of SPDS variables for Westinghouse and Combustion Engineering plants - an EPRI project

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Signal validation in the context of this project is the process of combining information from multiple plant sensors to produce highly reliable information about plant conditions. High information reliability is achieved by the use of redundant sources of information and by the inherent detection, identification, and isolation of faulty signals. The signal validation methodology that has been developed in previous EPRI-sponsored projects has been enhanced and applied toward validation of critical safety-related SPDS signals in the Northeast Utilities Millstone 3 Westinghouse PWR plant and the Millstone 2 Combustion Engineering PWR plant. The designs were implemented in FORTRAN software and tested off-line using recorded plant sensor data, RETRAN-generated simulation data, and data to exercise software logic branches and the integration of software modules. Designs and software modules have been developed for 15 variables to support six PWR SPDS critical safety functions as required by a utility advisory group attached to the project. The signal validation process automates a task currently performed by plant operators and does so with consistent, verified logic regardless of operator stress and training level. The methodology uses a simple structure of generic software blocks, a modular implementation, and it performs effectively within the processor and memory constraints of modern plant process computers. The ability to detect and isolate sensor failures with greater sensitivity, robustness, and coverage of common-cause failures should ultimately lead to improved plant availability, efficiency, and productivity

  14. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels

    International Nuclear Information System (INIS)

    Vesterinen, R.; Kallio, M.; Kirjalainen, T.; Kolsi, A.; Merta, M.

    1997-01-01

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  15. The PBMR fuel plant: Proven technology in an advanced safety environment

    International Nuclear Information System (INIS)

    Braehler, G.; Froschauer, K.; Welbers, P.; Boyes, D.

    2008-01-01

    The PBMR Fuel Plant (PFP), to be constructed at the Pelindaba site near Johannesburg will fuel the first South African Pebble Bed Modular Reactor. The qualification of the PBMR fuel shall be based on past experience with fuel which was produced in the German NUKEM/HOBEG plant and irradiated in the German AVR reactor. Accordingly, the PFP must produce the same fuel as the German plant did, and consequently, the design of the PFP has in essence to be a copy of the NUKEM/HOBEG plant. As a reminder this plant had been operated in accordance with the German regulatory rules which were defined in the years 1970/80. Since then, the requirements with regard to radiological protection, criticality safety and emission control have been significantly tightened, and of course the PFP must be designed in accordance with the most advanced international norms and standards. The implications which follow from these two potentially conflicting requirements, as defined above, are highlighted, and technical solutions are presented. Hence, the change from administrative criticality safety control to technical control, i.e. the application of safe geometry as far as possible. and the introduction of technical solutions for the remaining safe mass regime will be described. A lot of equipment in the Kernel area and in the recycling areas needed to be redesigned in safe geometry. The sensitive processes for Kernel Calcining, for the Coating and the Over-coating remain under safe mass regime, but the safety against criticality is completely independent from staff activities and based on technical measures. A new concept for safe storage of large volumes of Uranium-containing liquids has been developed. Also, the change from relatively open handling of Uranium to the application of containment enclosures wherever release of radioactivity into the room atmosphere is possible, will be addressed. This change required redesign of all process steps requiring the handling of dry Uranium oxides

  16. Westinghouse loading pattern search methodology for complex core designs

    International Nuclear Information System (INIS)

    Chao, Y.A.; Alsop, B.H.; Johansen, B.J.; Morita, T.

    1991-01-01

    Pressurized water reactor core designs have become more complex and must meet a plethora of design constraints. Trends have been toward longer cycles with increased discharge burnup, increased burnable absorber (BA) number, mixed BA types, reduced radial leakage, axially blanketed fuel, and multiple-batch feed fuel regions. Obtaining economical reload core loading patterns (LPs) that meet design criteria is a difficult task to do manually. Automated LP search tools are needed. An LP search tool cannot possibly perform an exhaustive search because of the sheer size of the combinatorial problem. On the other hand, evolving complexity of the design features and constraints often invalidates expert rules based on past design experiences. Westinghouse has developed a sophisticated loading pattern search methodology. This methodology is embodied in the LPOP code, which Westinghouse nuclear designers use extensively. The LPOP code generates a variety of LPs meeting design constraints and performs a two-cycle economic evaluation of the generated LPs. The designer selects the most appropriate patterns for fine tuning and evaluation by the design codes. This paper describes the major features of the LPOP methodology that are relevant to fulfilling the aforementioned requirements. Data and examples are also provided to demonstrate the performance of LPOP in meeting the complex design needs

  17. Simulator testing of the Westinghouse aware alarm management system

    International Nuclear Information System (INIS)

    Carrera, J.P.; Easter, J.R.; Roth, E.M.

    1997-01-01

    Over the last year, Westinghouse engineers and operators from the Beznau nuclear power station (KKB), owned by the Nordostschweizerische Krafwerke AG of Baden, Switzerland, have been installing and testing the Westinghouse AWARE Alarm Management System in Beznau/SNUPPS operator training simulator, owned and operated by the Westinghouse Electric Corp., in Waltz Mill, PA, USA. The testing has focused primarily on validating the trigger logic data base and on familiarizing the utility's training department with the operation of the system in a real-time environment. Some of the tests have included plant process scenarios in which the computerized Emergency Procedures were available and used through the COMPRO (COMputerized PROcedures) System in conjunction with the AWARE System. While the results to date are qualitative from the perspective of system performance and improvement in message presentation, the tests have generally confirmed the expectations of the design. There is a large reduction in the number of messages that the control room staff must deal with during major process abnormalities, yet at times of relative minor disturbances, some additional messages are available which add clarification, e.g., ''Pump Trouble'' messages. The ''flow'' of an abnormality as it progresses from one part of the plant's processes to another is quite visible. Timing of the messages and the lack of message avalanching is proving to give the operators additional time to respond to messages. Generally, the anxiety level to ''do something'' immediately upon a reactor trip appears to be reduced. (author). 8 refs

  18. How Westinghouse is consolidating its international lead

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-01

    The second of a series of profiles of major industrial groups in the world's nuclear industry, examines the attitudes and objectives of some of the executives now responsible for directing the widespread and complex international nuclear business of the Westinghouse Electric Corporation. Against the background of new management thinking in the group, the article discusses the significance of the emphasis on plant standardization of reliability, and on productivity in manufacturing.

  19. Westinghouse Advanced Doped Pellet - Characteristics and irradiation behavior

    International Nuclear Information System (INIS)

    Backman, K.; Hallstadius, L.; Roennberg, G.

    2009-01-01

    Full text: There are a number of trends in the nuclear power industry, which put additional requirements on the operational flexibility and reliability of nuclear fuel, for example power uprates and longer cycles in order to increase production, higher burnup levels in order to reduce the backend cost of the fuel cycle, and lower goals for activity release from power plant operation. These additional requirements can be addressed by increasing the fuel density, improving the FG retention, improving the PCI resistance and improving the post-failure performance. In order to achieve that, Westinghouse has developed ADOPT (Advanced Doped Pellet Technology) UO 2 fuel containing additions of chromium and aluminium oxides. The additives facilitate pellet densification during sintering, enlarge the pellet grain size, and increase the creep rate. The final manufactured doped pellets reach about 0.5 % higher density within a shorter sintering time and a five times larger grain size compared with standard UO 2 fuel pellets. Fuel rods with ADOPT pellets have been irradiated in several light water reactors (LWRs) since 1999, including two full SVEA Optima2 reloads in 2005. ADOPT pellets has been investigated in pool-side and hot cell Post Irradiation Examinations (PIEs), as well as in a ramp test and a fuel washout test in the Studsvik R2 test reactor. The investigations have identified three areas of improved operational behaviour: Reduced Fission Gas Release (FGR), improved Pellet Cladding Interaction (PCI) performance thanks to increased pellet plasticity and higher resistance against post-failure degradation. The better FGR behaviour of ADOPT has been verified with a pool side FGR gamma measurement performed at 55 MWd/kgU, as well as transient tests in the Studsvik R2 reactor. Creep measurements performed on fresh pellets show that ADOPT has a higher creep rate which is beneficial for the PCI performance. ADOPT has also been part of a high power Halden test (IFA-677). The

  20. Automated system for loading nuclear fuel pins

    International Nuclear Information System (INIS)

    Marshall, J.L.

    1983-10-01

    A completely automatic and remotely controlled fuel pin fabrication system is being designed by the Westinghouse Hanford Company. The Pin Operations System will produce fuel pins for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor Plant (CRBRP). The system will assemble fuel pin components into cladding tubes in a controlled environment. After fuel loading, the pins are filled with helium, the tag gas capsules are inserted, and the top end cap welded. Following welding, the pins are surveyed to assure they are free of contamination and then the pins are helium leak tested

  1. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor; Marshall, Frances M.; Adelfang, Pablo; Bradley, Edward [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina Elena [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris La Defense (France)

    2016-03-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. In the future inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. The IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, drew up a report presenting available reprocessing and recycling services for RR SNF. This paper gives an overview of the report, which will address all aspects of reprocessing and recycling services for RR SNF.

  2. Nuclear recycling

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1985-01-01

    This paper discusses two aspects of the economics of recycling nuclear fuel: the actual costs and savings of the recycling operation in terms of money spent, made, and saved; and the impact of the recycling on the future cost of uranium. The authors review the relevant physical and chemical processes involved in the recycling process. Recovery of uranium and plutonium is discussed. Fuel recycling in LWRs is examined and a table presents the costs of reprocessing and not reprocessing. The subject of plutonium in fast reactors is addressed. Safeguards and weapons proliferation are discussed

  3. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  4. Evaluation of the recycling costs, as a disposal form of the spent nuclear fuel

    International Nuclear Information System (INIS)

    Ramirez S, J.R.; Alonso V, G.; Palacios, J.C.

    2006-01-01

    At the moment there are 2 BWR reactors operating in the Nuclear Power station of Laguna Verde in Mexico. At the end of the programmed life of the reactors (40 years) its will have completed 26 operation cycles, with will have 6712 spent fuel assemblies will be in the pools of the power station. Up to now, the decision on the destination of the high level wastes (spent nuclear fuel) it has not been determined in Mexico, the same as in other countries, adopting a politics of 'to wait to see that it happens in the world', in this respect, in the world two practical alternatives exist, one is to store the fuel in repositories designed for that end, another is reprocess the fuel to recycle the plutonium contained in it, both solutions have their particular technical and economic problematic. In this work it is evaluated from the economic point of view the feasibility of having the spent fuel, using the one recycled fuel, for that which thinks about a consistent scenario of a BWR reactor in which the fuel discharged in each operation cycle is reprocessed and its are built fuel assemblies of the MOX type to replace partly to the conventional fuel. This scenario shows an alternative to the indefinite storage of the high level radioactive waste. The found results when comparing from the economic point of view both options, show that the one recycled, even with the current costs of the uranium it is of the order of 7% more expensive that the option of storing the fuel in repositories constructed for that purpose. However the volumes of spent fuel decrease in 66%. (Author)

  5. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant.

  6. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Masoud [Technical University of Denmark, Dept. of Mechanical Engineering, Thermal Energy System, Building 402, 2800 Kgs, Lyngby (Denmark)

    2010-12-15

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant. (author)

  7. Radiation shielding calculation for the MOX fuel fabrication plant Melox

    International Nuclear Information System (INIS)

    Lee, Y.K.; Nimal, J.C.; Chiron, M.

    1994-01-01

    Radiation shielding calculation is an important engineering work in the design of the MOX fuel fabrication plant MELOX. Due to the recycle of plutonium and uranium from UO2 spent fuel reprocessing and the large capacity of production (120t HM/yr.), the shielding design requires more attention in this LWR fuel plant. In MELOX, besides several temporary storage facilities of massive fissile material, about one thousand radioactive sources with different geometries, forms, densities, quantities and Pu concentrations, are distributed through different workshops from the PuO 2 powder reception unit to the fuel assembly packing room. These sources, with or without close shield, stay temporarily in different locations, containers and glove boxes. In order to optimize the dimensions, the material and the cost of shield as well as to limit the calculation work in a reasonable engineer-hours, a calculation scheme for shielding design of MELOX is developed. This calculation scheme has been proved to be useful in consideration of the feedback from the evolutionary design and construction. The validated shielding calculations give a predictive but reliable radiation doses information. (authors). 2 figs., 10 refs

  8. A proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Steindler, M.; Miller, W.

    1984-01-01

    The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory includes on-site recycle of discharged core and blanket fuel materials. The process and fabrication steps will be demonstrated in the EBR-II Fuel Cycle Facility with IFR fuel irradiated in EBR-II and the Fast Flux Test Facility. The proposed process consists of two major steps -- a halide slagging step and an electrorefining step. The fuel is maintained in the metallic form to yield directly a metal product sufficiently decontaminated to allow recycle to the reactor as new fuel. The process is further described and available information to support its feasibility is presented

  9. Master of engineering program for Westinghouse Electric Corporation

    International Nuclear Information System (INIS)

    Klevans, E.H.; Diethorn, W.S.

    1991-01-01

    In August of 1985, Westinghouse Corporation, via a grant to the nuclear engineering department at Pennsylvania State University, provided its professional employees the opportunity to earn a master of engineering (M. Eng.) degree in nuclear engineering in a program of evening study in the Pittsburgh area. Faculty members from the nuclear engineering department, which is 135 miles from Westinghouse, and adjunct faculty from the professional ranks of Westinghouse provided the instruction at the Westinghouse training center facility in Monroeville, Pennsylvania, A 3-yr 30-credit program was originally planned, but this was extended to a fourth year to accommodate the actual student progress toward the degree. A fifth year was added for students to complete their engineering paper. There have been benefits to both Westinghouse and Penn State from this program. Advanced education for its employees has met a Westinghouse need. For Penn State, there has been an increase in interaction with Westinghouse personnel, and this has now led to cooperative research programs with them

  10. Waste Estimates for a Future Recycling Plant in the US Based Upon AREVA Operating Experience - 13206

    Energy Technology Data Exchange (ETDEWEB)

    Foare, Genevieve; Meze, Florian [AREVA E and P, SGN - 1, rue des Herons, 78182 Montigny-le-Bretonneux (France); Bader, Sven; McGee, Don; Murray, Paul [AREVA Federal Services LLC, 7207 IBM Drive, Mail Code CLT- 1D, Charlotte NC 28262 (United States); Prud' homme, Pascal [AREVA NC SA - 1, place Jean Millier, 92084 Paris La Defense CEDEX (France)

    2013-07-01

    Estimates of process and secondary wastes produced by a recycling plant built in the U.S., which is composed of a used nuclear fuel (UNF) reprocessing facility and a mixed oxide (MOX) fuel fabrication facility, are performed as part of a U.S. Department of Energy (DOE) sponsored study [1]. In this study, a set of common inputs, assumptions, and constraints were identified to allow for comparison of these wastes between different industrial teams. AREVA produced a model of a reprocessing facility, an associated fuel fabrication facility, and waste treatment facilities to develop the results for this study. These facilities were divided into a number of discrete functional areas for which inlet and outlet flow streams were clearly identified to allow for an accurate determination of the radionuclide balance throughout the facility and the waste streams. AREVA relied primarily on its decades of experience and feedback from its La Hague (reprocessing) and MELOX (MOX fuel fabrication) commercial operating facilities in France to support this assessment. However, to perform these estimates for a U.S. facility with different regulatory requirements and to take advantage of some technological advancements, such as in the potential treatment of off-gases, some deviations from this experience were necessary. A summary of AREVA's approach and results for the recycling of 800 metric tonnes of initial heavy metal (MTIHM) of LWR UNF per year into MOX fuel under the assumptions and constraints identified for this DOE study are presented. (authors)

  11. Recycling and transmutation of spent fuel as a sustainable option for the nuclear energy development

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.

    2013-01-01

    The objective of this paper is to discuss the option of recycling and transmutation of radioactive waste against Once-through Fuel Cycle (OTC) based on uranium feed under the perspective of sustainability. We use a qualitative analysis to compare OTC with closed fuel cycles based on studies already performed such as the Red Impact Project and the comparative study on accelerator driven systems and fast reactors for advanced fuel cycles performed by the Nuclear Energy Agency. The results show that recycling and transmutation fuel cycles are more attractive than the OTC from the point of view of sustainability. The main conclusion is that the decision about the construction of a deep geological repository for spent fuel disposal must be reevaluated. (author)

  12. Feedback from Westinghouse experience on segmentation of reactor vessel internals - 59013

    International Nuclear Information System (INIS)

    Kreitman, Paul J.; Boucau, Joseph; Segerud, Per; Fallstroem, Stefan

    2012-01-01

    With more than 25 years of experience in the development of reactor vessel internals segmentation and packaging technology, Westinghouse has accumulated significant know-how in the reactor dismantling market. Building on tooling concepts and cutting methodologies developed decades ago for the successful removal of nuclear fuel from the damaged Three Mile Island Unit 2 reactor (TMI-2), Westinghouse has continuously improved its approach to internals segmentation and packaging by incorporating lessons learned and best practices into each successive project. Westinghouse has developed several concepts to dismantle reactor internals based on safe and reliable techniques, including plasma arc cutting (PAC), abrasive water-jet cutting (AWJC), metal disintegration machining (MDM), or mechanical cutting. Westinghouse has applied its technology to all types of reactors covering Pressurized Water Reactors (PWR's), Boiling Water Reactors (BWR's), Gas Cooled Reactors (GCR's) and sodium reactors. The primary challenges of a segmentation and packaging project are to separate the highly activated materials from the less-activated materials and package them into appropriate containers for disposal. Since space is almost always a limiting factor it is therefore important to plan and optimize the available room in the segmentation areas. The choice of the optimum cutting technology is important for a successful project implementation and depends on some specific constraints like disposal costs, project schedule, available areas or safety. Detailed 3-D modeling is the basis for tooling design and provides invaluable support in determining the optimum strategy for component cutting and disposal in waste containers, taking account of the radiological and packaging constraints. Westinghouse has also developed a variety of special handling tools, support fixtures, service bridges, water filtration systems, video-monitoring systems and customized rigging, all of which are required for a

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 12: Fuel cells. [energy conversion efficiency of, for use in electric power plants

    Science.gov (United States)

    Warde, C. J.; Ruka, R. J.; Isenberg, A. O.

    1976-01-01

    A parametric assessment of four fuel cell power systems -- based on phosphoric acid, potassium hydroxide, molten carbonate, and stabilized zirconia -- has shown that the most important parameters for electricity-cost reduction and/or efficiency improvement standpoints are fuel cell useful life and power density, use of a waste-heat recovery system, and fuel type. Typical capital costs, overall energy efficiencies (based on the heating value of the coal used to produce the power plant fuel), and electricity costs are: phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/MJ (42 to 50 mills/kWh); alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 mills/MJ (46 to 61 mills/kWh); molten carbonate $480-650/kWe, 32-46%, and 10.6 to 19.4 mills/MJ (38 to 70 mills/kWh), stabilized zirconia $420-950/kWe, 26-53%, and 9.7 to 16.9 mills/MJ (35 to 61 mills/kWh). Three types of fuel cell power plants -- solid electrolytic with steam bottoming, molten carbonate with steam bottoming, and solid electrolyte with an integrated coal gasifier -- are recommended for further study.

  14. Development of a three-component batching system for fuel refabrication

    International Nuclear Information System (INIS)

    Marmo, A.R.; Limpert, J.C.

    1979-01-01

    The traditional approach to preparing mixed-oxide powder blends is to manually weigh homogenized, small portions of each blend component. For commercial large-scale production of recycled plutonium fuel, large batches must be rapidly and accurately prepared in a remote operating mode. The Westinghouse Nuclear Fuel Division, under the sponsorship of the US Department of Energy, has designed and demonstrated the capability to satisfy the stringent requirements imposed on such large-scale systems in a highly radioactive operating environment. Weighing accuracy and precision were shown to be well within acceptable limits to meet the final blend fissile tolerances; batching cycles were on the order of a 30-min duration; residual material levels were relatively low; and semiremote maintenance was successfully demonstrated

  15. INEL metal recycle annual report, FY-94

    International Nuclear Information System (INIS)

    Bechtold, T.E.

    1994-09-01

    In 1992, the mission of the Idaho Chemical Processing Plant was changed from reprocessing of spent nuclear fuels to development of technologies for conditioning of spent nuclear fuels and other high-level wastes for disposal in a geologic repository. In addition, the Department of Energy (DOE) directed Idaho National Engineering Laboratory (INEL) to develop a program plan addressing the management of radioactive contaminated scrap metal (RSM) within the DOE complex. Based on discussions with the EM-30 organization, the INEL Metal Recycle program plan was developed to address all issues of RSM management. Major options considered for RSM management were engineered interim storage, land disposal as low-level waste, and beneficial reuse/recycle. From its inception, the Metal Recycle program has emphasized avoidance of storage and disposal costs through beneficial reuse of RSM. The Metal Recycle program plan includes three major activities: Site-by-site inventory of RSM resources; validation of technologies for conversion of RSM to usable products; and identification of parties prepared to participate in development of a RSM recycle business

  16. Preliminary study on direct recycling of spent PWR fuel in PWR system

    International Nuclear Information System (INIS)

    Waris, Abdul; Nuha; Novitriana; Kurniadi, Rizal; Su'ud, Zaki

    2012-01-01

    Preliminary study on direct recycling of PWR spent fuel to support SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario has been conducted. Several spent PWR fuel compositions in loaded PWR fuel has been evaluated to obtain the criticality of reactor. The reactor can achieve it criticality for U-235 enrichment in the loaded fresh fuel is at least 4.0 a% with the minimum fraction of the spent fuel in the core is 15.0 %. The neutron spectra become harder with the escalating of U-235 enrichment in the loaded fresh fuel as well as the amount of the spent fuel in the core.

  17. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    Science.gov (United States)

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  18. Development of a fissile particle for HTGR fuel recycle

    International Nuclear Information System (INIS)

    Homan, F.J.; Long, E.L. Jr.; Lindemer, T.B.; Beatty, R.L.; Tiegs, T.N.

    1976-12-01

    Recycle fissile fuel particles for high-temperature gas-cooled reactors (HTGRs) have been under development since the mid-1960s. Irradiation performance on early UO 2 and Th 0 . 8 U 0 . 2 O 2 kernels is described in this report, and the performance limitations associated with the dense oxide kernels are presented. The development of the new reference fuel kernel, the weak-acid-resin-derived (WAR) UO 2 --UC 2 , is discussed in detail, including an extensive section on the irradiation performance of this fuel in HFIR removable beryllium capsules HRB-7 through -10. The conclusion is reached that the irradiation performance of the WAR fissile fuel kernel is better than that of any coated particle fuel yet tested. Further, the present fissile kernel is adequate for steam cycle HTGRs as well as for many advanced applications such as gas turbine and process heat HTGRs

  19. Evaluation of sites for the location of WEEE recycling plants in Spain.

    Science.gov (United States)

    Queiruga, Dolores; Walther, Grit; González-Benito, Javier; Spengler, Thomas

    2008-01-01

    As a consequence of new European legal regulations for treatment of waste electrical and electronic equipment (WEEE), recycling plants have to be installed in Spain. In this context, this contribution describes a method for ranking of Spanish municipalities according to their appropriateness for the installation of these plants. In order to rank the alternatives, the discrete multi-criteria decision method PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations), combined with a surveys of experts, is applied. As existing plants are located in North and East Spain, a significant concentration of top ranking municipalities can be observed in South and Central Spain. The method does not present an optimal structure of the future recycling system, but provides a selection of good alternatives for potential locations of recycling plants.

  20. Potential for the use of hydrochloric acid in fission reactor fuel recycle

    International Nuclear Information System (INIS)

    Mailen, J.C.; Bell, J.T.

    1985-01-01

    The chemistry and the effects of the use of hydrochloric acid as the aqueous phase in fuel recycle are surveyed. Available data are sufficient to suggest that separations of actinides and fission products can be at least as good in an HCl-trialkyl amine system as in Purex. Advantages of the HCl system are simpler operations of the off-gas system, better separation of neptunium from uranium and plutonium, better control of oxidation states of the dissolved species, and simpler recycle of the acid. A possible advantage is the more complete dissolution of the fission products, leaving very little insoluble residue. Disadvantages include lack of development of methods for dissolution of oxide fuel in hydrochloric acid, the requirement for processing equipment constructed of titanium, possible complications in the waste-handling system, and the dissolution of much of the cladding in the case of stainless-steel clad fuel

  1. A comparative study on recycling spent fuels in gas-cooled fast reactors

    International Nuclear Information System (INIS)

    Choi, Hangbok; Baxter, Alan

    2010-01-01

    This study evaluates advanced Gas-cooled Fast Reactor (GFR) fuel cycle scenarios which are based on recycling spent nuclear fuel for the sustainability of nuclear energy. A 600 MWth GFR was used for the fuel cycle analysis, and the equilibrium core was searched with different fuel-to-matrix volume ratios such as 70/30 and 60/40. Two fuel cycle scenarios, i.e., a one-tier case combining a Light Water Reactor (LWR) and a GFR, and a two-tier case using an LWR, a Very High Temperature Reactor (VHTR), and a GFR, were evaluated for mass flow and fuel cycle cost, and the results were compared to those of LWR once-through fuel cycle. The mass flow calculations showed that the natural uranium consumption can be reduced by more than 57% and 27% for the one-tier and two-tier cycles, respectively, when compared to the once-through fuel cycle. The transuranics (TRU) which pose a long-term problem in a high-level waste repository, can be significantly reduced in the multiple recycle operation of these options, resulting in more than 110 and 220 times reduction of TRU inventory to be geologically disposed for the one-tier and two-tier fuel cycles, respectively. The fuel cycle costs were estimated to be 9.4 and 8.6 USD/MWh for the one-tier fuel cycle when the GFR fuel-to-matrix volume ratio was 70/30 and 60/40, respectively. However the fuel cycle cost is reduced to 7.3 and 7.1 USD/MWh for the two-tier fuel cycle, which is even smaller than that of the once-through fuel cycle. In conclusion the GFR can provide alternative fuel cycle options to the once-through and other fast reactor fuel cycle options, by increasing the natural uranium utilization and reducing the fuel cycle cost.

  2. WIMSD4 calculations of the Westinghouse 'EDASA' lattices with plutonium dioxide fuel

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1977-03-01

    A series of Westinghouse critical PuO 2 /UO 2 pin-cell assemblies is analysed using the lattice code WIMSD4. The results are presented in terms of computed k-effective values, with comment on the choice of method for calculating high leakage systems and on the adequacy of WIMSD4 for evaluating plutonium enriched lattices. (author)

  3. The impact of spent fuel reprocessing facilities deployment rate on transuranics inventory in alternative fuel cycle strategies

    International Nuclear Information System (INIS)

    Aquien, A.; Kazimi, M.; Hejzlar, P.

    2007-01-01

    The depletion rate of transuranic inventories from spent fuel depends on both the deployment of advanced reactors that can be loaded with recycled transuranics, and on the deployment of the facilities that separate and reprocess spent fuel. In addition to tracking the mass allocation of TRU in the system and calculating a system cost, the fuel cycle simulation tool CAFCA includes a flexible recycling plant deployment model. This study analyses the impact of different recycling deployment schemes for various fuel cycle strategies in the US over the next hundred years under the assumption of a demand for nuclear energy growing at a rate of 2,4%. Recycling strategies explored in this study fall under two categories: recycling in thermal light water reactors using combined non-fertile and UO 2 fuel (CONFU) and recycling in fast reactors (either fertile-free actinide burner reactors, or self-sustaining gas-cooled fast reactors). Preliminary results show that the earlier deployment of recycling in the thermal reactors will limit the stored levels of TRU below those of fast reactors. However, the avoided accumulation of spent fuel interim storage depends on the deployment rate of the recycling facilities. In addition, by the end of the mid century, the TRU in cooling storage will exceed that in interim storage. (authors)

  4. Advantages of Westinghouse BWR control rod drop accidents methodology utilizing integrated POLCA-T code

    International Nuclear Information System (INIS)

    Panayotov, Dobromir

    2008-01-01

    The paper focuses on the activities pursued by Westinghouse in the development and licensing of POLCA-T code Control Rod Drop Accident (CRDA) Methodology. The comprehensive CRDA methodology that utilizes PHOENIX4/POLCA7/POLCA-T calculation chain foresees complete cycle-specific analysis. The methodology consists of determination of candidates of control rods (CR) that could cause a significant reactivity excursion if dropped throughout the entire fuel cycle, selection of limiting initial conditions for CRDA transient simulation and transient simulation itself. The Westinghouse methodology utilizes state-of-the-art methods. Unnecessary conservatisms in the methodology have been avoided to allow the accurate prediction of margin to design bases. This is mainly achieved by using the POLCA-T code for dynamic CRDA evaluations. The code belongs to the same calculation chain that is used for core design. Thus the very same reactor, core, cycle and fuel data base is used. This allows also reducing the uncertainties of input data and parameters that determine the energy deposition in the fuel. Uncertainty treatment, very selective use of conservatisms, selection of the initial conditions for limiting case analyses, incorporation into POLCA-T code models of the licensed fuel performance code are also among the means of performing realistic CRDA transient analyses. (author)

  5. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    Shirahashi, K.; Maeda, M.; Nakai, T.

    1996-01-01

    Japan has scarce energy resources and depends on foreign resources for 84% of its energy needs. Therefore, Japan has made efforts to utilize nuclear power as a key energy source since mid-1950's. Today, the nuclear energy produced from 49 nuclear power plants is responsible for about 31% of Japan's total electricity supply. The cumulative amount of spent fuel generated as of March 1995 was about 11,600 Mg U. Japan's policy of spent fuel management is to reprocess spent nuclear fuel and recycle recovered plutonium and uranium as nuclear fuel. The Tokai reprocessing plant continues stable operation keeping the annual treatment capacity or around 90 Mg U. A commercial reprocessing plant is under construction at Rokkasho, northern part of Japan. Although FBR is the principal reactor to use plutonium, LWR will be a major power source for some time and recycling of the fuel in LWRs will be prompted. (author). 3 figs

  6. Microwave based oxidation process for recycling the off-specification (U,Pu)O{sub 2} fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G., E-mail: gitendars@barctara.gov.in [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India); Khot, P.M. [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India); Kumar, Pradeep [Integrated Fuel Fabrication Facility (IFFF), Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Bhatt, R.B.; Behere, P.G.; Afzal, Mohd [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India)

    2017-02-15

    This paper reports development of a process named MicroWave Direct Oxidation (MWDO) for recycling the off-specification (U,Pu)O{sub 2} mixed oxide (MOX) fuel pellets generated during fabrication of typical fast reactor fuels. MWDO is a two-stage, single-cycle process based on oxidative pulverisation of pellets using 2450 MHz microwave. The powder sinterability was evaluated by bulk density and BET specific surface area. The oxidised powders were analyzed for phases using XRD and stoichiometry by thermogravimetry. The sinterability was significantly enhanced by carrying out oxidation in higher oxygen partial pressure and by subjecting MOX to multiple micronisation-oxidation cycles. After three cycles, the recycled powder from (U,28%Pu)O{sub 2} resulted surface area >3 m{sup 2}/g and 100% re-used for MOX fabrication. The flow sheet was developed for maximum utilization of recycled powder describable by a parameter called Scrap Recycling Ratio (SRR). The process demonstrates smaller processing cycle, better powder properties and higher oxidative pulverisation over conventional method. - Highlights: • A process for recycling the off-specification (U,Pu)O{sub 2} sintered fuel pellets of fast reactors was demonstrated. • The method is a two-stage, single cycle process based on oxidative pulverization of MOX pellets using 2450 MHz microwave. • The process demonstrated utilization of recycled powder with SRR of 1.

  7. Uranium savings on a once through PWR fuel cycle

    International Nuclear Information System (INIS)

    Cupo, J.V.

    1980-01-01

    A number of alternatives which have the greatest potential for near term savings with minimum plant and fuel modifications have been examined at Westinghouse as part of continued internal assessment and part of NASAP study conducted for DOE pertaining to uranium utilization in a once through PWR fuel cycle. The alternatives which could be retrofitted to existing reactors were examined in more detail in the evaluation since they would have the greater near term impact on U savings

  8. The differential radiological impact of plutonium recycle in the light-water reactor fuel cycle: effluent discharges during normal operation

    International Nuclear Information System (INIS)

    Bouville, A.; Guetat, P.; Jones, J.A.; Kelly, G.N.; Legrand, J.; White, I.F.

    1980-01-01

    The radiological impact of a light-water reactor fuel cycle utilizing enriched uranium fuel may be altered by the recycle of plutonium. Differences in impact may arise during various operations in the fuel cycle: those which arise from effluents discharged during normal operation of the various installations comprising the fuel cycle are evaluated in this study. The differential radiological impact on the population of the European Communities (EC) of effluents discharged during the recycling of 10 tonnes of fissile plutonium metal is evaluated. The contributions from each stage of the fuel cycle, i.e. fuel fabrication, reactor operation and fuel reprocessing and conversion, are identified. Separate consideration is given to airborne and liquid effluents and account is taken of a wide range of environmental conditions, representative of the EC, in estimating the radiological impact. The recycle of plutonium is estimated to result in a reduction in the radiological impact from effluents of about 30% of that when using enriched uranium fuel

  9. Evaluation of Spent Fuel Recycling Scenario using Pyro-SFR related System

    International Nuclear Information System (INIS)

    Lee, Yong Kyo; Kim, Sang Ji; Kim, Young Jin

    2014-01-01

    It is needed to validate whether the recycling scenario connecting pyro-processing and sodium-cooled fast reactor(SFR) is promising or not. The latest technologies of pyro-processing are applied to SFR and the recycling scenario is evaluated through the SFR's performance analysis. The analyzed SFR is KALIMER-600 TRU burner which purpose is to transmute transuranics (TRU). National policy of CANDU SF management has not been decided yet. However, the stored quantity of this SF is large enough not to be neglected. So this study includes additionally the recycling scenario of CANDU SF. Adopting the mass ratio of TRU and RE recovered in pyro-processing is 4 to 1 on PWR SF recycling, the sodium void reactivity is higher than design basis of metal fuel. So the current pyro-processing technology is may not be acceptable. If pyro-processing technology of CANDU SF is assumed to be the same as PWR's case, CANDU recycling scenario is acceptable. Transmutation performance is worse than PWR's, while the sodium void reactivity is within design limit

  10. Radiological impact of plutonium recycle in the fuel cycle of LWR type reactors: professional exposure during mormal operation

    International Nuclear Information System (INIS)

    White, I.F.; Kelly, G.N.

    1983-01-01

    The radiological impact of the fuel cycle of light water type reactors using enriched uranium may be changed by plutonium recycle. The impact on human population and on the persons professionally exposed may be different according to the different steps of the fuel cycle. This report analyses the differential radiological impact on the different types of personnel involed in the fuel cycle. Each step of the fuel cycle is separately studied (fuel fabrication, reactor operation, fuel reprocessing), as also the transport of the radioactive materials between the different steps. For the whole fuel cycle, one estimates that, with regard to the fuel cycle using enriched uranium, the plutonium recycle involves a small increase of the professional exposure

  11. Experimental validation of CASMO-4E and CASMO-5M for radial fission rate distributions in a westinghouse SVEA-96 Optima2 BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, P.; Perret, G. [Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland)

    2012-07-01

    Measured and calculated radial total fission rate distributions are compared for the three axial sections of a Westinghouse SVEA-96 Optima2 BWR fuel assembly, comprising 96, 92 and 84 fuel rods, respectively. The measurements were performed on a full-size fuel assembly in the PROTEUS zero-power experimental facility. The measured fission rates are compared to the results of the CASMO-4E and CASMO-5M fuel assembly codes. Detailed measured geometrical data were used in the models, and effects of the surrounding zones of the reactor were taken into account by correction factors derived from MCNPX calculations. The results of the calculations agree well with those of the experiments, with root-mean-square deviations between 1.2% and 1.5% and maximum deviations of 3-4%. The quality of the predictions by CASMO-4E and CASMO-5M is comparable. (authors)

  12. Nuclear fuel cycle, nuclear fuel makes the rounds: choosing a closed fuel cycle, nuclear fuel cycle processes, front-end of the fuel cycle: from crude ore to enriched uranium, back-end of the fuel cycle: the second life of nuclear fuel, and tomorrow: multiple recycling while generating increasingly less waste

    International Nuclear Information System (INIS)

    Philippon, Patrick

    2016-01-01

    France has opted for a policy of processing and recycling spent fuel. This option has already been deployed commercially since the 1990's, but will reach its full potential with the fourth generation. The CEA developed the processes in use today, and is pursuing research to improve, extend, and adapt these technologies to tomorrow's challenges. France has opted for a 'closed cycle' to recycle the reusable materials in spent fuel (uranium and plutonium) and optimise ultimate waste management. France has opted for a 'closed' nuclear fuel cycle. Spent fuel is processed to recover the reusable materials: uranium and plutonium. The remaining components (fission products and minor actinides) are the ultimate waste. This info-graphic shows the main steps in the fuel cycle currently implemented commercially in France. From the mine to the reactor, a vast industrial system ensures the conversion of uranium contained in the ore to obtain uranium oxide (UOX) fuel pellets. Selective extraction, purification, enrichment - key scientific and technical challenges for the teams in the Nuclear Energy Division (DEN). The back-end stages of the fuel cycle for recycling the reusable materials in spent fuel and conditioning the final waste-forms have reached maturity. CEA teams are pursuing their research in support of industry to optimise these processes. Multi-recycle plutonium, make even better use of uranium resources and, over the longer term, explore the possibility of transmuting the most highly radioactive waste: these are the challenges facing future nuclear systems. (authors)

  13. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor Miklos; Adelfang, Pablo; Bradley, Ed [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris (France)

    2015-05-15

    International activities in the back-end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. These programmes will soon have achieved their goals and the SNF take-back programmes will cease. However, the needs of the nuclear community dictate that the majority of the research reactors continue to operate using low enriched uranium (LEU) fuel in order to meet the varied mission objectives. As a result, inventories of LEU SNF will continue to be created and the back-end solution of RR SNF remains a critical issue. In view of this fact, the IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, will draw up a report presenting available reprocessing and recycling services for research reactor spent nuclear fuel. This paper gives an overview of the guiding document which will address all aspects of Reprocessing and Recycling Services for RR SNF, including an overview of solutions, decision making support, service suppliers, conditions (prerequisites, options, etc.), services offered by the managerial and logistics support providers with a focus on available transport packages and applicable transport modes.

  14. Nuclear Fuel Recovery and Recycling Center. License application, PSAR, volume 3

    International Nuclear Information System (INIS)

    1976-01-01

    Volume 3 comprises Chapter 5 which provides descriptive information on Nuclear Fuel Recovery and Recycling Center buildings and other facilities, including their locations. The design features discussed include those used to withstand environmental and accidental forces and to insure radiological protection

  15. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management

    International Nuclear Information System (INIS)

    2008-01-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX TM process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel cycles

  16. Design requirements and performance requirements for reactor fuel recycle manipulator systems

    International Nuclear Information System (INIS)

    Grundmann, J.G.

    1975-01-01

    The development of a new generation of remote handling devices for remote production work in support of reactor fuel recycle systems is discussed. These devices require greater mobility, speed and visual capability than remote handling systems used in research activities. An upgraded manipulator system proposed for a High-Temperature Gas-Cooled Reactor fuel refabrication facility is described. Design and performance criteria for the manipulators, cranes, and TV cameras in the proposed system are enumerated

  17. Criticality safety training at Westinghouse Hanford Company

    International Nuclear Information System (INIS)

    Rogers, C.A.; Paglieri, J.N.

    1983-01-01

    In 1972 the Westinghouse Hanford Company (WHC) established a comprehensive program to certify personnel who handle fissionable materials. As the quantity of fissionable material handled at WHC has increased so has the scope of training to assure that all employes perform their work in a safe manner. This paper describes training for personnel engaged in fuel fabrication and handling activities. Most of this training is provided by the Fissionable Material Handlers Certification Program. This program meets or exceeds all DOE requirements for training and has been attended by more than 475 employes. Since the program was instituted, the rate of occurrence of criticality safety limit violations has decreased by 50%

  18. Actinide recycle potential in the Integral Fast Reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.

    1990-01-01

    In the Integral Fast Reactor (IFR) development program, the entire reactor system -- reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. The use of metallic fuel in the IFR allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. In the electrorefining operation, uranium and plutonium are selectively transported from an anode to a cathode, leaving impurity elements, mainly fission products, either in the anode compartment or in a molten salt electrolyte. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management, because these actinides are automatically recycled back into the reactor for in-situ burning. Based on the recent IFR process development, a preliminary assessment has also been made to investigate the feasibility of further adapting the pyrochemical processes to directly extract actinides from LWR spent fuel. The results of this assessment indicate very promising potential and two most promising flowsheet options have been identified for further research and development. This paper also summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 5 refs., 4 figs., 4 tabs

  19. Proposal of a torus pumping and fuel recycling system for ITER

    International Nuclear Information System (INIS)

    Perinic, D.; Mack, A.; Perinic, G.; Murdoch, D.

    1995-01-01

    A universal torus pumping and fuel recycling system is proposed for all operation modes of ITER. It comprises primary cryopumps and secondary fuel separating cryopumps located inside the cryostat and a common mechanical forepump station located outside the cryostat. In this paper two different primary cryopump options are compared. The results of Monte Carlo calculations of pumping probabilities for helium show a significant difference leading to a distinct preference for the concept of a co-pumping cryopump. (orig.)

  20. Analysis of transition to fuel cycle system with continuous recycling in fast and thermal reactors - 5060

    International Nuclear Information System (INIS)

    Passereini, S.; Feng, B.; Fei, T.; Kim, T.K.; Taiwo, T.A.; Brown, N.R.; Cuadra, A.

    2015-01-01

    A recent Evaluation and Screening study of nuclear fuel cycle options identified a few groups of options as most promising. One of these most promising Evaluation Groups (EGs) is characterized by the continuous recycling of uranium (U) and transuranics (TRU) with natural uranium feed in both fast and thermal critical reactors. This evaluation group, designated as EG30, is represented by an example fuel cycle option that employs a two-technology, two-stage fuel cycle system. The first stage involves the continuous recycling of co-extracted U/TRU in Sodium-cooled Fast Reactors (SFRs) with metallic fuel and breeding ratio greater than 1. The second stage involves the use of the surplus TRU in Mixed Oxide (MOX) fuel in Pressurized Water Reactors that are MOX-capable (MOX-PWRs). This paper presents and discusses preliminary fuel cycle analysis results from the fuel cycle codes VISION and DYMOND for the transition to this fuel cycle option from the current once-through cycle in the United States (U.S.) that consists of Light Water Reactors (LWRs) that only use conventional UO 2 fuel. The analyses in this paper are applicable for a constant 100 GWe capacity, roughly the size of the U.S. nuclear fleet. Two main strategies for the transition to EG30 were analyzed: 1) deploying both SFRs and MOX-PWRs in parallel or 2) deploying them in series with the SFR fleet first. With an estimated retirement schedule for the existing LWRs, an assumed reactor lifetime of 60 years, and no growth, the nuclear system fully transitions to the new fuel cycle within 100 years for both strategies without SFR fuel shortages. Compared to the once-through cycle, transition to the SFR/MOX-PWR fleet with continuous recycle was shown to offer significant reductions in uranium consumption and waste disposal requirements. In addition, these initial calculations revealed a few notable modeling and strategy questions regarding how recycled resources are allocated, reactors that can switch between

  1. TASS code topical report. V.2 TASS code validation report for the non-LOCA transient analysis of the CE and Westinghouse type plants

    International Nuclear Information System (INIS)

    Sim, Suk K.; Chang, W. P.; Kim, K. D.; Lee, S. J.; Kim, H. C.; Yoon, H. Y.

    1997-02-01

    The development of TASS 1.0 code has been completed and validated its capability in applying for the licensing transient analyses of the CE and Westinghouse type operating reactors as well as the PWR plants under construction in Korea. The validation of the TASS 1.0 code has been achieved through the comparison calculations of the FSAR transients, loss of AC power transient plant data, load rejection and startup test data for the reference plants as well as the BETHSY loop steam generator tube rupture test data. TASS 1.0 calculation agrees well with the best FSAR transient and shows its capability in simulating plant transient analyses. (author). 12 refs., 32 tabs., 132 figs

  2. Preliminary study on recycling of metallic waste from decommissioning of nuclear power plant for cask

    International Nuclear Information System (INIS)

    Ohe, Koichiro; Kato, Osamu; Saegusa, Toshiari

    1999-01-01

    Preliminary study was made on technology required to recycle of metallic waste from decommissioning for spent fuel storage cask and on quantity of the cask which can be produced by the metallic waste. The technical and institutional issues for the recycling were studied. The metallic waste from decommissioning may be technically used to a certain degree for manufacturing the casks. However, there were some technical issues to be solved. For example, the manufacturing factories should be established. The radioactive waste from the factories with radiation control should be handled and treated carefully. Quality of the cask should be properly controlled. The 'Clearance Levels' which allows to recycle decommissioning waste have been hardly enacted in Japan. Technical and economic evaluation on recycling of metallic waste from decommissioning for spent fuel storage cask should be conducted again after progress in recycling of radioactive waste of which radioactivity is below the 'Clearance Levels' in Japan. (author)

  3. Key parameters for the safe and economical recycling of contaminated stainless steel

    International Nuclear Information System (INIS)

    Hebrant, P.

    1990-01-01

    The decontamination and recycling of 8 tons of piping removed from a nuclear power station in Belgium has been used by Westinghouse as a test case to evaluate the key technical and economical aspects associated with the recycling of large quantities of stainless steel material. The selection of the decontamination process, the method used to measure the residual activity after decontamination and the amount of waste generated by both the decontamination and the melting, are discussed in detail. The economical data extrapolated to large quantities are shown to justify the selection of recycling as opposed to long-term storage. (author)

  4. A review of methods for immobilizing iodine-129 arising from a nuclear fuel recycle plant, with emphasis on waste-form chemistry

    International Nuclear Information System (INIS)

    Taylor, P.

    1990-07-01

    Possible methods for the separation and immobilization of iodine (mainly iodine-129) in a fuel recycle plant are reviewed, with special emphasis placed on the evaluation of waste forms. A distinction is drawn between waste forms selected by thermodynamic (solubility) or kinetic (dissolution rate) considerations. The most promising solubility-limited waste forms appear to be AgI (or AgI + AgCl) and a combination of Bi 2 O 3 and Bi 5 O 7 I. These materials use relatively scarce metals, Ag and Bi. They also have substantial chemical limitations, such as susceptibility to reductive dissolution and anion-displacement reactions; this calls for special care in the choice of a disposal site. All other organic iodides and iodates considered here and elsewhere appear to be still more limited in this respect. The most promising kinetically limited candidate waste form appears to be iodide-sodalite, but further information is needed on both the fabrication and leaching behaviour of this material. The possibility of disposal in a more soluble but isotopically dilute waste form, employing abundant raw materials, also warrants further consideration

  5. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    Directory of Open Access Journals (Sweden)

    Nuttin A.

    2012-02-01

    Full Text Available The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX and uranium/plutonium mixed oxide (MOX fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  6. WESTINGHOUSE 17X17 MOX PWR ASSEMBLY - WASTE PACKAGE CRITICALITY ANALYSIS (SCPB: N/A)

    International Nuclear Information System (INIS)

    J.W. Davis

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to compare the criticality potential of Westinghouse 17 x 17 mixed oxide (MOX) PWR fuel with the Design Basis spent nuclear fuel (SNF) analyzed previously (Ref. 5.1, 5.2). The basis of comparison will be the conceptual design Multi-Purpose Canister (MPC) PWR waste package concepts. The objectives of this evaluation are to show that the criticality potential of the MOX fuel is equal to or lower than the DBF or, if necessary, indicate what additional measures are required to make it so

  7. Standardized Technical Specifications for Westinghouse PWRs

    International Nuclear Information System (INIS)

    1978-01-01

    This Standard Technical Specification (STS) has been structured for the broadest possible use on Westinghouse plants currently being reviewed for an Operating License. Accordingly, the document contains specifications applicable to plants (1) with either 3 or 4 loops and (2) with and without loop stop valves. In addition, four separate and discrete containment specification sections are provided for each of the following containment types: Atmospheric, Ice Condenser, Sub-Atmospheric, and Dual. Optional specifications are provided for those features and systems which may be included in individual plant designs but are not generic in their scope of application. Alternate specifications are provided in a limited number of cases to cover situations where alternate specification requirements are necessary on a generic basis because of design differences. The format of the STS addresses the categories required by 10 CFR 50 and consists of six sections covering the areas of: Definitions, Safety Limits and Limiting Safety System Settings, Limiting Conditions for Operation, Surveillance Requirements, Design Features, and Administrative Controls

  8. FINDING WAYS OF RECYCLING DUST OF ARC STEEL FURNACES AT THE BELARUSIAN METALLURGIC PLANT

    Directory of Open Access Journals (Sweden)

    A. V. Demin

    2015-01-01

    Full Text Available The first part examines the theoretical possibility of recycling dust of arc steel furnaces. The different modes of dust disposal depending on the task of recycling are discussed: recycling at minimal cost; recycling with a maximum extraction of iron; recycling with maximum extraction of zinc. The results of laboratory studies providing information on the technical feasibility of recycling dust formed at the Belarusian metallurgic plant are provided.

  9. Nuclear recycling: costs, savings, and safeguards

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1985-01-01

    This chapter discusses the economics, physical and chemical processes, and safety of nuclear fuel recycling. The spent fuel must be chemically reprocessed in order to recover uranium and plutonium. Topics considered include indifference costs, recycling in light water reactors (LWRs), plutonium in fast reactors, the choice between recycling and storage, safeguards, and weapons proliferation. It is shown that the economics of recycling nuclear fuel involves the actual costs and savings of the recycling operation in terms of money spent, made, and saved, and the impact of the recycling on the future cost of uranium

  10. Recycling of concrete waste generated from nuclear power plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nagase, Takahiro; Tanaka, Hiroaki; Nawa, Toyoharu

    2012-01-01

    Non-radioactive concrete waste generated from dismantling of a standard large nuclear power plant is estimated to be about 500,000 tons in weight. Using such waste as recycled aggregate within the enclosure of the plant requires a new manufacturing technology that generates a minimal amount of by-product powder. Recycled aggregate has brittle parts with defects such as cracks, pores, and voids in residual paste from original concrete. This study presents a method of selectively removing the defective parts during manufacture to improve the quality of the recycled fine aggregate. With this selective removal method used, the amount of by-product powder can be reduced by half as compared to that by a conventional method. The influences of the characteristics of the recycled fine aggregate on the flowability and strength of the mortar using recycled fine aggregate were evaluated by multiple linear regression analysis. The results clearly showed that the flowability was primarily affected by the filling fraction of recycled fine aggregate, while the compressive strength of mortar was primarily affected by the fraction of defects in the aggregate. It was also found that grains produced by a granulator have more irregularities in the surfaces than those produced by a ball mill, providing an increased mortar strength. Using these findings from this study, efforts are also being made to develop a mechanical technology that enables simultaneous processing of decontamination and recycling. The granulator under consideration is capable of grinding the surfaces of irregularly shaped particles and may be used successfully, under optimal conditions, for the surface decontamination of concrete waste contaminated with radioactive materials. (author)

  11. Used fuel packing plant for CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Menzies, I.; Thayer, B.; Bains, N., E-mail: imenzies@atsautomation.com [ATS Automation, Cambridge, ON (Canada); Murchison, A., E-mail: amurchison@nwmo.ca [NWMO, Toronto, ON (Canada)

    2015-07-01

    Large forgings have been selected to containerize Light Water Reactor used nuclear fuel. CANDU fuel, which is significantly smaller in size, allows novel approaches for containerization. For example, by utilizing commercially available extruded ASME pipe a conceptual design of a Used Fuel Packing Plant for containerization of used CANDU fuel in a long lived metallic container has been developed. The design adopts a modular approach with multiple independent work cells to transfer and containerize the used fuel. Based on current technologies and concepts from proven industrial systems, the Used Fuel Packing Plant can assemble twelve used fuel containers per day considering conservative levels of process availability. (author)

  12. Nuclear Fuel Recovery and Recycling Center. License application, PSAR, volume 1

    International Nuclear Information System (INIS)

    1976-01-01

    A summary of the location and major design features of the proposed Nuclear Fuel Recovery and Recycling Center is presented. The safety aspects of the proposed facilities and operations are summarized, taking into account possible normal and abnormal operating and environmental conditions. A chapter on site characteristics is included

  13. Advancing PWR fuel to meet customer needs

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, F W

    1987-03-01

    Since the introduction of the Optimized Fuel Assembly (OFA) for PWRs in the late 1970s, Westinghouse has continued to work with the utility customers to identify the greatest needs for further advance in fuel performance and reliability. The major customer requirements include longer fuel cycle at lower costs, increased fuel discharge burn-up, enhanced operating flexibility, all accompanied by even greater reliability. In response to these needs, Westinghouse developed Vantage 5 PWR fuel. To optimize reactor operations, Vantage 5 fuel features distinct advantages: integral fuel burnable absorbers, axial and radial blankets, intermediate flow mixers, a removable top nozzle, and assembly modifications to accommodate increased discharge burn-up.

  14. IFBA credit in the Shearon Harris fuel racks with Vantage 5 fuel

    International Nuclear Information System (INIS)

    Boyd, W.A.; Schmidt, R.F.; Erwin, R.D.

    1989-01-01

    At the Shearon Harris nuclear plant, fuel management strategies are being considered which will result in feed fuel enrichments approaching 5.0 w/o U-235. These types of enrichments require a new criticality analysis to raise the existing fuel rack enrichment limit. It is receiving Westinghouse Vantage 5 fuel with integral fuel burnable absorber (IFBA) rods providing the depletable neutron absorber. An analysis was performed on the fuel racks which demonstrates that fuel enriched up to 5.0 w/o U-235 can be stored by taking credit for the IFBA rods present in the high enriched fuel assemblies. This is done by calculating the maximum Vantage 5 fuel assembly reactivity that can be placed in the fuel racks and meet the criticality K-eff limit. A methodology is also developed which conservatively calculates the minimum number of IFBA rods needed per assembly to meet the fuel rack storage limits. This eliminates the need for core designers to determine assembly K-inf terms for every different enrichment/IFBA combination

  15. Spent fuel management in France: Reprocessing, conditioning, recycling

    International Nuclear Information System (INIS)

    Giraud, J.P.; Montalembert, J.A. de

    1994-01-01

    The French energy policy has been based for 20 years on the development of nuclear power. The some 75% share of nuclear in the total electricity generation, representing an annual production of 317 TWh requires full fuel cycle control from the head-end to the waste management. This paper presents the RCR concept (Reprocessing, Conditioning, Recycling) with its industrial implementation. The long lasting experience acquired in reprocessing and MOX fuel fabrication leads to a comprehensive industrial organization with minimized impact on the environment and waste generation. Each 900 MWe PWR loaded with MOX fuel avoids piling up 2,500 m 3 per year of mine tailings. By the year 2000, less than 500 m 3 of high-level and long-lived waste will be annually produced at La Hague for the French program. The fuel cycle facilities and the associated MOX loading programs are ramping-up according to schedule. Thus, the RCR concept is a reality as well as a policy adopted in several countries. Last but not least, RCR represents a strong commitment to non-proliferation as it is the way to fully control and master the plutonium inventory

  16. San Onofre PWR Data for Code Validation of MOX Fuel Depletion Analyses - Revision 1

    International Nuclear Information System (INIS)

    Hermann, O.W.

    2000-01-01

    The isotopic composition of mixed-oxide fuel (fabricated with both uranium and plutonium isotopes) discharged from reactors is of interest to the Fissile Material Disposition Program. The validation of depletion codes used to predict isotopic compositions of MOX fuel, similar to studies concerning uranium-only fueled reactors, thus, is very important. The EEI-Westinghouse Plutonium Recycle Demonstration Program was conducted to examine the use of MOX fuel in the San Onofre PWR, Unit I, during cycles 2 and 3. The data, usually required as input to depletion codes, either one-dimensional or lattice codes, were taken from various sources and compiled into this report. Where data were either lacking or determined inadequate, the appropriate data were supplied from other references. The scope of the reactor operations and design data, in addition to the isotopic analyses, was considered to be of sufficient quality for depletion code validation

  17. Leak rate analysis of the Westinghouse Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Boardman, T.; Jeanmougin, N.; Lofaro, R.; Prevost, J.

    1985-07-01

    An independent analysis was performed by ETEC to determine what the seal leakage rates would be for the Westinghouse Reactor Coolant Pump (RCP) during a postulated station blackout resulting from loss of ac electric power. The object of the study was to determine leakage rates for the following conditions: Case 1: All three seals function. Case 2: No. 1 seal fails open while Nos. 2 and 3 seals function. Case 3: All three seals fail open. The ETEC analysis confirmed Westinghouse calculations on RCP seal performance for the conditions investigated. The leak rates predicted by ETEC were slightly lower than those predicted by Westinghouse for each of the three cases as summarized below. Case 1: ETEC predicted 19.6 gpm, Westinghouse predicted 21.1 gpm. Case 2: ETEC predicted 64.7 gpm, Westinghouse predicted 75.6 gpm. Case 3: ETEC predicted 422 gpm, Westinghouse predicted 480 gpm. 3 refs., 22 figs., 6 tabs

  18. Approach to securing of stable nuclear fuel supplies

    International Nuclear Information System (INIS)

    Koike, Kunihisa; Imamura, Isao; Noda, Tetsuya

    2010-01-01

    With the dual objectives of not only ensuring stable electric power supplies but also preventing global warming, the construction of new nuclear power plants is being planned in many countries throughout the world. Toshiba and Westinghouse Electric Company (WEC), a member of the Toshiba Group, are capable of supplying both boiling water reactor (BWR) and pressurized water reactor (PWR) plants to satisfy a broad range of customer requirements. Furthermore, to meet the growing demand for the securing of nuclear fuel supplies, Toshiba and WEC have been promoting the strengthening and further expansion of supply chains in the fields of uranium production, uranium hexafluoride (UF 6 ) conversion, uranium enrichment, and fuel fabrication. (author)

  19. Disposal of defense spent fuel and HLW from the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Ermold, L.F.; Loo, H.H.; Klingler, R.D.; Herzog, J.D.; Knecht, D.A.

    1992-12-01

    Acid high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage ate the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, with an emphasis on the description of HLW and spent fuels requiring repository disposal

  20. Characterisation of solid recovered fuels for direct co-firing in large-scale PF power plants

    Energy Technology Data Exchange (ETDEWEB)

    Dunnu, Gregory

    2013-04-01

    Solid Recovered Fuels are solid fuels prepared from high calorific fractions of non-hazardous waste materials intended to be co-fired in coal power plants and industrial furnaces (CEN/TC 343). They are composed of a variety of materials of which some, although recyclable in theory, may be in a form that makes their recycling an unsound option. The SRF with a typical size range of 3 mm through 25 mm are to be directly co-fired in an existing pulverised coal power plant. In comparison to pulverised coal, the particle size distribution of the SRF is of several magnitudes higher, resulting in a different burnout behaviour. Size reduction of the SRF to a fraction similar to coal is not economically feasible. The aim here is, therefore, the direct co-firing of the solid recovered fuels in the boilers without any further size reduction. This approach, however, bears the risk of incomplete combustion if the injection points of the solid recovered fuels are not optimally selected. Accordingly, the prediction of the burner levels, at which the solid recovered fuels should be injected and whether or not a complete combustion will be achieved under full load condition, is the primary objective of this dissertation. In this research work, laboratory experiments have been conducted to forecast the success of co-firing the SRF in a commercial pulverised coal power plant. It involves the analyses of the fuel and its intermediate chars generated at conditions comparable to boiler conditions to determine some characteristic parameters, namely the burnout time, the aerodynamic lift velocity, the drag coefficient and the apparent densities. The data gathered from the laboratory experiments are transferred to boiler conditions to determine the particle trajectories and the maximum distance likely to travel before they are completely converted in the boiler. Different scenarios are examined and based on the results the best boiler injection points are predicted. Furthermore, an on

  1. Reactor physics methods development at Westinghouse

    International Nuclear Information System (INIS)

    Mueller, E.; Mayhue, L.; Zhang, B.

    2007-01-01

    The current state of reactor physics methods development at Westinghouse is discussed. The focus is on the methods that have been or are under development within the NEXUS project which was launched a few years ago. The aim of this project is to merge and modernize the methods employed in the PWR and BWR steady-state reactor physics codes of Westinghouse. (author)

  2. CO{sub 2}-recycling by plants: how reliable is the carbon isotope estimation?

    Energy Technology Data Exchange (ETDEWEB)

    Siegwolf, R T.W.; Saurer, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Koerner, C [Basel Univ., Basel (Switzerland)

    1997-06-01

    In the study of plant carbon relations, the amount of the respiratory losses from the soil was estimated, determining the gradient of the stable isotope {sup 13}C with increasing plant canopy height. According to the literature 8-26% of the CO{sub 2} released in the forests by soil and plant respiratory processes are reassimilated (recycled) by photosynthesis during the day. Our own measurements however, which we conducted in grass land showed diverging results from no indicating of carbon recycling, to a considerable {delta}{sup 13}C gradient suggesting a high carbon recycling rate. The role of other factors, such as air humidity and irradiation which influence the {delta}{sup 13}C in a canopy as well, are discussed. (author) 3 figs., 4 refs.

  3. Requirements management at Westinghouse Electric Company

    International Nuclear Information System (INIS)

    Gustavsson, Henrik

    2014-01-01

    Field studies and surveys made in various industry branches support the Westinghouse opinion that qualitative systems engineering and requirements management have a high value in the development of complex systems and products. Two key issues causing overspending and schedule delays in projects are underestimation of complexity and misunderstandings between the different sub-project teams. These issues often arise when a project jumps too early into detail design. Good requirements management practice before detail design helps the project teams avoid such issues. Westinghouse therefore puts great effort into requirements management. The requirements management methodology at Westinghouse rests primarily on four key cornerstones: 1 - Iterative team work when developing requirements specifications, 2 - Id number tags on requirements, 3 - Robust change routine, and 4 - Requirements Traceability Matrix. (authors)

  4. MOX fuel fabrication, in reactor performance and improvement

    International Nuclear Information System (INIS)

    Vliet, J. van; Deramaix, P.; Nigon, J.L.; Fournier, W.

    1998-01-01

    In Europe, MOX fuel for light water reactors (LWRs) has first been manufactured in Belgium and Germany. Belgonucleaire (BN) loaded the first MOX assembly in the BR3 Pressurised Water Reactor (PWR) in 1963. In June 1998, more than 750 tHM LWR MOX fuel assemblies were manufactured on a industrial scale in Europe without any particular difficulty relating to fuel fabrication, reactor operation or fuel behaviour. So, today plutonium recycling through MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants. In this field, COGEMA and BELGONUCLEAIRE are the main actors by operating simultaneously three complete multidesign fuel production plants: MELOX plant (in Marcoule), CADARACHE plant and P0 plant (in Dessel, Belgium). Present MOX production capacity available to COGEMA and BN fits 175 tHM per year and is to be extended to reach about 325 tHM in the year 2000. This will represent 75% of the total MOX fabrication capacity in Europe. The industrial mastery and the high production level in MOX fabrication assured by high technology processes confer to these companies a large expertise for Pu recycling. This allows COGEMA and BN to be major actors in Pu-based fuels in the coming second nuclear era with advanced fuel cycles. (author)

  5. Recycling of concrete generated from Nuclear Power Plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nawa, Toyoharu; Ishikura, Takeshi; Tanaka, Hiroaki

    2013-01-01

    Reactor decommissioning required various technologies such as dismantling of facilities, decontamination, radioactivity measurement and recycling of dismantling wastes. This article discussed recycling of demolished concrete wastes. Dismantling of reactor building of large one unit of nuclear power plants would generate about 500 K tons of concrete wastes, about 98% of which was non-radioactive and could be used as base course material or backfill material after crushed to specified particle size. Since later part of 1990s, high quality recycled aggregate with specified limit of bone-dry density, water absorptivity and amount of fine aggregate had been developed from demolished concrete with 'Heat and rubbing method', 'Eccentric rotor method' and 'Screw grinding method' so as to separate cements attached to aggregate. Recycled aggregates were made from concrete debris with 'Jaw crusher' to particle size less than 40 mm and then particle size control or grinded by various grinding machines. Recycled fine aggregates made from crushing would have fragile site with cracks, air voids and bubbles. The author proposed quality improvement method to selectively separate fragile defects from recycled aggregates using weak grinding force, leaving attached pastes much and preventing fine particle generation as byproducts. This article outlined experiments to improve quality of recycled fine aggregates and their experimental results confirmed improvement of flow ability and compressive strength of mortal using recycled fine aggregates using 'Particle size selector' and 'Ball mill' so as to remove their fragile parts less than 2%. Mortal made from recycled fine aggregate could also prevent permeation of chloride ion. Recycled aggregate could be used for concrete instead of natural aggregate. (T. Tanaka)

  6. Automatic particle-size analysis of HTGR recycle fuel

    International Nuclear Information System (INIS)

    Mack, J.E.; Pechin, W.H.

    1977-09-01

    An automatic particle-size analyzer was designed, fabricated, tested, and put into operation measuring and counting HTGR recycle fuel particles. The particle-size analyzer can be used for particles in all stages of fabrication, from the loaded, uncarbonized weak acid resin up to fully-coated Biso or Triso particles. The device handles microspheres in the range of 300 to 1000 μm at rates up to 2000 per minute, measuring the diameter of each particle to determine the size distribution of the sample, and simultaneously determining the total number of particles. 10 figures

  7. Towards Multi Fuel SOFC Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Clausen, Lasse Røngaard; Bang-Møller, Christian

    2011-01-01

    Complete Solid Oxide Fuel Cell (SOFC) plants fed by several different fuels are suggested and analyzed. The plants sizes are about 10 kW which is suitable for single family house with needs for both electricity and heat. Alternative fuels such as, methanol, DME (Di-Methyl Ether) and ethanol...... are also considered and the results will be compared with the base plant fed by Natural Gas (NG). A single plant design will be suggested that can be fed with methanol, DME and ethanol whenever these fuels are available. It will be shown that the plant fed by ethanol will have slightly higher electrical...

  8. Recycling the actinides, a beneficial contribution to the overall environmental footprint of nuclear energy systems - 5333

    International Nuclear Information System (INIS)

    Poinssot, C.; Bourg, S.; Grandjean, S.; Boullis, B.

    2015-01-01

    Full text of publication follows. Actinides recycling still remains a controversial issue for many countries which do not yet have make a definite and clear choice about the back-end of their nuclear fuel cycles. In particular, recycling is often questioned about its effective impact on the overall nuclear energy sustainability. In order to address this key issue, we developed a Life Cycle Assessment (LCA) tool, referred to as NELCAS, based on the current French nuclear energy system. Thanks to the Nuclear Safety and Transparency annual reports, detailed quantitative data were available for each of the fuel cycle plants. The whole fuel cycle from ore-mining to geological repository was considered as well as data for construction, deconstruction of any plants as well as the contribution of the transport. All the matter and energy fluxes were considered and normalised versus the electric production. Key environmental indicators as well as potential impact indicators were hence assessed and validated with comparison with the few existing LCA results. NELCAS was also used to derive other fuel cycles by correcting when necessary the relevant flux of matter and energy all along the fuel cycle. A particular focus was put on the once-through cycle with no recycling at all and the effect of the introduction of fast neutron reactors which allow actinides multi-recycling. For the very first time, it hence allows a direct and robust assessment of the effect of recycling operations on the most widely used environmental indicators. Among others, it clearly demonstrates the beneficial effect of Pu and U recycling on most of the indicators. This improvement increases with any recycling increase and is directly related to the very high contribution of the front-end operations in the overall environmental footprint. Most of the indicators are very significantly decreased with the implementation of long-term recycling strategies. This presentation will therefore detail how actinides

  9. Westinghouse says cartel rigged U.S. uranium market

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    On Oct. 15, 1976, Westinghouse filed a complaint in Federal court in Chicago charging that 29 U.S. and foreign uranium producers damaged Westinghouse by illegally rigging the uranium market; they also link the Atomic Industrial Forum to the U.S. activities of this cartel. Background information is presented for the charge, which has become the focal point of Westinghouse's defense against the uranium supply breach of contract suits filed against the firm by 27 electric utilities (3 filed in county court in Pittsburgh, 24 jointly in Federal court in Virginia). Westinghouse attorneys say that most of the evidence they have shows the existence of a cartel in the past, but they hope to show it is still operating in the U.S

  10. Westinghouse-DOE integration: Meeting the challenge

    International Nuclear Information System (INIS)

    Price, S.V.

    1992-01-01

    The Westinghouse Electric Corporation (WEC) is in a unique position to affect national environmental management policy approaching the 21st Century. Westinghouse companies are management and operating contractors (MOC,s) at several environmentally pivotal government-owned, contractor operated (GOCO) facilities within the Department of Energy's (DOE's) nuclear defense complex. One way the WEC brings its companies together is by activating teams to solve specific DOE site problems. For example, one challenging issue at DOE facilities involves the environmentally responsible, final disposal of transuranic and high-level nuclear wastes (TRUs and HLWS). To address these disposal issues, the DOE supports two Westinghouse-based task forces: The TRU Waste Acceptance Criteria Certification Committee (WACCC) and the HLW Vitrification Committee. The WACCC is developing methods to characterize an estimated 176,287 cubic meters of retrievably stored TRUs generated at DOE production sites. Once characterized, TRUs could be safely deposited in the WIPP repository. The Westinghouse HLW Vitrification Committee is dedicated to assess appropriate methods to process an estimated 380,702 cubic meters of HLWs currently stored in underground storage tanks (USTs). As planned, this processing will involve segregating, and appropriately treating, low level waste (LLW) and HLW tank constituents for eventual disposal. The first unit designed to process these nuclear wastes is the SRS Defense Waste Processing Facility (DWPF). Initiated in 1973, the DWPF project is scheduled to begin operations in 1991 or 1992. Westinghouse companies are also working together to achieve appropriate environmental site restoration at DOE sites via the GOCO Environmental Restoration Committee

  11. Actinide recycle potential in the integral fast reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.

    1991-01-01

    In the Integral Fast Reactor (IFR) development program, the entire reactor system -- reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. The use of metallic fuel in the IFR allows a radically improved fuel cycle technology. Based on the recent IFR process development, a preliminary assessment has been made to investigate the feasibility of further adapting pyrochemical processes to directly extract actinides from LWR spent fuel. The results of this assessment indicate very promising potential and two most promising flowsheet options have been identified for further research and development. This paper also summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs

  12. Evaluation of the rod ejection accident in Westinghouse Pressurized Water Reactors using spatial kinetics methods

    International Nuclear Information System (INIS)

    Risher, D.H. Jr.

    1975-01-01

    The consequences of a rod ejection accident are investigated in relation to the latest, high power density Westinghouse reactors. Limiting criteria are presented, based on experimental evidence, and if not exceeded these criteria will ensure that there will be no interference with core cooling capability, and radiation releases, if any, will be within the guidelines of 10CFR100. A basis is presented for the conservative selection of plant parameters to be used in the analysis, such that the analysis is applicable to a wide range of past, present, and future reactors. The calculational method employs a one-dimensional spatial kinetics computer code and a transient fuel heat transfer computer code to determine the hot spot fuel temperature versus time following a rod ejection. Using these computer codes, the most limiting hot channel factor (which does not cause the fuel damage limit criteria to be exceeded) has been determined as a function of the ejected rod worth. By this means, the limit criteria have been translated into ejected rod worths and hot channel factors which can be used effectively by the nuclear designer and safety analyst. The calculational method is shown to be conservative, compared to the results of a three-dimensional spatial kinetics analysis

  13. Application of MSHIM core control strategy for westinghouse AP1000 nuclear power plant

    International Nuclear Information System (INIS)

    Onoue, Masaaki; Kawanishi, Tomohiro; Carlson, William R.; Morita, Toshio

    2003-01-01

    Westinghouse has developed a new core control strategy, in which two independently moving Rod Cluster Control Assembly (RCCA) groups are utilized for core control; one group for reactivity/temperature control, the other for axial power distribution (Axial Offset) control. This control procedure eliminates the need for Chemical Shim adjustments during power maneuvers, such as load follow, and is designated MSHIM (Mechanical Shim). This core control strategy is utilized in the AP1000. In the AP1000, it is possible to perform MSHIM load follow maneuvers for up to 95% of cycle life without changing the soluble boron concentration in the moderator. This core control strategy has been evaluated, via computer simulations, to provide appropriate margins to core and fuel design limits during normal operation maneuvers (including load follow operations) and also during anticipated Condition II accident transients. The primary benefits of MSHIM as a control strategy are as follows; Power change operation can be totally automated due to the elimination of boron concentration adjustments. Full load follow capability is achievable for up to more than 95% of cycle life. Load follow operations performed solely by mechanical devices results in a significant reduction in the boron system requirements and a significant reduction in daily effluent to be processed. (author)

  14. Treatment and recycling of spent nuclear fuel. Actinide partitioning - Application to waste management

    International Nuclear Information System (INIS)

    Abonneau, E.; Baron, P.; Berthon, C.; Berthon, L.; Beziat, A.; Bisel, I.; Bonin, L.; Bosse, E.; Boullis, B.; Broudic, J.C.; Charbonnel, M.C.; Chauvin, N.; Den Auwer, C.; Dinh, B.; Duhamet, J.; Escleine, J.M.; Grandjean, S.; Guilbaud, P.; Guillaneux, D.; Guillaumont, D.; Hill, C.; Lacquement, J.; Masson, M.; Miguirditchian, M.; Moisy, P.; Pelletier, M.; Ravenet, A.; Rostaing, C.; Royet, V.; Ruas, A.; Simoni, E.; Sorel, C.; Vaudano, A.; Venault, L.; Warin, D.; Zaetta, A.; Pradel, P.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Forestier, A.; Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Sollogoob, P.; Vernaz, E.; Bazile, F.; Parisot, J.P.; Finot, P.; Roberts, J.F.

    2008-01-01

    subsequent to its in-reactor dwell time, spent fuel still contains large amounts of materials that are recoverable, for value-added energy purposes (uranium, plutonium), together with fission products, and minor actinides, making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory management of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and future. It outlines currently ongoing investigations, setting out the challenges involved, and recent results obtained by CEA. (authors)

  15. Treatment and recycling of spent nuclear fuel. Actinide partitioning - Application to waste management

    Energy Technology Data Exchange (ETDEWEB)

    Abonneau, E.; Baron, P.; Berthon, C.; Berthon, L.; Beziat, A.; Bisel, I.; Bonin, L.; Bosse, E.; Boullis, B.; Broudic, J.C.; Charbonnel, M.C.; Chauvin, N.; Den Auwer, C.; Dinh, B.; Duhamet, J.; Escleine, J.M.; Grandjean, S.; Guilbaud, P.; Guillaneux, D.; Guillaumont, D.; Hill, C.; Lacquement, J.; Masson, M.; Miguirditchian, M.; Moisy, P.; Pelletier, M.; Ravenet, A.; Rostaing, C.; Royet, V.; Ruas, A.; Simoni, E.; Sorel, C.; Vaudano, A.; Venault, L.; Warin, D.; Zaetta, A.; Pradel, P.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Forestier, A.; Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Sollogoob, P.; Vernaz, E.; Bazile, F.; Parisot, J.P.; Finot, P.; Roberts, J.F

    2008-07-01

    subsequent to its in-reactor dwell time, spent fuel still contains large amounts of materials that are recoverable, for value-added energy purposes (uranium, plutonium), together with fission products, and minor actinides, making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory management of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and future. It outlines currently ongoing investigations, setting out the challenges involved, and recent results obtained by CEA. (authors)

  16. UREP: gateway to uranium recycling

    International Nuclear Information System (INIS)

    Rougeau, J.P.; Durret, L.F.

    1988-01-01

    The industrial experience accumulated in France on recycling makes their conversion service fully reliable technically and economically. Problems associated with chemical and radiochemical behavior have been solved satisfactorily in order to offer customers flexible options for their personal optimization. Economically, a price reduction by a significant factor (up to two) has been proposed by UREP as a firm commitment for the coming years. This is the result of technical experience coupled with favorable scaling effect for the large conversion plant proposed. It is believed that such a positive approach greatly helps customers in managing recycling of their material and generating savings in their fuel cycle economics. This flow of recycled uranium, on top of the 40000 t of natural uranium consumed each year, is a valuable asset available to those utilities which have selected the reprocessing route. 2 figs

  17. Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2017-01-01

    An innovative study on anode recirculation in solid oxide fuel cell systems with alternative fuels is carried out and investigated. Alternative fuels under study are ammonia, pure hydrogen, methanol, ethanol, DME and biogas from biomass gasification. It is shown that the amount of anode off......%. Furthermore, it is founded that for the case with methanol, ethanol and DME then at high utilization factors, low anode recirculation is recommended while at low utilization factors, high anode recirculation is recommended. If the plant is fed by biogas from biomass gasification then for each utilization...

  18. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Bajpai, M.B.; Shenoi, M.R.K.; Keni, V.S.

    1994-01-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author)

  19. Recycling domains in plant cell morphogenesis: small GTPase effectors, plasma membrane signalling and the exocyst.

    Science.gov (United States)

    Zárský, Viktor; Potocký, Martin

    2010-04-01

    The Rho/Rop small GTPase regulatory module is central for initiating exocytotically ACDs (active cortical domains) in plant cell cortex, and a growing array of Rop regulators and effectors are being discovered in plants. Structural membrane phospholipids are important constituents of cells as well as signals, and phospholipid-modifying enzymes are well known effectors of small GTPases. We have shown that PLDs (phospholipases D) and their product, PA (phosphatidic acid), belong to the regulators of the secretory pathway in plants. We have also shown that specific NOXs (NADPH oxidases) producing ROS (reactive oxygen species) are involved in cell growth as exemplified by pollen tubes and root hairs. Most plant cells exhibit several distinct plasma membrane domains (ACDs), established and maintained by endocytosis/exocytosis-driven membrane protein recycling. We proposed recently the concept of a 'recycling domain' (RD), uniting the ACD and the connected endosomal recycling compartment (endosome), as a dynamic spatiotemporal entity. We have described a putative GTPase-effector complex exocyst involved in exocytic vesicle tethering in plants. Owing to the multiplicity of its Exo70 subunits, this complex, along with many RabA GTPases (putative recycling endosome organizers), may belong to core regulators of RD organization in plants.

  20. Selection and development of advanced nuclear fuel products

    International Nuclear Information System (INIS)

    Stucker, David L.; Miller, Richard S.; Arnsberger, Peter L.

    2004-01-01

    The highly competitive international marketplace requires a continuing product development commitment, short development cycle times and timely, on-target product development to assure customer satisfaction and continuing business. Westinghouse has maintained its leadership position within the nuclear fuel industry with continuous developments and improvements to fuel assembly materials and design. This paper presents a discussion of the processes used by Westinghouse in the selection and refinement of advanced concepts for deployment in the highly competitive US and international nuclear fuel fabrication marketplace. (author)

  1. Status report - expert knowledge of operators in fuel reprocessing plants, enrichment plants and fuel fabrication plants

    International Nuclear Information System (INIS)

    Preuss, W.; Kramer, J.; Wildberg, D.

    1987-01-01

    The necessary qualifications of the responsible personnel and the knowledge required by personnel otherwise employed in nuclear plants are among the requirements for licensing laid down in paragraph 7 of the German Atomic Energy Act. The formal regulations for nuclear power plants are not directly applicable to plants in the fuel cycle because of the differences in the technical processes and the plant and work organisation. The aim of the project was therefore to establish a possible need for regulations for the nuclear plants with respect to the qualification of the personnel, and to determine a starting point for the definition of the required qualifications. An extensive investigation was carried out in the Federal Republic of Germany into: the formal requirements for training; the plant and personnel organisation structures; the tasks carried out by the responsible and otherwise employed personnel; and the state of training. For this purpose plant owners and managers were interviewed and the literature and plant specific documentation (e.g. plant rules) were reviewed. On the basis of literature research, foreign practices were determined and used to make comparative evaluations. The status report is divided into three separate parts for the reprocessing, the uranium enrichment, and the manufacture of the fuel elements. On the basis of the situation for reprocessing plants (particularly that of the WAK) and fuel element manufacturing plants, the development of a common (not uniform) regulation for all the examined plants in the fuel cycle was recommended. The report gives concrete suggestions for the content of the regulations. (orig.) [de

  2. Vibrational characteristics and wear of fuel rods

    International Nuclear Information System (INIS)

    Schmugar, K.L.

    1977-01-01

    Fuel rod wear, due to vibration, is a continuing concern in the design of liquid-cooled reactors. In my report, the methodology and models that are used to predict fuel rod vibrational response and vibratory wear, in a light water reactor environment, are discussed. This methodology is being followed at present in the design of Westinghouse Nuclear Fuel. Fuel rod vibrations are expressed as the normal bending modes, and sources of rod vibration are examined with special emphasis on flow-induced mechanisms in the stable flow region. In a typical Westinghouse PWR fuel assembly design, each fuel rod is supported at multiple locations along the rod axis by a square-shaped 'grid cell'. For a fuel rod /grid support system, the development of small oscillatory motions, due to fluid flow at the rod/grid interface, results in material wear. A theoretical wear mode is developed using the Archard Theory of Adhesive Wear as the basis. Without question certainty, fretting wear becomes a serious problem if it progresses to the stage where the fuel cladding is penetrated and fuel is exposed to the coolant. Westinghouse fuel is designed to minimize fretting wear by limiting the relative motion between the fuel rod and its supports. The wear producing motion between the fuel rod and its supports occurs when the vibration amplitude exceeds the slippage threshold amplitude

  3. Available Reprocessing and Recycling Services for Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2017-01-01

    The high enriched uranium (HEU) take back programmes will soon have achieved their goals. When there are no longer HEU inventories at research reactors and no commerce in HEU for research reactors, the primary driver for the take back programmes will cease. However, research reactors will continue to operate in order to meet their various mission objectives. As a result, inventories of low enriched uranium spent nuclear fuel will continue to be created during the research reactors' lifetime and, therefore, there is a need to develop national final disposition routes. This publication is designed to address the issues of available reprocessing and recycling services for research reactor spent fuel and discusses the various back end management aspects of the research reactor fuel cycle.

  4. TAO2000 V2 computer-assisted force feedback tele-manipulators used as maintenance and production tools at the AREVA NC-La Hague fuel recycling plant

    International Nuclear Information System (INIS)

    Geffard, Franck; Garrec, Philippe; Piolain, Gerard; Brudieu, Marie-Anne; Thro, Jean-Francois; Coudray, Alain; Lelann, Eric

    2012-01-01

    During a 15-year joint research program, French Atomic Energy Agency Interactive Robotics Laboratory (CEA LIST) and AREVA have developed several remote operation devices, also called tele-robots. Some of them are now commonly used for maintenance operations at the AREVA NC (Nuclear Cycle) La Hague reprocessing plant. Since the first maintenance operation in 2005, several other successful interventions have been realized using the industrial MA23/RX170 tele-manipulation system. Moreover, since 2010, the through-the-wall tele-robot named MT200 TAO based on the slave arm of the MSM MT200 (La Calhene TM ), has been evaluated in an active production cell at the AREVA NC La Hague fuel recycling plant. Although these evaluations are ongoing, the positive results obtained have led to an update and industrialization program. All these developments are based on the same generic control platform, called TAO2000 V2. TAO2000 V2 is the second release of the CEA LIST core software platform dedicated to computer aided force-feedback tele-operation (TAO is the French acronym for computer aided tele-operation). This paper presents all these developments resulting from the joint research program CEA LIST/AREVA. The TAO2000 V2 controller is first detailed, and then two maintenance operations using the industrial robot RX170 are presented: the removal of the nuclear fuel dissolver wheel rollers and the cleanup of the dissolver wheel inter-bucket spaces. Finally, the new MT200 TAO system and its evaluations at the AREVA NC La Hague facilities are discussed. (authors)

  5. Reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Hatfield, G.W.

    1960-11-01

    One of the persistent ideas concerning nuclear power is that the fuel costs are negligible. This, of course, is incorrect and, in fact, one of the major problems in the development of economic nuclear power is to get the cost of the fuel cycles down to an acceptable level. The irradiated fuel removed from the nuclear power reactors must be returned as fresh fuel into the system. Aside from the problems of handling and shipping involved in the reprocessing cycles, the two major steps are the chemical separation and the refabrication. The chemical separation covers the processing of the spent fuel to separate and recover the unburned fuel as well as the new fuel produced in the reactor. This includes the decontamination of these materials from other radioactive fission products formed in the reactor. Refabrication involves the working and sheathing of recycled fuel into the shapes and forms required by reactor design and the economics of the fabrication problem determines to a large extent the quality of the material required from the chemical treatment. At present there appear to be enough separating facilities in the United States and the United Kingdom to handle the recycling of fuel from power reactors for the next few years. However, we understand the costs of recycling fuel in these facilities will be high or low depend ing on whether or not the capital costs of the plant are included in the processing cost. Also, the present plants may not be well adapted to carry out the chemical processing of the very wide variety of power reactor fuel elements which are being considered and will continue to be considered over the years to come. (author)

  6. Plutonium and minor actinides recycle in equilibrium fuel cycles of pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Waris, A.; Sekimoto, H. [Research Lab. for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan)

    2001-07-01

    A study on plutonium and minor actinides (MA) recycle in equilibrium fuel cycles of pressurized water reactors (PWR) has been performed. The calculation results showed that the enrichment and the required amount of natural uranium decrease significantly with increasing number of confined plutonium and MA when uranium is discharged from the reactor. However, when uranium is totally confined, the enrichment becomes extremely high. The recycle of plutonium and MA together with discharging uranium can reduce the radio-toxicity of discharged heavy metal (HM) waste to become less than that of loaded uranium. (author)

  7. Reprocessing of MTR fuel at Dounreay

    International Nuclear Information System (INIS)

    Hough, N.

    1997-01-01

    UKAEA at Dounreay has been reprocessing MTR fuel for over 30 years. During that time considerable experience has been gained in the reprocessing of traditional HEU alloy fuel and more recently with dispersed fuel. Latterly a reprocessing route for silicide fuel has been demonstrated. Reprocessing of the fuel results in a recycled uranium product of either high or low enrichment and a liquid waste stream which is suitable for conditioning in a stable form for disposal. A plant to provide this conditioning, the Dounreay Cementation Plant is currently undergoing active commissioning. This paper details the plant at Dounreay involved in the reprocessing of MTR fuel and the treatment and conditioning of the liquid stream. (author)

  8. An Evaluation on the Fluid Elastic Instability of the Fuel Rod for OPR1000 Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Koo; Jeon, Sang Yoon; Lee, Kyu Seok; Kim, Jeong Ha; Lee, Sang Jong [Reactor Core Technology Department, Korea Nuclear Fuel, 493, Deogjin, Yuseong, Daejeon, 305-353 (Korea, Republic of)

    2009-06-15

    fuel rod were evaluated to assure that the natural frequencies of the each fuel rod span are not matched with the expected excitation frequencies. These evaluations would be insufficient to assure the integrity of the fuel rod from fuel rod vibration damage. The main objective of this study, therefore, is to evaluate FEI margin of the PLUS7TM fuel rod for OPR1000 plants considering fuel rod configuration change due to the in-reactor operation conditions for its whole life time. The PLUS7TM fuel is newly developed advanced fuel for OPR1000 plants and is now under operation in eight OPR1000 plants in Korea. For the evaluation, three kinds of fuel rod finite element analysis model have been suggested to represent whole fuel rod configuration changes due to the fuel cladding creep down, the fuel pellet swelling and spacer grid spring irradiation relaxation behavior. Using these models, modal analysis has been performed to get their mode shapes and natural frequencies. And then, FEI of the fuel rod has been evaluated based on the modal analysis results. In this evaluation, the stability criteria recommended by ASME code has been used, which gives a conservative criterion for avoiding FEI of the fuel rod. This evaluation has been performed by ROVIN code, which we have developed to perform the modal analysis and FEI evaluation at the same time. The modal analysis results obtained from ROVIN have been compared with those from the ANSYS and the test results. And the FEI results from ROVIN have been compared with those from conventional code used for Westinghouse type fuel based on the Connors' criteria. (authors)

  9. Evaluation of nuclear fuel reprocessing strategies. 2. LWR fuel storage, recycle economics and plutonium logistics

    International Nuclear Information System (INIS)

    Prince, B.E.; Hadley, S.W.

    1983-01-01

    This is the second of a two-part report intended as a critical review of certain issues involved with closing the Light Water Reactor (LWR) fuel cycle and establishing the basis for future transition to commercial breeder applications. The report is divided into four main sections consisting of (1) a review of the status of the LWR spent fuel management and storage problem; (2) an analysis of the economic incentives for instituting reprocessing and recycle in LWRs; (3) an analysis of the time-dependent aspects of plutonium economic value particularly as related to the LWR-breeder transition; and (4) an analysis of the time-dependent aspects of plutonium requirements and supply relative to this transition

  10. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  11. Economic potential of fuel recycling options: A lifecycle cost analysis of future nuclear system transition in China

    International Nuclear Information System (INIS)

    Gao, Ruxing; Choi, Sungyeol; Il Ko, Won; Kim, Sungki

    2017-01-01

    In today's profit-driven market, how best to pursue advanced nuclear fuel cycle technologies while maintaining the cost competitiveness of nuclear electricity is of crucial importance to determine the implementation of spent fuel reprocessing and recycling in China. In this study, a comprehensive techno-economic analysis is undertaken to evaluate the economic feasibility of ongoing national projects and the technical compatibility with China's future fuel cycle transition. We investigated the dynamic impacts of technical and economic uncertainties in the lifecycle of a nuclear system. The electricity generation costs associated with four potential fuel cycle transition scenarios were simulated by probabilistic and deterministic approaches and then compared in detail. The results showed that the total cost of a once-through system is lowest compared those of other advanced systems involving reprocessing and recycling. However, thanks to the consequential uncertainties caused by the further progress toward technology maturity, the economic potential of fuel recycling options was proven through a probabilistic uncertainty analysis. Furthermore, it is recommended that a compulsory executive of closed fuel cycle policy would pose some investment risk in the near term, though the execution of a series of R&D initiatives with a flexible roadmap would be valuable in the long run. - Highlights: • Real-time economic performance of the four scenarios of China's nuclear fuel cycle system transition until 2100. • Systematic assessments of techno-economic feasibility for ongoing national reprocessing projects. • Investigation the cost impact on nuclear electricity generation caused by uncertainties through probabilistic analysis. • Recommendation for sustainable implementation of fuel cycle R&D initiative ingrate with flexible roadmap in the long run.

  12. Plants for water recycling, oxygen regeneration and food production

    Science.gov (United States)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  13. CANDU flexible and economical fuel technology in China

    Energy Technology Data Exchange (ETDEWEB)

    Mingjun, C. [CNNC Nuclear Power Operation Management Co., Zhejiang (China); Zhenhua, Z.; Zhiliang, M. [CNNC Third Qinshan Nuclear Power Co., Zhejiang (China); Cottrell, C.M.; Kuran, S. [Candu Energy Inc., Mississauga, ON (Canada)

    2014-07-01

    Use in CANDU reactor is one good option of recycled uranium (RU) and thorium (Th) resource. It is also good economy to CANDU fuel. Since 2008 Qinshan CANDU Plant and our partners (Candu Energy and CNNC and NPIC) have made great efforts to develop the engineering technologies of Flexible and Economical Fuel (RU and Th) in CANDU type reactor and finding the CANDU's position in Chinese closed fuel cycle (CFC) system. This paper presents a proposal of developing strategy and implementation plan. Qinshan CANDU reactors will be converted to use recycled and depleted uranium based fuels, a first-of-its-kind. The fuel is composed of both recycled and depleted uranium and simulating natural uranium behavior. This paper discusses its development, design, manufacture and verification tested with success and the full core implementation plan by the end of 2014. (author)

  14. Actinide recycling by pyro process for future nuclear fuel cycle system

    International Nuclear Information System (INIS)

    Inoue, T.

    2001-01-01

    Pyrometallurgical technology is one of the potential devices for the future nuclear fuel cycle. Not only economic advantage but also environmental safety and strong resistance for proliferation are required. So as to satisfy the requirements, actinide recycling applicable to LWR and FBR cycles by pyro-process has been developed over a ten-year period at the CRIEPI. The main technology is electrorefining for U and Pu separation and reductive extraction for TRU separation, which can be applied on oxide fuels through reduction process as well as metal fuels. The application of this technology for separation of TRU in HLLW through chlorination could contribute to the improvement of public acceptance with regard to geologic disposal. The main achievements are summarised as follows: - Elemental technologies such as electrorefining, reductive extraction, injection casting and salt waste treatment and solidification have been successfully developed with lots of experiments. - Fuel dissolution into molten salt and uranium recovery on solid cathode for electrorefining has been demonstrated at an engineering scale facility in Argonne National Laboratory using spent fuels and at the CRIEPI through uranium tests. - Single element tests using actinides showed Li reduction to be technically feasible; the subjects of technical feasibility on multi-element systems and on effective recycle of Li by electrolysis of Li 2 O remain to be addressed. - Concerning the treatment of HLLW for actinide separation, the conversion to chlorides through oxides has also been established through uranium tests. - It is confirmed that more than 99% of TRU nuclides can be recovered from high-level liquid waste by TRU tests. - Through these studies, the process flowsheets for reprocessing of metal and oxide fuels and for partitioning of TRU separation have been established. The subjects to be emphasised for further development are classified into three categories: process development (demonstration

  15. The cost of spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Badillo, V.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    Spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments, constructing repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution?, or What is the best technology for an specific solution? Many countries have deferred the decision on selecting an option, while others works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However currently, the plants are under a process for extended power up-rate to 20% of original power and also there are plans to extended operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. (Author)

  16. Plutonium recycle in LWRs - The programme of the Federal Republic of Germany

    International Nuclear Information System (INIS)

    1979-01-01

    This paper explains that in accordance with the Federal Republic of Germany's nuclear energy policy, spent fuel from their large programme of LWRs will be stored for some years in an interim storage pool until capacity for reprocessing, which is essential on environmental grounds, becomes available after 1990. The residual fissile content (uranium and plutonium) of the spent fuel can then be recovered and either be recycled into thermal LWRs or later on be burnt in Fast Reactors. A comprehensive R, D and D programme for plutonium recycle was launched in 1971. Up to the end of 1978 about 10,000 MOX fuel rods were designed, specified, fabricated and irradiated in several nuclear power plants. The methods used in this work and the results are described

  17. Establishment of the operating procedure to prevent boron precipitation during Post-LOCA long term cooling for Korean Westinghouse 3-loop NPPs

    International Nuclear Information System (INIS)

    Choi, Han Rim; Kwon, Tae Soon; Ban, Chang Hwan; Jeong, Jae Hoon; Lee, Young Jin.

    1996-11-01

    During post-LOCA LTC the increase of the excess reactivity for the extended fuel cycle should require increasing the RWST boron concentration in order to ensure core subcritical state. To quantify the concentration increment, the calculation methods was developed for the post-LOCA RCS/Sump mixed mean boron concentration, which applied for Kori 3 and 4 and Ulchin 1 and 2 of the Westinghouse 3-loop nuclear power plants in Korean. From the calculation results, the minimum boric acid concentrations increased of the RWST and accumulator were determined consideration of the convenient operation for operator on reloading. Boric acid concentrations of the RWST and the accumulators for Westinghouse 3-loop type plants were increased to meet the post-LOCA shutdown requirement for the long life cycles from 12 months to 18 months. To maintain LTC capability following a LOCA, the switchover time is examined using boron code of prevent the boron precipitation in the reactor core with the increased boron concentrations. The analysis results showed that hot leg recirculation switchover times were shortened to 7.5 hours from 24 hours after the initiation of LOCA for Kori 3 and 4 and 8 hours from 18 hours for Ulchin 1 and 2, respectively. The flow path in the mode J for Kori 3 and 4 was recommended to realign to the simultaneous recirculation of both hot and cold legs from the cold leg recirculation, as done by Ulchin 1 and 2. (author). 2 tabs., 12 figs., 13 refs

  18. Control device for the recycling flow rate in a nuclear power plant

    International Nuclear Information System (INIS)

    Tanigawa, Naoshi; Shida, Toichi.

    1983-01-01

    Purpose: To prevent the cavitation in a recycling pump even under the conditions where a recycling pump run-back is inhibited, thereby secure the safety of equipments. Constitution: An AND circuit is disposed to a recycling flow rate control system in a BWR type nuclear power plant that issues an output on the condition that a run-back signal is present together with a contact signal of a scoop pipe locking relay or a contact signal of a scoop pipe locking relay. Then, if a demand for the run-back operation of a nuclear reactor recycling pump is issued, the reactor recycling pump is forcedly tripped. Since the pump can always be tripped upon requirement of run-back even if there are some or other inhibitive factors, generation of the cavitation in recycling system equipments can be prevented thereby prevent the damages in the equipments. (Moriyama, K.)

  19. Sensitivity Analysis on LOCCW of Westinghouse typed Reactors Considering WOG2000 RCP Seal Leakage Model

    International Nuclear Information System (INIS)

    Na, Jang-Hwan; Jeon, Ho-Jun; Hwang, Seok-Won

    2015-01-01

    In this paper, we focus on risk insights of Westinghouse typed reactors. We identified that Reactor Coolant Pump (RCP) seal integrity is the most important contributor to Core Damage Frequency (CDF). As we reflected the latest technical report; WCAP-15603(Rev. 1-A), 'WOG2000 RCP Seal Leakage Model for Westinghouse PWRs' instead of the old version, RCP seal integrity became more important to Westinghouse typed reactors. After Fukushima accidents, Korea Hydro and Nuclear Power (KHNP) decided to develop Low Power and Shutdown (LPSD) Probabilistic Safety Assessment (PSA) models and upgrade full power PSA models of all operating Nuclear Power Plants (NPPs). As for upgrading full power PSA models, we have tried to standardize the methodology of CCF (Common Cause Failure) and HRA (Human Reliability Analysis), which are the most influential factors to risk measures of NPPs. Also, we have reviewed and reflected the latest operating experiences, reliability data sources and technical methods to improve the quality of PSA models. KHNP has operating various types of reactors; Optimized Pressurized Reactor (OPR) 1000, CANDU, Framatome and Westinghouse. So, one of the most challengeable missions is to keep the balance of risk contributors of all types of reactors. This paper presents the method of new RCP seal leakage model and the sensitivity analysis results from applying the detailed method to PSA models of Westinghouse typed reference reactors. To perform the sensitivity analysis on LOCCW of the reference Westinghouse typed reactors, we reviewed WOG2000 RCP seal leakage model and developed the detailed event tree of LOCCW considering all scenarios of RCP seal failures. Also, we performed HRA based on the T/H analysis by using the leakage rates for each scenario. We could recognize that HRA was the sensitive contributor to CDF, and the RCP seal failure scenario of 182gpm leakage rate was estimated as the most important scenario

  20. Sensitivity Analysis on LOCCW of Westinghouse typed Reactors Considering WOG2000 RCP Seal Leakage Model

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jang-Hwan; Jeon, Ho-Jun; Hwang, Seok-Won [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, we focus on risk insights of Westinghouse typed reactors. We identified that Reactor Coolant Pump (RCP) seal integrity is the most important contributor to Core Damage Frequency (CDF). As we reflected the latest technical report; WCAP-15603(Rev. 1-A), 'WOG2000 RCP Seal Leakage Model for Westinghouse PWRs' instead of the old version, RCP seal integrity became more important to Westinghouse typed reactors. After Fukushima accidents, Korea Hydro and Nuclear Power (KHNP) decided to develop Low Power and Shutdown (LPSD) Probabilistic Safety Assessment (PSA) models and upgrade full power PSA models of all operating Nuclear Power Plants (NPPs). As for upgrading full power PSA models, we have tried to standardize the methodology of CCF (Common Cause Failure) and HRA (Human Reliability Analysis), which are the most influential factors to risk measures of NPPs. Also, we have reviewed and reflected the latest operating experiences, reliability data sources and technical methods to improve the quality of PSA models. KHNP has operating various types of reactors; Optimized Pressurized Reactor (OPR) 1000, CANDU, Framatome and Westinghouse. So, one of the most challengeable missions is to keep the balance of risk contributors of all types of reactors. This paper presents the method of new RCP seal leakage model and the sensitivity analysis results from applying the detailed method to PSA models of Westinghouse typed reference reactors. To perform the sensitivity analysis on LOCCW of the reference Westinghouse typed reactors, we reviewed WOG2000 RCP seal leakage model and developed the detailed event tree of LOCCW considering all scenarios of RCP seal failures. Also, we performed HRA based on the T/H analysis by using the leakage rates for each scenario. We could recognize that HRA was the sensitive contributor to CDF, and the RCP seal failure scenario of 182gpm leakage rate was estimated as the most important scenario.

  1. Westinghouse Hanford Company special nuclear material vault storage study

    International Nuclear Information System (INIS)

    Borisch, R.R.

    1996-01-01

    Category 1 and 2 Special Nuclear Materials (SNM) require storage in vault or vault type rooms as specified in DOE orders 5633.3A and 6430.1A. All category 1 and 2 SNM in dry storage on the Hanford site that is managed by Westinghouse Hanford Co (WHC) is located in the 200 West Area at Plutonium Finishing Plant (PFP) facilities. This document provides current and projected SNM vault inventories in terms of storage space filled and forecasts available space for possible future storage needs

  2. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, M B; Shenoi, M R.K.; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author). 3 figs., 2 tabs.

  3. MOX recycling-an industrial reality

    International Nuclear Information System (INIS)

    Shallo, G.D.F.

    1996-01-01

    Reprocessing and plutonium recycling have now attained industrial maturity in France and Europe. Specifically, mixed-oxide (MOX) fuel is fabricated and used in light water reactors (LWRs) in satisfactory operating conditions. The utilities and the fuel cycle industry experience no technical difficulties, and European recycling programs are growing steadily, from 18 reactors in operation today up to 50 expected around the year 2000, putting the system reprocessing-recycling in coherence: 25 t of plutonium will then be used each year to produce the electricity equivalence of 25 millions tons of oil. Plutonium recycling in MOX fuel in current LWRs proves to be technically safe and economically competitive and meets natural resource savings and environmental protection objectives. And recycling responds properly to the nonproliferation concerns. Such an industrial experience gives a unique reference for weapons plutonium disposition through MOX use in reactors

  4. Waste management considerations in HTGR recycle operations

    International Nuclear Information System (INIS)

    Pence, D.T.; Shefcik, J.J.; Heath, C.A.

    1975-01-01

    Waste management considerations in the recycle of HTGR fuel are different from those encountered in the recycle of LWR fuel. The types of waste associated with HTGR recycle operations are discussed, and treatment methods for some of the wastes are described

  5. Definition of thermal-hydraulics parameters of a naval PWR via energy balance of a Westinghouse PWR

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Luiz C.; Curi, Marcos F., E-mail: marcos.curi@cefet-rj.br [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil). Department of Mechanical Engineering

    2017-07-01

    In this work, we used the operational parameters of the Angra 1 nuclear power plant, designed by Westinghouse, to estimate the thermal-hydraulic parameters for naval nuclear propulsion, focusing on the analysis of the reactor and steam generator. A thermodynamics analysis was made to reach the operational parameters of primary circuit such as pressure, temperature, power generated among others. Previous studies available in literature of 2-loop Westinghouse Nuclear Power Plants, which is based on a PWR and similar to Angra-1, support this analysis in the sense of a correct procedure to deal with many complex processes to energy generation from a nuclear source. Temperature profiles in reactor and steam generator were studied with concepts of heat transfer, fluid mechanics and also some concepts of nuclear systems, showing the behavior into them. In this simulation, the Angra 1 primary circuit was reduced on a scale of 1: 3.5 to fit in a Scorpène-class submarine. The reactor generates 85.7 MW of total thermal power. The maximum power and temperatures reached were lower than the operational safe limits established by Westinghouse. The number of tubes of the steam generator was determined in 990 U-tubes with 6.3 m of average length. (author)

  6. Waste management analysis for the nuclear fuel cycle. II. Recycle preparation for wastewater streams

    International Nuclear Information System (INIS)

    Smith, C.M.; Navratil, J.D.; Plock, C.E.

    1979-01-01

    Recycle preparation methods were evaluated for secondary aqueous waste streams likely to be produced during reactor fuel fabrication and reprocessing. Adsorption, reverse osmosis, and ozonization methods were evaluated on a laboratory scale for their application to the treatment of wastewater. Activated carbon, macroreticular resins, and polyurethanes were tested to determine their relative capabilities for removing detergents and corrosive anions from wastewater. Conceptual flow sheets were constructed for purifying wastewater by reverse osmosis. In addition, the application of ozonization techniques for water recycle preparation was examined briefly

  7. Load-following operation of PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jong Hwa; Oh, Soo Yul; Koo, Yang Hyun; Lee, Jae Han [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-12-01

    The load-following operation of nuclear power plants will become inevitable due to the increased nuclear share in the total electricity generation. As a groundwork for the load-following capability of the Korean next generation PWRs, the state-of-the-art has been reviewed. The core control principles and methods are the main subject in this review as well as the impact of load-following operations on the fuel performance and on the mechanical integrity of components. To begin with, it was described what the load-following operation is and in what view point the technology should be reviewed. Afterwards the load-following method, performance and problems in domestic 900 MWe class PWRs were discussed, and domestic R and D works were summarized. Foreign technologies were also reviewed. They include Mode G and Mode X of Foratom, D and L bank method of KWU, the method using PSCEA of ABB-CE, and MSHIM of Westinghouse. The load-following related special features of Foratom`s N4 plant, KWU`s plants, ABB-CE`s Systems 80+, and Westinghouse`s AP600 were described in each technology review. The review concluded that the capability of N4 plant with Mode X is the best and the methods in System, 80+ and AP600 would require verifications for the continued and usual load-following operation. It was recommended that the load-following operation experiences in domestic PWRs under operation be required to settle down the capability for the future. In addition, a more enhanced technology is required for the Korean next generation PWR regardless what the reference plant concept is. 30 figs., 19 tabs., 75 refs. (Author).

  8. International trade and waste and fuel managment issue, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2007-01-15

    The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: New plants with high safety and availability, by Bill Poirier, Westinghouse Electric Company; Increased reliability and competitiveness, by Russell E. Stachowski, GE Energy, Nuclear; Fuel for long-term supply of nuclear power, by Kumiaki Moriya, Hitachi, Ltd., Japan; Super high burnup fuel, By Noboru Itagaki and Tamotsu Murata, Nuclear Fuel Industries LTD., Japan; Zero fuel failures by 2010, by Tom Patten, AREVA NP Inc.; Decommissioning opportunities in the UK, by David Brown and William Thorn, US Department of Commerce; Industry's three challenges, by Dale E. Klein, US Nuclear Regulatory Commission; and, A step ahead of the current ABWR's, compiled by Claire Zurek, GE Energy.

  9. Best estimate probabilistic safety assessment results for the Westinghouse Advanced Loop Tester (WALT)

    International Nuclear Information System (INIS)

    Wang, Guoqiang; Xu, Yiban; Oelrich, Robert L. Jr.; Byers, William A.; Young, Michael Y.; Karoutas, Zeses E.

    2011-01-01

    The nuclear industry uses the probabilistic safety assessment (PSA) technique to improve safety decision making and operation. The methodology evaluates the system reliability, which is defined as the probability of system success, and the postulated accident/problematic scenarios of systems for the nuclear power plants or other facilities. The best estimate probabilistic safety assessment (BE-PSA) method of evaluating system reliability and postulated problematic scenarios will produce more detailed results of interest, such as best estimated reliability analysis and detailed thermal hydraulic calculations using a sub-channel or Computational Fluid Dynamics (CFD) code. The methodology is typically applied to reactors, but can also be applied to any system such as a test facility. In this paper, a BE-PSA method is introduced and used for evaluating the Westinghouse Advanced Loop Tester (WALT). The WALT test loop at the George Westinghouse Science and Technology Center (STC), which was completed in October 2005, is designed to be utilized to model the top grid span of a hot rod in a fuel assembly under the Pressurizer Water Reactor (PWR) normal operating conditions. In order to safely and successfully operate the WALT test loop and correctly use the WALT experimental data, it is beneficial to perform a probabilistic safety assessment and analyze the thermal hydraulic results for the WALT loop in detail. Since October 2005, a number of test runs have been performed on the WALT test facility designed and fabricated by Westinghouse Electric Company LLC. This paper briefly describes the BE-PSA method and performs BE-PSA for the WALT loop. Event trees linked with fault trees embedding thermal hydraulic analysis models, such as sub-channel and/or CFD models, were utilized in the analyses. Consequently, some selected useful experimental data and analysis results are presented for future guidance on WALT and/or other similar test facilities. For example, finding and

  10. Management of radioactive wastes from nuclear fuels and power plants in Canada

    International Nuclear Information System (INIS)

    Tomlinson, M.; Mayman, S.A.; Tammemagi, H.Y.; Gale, J.; Sanford, B.

    1977-05-01

    The nature of Canadian nuclear fuel and nuclear generating plant radioactive wastes is summarized. Principles of a scheme for disposal of long-lived radioactive wastes deep underground in isolation from man and the biosphere are outlined. The status of the development and construction program is indicated. We have demonstrated incorporation of fission products in solids that in the short term (17 years) dissolve more slowly than plutonium decays. Investigations of long-term stability are in hand. Additional capacity for storage of used fuel prior to reprocessing and disposal is required by 1986 and a preliminary design has been prepared for a pool facility to be located at a central fuel recycling and disposal complex. A demonstration of dry storage of fuel in concrete containers is in progress. The quantities of CANDU generating-station wastes and the principles and methods for managing them are summarized. A radioactive-waste operations site is being developed with several different types of surface storage, each with multiple barriers against leakage. A reactor decommissioning study has been completed. Estimated costs of the various waste management operations are summarized. (author)

  11. Advanced high throughput MOX fuel fabrication technology and sustainable development

    International Nuclear Information System (INIS)

    Krellmann, Juergen

    2005-01-01

    The MELOX plant in the south of France together with the La Hague reprocessing plant, are part of the two industrial facilities in charge of closing the nuclear fuel cycle in France. Started up in 1995, MELOX has since accumulated a solid know-how in recycling plutonium recovered from spent uranium fuel into MOX: a fuel blend comprised of both uranium and plutonium oxides. Converting recovered Pu into a proliferation-resistant material that can readily be used to power a civil nuclear reactor, MOX fabrication offers a sustainable solution to safely take advantage of the plutonium's high energy content. Being the first large-capacity industrial facility dedicated to MOX fuel fabrication, MELOX distinguishes itself from the first generation MOX plants with high capacity (around 200 tHM versus around 40 tHM) and several unique operational features designed to improve productivity, reliability and flexibility while maintaining high safety standards. Providing an exemplary reference for high throughput MOX fabrication with 1,000 tHM produced since start-up, the unique process and technologies implemented at MELOX are currently inspiring other MOX plant construction projects (in Japan with the J-MOX plant, in the US and in Russia as part of the weapon-grade plutonium inventory reduction). Spurred by the growing international demand, MELOX has embarked upon an ambitious production development and diversification plan. Starting from an annual level of 100 tons of heavy metal (tHM), MELOX demonstrated production capacity is continuously increasing: MELOX is now aiming for a minimum of 140 tHM by the end of 2005, with the ultimate ambition of reaching the full capacity of the plant (around 200 tHM) in the near future. With regards to its activity, MELOX also remains deeply committed to sustainable development in a consolidated involvement within AREVA group. The French minister of Industry, on August 26th 2005, acknowledged the benefits of MOX fuel production at MELOX: 'In

  12. Solvent extraction for spent nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Masui, Jinichi

    1986-01-01

    The purex process provides a solvent extraction method widely used for separating uranium and plutonium from nitric acid solution containing spent fuel. The Tokai Works has adopted the purex process with TPB-n dodecane as the extraction agent and a mixer settler as the solvent extraction device. The present article outlines the solvent extraction process and discuss the features of various extraction devices. The chemical principle of the process is described and a procedure for calculating the number of steps for countercurrent equilibrium extraction is proposed. Discussion is also made on extraction processes for separating and purifying uranium and plutonium from fission products and on procedures for managing these processes. A small-sized high-performance high-reliability device is required for carrying out solvent extraction in reprocessing plants. Currently, mixer settler, pulse column and centrifugal contactor are mainly used in these plants. Here, mixer settler is comparted with pulse column with respect to their past achievements, design, radiation damage to solvent, operation halt, controllability and maintenance. Processes for co-extraction, partition, purification and solvent recycling are described. (Nogami, K.)

  13. Update of operations with Westinghouse steam generators

    International Nuclear Information System (INIS)

    Malinowski, D.D.; Fletcher, W.D.

    1978-01-01

    Westinghouse commercial steam generators in operation now number 112, of which 98 are tubed with Inconel 600, the remainder with stainless steel. The implementation of all volatile treatment (AVT) was reported. It was noted that several plants had exhibited some tube corrosion during their initial periods using AVT; this observation indicated that the transition from phosphate chemistry control to AVT may have been subject to certain residual effects due to incomplete removal of phosphated deposits. As inspection results from steam generators operated on AVT became more generally available with the passage of time, a pattern of results emerged that seemed to correlate with the operating experience with phosphate chemistry control. Specifically, all the plants that experienced corrosion problems had from 1 to 8 yr of operational history using phosphates, while those with less than a year's experience using phosphates tended to be less affected by corrosion problems

  14. VVANTAGE 6 - an advanced fuel assembly design for VVER reactors

    International Nuclear Information System (INIS)

    Doshi, P.K.; DeMario, E.E.; Knott, R.P.

    1993-01-01

    Over the last 25 years, Westinghouse fuel assemblies for pressurized water reactors (PWR's) have undergone significant changes to the current VANTAGE 5. VANTAGE 5 PWR fuel includes features such as removable top nozzles, debris filter bottom nozzles, low-pressure-drop zircaloy grids, zircaloy intermediate flow mixing grids, optimized fuel rods, in-fuel burnable absorbers, and increased burnup capability to region average values of 48000 MWD/MTU. These features have now been adopted to the VVER reactors. Westinghouse has completed conceptual designs for an advanced fuel assembly and other core components for VVER-1000 reactors known as VANTAGE 6. This report describes the VVANTAGE 6 fuel assembly design

  15. Discrete rod burnup analysis capability in the Westinghouse advanced nodal code

    International Nuclear Information System (INIS)

    Buechel, R.J.; Fetterman, R.J.; Petrunyak, M.A.

    1992-01-01

    Core design analysis in the last several years has evolved toward the adoption of nodal-based methods to replace traditional fine-mesh models as the standard neutronic tool for first core and reload design applications throughout the nuclear industry. The accuracy, speed, and reduction in computation requirements associated with the nodal methods have made three-dimensional modeling the preferred approach to obtain the most realistic core model. These methods incorporate detailed rod power reconstruction as well. Certain design applications such as confirmation of fuel rod design limits and fuel reconstitution considerations, for example, require knowledge of the rodwise burnup distribution to avoid unnecessary conservatism in design analyses. The Westinghouse Advanced Nodal Code (ANC) incorporates the capability to generate the intra-assembly pin burnup distribution using an efficient algorithm

  16. Closing the fuel cycle

    International Nuclear Information System (INIS)

    Aycoberry, C.; Rougeau, J.P.

    1987-01-01

    The progressive implementation of some key nuclear fuel cycle capecities in a country corresponds to a strategy for the acquisition of an independant energy source, France, Japan, and some European countries are engaged in such strategic programs. In France, COGEMA, the nuclear fuel company, has now completed the industrial demonstration of the closed fuel cycle. Its experience covers every step of the front-end and of the back-end: transportation of spent fuels, storage, reprocessing, wastes conditioning. The La Hague reprocessing plant smooth operation, as well as the large investment program under active progress can testify of full mastering of this industry. Together with other French and European companies, COGEMA is engaged in the recycling industry, both for uranium through conversion of uranyl nitrate for its further reeichment, and for plutonium through MOX fuel fabrication. Reprocessing and recycling offer the optimum solution for a complete, economic, safe and future-oriented fuel cycle, hence contributing to the necessary development of nuclear energy. (author)

  17. A cost-benefit analysis of spent fuel management

    International Nuclear Information System (INIS)

    Lamorlette, G.

    2001-01-01

    The back end of the fuel cycle is an area of economic risk for utilities having nuclear power plants to generate electricity. A cost-benefit analysis is a method by which utilities can evaluate advantages and drawbacks of alternative back end fuel cycle strategies. The present paper analyzes how spent fuel management can influence the risks and costs incurred by a utility over the lifetime of its power plants and recommends a recycling strategy. (author)

  18. The Westinghouse BEACON on-line core monitoring system

    International Nuclear Information System (INIS)

    Buechel, Robert J.; Boyd, William A.; Casadei, Alberto L.

    1995-01-01

    BEACON (Best Estimate Analysis of Core Operations - Nuclear), a core monitoring and operational support package developed by Westinghouse, has been installed at many operating PWRs worldwide. The BEACON system is a real-time monitoring system which can be used in plants with both fixed and movable incore detector systems and utilizes an on-line nodal model combined with core instrumentation data to provide continuous core power distribution monitoring. In addition, accurate core-predictive capabilities utilizing a full core nodal model updated according to plant operating history can be made to provide operational support. Core history information is kept and displayed to help operators anticipate core behavior and take pro-active control actions. The BEACON system has been licensed by the U.S. Nuclear Regulatory Commission for direct, continuous monitoring of DNBR and peak linear heat rate. This allows BEACON to be integrated into the plant technical specifications to permit significant relaxation of operating limitations defined by conventional technical specifications. (author). 4 refs, 2 figs, 1 tab

  19. Standard technical specifications for Westinghouse pressurized water reactors

    International Nuclear Information System (INIS)

    Wagner, P.C.

    1979-07-01

    This Standard Technical Specification (STS) has been structured for the broadest possible use on Westinghouse plants currently being reviewed for an Operating License. Accordingly, the document contains specifications applicable to plants with (1) either 3 or 4 loops and (2) with and without loop stop valves. In addition, four separate and discrete containment specification sections are provided for each of the following containment types: Atmospheric, Ice Condenser, Sub-Atmospheric, and Dual. Optional specifications are provided for those features and systems which may be included in individual plant designs but are not generic in their scope of application. Alternate specifications are provided in a limited number of cases to cover situations where alternate specification requirements are necessary on a generic basis because of design differences. This revision of the STS does not typically include requirements which may be added or revised as a result of the NRC staff's further review of the Three Mile Island incident

  20. Idaho National Engineering and Environmental Laboratory Site Report on the Production and Use of Recycled Uranium

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Lewis; D. C. Barg; C. L. Bendixsen; J. P. Henscheid; D. R. Wenzel; B. L. Denning

    2000-09-01

    Recent allegations regarding radiation exposure to radionuclides present in recycled uranium sent to the gaseous diffusion plants prompted the Department of Energy to undertake a system-wide study of recycled uranium. Of particular interest, were the flowpaths from site to site operations and facilities in which exposure to plutonium, neptunium and technetium could occur, and to the workers that could receive a significant radiation dose from handling recycled uranium. The Idaho National Engineering and Environmental Laboratory site report is primarily concerned with two locations. Recycled uranium was produced at the Idaho Chemical Processing Plant where highly enriched uranium was recovered from spent fuel. The other facility is the Specific Manufacturing Facility (SMC) where recycled, depleted uranium is manufactured into shapes for use by their customer. The SMC is a manufacturing facility that uses depleted uranium metal as a raw material that is then rolled and cut into shapes. There are no chemical processes that might concentrate any of the radioactive contaminant species. Recyclable depleted uranium from the SMC facility is sent to a private metallurgical facility for recasting. Analyses on the recast billets indicate that there is no change in the concentrations of transuranics as a result of the recasting process. The Idaho Chemical Processing Plant was built to recover high-enriched uranium from spent nuclear fuel from test reactors. The facility processed diverse types of fuel which required uniquely different fuel dissolution processes. The dissolved fuel was passed through three cycles of solvent extraction which resulted in a concentrated uranyl nitrate product. For the first half of the operating period, the uranium was shipped as the concentrated solution. For the second half of the operating period the uranium solution was thermally converted to granular, uranium trioxide solids. The dose reconstruction project has evaluated work exposure and

  1. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Paviet-Hartmann, P. [Idaho National Laboratory, 995 University Blvd, Idaho Falls, ID 83402 (United States); Riddle, C. [Idaho National Laboratory, Material and Fuel Complex, Idaho Falls, ID 83415-6150 (United States); Campbell, K. [University of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89144 (United States); Mausolf, E. [Pacific Northwest National Laboratory, 902 Batelle Blvd, Richland, WA 99352 (United States)

    2013-07-01

    The most widely used reductant to partition plutonium from uranium in the Purex process was ferrous sulfamate, other alternates were proposed such as hydrazine-stabilized ferrous nitrate or uranous nitrate, platinum catalyzed hydrogen, and hydrazine, hydroxylamine salts. New candidates to replace hydrazine or hydroxylamine nitrate (HAN) are pursued worldwide. They may improve the performance of the industrial Purex process towards different operations such as de-extraction of plutonium and reduction of the amount of hydrazine which will limit the formation of hydrazoic acid. When looking at future recycling technologies using hydroxamic ligands, neither acetohydroxamic acid (AHA) nor formohydroxamic acid (FHA) seem promising because they hydrolyze to give hydroxylamine and the parent carboxylic acid. Hydroxyethylhydrazine, HOC{sub 2}H{sub 4}N{sub 2}H{sub 3} (HEH) is a promising non-salt-forming reductant of Np and Pu ions because it is selective to neptunium and plutonium ions at room temperature and at relatively low acidity, it could serve as a replacement of HAN or AHA for the development of a novel used nuclear fuel recycling process.

  2. MOX fuel transport: the French experience

    International Nuclear Information System (INIS)

    Sanchis, H.; Verdier, A.; Sanchis, H.

    1999-01-01

    In the back-end of the fuel cycle, several leading countries have chosen the Reprocessing, Conditioning, Recycling (RCR) option. Plutonium recycling in the form of MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants an several European countries. The COGEMA Group has developed the industrialized products to master the RCR operation including transport COGEMA subsidiary, TRANSNUCLEAIRE has been operating MOX fuel transports on an industrial scale for more than 10 years. In 1998, around 200 transports of Plutonium materials have been organised by TRANSNUCLEAIRE. These transports have been carried out by road between various facilities in Europe: reprocessing plants, manufacturing plants and power plants. The materials transported are either: PuO 2 and MOX powder; BWR and PWR MOX fuel rods; BWR and PWR MOX fuel assemblies. Because MOX fuel transport is subject to specific safety, security and fuel integrity requirements, the MOX fuel transport system implemented by TRANSNUCLEAIRE is fully dedicated. Packaging have been developed, licensed and manufactured for each kind of MOX material in compliance with relevant regulations. A fleet of vehicles qualified according to existing physical protection regulations is operated by TRANSNUCLEAIRE. TRANSNUCLEAIRE has gained a broad experience in MOX transport in 10 years. Technical and operational know-how has been developed and improved for each step: vehicles and packaging design and qualification; vehicle and packaging maintenance; transport operations. Further developments are underway to increase the payload of the packaging and to improve the transport conditions, safety and security remaining of course top priority. (authors)

  3. The Westinghouse AP1000 plant design: a generation III+ reactor with unique proven passive safety technology

    International Nuclear Information System (INIS)

    Demetri, K. J.; Leipner, C. I.; Marshall, M. L.

    2015-09-01

    The AP1000 plant is an 1100-M We pressurized water reactor with passive safety features and extensive plant simplifications and standardization that simplify construction, operation, maintenance, safety, and cost. The AP1000 plant is based on proven pressurized water reactor (PWR) technology, with an emphasis on safety features that rely solely on natural forces. These passive safety features are combined with simple, active, defense-in-depth systems used during normal plant operations which also provide the first level of defense against more probable events. This paper focuses on specific safety and licensing topics: the AP1000 plant robustness to be prepared for extreme events that may lead to catastrophic loss of infrastructure, such as the Fukushima Dai-ichi event, and the AP1000 plant compliance with the safety objectives for new plants. The first deployment of the AP1000 plant formally began in July 2007 when Westinghouse Electric Company and its consortium partner, the Shaw Group, signed contracts for four AP1000 units on coastal sites of Sanmen and Haiyang, China. Both sites have the planned ability to accommodate at least six AP1000 units; construction is largely concurrent for all four units. Additionally, the United States (U.S.) Nuclear Regulatory Commission (NRC) issued combined licenses (COLs) to allow Southern Nuclear Operating Company (SNC) and South Carolina Electric and Gas Company (SCE and G) to construct and operate AP1000 plants. Within this paper, the various factors that contribute to an unparalleled level of design, construction, delivery, and licensing certainty for any new AP1000 plant projects are described. These include: 1) How the AP1000 plant design development and reviews undertaken in the United States, China and Europe increase licensing certainty. 2) How the AP1000 passive plant robustness against extreme events that result in large loss of infrastructure further contributes to the licensing certainty in a post

  4. The Westinghouse AP1000 plant design: a generation III+ reactor with unique proven passive safety technology

    Energy Technology Data Exchange (ETDEWEB)

    Demetri, K. J.; Leipner, C. I.; Marshall, M. L., E-mail: demetrkj@westinghouse.com [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2015-09-15

    The AP1000 plant is an 1100-M We pressurized water reactor with passive safety features and extensive plant simplifications and standardization that simplify construction, operation, maintenance, safety, and cost. The AP1000 plant is based on proven pressurized water reactor (PWR) technology, with an emphasis on safety features that rely solely on natural forces. These passive safety features are combined with simple, active, defense-in-depth systems used during normal plant operations which also provide the first level of defense against more probable events. This paper focuses on specific safety and licensing topics: the AP1000 plant robustness to be prepared for extreme events that may lead to catastrophic loss of infrastructure, such as the Fukushima Dai-ichi event, and the AP1000 plant compliance with the safety objectives for new plants. The first deployment of the AP1000 plant formally began in July 2007 when Westinghouse Electric Company and its consortium partner, the Shaw Group, signed contracts for four AP1000 units on coastal sites of Sanmen and Haiyang, China. Both sites have the planned ability to accommodate at least six AP1000 units; construction is largely concurrent for all four units. Additionally, the United States (U.S.) Nuclear Regulatory Commission (NRC) issued combined licenses (COLs) to allow Southern Nuclear Operating Company (SNC) and South Carolina Electric and Gas Company (SCE and G) to construct and operate AP1000 plants. Within this paper, the various factors that contribute to an unparalleled level of design, construction, delivery, and licensing certainty for any new AP1000 plant projects are described. These include: 1) How the AP1000 plant design development and reviews undertaken in the United States, China and Europe increase licensing certainty. 2) How the AP1000 passive plant robustness against extreme events that result in large loss of infrastructure further contributes to the licensing certainty in a post

  5. The Ellweiler uranium plant - a demolition and recycling project

    International Nuclear Information System (INIS)

    Mika, S.; Rohr, T.; Seehars, R.; Feser, A.

    1999-01-01

    The uranium plant at Ellweiler, district of Birkenfeld, was used for the production and storage of uranium concentrates. The owner of the Ellweiler uranium plant (UAE), Gewerkschaft Brunhilde GmbH, ceased processing uranium ore and recycling in 1989 and has been in liquidation since September 1991. The State of Rhineland-Palatinate, had safety measures adopted in a first step, getting the plant into a safe state by former plant personnel. The entire plant was demolished in a second step. The contract for demolishing the former uranium plant was awarded to ABB Reaktor as the general contractor in August 1996. Demolition work was carried out between April 1997 and May 1999. A total of approx. 7900 Mg of material was disposed of. At present, recultivation measures are being carried out. (orig.) [de

  6. Melvin Calvin: Fuels from Plants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.E.; Otvos, J.W.

    1998-11-24

    A logical extension of his early work on the path of carbon during photosynthesis, Calvin's studies on the production of hydrocarbons by plants introduced many in the scientific and agricultural worlds to the potential of renewable fuel and chemical feedstocks. He and his co-workers identified numerous candidate compounds from plants found in tropical and temperate climates from around the world. His travels and lectures concerning the development of alternative fuel supplies inspired laboratories worldwide to take up the investigation of plant-derived energy sources as an alternative to fossil fuels.

  7. Technology options for future recycling

    International Nuclear Information System (INIS)

    Kikuchi, T.

    2001-01-01

    Recycling of nuclear material is indispensable, not only for using valuable resources but also for reducing the debt which we may leave to the next generations. Advanced reprocessing technologies have been developed in several countries to deal with the diversification of nuclear fuels. Also technologies derived from reprocessing or other fuel cycle areas have continued to be developed in terms of recycling. Cost effectiveness and waste-free processing are increasingly important factors in the applicable of an alternate recycling policy. This paper introduces an example of the studies in this field conducted in some countries including Japan and considers the establishment of effective recycling methodologies taking into account the uncertainty of future recycling policy. (author)

  8. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  9. Experience with Pu-recycle fuel for large light water reactors in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Stehle, H.; Spierling, H.; Eickelpasch, N.; Stoll, W.

    1977-01-01

    In general, design and operational performance of Pu-bearing recycle fuel are quite similar to those of Uranium fuel. Up to Nov. 1976 153 Pu-bearing fuel assemblies with altogether 8000 fuel rods, fabricated by ALKEM, have been or are in operation in German power reactors. Their performance is very satisfactory. In the Obrigheim and in the Gundremmingen plant up to 20% of the core are made up of Pu-fuel. In either case all-Pu fuel assemblies are used, graded in their Pu-content for compatibility with the surrounding U-fuel. The physics calculations are accomplished with basically the same methods as applied for U-fuel. Theoretical investigations and physics measurements have shown that differences in reactivity balance can be minimized by proper loading patterns. In additional experiments at elevated temperature (KRITZ) the neutron physics methods were verified in greater detail. The main feature of fabrication of mixed oxide pellets is mechanical blending of natural UO 2 - and PuO 2 -powder before pressing green pellets, and a rather high degree of mechanisation in all fabrication steps including sintering, wet grinding, and rod filling operations. The Zircaloy cladding know-how, welding techniques, final surface treatment etc. were all taken from the large experience of KWU in the LWR fuel area. Several fuel assemblies have been examined in the spent fuel pools and in hot cell laboratories after a maximum burn-up of 30 GWd/t. The examinations revealed no significant differences compared to U-fuel. Fission gas release is somewhat higher, attributed to the inhomogeneous fissioning on the microscopic scale in the mechanically mixed oxide. For the same reason the rate of densification is reduced. No Pu-redistribution has been observed. β-scans ( 140 La) and isotopic analyses confirmed the adequate accuracy of the calculation methods. In order to investigate the thermo-mechanical behaviour especially under power ramping conditions in greater depth mixed oxide test

  10. Nuclear-fuel-cycle education: Module 10. Environmental consideration

    International Nuclear Information System (INIS)

    Wethington, J.A.; Razvi, J.; Grier, C.; Myrick, T.

    1981-12-01

    This educational module is devoted to the environmental considerations of the nuclear fuel cycle. Eight chapters cover: National Environmental Policy Act; environmental impact statements; environmental survey of the uranium fuel cycle; the Barnwell Nuclear Fuel Reprocessing Plant; transport mechanisms; radiological hazards in uranium mining and milling operations; radiological hazards of uranium mill tailings; and the use of recycle plutonium in mixed oxide fuel

  11. Toshiba-Westinghouse, the new electronuclear giant

    International Nuclear Information System (INIS)

    Guezel, J.Ch.

    2006-01-01

    Toshiba, so far a minor actor of the world nuclear industry, won in summer 2005 in front of General Electric and Mitsubishi Heavy Industries, the takeover bid launched by the public British organization BNFL which controls Westinghouse. In case of success of this operation, Toshiba will own a quarter of the world nuclear capacities and will become the first competitor of Areva. The main objective of Toshiba is to win market shares abroad thanks to the prospects offered by Westinghouse's technologies in particular in China which is one of the most targeted market today. Short paper. (J.S.)

  12. MOX fuel fabrication technology in J-MOX

    International Nuclear Information System (INIS)

    Osaka, Shuichi; Yoshida, Ryouichi; Yamazaki, Yukiko; Ikeda, Hiroyuki

    2014-01-01

    Japan Nuclear Fuel Ltd. (JNFL) has constructed JNFL MOX Fuel Fabrication Plant (J-MOX) since 2010. The MIMAS process has been introduced in the powder mixing process from AREVA NC considering a lot of MOX fuel fabrication experiences at MELOX plant in France. The feed material of Pu for J-MOX is MH-MOX powder from Rokkasho Reprocessing Plant (RRP) in Japan. The compatibility of the MH-MOX powder with the MIMAS process was positively evaluated and confirmed in our previous study. This paper describes the influences of the UO2 powder and the recycled scrap powder on the MOX pellet density. (author)

  13. Fuel performance in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-11-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE). A variety of different types of fuels have been stored there since the 1950's prior to reprocessing for uranium recovery. In April of 1992, the DOE decided to end fuel reprocessing, changing the mission at ICPP. Fuel integrity in storage is now viewed as long term until final disposition is defined and implemented. Thus, the condition of fuel and storage equipment is being closely monitored and evaluated to ensure continued safe storage. There are four main areas of fuel storage at ICPP: an original underwater storage facility (CPP-603), a modern underwater storage facility (CPP-666), and two dry fuel storage facilities. The fuels in storage are from the US Navy, DOE (and its predecessors the Energy Research and Development Administration and the Atomic Energy Commission), and other research programs. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels. In the underwater storage basins, fuels are clad with stainless steel, zirconium, and aluminum. Also included in the basin inventory is canned scrap material. The dry fuel storage contains primarily graphite and aluminum type fuels. A total of 55 different fuel types are currently stored at the Idaho Chemical Processing Plant. The corrosion resistance of the barrier material is of primary concern in evaluating the integrity of the fuel in long term water storage. The barrier material is either the fuel cladding (if not canned) or the can material

  14. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels; Kloorattujen orgaanisten yhdisteiden muodostuminen kierraetyspolttoaineiden leijukerrospoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Vesterinen, R.; Kallio, M.; Kirjalainen, T.; Kolsi, A.; Merta, M. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  15. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  16. Melting of fuel element racks and their recycling as granulate

    International Nuclear Information System (INIS)

    Quade, U.; Kluth, T.; Kreh, R.

    1998-01-01

    In order to increase the storage capacity for spent fuel elements in the Spanish NPPs of Almaraz and Asco, the existing racks were replaced by compact one in 1991/1993. The 28 racks from Almaraz NPP were cut on site, packed in 200-I-drums and taken to intermediate storage. For the remaining 28 racks of Asco NPP, ENRESA preferred the melting alternative. To demonstrate the recycling path melting in Germany, a test campaign with six racks was performed in 1997. As a result of this test melt, the limits for Carla melting plant were modified to 200 Bq/g total, α, β, γ 100 Bq/g nuclear fuels, max. 3g/100 kg 2,000 Bq/g total Fe55, H 3 , C-14 and Ni63. After the test melt campaign, the German authorities licensed the import and treatment of the remaining 22 racks on the condition that the waste resulting from the melting process as well as the granules produced were taken back to Spain. The shipment from Asco via France to Germany has been carried out in F 20-ft-IPII containers in accordance with ADR. Size reduction to chargeable dimensions was carried out by a plasma burner and hydraulic shears. For melting, a 3.2 Mg medium frequency induction furnace, operated in a separate housing, was used. For granules production outside this housing, the liquid iron was cast into a 5Mg ladle and then, through a water jet, into the granulating basin. The total mass of 287,659 Kg of 28 fuel elements racks and components of the storage basin yielded 297,914 kg of iron granulate. Secondary waste from melting amounted to 9,920 kg, corresponding to 3.45% of the input mass. The granulating process produced 6,589 kg, corresponding to 2.28% of the total mass to be melted. Radiological analysis of samples taken from the melt and different waste components confirmed the main nuclides Co60, Cs134 and Cs137. Fe55 was highly overestimated by the preliminary analysis. (Author) 2 refs

  17. Evaluation of disposal, recycling and clearance scenarios for managing ARIES radwaste after plant decommissioning

    International Nuclear Information System (INIS)

    El-Guebaly, L.

    2007-01-01

    The wealth of experience accumulated over the past 30-40 years of fusion power plant studies must be forged into a new strategy to reshape all aspects of handling the continual stream of radioactive materials during operation and after power plant decommissioning. With tighter environmental controls and the political difficulty of building new repositories worldwide, the disposal option could be replaced with more environmentally attractive scenarios, such as recycling and clearance. We applied the three scenarios to the most recent ARIES compact stellarator power plant. All ARIES-CS components qualify as Class A or C low-level waste, according to the US guidelines, and can potentially be recycled using conventional and advanced remote handling equipment. Approximately 80% of the total waste can be cleared for reuse within the nuclear industry or, preferably, released to the commercial market. This paper documents the recent developments in radwaste management of nuclear facilities and highlights the benefits and challenges of disposal, recycling and clearance

  18. Spent fuel treatment in Japan

    International Nuclear Information System (INIS)

    Takahashi, K.

    1999-01-01

    In Japan, 52 nuclear power reactors are operating with a total power generation capacity of 45 GWe. The cumulative amount of spent fuel arising, as of March 1998, is about 14,700 W. Spent fuel is reprocessed and recovered nuclear materials are to be recycled in LWRs and FBRs. Pu utilization in LWRs will commence in 1999. In January 1997, short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of the reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, back-end measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away-from-reactor sites, considering the increasing amount of spent fuel arising. Valuable experience was been accumulated at the Tokai Reprocessing Plant (TRP), from the start of hot operation in 1977 up to now. The role of the TRP will be changed from an operation-oriented to a more R and D oriented facility, when PNC is reorganized into the new organization JNC. The Rokkasho reprocessing plant is under construction and is expected to commence operation in 2003. R and D of future recycling technologies is also continued for the establishment of a nuclear fuel cycle based on FBRs and LWRs. (author)

  19. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  20. Conceptual core design of Advanced Recycling Reactor based on mature technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazumi, E-mail: kazumi_ikeda@mfbr.mhi.co.jp [Mitsubishi FBR systems, Tokyo 150-0001 (Japan); Stein, Kim O., E-mail: Kim.Stein@areva.com [AREVA Federal Services, Bethesda, MD 20814 (United States); Nakazato, Wataru, E-mail: wataru_nakazato@mhi.co.jp [Mitsubishi Heavy Industries, Kobe 652-8585 (Japan); Mito, Makoto, E-mail: makoto_mito@mfbr.mhi.co.jp [Mitsubishi FBR systems, Tokyo 150-0001 (Japan)

    2011-06-15

    Research highlights: > ARR is an oxide fueled sodium cooled reactor based on mature technologies to destruct TRU. > Flat core with thick wall cladding tubes are effective for ARR to reduce TRU CR and the void reactivity. > The ARR has TRU burning capability from 19 to 21 kg/TW{sub th}h and is sustainable in recycling. > The ARR can also accept TRU from LWR-MOX fuel and recycled TRU fuel, etc. > The ARR can transform from TRU conversion ratio of 0.56 to breeding ratio of 1.03 smoothly and safely. - Abstract: This paper presents about comprehensive investigations into Advanced Recycling Reactor (ARR) based on existing and/or mature technologies (called 'Early ARR'), aiming transuranics (TRU) burning and considering harmonization of TRU burning capability, technology readiness, economy and safety. The ARR is a 500 MW{sub e} (1180 MW{sub th}) oxide fueled sodium cooled fast reactor, which the low core height of 70 cm and the large structure volume fraction with 1.0 mm of cladding thickness to tube wall have been chosen among 14 candidate concepts to reduce the TRU conversion ratio (CR) and the void reactivity, taking technology readiness into account. As a result of nuclear calculation, the ARR has TRU burning capability from 19 to 21 kg/TW{sub th}h and is sustainable in recycling. And the ARR can accept several kinds of TRU; the LWR uranium oxide fuels, LWR-MOX used nuclear fuel, and TRU recycled in this fuel cycle and the ARR is also flexible in TRU management in ways that it can transform from TRU CR of 0.56 to breeding ratio (BR) of 1.03. In addition, it has been confirmed that the ARR core conforms to the set design requirements; the void reactivity, the maximum linear heat rate, and the shutdown margin of reactivity control system. It has been confirmed that the closed fuel cycle with the ARR plants of 180 GW{sub th} will not release TRU outside and generate more electricity by 65% compared with the present nuclear power system in the US, curbing the

  1. An analysis of the properties of levelized cost analysis of storage or recycling of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vergueiro, Sophia M. C.; Ramos, Alexandre F., E-mail: alex.ramos@usp.br, E-mail: sophia.vergueiro@usp.br [Universidade de São Paulo (USP), SP (Brazil). Núcleo Interdisciplinar de Modelagem de Sistemas Complexos

    2017-07-01

    The demand for reduction of carbon dioxide emissions in the processes of electricity generation, plus the demand for firm energy matrices, make the nuclear matrix a central component to occupy the energy mix during the next hundred years. Increasing the share of nuclear power in electricity production in a multiple developing countries will lead to increased spent fuel production. Thus, the managing radioactive waste aiming to decide about storing or recycling it is a central issue to be addressed by environmental management and nuclear energy communities. In this manuscript we present our studies aiming to understand the levelized analysis of cost of electricity generation comparing storage or recycling of the spent fuel. (author)

  2. An analysis of the properties of levelized cost analysis of storage or recycling of spent nuclear fuel

    International Nuclear Information System (INIS)

    Vergueiro, Sophia M. C.; Ramos, Alexandre F.

    2017-01-01

    The demand for reduction of carbon dioxide emissions in the processes of electricity generation, plus the demand for firm energy matrices, make the nuclear matrix a central component to occupy the energy mix during the next hundred years. Increasing the share of nuclear power in electricity production in a multiple developing countries will lead to increased spent fuel production. Thus, the managing radioactive waste aiming to decide about storing or recycling it is a central issue to be addressed by environmental management and nuclear energy communities. In this manuscript we present our studies aiming to understand the levelized analysis of cost of electricity generation comparing storage or recycling of the spent fuel. (author)

  3. Edward C. Little Water Recycling Plant, El Segundo, CA: CA0063401

    Science.gov (United States)

    Joint EPA and Los Angeles Regional Water Quality Control Board NPDES Permit and Waiver from Secondary Treatment for the West Basin Municipal Water District Edward C. Little Water Recycling Plant, El Segundo, CA: CA0063401

  4. Actinide transmutation using inert matrix fuels versus recycle in a low conversion fast burner reactor

    Energy Technology Data Exchange (ETDEWEB)

    Deinert, M.R.; Schneider, E.A.; Recktenwald, G.; Cady, K.B. [The Department of Mechanical Engineering, The University of Texas at Austin, 1 University Station, C2200, Austin, 78712 (United States)

    2009-06-15

    Reducing the disposal burden of the long lived radioisotopes that are contained within spent uranium oxide fuel is essential for ensuring the sustainability of nuclear power. Because of their non-fertile matrices, inert matrix fuels (IMFs) could allow light-water reactors to achieve a significant burn down of plutonium and minor actinides that are that are currently produced as a byproduct of operating light-water reactors. However, the extent to which this is possible is not yet fully understood. We consider a ZrO{sub 2} based IMF with a high transuranic loading and show that the neutron fluence (and the subsequent fuel residence time required to achieve it) present a practical limit for the achievable actinide burnup. The accumulation of transuranics in spent uranium oxide fuel is a major obstacle for the sustainability of nuclear power. While commercial light-water reactors (LWR's) produce these isotopes, they can be used to transmute them. At present, the only viable option for doing this is to partly fuel reactors with mixed oxide fuel (MOX) made using recycled plutonium. However, because of parasitic neutron capture in the uranium matrix of MOX, considerable plutonium and minor actinides are also bred as the fuel is burned. A better option is to entrain the recycled isotopes in a non-fertile matrix such as ZrO{sub 2}. Inert matrices such as these were originally envisioned for burning plutonium from dismantled nuclear weapons [1]. However, because they achieve a conversion ratio of zero, they have also been considered as a better alternative to MOX [2-6]. Plutonium and minor actinides dominate the long term heat and radiological outputs from spent nuclear fuel. Recent work has shown that that IMFs can be used to reduce these outputs by at least a factor of four, on a per unit of energy generated basis [6]. The degree of reduction is strongly dependent on IMF burnup. In principle, complete transmutation of the transuranics could be achieved though this

  5. Multiple recycling of plutonium in advanced PWRs

    International Nuclear Information System (INIS)

    Kloosterman, J.L.

    1998-04-01

    The influence of the moderator-to-fuel ratio in MOX fueled PWRs on the moderator void coefficient, the fuel temperature coefficient, the moderator temperature coefficient, the boron reactivity worth, the critical boron concentration, the mean neutron generation time and the effective delayed neutron fraction has been assessed. Increasing the moderator-to-fuel ratio to values larger than three, gives a moderator void coefficient sufficiently large to recycle the plutonium at least four times. Scenario studies show that four times recycling of plutonium in PWRs reduces the plutonium mass produced with a factor of three compared with a reference once-through reactor park, but that the americium and curium production triple. If the minor actinides and the remaining plutonium after four times recycling are disposed of, the reduction of the radiotoxicity reaches only a factor of two. This factor increases to five at the maximum when the plutonium is further recycled. Recycling of americium and curium is needed to further reduce the radiotoxicity of the spent fuel. 4 refs

  6. Proliferation resistance assessment of thermal recycle systems

    International Nuclear Information System (INIS)

    1979-02-01

    This paper examines the major proliferation aspects of thermal recycle systems and the extent to which technical or institutional measures could increase the difficulty or detectability of misuse of the system by would-be proliferators. It does this by examining the various activities necessary to acquire weapons-usable material using a series of assessment factors; resources required, time required, detectability. It is concluded that resistance to proliferation could be improved substantially by collecting reprocessing, conversion and fuel fabrication plants under multi national control and instituting new measures to protect fresh MOX fuel. Resistance to theft at sub-national level could be improved by co-location of sensitive facilities high levels of physical protection at plants and during transportation and possibly by adding a radiation barrier to MOX prior to shipment

  7. Management of the fuel-cycle back-end: The Electricite de France's strategy

    International Nuclear Information System (INIS)

    Esteve, B.

    2001-01-01

    Countries are following three options for management of spent fuel from nuclear power plants: reprocess-recycle, direct disposal, and ''wait and see''. France has adopted the reprocess-recycle strategy for managing its spent fuel, which has created a stable environment for Electricite de France to plan its spent fuel management. However, the French government is planning to debate its spent fuel management strategy and may choose a different direction. A number of factors affecting the choice of spent fuel management strategy are discussed and the benefits of maintaining the status quo from the point of view of the nuclear utility are explained. (author)

  8. Nuclear fuel control in fuel fabrication plants

    International Nuclear Information System (INIS)

    Seki, Yoshitatsu

    1976-01-01

    The basic control problems of measuring uranium and of the environment inside and outside nuclear fuel fabrication plants are reviewed, excluding criticality prevention in case of submergence. The occurrence of loss scraps in fabrication and scrap-recycling, the measuring error, the uranium going cut of the system, the confirmation of the presence of lost uranium and the requirement of the measurement control for safeguard make the measurement control very complicated. The establishment of MBA (material balance area) and ICA (item control area) can make clearer the control of inventories, the control of loss scraps and the control of measuring points. Besides the above basic points, the following points are to be taken into account: 1) the method of confirmation of inventories, 2) the introduction of reliable NDT instruments for the rapid check system for enrichment and amount of uranium, 3) the introduction of real time system, and 4) the clarification of MUF analysis and its application to the reliability check of measurement control system. The environment control includes the controls of the uranium concentration in factory atmosphere, the surface contamination, the space dose rate, the uranium concentration in air and water discharged from factories, and the uranium in liquid wastes. The future problems are the practical restudy of measurement control under NPT, the definite plan of burglary protection and the realization of the disposal of solid wastes. (Iwakiri, K.)

  9. Recycling versus Long-Term Storage of Nuclear Fuel: Economic Factors

    Directory of Open Access Journals (Sweden)

    B. Yolanda Moratilla Soria

    2013-01-01

    Full Text Available The objective of the present study is to compare the associated costs of long-term storage of spent nuclear fuel—open cycle strategy—with the associated cost of reprocessing and recycling strategy of spent fuel—closed cycle strategy—based on the current international studies. The analysis presents cost trends for both strategies. Also, to point out the fact that the total cost of spent nuclear fuel management (open cycle is impossible to establish at present, while the related costs of the closed cycle are stable and known, averting uncertainties.

  10. Radioactive waste management plan for the PBMR (Pty) Ltd fuel plant

    International Nuclear Information System (INIS)

    Makgae, Mosidi E.

    2009-01-01

    The Pebble Bed Modular Reactor (Pty) Ltd Fuel Plant (PFP) radioactive waste management plan caters for waste from generation, processing through storage and possible disposal. Generally, the amount of waste that will be generated from the PFP is Low and Intermediate Level Waste. The waste management plan outlines all waste streams and the management options for each stream. It also discusses how the Plant has been designed to ensure radioactive waste minimisation through recycling, recovery, reuse, treatment before considering disposal. Compliance to the proposed plan will ensure compliance with national legislative requirements and international good practice. The national and the overall waste management objective is to ensure that all PFP wastes are managed appropriately by utilising processes that minimize, reduce, recover and recycle without exposing employees, the public and the environment to unacceptable impacts. Both International Atomic Energy Agency (IAEA) and Department of Minerals and Energy (DME) principles act as a guide in the development of the strategy in order to ensure international best practice, legal compliance and ensuring that the impact of waste on employees, environment and the public is as low as reasonably achievable. The radioactive waste classification system stipulated in the Radioactive Waste Management Policy and Strategy 2005 will play an important role in classifying radioactive waste and ensuring that effective management is implemented for all waste streams, for example gaseous, liquid or solid wastes.

  11. Is the French fuel cycle management an asset for international business?

    International Nuclear Information System (INIS)

    Beutier, D.; Debes, M.

    2016-01-01

    In order to comfort its energy independence and diminish the amount of radioactive waste, France has chosen to close its fuel cycle since long. Thanks to the size of the fleet of reactors operating in France, reprocessing techniques have been validated on an industrial scale and France is now the only country to master these technologies. The French strategy of closing the fuel cycle allows, first, the vitrification of high-level radioactive wastes and their storing in passive installations before their definitive disposal and secondly, it allows the recycling of fissile materials. Several other countries like Japan, United-Kingdom, the Netherlands and China soon have also chosen to close their fuel cycle. Plutonium recycling is made through the fabrication of MOX (mixed uranium and plutonium oxides) fuel in the MELOX plant with an output of 120 tons a year. A second recycling of spent MOX fuel in PWR is unlikely because of the poor isotopic quality of the plutonium, the recycling will be possible and economically competitive in fast reactors when these 4. generation reactors take over. The important, complete and unique experience of AREVA in terms of fuel cycle from fuel fabrication to waste vitrification via plutonium recycling is a relevant asset in the competitive international nuclear energy market. (A.C.)

  12. Corrosion product balances for the Ringhals PWR plants based on extensive fuel crud and water chemistry measurements

    International Nuclear Information System (INIS)

    Lundgren, K.; Wikmark, G.; Bengtsson, B.

    2010-01-01

    The corrosion product balance in a PWR plant is of great importance for the fuel performance as well as for the radiation field buildup. This balance is of special concern in connection to steam generator replacement (SGR) and power uprate projects. The Ringhals PWRs are all of Westinghouse design. Two of the plants have performed Steam Generator Replacement (SGR) to I-690 SG tubes and such a replacement is being planned in the third and last unit in 2011. Two of the units are in different phases of power uprate projects. The plants are all on 10-14-months cycles operating with medium to high fuel duty. Water chemistry is controlled by a pH300 in the range ∼7.2 to 7.4 from beginning of cycle to end of cycle (BOC-EOC) in the units with new SGs while kept at a coordinated pH of 7.2 in the one still using I-600. The maximum Li content has recently been increased to about 4.5 to 5 ppm in all units. In order to be able to improve the assessment of corrosion product balances in the plants, comprehensive fuel crud measurements were performed in 2007. Improved integrated reactor water sampling techniques have also been introduced in order to make accurate mass balances possible. The corrosion products covered in the study are the main constituents, Ni, Fe and Cr in the primary circuit Inconel and stainless steel, together with Co. The activated corrosion products, Co-58, Co-60, Cr-51, Fe-59 and Mn-54, are all mainly produced through neutron irradiation of the covered corrosion products. The main results of the corrosion product balances are presented. Observed differences between the plants, indicating significant impact of pH control and SG tube materials, are presented and discussed. The importance of accurate sampling techniques is especially addressed in this paper. (author)

  13. The international WWER fuel market

    International Nuclear Information System (INIS)

    Gingold, G.E.; Goldstein, L.; Strasser, A.A.

    1994-01-01

    The state of the world nuclear fuel market and its economic complexities are described. Currently the nuclear fuel market is oversupplied and nuclear fuel fabrication in the West far exceeds the anticipated demands. Actually the current demand is not much more than half of the capacity available to supply it. The Eastern Europe (excluding the plants in the Russian Federation) with its 20 WWER-440 and 12 WWER-1000 reactors in operation and additional 4 WWER-440 and 8 WWER-1000 units under construction is considered as a potential long-term market for the Western fuel fabricators. The following significant benefits of competition in the WWER fuel market for the operators of these reactors are : 1) lower cost; 2) more favorable contract terms and improved vendor cooperation with the customer; 3) accelerated technological development. A brief description of the main WWER fuel suppliers TVEL, ABB Atom, BNFL, EVF and Westinghouse, as well as the status of some new companies as CEZ and SEP is given. The principal differences between Western and WWER fuels are outlined. The advanced features offered by the Western vendors and Russian fuel supply organisations are discussed. 2 tabs., 1 fig

  14. The international WWER fuel market

    Energy Technology Data Exchange (ETDEWEB)

    Gingold, G E; Goldstein, L; Strasser, A A [Stoller (S.M.) Corp., Pleasantville, NY (United States)

    1994-12-31

    The state of the world nuclear fuel market and its economic complexities are described. Currently the nuclear fuel market is oversupplied and nuclear fuel fabrication in the West far exceeds the anticipated demands. Actually the current demand is not much more than half of the capacity available to supply it. The Eastern Europe (excluding the plants in the Russian Federation) with its 20 WWER-440 and 12 WWER-1000 reactors in operation and additional 4 WWER-440 and 8 WWER-1000 units under construction is considered as a potential long-term market for the Western fuel fabricators. The following significant benefits of competition in the WWER fuel market for the operators of these reactors are : (1) lower cost; (2) more favorable contract terms and improved vendor cooperation with the customer; (3) accelerated technological development. A brief description of the main WWER fuel suppliers TVEL, ABB Atom, BNFL, EVF and Westinghouse, as well as the status of some new companies as CEZ and SEP is given. The principal differences between Western and WWER fuels are outlined. The advanced features offered by the Western vendors and Russian fuel supply organisations are discussed. 2 tabs., 1 fig.

  15. Performance of candu-6 fuel bundles manufactured in romania nuclear fuel plant

    International Nuclear Information System (INIS)

    Bailescu, A.; Barbu, A.; Din, F.; Dinuta, G.; Dumitru, I.; Musetoiu, A.; Serban, G.; Tomescu, A.

    2013-01-01

    The purpose of this article is to present the performance of nuclear fuel produced by Nuclear Fuel Plant (N.F.P.) - Pitesti during 1995 - 2012 and irradiated in units U1 and U2 from Nuclear Power Plant (N.P.P.) Cernavoda and also present the Nuclear Fuel Plant (N.F.P.) - Pitesti concern for providing technology to prevent the failure causes of fuel bundles in the reactor. This article presents Nuclear Fuel Plant (N.F.P.) - Pitesti experience on tracking performance of nuclear fuel in reactor and strategy investigation of fuel bundles notified as suspicious and / or defectives both as fuel element and fuel bundle, it analyzes the possible defects that can occur at fuel bundle or fuel element and can lead to their failure in the reactor. Implementation of modern technologies has enabled optimization of manufacturing processes and hence better quality stability of achieving components (end caps, chamfered sheath), better verification of end cap - sheath welding. These technologies were qualified by Nuclear Fuel Plant (N.F.P.) - Pitesti on automatic and Computer Numerical Control (C.N.C.) programming machines. A post-irradiation conclusive analysis which will take place later this year (2013) in Institute for Nuclear Research Pitesti (the action was initiated earlier this year by bringing a fuel bundle which has been reported defective by pool visual inspection) will provide additional information concerning potential damage causes of fuel bundles due to manufacturing processes. (authors)

  16. Conceptual study of the future nuclear fuel cycle system for the extended LWR age

    International Nuclear Information System (INIS)

    Fujine, Sachio; Takano, Hideki; Sato, Osamu; Tone, Tatsuzo; Yamada, Takashi; Kurosawa, Katsutoshi.

    1993-08-01

    A large scale integrated fuel cycle facility (IFCF) is assumed for the future nuclear fuel cycle in the extended LWR age. Spent MOX fuels are reprocessed mixed with UOX in a centralized reprocessing plant. The reprocessing plant separates long-lived nuclides as well as Pu. Nitric acid solutions of those products are fed directly to MOX fabrication process which is incorporated with reprocessing. MOX pellets are made by sphere-cal process. Two process concepts are made as advanced reprocessing incorporated with partitioning (ARP) which has the function of long-lived nuclides recovery. One is a simplified Purex combined with partitioning. Extractable long-lived nuclides, 237 Np and 99 Tc, are assumed to be recovered in main flow stream of the improved Purex process. The other process concept is made aiming at recovering all TRU nuclides in reprocessing to meet with TRU recycle requirement in the long future. A concept of the future fuel cycle system is made by combining integrated fuel cycle facility and very high burnup LWRs (VHBR). The reactor concept of VHBRs has been proposed to improve Pu recycle economy in the future. Highly enriched MOX fuel are loaded in the full core of reactor in order to increase reactivity for the burnup. Fuel cycle indices such as Pu isotopic composition change, spent fuel integration, nuclide transmutation effect are estimated by simulating the Pu recycling in the system of VHBR and ARP. It is concluded that Pu enrichment of MOX fuel can be kept less than 20 % through multi-recycle. Reprocessing MOX fuels with UOX shows a favorable effect for keeping Pu reactivity high enough for VHBR. Integration of spent MOX fuel can be reduced by Pu recycle. Transmutation of Np is feasible by containing Np into MOX fuel. (author)

  17. Supplementing the energy and plant nutrient requirements through organic recycling

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, S. S.; Misra, R. V.

    1980-03-15

    In context of dwindling non-renewable energy resources and increasing health hazards because of environmental pollution, recycling of organic residues obtained through various sources like crops, animals, and human beings is becoming increasingly important. The organic residues obtained as wastes through these sources can be recycled effectively to meet scarce resources of energy and the plant nutrients, so vitally needed for our day-to-day activities and for raising agricultural production. Agriculture is the main stay of the Indian economy. Considerable quantities of crop residues available from agriculture can be utilized to serve as a source of organic fertilizers which not only provide plant nutrients but also improve soil health. The country has a large animal and human population. The animal and human wastes can be successfully used for production of energy and organic fertilizer by routing through biogas system. There is a need to develop an integrated energy and nutrient supply program. An action program is outlined.

  18. Stationary power fuel cell commercialization status worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  19. Study on integrated TRU multi-recycling in sodium cooled fast reactor CDFR

    International Nuclear Information System (INIS)

    Hu Yun; Xu Mi; Wang Kan

    2010-01-01

    In view of recently proposed closed fuel cycle strategy which would recycle the integrated transuranics (TRU) from PWR spent fuel in the fast reactors, the neutronics characteristics of TRU recycled in China Demonstration Fast Reactor (CDFR) are studied in this paper. The results show that loading integrated TRU to substitute pure Pu as driver fuel will mainly make the influence on sodium void worth and negligible effects on other parameters, and hence TRU recycling in CDFR is feasible from viewpoint of core neutronics. If TRU is multi-recycled, the variation of TRU composition depends on fuel types and the ratio of TRU and U when recycling. It is indicated that, when TRU is multi-recycled in CDFR with MOX fuel, the minor actinides (MA) fraction in TRU will firstly decrease to ∼7.24% (minimum) within 8 TRU recycle times and then slowly increase to ∼7.7% after 20 TRU recycle times; while when TRU is multi-recycled in CDFR with metal fuel (TRU-U-10Zr), the MA fraction in TRU will gradually approach to an equilibrium state with the MA fraction of ∼3.8%, demonstrating better MA transmutation effect in metal fuel core. No matter 7.7 or 3.8%, they are both lower than ∼10% in PWR spent fuel with burnup of 45 GWd/tU, which presents satisfying effect of MA amount controlling for TRU multi-recycling strategy. On the other hand, the corresponding recycling parameters such as TRU heat release and neutron emission rate are also much lower in metal fuel than those in MOX fuel. Moreover, TRU recycled in metal fuel will bring greater fissile Pu isotopes equilibrium fraction due to better breeding capability of metal fuel. Finally, it could be summarized that integrated TRU multi-recycling in fast reactor can make contributions to both breeding and transmutation, and such strategy is a prospective closed fuel cycle manner to achieve the object of effective control of cumulated MA amount and sustainable development of nuclear energy.

  20. Development of dual-purpose metal cask for interim storage of spent nuclear fuel (1). Outline of cask structure

    International Nuclear Information System (INIS)

    Shimizu, Masashi; Hayashi, Makoto; Kashiwakura, Jun

    2003-01-01

    Spent fuels discharged from nuclear power plants in Japan are planed to be reprocessed at the nuclear fuel recycle plant under construction at Rokkasho-mura. Since the amount of the spent fuels exceeds that of recycled fuel, the spent fuels have to be properly stored and maintained as recycle fuel resource until the beginning of the reprocessing. For that sake, interim storage installations are being constructed outside the nuclear power plants by 2010. The storage dry casks have been practically used as the interim storage in the nuclear power plants. From this reason, the storage system using the storage dry casks is promising as the interim storage installations away form the reactors, which are under discussion. In the interim storage facilities, the storage using the dry cask of the storage metal cask with business showings, having the function of transportation is now under discussion. By employing transportation and storage dual-purpose cask, the repack equipments can be exhausted, and the reliability of the interim storage installations can be increased. Hitachi, Ltd. has been developing the high reliable and economical transportation and storage dry metal cask. In this report, the outline of our developing transportation and storage dry cask is described. (author)

  1. Effects of the reactor coolant pumps following a small break in a Westinghouse PWR

    International Nuclear Information System (INIS)

    Koenig, J.E.

    1983-10-01

    Numerical simulations of the thermal-hydraulic events following a small cold-leg break in a Westinghouse pressurized water reactor were performed to address the pumps-on/off issue. The mode of pump operation was varied in each calculation to ascertain the optimum mode. It was found that pump operation was not critical for this break size and location because the fuel rods remained cool in all accidents analyzed. In terms of system mass, however, it was preferable to leave the pumps in operation

  2. Practical introduction of thorium fuel cycles

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1982-01-01

    The pracitcal introduction of throrium fuel cycles implies that thorium fuel cycles compete economically with uranium fuel cycles in economic nuclear power plants. In this study the reactor types under consideration are light water reactors (LWRs), heavy water reactors (HWRs), high-temperature gas-cooled reactors (HTGRs), and fast breeder reactors (FBRs). On the basis that once-through fuel cycles will be used almost exclusively for the next 20 or 25 years, introduction of economic thorium fuel cycles appears best accomplished by commercial introduction of HTGRs. As the price of natural uranium increases, along with commercialization of fuel recycle, there will be increasing incentive to utilize thorium fuel cycles in heavy water reactors and light water reactors as well as in HTGRs. After FBRs and fuel recycle are commercialized, use of thorium fuel cycles in the blanket of FBRs appears advantageous when fast breeder reactors and thermal reactors operate in a symbiosis mode (i.e., where 233 U bred in the blanket of a fast breeder reactor is utilized as fissile fuel in thermal converter reactors)

  3. Physics of plutonium and americium recycling in PWR using advanced fuel concepts

    International Nuclear Information System (INIS)

    Hourcade, E.

    2004-01-01

    PWR waste inventory management is considered in many countries including Frances as one of the main current issues. Pu and Am are the 2 main contents both in term of volume and long term radio-toxicity. Waiting for the Generation IV systems implementation (2035-2050), one of the mid-term solutions for their transmutation involves the use of advanced fuels in Pressurized Water Reactors (PWR). These have to require as little modification as possible of the core internals, the cooling system and fuel cycle facilities (fabrication and reprocessing). The first part of this paper deals with some neutronic characteristics of Pu and/or Am recycling. In a second part, 2 technical solutions MOX-HMR and APA-DUPLEX-84 are presented and the third part is devoted to the study of a few global strategies. The main neutronic parameters to be considered for Pu and Am recycling in PWR are void coefficient, Doppler coefficient, fraction of delayed neutrons and power distribution (especially for heterogeneous configurations). The modification of the moderation ratio, the opportunity to use inert matrices (targets), the optimisation of Uranium, Plutonium and Americium contents are the key parameters to play with. One of the solutions (APA-DUPLEX-84) presented here is a heterogeneous assembly with regular moderation ratio composed with both target fuel rods (Pu and Am embedded in an inert matrix) and standard UO 2 fuel rods. An EPR (European Pressurised Reactor) type reactor, loaded only with assemblies containing 84 peripheral targets, can reach an Americium consumption rate of (4.4; 23 kg/TWh) depending on the assembly concept. For Pu and Am inventories stabilisation, the theoretical fraction of reactors loaded with Pu + Am or Pu assemblies is about 60%. For Americium inventory stabilisation, the fraction decreases down to 16%, but Pu is produced at a rate of 18.5 Kg/TWh (-25% compared to one through UOX cycle)

  4. Workshop on instrumentation and analyses for a nuclear fuel reprocessing hot pilot plant

    International Nuclear Information System (INIS)

    Babcock, S.M.; Feldman, M.J.; Wymer, R.G.; Hoffman, D.

    1980-05-01

    In order to assist in the study of instrumentation and analytical needs for reprocessing plants, a workshop addressing these needs was held at Oak Ridge National Laboratory from May 5 to 7, 1980. The purpose of the workshop was to incorporate the knowledge of chemistry and of advanced measurement techniques held by the nuclear and radiochemical community into ideas for improved and new plant designs for both process control and inventory and safeguards measurements. The workshop was athended by experts in nuclear and radiochemistry, in fuel recycle plant design, and in instrumentation and analysis. ORNL was a particularly appropriate place to hold the workshop since the Consolidated Fuel Reprocessing Program (CFRP) is centered there. Requirements for safeguarding the special nuclear materials involved in reprocessing, and for their timely measurement within the process, within the reprocessing facility, and at the facility boundaries are being studied. Because these requirements are becoming more numerous and stringent, attention is also being paid to the analytical requirements for these special nuclear materials and to methods for measuring the physical parameters of the systems containing them. In order to provide a focus for the consideration of the workshop participants, the Hot Experimental Facility (HEF) being designed conceptually by the CFRP was used as a basis for consideration and discussions

  5. Environmental aspects of recycling

    International Nuclear Information System (INIS)

    Jansma, R.; Van Gemert, F.

    2001-01-01

    Advanced recycling options were studied. Emphasis was on the production of high-level waste. All other impacts, e.g. emissions, were considered to be of minor importance, since from a technical point of view they can be limited to any desired extent. An objective was to gather data from the industry and to use them in a Life Cycle Analysis (LCA) of several fuel cycle options. It was necessary to complete our data set with literature data. At the end of our project we could benefit from the results of several Expert Working Groups of OECD/NEA. Detailed information was available for the once-through fuel cycle (OFC) and the fuel cycle with mono recycling of MOX. For the other more advanced fuel cycle options information was of a more qualitative nature. The established set of data was sufficient to conduct a streamlined LCA with focus on waste production for final disposal. Some remarks should be made before comparing the various fuel cycle options studied. The first relates to plutonium that contributes to more than 90% of the radiotoxicity of the spent fuel for more than 1000 centuries. Large concern for transmutation of minor actinides will disproportional if plutonium itself is not eliminated. The second remark is that the fission products contribute potentially very little to the radiotoxicity especially when some long-lived radionuclides after separation are imprisoned in stable matrices to prevent them to be carried by underground water. From all nuclear fuel cycles considered, the MIX cycle in LWRs, with recycling of plutonium and minor actinides has the lowest minor actinides production (0.018 kg/TW e h) and the plutonium production is also quite low (0.06 kg/TW e h). The MIX cycle without minor actinides recycling performs a little better with respect to plutonium production (0.04 kg/TW e h) but has a relatively high minor actinides production (8.7 kg/TW e h). Another conclusion is that burning of minor actinides in fast reactors (MA 0.28 kg/TW e h, Pu 0

  6. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.

    1980-09-01

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U 3 O 8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  7. Recent improvements and new features in the Westinghouse lattice physics codes

    International Nuclear Information System (INIS)

    Huria, H.C.; Buechel, R.J.

    1995-01-01

    Westinghouse has been using the ANC three-dimensional, two-energy-group nodal model for nuclear analysis and fuel management calculations for standard pressurized water reactor (PWR) reload design analysis since 1988. The cross sections are obtained from PHOENIX-P, a modified version of the PHOENIX lattice physics code for all square-assembly PWR cores. The PHOENIX-H code was developed for modeling both the VVER-1000 and VVER-440 fuel lattice configurations. The PHOENIX-H code has evolved from PHOENIX-P, the primary difference being in the neutronic solution modules. The PHOENIX-P code determines the assembly flux distribution using integral transport theory-based pin-cell nodal coupling followed by two-dimensional discrete ordinates solution in x-y geometry. The PHOENIX-H code uses the two-dimensional heterogeneous response method. The other infrastructure is identical in both the codes, and they share the same 42-group cross-section library

  8. The pollution characteristics of odor, volatile organochlorinated compounds and polycyclic aromatic hydrocarbons emitted from plastic waste recycling plants.

    Science.gov (United States)

    Tsai, Chung-Jung; Chen, Mei-Lien; Chang, Keng-Fu; Chang, Fu-Kuei; Mao, I-Fang

    2009-02-01

    Plastic waste treatment trends toward recycling in many countries; however, the melting process in the facilities which adopt material recycling method for treating plastic waste may emit toxicants and cause sensory annoyance. The objectives of this study were to analyze the pollution characteristics of the emissions from the plastic waste recycling plants, particularly in harmful volatile organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs), odor levels and critical odorants. Ten large recycling plants were selected for analysis of odor concentration (OC), volatile organic compounds (VOCs) and PAHs inside and outside the plants using olfactometry, gas chromatography-mass spectrometry and high performance liquid chromatography-fluorescence detector, respectively. The olfactometric results showed that the melting processes used for treating polyethylene/polypropylene (PE/PP) and polyvinyl chloride (PVC) plastic waste significantly produced malodor, and the odor levels at downwind boundaries were 100-229 OC, which all exceeded Taiwan's EPA standard of 50 OC. Toluene, ethylbenzene, 4-methyl-2-pentanone, methyl methacrylate and acrolein accounted for most odors compared to numerous VOCs. Sixteen organochlorinated compounds were measured in the ambient air emitted from the PVC plastic waste recycling plant and total concentrations were 245-553 microg m(-3); most were vinyl chloride, chloroform and trichloroethylene. Concentrations of PAHs inside the PE/PP plant were 8.97-252.16 ng m(-3), in which the maximum level were 20-fold higher than the levels detected from boundaries. Most of these recycling plants simply used filter to treat the melting fumes, and this could not efficiently eliminate the gaseous compounds and malodor. Improved exhaust air pollution control were strongly recommended in these industries.

  9. Recycling of nuclear matters. Myths and realities. Calculation of recycling rate of the plutonium and uranium produced by the French channel of spent fuel reprocessing

    International Nuclear Information System (INIS)

    Coeytaux, X.; Schneider, M.

    2000-05-01

    The recycling rate of plutonium and uranium are: from the whole of the plutonium separated from the spent fuel ( inferior to 1% of the nuclear matter content) attributed to France is under 50% (under 42 tons on 84 tons); from the whole of plutonium produced in the French reactors is less than 20% (42 tons on 224 tons); from the whole of the uranium separated from spent fuels attributed to France is about 10 % (1600 tons on 16000 tons); from the whole of the uranium contained in the spent fuel is slightly over 5%. (N.C.)

  10. Developing Statistical Evaluation Model of Introduction Effect of MSW Thermal Recycling

    Science.gov (United States)

    Aoyama, Makoto; Kato, Takeyoshi; Suzuoki, Yasuo

    For the effective utilization of municipal solid waste (MSW) through a thermal recycling, new technologies, such as an incineration plant using a Molten Carbonate Fuel Cell (MCFC), are being developed. The impact of new technologies should be evaluated statistically for various municipalities, so that the target of technological development or potential cost reduction due to the increased cumulative number of installed system can be discussed. For this purpose, we developed a model for discussing the impact of new technologies, where a statistical mesh data set was utilized to estimate the heat demand around the incineration plant. This paper examines a case study by using a developed model, where a conventional type and a MCFC type MSW incineration plant is compared in terms of the reduction in primary energy and the revenue by both electricity and heat supply. Based on the difference in annual revenue, we calculate the allowable investment in MCFC-type MSW incineration plant in addition to conventional plant. The results suggest that allowable investment can be about 30 millions yen/(t/day) in small municipalities, while it is only 10 millions yen/(t/day) in large municipalities. The sensitive analysis shows the model can be useful for discussing the difference of impact of material recycling of plastics on thermal recycling technologies.

  11. Safety aspects of LWR fuel reprocessing and mixed oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Fischer, M.; Leichsenring, C.H.; Herrmann, G.W.; Schueller, W.; Hagenberg, W.; Stoll, W.

    1977-01-01

    The paper is focused on the safety and the control of the consequences of credible accidents in LWR fuel reprocessing plants and in mixed oxide fuel fabrication plants. Each of these plants serve for many power reactor (about 50.000 Mwel) thus the contribution to the overall risk of nuclear energy is correspondingly low. Because of basic functional differences between reprocessing plants, fuel fabrication plants and nuclear power reactors, the structure and safety systems of these plants are different in many respects. The most important differences that influence safety systems are: (1) Both fuel reprocessing and fabrication plants do not have the high system pressure that is associated with power reactors. (2) A considerable amount of the radioactivity of the fuel, which is in the form of short-lived radionuclides has decayed. Therefore, fuel reprocessing plants and mixed oxide fuel fabrication plants are designed with multiple confinement barriers for control of radioactive materials, but do not require the high-pressure containment systems that are used in LWR plants. The consequences of accidents which may lead to the dispersion of radioactive materials such as chemical explosions, nuclear excursions, fires and failure of cooling systems are considered. A reasonable high reliability of the multiple confinement approach can be assured by design. In fuel reprocessing plants, forced cooling is necessary only in systems where fission products are accumulated. However, the control of radioactive materials can be maintained during normal operation and during the above mentioned accidents, if the dissolver off-gas and vessel off-gas treatment systems provide for effective removal of radioactive iodine, radioactive particulates, nitrogen oxides, tritium and krypton 85. In addition, the following incidents in the dissolver off-gas system itself must be controlled: failures of iodine filters, hydrogen explosion in O 2 - and NOsub(x)-reduction component, decomposition of

  12. Westinghouse Hanford Company waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    Craig, P.A.; Nichols, D.H.; Lindsey, D.W.

    1991-08-01

    The purpose of this plan is to establish the Westinghouse Hanford Company's Waste Minimization Program. The plan specifies activities and methods that will be employed to reduce the quantity and toxicity of waste generated at Westinghouse Hanford Company (Westinghouse Hanford). It is designed to satisfy the US Department of Energy (DOE) and other legal requirements that are discussed in Subsection C of the section. The Pollution Prevention Awareness Program is included with the Waste Minimization Program as permitted by DOE Order 5400.1 (DOE 1988a). This plan is based on the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, which directs DOE Field Office, Richland contractors to develop and maintain a waste minimization program. This waste minimization program is an organized, comprehensive, and continual effort to systematically reduce waste generation. The Westinghouse Hanford Waste Minimization Program is designed to prevent or minimize pollutant releases to all environmental media from all aspects of Westinghouse Hanford operations and offers increased protection of public health and the environment. 14 refs., 2 figs., 1 tab

  13. Spent LWR fuel encapsulation and dry storage demonstration

    International Nuclear Information System (INIS)

    Bahorich, R.J.; Durrill, D.C.; Cross, T.E.; Unterzuber, R.

    1980-01-01

    In 1977 the Spent Fuel Handling and Packaging Program (SFHPP) was initiated by the Department of Energy to develop and test the capability to satisfactorily encapsulate typical spent fuel assemblies from commercial light-water nuclear power plants and to establish the suitability of one or more surface and near surface concepts for the interim dry storage of the encapsulated spent fuel assemblies. The E-MAD Facility at the Nevada Test Site, which is operated for the Department of Energy by the Advanced Energy Systems Division (AESD) of the Westinghouse Electric Corporation, was chosen as the location for this demonstration because of its extensive existing capabilities for handling highly radioactive components and because of the desirable site characteristics for the proposed storage concepts. This paper describes the remote operations related to the process steps of handling, encapsulating and subsequent dry storage of spent fuel in support of the Demonstration Program

  14. Radiological implications of plutonium recycle and the use of thorium fuels in power reactor operations

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, H. F.

    1976-01-15

    As economically attractive sources of natural uranium are gradually depleted attention will turn to recycling plutonium or to the use of thorium fuels. The radiological implications of these fuel cycles in terms of fuel handling and radioactive waste disposal are investigated in relation to a conventional /sup 235/U enriched oxide fuel. It is suggested that a comparative study of this nature may be an important aspect of the overall optimization of future fuel cycle strategies. It is shown that the use of thorium based fuels has distinct advantages in terms of neutron dose rates from irradiated fuels and long term proportional to decay heating commitment compared with conventional uranium/plutonium fuels. However, this introduces a ..gamma.. dose rate problem in the fabrication and handling of unirradiated /sup 233/U fuels. For both plutonium and thorium fuels these radiological problems increase during storage of the fuel prior to reactor irradiation. The novel health physics problems which arise in the handling and processing of thorium fuels are reviewed in an appendix.

  15. Preparation for commissioning of nuclear plant with reference to British Nuclear Fuels Plc fuel handling plant project

    International Nuclear Information System (INIS)

    Bamber, D.R.

    1987-01-01

    The new Fuel Handling Plant at British Nuclear Fuels Sellafield is part of a Pound 550M complex which provides facilities for the receipt, storage and mechanical preparation of both Magnox and A.G.R. fuel. The plant is very large and complex with considerable use of computer based process control systems, providing for physical and nuclear safety. The preparation of such plant for active commissioning necessitates a great many physical checks and technical evaluations in support of its safety case. This paper describes arrangements for plant commissioning checks, against the regulatory framework and explains the physical preparations necessary for their timely accomplishment. (author)

  16. Preparation for commissioning of nuclear plant with reference to British Nuclear Fuels Plc fuel handling plant project

    International Nuclear Information System (INIS)

    Bamber, D.

    1987-01-01

    The new Fuel Handing Plant at British Nuclear Fuels Sellafield is part of a Pound 550M complex which provides facilities for the receipt, storage and mechanical preparation of both magnox and A.G.R. fuel. The plant is very large and complex with considerable use of computer based process control systems, providing for physical and nuclear safety. The preparation of such plant for ''active'' commissioning necessitates a great many physical checks and technical evaluations in support of its safety case. This paper describes arrangements for plant commissioning checks, against the regulatory framework and explains the physical preparations necessary for their timely accomplishment. (author)

  17. Recycling experience in the UK - past, present and future

    International Nuclear Information System (INIS)

    Williams, T.

    1991-01-01

    The United Kingdom (UK) has been commercially recycling uranium and developing the technology for the recycle of plutonium from reprocessing of spent fuel for more than two decades. In this article, a spokesman from British Nuclear Fuels plc (BNFL) describes the current experience of recycling in the UK and identifies the remaining technical and strategic elements being implemented to develop fully the recycle of all the products of reprocessing. He also discusses the economic and commercial benefits of using mixed oxide fuels now and in the future. (author)

  18. Analysis of boiling water reactors capacities for the 100% MOX fuel recycling

    International Nuclear Information System (INIS)

    Knoche, Dietrich

    1999-01-01

    The electro-nuclear park exploitation leads to plutonium production. The plutonium recycling in boiling water reactors performs a use possibility. The difference between the neutronic characteristics of the uranium and the plutonium need to evaluate the substitution impact of UOX fuel by MOX fuel on the reactor operating and safety. The analysis of the main points reached to the following conclusions: the reactivity coefficients are negative, during a cooling accident the re-divergence depends on the isotopic vector of the used plutonium, the efficiency lost of control cross resulting from the plutonium utilization can be compensate by the increase of the B 4C enrichment by 10 B and the change of the steel structure by an hafnium structure, the reactivity control in evolution can be obtained by the fuel poisoning (gadolinium, erbium) and the power map control by the plutonium content monitoring. (A.L.B.)

  19. AP1000 - update on projects in US and China

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, M. [Westinghouse Electric Company, Cranberry Township, Pennsy lvania (United States)

    2012-07-01

    Westinghouse is the only company solely focused on commercial nuclear technology. Westinghouse business is based on four product lines regionally divided: nuclear power plants, nuclear fuel, nuclear services and nuclear automation. The AP1000 is the technology of choice for more than half of the new plants identified in the US. Westinghouse has the only certified Generation III+ technology by the US Nuclear Regulatory Commission (NRC). The first Generation III+ plants are under construction in China and the US.

  20. AP1000 - update on projects in US and China

    International Nuclear Information System (INIS)

    Godfrey, M.

    2012-01-01

    Westinghouse is the only company solely focused on commercial nuclear technology. Westinghouse business is based on four product lines regionally divided: nuclear power plants, nuclear fuel, nuclear services and nuclear automation. The AP1000 is the technology of choice for more than half of the new plants identified in the US. Westinghouse has the only certified Generation III+ technology by the US Nuclear Regulatory Commission (NRC). The first Generation III+ plants are under construction in China and the US.

  1. Steam explosions-induced containment failure studies for Swiss nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Zuchuat, O.; Schmocker, U. [Swiss Federal Nuclear Safety Inspectorate, Villigen (Switzerland); Esmaili, H.; Khatib-Rahbar, M.

    1998-01-01

    The assessment of the consequences of both in-vessel and ex-vessel energetic fuel-coolant interaction for Beznau (a Westinghouse pressurized water reactor with a large, dry containment), Goesgen (a Siemens/KWU pressurized water reactor with a large, dry containment) and Leibstadt (a General Electric boiling water reactor-6 with a free standing steel, MARK-III containment) nuclear power plants is presented in this paper. The Conditional Containment Failure Probability of the steel containment of these Swiss nuclear power plants is determined based on different probabilistic approaches. (author)

  2. Survey report on the status of new energy in the U.S. On-site research centering on fuel cell, hydrogen energy, and wind energy (4th World Energy Engineering Congress); Beikoku shin energy jijo chosa hokokusho. Nenryo denchi, suiso furyoku energy wo chushin to suru jicchi chosa (dai 4 kai World Energy Engineering Congress)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-02-01

    A survey group dispatched by the New Energy Industrial Forum technical development committee conduct researches into the status of technologies in the U.S. relative to fuel cells, hydrogen energy, and wind energy. The group also attend the 4th World Energy Engineering Congress. As for the research and development of the phosphoric acid fuel cell, it is undertaken by the United Technology Corporation, Westinghouse Electric Corporation, and the Engelhard Corporation, each having its own peculiar technologies and thereby avoiding competition with others in one and the same domain. As for the molten carbonate fuel cell, the Argonne National Laboratory is entrusted with the control of technology development, and the Laboratory in turn requests the United Technology Corporation and Westinghouse Electric Corporation to develop technologies and systems. As for the solid oxide fuel cell, the Westinghouse Electric Corporation is entrusted with its development through the intermediary of the Argonne National Laboratory. As for hydrogen energy, the General Electric Company and Westinghouse Electric Corporation develop hydrogen production systems and the Brookhaven National Laboratory develops hydrogen storage systems using metallic hydrides. As for wind power generation, a Bendix-made 3,000kW wind power plant is visited and discussion is held on it. (NEDO)

  3. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell; Edward Mausolf

    2013-10-01

    Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but it is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold

  4. Economic analysis of self-generated plutonium recycling in light water reactor

    International Nuclear Information System (INIS)

    Deguchi, Morimoto; Hirabayashi, Fumio; Yumoto, Ryozo

    1978-01-01

    This paper describes on the economics of plutonium recycle to light water reactors (LWRs). In the situation that plutonium market does not exist, it is realistic for utilities to recycle the self-generated plutonium to their own reactors. The economic incentive to recycle self-generated plutonium, plutonium fuel fabrication penalty, and the dependence of fuel cycle cost on fuel cycle cost parameters are considered. In recycling self-generated plutonium, two alternatives for fuel element design are feasible. Those are the all-plutonium design and the island design. In the present analysis, the all-plutonium design was chosen for PWRs. The calculation of reactivity variation along with burnup for both uranium fuel and plutonium fuel was done with LASER-PNC code. Plutonium inventory and other nuclear data were calculated with CHAIN code. It is expected that equilibrium composition is reached after 5 or 6 times of recycling. For the calculation of fuel cycle cost, MITCOST code was used. The recent increase in the prices of uranium ore, enrichment and reprocessing services was taken into account. The fuel cycle cost of plutonium recycle is lower than that of uranium fuel cycle within a certain limit of plutonium fabrication penalty. It is shown that the fabrication penalty of about 1250 dollar/kgHM for each plutonium successive recycle reduces the cost difference to zero. The change in other cost components affects break-even fabrication penalty, in which the fuel cycle cost of plutonium recycle is equal to that of uranium cycle. (Kato, T.)

  5. Technology options for future recycling

    International Nuclear Information System (INIS)

    Kikuchi, T.

    2000-01-01

    It goes without saying that recycling of nuclear material is indispensable, not only for the effective use of valuable resources but also to reduce the debt which we may leave to the next generations. Many developments in advanced reprocessing technologies have been carried out in several countries to deal with the diversification of nuclear fuels. Also technologies derived from reprocessing or other fuel cycle areas have continued to be developed in terms of recycling. Cost effectiveness and waste-free processing are increasingly important factors in the applicable of an alternate recycling policy. This paper introduces an example of the studies in this field, which has been conducted in Japan and considers the establishment of effective recycling methodologies taking into account the uncertainty of future policy. (authors)

  6. Westinghouse independent safety review of Savannah River production reactors

    International Nuclear Information System (INIS)

    Leggett, W.D.; McShane, W.J.; Liparulo, N.J.; McAdoo, J.D.; Strawbridge, L.E.; Call, D.W.

    1989-01-01

    Westinghouse Electric Corporation has performed a safety assessment of the Savannah River production reactors (K, L, and P) as requested by the US Department of Energy. This assessment was performed between November 1, 1988, and April 1, 1989, under the transition contract for the Westinghouse Savannah River Company's preparations to succeed E.I. du Pont de Nemours ampersand Company as the US Department of Energy contractor for the Savannah River Project. The reviewers were drawn from several Westinghouse nuclear energy organizations, embody a combination of commercial and government reactor experience, and have backgrounds covering the range of technologies relevant to assessing nuclear safety. The report presents the rationale from which the overall judgment was drawn and the basis for the committee's opinion on the phased restart strategy proposed by E.I. du Pont de Nemours ampersand Company, Westinghouse, and the US Department of Energy-Savannah River. The committee concluded that it could recommend restart of one reactor at partial power upon completion of a list of recommended upgrades both to systems and their supporting analyses and after demonstration that the organization had assimilated the massive changes it will have undergone. 37 refs., 1 fig., 3 tabs

  7. Westinghouse independent safety review of Savannah River production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, W.D.; McShane, W.J. (Westinghouse Hanford Co., Richland, WA (USA)); Liparulo, N.J.; McAdoo, J.D.; Strawbridge, L.E. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear and Advanced Technology Div.); Toto, G. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear Services Div.); Fauske, H.K. (Fauske and Associates, Inc., Burr Ridge, IL (USA)); Call, D.W. (Westinghouse Savannah R

    1989-04-01

    Westinghouse Electric Corporation has performed a safety assessment of the Savannah River production reactors (K,L, and P) as requested by the US Department of Energy. This assessment was performed between November 1, 1988, and April 1, 1989, under the transition contract for the Westinghouse Savannah River Company's preparations to succeed E.I. du Pont de Nemours Company as the US Department of Energy contractor for the Savannah River Project. The reviewers were drawn from several Westinghouse nuclear energy organizations, embody a combination of commercial and government reactor experience, and have backgrounds covering the range of technologies relevant to assessing nuclear safety. The report presents the rationale from which the overall judgment was drawn and the basis for the committee's opinion on the phased restart strategy proposed by E.I. du Pont de Nemours Company, Westinghouse, and the US Department of Energy-Savannah River. The committee concluded that it could recommend restart of one reactor at partial power upon completion of a list of recommended upgrades both to systems and their supporting analyses and after demonstration that the organization had assimilated the massive changes it will have undergone.

  8. Generation of SCALE 6 Input Data File for Cross Section Library of PWR Spent Fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Cho, Dong Keun

    2010-11-01

    In order to obtain the cross section libraries of the Korean Pressurized water reactor (PWR) spent fuel (SF), SCALE 6 code input files have been generated. The PWR fuel data were obtained from the nuclear design report (NDR) of the current operating PWRs. The input file were prepared for 16 fuel types such as 4 types of Westinghouse 14x14, 3 types of OPR-1000 16x16, 4 types of Westinghouse 16x16, and 6 types of Westinghouse 17x17. For each fuel type, 5 kinds of fuel enrichments have been considered such as 1.5, 2.0 ,3.0, 4.0 and 5.0 wt%. In the SCALE 6 calculation, a ENDF-V 44 group was used. The 25 burnup step until 72000 MWD/T was used. A 1/4 symmetry model was used for 16x16 and 17x17 fuel assembly, and 1/2 symmetry model was used for 14x14 fuel assembly The generated cross section libraries will be used for the source-term analysis of the PWR SF

  9. Ashes from biofuels and mixed fuels - amount and qualities

    International Nuclear Information System (INIS)

    Bjurstroem, Henrik; Ilskog, Elisabeth; Berg, Magnus

    2003-04-01

    In this study, ashes from biofuels used in the energy utilities, the pulp and paper industry and the wood-working industries have been inventoried. The selection of plants to which enquiries were addressed consists of about 50 utilities, all pulp and paper plants and about 20 wood-working industries (e.g. sawmills). The purpose of the study was to estimate the quantities of bio ashes that are recycled to the forests and those that could be recycled. The background to this study is that logging slash is harvested from ca 30,000 ha per year, while ash is recycled only to 2 to 4,000 ha per year. A working hypothesis has been that logging slash or clean wooden fuels are mixed with other fuels to such an extent that the ash is too contaminated to be recycled. The consequence would be that there is a shortage of suitable ash. Therefore, it was desirable that motives for mixing fuels be chartered. In Sweden, approximately one million ton ashes are produced each year and the share of the three industries that have been studied is estimated as: 200 - 340,000 tons from utilities about 275,000 tons from the pulp and paper industry and 100,000 tons from the woodworking industry. These quantities include unburned carbon, water added when the ash is extracted from the boilers etc. Additional quantities of ash are those produced by waste combustion (447,000 tons), wood-burning in residential buildings (50 - 100,000 tons) etc. In all, ash that may be recycled should total about 300,000 tons (Recyclable ash in t/a: Utilities - 80,000; Pulp and Paper Industry - 100-130,000; Woodworking Industry 100,000). Logging slash is seldom burned alone in the boilers at the utilities, but are almost always mixed with other wood fuel fractions such as waste from sawmills. The mixtures can be very complex. Clean mixtures of wood fuel fractions represent ca 4,500 GWh of the ca 7,800 GWh in this study. Other fuels that are often used in mixtures are peat and Salix, which does not necessarily lead

  10. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  11. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  12. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Fariz Abdul; Lee, John C. [University of Michigan, Ann Arbor, MI (United States); Franceschini, Fausto; Wenner, Michael [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning the legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and

  13. Analysis of alternative light water reactor (LWR) fuel cycles

    International Nuclear Information System (INIS)

    Heeb, C.M.; Aaberg, R.L.; Boegel, A.J.; Jenquin, U.P.; Kottwitz, D.A.; Lewallen, M.A.; Merrill, E.T.; Nolan, A.M.

    1979-12-01

    Nine alternative LWR fuel cycles are analyzed in terms of the isotopic content of the fuel material, the relative amounts of primary and recycled material, the uranium and thorium requirements, the fuel cycle costs and the fraction of energy which must be generated at secured sites. The fuel materials include low-enriched uranium (LEU), plutonium-uranium (MOX), highly-enriched uranium-thorium (HEU-Th), denatured uranium-thorium (DU-Th) and plutonium-thorium (Pu-Th). The analysis is based on tracing the material requirements of a generic pressurized water reactor (PWR) for a 30-year period at constant annual energy output. During this time period all the created fissile material is recycled unless its reactivity worth is less than 0.2% uranium enrichment plant tails

  14. Prospects for the establishment of plutonium recycle in thermal reactors in the Foratom countries. Status and assessment

    International Nuclear Information System (INIS)

    Chamberlain, A.; Melches, C.

    1977-01-01

    The paper reviews the technical status of plutonium recycle in thermal reactors in the Foratom countries and assesses the prospect for it becoming established in the future with the implicit assumptions that uranium oxide reprocessing capacity will be installed commensurate with the projected programmes for thermal reactor installation and that there will be no insuperable environmental, security or safeguards obstacles to the use of plutonium as a fuel. It is argued that the feasibility of using plutonium as an alternative to 235 U as the fuel for thermal reactors, particularly LWRs, has been extensively demonstrated by a number of Foratom countries and the main problem areas are fuel fabrication and fuel reprocessing. Mixed-oxide fuel fabrication has been well established on the prototype plant scale using low-irradiation plutonium, but it is recognized that the future design of production-scale plants will need to cater for the significantly higher radiation levels from high burnup plutonium and meet stricter environmental requirements on operator dosage and waste arisings. The main constraint on the establishment of recycle up to now has been the lack of available plutonium owing to the absence of significant uranium-oxide fuel reprocessing capacity. An assessment of the plutonium arisings in Europe, based on the projected uranium-oxide reprocessing capacity, shows that by 1990 plutonium, surplus to FBR requirements, should be accumulating by about 10t/a, sufficient to fuel about 8000MW(e) of LWRs. A further constraint would then be the availability and technical problems of mixed-oxide reprocessing, which is one of the areas identified for international collaboration. It is concluded that whilst there is unlikely to be substantial recycle of plutonium in thermal reactors in the Foratom countries before the early 1990s, an incentive could possibly arise about that time. The strength of this incentive will depend on a number of factors including the status of

  15. Uranium Fuel Plant. Applicants environmental report

    International Nuclear Information System (INIS)

    1975-05-01

    The Uranium Fuel Plant, located at the Cimarron Facility, was constructed in 1964 with operations commencing in 1965 in accordance with License No. SNM-928, Docket No. 70-925. The plant has been in continuous operation since the issuance of the initial license and currently possesses contracts extending through 1978, for the production of nuclear fuels. The Uranium Plant is operated in conjunction with the Plutonium Facility, each sharing common utilities and sanitary wastes disposal systems. The operation has had little or no detrimental ecological impact on the area. For the operation of the Uranium Fuel Fabrication Plant, initial equipment provided for the production of UO 2 , UF 4 , uranium metal and recovery of scrap materials. In 1968, the plant was expanded by increasing the UO 2 and pellet facilities by the installation of another complete production line for the production of fuel pellets. In 1969, fabrication facilities were added for the production of fuel elements. Equipment initially installed for the recovery of fully enriched scrap has not been used since the last work was done in 1970. Economically, the plant has benefited the Logan County area, with approximately 104 new jobs with an annual payroll of approximately $1.3 million. In addition, $142,000 is annually paid in taxes to state, local and federal governments, and local purchases amount to approximately $1.3 million. This was all in land that was previously used for pasture land, with a maximum value of approximately 37,000 dollars. Environmental effects of plant operation have been minimal. A monitoring and measurement program is maintained in order to ensure that the ecology of the immediate area is not affected by plant operations

  16. Standard Technical Specifications for Westinghouse pressurized water reactors

    International Nuclear Information System (INIS)

    Virgilio, M.J.

    1980-09-01

    The Standard Technical Specifications for Westinghouse Pressurized Water Reactors (W-STS) is a generic document prepared by the U.S. NRC for use in the licensing process of current Westinghouse Pressurized Water Reactors. The W-STS sets forth the Limits, Operating Conditions and other requirements applicable to nuclear reactor facility operation as set forth in by Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public. This document is revised periodically to reflect current licensing requirements

  17. A Multi-Layered Ceramic Composite for Impermeable Fuel Cladding for COmmercial Wate Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Feinroth, Herbert

    2008-03-03

    A triplex nuclear fuel cladding is developed to further improve the passive safety of commercial nuclear plants, to increase the burnup and durablity of nuclear fuel, to improve the power density and economics of nuclear power, and to reduce the amount of spent fuel requiring disposal or recycle.

  18. Innovation and future in Westinghouse

    International Nuclear Information System (INIS)

    Congedo, T.; Dulloo, A.; Goosen, J.; Llovet, R.

    2007-01-01

    For the past six years, Westinghouse has used a Road Map process to direct technology development in a way that integrates the efforts of our businesses to addresses the needs of our customers and respond to significant drivers in the evolving business environment. As the nuclear industry experiences a resurgence, it is ever more necessary that we increase our planning horizon to 10-15 years in the future so as to meet the expectations of our customers. In the Future Point process, driven by the methods of Design for Six Sigma (DFSS), Westinghouse considers multiple possible future scenarios to plan long term evolutionary and revolutionary development that can reliably create the major products and services of the future market. the products and services of the future stretch the imagination from what we provide today. However, the journey to these stretch targets prompts key development milestones that will help deliver ideas useful for nearer term products. (Author) 1 refs

  19. Recycling of impregnated wood and impregnating agents - combustion plant technology; Kyllaestetyn puutavaran ja kyllaestysaineiden kierraetys - polttolaitostekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Syrjaenen, T.; Kangas, E. [Kestopuu Oy, Helsinki (Finland)

    2000-07-01

    purification systems cause extra investments. The emissions limits for combustion of impregnated wood are given in EU's Waste Incineration Directive. The amount of collected impregnated wood is sufficient for a 25 MW plant. Solid fuels fired gasification, grate firing and fluidized bed boilers suit best fir combustion of impregnated wood waste, gasification and fluidized beds being the best, because of the efficient combustion and low ash formation. Flue gas purification system is essential for incineration of impregnated wood. Chromium and copper, released in combustion, remain mainly in ash, but 60-90% of arsenic migrates in flue gases as small particles. By combining different technologies it is possible to obtain better recovery of impurities. One of the best methods is based on spraying of fluid in pre-cooling system into flue gases in order to cool the gases rapidly and to stop the reactions in the flue gases. After this the flue gases are pre-cleaned and cooled in a venturi scrubber. Fiber filters are recommended for dedusting of the flue gases. The formed ashes are recycled in Outokumpu Harjavalta metals copper smelter as raw material, which requires that the sintered material content of ash is low. The condensing waters of flue gas scrubbing can be used for preparation of copper/chromium/arsenic (CCA) concentrate.

  20. Power Reactor Fuel Reprocessing Plant-1: a stepping stone in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    India has low reserves of uranium and high reserves of thorium. In order to optimize resource utilization India has adopted a closed fuel cycle to ensure long-term energy security. The optimum resource utilization is feasible only by adopting reprocessing, conditioning and recycle options. It is very much imperative to view spent fuel as a vital resource material and not a waste to be disposed off. Thus, spent nuclear fuel reprocessing forms an integral part of the Indian Nuclear Energy Programme. Aqueous reprocessing based on PUREX technology is in use for more than 50 years and has reached a matured status

  1. Multi-recycling of plutonium and incineration of americium, curium, and technetium in PWRs

    International Nuclear Information System (INIS)

    Golfier, H.; Bergeron, J.; Puill, A.; Rohart, M.

    2000-01-01

    The future of nuclear power requires a clear strategy for radwaste and Plutonium management. Pressurized water reactors (PWR) and the associated fuel cycle installations represent the largest part of the French power plants (and are partly paid off). The reactors in service produce an annual 10 tons of Pu, 1.4 tons of minor actinides (MA), and 3.8 tons of long-lived fission products (LLFP). The spent fuel is reprocessed in La Hague plant to recover the energetic elements U and Pu. The latter was initially dedicated to power Fast Breeder Reactors that converted the depleted and reprocessed, thus ensuring a significant part of the French national energy resources. The shut-down of Super-Phenix, the postponement of building of Fast Breeder Reactors (FBR) and the relaxed need for stretching natural U resources raise the issue of Pu management. In fact, the Pu mono-recycling practiced in France since 1987 (St Laurent B1) only slows down the Pu accumulation in spent nuclear fuel, yet it is unable to stabilize the Pu inventory. Beyond the cooperation with its industrial partners, CEA investigates solutions for short and medium term Pu management thus contributing to research required for keeping nuclear power as an energy option. The range of these investigations shall cover both adaptations for light water reactors to facilitate Pu recycling and more innovative solutions concerning reactors, fuel and fuel cycle. The aim of using Pu more efficiently in PWR has led, not only for economic and non-proliferation reasons, but also for considerations related to the optimization of Pu and MA management. The mastery of Pu inventory is a requirement for all long-lived radwaste management methods. In this context, the potential of innovative PWRs has been investigated to control the Pu fluxes and to make them a milestone on the way to clean nuclear power. This paper presents the most recent results related to Pu utilization and MA and LLFP incineration like (Am+Cm) and Tc. To

  2. Neutronic feasibility of PWR core with mixed oxide fuels in the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Y.J.; Joo, H.K.; Jung, H.G.; Sohn, D.S.

    1997-01-01

    Neutronic feasibility of a PWR core with mixed oxide (MOX) fuels has been investigated as part of the feasibility study for recycling spent fuels in Korea. A typical 3-loop PWR with 900 MWe capacity is selected as reference plant to develop equilibrium core designs with low-leakage fuel management scheme, while incorporating various MOX loading. The fuel management analyses and limited safety analyses show that, safely stated, MOX recycling with 1/3 reload fraction can be accommodated for both annual and 18 month fuel cycle schemes in Korean PWRs, without major design modifications on the reactor systems. (author). 12 refs, 4 figs, 3 tabs

  3. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    International Nuclear Information System (INIS)

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D ampersand D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision

  4. LEU fuel element produced by the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.

    2000-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a Material Testing Reactor type (MTR) fuel element facility, for producing the specified fuel elements required for the Egyptian Second Research Reactor, ETRR-2. The plant uses uranium hexafluoride (UF 6 , 19.75% U 235 by wt) as a raw material which is processed through a series of the manufacturing, inspection and test plan to produce the final specified fuel elements. Radiological safety aspects during design, construction, operation, and all reasonably accepted steps should be taken to prevent or reduce the chance of accidents occurrence. (author)

  5. Competitiveness of biomass-fueled electrical power plants.

    Science.gov (United States)

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; John T. Chmelik

    2000-01-01

    One way countries like the United States can comply with suggested rollbacks in greenhouse gas emissions is by employing power plants fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming structure. We consider fueling power plants from milling residues, whole trees, logging...

  6. Seismic risk analysis for the Westinghouse Electric facility, Cheswick, Pennsylvania

    International Nuclear Information System (INIS)

    1977-01-01

    This report presents the results of a detailed seismic risk analysis of the Westinghouse Electric plutonium fuel development facility at Cheswick, Pennsylvania. This report focuses on earthquakes. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases. Because of the aseismicity of the region around the site, an analysis different from the conventional closest approach in a tectonic province was adapted. Earthquakes as far from the site as 1,000 km were included, as were the possibility of earthquakes at the site. In addition, various uncertainties in the input were explicitly considered in the analysis. For example, allowance was made for both the uncertainty in predicting maximum possible earthquakes in the region and the effect of the dispersion of data about the best fit attenuation relation. The attenuation relationship is derived from two of the most recent, advanced studies relating earthquake intensity reports and acceleration. Results of the risk analysis, which include a Bayesian estimate of the uncertainties, are presented as return period accelerations. The best estimate curve indicates that the Westinghouse facility will experience 0.05 g every 220 years and 0.10 g every 1400 years. The accelerations are very insensitive to the details of the source region geometries or the historical earthquake statistics in each region and each of the source regions contributes almost equally to the cumulative risk at the site

  7. Fuel processing

    International Nuclear Information System (INIS)

    Allardice, R.H.

    1990-01-01

    The technical and economic viability of the fast breeder reactor as an electricity generating system depends not only upon the reactor performance but also on a capability to recycle plutonium efficiently, reliably and economically through the reactor and fuel cycle facilities. Thus the fuel cycle is an integral and essential part of the system. Fuel cycle research and development has focused on demonstrating that the challenging technical requirements of processing plutonium fuel could be met and that the sometimes conflicting requirements of the fuel developer, fuel fabricator and fuel reprocessor could be reconciled. Pilot plant operation and development and design studies have established both the technical and economic feasibility of the fuel cycle but scope for further improvement exists through process intensification and flowsheet optimization. These objectives and the increasing processing demands made by the continuing improvement to fuel design and irradiation performance provide an incentive for continuing fuel cycle development work. (author)

  8. The Westinghouse AP1000®: Passive, Proven Technology to Meet European Energy Demands

    International Nuclear Information System (INIS)

    Haspel, N.

    2015-01-01

    Even though several years ago nuclear power was merely considered to be an “optimistic future assessment”, the world-wide renaissance of nuclear power has become reality! The economical and climate-friendly nuclear power generation is internationally regarded to be in an evident upturn. The 435 nuclear power plants in operation worldwide are being modernized and the capacity is increased continuously. Furthermore, to date, 42 power plants are under construction, another 81 are already being applied for and or definitely planned. The global total net capacity out of nuclear power will increase accordingly in the upcoming years from currently 372 to more than 500 GWe, which presents an increase of more than one third. Westinghouse’s contribution hereto is considerable: At the present time, 4 power plants of the series AP1000 ® are under construction. To begin with, 2 units each are under construction at the Chinese sites Sanmen and Haiyang, another 4 per site are being planned. In the USA, Westinghouse has been contracted with a Engineering, Procurement and Construction (EPC) project for a total of 4 power plant units at the Vogtle and V.C. Summer. Also in Europe, the plans to construct new plants are meanwhile very specific and many countries have formally established the marginal conditions for new nuclear projects. The AP1000 ® , with its medium output capacity, is ideally positioned for many markets and can – as a twin unit – also cover large capacity demands. At the present time, Westinghouse, with its AP1000 ® , participates in the so-called GDA (Generic Design Assessment) process in Great Britain, where the British regulatory authorities conduct an assessment and evaluation of the safety aspects of this plant design in a defined multilevel process. The successful conclusion of this process ultimately leads to a “Design Acceptance Confirmation”, which will basically make the construction of the plant in Great Britain possible. (author)

  9. Self-protection in dry recycle technologies

    International Nuclear Information System (INIS)

    Hannum, W.H.; Wade, D.; Stanford, G.

    1995-01-01

    In response to the INFCE conclusions, the U.S. undertook development of a new dry fuel cycle. Dry recycle processes have been demonstrated to be feasible. Safeguarding such fuel cycles will be dramatically simpler than the PUREX fuel cycle. At every step of the processes, the materials meet the open-quotes spent-fuel standard.close quotes The scale is compatible with collocation of power reactors and their recycle facility, eliminating off-site transportation and storage of plutonium-bearing materials. Material diverted either covertly or overtly would be difficult (relative to material available by other means) to process into weapons feedstock

  10. Idaho Chemical Processing Plant Spent Fuel and Waste Management Technology Development Program Plan

    International Nuclear Information System (INIS)

    1993-09-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage and reprocessing since 1953. Reprocessing of SNF has resulted in an existing inventory of 1.5 million gallons of radioactive sodium-bearing liquid waste and 3800 cubic meters (m 3 ) of calcine, in addition to the 768 metric tons (MT) of SNF and various other fuel materials in inventory. To date, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, recent changes in world events have diminished the demand to recover and recycle this material. As a result, DOE has discontinued reprocessing SNF for uranium recovery, making the need to properly manage and dispose of these and future materials a high priority. In accordance with the Nuclear Waste Policy Act (NWPA) of 1982, as amended, disposal of SNF and high-level waste (HLW) is planned for a geological repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP Spent Fuel and Waste Management Technology Development Program (SF ampersand WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will properly stored and prepared for final disposal. Program elements in support of acceptable interim storage and waste minimization include: developing and implementing improved radioactive waste treatment technologies; identifying and implementing enhanced decontamination and decommissioning techniques; developing radioactive scrap metal (RSM) recycle capabilities; and developing and implementing improved technologies for the interim storage of SNF

  11. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Krukshenk, A.

    1986-01-01

    Eqiupment for nuclear reactor fuel assembly repairing produced by Westinghouse and Brawn Bovery companies is described. Repair of failed fuel assemblies replacement of defect fuel elements gives a noticeable economical effect. Thus if the cost of a new fuel assembly is 450-500 thousand dollars, the replacement of one fuel element in it costs approximately 40-60 thousand dollars. In simple cases repairing includes either removal of failed fuel elements from a fuel assembly and its reinsertion with the rest of fuel elements into the reactor core (reactor refueling), or replacement of unfailed fuel elements from one fuel assembly to a new one (fuel assembly overhaul and reconditioning)

  12. Remote maintenance system technology development for nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Kashihara, Hidechiyo

    1984-01-01

    The necessity of establishing the technology of remote maintenance, the kinds of maintenance techniques and the change, the image of a facility adopting remote maintenance canyon process, and the outline of the R and D plan to put remote maintenance canyon process in practical use are described. As the objects of development, there are twin arm type servo manipulator system, rack system, remote tube connectors, solution sampling system, inspection system for in-cell equipment, and large plugs for wall penetration. The outline of those are also reported. The development of new remote maintenance technology has been forwarded in the Tokai Works aiming at the application to a glass solidification pilot plant and a FBR fuel recycling test facility. The lowering of the rate of utilization of cells due to poor accessibility and the increase of radiation exposure of workers must be overcome to realize nuclear fuel cycle technology. The maintenance technology is classified into crane canyon method, direct maintenance cell method, remote maintenance cell method and remote maintenance canyon method, and those are described briefly. The development plan of remote maintenance technology is outlined. (Kako, I.)

  13. DESIGNAND EVALUATION OF TETRA-PAK CONTAINERS' RECYCLING PLANT ON A SMALLSCALE

    OpenAIRE

    Inche Mitma, Jorge; Vergiú Canto, Jorge|; Mavila Hinojoza, Daniel; Godoy Martínez, Manuel; Chung Pinzás, Alfonso

    2014-01-01

    This study deals about the design and evaluation of Tetra Pak containers' recycling plant on a small scale. The basic Plant Engineering was found from the information gathered. Some aspects included were: product design, process design, equipment design and costs evaluation, with the aim of determining its technical, economical and environmental capability for its implementation. El estudio trata sobre el diseño y evaluación de una planta de reciclaje de envases tetra pak a pequeña escala....

  14. Improved core monitoring for improved plant operations

    International Nuclear Information System (INIS)

    Mueller, N.P.

    1987-01-01

    Westinghouse has recently installed a core on-line surveillance, monitoring and operations systems (COSMOS), which uses only currently available core and plant data to accurately reconstruct the core average axial and radial power distributions. This information is provided to the operator in an immediately usable, human-engineered format and is accumulated for use in application programs that provide improved core performance predictive tools and a data base for improved fuel management. Dynamic on-line real-time axial and radial core monitoring supports a variety of plant operations to provide a favorable cost/benefit ratio for such a system. Benefits include: (1) relaxation or elimination of certain technical specifications to reduce surveillance and reporting requirements and allow higher availability factors, (2) improved information displays, predictive tools, and control strategies to support more efficient core control and reduce effluent production, and (3) expanded burnup data base for improved fuel management. Such systems can be backfit into operating plants without changing the existing instrumentation and control system and can frequently be implemented on existing plant computer capacity

  15. Westinghouse containment filtered venting system wet scrubber technology

    International Nuclear Information System (INIS)

    Kristensson, S.; Nilsson, P-O.

    2014-01-01

    Following the Fukushima event Westinghouse has further developed and enhanced its filtered containment venting system (FCVS) product line. The filtration efficiency of the proven FILTRA-MVSS system installed at all Swedish NPPs as well as at the Muhelberg plant in Switzerland has been enhanced and a new wet scrubber design, SVEN (Safety Venting), based on the FILTRA-MVSS tradition, developed. To meet increased filtration requirements for organic iodine these two wet scrubber products have been complemented with a zeolite module. The offering of a select choice of products allows for a better adjustment to the specific constraints and needs of each nuclear power station that is planning for the installation of such a system. The FILTRA-MVSS (MVSS=Multi Venturi Scrubber System) is a wet containment filtered vent system that uses multiple venturies to create an interaction between the vent gases and the scrubber media allowing for removal of aerosols and gaseous iodines in a very efficient manner. The FILTRA-MVSS was originally developed to meet stringent requirements on autonomy and maintained filtration efficiency over a wide range of venting conditions. The system was jointly developed in the late 80's by ABB Atom and ABB Flaekt, today Westinghouse and Alstom. Following installations in Sweden and Switzerland the system was further developed by replacement of the gravel-bed moisture separator with a standard demister and by addition of a set of sintered metal fibre filter cartridges placed after the moisture separator step. The system is today offered as a modular steel tank design to simplify installation at site. To reduce complexity and delivery time Westinghouse has developed an alternative design in which the venturi module is replaced by a submerged metal fibre filter cartridges module. This new wet scrubber design, SVEN (patent pending), provides a flexible, compact, and lower weight system, while still preserving and even enhancing the filtration

  16. Post-remedial-action radiological survey of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pennsylvania, October 1-8, 1981

    International Nuclear Information System (INIS)

    Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

    1984-01-01

    The post-remedial-action radiological assessment conducted by the ANL Radiological Survey Group in October 1981, following decommissioning and decontamination efforts by Westinghouse personnel, indicated that except for the Advanced Fuels Laboratory exhaust ductwork and north wall, the interior surfaces of the Plutonium Laboratory and associated areas within Building 7 and the Advanced Fuels Laboratory within Building 8 were below both the ANSI Draft Standard N13.12 and NRC Guideline criteria for acceptable surface contamination levels. Hence, with the exceptions noted above, the interior surfaces of those areas within Buildings 7 and 8 that were included in the assessment are suitable for unrestricted use. Air samples collected at the involved areas within Buildings 7 and 8 indicated that the radon, thoron, and progeny concentrations within the air were well below the limits prescribed by the US Surgeon General, the Environmental Protection Agency, and the Department of Energy. The Building 7 drain lines are contaminated with uranium, plutonium, and americium. Radiochemical analysis of water and dirt/sludge samples collected from accessible Low-Bay, High-Bay, Shower Room, and Sodium laboratory drains revealed uranium, plutonium, and americium contaminants. The Building 7 drain lines hence are unsuitable for release for unrestricted use in their present condition. Low levels of enriched uranium, plutonium, and americium were detected in an environmental soil coring near Building 8, indicating release or spillage due to Advanced Reactors Division activities or Nuclear Fuel Division activities undr NRC licensure. 60 Co contamination was detected within the Building 7 Shower Room and in soil corings from the environs of Building 7. All other radionuclide concentrations measured in soil corings and the storm sewer outfall sample collected from the environs about Buildings 7 and 8 were within the range of normally expected background concentrations

  17. Lithium actinide recycle process demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.K.; Pierce, R.D.; McPheeters, C.C. [Argonne National Laboratory, IL (United States)

    1995-10-01

    Several pyrochemical processes have been developed in the Chemical Technology Division of Argonne Laboratory for recovery of actinide elements from LWR spent fuel. The lithium process was selected as the reference process from among the options. In this process the LWR oxide spent fuel is reduced by lithium at 650{degrees}C in the presence of molten LiCl. The Li{sub 2}O formed during the reduction process is soluble in the salt. The spent salt and lithium are recycled after the Li{sub 2}O is electrochemically reduced. The oxygen is liberated as CO{sub 2} at a carbon anode or oxygen at an inert anode. The reduced metal components of the LWR spent fuel are separated from the LiCL salt phase and introduced into an electrorefiner. The electrorefining step separates the uranium and transuranium (TRU) elements into two product streams. The uranium product, which comprises about 96% of the LWR spent fuel mass, may be enriched for recycle into the LWR fuel cycle, stored for future use in breeder reactors, or converted to a suitable form for disposal as waste. The TRU product can be recycled as fast reactor fuel or can be alloyed with constituents of the LWR cladding material to produce a stable waste form.

  18. Considerations for handling failed fuel at the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, R.T.; Cholister, R.J.

    1982-05-01

    The impact of failed fuel receipt on reprocessing operations is qualitatively described. It appears that extended storage of fuel, particularly with advanced storage techniques, will increase the quantity of failed fuel, the nature and possibly the configuration of the fuel. The receipt of failed fuel at the BNFP increases handling problems, waste volumes, and operator exposure. If it is necessary to impose special operating precautions to minimize this impact, a loss in plant throughput will result. Hence, ideally, the reprocessing plant operator would take every reasonable precaution so that no failed fuel is received. An alternative policy would be to require that failed fuel be placed in a sealed canister. In the latter case the canister must be compatible with the shipping cask and suitable for in-plant storage. A required inspection of bare fuel would be made at the reactor prior to shipping off-site. This would verify fuel integrity. These requirements are obviously idealistic. Due to the current uncertain status of reprocessing and the need to keep reactors operating, business or governmental policy may be enacted resulting in the receipt of a negotiated quantity of non-standard fuel (including failed fuel). In this situation, BNFP fuel receiving policy based soley on fuel cladding integrity would be difficult to enforce. There are certain areas where process incompatibility does exist and where a compromise would be virtually impossible, e.g., canned fuel for which material or dimensional conflicts exist. This fuel would have to be refused or the fuel would require recanning prior to shipment. In other cases, knowledge of the type and nature of the failure may be acceptable to the operator. A physical inspection of the fuel either before shipment or after the cask unloading operation would be warranted. In this manner, concerns with pool contamination can be identified and the assembly canned if deemed necessary

  19. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-01

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO 2 UO 2 and ThO 2 UO 2 -DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future

  20. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-15

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO{sub 2}UO{sub 2} and ThO{sub 2}UO{sub 2}-DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future.

  1. Recycling of plutonium and uranium in water reactor fuel. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-05-01

    The Technical Committee Meeting on Recycling of Plutonium and Uranium in Water Reactor Fuel was recommended by the International Working Group on Fuel Performance and Technology (IWGFPT). Its aim was to obtain an overall picture of MOX fabrication capacity and technology, actual performance of this kind of fuel, and ways explored to dispose of the weapons grade plutonium. The subject of this meeting had been reviewed by the International Atomic Energy Agency every 5 to 6 years and for the first time the problem of weapons grade plutonium disposal was included. The papers presented provide a summary of experience on MOX fuel and ongoing research in this field in the participating countries. The meeting was hosted by British Nuclear Fuels plc, at Newby Bridge, United Kingdom, from 3 to 7 July 1995. Fifty-six participants from twelve countries or international organizations took part. Refs, figs, tabs

  2. An investigation of TRU recycling with various neutron spectrums

    International Nuclear Information System (INIS)

    Yong-Nam, Kim; Hong-Chul, Kim; Chi-Young, Han; Jong-Kyung, Kim; Won-Seok Park

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single batch fuel loading, the burn-up calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analysed in terms of burn-up reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behaviour between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction. (author)

  3. Modeling minor actinide multiple recycling in a lead-cooled fast reactor to demonstrate a fuel cycle without long-lived nuclear waste

    Directory of Open Access Journals (Sweden)

    Stanisz Przemysław

    2015-09-01

    Full Text Available The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR was defined and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System and LEADER (Lead-cooled European Advanced Demonstration Reactor projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs, and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.

  4. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    Mineo, H.; Nomura, Y.; Sakamoto, K.

    1998-01-01

    In Japan 52 commercial nuclear power units are now operated, and the total power generation capacity is about 45 GWe. The cumulative amount of spent fuel arising is about 13,500 tU as of March 1997. Spent fuel is reprocessed, and recovered nuclear materials are to be recycled in LWRs and FBRs. In February 1997 short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, backend measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away from reactor sites, considering the increasing amount of spent fuel arising. Research and development on spent fuel storage has been carried out, particularly on dry storage technology. Fundamental studies are also conducted to implement the burnup credit into the criticality safety design of storage and transportation casks. Rokkasho reprocessing plant is being constructed towards its commencement in 2003, and Pu utilization in LWRs will be started in 1999. Research and development of future recycling technology are also continued for the establishment of nuclear fuel cycle based on FBRs and LWRs. (author)

  5. Plant specific severe accident management - the implementation phase

    International Nuclear Information System (INIS)

    Prior, R.

    1999-01-01

    Many plants are in the process of developing on-site guidance for technical staff to respond to a severe accident situation severe accident management guidance (SAMG). Once the guidance is developed, the SAMG must be implemented at the plant site, and this involves addressing a number of additional aspects. In this paper, approaches to this implementation phase are reviewed, including review and verification of plant specific SAMG, organizational aspects and integration with the emergency plan, training of SAMG users, validation and self-assessment and SAMG maintenance. Examples draw on experience from assisting numerous plants to implement symptom based severe accident management guidelines based on the Westinghouse Owners Group approach, in Westinghouse, non-Westinghouse and VVER plant types. It is hoped that it will be of use to those plant operators about to perform these activities.(author)

  6. Fuel fabrication and reprocessing for nuclear fuel cycle with inherent safety demands

    Energy Technology Data Exchange (ETDEWEB)

    Shadrin, Andrey Yurevich; Dvoeglazov, Konstantin Nikolaevich; Ivanov, Valentine Borisovich; Volk, Vladimir Ivanovich; Skupov, Mikhail Vladimirovich; Glushenkov, Alexey Evgenevich [Joint Stock Company ' ' The High Technological Research Institute of Inorganic Materials' ' , Moscow (Russian Federation); Troyanov, Vladimir Mihaylovich; Zherebtsov, Alexander Anatolievich [Innovation and Technology Center of Project ' ' PRORYV' ' , State Atomic Energy Corporation ' ' Rosatom' ' , Moscow (Russian Federation)

    2015-06-01

    The strategies adopted in Russia for a closed nuclear fuel cycle with fast reactors (FR), selection of fuel type and recycling technologies of spent nuclear fuel (SNF) are discussed. It is shown that one of the possible technological solutions for the closing of a fuel cycle could be the combination of pyroelectrochemical and hydrometallurgical methods of recycling of SNF. This combined scheme allows: recycling of SNF from FR with high burn-up and short cooling time; decreasing the volume of stored SNF and the amount of plutonium in a closed fuel cycle in FR; recycling of any type of SNF from FR; obtaining the high pure end uranium-plutonium-neptunium end-product for fuel refabrication using pellet technology.

  7. Severe accident management development program for VVER-1000 and VVER-440/213 based on the westinghouse owners group approach

    International Nuclear Information System (INIS)

    Felix, E.; Dessars, N.

    2003-01-01

    The development of the Westinghouse Owners Group Severe Accident Management Guidelines (WOG SAMG) between 1991 and 1994 was initiated in response to the U.S. Nuclear Regulatory Commission (NRC) requirement for addressing the regulatory severe accident concerns. Hence, the WOG SAMG is designed to interface with other existing procedures at the plant and is used in accident sequences that have progressed to the point where these other procedures are not applicable any longer, i.e. following core damage. The primary purpose of the WOG SAMG is to reach a controlled stable state, which can be declared when fission product releases are controlled, challenges to the confinement fission product boundary have been mitigated, and adequate heat removal is provided to the core and the containment. Although the WOG SAMG is a generic severe accident management guidance developed for use by the entirety of the operating Westinghouse PWR plants, provisions have been made in their development to address specific features of individual plants such as confinement type and the feasibility of reactor cavity flooding. Similarly, the generic SAMG does not address unique plant features and equipment, but rather allows for consideration of plant specific features and strategies. This adaptable approach has led to several SAMG development programs for VVER-1000 and VVER-440 type of power plants, under Westinghouse' s lead. The first of these programs carried out to completion was for Temelin NPP - VVER-1000 - in the first quarter of 2003. Other ongoing programs aim at providing a similar work for VVER-440 design, namely Dukovany, Mochovce and Bohunice NPPs. The challenge of adapting the existing generic WOG material to plants other than PWRs mainly arises for VVER-440 because of important differences in confinement design, making it more vulnerable to ex-vessel phenomena such as hydrogen burn. Also, for both eastern designs, cavity flooding strategy requires special consideration and

  8. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-12-01

    A DOE/PETC funded study was conducted to examine the use of a liquid phase mixed alcohol synthesis (LPMAS) plant to produce gasoline blending ethers. The LPMAS plant was integrated into three utilization scenarios: a coal fed IGCC power plant, a petroleum refinery using coke as a gasification feedstock, and a standalone natural gas fed partial oxidation plant. The objective of the study was to establish targets for the development of catalysts for the LPMAS reaction. In the IGCC scenario, syngas conversions need only be moderate because unconverted syngas is utilized by the combined cycle system. A once through LPMAS plant achieving syngas conversions in the range of 38--49% was found to be suitable. At a gas hourly space velocity of 5,000 sL/Kg-hr and a methanol:isobutanol selectivity ratio of 1.03, the target catalyst productivity ranges from 370 to 460 g iBuOH/Kg-hr. In the petroleum refinery scenario, high conversions ({approximately}95%) are required to avoid overloading the refinery fuel system with low Btu content unconverted syngas. To achieve these high conversions with the low H{sub 2}/CO ratio syngas, a recycle system was required (because of the limit imposed by methanol equilibrium), steam was injected into the LPMAS reactor, and CO{sub 2} was removed from the recycle loop. At the most economical recycle ratio, the target catalyst productivity is 265 g iBuOH/Kg-hr. In the standalone LPMAS scenario, essentially complete conversions are required to achieve a fuel balanced plant. At the most economical recycle ratio, the target catalyst productivity is 285 g iBuOH/Kg-hr. The economics of this scenario are highly dependent on the cost of the natural gas feedstock and the location of the plant. For all three case scenarios, the economics of a LPMAS plant is marginal at current ether market prices. Large improvements over demonstrated catalyst productivity and alcohol selectivity are required.

  9. Program plan for research and development in support of LWR fuel recycle

    International Nuclear Information System (INIS)

    1975-01-01

    The ERDA program that is being planned to assist industry in the commercialization of the LWR fuel cycle will involve a range of activities, including joint programs with industry, R and D to provide technology, conceptual design of fuel recycle facilities, and environmental and economic assessments. A two-part program to begin in 1976 that is a portion of the overall ERDA plan is described. Responsibility for coordination and management of the tasks described in this document has been assigned to Du Pont as prime contractor to the ERDA Savannah River Operations Office. The first part of the program consists of the conceptual design of complete recycle facilities. The second part of the program, which will proceed concurrently, consists of supporting R and D activities, economic and environmental studies, and other studies to assist in the regulatory process. The R and D program will include both near-term activities in support of the conceptual design effort, and other activities aimed at general improvements in fuel cycle technology. The conceptual design will be used to develop current cost information for a complete reprocessing complex. The design will be based initially on current technology with provision for improvements as confirmatory information and advanced technology become available from the R and D program. The conceptual design and cost estimate will be developed by the Du Pont Atomic Energy Division. The R and D program and supporting studies will be directed at uncertainties in current technology as well as toward development of improved technology. It will include such R and D as might be appropriate for ERDA to undertake in support of joint programs with industry. The Savannah River Laboratory will have responsibility for coordinating the program

  10. Economical aspects of multiple plutonium and uranium recycling in VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P.N.; Bobrov, E.A.; Dudnikov, A.A.; Teplov, P.S. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2016-09-15

    The basic strategy of Russian Nuclear Energy development is the formation of the closed fuel cycle based on fast breeder and thermal reactors, as well as the solution of problems of spent nuclear fuel accumulation and availability of resources. Three options of multiple Pu and U recycling in VVER reactors are considered in this work. Comparison of MOX and REMIX fuel recycling approaches for the closed fuel cycle involving thermal reactors is presented. REMIX fuel is supposed to be fabricated from non-separated mixture of uranium and plutonium obtained in spent fuel reprocessing with further makeup by enriched U. These options make it possible to recycle several times the total amount of Pu and U obtained from spent fuel. The main difference is the full or partial fuel loading of the core by assemblies with recycled Pu. The third option presents the concept of heterogeneous arrangement of fuel pins made of enriched uranium and MOX in one fuel assembly. It should be noted that fabrication of all fuel assemblies with Pu requires the use of expensive manufacturing technology. These three options of core loading can be balanced with respect to maximum Pu and U involvement in the fuel cycle. Various physical and economical aspects of Pu and U multiple recycling for selected options are considered in this work.

  11. Physics of plutonium recycling: volume V. Plutonium recycling in fast reactors

    International Nuclear Information System (INIS)

    1996-01-01

    As part of a programme proposed by the OECD/NEA Working Party on Physics of Plutonium Recycling (WPPR) to evaluate different scenarios for the use of plutonium, fast reactor physics benchmarks were developed. In this report, the multi-recycle performance of the metal-fuelled benchmark is evaluated. Benchmark results assess the reactor performance and toxicity behaviour in a closed nuclear fuel cycle for a parametric variation of the conversion ratio between 0.5 and 1.0. Results indicate that a fast burner reactor closed fuel cycle can be utilised to significantly reduce the radiotoxicity originating in the LWR cycle which would otherwise be destined for burial. (Author). tabs., figs., refs

  12. Recycling of cattle dung, biogas plant-effluent and water hyacinth in vermiculture

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, P.R.; Bai, R.K. [Madurai Kamaraj Univ. (India)

    1995-08-01

    The efficiency of recycling cattle dung, anaerobically digested cattle dung (biogas plant-effluent) and water hyacinth (Eichhornia crassipes) by culture of the earthworm Megascolex sp. was studied. The growth of the earthworms was increased by 156, 148 and 119% in soil supplemented with water hyacinth, cattle dung and biogas plant-effluent, respectively. The growth rate of the earthworms was increased significantly by raw cattle dung and water hyacinth over that by biodigested slurry. (author)

  13. Detection and mitigating rod drive control system degradation in Westinghouse PWRs

    International Nuclear Information System (INIS)

    Gunther, W.; Sullivan, K.

    1990-01-01

    A study of the effects of aging on the Westinghouse Control Rod Drive (CRD) System was performed as part of the US NRC's Nuclear Plant aging Research (NPAR) Program. For the study, the CRD system boundary includes the power and logic cabinets associated with the manual control rod movement, and the control rod mechanism itself. The aging-related degradation of the interconnecting cables and connectors and the rod position indicating system also were considered. This paper presents the results of that study pertaining to the electrical and instrumentation portions of the CRD system including ways to detect and mitigate system degradation

  14. Benefit/cost analysis of plutonium recycle options in the United States

    International Nuclear Information System (INIS)

    Lowenberg, H.; Burnham, J.B.; Fisher, F.; Ray, W.H.

    1977-01-01

    Predictable effects of the recycle of plutonium and uranium recovered from spent LWR fuels were assessed in a final environmental statement (GESMO). Five alternative dispositions of LWR-produced plutonium ranging from prompt recycle of recovered plutonium and uranium to no recovery and no recycle are compared. The assessments consider cumulative effects for the period 1975 through 2000, and are centered on a conservative low growth rate resulting in about 500 LWR's in the U.S. in 2000. A more optimistic growth projection resulting in about 800 LWR's in 2000 is also analyzed in order to assess the effects of industry size upon the impacts. Demands for fuel cycle services were calculated with an ERDA program, NUFUEL, which was modified to include penalties for 236 U and 242 Pu. Unit cost data, including a simulation of market place reaction to supply-demand functions for uranium costs, were combined with the NUFUEL demand data in an economics code, NUCOST. Environmental impacts were also based upon NUFUEL demand data and were developed using a model plant industry concept. Using the most likely unit costs with a 10% discount rate, present worth incentives for prompt recycle over no recycle of $3.2 billion for the lower growth and about $6 billion for the higher growth were indicated. Present worth costs of delays in recycle of up to 5 years were less than $1 billion. Sensitivity of the economic assessments to unit cost variations and discount rates were also evaluated. Environmental impacts other than radiological were lowest for prompt Pu recycle and highest for no recycle. Radiological impacts for the total world wide total body exposure from U.S. industry for the 26 year period were estimated to be: - No recycle-8.2 million person-rem; U only recycle-9.5 million person-rem; Pu and U recycle-8.8 million person-rem. Comparison of the decreased radiological impact of the no recycle option with its increased costs relative to prompt plutonium recycle resulted in a

  15. Managed maintenance, the next step in power plant maintenance

    International Nuclear Information System (INIS)

    Butterworth, G.; Anderson, T.M.

    1984-01-01

    The Westinghouse Nuclear Services Integration Division managed maintenance services are described. Essential to the management and control of a total plant maintenance programme is the development of a comprehensive maintenance specification. During recent years Westinghouse has jointly developed total plant engineering-based maintenance specifications with a number of utilities. The process employed and the experience to date are described. To efficiently implement the maintenance programme Westinghouse has developed a computer software program specifically designed for day to day use at the power plant by maintenance personnel. This program retains an equipment maintenance history, schedules maintenance activities, issues work orders and performs a number of sophisticated analyses of the maintenance backlog and forecast, equipment failure rates, etc. The functions of this software program are described and details of Westinghouse efforts to support the utilities in reducing outage times through development of predefined outage plans for critical report maintenance activities are given. Also described is the experience gained in the training of specialized maintenance personnel, employing competency-based training techniques and equipment mock-ups, and the benefits experienced, in terms of improved quality and productivity of maintenance performed. The success experienced with these methods has caused Westinghouse to expand the use of these training techniques to the more routine skill areas of power plant maintenance. A significant reduction in the operating costs of nuclear power plants will only be brought about by a significant improvement in the quality of maintenance. Westinghouse intends to effect this change by expanding its international service capabilities and to make major investments in order to promote technological developments in the area of power plant maintenance. (author)

  16. Alternatives for nuclear fuel disposal

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L.

    2010-10-01

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  17. Special issue on start of construction of the Ohma nuclear power plant of J-Power

    International Nuclear Information System (INIS)

    Takahashi, Taizo

    2008-01-01

    The Electric Power Development Co., Ltd. (J-Power) started construction of its Ohma nuclear power plant - a 1383 MWe Advanced Boiling Water Reactor (ABWR) - in Aomori prefecture on May 2008. The reactor of the Ohma plant will be the first to load MOX fuels in all of its reactor cores. It will be able to consume a quarter of all the recycled MOX fuels produced at Rokkasho reprocessing plant and hence make a major contribution to Japan's policy of recycling plutonium recovered from spent fuels. Special issue reviewed history and overview of the Ohma plant as well as its significance to enhance power generation portfolio in corresponding with national interests. Local governor's expectations and present state of the Ohma plant were also described. After preparation works, construction began on excavation of foundation for the service building, proceeding as always with safety the foremost priority during construction. (T. Tanaka)

  18. European passive plant program A design for the 21st century

    International Nuclear Information System (INIS)

    Adomaitis, D.; Oyarzabal, M.

    1998-01-01

    In 1994, a group of European utilities initiated, together with Westinghouse and its industrial partner GENESI (an Italian consortium including ANSALDO and FIAT), a program designated EPP (European Passive Plant) to evaluate Westinghouse passive nuclear plant technology for application in Europe. The following major tasks were accomplished: (1) the impacts of the European utility requirements (EUR) on the Westinghouse nuclear island design were evaluated; and (2) a 1000 MWe passive plant reference design (EP1000) was established which conforms to the EUR and is expected to be licensable in Europe. With respect to safety systems and containment, the reference plant design closely follows that of the Westinghouse simplified pressurized water reactor (SPWR) design, while the AP600 plant design has been taken as the basis for the EP1000 reference design in the auxiliary system design areas. However, the EP1000 design also includes features required to meet the EUR, as well as key European licensing requirements. (orig.)

  19. Compound process fuel cycle concept

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo

    2005-01-01

    Mass flow of light water reactor spent fuel for a newly proposed nuclear fuel cycle concept 'Compound Process Fuel Cycle' has been studied in order to assess the capacity of the concept for accepting light water reactor spent fuels, taking an example for boiling water reactor mixed oxide spent fuel of 60 GWd/t burn-up and for a fast reactor core of 3 GW thermal output. The acceptable heavy metal of boiling water reactor mixed oxide spent fuel is about 3.7 t/y/reactor while the burn-up of the recycled fuel is about 160 GWd/t and about 1.6 t/y reactor with the recycled fuel burn-up of about 300 GWd/t, in the case of 2 times recycle and 4 times recycle respectively. The compound process fuel cycle concept has such flexibility that it can accept so much light water reactor spent fuels as to suppress the light water reactor spent fuel pile-up if not so high fuel burn-up is expected, and can aim at high fuel burn-up if the light water reactor spent fuel pile-up is not so much. Following distinctive features of the concept have also been revealed. A sort of ideal utilization of boiling water reactor mixed oxide spent fuel might be achieved through this concept, since both plutonium and minor actinide reach equilibrium state beyond 2 times recycle. Changes of the reactivity coefficients during recycles are mild, giving roughly same level of reactivity coefficients as the conventional large scale fast breeder core. Both the radio-activity and the heat generation after 4 year cooling and after 4 times recycle are less than 2.5 times of those of the pre recycle fuel. (author)

  20. Preconceptual design of hyfire. A fusion driven high temperature electrolysis plant

    International Nuclear Information System (INIS)

    Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

    1983-01-01

    Brookhaven National Laboratory has been engaged in a scoping study to investigate the potential merits of coupling a fusion reactor with a high temperature blanket to a high temperature electrolysis (HTE) process to produce hydrogen and oxygen. Westinghouse is assisting this study in the areas of systems design integration, plasma engineering, balance of plant design and electrolyzer technology. The aim of the work done in the past year has been to focus on a reference design point for the plant, which has been designated HYFIRE. In prior work, the STARFIRE commercial tokamak fusion reactor was directly used as the fusion driver. This report describes a new design obtained by scaling the basic STARFIRE design to permit the achievement of a blanket power of 6000 MWt. The high temperature blanket design employs a thermally insulated refractory oxide region which provides high temperature (>1000 deg. C) steam at moderate pressures to high temperature electrolysis units. The electrolysis process selected is based on the high temperature, solid electrolyte fuel cell technology developed by Westinghouse. An initial process design and plant layout has been completed; component cost and plant economics studies are now underway to develop estimates of hydrogen production costs and to determine the sensitivity of this cost to changes in major design parameters. (author)

  1. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    International Nuclear Information System (INIS)

    Piet, Steven J.; Bays, Samuel E.; Pope, Michael A.; Youinou, Gilles J.

    2010-01-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  2. Aging assessment of Westinghouse PWR and General Electric BWR containment isolation functions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.S.; Travis, R.; Grove, E.; DiBiasio, A.

    1996-03-01

    A study was performed to assess the effects of aging on the Containment Isolation (CI) functions of Westinghouse Pressurized Water Reactors and General Electric Boiling Water Reactors. This study is part of the Nuclear Plant Aging Research (NPAR) program, sponsored by the U.S. Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. Failure data from two national databases, Nuclear Plant Reliability Data System (NPRDS) and Licensee Event Reports (LERs), as well as plant specific data were reviewed and analyzed to understand the effects of aging on the CI functions. This study provided information on the effects of aging on component failure frequency, failure modes, and failure causes. Current inspection, surveillance, and monitoring practices were also reviewed.

  3. Aging assessment of Westinghouse PWR and General Electric BWR containment isolation functions

    International Nuclear Information System (INIS)

    Lee, B.S.; Travis, R.; Grove, E.; DiBiasio, A.

    1996-03-01

    A study was performed to assess the effects of aging on the Containment Isolation (CI) functions of Westinghouse Pressurized Water Reactors and General Electric Boiling Water Reactors. This study is part of the Nuclear Plant Aging Research (NPAR) program, sponsored by the U.S. Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. Failure data from two national databases, Nuclear Plant Reliability Data System (NPRDS) and Licensee Event Reports (LERs), as well as plant specific data were reviewed and analyzed to understand the effects of aging on the CI functions. This study provided information on the effects of aging on component failure frequency, failure modes, and failure causes. Current inspection, surveillance, and monitoring practices were also reviewed

  4. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    Energy Technology Data Exchange (ETDEWEB)

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo [Westinghouse Electric Company LLC,Cranberry Township, PA, 16066 (United States); Sartori, Alberto; Ricotti, Marco [Politecnico di Milano, Milan (Italy)

    2012-07-01

    Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can be accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as

  5. Effects of potential once-through improvements on the uranium utilization in the closed LWR cycle assuming self generated recycling of uranium and plutonium

    International Nuclear Information System (INIS)

    1979-06-01

    This paper is concerned with potential improvements to the resource utilization of current generation light water reactors operating on a closed U/Pu fuel cycle. Only those modifications to existing systems layout and fuel cycle practise are discussed that have been considered in Working Group 8 A for the once-through cycle. The objective is to give an impression how much the difference in resource utilization between the once-through and the closed U/Pu cycle were changed if both cycles were reoptimized independantly from each other with respect to uranium consumption. No commercial recycling of U/Pu has been taken place to date in 1300 MWe light water reactors. The feasibility of thermal recycling has been demonstrated however on an industrial scale in reactors of the 300 MWe class. (Obrigheim, Gundremmingen). From this experience and from extensive design calculations it has been concluded that for Pu bearing fuel assemblies of 1300 MWe plants it would be favorable to use the same structural layout and similar fuel management procedures as for uranium assemblies. This would result in plant life-time averaged uranium savings on the order of 35 - 40 % relative to the once-through cycle in case of the Self Generated Recycling Mode

  6. Anolyte recycling enhanced bioelectricity generation of the buffer-free single-chamber air-cathode microbial fuel cell.

    Science.gov (United States)

    Ren, Yueping; Chen, Jinli; Shi, Yugang; Li, Xiufen; Yang, Na; Wang, Xinhua

    2017-11-01

    Anolyte acidification is an inevitable restriction for the bioelectricity generation of buffer-free microbial fuel cells (MFCs). In this work, acidification of the buffer-free KCl anolyte has been thoroughly eliminated through anolyte recycling. The accumulated HCO 3 - concentration in the recycled KCl anolyte was above 50mM, which played as natural buffer and elevated the anolyte pH to above 8. The maximum power density (P max ) increased from 322.9mWm -2 to 527.2mWm -2 , which is comparable with the phosphate buffered MFC. Besides Geobacter genus, the gradually increased anolyte pH and conductivity induced the growing of electrochemically active Geoalkalibacter genus, in the anode biofilm. Anolyte recycling is a feasible strategy to strengthen the self-buffering capacity of buffer-free MFCs, thoroughly eliminate the anolyte acidification and prominently enhance the electric power. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China

    International Nuclear Information System (INIS)

    Chen Xudong; Xi Fengming; Geng Yong; Fujita, Tsuyoshi

    2011-01-01

    Research highlights: → Urban symbiosis creates compatibility of industrial development and waste management. → Mechanical technology leads to more CO 2 emission reduction. → Energy recovery technology leads to more fossil fuel saving. → Clean energy makes recycling technologies cleaner. → Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO 2 e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

  8. Westinghouse Nuclear Core Design Training Center - a design simulator

    International Nuclear Information System (INIS)

    Altomare, S.; Pritchett, J.; Altman, D.

    1992-01-01

    The emergence of more powerful computing technology enables nuclear design calculations to be done on workstations. This shift to workstation usage has already had a profound effect in the training area. In 1991, the Westinghouse Electric Corporation's Commercial Nuclear Fuel Division (CNFD) developed and implemented a Nuclear Core Design Training Center (CDTC), a new concept in on-the-job training. The CDTC provides controlled on-the-job training in a structured classroom environment. It alllows one trainer, with the use of a specially prepared training facility, to provide full-scope, hands-on training to many trainees at one time. Also, the CDTC system reduces the overall cycle time required to complete the total training experience while also providing the flexibility of individual training in selected modules of interest. This paper provides descriptions of the CDTC and the respective experience gained in the application of this new concept

  9. Dynamic modelling and characterisation of a solid oxide fuel cell integrated in a gas turbine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thorud, Bjoern

    2005-07-01

    This thesis focuses on three main areas within the field of SOFC/GT-technology: 1) Development of a dynamic SOFC/GT model. 2) Model calibration and sensitivity study. 3) Assessment of the dynamic properties of a SOFC/GT power plant. The SOFC/GT model developed in this thesis describes a pressurised tubular Siemens Westinghouse-type SOFC, which is integrated in a gas turbine cycle. The process further includes a plate-fin recuperator for stack air preheating, a prereformer, an anode exhaust gas recycling loop for steam/carbon-ratio control, an afterburner and a shell-tube heat exchanger for air preheating. The fuel cell tube, the recuperator and the shell-tube heat exchanger are spatially distributed models. The SOFC model is further thermally integrated with the prereformer. The compressor and turbine models are based on performance maps as a general representation of the characteristics. In addition, a shaft model which incorporates moment of inertia is included to account for gas turbine transients. The SOFC model is calibrated against experimentally obtained data from a single-cell experiment performed on a Siemens Westinghouse tubular SOFC. The agreement between the model and the experimental results is good. The sensitivity study revealed that the degree of prereforming is of great importance with respect to the axial temperature distribution of the fuel cell. Types of malfunctions are discussed prior to the dynamic behaviour study. The dynamic study of the SOFC/GT process is performed by simulating small and large load changes according to three different strategies; 1) Load change at constant mean fuel cell temperature. 2) Load change at constant turbine inlet temperature. 3) Load change at constant shaft speed. Of these three strategies, the constant mean fuel cell temperature strategy appears to be the most rapid load change method. Furthermore, this strategy implies the lowest degree of thermal cycling, the smoothest fuel cell temperature distribution and

  10. A perfect fuel supplier

    International Nuclear Information System (INIS)

    Terasvirta, R.

    2008-01-01

    WWER fuel market is dominated by the Russian fuel vendor JSC TVEL. There have been attempts to open up the market also for other suppliers, such as BNFL/Westinghouse for Finland, Czech Republic, and Ukraine. However, at the moment it seems that JSC TVEL is the only real alternative to supply fuel to WWER reactors. All existing fuel suppliers have certified quality management systems which put a special emphasis on the customer satisfaction. This paper attempts to define from the customer's point of view, what are the important issues concerning the customer satisfaction. (author)

  11. The integration of fast reactor to the fuel cycle in Slovakia

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Necas, V.

    2009-01-01

    A very topical problem of nuclear power is the fuel cycle back-end. One of the options is a LWR spent fuel reprocessing and a fissile nuclides re-use in the fast reactor. A large amount of spent fuel has been stored in the power plant intermediate storage during the operation of WWER-440 reactors in Slovakia. This paper is based on an analysis of Pu and minor actinides content in actual WWER-440 spent fuel stored in Slovakia. The next part presents the possibilities of reprocessing and Pu re-use in fast reactor under Slovak conditions. The fuel cycle consisting of the WWER-440 reactor, PUREX reprocessing plant and a sodium fast reactor was designed. The last section compares two parts of this fuel cycle: one is UOX cycle in WWER-440 reactor and the other is cycle in the fast reactor - SUPER PHENIX loaded with MOX fuel (Pu + Minor Actinides). The starting point is a single recycling of Pu from WWER-440 in the fission products. The next step is multi recycling of Pu in the fission products to obtain equilibrium cycle. This article is dealing with the solution of power production and fuel cycle indicators. All kinds of calculations were performed by computer code HELIOS 1.10. (Authors)

  12. Safety recycling of reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Weinlaender, W.

    Additionally to the measures, which descent from the conventional safety techniques, a series of supplementary protective measures have to be taken in connection with the Atomic Energy Law, the Radiation Protection Ordinance and the nuclear-technical practice, which in particular guarantee a safe enclosure and a safe residual heat rejection of the handled radioactive material and an avoidance of nuclear chain reactions. The most important plant malfunctions to be considered within the scope of the plant safety control according to the atomic law are, the radioactivity release due to mechanical damage of fuel elements, containment leakage, explosions in process equipment and/or vessels, burning of run out organic solvents, criticality malfunctions, and the already mentioned accidental failure of after-heat removal. If we let alone the extremely low probabilities for the occurrence of such accidents due to the selected methods, the layout of the equipment and by taking the required quality warranty measures into consideration, and infer such accidents in spite of this, the resulting radiation doses outside the plant are in all cases much lower than 5 rem, which is the design limit according to the regulations for radiation protection. (orig./HP) [de

  13. Systematic simulation of a tubular recycle reactor on the basis of pilot plant experiments

    Energy Technology Data Exchange (ETDEWEB)

    Paar, H; Narodoslawsky, M; Moser, A [Technische Univ., Graz (Austria). Inst. fuer Biotechnologie, Mikrobiologie und Abfalltechnologie

    1990-10-10

    Systematic simulatiom may decisively help in development and optimization of bioprocesses. By applying simulation techniques, optimal use can be made of experimental data, decreasing development costs and increasing the accuracy in predicting the behavior of an industrial scale plant. The procedure of the dialogue between simulation and experimental efforts will be exemplified in a case study. Alcoholic fermentation of glucose by zymomonas mobilis bacteria in a gasified turbular recycle reactor was studied first by systematic simulation, using a computer model based solely on literature data. On the base of the results of this simulation, a 0.013 m{sup 3} pilot plant reactor was constructed. The pilot plant experiments, too, were based on the results of the systematic simulation. Simulated and experimental data were well in agreement. The pilot plant experiments reiterated the trends and limits of the process as shown by the simulation results. Data from the pilot plant runs were then used to improve the simulation model. This improved model was subsequently used to simulate the performances of an industrial scale plant. The results of this simulation are presented. They show that the alcohol fermentation in a tubular recycle reactor is potentially advantageous to other reactor configurations, especially to continuous stirred tanks. (orig.).

  14. Fast breeder reactor fuel reprocessing in France

    International Nuclear Information System (INIS)

    Bourgeois, M.; Le Bouhellec, J.; Eymery, R.; Viala, M.

    1984-08-01

    Simultaneous with the effort on fast breeder reactors launched several years ago in France, equivalent investigations have been conducted on the fuel cycle, and in particular on reprocessing, which is an indispensable operation for this reactor. The Rapsodie experimental reactor was associated with the La Hague reprocessing plant AT1 (1 kg/day), which has reprocessed about one ton of fuel. The fuel from the Phenix demonstration reactor is reprocessed partly at the La Hague UP2 plant and partly at the Marcoule pilot facility, undergoing transformation to reprocess all the fuel (TOR project, 5 t/y). The fuel from the Creys Malville prototype power plant will be reprocessed in a specific plant, which is in the design stage. The preliminary project, named MAR 600 (50 t/y), will mobilize a growing share of the CEA's R and D resources, as the engineering needs of the UP3 ''light water'' plant begins to decline. Nearly 20 tonnes of heavy metals irradiated in fast breeder reactors have been processed in France, 17 of which came from Phenix. The plutonium recovered during this reprocessing allowed the power plant cycle to be closed. This power plant now contains approximately 140 fuel asemblies made up with recycled plutonium, that is, more than 75% of the fuel assemblies in the Phenix core

  15. The emergency response guidelines for the Westinghouse pressurized water reactor

    International Nuclear Information System (INIS)

    Dekens, J.P.; Bastien, R.; Prokopovich, S.R.

    1985-01-01

    The Three Mile Island accident has demonstrated that the guidance provided for mitigating the consequences of design basis accidents could be inadequate when multiple incidents, failures or errors occur during or after the accident. Westinghouse and the Westinghouse Owners Group have developed new Emergency Response Guidelines (E.R.G.). The E.R.G. are composed of two independent sets of procedures and of a systematic tool to continuously evaluate the plant safety throughout the response to an accident. a) The Optimal Recovery Guidelines are entered each time the reactor is tripped or the Emergency Core Cooling System is actuated. An immediate verification of the automatic protective actuations is performed and the accident diagnosis process is initiated. When nature of the accident is identified, the operator is transferred to the applicable recovery procedure and subprocedures. A permanent rediagnosis is performed throughout the application of the optimal Recovery Guidelines and cross connections are provided to the adequate procedure if an error in diagnosis is identified. b) Early in the course of the accident, the operating staff initiates monitoring of the Critical Safety Functions. These are defined as the set of functions ensuring the integrity of the physical barriers against radioactivity release. The review of these functions is peformed continuously through a cyclic application of the status trees. c) The Function Restoration Guidelines are entered when the Critical Safety Function monitoring identifies a challenge to one of the functions. Depending on the severity of the challenge, the transfer to a Function Restoration Guideline can be immediate for a severe challenge or delayed for a minor challenge. Those guidelines are independent of the scenario of the accident, but only based on plant parameters and equipment availability

  16. Technical committee on reactor physics of next generation. Examination of MA recycling by using PWRs

    International Nuclear Information System (INIS)

    Mori, Masaaki

    1995-01-01

    It is an important subject to be examined that during the period till full scale nuclear fuel recycling including the adoption of FBRs will be realized, we never have excess Pu. As the realistic examination considering the nuclear fuel recycling for the time being, the MOX fuel for PWRs of actinide recycling, ultralong life, placing emphasis on the concentrated charging of Pu and the confinement of MA in nuclear fuel cycling was examined. The change of the infinite multiplication rate of actinide recycling fuel is small throughout the burning, and there is the possibility of attaining the high burnup about twice of that of UO 2 fuel. The merit of the case of adding MA in small amount by recycling MA together with Pu at the proportion in spent fuel is shown. The amount of MA accumulation in Japan until 2050 was evaluated by the survey of the electric power generation of every reactor type using the long term reactor type strategy evaluation code LSER. By comparing the amount of MA accumulation in four MA recycling cases with the basic case without MA recycling, the amount of MA annihilation was evaluated. It was found that the MA recycling using PWRs only is not inferior to the multi-recycling of MA using FBRs. (K.I.)

  17. Recycling of packing plastics

    International Nuclear Information System (INIS)

    Gintenreiter-Koegl, S.

    2001-05-01

    The ordinance on the avoidance of packaging waste was a serious intervention in the public and private waste management in Austria. Above all the high expenses for an overall packaging waste collection and the recycling of packaging plastics were criticized. The landfill ordinance comes into force in 2004 and this means another major change in the Austrian waste management system. In the course of this change the overall collection and the recycling and recovery of waste streams, especially of the high caloric plastics waste, have to be discussed again. The goal of this work was on the one hand to develop and adapt the hydrocracking process for the recovery of mixed plastics waste and to show a possible application in Austria. On the other hand the work shows the technical, ecological and economical conditions for packaging plastics recycling and recovery in order to find optimum applications for the processes and to examine their contribution to a sustainable development. A hydrocracking test plant for the processing of mixed plastic wastes was built and had been running for about three years. The tests were carried out successfully and the suitability of the technology for the recovery of packaging plastics could be shown. Results show at least a 35 % yield of fuel. The hydrocracking technology is quite common in the oil industries and therefore an integration on a refinery site is suggested. (author)

  18. Optimization of the recycle used oil and its fuel quality characterization

    Directory of Open Access Journals (Sweden)

    Eyitayo A. AFOLABI

    2016-06-01

    Full Text Available The optimization of recycling of used engine oil with clay sample has been studied using Response Surface Methodology. Acid concentration, activation temperature and time were the independent variables considered in optimizing the recycling of used oil and six responses evaluated. The surface characterization of the clay samples was performed using the Fourier Transform Infrared (FTIR spectra and Brunauer Emmett Teller (BET analyses. The relationship between independent variables and response was described by a second order polynomial equation. Statistical testing of the model was performed with F-test to obtain the correlation between the experimental data and predicted results for all responses. The adequacy of the model equations were evaluated by the Adjusted and Predicted R2 coefficients observed to be close to each other for all the six responses. Data obtained from recycling used oil using clay sample showed the optimum condition as; activation temperature of 106.80oC, acid concentration of 3M and activation time of 180 minutes. A yield of 66.28% was obtained at optimum condition and characterized fuel qualities found close to fresh oil used as standard in this work. The surface area and adsorption capacity of raw clay and activated clay samples was observed to have increase from 19.8m2/g to 437.83m2/g and 1.41 mg/g to 8.64 mg/g respectively. This difference adequately described the improvement of the adsorption phenomena of the activated clay over raw clay samples.

  19. Plant growth and mineral recycle trade-offs in different scenarios for a CELSS. [Closed Ecological Life Support System

    Science.gov (United States)

    Ballou, E. V.; Wydeven, T.; Spitze, L. A.

    1982-01-01

    Data for hydroponic plant growth in a manned system test is combined with nutritional recommendations to suport trade-off calculations for closed and partially closed life support system scenarios. Published data are used as guidelines for the masses of mineral nutrients needed for higher plant production. The results of calculations based on various scenarios are presented for various combinations of plant growth chamber utilization and fraction of mineral recycle. Estimates are made of the masses of material needed to meet human nutritional requirements in the various scenarios. It appears that food production from a plant growth chamber with mineral recycle is favorable to reduction of the total launch weight in missions exceeding 3 years.

  20. Plant overview of JNFL MOX fuel fabrication plant (J-MOX)

    International Nuclear Information System (INIS)

    Hiruta, Kazuhiko; Suzuki, Masataka; Shimizu, Junji; Suzuki, Kazumi; Yamamoto, Yutaka; Deguchi, Morimoto; Fujimaki, Kazunori

    2005-01-01

    In April 2005, JNFL submitted METI an application for the permission of MOX fuel fabrication business for JNFL MOX Fuel Fabrication Plant (J-MOX). Accordingly, safeguards formalities and discussion with the Agency have been also started for J-MOX as an official project. This report describes J-MOX plant overview and also presents outline of J-MOX by focusing on safeguards features and planned material accountancy method. (author)