WorldWideScience

Sample records for westinghouse hybrid cycle

  1. Numerical modeling for preliminary design of the hydrogen production electrolyzer in the Westinghouse hybrid cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jomard, F.; Feraud, J. P. [CEA Valrho, DTEC/SGCS/LGCI, F-30207 Bagnols Sur Ceze, (France); Caire, J. P. [ENSEEG, LEPMI, F-38402 St Martin Dheres, (France)

    2008-07-01

    The Westinghouse sulfur process decomposes water into hydrogen and oxygen in several steps. This process requires a high-temperature thermal source, which could ideally be a fourth-generation nuclear reactor for recycling compounds. The process consists of producing hydrogen in a specific electrolyzer where protons are reduced at the cathode while an oxidation reaction, in which sulfur dioxide forms sulfuric acid, takes place in the anode compartment. This type of reaction enables mass hydrogen production at a very low cell voltage because the thermodynamic oxidation potential of SO{sub 2}/H{sub 2}SO{sub 4} is 0.17 V, compared with 1.23 V for the common electrolysis of water by H{sub 2}O/O{sub 2} oxidation. This article describes the electrical/thermal coupling of an individual filter press electrolysis cell for the preliminary design of a future test pilot. Solving coupled equations describing heat transfer and electrokinetics in the presence of forced convective flow of a two-phase electrolyte allows charge and heat transfer to be predicted for different configurations. (authors)

  2. Process sensitivity studies of the Westinghouse sulfur cycle for hydrogen generation

    Science.gov (United States)

    Carty, R. H.; Cox, K. E.; Funk, J. E.; Soliman, M. A.; Conger, W. L.; Brecher, L. E.; Spewock, S.

    1976-01-01

    The effect of variations of acid concentration, pressure, and temperature on the thermal process efficiency of the Westinghouse sulfur cycle was examined using the HYDRGN program. Modifications to the original program were made to duplicate the process flowsheet and take into account combined cycle heat-to-work efficiencies for electrochemical work requirements, aqueous solutions, and heat-of-mixing effects. A total of 125 process variations were considered (acid concentration: 50-90 w/o; pressure: 15-750 psia; temperature: 922K - 1366K). The methods of analysis, results, and conclusions are presented.

  3. Overview of Westinghouse`s Advanced Turbine Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    Bannister, R.L.; Bevc, F.P.; Diakunchak, I.S.; Huber, D.J. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-01

    Westinghouse`s experience with land based gas turbines started in 1945 with the development of a 2000 hp gas turbine-generator set that consisted of a single reduction gear, compressor, 12 combustors and turbine. A thermal efficiency of 18% was obtained. By 1954, Westinghouse had developed a 15 MW unit (with a regenerator and intercooler) that was designed for a full-load simple cycle efficiency of 29%. As the initial step in the Advanced Turbine Systems (ATS) program, Westinghouse has already developed a 230 MW gas turbine that has a simple cycle efficiency of 38.5% without the use of regeneration and intercooler concepts. In 1967, Westinghouse developed its first gas turbine combined cycle, a synergistic combination of the Brayton and the Rankine cycles. In a combined cycle the heat rejected by the higher temperature topping cycle is recovered in the lower temperature bottoming cycle to produce additional power from the energy initially released by the fuel. In this first Westinghouse combined cycle, a 1450{degrees}F burner outlet temperature gas turbine, rated at 25 MW, supplied exhaust heat which was used in a boiler to furnish steam to drive an 85 MW steam turbine. This plant achieved an annual average efficiency of 39.6%.

  4. Hybrid staging of a Lysholm positive displacement engine with two Westinghouse two stage impulse Curtis turbines

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.A.

    1982-06-01

    The University of California at Berkeley has tested and modeled satisfactorly a hybrid staged Lysholm engine (positive displacement) with a two stage Curtis wheel turbine. The system operates in a stable manner over its operating range (0/1-3/1 water ratio, 120 psia input). Proposals are made for controlling interstage pressure with a partial admission turbine and volume expansion to control mass flow and pressure ratio for the Lysholm engine.

  5. Westinghouse thermal barrier coatings development

    Energy Technology Data Exchange (ETDEWEB)

    Goedjen, J.G.; Wagner, G. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-01

    Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications. The program is directed at developing a state-of-the-art coating system with a minimum coating life of 25,000 hours at service temperatures required to meet increasing operating efficiency goals. Westinghouse has assembled a team of university and industry leaders to accomplish this goal. Westinghouse will coordinate the efforts of all program participants. Chromalloy Turbine Technologies, Inc. and Sermatech International, Inc. will be responsible for bond coat and TBC deposition technology. Praxair Specialty Powders, Inc. will be responsible for the fabrication of all bond coat and ceramic powders for the program. Southwest Research Institute will head the life prediction modelling effort; they will also be involved in coordinating nondestructive evaluation (NDE) efforts. Process modelling will be provided by the University of Arizona.

  6. CHOOSING DRIVING CYCLE OF HYBRID VEHICLE

    Directory of Open Access Journals (Sweden)

    A. Vorona

    2011-01-01

    Full Text Available The analysis of existing driving cycles was performed. After comparing some of the cycles, one specific driving cycle was selected for the hybrid vehicle as the most reliable in representing the real moving of the vehicle in operating conditions and which may be reproduced at experimental tests at the modeling roller stand.

  7. Technical review of Westinghouse`s Advanced Turbine Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    Diakunchak, I.S.; Bannister, R.L. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-01

    U.S. Department of Energy, Office of Fossil Energy Advanced Turbine Systems (ATS) Program is an ambitious program to develop the necessary technologies, which will result in a significant increase in natural gas-fired power generation plant efficiency, a decrease in cost of electricity and a decrease in harmful emissions. In Phase 1 of the ATS Program, preliminary investigations on different gas turbine cycles demonstrated that net plant efficiency greater than 60% could be achieved. The more promising cycles were evaluated in more detail in Phase 2 in order to select the one that would achieve all of the program goals. The closed-loop cooled combined cycle was selected because it offered the best solution with the least risk for exceeding the ATS Program goals of net plant efficiency, emissions, cost of electricity, reliability, availability, and maintainability (RAM), and commercialization in the year 2000. The Westinghouse ATS plant is based on an advanced gas turbine design combined with an advanced steam. turbine and a high efficiency generator. To enhance achievement of the challenging performance, emissions, and RAM goals, current technologies are being extended and new technologies developed. The attainment of ATS performance goal necessitates advancements in aerodynamics, sealing, cooling, coatings, and materials technologies. To reduce emissions to the required levels, demands a development effort in the following combustion technology areas: premixed ultra low NOx combustion, catalytic combustion, combustion instabilities, and optical diagnostics. To achieve the RAM targets, requires the utilization of proven design features, with quantified risk analysis, and advanced materials, coatings, and cooling technologies. Phase 2 research and development projects currently in progress, as well as those planned for Phase 3, will result in advances in gas turbine technology and greatly contribute to ATS Program success.

  8. The Westinghouse Small Modular Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Garcia, F. J.; Memmott, M. J.

    2012-07-01

    Westinghouse has developed a small modular reactor (SMR) which incorporates an integral pressurized water reactor (PWR) design. The Westinghouse SMR design also utilizes many of the key features and innovative concepts from the AP1000 plant, including passive safety systems.

  9. Westinghouse Small Modular Reactor nuclear steam supply system design

    Energy Technology Data Exchange (ETDEWEB)

    Memmott, M. J.; Harkness, A. W.; Van Wyk, J. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam

  10. The Hybrid Automobile and the Atkinson Cycle

    Science.gov (United States)

    Feldman, Bernard J.

    2008-01-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle…

  11. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  12. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 9: Closed-cycle MHD. [energy conversion efficiency of electric power plants using magnetohydrodynamics

    Science.gov (United States)

    Tsu, T. C.

    1976-01-01

    A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  14. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  15. Limit Cycle Analysis in a Class of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Antonio Favela-Contreras

    2016-01-01

    Full Text Available Hybrid systems are those that inherently combine discrete and continuous dynamics. This paper considers the hybrid system model to be an extension of the discrete automata associating a continuous evolution with each discrete state. This model is called the hybrid automaton. In this work, we achieve a mathematical formulation of the steady state and we show a way to obtain the initial conditions region to reach a specific limit cycle for a class of uncoupled and coupled continuous-linear hybrid systems. The continuous-linear term is used in the sense of the system theory and, in this sense, continuous-linear hybrid automata will be defined. Thus, some properties and theorems that govern the hybrid automata dynamic behavior to evaluate a limit cycle existence have been established; this content is explained under a theoretical framework.

  16. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 8: Open-cycle MHD. [energy conversion efficiency and design analysis of electric power plants employing magnetohydrodynamics

    Science.gov (United States)

    Hoover, D. Q.

    1976-01-01

    Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.

  17. Electrostatic Cycling of Hybridization Using Nonionic DNA Mimics.

    Science.gov (United States)

    Ruffin, Sade; Hung, Isabella A; Koniges, Ursula M; Levicky, Rastislav

    2017-07-28

    This study demonstrates efficient electrostatic control of surface hybridization through use of morpholinos, a charge-neutral DNA mimic, as the immobilized "probes". In addition to being compatible with low ionic strengths, use of uncharged probes renders the field interaction specific to the nucleic acid analyte. In contrast to DNA probes, morpholino probes enable facile cycling between hybridized and dehybridized states within minutes. Impact of ionic strength and temperature on the effectiveness of electrostatics to direct progress of hybridization is evaluated. Optimal electrostatic control is found when stability of probe-analyte duplexes is set so that electrostatics can efficiently switch between the forward (hybridization) and reverse (dehybridization) directions.

  18. THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Summers, W.

    2010-03-24

    The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. 2) for the SO{sub 2}-depolarized electrolysis (sulfur oxidation) step, while Sandia National Laboratories (SNL) successfully demonstrated the high-temperature sulfuric acid decomposition (sulfur reduction) step using a bayonet-type reactor (Fig. 3). This latter work was performed as part of the Sulfur-Iodine (SI) cycle Integrated Laboratory Scale demonstration at General Atomics (GA). The combination of these two operations results in a simple process that will be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis. Recent developments suggest that the use of PEMs other than Nafion will allow sulfuric acid to be produced at higher concentrations (>60 wt%), offering the possibility of net thermal efficiencies around 50

  19. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  20. A hybrid multi-effect distillation and adsorption cycle

    KAUST Repository

    Thu, Kyaw

    2013-04-01

    This paper describes the development of a simple hybrid desalination system of a Multi-Effect Distillation (MED) and an adsorption (AD) cycle operating at sub-atmospheric pressures and temperatures. By hybridizing the conventional MED with an AD cycle, there is a symbiotic enhancement of performances of both cycles. The performance enhancement is attributed to (i) the cascade of adsorbent\\'s regeneration temperature and this extended the usage of thermal energy emanating from the brine heater and (ii) the vapor extraction from the last MED stage by AD cycle which provides the effect of lowering saturation temperatures of all MED stages to the extent of 5°C, resulting in scavenging of heat leaks into the MED stages from the ambient. The combined effects of the hybrid cycles increase the water production capacity of the desalination plant by nearly twofolds.In this paper, we demonstrate a hybrid cycle by simulating an 8-stage MED cycle which is coupled to an adsorption cycle for direct vapor extraction from the last MED stage. The sorption properties of silica gel is utilized (acting as a mechanical vapor compressor) to reduce the saturation temperatures of MED stages. The modeling utilizes the adsorption isotherms and kinetics of the adsorbent. +. adsorbate (silica-gel. +. water) pair along with the governing equations of mass, energy and concentration. For a 8-stage MED and AD cycles operating at assorted temperatures of 65-90°C, the results show that the water production rate increases from 60% to twofolds when compared to the MED alone. The performance ratio (PR) and gain output ratio (GOR) also improve significantly. © 2012 Elsevier Ltd.

  1. The hybrid two stage anticlockwise cycle for ecological energy conversion

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The anticlockwise cycle is commonly used for refrigeration, air conditioning and heat pumps applications. The application of refrigerant in the compression cycle is within the temperature limits of the triple point and the critical point. New refrigerants such as 1234yf or 1234ze have many disadvantages, therefore natural refrigerants application is favourable. The carbon dioxide and water can be applied only in the hybrid two stages cycle. The possibilities of this solutions are shown for refrigerating applications, as well some experimental results of the adsorption-compression double stages cycle, powered with solar collectors are shown. As a high temperature cycle the adsorption system is applied. The low temperature cycle is the compression stage with carbon dioxide as a working fluid. This allows to achieve relatively high COP for low temperature cycle and for the whole system.

  2. A Robust Hybrid Zn-Battery with Ultralong Cycle Life.

    Science.gov (United States)

    Li, Bing; Quan, Junye; Loh, Adeline; Chai, Jianwei; Chen, Ye; Tan, Chaoliang; Ge, Xiaoming; Hor, T S Andy; Liu, Zhaolin; Zhang, Hua; Zong, Yun

    2017-01-11

    Advanced batteries with long cycle life and capable of harnessing more energies from multiple electrochemical reactions are both fundamentally interesting and practically attractive. Herein, we report a robust hybrid zinc-battery that makes use of transition-metal-based redox reaction (M-O-OH → M-O, M = Ni and Co) and oxygen reduction reaction (ORR) to deliver more electrochemical energies of comparably higher voltage with much longer cycle life. The hybrid battery was constructed using an integrated electrode of NiCo 2 O 4 nanowire arrays grown on carbon-coated nickel foam, coupled with a zinc plate anode in alkaline electrolyte. Benefitted from the M-O/M-O-OH redox reactions and rich ORR active sites in NiCo 2 O 4 , the battery has concurrently exhibited high working voltage (by M-O-OH → M-O) and high energy density (by ORR). The good oxygen evolution reaction (OER) activity of the electrode and the reversible M-O ↔ M-O-OH reactions also enabled smooth recharging of the batteries, leading to excellent cycling stabilities. Impressively, the hybrid batteries maintained highly stable charge-discharge voltage profile under various testing conditions, for example, almost no change was observed over 5000 cycles at a current density of 5 mA cm -2 after some initial stabilization. With merits of higher working voltage, high energy density, and ultralong cycle life, such hybrid batteries promise high potential for practical applications.

  3. Hybrid Combined Cycles with Biomass and Waste Fired Bottoming Cycle - a Literature Study

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Miroslav P.

    2002-02-01

    Biomass is one of the main natural resources in Sweden. The present low-CO{sub 2} emission characteristics of the Swedish electricity production system (hydro and nuclear) can be retained only by expansion of biofuel applications for energy purposes. Domestic Swedish biomass resources are vast and renewable, but not infinite. They must be utilized as efficiently as possible, in order to make sure that they meet the conditions for sustainability in the future. Application of efficient power generation cycles at low costs is essential for meeting this challenge. This applies also to municipal solid waste incineration with energy extraction, which should be preferred to its dumping in landfills. Hybrid dual-fuel combined cycle units are a simple and affordable way to increase the electric efficiency of biofuel energy utilization, without big investments, uncertainties or loss of reliability arising from complicated technologies. Configurations of such power cycles are very flexible and reliable. Their potential for high electric efficiency in condensing mode, high total efficiency in combined heat and power mode and unrivalled load flexibility is explored in this project. The present report is a literature study that concentrates on certain biomass utilization technologies, in particular the design and performance of hybrid combined cycle power units of various configurations, with gas turbines and internal combustion engines as topping cycles. An overview of published literature and general development trends on the relevant topic is presented. The study is extended to encompass a short overview of biomass utilization as an energy source (focusing on Sweden), history of combined cycles development with reference especially to combined cycles with supplementary firing and coal-fired hybrid combined cycles, repowering of old steam units into hybrid ones and combined cycles for internal combustion engines. The hybrid combined cycle concept for municipal solid waste

  4. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    steam in a HRSG (heat recovery steam generator). The bottoming steam cycle was modeled with two configurations: (1) a simple single pressure level and (2) a dual pressure level with both a reheat and a pre-heater. The SOFC stacks in the present SOFC-ST hybrid cycles were not pressurized. The dual......A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the remaining fuel after the SOFC stacks. The off-gases from the burner were used to produce...... pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...

  5. An experimental investigation on MEDAD hybrid desalination cycle

    KAUST Repository

    Shahzad, Muhammad Wakil

    2015-04-02

    This paper presents an advanced desalination cycle called "MEDAD" desalination which is a hybrid of the conventional multi-effect distillation (MED) and an adsorption cycle (AD). The combined cycles allow some of MED stages to operate below ambient temperature, as low as 5. °C in contrast to the conventional MED. The MEDAD cycle results in a quantum increase of distillate production at the same top-brine condition. Being lower than the ambient temperature for the bottom stages of hybrid cycle, ambient energy can now be scavenged by the MED processes whilst the AD cycle is powered by low temperature waste heat from exhaust or renewable sources. In this paper, we present the experiments of a 3-stage MED and MEDAD plants. These plants have been tested at assorted heat source temperatures from 15. °C to 70. °C and with portable water as a feed. All system states are monitored including the distillate production and power consumption and the measured results are expressed in terms of performance ratio (PR). It is observed that the synergetic matching of MEDAD cycle led to a quantum increase in distillate production, up to 2.5 to 3 folds vis-a-vis to a conventional MED of the same rating. © 2015 Elsevier Ltd.

  6. Preliminary Modelling Results for an Otto Cycle/Stirling Cycle Hybrid-engine-based Power Generation System

    OpenAIRE

    Cullen, Barry; McGovern, Jim; Feidt, Michel; Petrescu, Stoian

    2009-01-01

    This paper presents preliminary data and results for a system mathematical model for a proposed Otto Cycle / Stirling Cycle hybrid-engine-based power generation system. The system is a combined cycle system with the Stirling cycle machine operating as a bottoming cycle on the Otto cycle exhaust. The application considered is that of a stationary power generation scenario wherein the Stirling cycle engine operates as a waste heat recovery device on the exhaust stream of the Otto cycle engine. ...

  7. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...... configurations are compared with each other. Technoeconomy is used when calculating the cost if the plants. It is found that when a solid oxide fuel cell plant is combined with a gas turbine cycle then the plant efficiency will be the highest one while if a biomass gasification plant is integrated...... with these hybrid cycles then integrated biomass gasification with solid oxide fuel cell and steam cycle will have the highest plant efficiency. The cost of solid oxide fuel cell with steam plant is found to be the lowest one with a value of about 1030$/kW....

  8. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 4: Open recuperated and bottomed gas turbine cycles. [performance prediction and energy conversion efficiency of gas turbines in electric power plants (thermodynamic cycles)

    Science.gov (United States)

    Amos, D. J.; Grube, J. E.

    1976-01-01

    Open-cycle recuperated gas turbine plant with inlet temperatures of 1255 to 1644 K (1800 to 2500 F) and recuperators with effectiveness values of 0, 70, 80 and 90% are considered. A 1644 K (2500 F) gas turbine would have a 33.5% plant efficiency in a simple cycle, 37.6% in a recuperated cycle and 47.6% when combined with a sulfur dioxide bottomer. The distillate burning recuperated plant was calculated to produce electricity at a cost of 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost $170 to 200 $/kW, the open cycle gas turbine plant should see duty for peaking and intermediate load duty.

  9. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    Science.gov (United States)

    Weinstein, Leonard

    2004-01-01

    A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the

  10. Experimental investigation of the ecological hybrid refrigeration cycle

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2014-09-01

    Full Text Available The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.

  11. Experimental investigation of the ecological hybrid refrigeration cycle

    Science.gov (United States)

    Cyklis, Piotr; Kantor, Ryszard; Ryncarz, Tomasz; Górski, Bogusław; Duda, Roman

    2014-09-01

    The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.

  12. Performance Analysis of Hybrid Electric Vehicle over Different Driving Cycles

    Science.gov (United States)

    Panday, Aishwarya; Bansal, Hari Om

    2017-02-01

    Article aims to find the nature and response of a hybrid vehicle on various standard driving cycles. Road profile parameters play an important role in determining the fuel efficiency. Typical parameters of road profile can be reduced to a useful smaller set using principal component analysis and independent component analysis. Resultant data set obtained after size reduction may result in more appropriate and important parameter cluster. With reduced parameter set fuel economies over various driving cycles, are ranked using TOPSIS and VIKOR multi-criteria decision making methods. The ranking trend is then compared with the fuel economies achieved after driving the vehicle over respective roads. Control strategy responsible for power split is optimized using genetic algorithm. 1RC battery model and modified SOC estimation method are considered for the simulation and improved results compared with the default are obtained.

  13. ANALYS OF EXPERIMENTAL HYBRID CAR TESTING RESULTS ON URBAN DRIVING CYCLE

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2014-02-01

    Full Text Available The experimental hybrid car testing results are presented. The estimation of hybrid car draft-speed characteristics, energy and ecological indicators on urban driving cycle are given.

  14. A hybrid model of mammalian cell cycle regulation.

    Directory of Open Access Journals (Sweden)

    Rajat Singhania

    2011-02-01

    Full Text Available The timing of DNA synthesis, mitosis and cell division is regulated by a complex network of biochemical reactions that control the activities of a family of cyclin-dependent kinases. The temporal dynamics of this reaction network is typically modeled by nonlinear differential equations describing the rates of the component reactions. This approach provides exquisite details about molecular regulatory processes but is hampered by the need to estimate realistic values for the many kinetic constants that determine the reaction rates. It is difficult to estimate these kinetic constants from available experimental data. To avoid this problem, modelers often resort to 'qualitative' modeling strategies, such as Boolean switching networks, but these models describe only the coarsest features of cell cycle regulation. In this paper we describe a hybrid approach that combines the best features of continuous differential equations and discrete Boolean networks. Cyclin abundances are tracked by piecewise linear differential equations for cyclin synthesis and degradation. Cyclin synthesis is regulated by transcription factors whose activities are represented by discrete variables (0 or 1 and likewise for the activities of the ubiquitin-ligating enzyme complexes that govern cyclin degradation. The discrete variables change according to a predetermined sequence, with the times between transitions determined in part by cyclin accumulation and degradation and as well by exponentially distributed random variables. The model is evaluated in terms of flow cytometry measurements of cyclin proteins in asynchronous populations of human cell lines. The few kinetic constants in the model are easily estimated from the experimental data. Using this hybrid approach, modelers can quickly create quantitatively accurate, computational models of protein regulatory networks in cells.

  15. Economics analysis of fuel cycle cost of fusion–fission hybrid reactors based on different fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Tiejun, E-mail: tiejun@mail.xjtu.edu.cn; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi

    2015-01-15

    Highlights: • Economics analysis of fuel cycle cost of FFHRs is carried out. • The mass flows of different fuel cycle strategies are established based on the equilibrium fuel cycle model. • The levelized fuel cycle costs of different fuel cycle strategies are calculated, and compared with current once-through fuel cycle. - Abstract: The economics analysis of fuel cycle cost of fusion–fission hybrid reactors has been performed to compare four fuel cycle strategies: light water cooled blanket burning natural uranium (Strategy A) or spent nuclear fuel (Strategy B), sodium cooled blanket burning transuranics (Strategy C) or minor actinides (Strategy D). The levelized fuel cycle costs (LFCC) which does not include the capital cost, operation and maintenance cost have been calculated based on the equilibrium mass flows. The current once-through (OT) cycle strategy has also been analyzed to serve as the reference fuel cycle for comparisons. It is found that Strategy A and Strategy B have lower LFCCs than OT cycle; although the LFCC of Strategy C is higher than that of OT cycle when the uranium price is at its nominal value, it would become comparable to that of OT cycle when the uranium price reaches its historical peak value level; Strategy D shows the highest LFCC, because it needs to reprocess huge mass of spent nuclear fuel; LFCC is sensitive to the discharge burnup of the nuclear fuel.

  16. Internet Enabled Remote Driving of a Combat Hybrid Electric Power System for Duty Cycle Measurement

    National Research Council Canada - National Science Library

    Goodell, Jarrett; Compere, Marc; Smith, Wilford; Holtz, Dale; Brudnak, Mark; Pozolo, Mike; Paul, Victor; Mohammad, Syed; Mortsfield, Todd; Shvartsman, Andrey

    2007-01-01

    This paper describes a human-in-the-loop motion-based simulator interfaced to hybrid-electric power system hardware, both of which were used to measure the duty cycle of a combat vehicle in a virtual...

  17. Human plan of capital of Westinghouse; Plan de capital humano de Westinghouse

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, B.; Gutierrez Elso, J. E.

    2008-07-01

    After three decades of nuclear standstill, the Nuclear Renaissance resulted in a changing environment, Nuclear Companies should prepare and adapt to different challenges: the fast growing of the organization, the loss of talent to other more attractive industrial fields and the transfer and management of knowledge to young engineers that have not participated in the building of nuclear plants. In this article different Westinghouse initiatives in this respect are commented. (Author)

  18. Hybrid ODE/SSA methods and the cell cycle model

    Science.gov (United States)

    Wang, S.; Chen, M.; Cao, Y.

    2017-07-01

    Stochastic effect in cellular systems has been an important topic in systems biology. Stochastic modeling and simulation methods are important tools to study stochastic effect. Given the low efficiency of stochastic simulation algorithms, the hybrid method, which combines an ordinary differential equation (ODE) system with a stochastic chemically reacting system, shows its unique advantages in the modeling and simulation of biochemical systems. The efficiency of hybrid method is usually limited by reactions in the stochastic subsystem, which are modeled and simulated using Gillespie's framework and frequently interrupt the integration of the ODE subsystem. In this paper we develop an efficient implementation approach for the hybrid method coupled with traditional ODE solvers. We also compare the efficiency of hybrid methods with three widely used ODE solvers RADAU5, DASSL, and DLSODAR. Numerical experiments with three biochemical models are presented. A detailed discussion is presented for the performances of three ODE solvers.

  19. Hybrid Vapor Compression Ejector Cycle: Presentation to IAPG Mechanical Working Group

    Science.gov (United States)

    2011-08-01

    Compression Ejector Cycle: Presentation to IAPG Mechanical Working Group Parmesh Verma and Tom Radcliff, United Technologies Research Center UNCLASSIFIED... Ejector Cycle Presentation to IAPG Mechanical Working Group 5a. CONTRACT NUMBER W909MY-10-C-0005 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...hybrid vapor compression ejector heat pump cycle developed under an American Recovery and Reinvestment Act funded contract is provided. 15. SUBJECT

  20. Standardized Technical Specifications for Westinghouse PWRs

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-15

    This Standard Technical Specification (STS) has been structured for the broadest possible use on Westinghouse plants currently being reviewed for an Operating License. Accordingly, the document contains specifications applicable to plants (1) with either 3 or 4 loops and (2) with and without loop stop valves. In addition, four separate and discrete containment specification sections are provided for each of the following containment types: Atmospheric, Ice Condenser, Sub-Atmospheric, and Dual. Optional specifications are provided for those features and systems which may be included in individual plant designs but are not generic in their scope of application. Alternate specifications are provided in a limited number of cases to cover situations where alternate specification requirements are necessary on a generic basis because of design differences. The format of the STS addresses the categories required by 10 CFR 50 and consists of six sections covering the areas of: Definitions, Safety Limits and Limiting Safety System Settings, Limiting Conditions for Operation, Surveillance Requirements, Design Features, and Administrative Controls.

  1. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  2. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    Science.gov (United States)

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  3. Westinghouse Integrated Control and Instrumentation System in Sizewell B

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S.; Bordelon, F. [Westinghouse Electric Corporation, Pennsylvania (United States)

    1993-04-15

    The Westinghouse supplied control and instrumentation system for the Sizewell B Station in the United Kingdom is the first implementation of the state-of-art digital control technology in an integrated plant-wide protection, control and information system in a nuclear power plant. The system is comprised of four primary functions - control room, data processing and display generation, control and protection, and plant process. The total system is subdivided into two primary system, Primary Protection System (PPS) and Integrated System for Centralized Operation (W-IMCO). PPS is micro-processor based Westinghouse Eagle Series equipment based on 4 redundant channels of measured input, signal processing and conditioning, Trip demands and Engineered Safety Features actuation (Trip/ESA). Witco is comprised of the High Integrity Control System (Hicks), the Process Control System (P/CAS) and the Distributed Computer System (DDS). PPS and W-IMCO are organized in hierarchy to meet the all the functions of measurement, control and Man Machine Interface (Mi) functions for the safe and efficient operation of the plant. The PPS and Witco are based entirely upon well proven Westinghouse I and C products, PPS and Hicks with Eagle Series equipment, P/CAS and DES with Westinghouse-standard Westinghouse Distributed Processor Family (WDPF) equipment. This integrated system approach where the functional design is logically separated from the equipment configuration allowed plant construction, I and C design and manufacturing to proceed in parallel.

  4. Energy Management Strategy Based on the Driving Cycle Model for Plugin Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoling Fu

    2014-01-01

    Full Text Available The energy management strategy (EMS for a plugin hybrid electric vehicle (PHEV is proposed based on the driving cycle model and dynamic programming (DP algorithm. A driving cycle model is constructed by collecting and processing the driving data of a certain school bus. The state of charge (SOC profile can be obtained by the DP algorithm for the whole driving cycle. In order to optimize the energy management strategy in the hybrid power system, the optimal motor torque control sequence can be calculated using the DP algorithm for the segments between the traffic intersections. Compared with the traditional charge depleting-charge sustaining (CDCS strategy, the test results on the ADVISOR platform show a significant improvement in fuel consumption using the EMS proposed in this paper.

  5. Punctuated evolution and transitional hybrid network in an ancestral cell cycle of fungi.

    Science.gov (United States)

    Medina, Edgar M; Turner, Jonathan J; Gordân, Raluca; Skotheim, Jan M; Buchler, Nicolas E

    2016-05-10

    Although cell cycle control is an ancient, conserved, and essential process, some core animal and fungal cell cycle regulators share no more sequence identity than non-homologous proteins. Here, we show that evolution along the fungal lineage was punctuated by the early acquisition and entrainment of the SBF transcription factor through horizontal gene transfer. Cell cycle evolution in the fungal ancestor then proceeded through a hybrid network containing both SBF and its ancestral animal counterpart E2F, which is still maintained in many basal fungi. We hypothesize that a virally-derived SBF may have initially hijacked cell cycle control by activating transcription via the cis-regulatory elements targeted by the ancestral cell cycle regulator E2F, much like extant viral oncogenes. Consistent with this hypothesis, we show that SBF can regulate promoters with E2F binding sites in budding yeast.

  6. Westinghouse independent safety review of Savannah River production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, W.D.; McShane, W.J. (Westinghouse Hanford Co., Richland, WA (USA)); Liparulo, N.J.; McAdoo, J.D.; Strawbridge, L.E. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear and Advanced Technology Div.); Toto, G. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear Services Div.); Fauske, H.K. (Fauske and Associates, Inc., Burr Ridge, IL (USA)); Call, D.W. (Westinghouse Savannah R

    1989-04-01

    Westinghouse Electric Corporation has performed a safety assessment of the Savannah River production reactors (K,L, and P) as requested by the US Department of Energy. This assessment was performed between November 1, 1988, and April 1, 1989, under the transition contract for the Westinghouse Savannah River Company's preparations to succeed E.I. du Pont de Nemours Company as the US Department of Energy contractor for the Savannah River Project. The reviewers were drawn from several Westinghouse nuclear energy organizations, embody a combination of commercial and government reactor experience, and have backgrounds covering the range of technologies relevant to assessing nuclear safety. The report presents the rationale from which the overall judgment was drawn and the basis for the committee's opinion on the phased restart strategy proposed by E.I. du Pont de Nemours Company, Westinghouse, and the US Department of Energy-Savannah River. The committee concluded that it could recommend restart of one reactor at partial power upon completion of a list of recommended upgrades both to systems and their supporting analyses and after demonstration that the organization had assimilated the massive changes it will have undergone.

  7. Root cause of incomplete control rod insertions at Westinghouse reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ray, S. [Westinghouse, Monroeville, PA (United States)

    1997-01-01

    Within the past year, incomplete RCCA insertions have been observed on high burnup fuel assemblies at two Westinghouse PWRs. Initial tests at the Wolf Creek site indicated that the direct cause of the incomplete insertions observed at Wolf Creek was excessive fuel assembly thimble tube distortion. Westinghouse committed to the NRC to perform a root cause analysis by the end of August, 1996. The root cause analysis process used by Westinghouse included testing at ten sites to obtain drag, growth and other characteristics of high burnup fuel assemblies. It also included testing at the Westinghouse hot cell of two of the Wolf Creek incomplete insertion assemblies. A mechanical model was developed to calculate the response of fuel assemblies when subjected to compressive loads. Detailed manufacturing reviews were conducted to determine if this was a manufacturing related issue. In addition, a review of available worldwide experience was performed. Based on the above, it was concluded that the thimble tube distortion observed on the Wolf Creek incomplete insertion assemblies was caused by unusual fuel assembly growth over and above what would typically be expected as a result of irradiation exposure. It was determined that the unusual growth component is a combination of growth due to oxide accumulation and accelerated growth, and would only be expected in high temperature plants on fuel assemblies that see long residence times and high power duties.

  8. An Overview of Westinghouse Realistic Large Break LOCA Evaluation Model

    Directory of Open Access Journals (Sweden)

    Cesare Frepoli

    2008-01-01

    Full Text Available Since the 1988 amendment of the 10 CFR 50.46 rule in 1988, Westinghouse has been developing and applying realistic or best-estimate methods to perform LOCA safety analyses. A realistic analysis requires the execution of various realistic LOCA transient simulations where the effect of both model and input uncertainties are ranged and propagated throughout the transients. The outcome is typically a range of results with associated probabilities. The thermal/hydraulic code is the engine of the methodology but a procedure is developed to assess the code and determine its biases and uncertainties. In addition, inputs to the simulation are also affected by uncertainty and these uncertainties are incorporated into the process. Several approaches have been proposed and applied in the industry in the framework of best-estimate methods. Most of the implementations, including Westinghouse, follow the Code Scaling, Applicability and Uncertainty (CSAU methodology. Westinghouse methodology is based on the use of the WCOBRA/TRAC thermal-hydraulic code. The paper starts with an overview of the regulations and its interpretation in the context of realistic analysis. The CSAU roadmap is reviewed in the context of its implementation in the Westinghouse evaluation model. An overview of the code (WCOBRA/TRAC and methodology is provided. Finally, the recent evolution to nonparametric statistics in the current edition of the W methodology is discussed. Sample results of a typical large break LOCA analysis for a PWR are provided.

  9. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle

    Science.gov (United States)

    Jeong, Kwi Seong; Oh, Byeong Soo

    The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.

  10. Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2011-04-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  11. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  12. Overview of the Westinghouse Small Modular Reactor building layout

    Energy Technology Data Exchange (ETDEWEB)

    Cronje, J. M. [Westinghouse Electric Company LLC, Centurion (South Africa); Van Wyk, J. J.; Memmott, M. J. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of the plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed

  13. Effects of mechanical and thermal cycling on composite and hybrid laminates with residual stresses

    Science.gov (United States)

    Daniel, I. M.; Liber, T.

    1977-01-01

    The effects of tensile load cycling and thermal cycling on residual stiffness and strength properties of the following composite and hybrid angle-ply laminates were studied: boron/epoxy, boron/polyimide, graphite/low-modulus epoxy, graphite/high-modulus epoxy, graphite/polyimide, S-glass/epoxy, graphite/Kevlar 49/epoxy, and graphite/S-glass/epoxy. Specimens of the first six types were mechanically cycled up to 90% of static strength. Those that survived 10 million cycles were tested statically to failure, and no significant changes in residual strength and modulus were noted. Specimens of all types were subjected to thermal cycling between room temperature and 411 K for the epoxy-matrix composites and 533 K for the polyimide-matrix composites. The residual strength and stiffness remained largely unchanged, except for the graphite/low-modulus epoxy, which showed reductions in both of approximately 35%. When low-temperature thermal cycling under tensile load was applied, there was a noticeable reduction in modulus and strength in the graphite/low-modulus epoxy and some strength reduction in the S-glass/epoxy.

  14. The control system of the ecological hybrid two stages refrigerating cycle

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The compression anticlockwise cycle is mostly used for refrigeration. However due to the environmental regulations, the use of classic refrigerants: F-gases is limited by international agreements. Therefore the combined compression-adsorption hybrid cycle with natural liquids: water/carbon dioxide working as the energy carriers is a promising solution. This allows to utilize the solar or waste energy for the refrigeration purpose. In this paper application of the solar collectors as the energy source for the adsorption cycle, coupled with the low temperature (LT refrigerating carbon dioxide compression cycle is shown. The control of the system is an essential issue to reduce the electric power consumption. The control of the solar heat supply and water sprayed cooling tower, for the adsorption cycle re-cooling, is presented in this paper. The designed control system and algorithm is related to the LT compression cycle, which operates according to the need of cold for the refrigeration chamber. The results of the laboratory investigations of the full system, showing the reduction of the energy consumption and maximum utilization of the solar heat for different control methods are presented.

  15. Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Directory of Open Access Journals (Sweden)

    L.P. Rodriguez

    2015-08-01

    Full Text Available Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR and two Pebble-Bed Accelerator Driven Systems (ADSs was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.

  16. Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power

    Science.gov (United States)

    Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.

    2005-01-01

    A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.

  17. Current status of Westinghouse tubular solid oxide fuel cell program

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W.G. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States)

    1996-04-01

    In the last ten years the solid oxide fuel cell (SOFC) development program at Westinghouse has evolved from a focus on basic material science to the engineering of fully integrated electric power systems. Our endurance for this cell is 5 to 10 years. To date we have successfully operated at power for over six years. For power plants it is our goal to have operated before the end of this decade a MW class power plant. Progress toward these goals is described.

  18. Validation and Benchmarking of Westinghouse BWR lattice physics methods

    OpenAIRE

    Luszczek, Karol

    2015-01-01

    A lattice physics code is a vital tool, forming a base of reactor coreanalysis. It enables the neutronic properties of the fuel assembly to becalculated and generates a proper set of data to be used by a 3-D full coresimulator. Due to advancement and complexity of modern Boiling WaterReactor assembly designs, a new deterministic lattice physics codeis being developed at Westinghouse Sweden AB, namely PHOENIX5.Each time a new code is written, its methodology of solving the neutrontransport equ...

  19. A synergetic hybridization of adsorption cycle with the multi-effect distillation (MED)

    KAUST Repository

    Thu, K.

    2014-01-01

    Multi-effect distillation (MED) systems are proven and energy efficient thermally-driven desalination systems for handling harsh seawater feed in the Gulf region. The high cycle efficiency is markedly achieved by latent energy re-use with minimal stage temperature-difference across the condensing steam and the evaporating saline seawater in each stage. The efficacies of MED system are (i) its low stage-temperature-difference between top brine temperature (TBT) and final condensing temperature, (ii) its robustness to varying salinity and ability to handle harmful algae Blooming (HABs) and (iii) its compact foot-print per unit water output. The practical TBT of MED systems, hitherto, is around 65 C for controllable scaling and fouling with the ambient-limited final condenser temperature, usually from 30 to 45 C. The adsorption (ADC) cycles utilize low-temperature heat sources (typically below 90 C) to produce useful cooling power and potable water. Hybridizing MED with AD cycles, they synergistically improve the water production rates at the same energy input whilst the AD cycle is driven by the recovered waste heat. We present a practical AD + MED combination that can be retrofitted to existing MEDs: The cooling energy of AD cycle through the water vapor uptake by the adsorbent is recycled internally, providing lower temperature condensing environment in the effects whilst the final condensing temperature of MED is as low as 5-10 C, which is below ambient. The increase in the temperature difference between TBT and final condensing temperature accommodates additional MED stages. A detailed numerical model is presented to capture the transient behaviors of heat and mass interactions in the combined AD + MED cycles and the results are presented in terms of key variables. It is observed that the water production rates of the combined cycle increase to give a GOR of 8.8 from an initial value of 5.9. © 2013 Elsevier Ltd. All rights reserved.

  20. Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system.

    Science.gov (United States)

    Adesanya, Victoria O; Cadena, Erasmo; Scott, Stuart A; Smith, Alison G

    2014-07-01

    A life cycle assessment (LCA) was performed on a putative biodiesel production plant in which the freshwater alga Chlorella vulgaris, was grown using an existing system similar to a published commercial-scale hybrid cultivation. The hybrid system couples airlift tubular photobioreactors with raceway ponds in a two-stage process for high biomass growth and lipid accumulation. The results show that microalgal biodiesel production would have a significantly lower environmental impact than fossil-derived diesel. Based on the functional unit of 1 ton of biodiesel produced, the hybrid cultivation system and hypothetical downstream process (base case) would have 42% and 38% savings in global warming potential (GWP) and fossil-energy requirements (FER) when compared to fossil-derived diesel, respectively. Sensitivity analysis was performed to identify the most influential process parameters on the LCA results. The maximum reduction in GWP and FER was observed under mixotrophic growth conditions with savings of 76% and 75% when compared to conventional diesel, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Hybrid life-cycle assessment of natural gas based fuel chains for transportation.

    Science.gov (United States)

    Strømman, Anders Hammer; Solli, Christian; Hertwich, Edgar G

    2006-04-15

    This research compares the use of natural gas, methanol, and hydrogen as transportation fuels. These three fuel chains start with the extraction and processing of natural gas in the Norwegian North Sea and end with final use in Central Europe. The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. The life cycle assessment is performed by combining a process based life-cycle inventory with economic input-output data. The analysis shows that the potential climate impacts are lowest for the hydrogen fuel scenario with CO2 deposition. The hydrogen fuel chain scenario has no significant environmental disadvantage compared to the other fuel chains. Detailed analysis shows that the construction of the car contributes significantly to most impact categories. Finally, it is shown how the application of a hybrid inventory model ensures a more complete inventory description compared to standard process-based life-cycle assessment. This is particularly significant for car construction which would have been significantly underestimated in this study using standard process life-cycle assessment alone.

  2. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.

    Science.gov (United States)

    Samaras, Constantine; Meisterling, Kyle

    2008-05-01

    Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.

  3. Dynamically optimised driving cycle - result for the Autarkic Hybrid; Dynamisch optimierter Fahrzyklus - Ergebnis fuer den Autarken Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, D.; Kleimaier, A.

    1999-07-01

    The optimal dimensioning of the components in the drive system of the autarkic hybrid vehicle has been investigated in SFB 365 with methods of control-technical component tuning. The problem of the mutual dependence of dimension and operational mode of the drive system must be solved. In the following contribution a dynamic optimisation method is presented that enables to calculate an optimal operational mode for a set driving cycle. Optimisation aim is the minimisation of the fuel consumption while maintaining a balanced load condition of the traction battery. The obtained consumption value and the calculated variations in time of the system components are used for the analysis of the component configuration. (orig.) [German] Mit Methoden der regelungstechnischen Komponentenabstimmung wird im SFB 365 die optimale Dimensionierung der Komponenten im Antriebsstrang des Autarken Hybridfahrzeuges untersucht. Dazu muss das Problem der wechselseitigen Abhaengigkeit von Dimensionierung und Betriebsfuehrung des Antriebsstranges geloest werden. Im folgenden soll ein dynamisches Optimierungsverfahren vorgestellt werden, mit welchem fuer einen gegebenen Fahrzyklus die Berechnung einer optimierten Betriebsfuehrung durchgefuehrt werden kann. Optimierungsziel ist in diesem Fall die Minimierung des Kraftstoffverbrauches unter Einhaltung einer ausgeglichenen Ladezustandsbilanz der Traktionsbatterie. Der erreichte Verbrauchswert und die berechneten Zeitverlaeufe der Systemgroessen werden zur Analyse der Komponentenkonfiguration herangezogen. (orig.)

  4. Westinghouse AP1000 advanced passive plant: design features and benefits

    Energy Technology Data Exchange (ETDEWEB)

    Walls, S.J. [British Nuclear Fuels plc, Seascale, Cumbria (United Kingdom); Cummins, W.E. [Westinghouse Electric Company, Pittsburgh, Pennsylvania (United States)

    2003-07-01

    The Westinghouse AP1000 Program is aimed at implementing the AP1000 plant to provide a further major improvement in plant economics while maintaining the passive safety advantages established by the AP600. An objective is to retain to the maximum extent possible the plant design of the AP600 so as to retain the licensing basis, cost estimate, construction schedule, modularization scheme, and the detailed design from the AP600 program. Westinghouse and the US Nuclear Regulatory Commission staff have embarked on a program to complete Design Certification for the AP1000 by 2004. A pre-certification review phase was completed in March 2002 and was successful in establishing the applicability of the AP600 test program and AP600 safety analysis codes to the AP1000 Design Certification. On March 28, 2002, Westinghouse submitted to US NRC the AP1000 Design Control Document and Probabilistic Risk Assessment, thereby initiating the formal design certification review process. The results presented in these documents verify the safety performance of the API 000 and conformance with US NRC licensing requirements. Plans are being developed for implementation of a series of AP1000 plants in the US. Key factors in this planning are the economics of AP1000, and the associated business model for licensing, constructing and operating these new plants. Similarly plans are being developed to get the AP1000 design reviewed for use in the UK. Part of this planning has been to examine the AP1000 design relative to anticipated UK safety and licensing issues. (author)

  5. The Westinghouse Series 1000 Mobile Phone: Technology and applications

    Science.gov (United States)

    Connelly, Brian

    1993-01-01

    Mobile satellite communications will be popularized by the North American Mobile Satellite (MSAT) system. The success of the overall system is dependent upon the quality of the mobile units. Westinghouse is designing our unit, the Series 1000 Mobile Phone, with the user in mind. The architecture and technology aim at providing optimum performance at a low per unit cost. The features and functions of the Series 1000 Mobile Phone have been defined by potential MSAT users. The latter portion of this paper deals with who those users may be.

  6. Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings

    Directory of Open Access Journals (Sweden)

    Kimberly Bawden

    2015-04-01

    Full Text Available We undertake Life Cycle Assessment (LCA of the cumulative energy demand (CED and global warming potential (GWP for a portfolio of 10 multi-family residences in the U.S. We argue that prior LCA studies of buildings use an inconsistent boundary for processes to be included in the supply chain: The operational phase includes all energy use in a building, but supply chains for the production of appliances, equipment and consumables associated with activities done in the building are neglected. We correct this by starting the analysis with an explicit definition of a functional unit, providing climate controlled space, and including processes associated with this functional unit. Using a hybrid LCA approach, the CED for low, mid and high-rise multi-family residences is found to increase from 30, 34, to 39 GJ/m2, respectively. This increase is due to the need for energy-intensive structural materials such as concrete and steel in taller buildings. With our approach, the share of materials and construction of total life cycle energy doubles to 26%, compared with a 13% share that would be obtained with inconsistent system boundaries used in prior studies. We thus argue that explicit definition of functional unit leads to an increase in the contribution of supply chains to building energy life cycles.

  7. Online Junction Temperature Cycle Recording of an IGBT Power Module in a Hybrid Car

    Directory of Open Access Journals (Sweden)

    Marco Denk

    2015-01-01

    Full Text Available The accuracy of the lifetime calculation approach of IGBT power modules used in hybrid-electric powertrains suffers greatly from the inaccurate knowledge of application typical load-profiles. To verify the theoretical load-profiles with data from the field this paper presents a concept to record all junction temperature cycles of an IGBT power module during its operation in a test vehicle. For this purpose the IGBT junction temperature is measured with a modified gate driver that determines the temperature sensitive IGBT internal gate resistor by superimposing the negative gate voltage with a high-frequency identification signal. An integrated control unit manages the TJ measurement during the regular switching operation, the exchange of data with the system controller, and the automatic calibration of the sensor system. To calculate and store temperature cycles on a microcontroller an online Rainflow counting algorithm was developed. The special feature of this algorithm is a very accurate extraction of lifetime relevant information with a significantly reduced calculation and storage effort. Until now the recording concept could be realized and tested within a laboratory voltage source inverter. Currently the IGBT driver with integrated junction temperature measurement and the online cycle recording algorithm is integrated in the voltage source inverter of first test vehicles. Such research will provide representative load-profiles to verify and optimize the theoretical load-profiles used in today’s lifetime calculation.

  8. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    Science.gov (United States)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  9. Study of emissions and fuel economy for parallel hybrid versus conventional vehicles on real world and standard driving cycles

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Samari

    2017-12-01

    Full Text Available Parallel hybrid electric vehicles (PHEVs increasing rapidly in the automobile markets. However, the benefits out of using this kind of vehicles are still concerned a lot of costumers. This work investigated the expected benefits (such as decreasing emissions and increasing fuel economy from using the parallel HEV in comparison to the conventional vehicle model of the real-world and standard driving cycles. The software Autonomie used in this study to simulate the parallel HEV and conventional models on these driving cycles.The results show that the fuel economy (FE can be improved significantly up to 68% on real-world driving cycle, which is represented mostly city activities. However, the FE improvement was limited (10% on the highway driving cycle, and this is expected since the using of brake system was infrequent. Moreover, the emissions from parallel HEV decreased about 40% on the real-world driving cycle, and decreased 11% on the highway driving cycle. Finally, the engine efficiency, improved about 12% on the real-world driving cycle, and about 7% on highway driving cycle. Keywords: Emissions, Hybrid electric vehicles, Fuel economy, Real-world driving cycle

  10. Life-cycle Economic and Environmental Effects of Green, Gray and Hybrid Stormwater Infrastructure

    Science.gov (United States)

    Stokes-Draut, J. R.; Taptich, M. N.; Horvath, A.

    2016-12-01

    Cities throughout the U.S. are seeking efficient ways to manage stormwater for many reasons, including flood control, pollution management, water supply augmentation and to prepare for a changing climate. Traditionally, cities have relied primarily on gray infrastructure, namely sewers, storage and treatment facilities. In these systems, urban runoff, its volume increasing as impervious surfaces expand, is channeled to a wastewater plant where it is mixed with raw sewage prior to treatment or it is discharged, generally untreated, to local water bodies. These facilities are inflexible and expensive to build and maintain. Many systems are deteriorating and/or approaching, if not exceeding, their design capacity. Increasingly, more innovative approaches that integrate stormwater management into the natural environment and that make sense at both local and regional scales are sought. Identifying the best stormwater solution will require evaluating the life-cycle economic costs associated with these alternatives, including costs associated with construction, operation, and maintenance including regulatory and permitting costs, financing, as well as other indirect costs (e.g., avoided wastewater processing or system capacity expansion, increased property value) and non-economic co-benefits (i.e, aesthetics, habitat provision). Beyond conventional life-cycle costing, applying life-cycle assessment (LCA) will contribute to more holistic and sustainable decision-making. LCA can be used to quantitatively track energy use, greenhouse gas emissions, and other environmental effects associated with constructing, operating, and maintaining green and gray infrastructure, including supply chain contributions. We will present the current state of knowledge for implementing life-cycle costing and LCA into stormwater management decisions for green, gray and hybrid infrastructure.

  11. Standard technical specifications, Westinghouse Plants: Specifications. Volume 1, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This NUREG contains the improved Standard Technical Specifications (STS) for Westinghouse plants. Revision 1 incorporates the cumulative changes to Revision 0, which was published in September 1992. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, specifically the Westinghouse Owners Group (WOG), NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the extent practical and consistent with the licensing basis for the facility, to Revision 1 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency.

  12. Enhancements to the hybrid pressurized air receiver (HPAR) concept in the SUNDISC cycle

    Science.gov (United States)

    Heller, Lukas; Hoffmann, Jaap

    2017-06-01

    A dual-pressure air receiver has previously been proposed as part of a hybrid receiver system preheating pressurized air in a solarized gas turbine and providing hot non-pressurized air to power the bottoming cycle of a combined cycle CSP plant. The receiver, based on a bundle of metallic tubular absorbers, was found to not be able to provide the non-pressurized air at the required temperature. Three enhancements to the basic design are presented and thermally modeled: (a) Finned absorber tubes to increase the convective heat transfer, (b) quartz glass elements to alleviate convective losses and improve the flow inside the tube bundle as well as (c) additional absorber elements behind the tube bundle. It could be shown that finned absorber tubes as well as the additional absorber elements have potential to improve the thermal performance of the receiver while a quartz glass window and flow-enhancing quartz elements could be indispensable additions to either of the other enhancements.

  13. Traffic sounds and cycling safety : the use of electronic devices by cyclists and the quietness of hybrid and electric cars.

    NARCIS (Netherlands)

    Stelling-Konczak, A. Hagenzieker, M.P. & Wee, B. van

    2015-01-01

    The growing popularity of electric devices and the increasing number of hybrid and electric cars have recently raised concerns about the use of auditory signals by vulnerable road users. This paper consolidates current knowledge about the two trends in relation to cycling safety. Both a literature

  14. Hybrid life cycle assessment (LCA) does not necessarily yield more accurate results than process-based LCA

    NARCIS (Netherlands)

    Yang, Yi; Heijungs, Reinout; Brandão, Miguel

    2017-01-01

    Hybrid life cycle assessment (LCA), through combining input-output (IO) models and process-based LCA for a complete system boundary, is widely recognized as a more accurate approach than process-based LCA with an incomplete system boundary. Without a complete process model for verification, however,

  15. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon

    2015-01-01

    The energy, water and environment nexus is a crucial factor when considering the future development of desalination plants or industry in the water-stressed economies. New generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increase around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available thermally-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent of MED with AD cycles, or simply called the MEDAD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-steam at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60 and 80. °C. In this paper, the authors have reported their pioneered research on aspects of AD and related hybrid MEDAD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concept, the authors examined the cost apportionment of fuel cost by the quality or exergy of working steam for such cogeneration configurations.

  16. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  17. Standard technical specifications for Westinghouse pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, P.C.

    1979-07-01

    This Standard Technical Specification (STS) has been structured for the broadest possible use on Westinghouse plants currently being reviewed for an Operating License. Accordingly, the document contains specifications applicable to plants with (1) either 3 or 4 loops and (2) with and without loop stop valves. In addition, four separate and discrete containment specification sections are provided for each of the following containment types: Atmospheric, Ice Condenser, Sub-Atmospheric, and Dual. Optional specifications are provided for those features and systems which may be included in individual plant designs but are not generic in their scope of application. Alternate specifications are provided in a limited number of cases to cover situations where alternate specification requirements are necessary on a generic basis because of design differences. This revision of the STS does not typically include requirements which may be added or revised as a result of the NRC staff's further review of the Three Mile Island incident.

  18. Westinghouse Hanford Company operational environmental monitoring annual report, CY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.W.; Johnson, A.R.; McKinney, S.M.; Perkins, C.J.

    1993-07-01

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1992 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State in 1992. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and to control the impacts of nuclear facilities and waste sites on the workers and the local environment. Additionally, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although impacts from nuclear facilities are still seen on the Hanford Site and are slightly elevated when compared to offsite, these impacts are less than in previous years.

  19. Confined space entry program for the Westinghouse Hanford Company

    Energy Technology Data Exchange (ETDEWEB)

    Cornell, T.M.

    1993-11-01

    To comply with anticipated OSHA regulatory requirements concerning Permit-Required Confined Spaces, Westinghouse Hanford Company (WHC) created a Confined Spaces Task Team. The primary focus of the task team was to prepare a formal Confined Space Entry (CSE) Program that would ensure full compliance with the anticipated OSHA requirements. A comprehensive training plan was also prepared and submitted for approval as soon as the new CSE Program was approved and released for implementation. On January 14, 1993, OSHA released their final ruling which contained several further changes, requiring the WHC Confined Space Entry Program and Training Plan to be revised. The revised training manual and lessons learned in establishing a Confined Space Entry Program are presented.

  20. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.

    Science.gov (United States)

    Liu, Changqi; Huang, Yaji; Wang, Xinye; Tai, Yang; Liu, Lingqin; Liu, Hao

    2018-01-01

    Studies on the environmental analysis of biofuels by fast pyrolysis and hydroprocessing (BFPH) have so far focused only on the environmental impacts from direct emissions and have included few indirect emissions. The influence of ignoring some indirect emissions on the environmental performance of BFPH has not been well investigated and hence is not really understood. In addition, in order to avoid shifting environmental problems from one medium to another, a comprehensive assessment of environmental impacts caused by the processes must quantify the environmental emissions to all media (air, water, and land) in relation to each life cycle stage. A well-to-wheels assessment of the total environmental impacts resulting from direct emissions and indirect emissions of a BFPH system with corn stover is conducted using a hybrid life cycle assessment (LCA) model combining the economic input-output LCA and the process LCA. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) has been used to estimate the environmental impacts in terms of acidification, eutrophication, global climate change, ozone depletion, human health criteria, photochemical smog formation, ecotoxicity, human health cancer, and human health noncancer caused by 1 MJ biofuel production. Taking account of all the indirect greenhouse gas (GHG) emissions, the net GHG emissions (81.8 g CO2 eq/MJ) of the biofuels are still less than those of petroleum-based fuels (94 g CO2 eq/MJ). Maize production and pyrolysis and hydroprocessing make major contributions to all impact categories except the human health criteria. All impact categories resulting from indirect emissions except eutrophication and smog air make more than 24% contribution to the total environmental impacts. Therefore, the indirect emissions are important and cannot be ignored. Sensitivity analysis has shown that corn stover yield and bio-oil yield affect the total environmental impacts of the biofuels

  1. Analysis of cycle gene expression in Aedes aegypti brains by in situ hybridization.

    Science.gov (United States)

    Chahad-Ehlers, Samira; Gentile, Carla; Lima, José Bento Pereira; Peixoto, Alexandre Afranio; Bruno, Rafaela Vieira

    2013-01-01

    Even though the blood-sucking mosquito Aedes aegypti is one of the most important disease vectors, relatively little is known about the molecular mechanisms underlying processes involved in the temporal pattern of its activity and host seeking behavior. In this study, we analyzed the expression of the cycle (cyc) gene, one of the core components of the circadian clock, in Ae. aegypti brains by in situ hybridization at two different time points in light-dark conditions and compared the results with those obtained using a quantitative PCR assay (qPCR). Within the brain, differential labeling was detected according to distinct areas empirically pre-defined. Six out of seven of these areas showed significantly higher staining at ZT3 (three hours after light-on) compared to ZT11 (one before light-off), which is consistent with the qPCR data. Predominant staining was observed in three of those areas which correspond to positions of the optical and antennal lobes, as well as the region where the neurons controlling activity rhythms are presumably localized.

  2. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  3. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Science.gov (United States)

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China. PMID:25383383

  4. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Directory of Open Access Journals (Sweden)

    Huacai Liu

    2014-01-01

    Full Text Available There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  5. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles

    Energy Technology Data Exchange (ETDEWEB)

    Banjac, Titina [AVL-AST d.o.o., Trg Leona Stuklja 5, SI-2000 Maribor (Slovenia); Trenc, Ferdinand; Katrasnik, Tomaz [Faculty of Mechanical Engineering, Univ. of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2009-12-15

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of their components and applied control strategy. Combined analytical and simulation approach was applied to analyze energy conversion efficiency of different HEV topologies. Analytical approach is based on the energy balance equations and considers all energy paths in the HEVs from the energy sources to the wheels and to other energy sinks. Simulation approach is based on a fast forward-facing simulation model for simulating parallel and series HEVs as well as for conventional internal combustion engine vehicles, and considers all components relevant for modeling energy conversion phenomena. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the fuel economy. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components for targeted vehicle application, since it reveals and quantifies the mechanisms that could lead to improved energy conversion efficiency of particular HEV. The paper exposes characteristics of the test cycles that lead to improved energy conversion efficiency of HEVs. Mechanisms leading to improved fuel economy of parallel HEVs through drive-away and vehicle propulsion at low powertrain loads by electric motor are also analyzed. It was also shown that control strategies managing energy flow through electric storage devices significantly influence energy conversion efficiency of series HEVs. (author)

  6. The effects of hybrid cycle training in inactive people with long-term spinal cord injury : design of a multicenter randomized controlled trial

    NARCIS (Netherlands)

    Bakkum, Arjan J. T.; de Groot, Sonja; van der Woude, Lucas H. V.; Janssen, Thomas W. J.

    2013-01-01

    Purpose: Physical activity in people with long-term spinal cord injury (SCI) is important to stay fit and healthy. The purpose of this study is to evaluate the effects of hybrid cycle training (hand cycling in combination with functional electrical stimulation-induced leg cycling) on fitness,

  7. The effects of hybrid cycle training in inactive people with long-term spinal cord injury: design of a multicentre randomized controlled trial

    NARCIS (Netherlands)

    Bakkum, A.J.T.; De Groot, S.; van der Woude, L.H.V.; Janssen, T.W.J.

    2013-01-01

    Purpose: Physical activity in people with long-term spinal cord injury (SCI) is important to stay fit and healthy. The purpose of this study is to evaluate the effects of hybrid cycle training (hand cycling in combination with functional electrical stimulation-induced leg cycling) on fitness,

  8. A hybrid algorithm for solving the economic lot and delivery scheduling problem in the common cycle case

    DEFF Research Database (Denmark)

    Clausen, Jens; Ju, S.

    2006-01-01

    the determination of the production sequence of the component types within each cycle. We investigate the computational behavior of two published algorithms, a heuristic and an optimal algorithm. With large number of component types, the optimal algorithm has long running times. We devise a hybrid algorithm, which......The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different types to a consumer in batches. The task is to determine the cycle time, i.e., the time between deliveries, which minimizes the total cost per time unit. This includes...

  9. A Hybrid Algorithm for Solving the Economic Lot and Delivery Scheduling Problem in the Common Cycle Case

    DEFF Research Database (Denmark)

    Ju, Suquan; Clausen, Jens

    2004-01-01

    . This includes the determination of the production sequence of the component types within each cycle. We investigate the computational behavior of two published algorithms, a heuristic and an optimal algorithm. With large number of component types, the optimal algorithm has long running times. We devise a hybrid......The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit...... algorithm, which is both optimal and efficient....

  10. A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes.

    Science.gov (United States)

    Hancock, Nathan T; Black, Nathan D; Cath, Tzahi Y

    2012-03-15

    The purpose of this study was to determine the comparative environmental impacts of coupled seawater desalination and water reclamation using a novel hybrid system that consist of an osmotically driven membrane process and established membrane desalination technologies. A comparative life cycle assessment methodology was used to differentiate between a novel hybrid process consisting of forward osmosis (FO) operated in osmotic dilution (ODN) mode and seawater reverse osmosis (SWRO), and two other processes: a stand alone conventional SWRO desalination system, and a combined SWRO and dual barrier impaired water purification system consisting of nanofiltration followed by reverse osmosis. Each process was evaluated using ten baseline impact categories. It was demonstrated that from a life cycle perspective two hurdles exist to further development of the ODN-SWRO process: module design of FO membranes and cleaning intensity of the FO membranes. System optimization analysis revealed that doubling FO membrane packing density, tripling FO membrane permeability, and optimizing system operation, all of which are technically feasible at the time of this publication, could reduce the environmental impact of the hybrid ODN-SWRO process compared to SWRO by more than 25%; yet, novel hybrid nanofiltration-RO treatment of seawater and wastewater can achieve almost similar levels of environmental impact. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Model development and analysis of a mid-sized hybrid fuel cell/battery vehicle with a representative driving cycle

    Science.gov (United States)

    Abu Mallouh, Mohammed; Abdelhafez, Eman; Salah, Mohammad; Hamdan, Mohammed; Surgenor, Brian; Youssef, Mohamed

    2014-08-01

    Vehicles powered with internal combustion engines (ICEs) are one of the main pollutant sources in large cities. Most of large cities (e.g. Amman, capital of Jordan) suffer from frequent traffic jams. This leads to frequent stops and starts, and hence, an increase in tailpipe emissions. One way to minimize emissions is to use electric motors in the powertrain configuration. In this study, the performance of a hybrid fuel cell (FC)/battery vehicle is investigated utilizing different worldwide driving cycles. Initially, a model of a mid-sized ICE vehicle is developed and validated against experimental tests. The ICE vehicle validated model is then modified to be driven with only an electric motor powered by a hybrid FC/battery system. The effect of driving pattern, which varies from city to city and from region to region, is investigated. A driving cycle that represents the driving patterns in Amman city is developed based on experimental data and then used to evaluate the performance of both ICE and hybrid FC/battery vehicle configurations. It is found that the performance of the hybrid FC/battery configuration is much better than the ICE version in terms of emissions, fuel economy, efficiency, and speed tracking error.

  12. 77 FR 16077 - License Amendment Request From Westinghouse Electric Company, LLC, Hematite Decommissioning Project

    Science.gov (United States)

    2012-03-19

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION License Amendment Request From Westinghouse Electric Company, LLC, Hematite Decommissioning Project AGENCY: Nuclear Regulatory Commission. ACTION: License amendment request; opportunity to provide...

  13. Hybrid System Modeling and Full Cycle Operation Analysis of a Two-Stroke Free-Piston Linear Generator

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2017-02-01

    Full Text Available Free-piston linear generators (FPLGs have attractive application prospects for hybrid electric vehicles (HEVs owing to their high-efficiency, low-emissions and multi-fuel flexibility. In order to achieve long-term stable operation, the hybrid system design and full-cycle operation strategy are essential factors that should be considered. A 25 kW FPLG consisting of an internal combustion engine (ICE, a linear electric machine (LEM and a gas spring (GS is designed. To improve the power density and generating efficiency, the LEM is assembled with two modular flat-type double-sided PM LEM units, which sandwich a common moving-magnet plate supported by a middle keel beam and bilateral slide guide rails to enhance the stiffness of the moving plate. For the convenience of operation processes analysis, the coupling hybrid system is modeled mathematically and a full cycle simulation model is established. Top-level systemic control strategies including the starting, stable operating, fault recovering and stopping strategies are analyzed and discussed. The analysis results validate that the system can run stably and robustly with the proposed full cycle operation strategy. The effective electric output power can reach 26.36 kW with an overall system efficiency of 36.32%.

  14. Application of hybrid life cycle approaches to emerging energy technologies--the case of wind power in the UK.

    Science.gov (United States)

    Wiedmann, Thomas O; Suh, Sangwon; Feng, Kuishuang; Lenzen, Manfred; Acquaye, Adolf; Scott, Kate; Barrett, John R

    2011-07-01

    Future energy technologies will be key for a successful reduction of man-made greenhouse gas emissions. With demand for electricity projected to increase significantly in the future, climate policy goals of limiting the effects of global atmospheric warming can only be achieved if power generation processes are profoundly decarbonized. Energy models, however, have ignored the fact that upstream emissions are associated with any energy technology. In this work we explore methodological options for hybrid life cycle assessment (hybrid LCA) to account for the indirect greenhouse gas (GHG) emissions of energy technologies using wind power generation in the UK as a case study. We develop and compare two different approaches using a multiregion input-output modeling framework - Input-Output-based Hybrid LCA and Integrated Hybrid LCA. The latter utilizes the full-sized Ecoinvent process database. We discuss significance and reliability of the results and suggest ways to improve the accuracy of the calculations. The comparison of hybrid LCA methodologies provides valuable insight into the availability and robustness of approaches for informing energy and environmental policy.

  15. Metabolic rate and cardiorespiratory response during hybrid cycling versus handcycling at equal subjective exercise intensity levels in people with spinal cord injury

    NARCIS (Netherlands)

    Bakkum, Arjan J. T.; de Groot, Sonja; Onderwater, Mark Q.; de Jong, Jelle; Janssen, Thomas W. J.

    2014-01-01

    Objective: To compare the metabolic rate and cardiorespiratory response during hybrid cycling versus handcycling at equal subjective exercise intensity levels in people with spinal cord injury (SCI). Design: Cross-sectional study. Setting: Amsterdam Rehabilitation Research Centre vertical bar Reade,

  16. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    Science.gov (United States)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  17. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    Energy Technology Data Exchange (ETDEWEB)

    Memmott, M. J.; Stansbury, C.; Taylor, C. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

  18. Economic comparison of hydrogen production using sulfuric acid electrolysis and sulfur cycle water decomposition. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Farbman, G.H.; Krasicki, B.R.; Hardman, C.C.; Lin, S.S.; Parker, G.H.

    1978-06-01

    An evaluation of the relative economics of hydrogen production using two advanced techniques was performed. The hydrogen production systems considered were the Westinghouse Sulfur Cycle Water Decomposition System and a water electrolysis system employing a sulfuric acid electrolyte. The former is a hybrid system in which hydrogen is produced in an electrolyzer which uses sulfur dioxide to depolarize the anode. The electrolyte is sulfuric acid. Development and demonstration efforts have shown that extremely low cell voltages can be achieved. The second system uses a similar sulfuric acid electrolyte technology in water electrolysis cells. The comparative technoeconomics of hydrogen produced by the hybrid Sulfur Cycle and by water electrolysis using a sulfuric acid electrolyte were determined by assessing the performance and economics of 380 million SCFD plants, each energized by a very high temperature nuclear reactor (VHTR). The evaluation concluded that the overall efficiencies of hydrogen production, for operating parameters that appear reasonable for both systems, are approximately 41% for the sulfuric acid electrolysis and 47% for the hybrid Sulfur Cycle. The economic evaluation of hydrogen production, based on a 1976 cost basis and assuming a developed technology for both hydrogen production systems and the VHTRs, indicated that the hybrid Sulfur Cycle could generate hydrogen for a total cost approximately 6 to 7% less than the cost from the sulfuric acid electrolysis plant.

  19. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

    2012-10-01

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

  20. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  1. Life cycle cost of a hybrid forward osmosis – low pressure reverse osmosis system for seawater desalination and wastewater recovery

    KAUST Repository

    Valladares Linares, Rodrigo

    2015-10-19

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis – low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor – reverse osmosis – advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m3 d−1 of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m3 produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and

  2. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru; Salahutdinov, G. H., E-mail: saip07@mail.ru; Kulikov, E. G., E-mail: egkulikov@mephi.ru; Apse, V. A., E-mail: apseva@mail.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  3. Exergy and economic analysis of organic rankine cycle hybrid system utilizing biogas and solar energy in rural area of China

    DEFF Research Database (Denmark)

    Zhao, Chunhua; Zheng, Siyu; Zhang, Ji

    2017-01-01

    Due to the existing huge biogas resource in the rural area of China, biogas is widely used for production and living. Cogeneration system provides an opportunity to realize the balanced utilization of the renewable energy such as biogas and solar energy. This paper presented a numerical...... investigation of a hybrid energy-driven organic Rankine cycle (ORC) cogeneration system, involving a solar organic Rankine cycle and a biogas boiler. The biogas boiler with a module of solar Parabolic-Trough Collectors (PTC) is employed to provide heat source to the ORC via two distinct intermediate pressurized...... circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy-exergy and economic analysis with the organic working...

  4. Westinghouse corporate development of a decision software program for Radiological Evaluation Decision Input (REDI)

    Energy Technology Data Exchange (ETDEWEB)

    Bush, T.S. [Westinghosue Idaho Nuclear Co., Inc., Idaho Falls, ID (United States)

    1995-03-01

    In December 1992, the Department of Energy (DOE) implemented the DOE Radiological Control Manual (RCM). Westinghouse Idaho Nuclear Company, Inc. (WINCO) submitted an implementation plan showing how compliance with the manual would be achieved. This implementation plan was approved by DOE in November 1992. Although WINCO had already been working under a similar Westinghouse RCM, the DOE RCM brought some new and challenging requirements. One such requirement was that of having procedure writers and job planners create the radiological input in work control procedures. Until this time, that information was being provided by radiological engineering or a radiation safety representative. As a result of this requirement, Westinghouse developed the Radiological Evaluation Decision Input (REDI) program.

  5. Multi-gene fluorescence in situ hybridization to detect cell cycle gene copy number aberrations in young breast cancer patients.

    Science.gov (United States)

    Li, Chunyan; Bai, Jingchao; Hao, Xiaomeng; Zhang, Sheng; Hu, Yunhui; Zhang, Xiaobei; Yuan, Weiping; Hu, Linping; Cheng, Tao; Zetterberg, Anders; Lee, Mong-Hong; Zhang, J

    2014-01-01

    Breast cancer is a disease of cell cycle, and the dysfunction of cell cycle checkpoints plays a vital role in the occurrence and development of breast cancer. We employed multi-gene fluorescence in situ hybridization (M-FISH) to investigate gene copy number aberrations (CNAs) of 4 genes (Rb1, CHEK2, c-Myc, CCND1) that are involved in the regulation of cell cycle, in order to analyze the impact of gene aberrations on prognosis in the young breast cancer patients. Gene copy number aberrations of these 4 genes were more frequently observed in young breast cancer patients when compared with the older group. Further, these CNAs were more frequently seen in Luminal B type, Her2 overexpression, and tiple-negative breast cancer (TNBC) type in young breast cancer patients. The variations of CCND1, Rb1, and CHEK2 were significantly correlated with poor survival in the young breast cancer patient group, while the amplification of c-Myc was not obviously correlated with poor survival in young breast cancer patients. Thus, gene copy number aberrations (CNAs) of cell cycle-regulated genes can serve as an important tool for prognosis in young breast cancer patients.

  6. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    Science.gov (United States)

    Dhanushkodi, Saravanan; Wilson, Vincent H.; Sudhakar, Kumarasamy

    2015-12-01

    Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  7. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    Directory of Open Access Journals (Sweden)

    Dhanushkodi Saravanan

    2015-12-01

    Full Text Available Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  8. Online Junction Temperature Cycle Recording of an IGBT Power Module in a Hybrid Car

    National Research Council Canada - National Science Library

    Denk, Marco; Bakran, Mark-M

    2015-01-01

    ... of the reliability and the lifetime of voltage source inverters used in hybrid-electric powertrains the IGBT power module can be considered as the most lifetime critical component. This is especially true if power modules with conventional linking and packaging technology are used. Those modules are characterized by a bond-wire connection, a direct copper bonded ...

  9. Exploring the Influence of Attitudes to Walking and Cycling on Commute Mode Choice Using a Hybrid Choice Model

    Directory of Open Access Journals (Sweden)

    Chuan Ding

    2017-01-01

    Full Text Available Transport-related problems, such as automobile dependence, traffic congestion, and greenhouse emissions, lead to a great burden on the environment. In developing countries like China, in order to improve the air quality, promoting sustainable travel modes to reduce the automobile usage is gradually recognized as an emerging national concern. Though there are many studies related to the physically active modes (e.g., walking and cycling, the research on the influence of attitudes to active modes on travel behavior is limited, especially in China. To fill up this gap, this paper focuses on examining the impact of attitudes to walking and cycling on commute mode choice. Using the survey data collected in China cities, an integrated discrete choice model and the structural equation model are proposed. By applying the hybrid choice model, not only the role of the latent attitude played in travel mode choice, but also the indirect effects of social factors on travel mode choice are obtained. The comparison indicates that the hybrid choice model outperforms the traditional model. This study is expected to provide a better understanding for urban planners on the influential factors of green travel modes.

  10. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Seiko [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Okinaga, Toshinori; Ariyoshi, Wataru [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Oral Biology Research Center, Kyushu Dental University (Japan); Takahashi, Osamu; Iwanaga, Kenjiro [Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Nishino, Norikazu [Oral Biology Research Center, Kyushu Dental University (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Oral Biology Research Center, Kyushu Dental University (Japan)

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  11. 1992 Environmental Summer Science Camp Program evaluation. The International Environmental Institute of Westinghouse Hanford Company

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report describes the 1992 Westinghouse Hanford Company/US Department of Energy Environmental Summer Science Camp. The objective of the ``camp`` was to motivate sixth and seventh graders to pursue studies in math, science, and the environment. This objective was accomplished through hands-on fun activities while studying the present and future challenges facing our environment. The camp was funded through Technical Task Plan, 424203, from the US Department of Energy-Headquarters, Office of Environmental Restoration and Waste Management, Technology Development,to Westinghouse Hanford Company`s International Environmental Institute, Education and Internship Performance Group.

  12. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries.

    Science.gov (United States)

    Wang, Xia; Sun, Pingping; Qin, Jinwen; Wang, Jianqiang; Xiao, Ying; Cao, Minhua

    2016-05-21

    Metal phosphides are great promising anode materials for lithium-ion batteries with a high gravimetric capacity. However, significant challenges such as low capacity, fast capacity fading and poor cycle stability must be addressed for their practical applications. Herein, we demonstrate a versatile strategy for the synthesis of a novel three-dimensional porous molybdenum phosphide@carbon hybrid (3D porous MoP@C hybrid) by a template sol-gel method followed by an annealing treatment. The resultant hybrid exhibits a 3D interconnected ordered porous structure with a relatively high surface area. Benefiting from its advantages of microstructure and composition, the 3D porous MoP@C hybrid displays excellent lithium storage performance as an anode material for lithium-ion batteries in terms of specific capacity, cycling stability and long-cycle life. It presents stable cycling performance with a high reversible capacity up to 1028 mA h g(-1) at a current density of 100 mA g(-1) after 100 cycles. By ex situ XRD, HRTEM, SAED and XPS analyses, the 3D porous MoP@C hybrid was found to follow the Li-intercalation reaction mechanism (MoP + xLi(+) + e(-)↔ LixMoP), which was further confirmed by ab initio calculations based on density functional theory.

  13. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  14. Influences On The Oceanic Biogeochemical Cycling Of The Hybrid-Type Metals: Cobalt, Iron, And Manganese

    Science.gov (United States)

    2012-02-01

    subtle one because of their much larger oceanic inventories with accumula- tion during thermohaline circulation. In addition, if the reminer- alization...preventing accumulation of hybrid-type metals with thermohaline circulation, which is seen in the accumulation of macronutrients like phosphate and...less complexation of cobalt in these cold waters (Saito et al. 2010). Although biochemical   120  studies have discovered the presence of native

  15. The Formation of Tight Tumor Clusters Affects the Efficacy of Cell Cycle Inhibitors: A Hybrid Model Study

    Science.gov (United States)

    Kim, MunJu; Reed, Damon; Rejniak, Katarzyna A.

    2014-01-01

    Cyclin-dependent kinases (CDKs) are vital in regulating cell cycle progression, and, thus, in highly proliferating tumor cells CDK inhibitors are gaining interest as potential anticancer agents. Clonogenic assay experiments are frequently used to determine drug efficacy against the survival and proliferation of cancer cells. While the anticancer mechanisms of drugs are usually described at the intracellular single-cell level, the experimental measurements are sampled from the entire cancer cell population. This approach may lead to discrepancies between the experimental observations and theoretical explanations of anticipated drug mechanisms. To determine how individual cell responses to drugs that inhibit CDKs affect the growth of cancer cell populations, we developed a spatially explicit hybrid agent-based model. In this model, each cell is equipped with internal cell cycle regulation mechanisms, but it is also able to interact physically with its neighbors. We model cell cycle progression, focusing on the G1 and G2/M cell cycle checkpoints, as well as on related essential components, such as CDK1, CDK2, cell size, and DNA damage. We present detailed studies of how the emergent properties (e.g., cluster formation) of an entire cell population depend on altered physical and physiological parameters. We analyze the effects of CDK1 and CKD2 inhibitors on population growth, time-dependent changes in cell cycle distributions, and the dynamic evolution of spatial cell patterns. We show that cell cycle inhibitors that cause cell arrest at different cell cycle phases are not necessarily synergistically super-additive. Finally, we demonstrate that the physical aspects of cell population growth, such as the formation of tight cell clusters versus dispersed colonies, alter the efficacy of cell cycle inhibitors, both in 2D and 3D simulations. This finding may have implications for interpreting the treatment efficacy results of in vitro experiments, in which treatment is

  16. Resolving the cycle skip introduced by the multi-layer static model using a hybrid approach

    Science.gov (United States)

    Tawadros, Emad Ekladios Toma

    Cycle skips (breaks) in seismic data are occasionally irresolvable using conventional static correction programs. Such artificial cycle skips can be misleading for interpreters and introduce false subsurface images. After applying datum static corrections using either the single-layer or multi-layer models, artificial cycle skips might develop in the data. Although conventional residual static correction techniques are occasionally able to solve this problem, they fail in solving many other cases. A new approach is introduced in this study to resolve this problem by forming a static model that is free of these artificial cycle skips, which can be used as a pilot volume for residual statics calculation. The pilot volume is formed by combining the high-frequency static component of the single-layer model which show better static solution at the static problem locations and the low-frequency static component of the two-layer model. This new approach is applied on a 3-D seismic data set from Haba Field of Eastern Saudi Arabia where a major cycle skip was introduced by the multilayer model. Results show a better image of the subsurface structure after application of the new approach.

  17. A Dynamic Control Strategy for Hybrid Electric Vehicles Based on Parameter Optimization for Multiple Driving Cycles and Driving Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Zhenzhen Lei

    2017-01-01

    Full Text Available The driving pattern has an important influence on the parameter optimization of the energy management strategy (EMS for hybrid electric vehicles (HEVs. A new algorithm using simulated annealing particle swarm optimization (SA-PSO is proposed for parameter optimization of both the power system and control strategy of HEVs based on multiple driving cycles in order to realize the minimum fuel consumption without impairing the dynamic performance. Furthermore, taking the unknown of the actual driving cycle into consideration, an optimization method of the dynamic EMS based on driving pattern recognition is proposed in this paper. The simulation verifications for the optimized EMS based on multiple driving cycles and driving pattern recognition are carried out using Matlab/Simulink platform. The results show that compared with the original EMS, the former strategy reduces the fuel consumption by 4.36% and the latter one reduces the fuel consumption by 11.68%. A road test on the prototype vehicle is conducted and the effectiveness of the proposed EMS is validated by the test data.

  18. Troubleshooting of an Electromechanical System (Westinghouse PLC Controlling a Pneumatic Robot). High-Technology Training Module.

    Science.gov (United States)

    Tucker, James D.

    This training module on the troubleshooting of an electromechanical system, The Westinghouse Programmable Logic Controller (PLC) controlling a pneumatic robot, is used for a troubleshooting unit in an electromechanical systems/robotics and automation systems course. In this unit, students locate and repair a defect in a PLC-operated machine. The…

  19. 76 FR 73720 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000...

    Science.gov (United States)

    2011-11-29

    ... COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000 Pressurized..., NUREG-2103, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators... at the NRC are available online in the NRC Library at http://www.nrc.gov/reading-rm/adams.html . From...

  20. Westinghouse Hanford Company (WHC) standards/requirements identification document (S/RID)

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, G.L.

    1996-03-15

    This Standards/Requirements Identification Document (S/RID) set forth the Environmental Safety and Health (ES&H) standards/requirements for Westinghouse Hanford Company Level Programs, where implementation and compliance is the responsibility of these organizations. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  1. Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery.

    Science.gov (United States)

    Valladares Linares, R; Li, Z; Yangali-Quintanilla, V; Ghaffour, N; Amy, G; Leiknes, T; Vrouwenvelder, J S

    2016-01-01

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis - low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor - reverse osmosis - advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m(3) d(-1) of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m(3) produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and

  2. Hybrid life-cycle assessment (LCA) of CO2 emission with management alternatives for household food wastes in Japan.

    Science.gov (United States)

    Inaba, Rokuta; Nansai, Keisuke; Fujii, Minoru; Hashimoto, Seiji

    2010-06-01

    In this study, we conducted a hybrid life-cycle assessment (LCA) to evaluate reductions in CO(2) emissions by food waste biogasification of household food wastes in Japan. Two alternative scenarios were examined. In one alternative (Ref), all combustible municipal solid wastes (MSWs), including food waste, are incinerated. In the other (Bio), food waste is biogasified, while the other combustible wastes are incinerated. An inventory analysis of energy and material flow in the MSW management system was conducted. Subsequently, the inventory data were summarized into an input-output format, and a make-use input-output framework was applied. Furthermore, a production equilibrium model was established using a matrix representing the input- output relationship of energy and materials among the processes and sectors. Several levels of power generation efficiency from incineration were applied as a sensitivity analysis. The hybrid LCA indicated that the difference between the Bio and Ref scenarios, from the perspective of CO( 2) emissions, is relatively small. However, a 13-14% reduction of CO(2) emissions of the total waste management sector in Japan may be achieved by improving the efficiency of power generation from incineration from 10% to 25%.

  3. EFFECTS OF HYBRID CYCLE AND HANDCYCLE EXERCISE ON CARDIOVASCULAR DISEASE RISK FACTORS IN PEOPLE WITH SPINAL CORD INJURY : A RANDOMIZED CONTROLLED TRIAL

    NARCIS (Netherlands)

    Bakkum, Arjan J. T.; Paulson, Thomas A. W.; Bishop, Nicolette C.; Goosey-Tolfrey, Victoria L.; Stolwijk-Swuste, Janneke M.; van Kuppevelt, Dirk J.; de Groot, Sonja; Janssen, Thomas W. J.

    Objective: To examine the effects of a 16-week exercise programme, using either a hybrid cycle or a handcycle, on cardiovascular disease risk factors in people with spinal cord injury. Participants: Nineteen individuals with spinal cord injury >= 8 years. Design: Multicentre randomized controlled

  4. Static behavior and the effects of thermal cycling in hybrid laminates

    Science.gov (United States)

    Liber, T. M.; Daniel, I. M.; Chamis, C. C.

    1977-01-01

    Static stiffness, strength and ultimate strain after thermal cycling were investigated for graphite/Kevlar 49/epoxy and graphite/S-glass/epoxy angle-ply laminates. Tensile stress-strain curves to failure and uniaxial tensile properties were determined, and theoretical predictions of modulus, Poisson's ratio and ultimate strain, based on linear lamination theory, constituent ply properties and measured strength, were made. No significant influence on tensile stress properties due to stacking sequence variations was observed. In general, specimens containing two 0-degree Kevlar or S-glass plies were found to behave linearly to failure, while specimens containing 4 0-degree Kevlar or S-glass plies showed some nonlinear behavior.

  5. Rapid imaging of free radicals in vivo using hybrid FISP field-cycled PEDRI

    Science.gov (United States)

    Youngdee, Wiwat; Lurie, David J.; Foster, Margaret A.

    2002-04-01

    A new pulse sequence for rapid imaging of free radicals is presented which combines snapshot imaging methods and conventional field-cycled proton electron double resonance imaging (FC-PEDRI). The new sequence allows the number of EPR irradiation periods to be optimized to obtain an acceptable SNR and spatial resolution of free radical distribution in the final image while reducing the RF power deposition and increasing the temporal resolution. Centric reordered phase encoding has been employed to counter the problem of rapid decay of the Overhauser-enhanced signal. A phase-correction scheme has also been used to correct problems arising from instability of the magnetic field following field-cycling. In vivo experiments were carried out using triaryl methyl free radical contrast agent, injected at a dose of 0.214 mmol kg-1 body weight in anaesthetized adult male Sprague-Dawley rats. Transaxial images through the abdomen were collected using 1, 2, 4 and 8 EPR irradiation periods. Using 4 EPR irradiation periods it was possible to generate free radical distributions of acceptable SNR and resolution. The EPR power deposition is reduced by a factor of 16 and the acquisition time is reduced by a factor of 4 compared to an acquisition using the conventional FC-PEDRI pulse sequence.

  6. Analysis of the performance of the Westinghouse reactor vessel level indicating system for tests at semiscale. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J.E.; Miller, G.N.

    1982-10-01

    The Westinghouse Reactor Vessel Level Indicating System (RVLIS), a differential pressure level measurement system, was tested at SEMISCALE. This report contains the analyses of these tests and the conclusions of these analyses. The tests performed included small break and intermediate break tests. Also, frequency response and natural circulation tests were run and analyzed. The RVLIS always indicated a level less than the two phase froth level. The RVLIS output in early small break tests indicated a level 200 cm greater than actual collapsed liquid level. This discrepancy was caused by structural differences between SEMISCALE and a Westinghouse reactor. Once modifications were made so that SEMISCALE better simulated a Westinghouse PWR, the maximum difference between RVLIS and SEMISCALE instrumentation was 30 cm or 3% which is less than the stated uncertainty of the Westinghouse RVLIS.

  7. Chemical-cleaning process evaluation: Westinghouse steam generators. Final report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, W.F.; Gockley, G.B.

    1983-04-01

    The Steam Generator Owners Group (SGOG)/Electric Power Research Institute (EPRI) Steam Generator Secondary Side Chemical Cleaning Program, under develpment since 1978, has resulted in a generic process for the removal of accumulated corrosion products and tube deposits in the tube support plate crevices. The SGOG/EPRI Project S150-3 was established to obtain an evaluation of the generic process in regard to its applicability to Westinghouse steam generators. The results of the evaluation form the basis for recommendations for transferring the generic process to a plant specific application and identify chemical cleaning corrosion guidelines for the materials in Westinghouse Steam Generators. The results of the evaluation, recommendations for plant-specific applications and corrosion guidelines for chemical cleaning are presented in this report.

  8. Corporate science education: Westinghouse and the value of science in mid-twentieth century America.

    Science.gov (United States)

    Terzian, Sevan G; Shapiro, Leigh

    2015-02-01

    This study examines a largely neglected aspect of the history of science popularization in the United States: corporate depictions of the value of science to society. It delineates the Westinghouse Electric Corporation's portrayals of science to its shareholders, employees and consumers, and schoolchildren and educators during World War Two and the postwar era. Annual reports to shareholders, in-house news publications, publicity records, advertising campaigns, and educational pamphlets distributed to schools reveal the company's distinct, but complementary, messages for different stakeholders about the importance of science to American society. Collectively, Westinghouse encouraged these audiences to rely on scientists' expert leadership for their nation's security and material comforts. In an era of military mobilization, the company was able to claim that industry-led scientific research would fortify the nation and create unbounded prosperity. © The Author(s) 2013.

  9. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand.

    Science.gov (United States)

    Udomsri, Seksan; Martin, Andrew R; Fransson, Torsten H

    2010-07-01

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO(2) levels by 3% in comparison with current thermal power plants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. HYTHEC: aims and first assessments of an EC funded project on massive scale hydrogen production via thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Alain Le Duigou; Jean-Marc Borgard; Bruno Larousse; Denis Doizi; F Werkoff [Departement de Physico-Chimie - Commissariat a l Energie Atomique / Saclay - 91191 Gif- Sur-Yvette Cedex (France); Ray Allen; Bruce C Ewan; Geoff H Priestman; Robin Devonshire; Rachael Elder; Manu Minocha; Victor Ramos [The University of Sheffield - Firth Court, Western Bank - S102TN Sheffield, (United Kingdom); Giovanni Cerri; Coriolano Salvini; Ambra Giovannelli; Giovanni De Maria; Sergio Brutti; Claudio Corgnale [Universita degli Studi ROMA TRE - Via della Vasca Navale 79 - 00146 Roma (Italy); Martin Roeb; Nathalie Monnerie; Mark Schmitz; Adam Noglik; Christian Sattler [Deutsches Zentrum fur Luft-und Raumfahrt e.V. - Linder Hohe - 51147 Koln (Germany); Alfredo ORden Martinez; Daniel de Lorenzo Manzano; Jorge Cedillo Rojas [Empresarios Agrupados Internacional, S.A. - Magallanes 3 - 28015 Madrid (Spain); Stephane Dechelotte; Olivier Baudouin - [ProSim SA - Stratege Batiment A - F-31312 Labege (France)

    2006-07-01

    The objective of HYTHEC - HYdrogen Thermochemical Cycles - is to investigate the effective potential for massive hydrogen production of the S{sub I} thermo-chemical cycle, and to compare it with the hybrid S Westinghouse (WH) cycle. The project aims to conduct flow-sheeting, industrial scale-up, safety and costs modeling, to improve the fundamental knowledge and efficiency of the S{sub I} cycle H{sub 2} production step, and to investigate a solar primary energy source for the H{sub 2}SO{sub 4} decomposition step which is common to both cycles. Initial reference flow-sheets for S{sub I} and WH cycles have been prepared and compared. First data and results are available now on the coupling of S{sub I} cycle with a Very High Temperature Nuclear Reactor, scale-up to industrial level and cost estimation, improvement of the knowledge of the HIx mixture (S{sub I} cycle) and membrane separation, splitting of sulphuric acid using a solar furnace, and plant concepts regarding the WH process. This project is funded by the European Community - Sixth Framework Program Priority [6.1] - Sustainable Energy Systems, Medium to Long Term (contract number: 502704). (authors)

  11. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    possibilities. The Boeing N2 hybrid-wing-body (HWB) is used as a baseline aircraft for this study. The two pylon mounted conventional turbofans are replaced by two wing-tip mounted turboshaft engines, each driving a superconducting generator. Both generators feed a common electrical bus which distributes power to an array of superconducting motor-driven fans in a continuous nacelle centered along the trailing edge of the upper surface of the wing-body. A key finding was that traditional inlet performance methodology has to be modified when most of the air entering the inlet is boundary layer air. A very thorough and detailed propulsion/airframe integration (PAI) analysis is required at the very beginning of the design process since embedded engine inlet performance must be based on conditions at the inlet lip rather than freestream conditions. Examination of a range of fan pressure ratios yielded a minimum Thrust-specific-fuel-consumption (TSFC) at the aerodynamic design point of the vehicle (31,000 ft /Mach 0.8) between 1.3 and 1.35 FPR. We deduced that this was due to the higher pressure losses prior to the fan inlet as well as higher losses in the 2-D inlets and nozzles. This FPR is likely to be higher than the FPR that yields a minimum TSFC in a pylon mounted engine. 1

  12. Environmental Life-Cycle Analysis of Hybrid Solar Photovoltaic/Thermal Systems for Use in Hong Kong

    Directory of Open Access Journals (Sweden)

    Tin-Tai Chow

    2012-01-01

    Full Text Available While sheet-and-tube absorber is generally recommended for flat-plate photovoltaic/thermal (PV/T collector design because of the simplicity and promising performance, the use of rectangular-channel absorber is also tested to be a good alternative. Before a new energy technology, like PV/T, is fully implemented, its environmental superiority over the competing options should be assessed, for instance, by evaluating its consumption levels throughout its production and service life. Although there have been a plenty of environmental life-cycle assessments on the domestic solar hot water systems and PV systems, the related works on hybrid solar PV/T systems have been very few. So far there is no reported work on the assessment of PV/T collector with channel-type absorber design. This paper reports an evaluation of the energy payback time and the greenhouse gas payback time of free-standing and building-integrated PV/T systems in Hong Kong. This is based on two case studies of PV/T collectors with modular channel-type aluminium absorbers. The results confirm the long-term environmental benefits of PV/T applications.

  13. The effects of hybrid cycle training in inactive people with long-term spinal cord injury: design of a multicenter randomized controlled trial.

    Science.gov (United States)

    Bakkum, Arjan J T; de Groot, Sonja; van der Woude, Lucas H V; Janssen, Thomas W J

    2013-06-01

    Physical activity in people with long-term spinal cord injury (SCI) is important to stay fit and healthy. The purpose of this study is to evaluate the effects of hybrid cycle training (hand cycling in combination with functional electrical stimulation-induced leg cycling) on fitness, physical activity and health among a group of inactive people with long-term SCI. This study will be a 16-week multicenter randomized controlled trial (RCT) with a 26-week follow-up. Forty inactive people, aged 28-65 years, with paraplegia or tetraplegia for at least 10 years, will be randomly assigned to either an experimental group (hybrid cycle group) or control group (hand cycle group). During 16 weeks, both groups will train twice a week 30 minutes at an intensity of 65-75% of their heart rate reserve. The primary outcome measure is fitness. Secondary outcome measures are physical activity and health-related parameters. The primary and secondary outcome measures will be assessed just before the training program (T1), after 8 weeks of training (T2), directly after (T3), and 26 weeks after the training program (T4). The results of this RCT may provide future implications for exercise prescription that preserve long-term functioning in people with SCI.

  14. A consortium approach to commercialized Westinghouse solid oxide fuel cell technology

    Science.gov (United States)

    Casanova, Allan

    Westinghouse is developing its tubular solid oxide fuel cells (SOFCs) for a variety of applications in stationary power generation markets. By pressurizing a SOFC and integrating it with a gas turbine (GT), power systems with efficiencies as high as 70-75% can be obtained. The first such system will be tested in 1998. Because of their extraordinarily high efficiency (60-70%) even in small sizes the first SOFC products to be offered are expected to be integrated SOFC/GT power systems in the 1-7 MW range, for use in the emerging distributed generation (DG) market segment. Expansion into larger sizes will follow later. Because of their modularity, environmental friendliness and expected cost effectiveness, and because of a worldwide thrust towards utility deregulation, a ready market is forecasted for baseload distributed generation. Assuming Westinghouse can complete its technology development and reach its cost targets, the integrated SOFC/GT power system is seen as a product with tremendous potential in the emerging distributed generation market. While Westinghouse has been a leader in the development of power generation technology for over a century, it does not plan to manufacture small gas turbines. However, GTs small enough to integrate with SOFCs and address the 1-7 MW market are generally available from various manufacturers. Westinghouse will need access to a new set of customers as it brings baseload plants to the present small market mix of emergency and peaking power applications. Small cogeneration applications, already strong in some parts of the world, are also gaining ground everywhere. Small GT manufacturers already serve this market, and alliances and partnerships can enhance SOFC commercialization. Utilities also serve the DG market, especially those that have set up energy service companies and seek to grow beyond the legal and geographical confines of their current regulated business. Because fuel cells in general are a new product, because small

  15. 700 F hybrid capacitors cells composed of activated carbon and Li4Ti5O12 microspheres with ultra-long cycle life

    Science.gov (United States)

    Ruan, Dianbo; Kim, Myeong-Seong; Yang, Bin; Qin, Jun; Kim, Kwang-Bum; Lee, Sang-Hyun; Liu, Qiuxiang; Tan, Lei; Qiao, Zhijun

    2017-10-01

    To address the large-scale application demands of high energy density, high power density, and long cycle lifetime, 700-F hybrid capacitor pouch cells have been prepared, comprising ∼240-μm-thick activated carbon cathodes, and ∼60-μm-thick Li4Ti5O12 anodes. Microspherical Li4Ti5O12 (M-LTO) synthesized by spray-drying features 200-400 nm primary particles and interconnected nanopore structures. M-LTO half-cells exhibits high specific capacities (175 mAhh g-1), good rate capabilities (148 mAhh g-1 at 20 C), and ultra-long cycling stabilities (90% specific capacity retention after 10,000 cycles). In addition, the obtained hybrid capacitors comprising activated carbon (AC) and M-LTO shows excellent cell performances, achieving a maximum energy density of 51.65 Wh kg-1, a maximum power density of 2466 W kg-1, and ∼92% capacitance retention after 10,000 cycles, thus meeting the demands for large-scale applications such as trolleybuses.

  16. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

    Science.gov (United States)

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong

    2016-09-15

    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg(-1) and 47.5 Wh kg(-1) at a power density of 400 W kg(-1), respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  17. Effects of RCP trip when recovering HPSI during LOCA in a Westinghouse PWR

    Energy Technology Data Exchange (ETDEWEB)

    Montero-Mayorga, Javier, E-mail: fj.montero@alumnos.upm.es; Queral, César; Rivas-Lewicky, Julio; González-Cadelo, Juan

    2014-12-15

    Highlights: • If HPSI is recovered during SBLOCA and RCPs are tripped core damage can be reached. • If the RCPs are tripped once the accumulators have injected the damage can be avoided. • If only 2 out of 3 RCPs are tripped the damage can be also avoided. • Improvements are proposed to the EOPs in order to avoid possible damage. - Abstract: Current Westinghouse Emergency Operating Procedures (EOPs) indicate initially that the operator must keep the reactor coolant pumps (RCPs) running during a Small Break Loss of Coolant Accident (SBLOCA) if there is unavailability of high pressure safety injection (HPSI) system in order to cool the core by forced convection. However, the crew must follow different EOPs along the transient depending on its evolution. In these EOPs there are several conditions which indicate the necessity of tripping one or more RCPs when HPSI is recovered. In this paper the occurrence of a SBLOCA with unavailability of HPSI has been analyzed with a model of Almaraz Nuclear Power Plant (Westinghouse 3 Loop) for TRACE code V5.0 patch 1. Two different approaches have been considered: the first one, taking into account Optimal Recovery Guidelines (ORGs) and in the second approach, the transition to Function Restoration Guidelines (FRGs) due to inadequate core cooling (ICC) conditions is considered. Results of this paper lead to the implementation of an improvement in current EOPs regarding how many RCPs should be tripped during SBLOCA sequences.

  18. Standard technical specifications, Westinghouse Plants: Bases (Sections 2.0--3.3). Volume 2, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This NUREG contains the improved Standard Technical Specifications (STS) for Westinghouse plants. Revision 1 incorporates the cumulative changes to Revision 0, which was published in September 1992. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, specifically the Westinghouse Owners Group (WOG), NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the extent practical and consistent with the licensing basis for the facility, to Revision 1 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency.

  19. Sensitivity Analysis of Onsite Atmospheric Dispersion Factor in Westinghouse type NPP in KOREA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Chan; Yoon, Duk Joo; Song, Dong Soo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    ARCON96 is a NRC licensed air dispersion model to evaluate onsite atmospheric relative concentration X/Q. The purpose of this paper is to provide some results for checking and testing the functionalities of ARCON96. Specially, this code is optimized to estimate a habitability of control room. Since NUREG 0737 issue, the control room habitability has been studied for a FSAR (Final Safety Analysis Report). Some assumptions and methodology is used in this paper. Some methodology is introduced in this paper. The reason of the selection of 2-loop Westinghouse NPP is because of carrying out the study project for the 2-loop Westinghouse NPP in the condition of the defueled NPP condition. Onsite atmospheric dispersion factor sensitivity is performed. Key impact factor is reviewed. Some results are below: a. Time averaged effect of X/Q is timely increased. b. ARCON96 code is more conservative at the low wind speed conditions. c. Building wake impact is significant in the condition of unstable atmospheric class with more than 7m/sec of wind speed. d. Plume meander effect is strong when the distance from the release point is small. e. The other plume meander effect is strong when the meander duration time is accumulated Finally, these results show that the appropriate conservation of ARCON96 is appeared in some conditions. Also these results seem to be in good agreement with NRC Regulatory Guide and positions.

  20. Solution of closing of the columns of thermocouples in Asco reactors 1 and 2 with Cetna of Westinghouse; Solucion de cierre de las columnas de termopares en reactores Asco 1 and 2 con Cetna de Westinghouse

    Energy Technology Data Exchange (ETDEWEB)

    Sunjic, B.; Reichenbach, M.; Llibre, E.

    2014-10-01

    Occasionally, small leaks have been discovered in operating PWRs in the Thermo Couple columns Penetrations. In order to mitigate this issue, Westinghouse has designed and developed the CETNA element, which does not use cono-seals. This article shows the CETNA supply for Asco NPP to prevent potential leaks in the penetrations. (Author)

  1. High cycle fatigue behavior of the IN718/M247 hybrid element fabricated by friction welding at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Tran Hung Tra

    2016-12-01

    Full Text Available A hybrid element has been fabricated by friction welding, joining two superalloys Inconel 718 and Mar-M247. The high cycle fatigue behavior of this welded element was investigated at 500 °C and 700 °C. The fabrication could obtain excellent fatigue strength in which the fracture is located in the base metal Mar-M247 side and takes place outside the welded zone. The behavior of the joint under loadings is discussed through a simulation by the numerical finite element method.

  2. "A Highly Selected Strain of Guinea Pigs": The Westinghouse Science Talent Search and Educational Meritocracy, 1942-1958

    Science.gov (United States)

    Terzian, Sevan G.; Rury, John L.

    2014-01-01

    Overview: This article examines the Westinghouse Science Talent Search over the first sixteen years of its operation. A national contest involving thousands of high school seniors annually, it reflected a growing national concern with developing scientific manpower in the midst of global conflict, the Cold War, and a growing military-industrial…

  3. Westinghouse Hanford Company operational environmental monitoring annual report, calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Fassett, J.W.; Johnson, A.R.; Johnson, V.G.; Markes, B.M.; McKinney, S.M.; Moss, K.J.; Perkins, C.J.; Richterich, L.R.

    1995-08-01

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1994 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities are still seen on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  4. Assessment of ISLOCA risk: Methodology and application to a Westinghouse four-loop ice condenser plant

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.L.; Auflick, J.L.; Haney, L.N. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-04-01

    Inter-system loss-of-coolant accidents (ISLOCAs) have been identified as important contributors to offsite risk for some nuclear power plants. A methodology has been developed for identifying and evaluating plant-specific hardware designs, human factors issues, and accident consequence factors relevant to the estimation of ISLOCA core damage frequency and risk. This report presents a detailed description of the application of this analysis methodology to a Westinghouse four-loop ice condenser plant. This document also includes appendices A through I which provide: System descriptions; ISLOCA event trees; human reliability analysis; thermal hydraulic analysis; core uncovery timing calculations; calculation of system rupture probability; ISLOCA consequences analysis; uncertainty analysis; and component failure analysis.

  5. Demonstration of retrieval methods for Westinghouse Hanford Corporation October 20, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Westinghouse Hanford Corporation has been pursuing strategies to break up and retrieve the radioactive waste material in single shell storage tanks at the Hanford Nuclear Reservation, by working with non-radioactive ``saltcake`` and sludge material that simulate the actual waste. It has been suggested that the use of higher volumes of water than used in the past (10 gpm nozzles at 10,000 psi) might be successful in breaking down the hard waste simulants. Additionally, the application of these higher volumes of water might successfully be applied through commercially available tooling using methods similar to those used in the deslagging of large utility boilers. NMW Industrial Services, Inc., has proposed a trial consisting of three approaches each to dislodging both the solid (saltcake) simulant and the sludge simulant.

  6. Westinghouse Hanford Company operational environmental monitoring annual report - calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.W., Westinghouse Hanford

    1996-07-30

    This document summarizes the results of the Westinghouse Hanford Company (WHC) near-facility operational environmental monitoring for 1995 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water,groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  7. Freeway Driving Cycle Construction Based on Real-Time Traffic Information and Global Optimal Energy Management for Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Hongwen He

    2017-11-01

    Full Text Available This paper presents a freeway driving cycle (FDC construction method based on traffic information. A float car collected different type of roads in California and we built a velocity fragment database. We selected a real freeway driving cycle (RFDC and established the corresponding time traffic information tensor model by using the data in California Department of Transportation performance measure system (PeMS. The correlation of road velocity in the time dimension and spatial dimension are analyzed. According to the average velocity of road sections at different times, the kinematic fragments are stochastically selected in the velocity fragment database to construct a real-time FDC of each section. The comparison between construction freeway driving cycle (CFDC and real freeway driving cycle (RFDC show that the CFDC well reflects the RFDC characteristic parameters. Compared to its application in plug-in electric hybrid vehicle (PHEV optimal energy management based on a dynamic programming (DP algorithm, CFDC and RFDC fuel consumption are similar within approximately 5.09% error, and non-rush hour fuel economy is better than rush hour 3.51 (L/100 km at non-rush hour, 4.29 (L/km at rush hour. Moreover, the fuel consumption ratio can be up to 13.17% in the same CFDC at non-rush hour.

  8. Driving cycle suitable layout of permanent magnet synchronous machines for hybrid vehicles and electric powered vehicles; Fahrzyklusgerechte Auslegung von permanentmagneterregten Synchronmaschinen fuer Hybrid- und Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Finken, Thomas

    2011-07-01

    An increasing environmental awareness and the prospect of a shortage of fossil resources will result in a development of efficient vehicles with a lower consumption of fuel. In addition to the hybrid electric vehicle, the electric powered vehicle increasingly is focused in the development of vehicles. A good efficiency is the most important demand on the electrical machine. The author of the book under consideration reports on exemplary operating point distributions for various vehicle concepts and user profiles. After comparing the most common types of machine in terms of the use in electrified powertrains, the permanent magnet synchronous machine is selected and discussed in detail. A table shows the advantages and disadvantages of all considered geometries and variations. Thus, a suitable combination of geometry for a given vehicle concept and its requirements are selected.

  9. A hybrid solar photovoltaic-wind turbine-Rankine cycle for electricity generation in Turkish Republic of Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available This paper presents an energy demand model by designing a hybrid solar-wind-thermal power generation system of the Turkish Republic of Northern Cyprus, a promising substitute for the expensive battery banks. The study models the future energy demand of Turkish Republic of Northern Cyprus based on the IPCC emissions scenario A1B and A2 by designing a new hybrid solar-wind-thermal power system that satisfies the current and future requirements of firm capacity during peak periods. The study suggests an improvement in a hybrid solar-wind-thermal power system performance by predicting reliable outputs that can integrate renewable energy technologies to conventional power generation. The energy consumption prediction model emphasizes the energy requirement that has a growing demand from 300 to 400 GWh in scenario A1B and 150–450 GWh in scenario A2 from 2010 to 2050. The proposed design can meet 400 GWh of electricity demand in TRNC based on IPCC scenario A1B and 450 GWh of electricity demand in TRNC based on IPCC scenario A2. The percentage contribution of solar, wind and thermal energy for 2010, 2020, 2030, 2040 and 2050 are presented along with CO2 emissions and water consumption for each of the years.

  10. Pre-design and life cycle cost analysis of a hybrid power system for rural and remote communities in Afghanistan

    Directory of Open Access Journals (Sweden)

    Mir Sayed Shah Danish

    2014-08-01

    Full Text Available In view of the present situation of the Afghanistan electricity sector, the photovoltaic and diesel generator stand-alone hybrid power system is increasingly attractive for application in rural and remote communities. Thousands of rural communities in Afghanistan depend solely on traditional kerosene for illumination and rarely have access to electricity sources such as DC battery for radio and other small appliances. This study is conducted to offer real-life solution to this problem. The hybrid system is investigated to meet the domestic load demand that is estimated based on the communities’ electricity consumption culture. At first, customary pre-design is pursued. Afterwards, the break-even point and net present value algorithms are applied for economic analysis. That makes this study differ from the previous academic literature. The concepts developed in this study are targeted for a cost-effective hybrid system, which is appropriate for rural and remote residents’ lifestyle change and improvement. Based on the academic research methods, overall analysis procedures can fit as an analogy, especially for developing countries.

  11. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

    Science.gov (United States)

    Majeau-Bettez, Guillaume; Hawkins, Troy R; Strømman, Anders Hammer

    2011-05-15

    This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.

  12. Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D. [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S. [Los Alamos Technical Associates, Inc., NM (United States)

    1994-04-01

    During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D&D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews.

  13. Resolution of the direct containment heating issue for all Westinghouse plants with large dry containments or subatmospheric containments

    Energy Technology Data Exchange (ETDEWEB)

    Pilch, M.M.; Allen, M.D.; Klamerus, E.W. [Sandia National Labs., Albuquerque, NM (United States)

    1996-03-01

    This report uses the methodology and scenarios described in NUREG/CR-6075 and NUREG/CR-6075, Supplement 1, to address the direct containment heating (DCH) issue for all Westinghouse plants with large dry or subatmospheric containments. DCH is considered resolved if the conditional containment failure probability (CCFP) is less than 0.1. The methodology calls for an initial screening phase in which the CCFP for each plant is calculated based on loads versus strength evaluations using plant-specific information. The DCH issue is considered resolved for a plant if the CCFP calculated in the screening phase is less than 0.01. This value is more stringent than the overall success criterion of 0.1. The CCFPs for all of the Westinghouse plants with dry containments were less than 0.01 in the screening phase calculations, and thus, the DCH issue is resolved for these plants based on containment loads alone. No additional analyses are required.

  14. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  15. Collections and Analyses of Common Cause Failure Data for the Korea Standard and Westinghouse Type NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Han, S. H

    2007-04-15

    The analyses of the CCF events for domestic NPPs were performed to establish the domestic database for the CCF events and to deliver supply them to the operation office of the international common cause failure data exchange (ICDE) project. We collected and analyzed the CCF events of emergency diesel generators, centrifugal pumps, motor-operated valves, check valves, circuit breakers for the Korean Standard Type nuclear power plants (NPPs), Yonggwang Units 3 and 4 and Ulchin Units 3 and 4, and the Westinghouse type NPPs, Kori Unit 3 and 4 and Yonggwang Units 1 and 2. First, the components to be collected and analyzed were classified into the common cause component groups (CCCGs) according to the ICDE coding guidelines. Next, the CCF events were identified based on reviews of the component database for the PSA and its related documents, and consultations with NPP staff. Fourteen CCF events were identified. The ratio of the number of CCF events to that of individual failure events was identified as approximately 10 percentages. However, an in depth review of the CCF events showed that most failure severities of them were identified as partial CCF events, which can be interpreted as some component failures within the CCCGs. Root causes of the CCF events were identified as 9 internal part failures, 2 human errors, 2 design deficiencies, 1 procedure inadequacy. It could be concluded that the major root causes of the CCF events were internal piece part failures.

  16. Power plant simulators using Westinghouse distributed processing family hardware and software

    Energy Technology Data Exchange (ETDEWEB)

    Griebenow, R.; Sudduth, A.; Heuser, S.; Perdeus, M.; Fray, R.

    1993-10-01

    Duke Power Company and the Electric Power Research Institute have embarked on a joint effort to develop plant specific engineering and training simulators to support control replacement projects in Duke's fossil plants. These simulators use low cost personal computer hardware (PCs) and modular process simulation development software, integrated to Westinghouse Distributed Processing Family (WDPF) control hardware and software, to provide an accurate representation of the plant process and controls. Integrating the PC-based process simulation to the control system proved to be a very complex task. To meet the interface requirements, firmware was modified, and software and interface cards were developed that allow high-speed parallel access to the control system processor memory. In addition, modifications had to be made to provide necessary simulator training functions such as freezing the system, saving snap-shots, and loading initial conditions. This paper provides details on the development of the PC/WDPF interface and simulator instructor capabilities. In addition, it outlines plans for use of the simulator as an operator training and controls engineering tool.

  17. Specification and implementation of IFC based performance metrics to support building life cycle assessment of hybrid energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Morrissey, Elmer; O' Donnell, James; Keane, Marcus; Bazjanac, Vladimir

    2004-03-29

    Minimizing building life cycle energy consumption is becoming of paramount importance. Performance metrics tracking offers a clear and concise manner of relating design intent in a quantitative form. A methodology is discussed for storage and utilization of these performance metrics through an Industry Foundation Classes (IFC) instantiated Building Information Model (BIM). The paper focuses on storage of three sets of performance data from three distinct sources. An example of a performance metrics programming hierarchy is displayed for a heat pump and a solar array. Utilizing the sets of performance data, two discrete performance effectiveness ratios may be computed, thus offering an accurate method of quantitatively assessing building performance.

  18. A life-cycle approach to technology, infrastructure, and climate policy decision making: Transitioning to plug-in hybrid electric vehicles and low-carbon electricity

    Science.gov (United States)

    Samaras, Constantine

    In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life

  19. A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China

    Directory of Open Access Journals (Sweden)

    Mingyue Pang

    2012-07-01

    Full Text Available Small-scale bio-energy projects have been launched in rural areas of China and are considered as alternatives to fossil-fuel energy. However, energetic and environmental evaluation of these projects has rarely been carried out, though it is necessary for their long-term development. A village-level biomass gasification project provides an example. A hybrid life-cycle assessment (LCA of its total nonrenewable energy (NE cost and associated greenhouse gas (GHG emissions is presented in this paper. The results show that the total energy cost for one joule of biomass gas output from the project is 2.93 J, of which 0.89 J is from nonrenewable energy, and the related GHG emission cost is 1.17 × 10−4 g CO2-eq over its designed life cycle of 20 years. To provide equivalent effective calorific value for cooking work, the utilization of one joule of biomass gas will lead to more life cycle NE cost by 0.07 J and more GHG emissions by 8.92 × 10−5 g CO2-eq compared to natural gas taking into consideration of the difference in combustion efficiency and calorific value. The small-scale bio-energy project has fallen into dilemma, i.e., struggling for survival, and for a more successful future development of village-level gasification projects, much effort is needed to tide over the plight of its development, such as high cost and low efficiency caused by decentralized construction, technical shortcomings and low utilization rate of by-products.

  20. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  1. BEACON{sup TM} Core Monitoring and Analysis for Operations of the Westinghouse AP1000

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, Sam A.; Krieg, David J. [Westinghouse Electric Company, Nuclear Fuel Division, P.O.Box 355, Pittsburgh, PA, 15230 (United States)

    2009-06-15

    The Westinghouse AP1000 is a highly advanced Generation 3 pressurized water reactor (PWR). The reactor control strategy is considerably different from today's Westinghouse PWRs. AP1000 reactor control utilizes mechanical shim (MShim) for reactivity control of load changes and core depletion in conjunction with boron reactivity shim. The system is designed for several days of power operation without changing the reactor coolant system boron concentration. This along with an advanced reactor coolant pump design allows for a chemistry and volume control system that is much simplified from present PWRs. Furthermore, the nuclear renaissance provides the opportunity for the application of innovative technology in the establishment of behaviors in the operation of the reactor instead of modifying already learned and established practices. The presentation of reactor peaking factor limits, limit monitoring, nuclear data and reactor operations predictive capabilities to the control room will reflect the advanced core, new operating strategy and the opportunity of the AP1000. The proven BEACON{sup TM} core monitoring and analysis system will be used in the AP1000. BEACON is presently implemented in over 60 PWRs of different vendor origin on five continents. It is licensed by the regulatory agencies of several countries to provide surveillance of core thermal margins. In addition it provides accurate reactor operations predictions for evolutions like start-up and load changes. The AP1000 implementation of BEACON will build on this extensive experience. From vanadium fixed in-core detector signals and other online plant data, BEACON will continuously update a core model implemented with an advanced 3D nodal code. From this core model, BEACON will measure reactor power distribution, reactivity and shutdown margin and provide information to control room display and alarm presentation systems on margin to thermal and shutdown reactivity limits. Specifically, BEACON will

  2. Impact of Different Driving Cycles and Operating Conditions on CO2 Emissions and Energy Management Strategies of a Euro-6 Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Claudio Cubito

    2017-10-01

    Full Text Available Although Hybrid Electric Vehicles (HEVs represent one of the key technologies to reduce CO2 emissions, their effective potential in real world driving conditions strongly depends on the performance of their Energy Management System (EMS and on its capability to maximize the efficiency of the powertrain in real life as well as during Type Approval (TA tests. Attempting to close the gap between TA and real world CO2 emissions, the European Commission has decided to introduce from September 2017 the Worldwide Harmonized Light duty Test Procedure (WLTP, replacing the previous procedure based on the New European Driving Cycle (NEDC. The aim of this work is the analysis of the impact of different driving cycles and operating conditions on CO2 emissions and on energy management strategies of a Euro-6 HEV through the limited number of information available from the chassis dyno tests. The vehicle was tested considering different initial battery State of Charge (SOC, ranging from 40% to 65%, and engine coolant temperatures, from −7 °C to 70 °C. The change of test conditions from NEDC to WLTP was shown to lead to a significant reduction of the electric drive and to about a 30% increase of CO2 emissions. However, since the specific energy demand of WLTP is about 50% higher than that of NEDC, these results demonstrate that the EMS strategies of the tested vehicle can achieve, in test conditions closer to real life, even higher efficiency levels than those that are currently evaluated on the NEDC, and prove the effectiveness of HEV technology to reduce CO2 emissions.

  3. Stem thrust prediction model for Westinghouse wedge gate valves with linkage type stem-to-disk connection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.K.; Sharma, V.; Kalsi, M.S. [Kalsi Engineering, Inc., Sugar Land, TX (United States)] [and others

    1996-12-01

    The Electric Power Research Institute (EPRI) conducted a comprehensive research program with the objective of providing nuclear utilities with analytical methods to predict motor operated valve (MOV) performance under design basis conditions. This paper describes the stem thrust calculation model developed for evaluating the performance of one such valve, the Westinghouse flexible wedge gate valve. These procedures account for the unique functional characteristics of this valve design. In addition, model results are compared to available flow loop and in situ test data as a basis for evaluating the performance of the valve model.

  4. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Directory of Open Access Journals (Sweden)

    Brad Seely

    Full Text Available Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine for established stands due to increased moisture stress mortality.

  5. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Science.gov (United States)

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality.

  6. The Westinghouse AP1000 plant design: a generation III+ reactor with unique proven passive safety technology

    Energy Technology Data Exchange (ETDEWEB)

    Demetri, K. J.; Leipner, C. I.; Marshall, M. L., E-mail: demetrkj@westinghouse.com [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2015-09-15

    The AP1000 plant is an 1100-M We pressurized water reactor with passive safety features and extensive plant simplifications and standardization that simplify construction, operation, maintenance, safety, and cost. The AP1000 plant is based on proven pressurized water reactor (PWR) technology, with an emphasis on safety features that rely solely on natural forces. These passive safety features are combined with simple, active, defense-in-depth systems used during normal plant operations which also provide the first level of defense against more probable events. This paper focuses on specific safety and licensing topics: the AP1000 plant robustness to be prepared for extreme events that may lead to catastrophic loss of infrastructure, such as the Fukushima Dai-ichi event, and the AP1000 plant compliance with the safety objectives for new plants. The first deployment of the AP1000 plant formally began in July 2007 when Westinghouse Electric Company and its consortium partner, the Shaw Group, signed contracts for four AP1000 units on coastal sites of Sanmen and Haiyang, China. Both sites have the planned ability to accommodate at least six AP1000 units; construction is largely concurrent for all four units. Additionally, the United States (U.S.) Nuclear Regulatory Commission (NRC) issued combined licenses (COLs) to allow Southern Nuclear Operating Company (SNC) and South Carolina Electric and Gas Company (SCE and G) to construct and operate AP1000 plants. Within this paper, the various factors that contribute to an unparalleled level of design, construction, delivery, and licensing certainty for any new AP1000 plant projects are described. These include: 1) How the AP1000 plant design development and reviews undertaken in the United States, China and Europe increase licensing certainty. 2) How the AP1000 passive plant robustness against extreme events that result in large loss of infrastructure further contributes to the licensing certainty in a post

  7. Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography.

    Science.gov (United States)

    Ginige, Maneesha P; Keller, Jürg; Blackall, Linda L

    2005-12-01

    The acetate-utilizing microbial consortium in a full-scale activated sludge process was investigated without prior enrichment using stable isotope probing (SIP). [13C]acetate was used in SIP to label the DNA of the denitrifiers. The [13C]DNA fraction that was extracted was subjected to a full-cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the 13C library were closely related to the bacterial families Comamonadaceae and Rhodocyclaceae in the class Betaproteobacteria. Seven oligonucleotide probes for use in fluorescent in situ hybridization (FISH) were designed to specifically target these clones. Application of these probes to the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated for 16 days revealed that there was a significant positive correlation between the CFDSBR denitrification rate and the relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH-microautoradiography demonstrated that the DEN581 and DEN124 probe-targeted cells that dominated the CFDSBR were capable of taking up [14C]acetate under anoxic conditions. Initially, DEN444 and DEN1454 probe-targeted bacteria also dominated the CFDSBR biomass, but eventually DEN581 and DEN124 probe-targeted bacteria were the dominant bacterial groups. All probe-targeted bacteria assessed in this study were denitrifiers capable of utilizing acetate as a source of carbon. The rapid increase in the number of organisms positively correlated with the immediate increase in denitrification rates observed by plant operators when acetate is used as an external source of carbon to enhance denitrification. We suggest that the impact of bacteria on activated sludge subjected to intermittent acetate supplementation should be assessed prior to the widespread use of acetate in the wastewater industry to enhance denitrification.

  8. Photonics at the frontiers. Generation of few-cycle light pulses via NOPCPA and real-time probing of charge transfer in hybrid photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Daniel

    2011-11-11

    In the first part of this thesis the methodics of the non-collinear, optically parametric amplification of chirped light pulses (NOPCPA) for the generation of few-cycle light pulses in the visible (Vis) and near infrared (NIR) with of 5-8 fs half-width are essential further developed. Fundamental parametric influences, like the existence of a parametrically induced phase and the generation of optically parametric fluorescence (OPF), are studied both by theoretical analyses and numerical simulations and by concrete experiments. Experimentally in the framework of this thesis fwe-cycle light pulses with a pulse width of 7.9 fs, 130 mJ energy, at 805 nm central wavelength and a very high seed-pulse-limited prepulse contrast of 11 and 8 orders of magnitude are reached at 30 ps and approximately 3 ps. One the one hand it has been succeeded to accelerate with the broad-band pulse amplifier quasi-monoenergetic electrons with energies of up to 50 MeV. For this the light pulse is focussed to relativistic intensities of several W/cm{sup 2} in a helium gas jet. On the other hand XUV light was produced up to the 20th harmonic of the generated light pulse from the broad-band pulse amplifier by its sub-cycle interaction with solid surfaces. In the framework of this thesis furthermore new, extended concepts for still broader-band NOPCPA over one octave were developed and characterized, which contain the application of two pump pulses in one NOPCPA stage and the application of two different pump wavelength in two subsequent NOPCPA stages. In the second part of this thesis broad-band white-light spectra and by means of NOPCPA spectrally tunable light pulses are applied in order to realize a transient absorption spectrometer with multichannel detection. This new excitation-query construction combines a very broad-band UV-Vis-NIR query with a high time resolution of 40 fs and high sensitivity for the transient change of the optical density of less than 10{sup -4}. By this it has in

  9. Hybrid Fuel Cell Systems

    OpenAIRE

    Brouwer, J.; Samuelsen, GS

    2001-01-01

    Examples of hybrid fuel cell power generation cycles are the combine high-temperature fuel cells and gas turbines, reciprocating engines, or another fuel cell. These represent the hybrid power plants of the future. The conceptual systems have the potential to achieve efficiencies greater than 70 percent and be commercially ready by year 2010 or sooner. The hybrid fuel cell/turbine (FC/T) power plant will combine a high-temperature, conventional molten carbonate fuel cell (MCFC)...

  10. Dynamic Modeling and Plantwide Control of a Hybrid Power and Chemical Plant: An Integrated Gasification Combined Cycle Coupled with a Methanol Plant

    Science.gov (United States)

    Robinson, Patrick J.

    Gasification has been used in industry on a relatively limited scale for many years, but it is emerging as the premier unit operation in the energy and chemical industries. The switch from expensive and insecure petroleum to solid hydrocarbon sources (coal and biomass) is occurring due to the vast amount of domestic solid resources, national security and global warming issues. Gasification (or partial oxidation) is a vital component of "clean coal" technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel gas for driving combustion turbines. Gasification units in a chemical plant generate synthesis gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The coupling of an Integrated Gasification Combined Cycle (IGCC) with a methanol plant can handle swings in power demand by diverting hydrogen gas from a combustion turbine and synthesis gas from the gasifier to a methanol plant for the production of an easily-stored, hydrogen-consuming liquid product. An additional control degree of freedom is provided with this hybrid plant, fundamentally improving the controllability of the process. The idea is to base-load the gasifier and use the more responsive gas-phase units to handle disturbances. During the summer days, power demand can fluctuate up to 50% over a 12-hour period. The winter provides a different problem where spikes of power demand can go up 15% within the hour. The following dissertation develops a hybrid IGCC / methanol plant model, validates the steady-state results with a National Energy Technical Laboratory study, and tests a proposed control structure to handle these significant disturbances. All modeling was performed in the widely used chemical process

  11. DOSE RATES FOR WESTINGHOUSE 17X17 MOX PWR SNF IN A WASTE PACKAGE (SCPB: N/A)

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Lotz

    1997-01-29

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to estimate the dose rate on and near the surface a Multi-Purpose Canister (MPC) PWR waste package (WP) which is loaded with Westinghouse 17 x 17 mixed oxide (MOX) PWR fuel. The 21 PWR MPC WP is used to provide an upper bound for waste package designs since the 12 PWR MPC WP will have a smaller source term and an equivalent amount of shielding. the objectives of this evaluation are to calculate the requested dose rate(s) and document the calculation in a fashion to allow comparisons to other waste forms and WP designs at a future time.

  12. Sensitivity analysis for thermo-hydraulics model of a Westinghouse type PWR. Verification of the simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, Aref Zarnooshe [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch; Yousefpour, Faramarz [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Hoseyni, Seyed Mohsen [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Basic Sciences; Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Young Researchers and Elite Club

    2017-07-15

    Development of a steady-state model is the first step in nuclear safety analysis. The developed model should be qualitatively analyzed first, then a sensitivity analysis is required on the number of nodes for models of different systems to ensure the reliability of the obtained results. This contribution aims to show through sensitivity analysis, the independence of modeling results to the number of nodes in a qualified MELCOR model for a Westinghouse type pressurized power plant. For this purpose, and to minimize user error, the nuclear analysis software, SNAP, is employed. Different sensitivity cases were developed by modification of the existing model and refinement of the nodes for the simulated systems including steam generators, reactor coolant system and also reactor core and its connecting flow paths. By comparing the obtained results to those of the original model no significant difference is observed which is indicative of the model independence to the finer nodes.

  13. Interface for Consolidated Edison's Waterside Station compact simulator -- PC-TRAX to Westinghouse Distributed Processing Family

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, T.J.; Pierce, W.R.; Roberts, R.C. (Science Applications International Corp., Idaho Falls, ID (United States))

    1993-04-01

    Many fossil power plants are upgrading to modern digital control systems. Engineers must design and debug these new systems, and operators must train to use them. Simulators make it possible to prove designs and train operators before new controls are put into operation. EPRI compact simulator technology is especially desirable for these purposes because it uses PC platforms and modern simulation systems. The PC platform is inexpensive, and the simulation software is modular so new configurations can be easily generated and evaluated. To enhance and demonstrate compact simulator technology and its associated benefits; to develop an interface between the PC-TRAC simulation system and a Westinghouse Distributed Processing Family (WDPF) control system that allows spare control system equipment to be used as part of a simulator; to demonstrate a unit-specific simulator for Waterside Station for use in training and controls engineering.

  14. RELAÇÕES HÍDRICAS EM DOIS HÍBRIDOS DE MILHO SOB DOIS CICLOS DE DEFICIÊNCIA HÍDRICA WATER RELATIONS IN TWO HYBRIDS OF CORN UNDER TWO CYCLES OF WATER STRESS

    Directory of Open Access Journals (Sweden)

    CARLOS PIMENTEL

    1999-11-01

    Full Text Available Neste trabalho foram estudadas as relações hídricas de dois híbridos de milho (Zea mays L., em casa de vegetação: o IAC 8222 (híbrido com tolerância ambiental e o DINA 10 (híbrido comum; submetidos a um ou a dois ciclos de estresse, aos 30 e 46 DAP. O IAC 8222 manteve o potencial hídrico de folha (psihf superior ao do DINA no primeiro ciclo de estresse e no segundo ciclo, em plantas que sofreram os dois ciclos (com endurecimento, no sexto e último dia de deficiência hídrica, não havendo diferenças em relação ao conteúdo hídrico relativo (CHR entre os híbridos. Houve um aumento da concentração de açúcares solúveis e de aminoácidos com a deficiência hídrica, sem diferenças entre os híbridos no primeiro ciclo de déficit hídrico, e com aumento significativo somente na concentração de aminoácidos no DINA 10 submetido aos dois ciclos, no último dia do segundo ciclo. A concentração de K+ não variou nem com os ciclos nem entre híbridos. Portanto, só houve diferenças na acumulação de solutos osmóticos entre os híbridos, quanto ao teor de aminoácidos no DINA 10 submetido aos dois ciclos, no segundo ciclo. Contudo, o IAC 8222 manteve o seu psihf alto, podendo ter promovido um ajuste do coeficiente de extensibilidade de parede, que foi acentuado com o endurecimento.A study was conducted to evaluate the water relations of two corn (Zea mays L. hybrids in a greenhouse experiment: IAC 8222 (hybrid adapted to environmental stress and DINA 10 (common hybrid, under one or two cycles of water stress applied at 30 and 46 days after sowing. During the first water deficit cycle, and at the second cycle for plants submitted to both cycles, the leaf water potential (psihf of IAC 8222 was higher than the psihf of DINA 10, at the 6th and last day of water stress, with no difference for the relative water content (CHR between the hybrids. The soluble sugars and amino acids accumulated during the water stress, but no

  15. A flexible 3D nitrogen-doped carbon foam@CNTs hybrid hosting TiO2 nanoparticles as free-standing electrode for ultra-long cycling lithium-ion batteries

    Science.gov (United States)

    Yuan, Wei; Wang, Boya; Wu, Hao; Xiang, Mingwu; Wang, Qiong; Liu, Heng; Zhang, Yun; Liu, Huakun; Dou, Shixue

    2018-03-01

    Free-standing electrodes have stood out from the electrode pack, owing to their advantage of abandoning the conventional polymeric binder and conductive agent, thus increasing the specific capacity of lithium-ion batteries. Nevertheless, their practical application is hampered by inferior electrical conductivity and complex manufacturing process. To this end, we report here a facile approach to fabricate a flexible 3D N-doped carbon foam/carbon nanotubes (NCF@CNTs) hybrid to act as the current collector and host scaffold for TiO2 particles, which are integrated into a lightweight free-standing electrode (NCF@CNTs-TiO2). In the resulting architecture, ultra-fine TiO2 nanoparticles are homogeneously anchored in situ into the N-doped NCF@CNTs framework with macro- and meso-porous structure, wrapped by a dense CNT layer, cooperatively enhances the electrode flexibility and forms an interconnected conductive network for electron/ion transport. As a result, the as-prepared NCF@CNTs-TiO2 electrode exhibits excellent lithium storage performance with high specific capacity of 241 mAh g-1 at 1 C, superb rate capability of 145 mAh g-1 at 20 C, ultra-long cycling stability with an ultra-low capacity decay of 0.0037% per cycle over 2500 cycles, and excellent thermal stability with ∼94% capacity retention over 100 cycles at 55 °C.

  16. Cycle killer... Qu'est-ce que c'est? On the Comparative Approximability of Hybridization Number and Directed Feedback Vertex Set

    NARCIS (Netherlands)

    Kelk, S.; van Iersel, L.J.J.; Lekic, N.; Linz, S.; Scornavacca, C.; Stougie, L.

    2012-01-01

    We show that the problem of computing the hybridization number of two rooted binary phylogenetic trees on the same set of taxa X has a constant factor polynomial-time approximation if and only if the problem of computing a minimum-size feedback vertex set in a directed graph (DFVS) has a constant

  17. Ex situ Annual Egg—Laying Cycles of Rhinoclemmys melanosterna, R. diademata and their Hybrids (Reptilia: Testudines: Emydidae: Batagurinae Ciclos de postura anual ex situ de Rhinoclemmys melanosterna, R. diademata y de sus hibridos (Reptilia: Testudines: Emydidae: Batagurinae

    Directory of Open Access Journals (Sweden)

    Ramírez-Perilla Jaime

    2005-12-01

    Full Text Available R. melanosterna, R. diademata and their hybrids (R. melanosterna x R. diademata present annual continuous egg-laying cycles with maximum frequency during the rainy season. The period of maximal annual egg-laying for hybrid R. melanosterna x R. diademata is earlier than its parents. Aparently there is not direct relation between the ad libitum food offer and Rhinoclemmys sp egg-laying cycles.Registros históricos de postura ex situ de huevos de tortugas del género Rhinoclemmys en la Estación de Biología Tropical Roberto Franco (EBTRF, correspondientes a los años 1991-1999, fueron analizados en relación con factores climáticos locales. Rhinoclemmys melanosterna, Rhinoclemmys diademata y sus híbridos presentan ciclos de postura continuos durante el año con máxima frecuencia durante la estación lluviosa. La época de postura máxima durante un ciclo anual del híbrido R. melanosterna x R. diademata es más temprana que la de sus progenitores de origen. No parece existir relación directa entre la oferta de alimento ad libitum y los ciclos de postura de Rhinoclemmys sp.

  18. Altitude-Wind-Tunnel Investigation of Westinghouse 19B-2 19B-8, and 19XB-1 Jet-Propulsion Engines. Part 1; Operational Characteristics

    Science.gov (United States)

    Fleming, William A.

    1948-01-01

    An investigation was conducted in the NACA Cleveland altitude wind tunnel to determine the operational characteristics of the Westinghouse 19B-2, 19B-8, and 19XB-l jet-propulsion engines. The 19B engine is one af the earliest experimental Westinghouse axial flow engines. The 19XB-1 engine is an experimental prototype of the Westinghouse 15 series, having a rated thrust of 1400 pounds. Improvements in performance and operational characteristics have resulted in the 19XB-2B engine with a rated thrust of 1600 pounds. The operational characteristics were determined over a range of simulated altitudes from 5000 to 30,000 feet for the 19B engines and from 5000 to 35000 feet for the 19XB-l engine at airspeed from 20 to 380 miles per hour. The affects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, starting, acceleration, and functioning of the fuel-control system are discussed. Damage to the engines that occurred during the investigation is also briefly discussed. The changes made in the combustion-chamber configuration to improve the operating we are described.

  19. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor`s heat exchangers where temperatures may reach 70{degrees}C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams & Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  20. Westinghouse Hanford Company ALARA year-end report, Calendar Year 1994: Revision 3A, Radiological engineering and ALARA

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, O.D.

    1995-06-01

    It has long been the US Department of Energy`s (DOE`s) Policy that radiation doses should be maintained as far below the dose limits as is reasonably achievable. This policy, known as the ``ALARA Principle of radiation protection,`` maintains that radiation exposures should be maintained as low as reasonably achievable, taking into account social, technical, economic, practical, and public policy considerations. The ALARA Principle is based on the hypothesis that even very low radiation doses carry some risk. As a result, it is not enough to maintain doses at/or slightly below limits; the lower the doses, the lower the risks. Because it is not possible to reduce all doses at DOE facilities to zero, economic and social factors must be considered to determine the optimal level of radiation doses. According to the ALARA Principle, if doses are too high, resources should be well spent to reduce them. At some point, the resources being spent to maintain low doses are exactly balanced by the risks avoided. Reducing doses below this point results in a misallocation of resources; the resources could be spent elsewhere and have a greater positive impact on health and safety. The objective of the Westinghouse Hanford Company (WHC) ALARA/Contamination Control Improvement Project (CCIP) Program is to manage and control exposures (both individual and collective) to the work force, the general public, and the environment to levels as low as is reasonable using the aforementioned ALARA Principle.

  1. Observation of a new turbulence-driven limit-cycle state in H-modes with lower hybrid current drive and lithium-wall conditioning in the EAST superconducting tokamak

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Guo, H.Y.

    2012-01-01

    The first high confinement H-mode plasma has been obtained in the Experimental Advanced Superconducting Tokamak (EAST) with about 1 MW lower hybrid current drive after wall conditioning by lithium evaporation and real-time injection of Li powder. Following the L–H transition, a small-amplitude, low...... correlated with each other, with nearly no phase differences poloidally and toroidally, and finite phase difference radially, thus providing strong evidence for zonal flows. The growth, saturation and disappearance of the zonal flows are strongly correlated with those of the high-frequency turbulence....... And the measurements demonstrate that the energy gain of zonal flows is of the same order as the energy loss of turbulence. This strongly suggests the interactions between zonal flows and high-frequency turbulences at the pedestal during the limit-cycle state....

  2. Electric/Hybrid Vehicle Simulation

    Science.gov (United States)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  3. Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Nimmo, B.G.; Thornbloom, M.D.

    1995-04-01

    This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

  4. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management

    Science.gov (United States)

    Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio

    2015-04-01

    A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.

  5. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    Directory of Open Access Journals (Sweden)

    R. Senthilkumar

    2015-01-01

    Full Text Available Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014 alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM and Transmission Electron Microscope (TEM images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  6. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  7. Simulation of station blackout scenario in low-power and shutdown condition of Westinghouse two-loop plant with RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se Yun; Ha, Sang Jun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    A station blackout scenario in low power and shutdown condition of Westinghouse two-loop plant is simulated with RELAP5 code. To evaluate plant safety in station blackout scenario for low-power and shutdown condition, the transient calculation with RELAP5 code has been carried out for a Westinghouse two-loop plant. Without core cooling, the boiling in core and spent fuel pit occurs. The core uncovery is observed about 160 hours and the peak cladding temperature exceeds 1206K at 161.1. Station blackout is the complete loss of alternating current (AC) electrical power to the essential and nonessential switchgear buses in a nuclear power plant. Because many safety systems required for reactor core cooling and containment heat removal depend on AC power, the consequences of a station blackout could be severe. Especially, station blackout in low-power and shutdown condition is one of the current issues. Therefore, the evaluation of plant safety with safety analysis code is opportune.

  8. The LifeCycle model

    DEFF Research Database (Denmark)

    Krink, Thiemo; Løvbjerg, Morten

    2002-01-01

    Adaptive search heuristics are known to be valuable in approximating solutions to hard search problems. However, these techniques are problem dependent. Inspired by the idea of life cycle stages found in nature, we introduce a hybrid approach called the LifeCycle model that simultaneously applies...

  9. Avaliação de cultivares e híbridos de bananeira em quatro ciclos de produção Evaluation of banana cultivars and hybrids in four production cycles

    Directory of Open Access Journals (Sweden)

    Sebastião de Oliveira e Silva

    2002-11-01

    Full Text Available Híbridos superiores de bananeira com alta produtividade, frutos vistosos e resistência a doenças estão sendo gerados no programa de melhoramento genético da Embrapa-Centro Nacional de Pesquisa de Mandioca e Fruticultura Tropical. Este trabalho objetivou avaliar alguns desses genótipos em quatro ciclos de produção, visando sua recomendação aos agricultores. O experimento foi realizado em delineamento inteiramente casualizado, com 18 repetições, em Cruz das Almas, BA. Avaliaram-se as cultivares Grande-Naine, Nanica, Nam, Thap Maeo, Mysore, Caipira, Prata-Comum, Pacovan e Prata-Anã e os híbridos Pioneira, PA03-22, FHIA-18, PV03-76, PV03-44 e JV03-15. Analisaram-se os caracteres altura da planta, diâmetro do pseudocaule, peso do cacho, número de frutos, comprimento do fruto e ciclo. Ao longo dos ciclos, a 'Nanica' apresentou o menor porte, enquanto a 'Prata-Anã' se destacou no diâmetro do pseudocaule, seguida pela 'Prata-Comum' e pelo JV03-15. A 'Thap Maeo' sobressaiu-se no peso do cacho e no número de frutos, seguida pelo FHIA-18, no primeiro caráter, e pela 'Mysore', pela 'Caipira' e pelo FHIA-18, no segundo caráter. A 'GrandeNaine' e a 'Nanica' apresentaram o maior comprimento do fruto, enquanto o FHIA-18 e o PA03-22 destacaram-se na precocidade. A 'Thap Maeo' tem potencial para substituir a 'Mysore' e os híbridos avaliados apresentam qualidade para vir a ser recomendados aos agricultores.New productive banana hybrids, presenting good fruits and disease resistant, have been generated at Embrapa-Centro Nacional de Pesquisa de Mandioca e Fruticultura Tropical. The objective of this work was to evaluate some of these genotypes in four production cycles, to recommend them to the farmers. The experiment was carried out in the completely randomized design with 18 replications in Cruz das Almas, BA, Brazil. The genotypes evaluated were the varieties Grande-Naine, Nanica, Nam, Thap Maeo, Mysore, Caipira, Prata-Comum, Pacovan and

  10. Energy Management Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition Stratégies de gestion de l’énergie pour un moteur hybride pneumatique basées sur la reconnaissance du cycle de conduite

    Directory of Open Access Journals (Sweden)

    Ivanco A.

    2009-11-01

    Full Text Available This paper presents energy management strategies for a new hybrid pneumatic engine concept which is specific by its configuration in that it is not the vehicle but only the engine itself which is hybridized. Different energy management strategies are proposed in this paper. The first is called Causal Strategy (CS and implements a rule-based control technique. The second strategy, called Constant Penalty Coefficient (CPC, is based on the minimization of equivalent consumption, where the use of each energy source is formulated in a comparative unit. The balance between the consumption of different energy sources (chemical or pneumatic is achieved by the introduction of an equivalence factor. The third strategy is called Variable Penalty Coefficient (VPC. In fact, it is beneficial to consider the equivalence coefficient as variable within the amount of pneumatic energy stored in the air-tank i.e. state of charge, because the choice of propulsion mode should be different if the tank is full or empty. In this case, the penalty coefficient appears as a non linear function of the air-tank state of charge. Another way to adapt the penalty coefficient is to recognize a reference pattern during the driving cycle. The coefficient value can then be changed according to an optimized value found for each of the reference cycles. This strategy is called Driving Pattern Recognition (DPR. It involves a technique of sliding window pattern recognition. The concept is to convert the whole driving cycle into smaller pieces to which the equivalence factor can be appropriately adapted. This strategy is based on the assumption that the current driving situation does not change rapidly and thus the pattern is likely to continue into the near future. The identification window size is a parameter which has to be adjusted to attain the maximum of identification success over the reference cycle. We propose to define reference patterns as statistical models. The pattern

  11. Electric vehicle life cycle cost analysis : final research project report.

    Science.gov (United States)

    2017-02-01

    This project compared total life cycle costs of battery electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV), hybrid electric vehicles (HEV), and vehicles with internal combustion engines (ICE). The analysis considered capital and operati...

  12. Effect of human papillomavirus on cell cycle-related proteins p16INK4A, p21waf1/cip1, p53 and cyclin D1 in sinonasal inverted papilloma and laryngeal carcinoma. An in situ hybridization study

    Directory of Open Access Journals (Sweden)

    Olga Stasikowska-Kanicka

    2011-04-01

    Full Text Available Human papillomavirus (HPV infection is implicated as an important risk factor in the developmentof head and neck cancers. Many studies focusing on the relationships between HPV infection and cell cycleproteins immunoexpression in laryngeal lesions have provided contradictory results. The aim of this study was toevaluate the relationships between HPV DNA presence and p16INK4a, p21waf1/cip1, p53 and cyclin D1 immunoexpressionin heterogenous HPV-positive and HPV-negative groups of laryngeal cancers and inverted papillomas.The HPV DNA expression was detected using an in situ hybridization method and immunoexpression ofp16INK4a, p21waf1/cip1, p53 and cyclin D1 using immunohistochemistry. The immunoexpression of p21waf1//cip1 and p53 proteins was lower in the HPV-positive group compared to the HPV-negative group, althoughonly the difference of p53 staining was statistically significant. The immunoexpression of p16INK4a and cyclinD1 was significantly increased in the HPV-positive group compared to the HPV-negative group. The increasedimmunoexpression of p16INK4a and cyclin D1, and the lower immunoexpression of p21waf1/cip1 and p53 inthe HPV-positive group compared to the HPV-negative group, supports the hypothesis that HPV may play animportant role in cell cycle dysregulation.

  13. Systems for hybrid cars

    Science.gov (United States)

    Bitsche, Otmar; Gutmann, Guenter

    Not only sharp competition but also legislation are pushing development of hybrid drive trains. Based on conventional internal combustion engine (ICE) vehicles, these drive trains offer a wide range of benefits from reduced fuel consumption and emission to multifaceted performance improvements. Hybrid electric drive trains may also facilitate the introduction of fuel cells (FC). The battery is the key component for all hybrid drive trains, as it dominates cost and performance issues. The selection of the right battery technology for the specific automotive application is an important task with an impact on costs of development and use. Safety, power, and high cycle life are a must for all hybrid applications. The greatest pressure to reduce cost is in soft hybrids, where lead-acid embedded in a considerate management presents the cheapest solution, with a considerable improvement in performance needed. From mild to full hybridization, an improvement in specific power makes higher costs more acceptable, provided that the battery's service life is equivalent to the vehicle's lifetime. Today, this is proven for the nickel-metal hydride system. Lithium ion batteries, which make use of a multiple safety concept, and with some development anticipated, provide even better prospects in terms of performance and costs. Also, their scalability permits their application in battery electric vehicles—the basis for better performance and enhanced user acceptance. Development targets for the batteries are discussed with a focus on system aspects such as electrical and thermal management and safety.

  14. Projects of Modifications of design for mitigation of accidents outside the design Bases on nuclear Central PWR Siemens-KWU and Westinghouse; Proyectos de Modificaciones de Sieno para Mitigacion de Accidentes fuera de la Bases de Diseno en Centrales Nucleares PWR Siemens-KWU y Westinghouse

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez Gonzalez, G.; Cano Rodriguez, L. A.; Arguello Tara, A.

    2014-07-01

    Following the accident at the Japanese Fukushima-Daiichi NPP, the different regulators of nuclear power generation have required numerous reports regarding the evaluation and modification of the capacity of the plants to face accidents with severities beyond that established in their Design Bases. Under this new scenario, with multiple new demands and commitments, EA has carried out the required works for the implementation of strategies to mitigate the consequences of beyond Design Basis accidents for utilities owning Siemens-KWU and Westinghouse PWR nuclear power plants. (Author)

  15. Final evaluation report for Westinghouse Hanford Company, WRAP-1,208 liter waste drum, docket 94-35-7A, type A packaging

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.L., Westinghouse Hanford

    1996-06-12

    This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test results of the Westinghouse Hanford Company, Waste Receiving and Processing Facility, Module 1 (WRAP-1) Drum. The WRAP-1 Drum was tested for DOE-HQ in August 1994, by Los Alamos National Laboratory, under docket number 94-35-7A. Additionally, comparison and evaluation of the approved, as-tested packaging configuration was performed by WHC in September 1995. The WRAP-1 Drum was evaluated against the performance of the DOT-17C, 208 1 (55-gal) steel drums tested and evaluated under dockets 89-13-7A/90-18-7A and 94-37-7A.

  16. Simulation of tubular solid oxide fuel cell behavior for integration into gas turbine cycles

    Science.gov (United States)

    Haynes, Comas Lamar

    Models have been developed and validated for the characterization of tubular solid oxide fuel cells (TSOFCs) and a corresponding fuel cell/gas turbine (FC/GT) power cycle. This promising area of technology is expected to attain near-term commercialization (most notably the SiemensWestinghouse "SureCell" initiative). There is a need for continued conceptual design research in order for the full potential of these systems to be realized. Parametric studies were performed to delineate the impact of cell stack operating conditions on power generation, cell stack thermal management, independent cell load-following and performance quality. The diverse operating conditions included variations in physical cell design, stack pressure, operating voltage, stoichiometric number and stack fuel utilization. A number of novel findings are reported throughout the thesis. As an example, it has been shown that lowering cell stack fuel utilization has a number of benefits for both the simple TSOFC arrangement and the hybrid TSOFC/ GT scenario. The cell stack produces more power at lower fuel utilizations, because fuel supply to the stack actually increases. Additionally, fuel depletion issues (i.e., Nernst potential decrease and smaller limiting currents) are not as influential. A gas turbine bottoming engine would also increase in power production, at lower stack fuel utilizations, because a greater amount of fuel would then fire it. Note that power generation expense is measured per unit rating (e.g., $/kW). Increasing power capacity may then be a means of lowering cost, which is the key obstacle to commercialization. Another cost reduction may stein from the greater contribution of turbomachinery to system power generation, when stack fuel utilization is lowered. FC/GT system efficiency remains stable across a wide domain of cell stack fuel utilizations. This is a result of both the indirect internally reforming (IIR) fuel processor efficiency and Brayton cycle regeneration

  17. Energy Management Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition Stratégies de gestion de l’énergie pour un moteur hybride pneumatique basées sur la reconnaissance du cycle de conduite

    National Research Council Canada - National Science Library

    Ivanco A; Colin G; Chamaillard Y; Charlet A; Higelin P

    2009-01-01

    This paper presents energy management strategies for a new hybrid pneumatic engine concept which is specific by its configuration in that it is not the vehicle but only the engine itself which is hybridized...

  18. Study on Ejector - Vapor Compression Hybrid Air Conditioning System Using Solar Energy

    OpenAIRE

    Dang, Chaobin; Nakamura, Yoshitaka; Hihara, Eiji

    2012-01-01

    The ejector cycle has been recognized as a promising cycle for the utilization of solar energy for cooling. However, the conventional ejector cycle suffers from low efficiency owing to a low evaporation temperature. This paper proposes a hybrid ejector-vapor compression heat pump cycle. This hybrid system uses an ejector cycle on the hightemperature side and a conventional vapor compression cycle on the low-temperature side to enhance the cycle performance of a solar-powered air conditioner. ...

  19. Ultrafast Thermal Cycling of Solar Panels

    National Research Council Canada - National Science Library

    Wall, T

    1998-01-01

    Two new cyclers that utilize a novel hybrid approach to perform fast thermal cycling of solar panels have been built and are now operational in the Mechanics and Materials Technology Center at The Aerospace Corporation...

  20. General fuel cell hybrid synergies and hybrid system testing status

    Science.gov (United States)

    Winkler, Wolfgang; Nehter, Pedro; Williams, Mark C.; Tucker, David; Gemmen, Randy

    FCT hybrid power systems offer the highest efficiency and the cleanest emissions of all fossil fuelled power. The engineering for the highest possible efficiency at lowest cost and weight depends on general system architecture issues and the performance of the components. Presented in this paper are system studies which provide direction for the most efficient path toward achieving the most beneficial result for this technology. Ultimately, fuel cell-turbine (FCT) hybrid systems applicable to integrated gasification combined cycle power systems will form the basis for reaching the goals for advanced coal-based power generation. The FCT hybrid power island will also be important for the FutureGen plant and will provide new options for carbon dioxide capture and sequestration as well as power and hydrogen generation. The system studies presented in this paper provide insight to current technology 'benchmarks' versus expected benefits from hybrid applications. Discussion is also presented on the effects of different balance of plant arrangements and approaches. Finally, we discuss the status of US DOE is sponsored projects that are looking to help understand the unique requirements for these systems. One of these projects, Hyper, will provide information on FCT dynamics and will help identify technical needs and opportunities for cycle advancement. The methods studied show promise for effective control of a hybrid system without the direct intervention of isolation valves or check valves in the main pressure loop of the system, which introduce substantial pressure losses, allowing for realization of the full potential efficiency of the hybrid system.

  1. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    OpenAIRE

    Chen, Jia-Shiun

    2015-01-01

    Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs) ar...

  2. Use of Stable-Isotope Probing, Full-Cycle rRNA Analysis, and Fluorescence In Situ Hybridization-Microautoradiography To Study a Methanol-Fed Denitrifying Microbial Community

    Science.gov (United States)

    Ginige, Maneesha P.; Hugenholtz, Philip; Daims, Holger; Wagner, Michael; Keller, Jürg; Blackall, Linda L.

    2004-01-01

    A denitrifying microbial consortium was enriched in an anoxically operated, methanol-fed sequencing batch reactor (SBR) fed with a mineral salts medium containing methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was inoculated with sludge from a biological nutrient removal activated sludge plant exhibiting good denitrification. The SBR denitrification rate improved from less than 0.02 mg of NO3−-N mg of mixed-liquor volatile suspended solids (MLVSS)−1 h−1 to a steady-state value of 0.06 mg of NO3−-N mg of MLVSS−1 h−1 over a 7-month operational period. At this time, the enriched microbial community was subjected to stable-isotope probing (SIP) with [13C]methanol to biomark the DNA of the denitrifiers. The extracted [13C]DNA and [12C]DNA from the SIP experiment were separately subjected to full-cycle rRNA analysis. The dominant 16S rRNA gene phylotype (group A clones) in the [13C]DNA clone library was closely related to those of the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96 to 97% sequence identities), while the most abundant clone groups in the [12C]DNA clone library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes for use in fluorescence in situ hybridization (FISH) were designed to specifically target the group A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes to the SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, there was no correlation between the denitrification rate and the relative abundances of the well-known denitrifying genera Hyphomicrobium and Paracoccus or the Saprospiraceae clones visualized by FISH in the SBR biomass. FISH combined with

  3. Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community.

    Science.gov (United States)

    Ginige, Maneesha P; Hugenholtz, Philip; Daims, Holger; Wagner, Michael; Keller, Jürg; Blackall, Linda L

    2004-01-01

    A denitrifying microbial consortium was enriched in an anoxically operated, methanol-fed sequencing batch reactor (SBR) fed with a mineral salts medium containing methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was inoculated with sludge from a biological nutrient removal activated sludge plant exhibiting good denitrification. The SBR denitrification rate improved from less than 0.02 mg of NO(3)(-)-N mg of mixed-liquor volatile suspended solids (MLVSS)(-1) h(-1) to a steady-state value of 0.06 mg of NO(3)(-)-N mg of MLVSS(-1) h(-1) over a 7-month operational period. At this time, the enriched microbial community was subjected to stable-isotope probing (SIP) with [(13)C]methanol to biomark the DNA of the denitrifiers. The extracted [(13)C]DNA and [(12)C]DNA from the SIP experiment were separately subjected to full-cycle rRNA analysis. The dominant 16S rRNA gene phylotype (group A clones) in the [(13)C]DNA clone library was closely related to those of the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96 to 97% sequence identities), while the most abundant clone groups in the [(12)C]DNA clone library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes for use in fluorescence in situ hybridization (FISH) were designed to specifically target the group A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes to the SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, there was no correlation between the denitrification rate and the relative abundances of the well-known denitrifying genera Hyphomicrobium and Paracoccus or the Saprospiraceae clones visualized by FISH in the SBR biomass. FISH combined

  4. Hybrid Metaheuristics

    CERN Document Server

    2013-01-01

    The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.

  5. Biogeochemical Cycling

    Science.gov (United States)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  6. Wet processing of palladium for use in the tritium facility at Westinghouse, Savannah River, SC. Preparation of palladium using the Mound Muddy Water process

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, D.P.; Zamzow, D.S.

    1998-11-10

    Palladium used at Savannah River for tritium storage is currently obtained from a commercial source. In order to better understand the processes involved in preparing this material, Savannah River is supporting investigations into the chemical reactions used to synthesize this material and into the conditions necessary to produce palladium powder that meets their specifications. This better understanding may help to guarantee a continued reliable source for this material in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and the Ames Laboratory Metallurgy and Ceramics Program was initiated. During FY98, the process for producing palladium powder developed in 1986 by Dan Grove of Mound Applied Technologies (USDOE) was studied to understand the processing conditions that lead to changes in morphology in the final product. This report details the results of this study of the Mound Muddy Water process, along with the results of a round-robin analysis of well-characterized palladium samples that was performed by Savannah River and Ames Laboratory. The Mound Muddy Water process is comprised of three basic wet chemical processes, palladium dissolution, neutralization, and precipitation, with a number of filtration steps to remove unwanted impurity precipitates.

  7. Westinghouse Savannah River Company: Report from the DOE Voluntary Protection Program onsite reviews, February 24--March 7, 1997, and June 15--19, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This report summarizes the Department of Energy Voluntary Protection Program (DOE-VPP) Initial and Update Review Teams` findings from the onsite evaluations of the Westinghouse Savannah River Site (SRS), conducted February 24--March 7, 1997, and June 15-19, 1998. The site was evaluated against the program requirements contained in US Department of Energy Voluntary Protection Program, Part 1: Program Elements to determine its success in implementing the five tenets of DOE-VPP. The Initial Review Team concluded that WSRC met or surpassed all DOE-VPP requirements, with the exception of 12 minor findings and 5 recommendations. WSRC was asked to resolve the findings within 90 days. During a follow-up visit in January 1996, representatives of the Team verified that all 90-day actions were completed. The Update Team detected though that the program did not demonstrate thorough and meaningful employee involvement. The ability to attain and sustain VPP-level performance on employee involvement is a significant challenge. Large companies with multiple layers of management and geographically disperse personnel have particular difficulty.

  8. Hybrid virtues

    OpenAIRE

    Prijić – Samaržija, Snježana

    2014-01-01

    The controversies about cases such us of epistemic injustice, epistemic paternalism and epistocracy indicate that knowledge needs to be considered as socially situated phenomena and, consequently, that epistemic attitudes, social practices and institutions require evaluation from both an epistemic and an ethical/political perspective. The project titled as ethics of knowing and, especially, promising concept of hybrid virtues or corresponding hybrid view provides a desirable framework for the...

  9. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  10. Analysis of a diesel-electric hybrid urban bus system

    Science.gov (United States)

    Marr, W. W.; Sekar, R. R.; Ahlheim, M. C.

    A hybrid bus powered by a diesel engine and a battery pack was analyzed over an idealized bus-driving cycle in Chicago. Three hybrid configurations, two parallel and one series, were evaluated. The results indicate that the fuel economy of a hybrid bus, taking into account the regenerative braking, is comparable with that of a conventional diesel bus. Life-cycle costs are slightly higher because of the added weight and cost of the battery.

  11. MHD Integrated Topping Cycle Project. Sixteenth quarterly technical progress report, May 1991--July 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  12. Diffuse control of gas turbines in power stations of combined cycle; Contral difuso de turbinas de gas en centrales de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez P, Marino; Garduno R, Raul; De Lara J, Salvadror; Castelo C, Luis [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2001-07-01

    In this article the application of the technology of the fuzzy logic to the control of gas turbines is presented in order to evaluate it in one of the most difficult processes and with stricter control requirements that exist in the electrical generation industry. For being important for the generation electrical sector, given their use in Comision Federal de Electricidad (CFE), the first selected prototype was the gas turbines model W501 of Westinghouse, installed in the of combined cycle power stations of Dos Bocas, Veracruz, Gomez Palacio, Durango and Tula, Hidalgo, Mexico. The second selected prototype was the one of the turbo gas units type 5001 (that applies to the GE 5001 models and Westinghouse of series 191 and 251). Based on the analysis of the performance of the system of conventional control previously made, the controllers of speed and generation of electrical power were selected to be replaced by diffuse controllers. [Spanish] En este articulo se presenta la aplicacion de la tecnologia de la logica difusa al control de turbinas de gas con el proposito de evaluarla en uno de los procesos mas dificiles y con requerimientos mas estrictos de control que existen en la industria de generacion electrica. Por ser importantes para el sector electrico de generacion, dada su utilizacion en Comision Federal de Electricidad (CFE), el primer prototipo seleccionado fueron las turbinas de gas modelo W501 de Westinghouse, instaladas en la central de ciclo combinado de Dos Bocas, Veracruz, Gomez Palacio, Durango y Tula, Hidalgo, Mexico. El segundo prototipo seleccionado fue el de unidades turbogas tipo 5001 (que aplica a los modelos GE 5001 y Westinghouse de la serie 191 y 251). Basados en el analisis del desempeno del sistema de control convencional realizado previamente, los controladores de velocidad y de generacion de potencia electrica fueron seleccionados para ser sustituidos por controladores difusos.

  13. Design, operation and control modelling of SOFC/GT hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Stiller, Christoph

    2006-07-01

    This thesis focuses on modelling-based design, operation and control of solid oxide fuel cell (SOFC) and gas turbine (GT) hybrid systems. Fuel cells are a promising approach to high-efficiency power generation, as they directly convert chemical energy to electric work. High-temperature fuel cells such as the SOFC can be integrated in gas turbine processes, which further increases the electrical efficiency to values up to 70%. However, there are a number of obstacles for safe operation of such a system, such as fuel cell damage through thermal loads or undesired chemical reactions, or gas turbine problems related to high thermal capacity and volume of the pressurised components. Development of suitable plant design as well as operation and control strategies is hence a key task for realisation of the mentioned systems. The first part of the thesis describes the utilised models. The thermodynamically most relevant components are tubular SOFC, indirect internal reformer and heat exchangers, and spatially discretised models are used for these. For the turbomachinery, map-based steady-state behaviour is modelled. Gas residence times and pressure drops are accounted for in all components they are relevant. Based on the component models, three different hybrid cycles are examined. In the first cycle, the SOFC replaces the combustion chamber of a recuperated single-shaft turbine. The SOFC is pressurised and the cycle is called 'directly integrated SOFC cycle' (DIC). Further cycle options are a DIC with a two-shaft gas turbine (DIC-2T) and an indirectly integrated SOFC cycle (IIC). In the latter, the compressed gas is heated recuperatively with the exhaust gas and the SOFC is operated at ambient pressure by connecting its air inlet to the turbine exhaust. All cycles incorporate the SOFC system design proposed by Siemens-Westinghouse, including indirect internal reforming, a tubular SOFC bundle and anode recirculation by an ejector. The first cycle (DIC) is

  14. Hybrid Warfare

    Science.gov (United States)

    2013-08-01

    military vocabulary to describe these observed phenomena. After an intense focus on large-scale conventional conflicts during the Cold War, with episodic...requiring the mastery of both grammars.85 It follows that hybrid warfare requires the blending of both grammars. The Theoretical Lineage of

  15. Hybrid fuel cells technologies for electrical microgrids

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, Jose Ignacio; Zamora, Inmaculada; San Martin, Jose Javier; Aperribay, Victor; Eguia, Pablo [Department of Electrical Engineering, University of the Basque Country, Alda. de Urquijo, s/n, 48013 Bilbao (Spain)

    2010-09-15

    Hybrid systems are characterized by containing two or more electrical generation technologies, in order to optimize the global efficiency of the processes involved. These systems can present different operating modes. Besides, they take into account aspects that not only concern the electrical and thermal efficiencies, but also the reduction of pollutant emissions. There is a wide range of possible configurations to form hybrid systems, including hydrogen, renewable energies, gas cycles, vapour cycles or both. Nowadays, these technologies are mainly used for energy production in electrical microgrids. Some examples of these technologies are: hybridization processes of fuel cells with wind turbines and photovoltaic plants, cogeneration and trigeneration processes that can be configured with fuel cell technologies, etc. This paper reviews and analyses the main characteristics of electrical microgrids and the systems based on fuel cells for polygeneration and hybridization processes. (author)

  16. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available conventional glass reinforced plastics with biocomposites that exhibit structural and functional stability during storage and use and yet are susceptible to environmental degradation upon disposal. An interesting approach in fabricating biocomposites... natural fibre / biofibre in a matrix. Hybridization with glass fibre provides a method to improve the mechanical properties of natural fibre composites and its effect in different modes of stress depends on the design and construction of the composites...

  17. Hybrid power plants consisting of geothermal power plants and cogeneration plants for the combined heat and power generation on the basis of an Organic Rankine Cycle; Geothermie-BHKW-Hybridkraftwerke zur Kraft-Waerme-Kopplung auf Basis des Organic Rankine Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, F.; Hartmann, A.; Brueggemann, D. [Bayreuth Univ. (DE). Lehrstuhl fuer Technische Thermodynamik und Transportprozesse (LTTT)

    2011-10-24

    The combined use of renewable energy sources in hybrid power plants has a significant potential to increase energy efficiency under energetic and economic issues. The indirect heat supply by heating thermal water via a waste heat source is a promising variant of coupling. Due to an additional heat generation more interconnection options and regulation technical degrees of freedom are resulting which must be considered in the design and dimensioning. The authors of the contribution under consideration report on a thermodynamic and economic analysis of a hybrid geothermal cogeneration power plant for combined heat and power generation using selected examples. An all-the-year coverage of the heat demand can be guaranteed for all hybrid concepts.

  18. Westinghouse Accident Tolerant Fuel Program

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Peng [Westinghouse Electric Corp., Columbia, SC (United States)

    2013-08-21

    The PowerPoint presentation includes a timeline for the program implementation, the technical approach taken, a summary of testing results, a status of task 2, what has been done to share the results so far, and a summary of upcoming work.

  19. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  20. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed......We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...

  1. Hybrid Gear

    Science.gov (United States)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  2. CYCLE CONTROL

    African Journals Online (AJOL)

    changed to gestodene. Although large- scale comparative trials are needed to confirm this finding, evidence suggests that cycle control with gestodene is better than for monophasic preparations containing desogestrel, norgestimate or levonorgestrel,10 as well as for levonorg- estrel-or norethisterone-containing triphasics.

  3. Menu Cycles.

    Science.gov (United States)

    Clayton, Alfred; Almony, John

    The curriculum guide for commercial foods instruction is designed to aid the teacher in communicating the importance of menu cycles in commercial food production. It also provides information about the necessary steps in getting food from the raw form to the finished product, and then to the consumer. In addition to providing information on how to…

  4. Simple cycles

    OpenAIRE

    Rivin, Igor

    1999-01-01

    We obtain sharp bounds for the number of n-cycles in a finite graph as a function of the number of edges, and prove that the complete graph is optimal in more ways than could be imagined. En route, we prove some sharp estimates on power sums.

  5. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  6. Características agronômica de híbridos diploides de bananeira em três ciclos de produção em Cruz das Almas, Bahia Agronomic traits of banana diploid hybrids in three cycle of production in Cruz das Almas, Bahia

    Directory of Open Access Journals (Sweden)

    Lauro Saraiva Lessa

    2010-03-01

    Full Text Available O objetivo deste trabalho foi avaliar agronomicamente híbridos diploides de bananeira, em três ciclos de produção, visando à seleção de genótipos para utilização em programas de melhoramento. O experimento foi conduzido entre os anos de 2005 e 2007, em blocos casualizados, no esquema de parcela subdividida no tempo, com quatro repetições, em Cruz das Almas, Bahia. Os híbridos diploides 4279-06, TH03-01, 8987-01, 0323-03, 1318-01, 0116-01, 8694-20, 1304-06 e 9179-03 foram avaliados quanto à altura de plantas, diâmetro do pseudocaule, número de folhas vivas na floração e na colheita, presença de pólen, período de formação do cacho, número de pencas e frutos, e massa média dos frutos. O híbrido 1304-06 apresentou a maior altura nos três ciclos estudados, enquanto o 0323-03 e o 1318-01 apresentaram porte intermediário. À exceção des 8987-01, 0323-03, 1304-06 e 9179-03, os demais híbridos apresentaram número de folhas, na floração, superior a oito. Na colheita, 0323-03, 1318-01, 0116-01, 1304-06 e 9179-03 destacaram-se com os maiores números de folhas. Existe variabilidade genética entre os híbridos diploides de bananeira estudados. Os híbridos 4279-06, 0323-03, 1318-01, 0116-01, 1304-06 e 9179-03 apresentaram características agronômicas favoráveis e podem ser utilizados como genitores em programas de melhoramento genético da bananeira.Objective this work was to evaluate agronomic traits of banana diploid hybrids, in three production cycles, seeking the selection of genotypes for use in banana breeding programs. Experiment was conducted between years 2005 and 2007, at complete randomized block in split plot design, with four replicates, in Cruz das Almas, Bahia, Brazil. Diploids hybrids 4279-06, TH03-01, 8987-01, 0323-03, 1318-01, 0116-01, 8694-20, 1304-06 and 9179-03, were evaluated regarding the characters plant height, pseudostem diameter, number of fresh leaves in flowering and harvest, pollen presence

  7. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  8. POLLEN TRANSFER BY NATURAL HYBRIDS AND PARENTAL SPECIES IN AN IPOMOPSIS HYBRID ZONE.

    Science.gov (United States)

    Campbell, Diane R; Waser, Nickolas M; Wolf, Paul G

    1998-12-01

    Models of hybrid zones differ in their assumptions about the relative fitnesses of hybrids and the parental species. These fitness relationships determine the form of selection across the hybrid zone and, along with gene flow, the evolutionary dynamics and eventual outcome of natural hybridization. We measured a component of fitness, export and receipt of pollen in single pollinator visits, for hybrids between the herbaceous plants Ipomopsis aggregata and I. tenuituba and for both parental species. In aviary experiments with captive hummingbirds, hybrid flowers outperformed flowers of both parental species by receiving more pollen on the stigma. Although hummingbirds were more effective at removing pollen from anthers of I. aggregata, hybrid flowers matched both parental species in the amount of pollen exported to stigmas of other flowers. These patterns of pollen transfer led to phenotypic stabilizing selection, during that stage of the life cycle, for a stigma position intermediate between that of the two species and to directional selection for exserted anthers. Pollen transfer between the species was high, with flowers of I. aggregata exporting pollen equally successfully to conspecific and I. tenuituba flowers. Although this study showed that natural hybrids enjoy the highest quality of pollinator visits, a previous study found that I. aggregata receives the highest quantity of pollinator visits. Thus, the relative fitness of hybrids changes over the life cycle. By combining the results of both studies, pollinator-mediated selection in this hybrid zone is predicted to be strong and directional, with hybrid fitness intermediate between that of the parental species. © 1998 The Society for the Study of Evolution.

  9. Hybridized Tetraquarks

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    We propose a new interpretation of the neutral and charged X, Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules. The latter would require a negative or zero binding energy whose counterpart in h-tetraquarks is a positive quantity. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs pi+- channel by the D0 collaboration and the negative result presented subsequently by the LHCb collaboration are understood in this scheme, together with a considerable portion of available data on X, Z particles. Considerations on a state with the same quantum numbers as the X(5568) are also made.

  10. Hybrid Qualifications

    DEFF Research Database (Denmark)

    has turned out as a major focus of European education and training policies and certainly is a crucial principle underlying the European Qualifications Framework (EQF). In this context, «hybrid qualifications» (HQ) may be seen as an interesting approach to tackle these challenges as they serve «two...... masters», i.e. by producing skills for the labour market and enabling individuals to progress more or less directly to higher education. The specific focus of this book is placed on conditions, structures and processes which help to combine VET with qualifications leading into higher education......Against the background of increasing qualification needs there is a growing awareness of the challenge to widen participation in processes of skill formation and competence development. At the same time, the issue of permeability between vocational education and training (VET) and general education...

  11. Hybrid vehicles system studies and development

    Energy Technology Data Exchange (ETDEWEB)

    Weijer, C.J.T. van de; Schmal, Dick [TNO Road-Vehicles Research Inst. (Netherlands)

    1996-12-31

    In the design of hybrid vehicles, several factors must be taken into account. Amongst others, accurate analysis of the proposed driving cycle and the state of charge of the battery systems can allow for full optimisation of the proposed design, which can be fully validated by effective simulation programs. (Author)

  12. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume 1. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Surber, F.T.

    1979-09-30

    The results of investigations conducted under Ce Hybrid Vehicle Potential Assessment Task are reported in 10 volumes. This volume contains an overview of the study and its results. The purpose of the overall study was to determine if the petroleum fuel savings achievable through the use of hybrid electric vehicles is worth the R and D expenditures needed to develop the hybrid vehicles and to determine R and D priorities. It was concluded that by the year 2010 hybrid vehicles could replace 80% of the automotive power that would otherwise be produced from petroleum fuels; the public should not suffer any mobility loss through the use of hybrid vehicles; high initial and life-cycle costs are a limiting factor; and R and D funds should be spent for systems design and the development of low-cost batteries and controllers. (LCL)

  13. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  14. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation

  15. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 10: Liquid-metal MHD systems. [energy conversion efficiency of electric power plants using liquid metal magnetohydrodynamics

    Science.gov (United States)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    Electric Power Plant costs and efficiencies are presented for two basic liquid-metal cycles corresponding to 922 and 1089 K (1200 and 1500 F) for a commercial applications using direct coal firing. Sixteen plant designs are considered for which major component equipment were sized and costed. The design basis for each major component is discussed. Also described is the overall systems computer model that was developed to analyze the thermodynamics of the various cycle configurations that were considered.

  16. Repair boundary for parent tube indications within the upper joint zone of hybrid expansion joint (HEJ) sleeved tubes

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, W.K.; Keating, R.F. [Westinghouse Electric, Pittsburgh, PA (United States)

    1997-02-01

    In the Spring and Fall of 1994, and the Spring of 1995, crack-like indications were found in the upper hybrid expansion joint (HEJ) region of Steam Generator (S/G) tubes which had been sleeved using Westinghouse HEJ sleeves. As a result of these findings, analytic and test evaluations were performed to assess the effect of the degradation on the structural, and leakage, integrity of the sleeve/tube joint relative to the requirements of the United States Nuclear Regulatory Commission`s (NRC) draft Regulatory Guide (RG) 1.121. The results of these evaluations demonstrated that tubes with implied or known crack-like circumferential parent tube indications (PTIs) located 1.1 inches or farther below the bottom of the hardroll upper transition, have sufficient, and significant, integrity relative to the requirements of RG 1.121. Thus, the purpose of this report is to provide background information related to the justification of the modified tube repair boundary.

  17. Safe cycling!

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    The HSE Unit will be running a cycling safety campaign at the entrances to CERN's restaurants on 14, 15 and 16 May. Pop along to see if they can persuade you to get back in the saddle!   With summer on its way, you might feel like getting your bike out of winter storage. Well, the HSE Unit has come up with some original ideas to remind you of some of the most basic safety rules. This year, the prevention campaign will be focussing on three themes: "Cyclists and their equipment", "The bicycle on the road", and "Other road users". This is an opportunity to think about the condition of your bike as well as how you ride it. From 14 to 16 May, representatives of the Swiss Office of Accident Prevention and the Touring Club Suisse will join members of the HSE Unit at the entrances to CERN's restaurants to give you advice on safe cycling (see box). They will also be organising three activity stands where you can test your knowle...

  18. The path exchange method for hybrid LCA.

    Science.gov (United States)

    Lenzen, Manfred; Crawford, Robert

    2009-11-01

    Hybrid techniques for Life-Cycle Assessment (LCA) provide a way of combining the accuracy of process analysis and the completeness of input-output analysis. A number of methods have been suggested to implement a hybrid LCA in practice, with the main challenge being the integration of specific process data with an overarching input-output system. In this work we present a new hybrid LCA method which works at the finest input-output level of detail: structural paths. This new Path Exchange method avoids double-counting and system disturbance just as previous hybrid LCA methods, but instead of a large LCA database it requires only a minimum of external information on those structural paths that are to be represented by process data.

  19. Hybrid Mesons

    CERN Document Server

    Ketzer, Bernhard

    2012-01-01

    The SU(3)_flavor constituent quark model has been quite successful to explain the properties as well as the observed spectrum of mesons with pseudoscalar and vector quantum numbers. Many radial and orbital excitations of quark-antiquark systems predicted by the model, however, have not yet been observed experimentally or assigned unambiguously. In addition, a much richer spectrum of mesons is expected from QCD, in which quarks interact which each other through the exchange of colored self-interacting gluons. Owing to this particular structure of QCD, configurations are allowed in which an excited gluonic field contributes to the quantum numbers J^{PC} of the meson. States with a valence color-octet qqbar' pair neutralized in color by an excited gluon field are termed hybrids. The observation of such states, however, is difficult because they will mix with ordinary qqbar' states with the same quantum numbers, merely augmenting the observed spectrum for a given J^{PC}. Since the gluonic field may carry quantum ...

  20. Significant advantages of the safety-first concept in construction, operation, and maintenance of the Westinghosue AP1000 reactor; Signifikante Vorteile des Safety-First-Konzeptes bei Errichtung, Betrieb und Wartung des Westinghouse AP1000-Reaktors

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, E. [Westinghosue Electric Co., Pittsburgh (United States); Benitz, K. [Westinghouse Electric Co., Mannheim (Germany)

    2004-02-01

    In June 2003, the U.S. Nuclear Regulatory Commission (USNRC) published a draft opinion about safety of the AP1000 Westinghouse pressurized water reactor with 'passive safety' features. The report constitutes an important milestone in the development of the next generation of safe and cost-efficient nuclear power plants. A new AP1000 can be absolutely competitive with fossil fired power plants and may be able to revive the construction of new nuclear power plants worldwide. The reason for designing the AP1000 were safety considerations. The use of passive safety systems at the same time entails a considerable reduction in the costs of design, maintenance, and operation of an AP1000 plant. Independent experts confirmed that an AP1000 can be erected within three years or even less. The estimated electricity generating costs of an AP1000 plant in the United States amount to US Cent 3.2 to 3.6 per kilowatthour. (orig.)

  1. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12

    PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  2. Cyclin E-p27 opposition and regulation of the G1 phase of the cell cycle in the murine neocortical PVE: a quantitative analysis of mRNA in situ hybridization

    Science.gov (United States)

    Delalle, I.; Takahashi, T.; Nowakowski, R. S.; Tsai, L. H.; Caviness, V. S. Jr

    1999-01-01

    We have analyzed the expression patterns of mRNAs of five cell cycle related proteins in the ventricular zone of the neocortical cerebral wall over the course of the neuronogenetic interval in the mouse. One set of mRNAs (cyclin E and p21) are initially expressed at high levels but expression then falls to a low asymptote. A second set (p27, cyclin B and cdk2) are initially expressed at low levels but ascend to peak levels only to decline again. These patterns divide the overall neuronogenetic interval into three phases. In phase 1 cyclin E and p21 levels of mRNA expression are high, while those of mRNAs of p27, cdk2 and cyclin B are low. In this phase the fraction of cells leaving the cycle after each mitosis, Q, is low and the duration of the G1 phase, TG1, is short. In phase 2 levels of expression of cyclin E and p21 fall to asymptote while levels of expression of mRNA of the other three proteins reach their peaks. Q increases to approach 0.5 and TG1 increases even more rapidly to approach its maximum length. In phase 3 levels of expression of cyclin E and p21 mRNAs remain low and those of the mRNAs of the other three proteins fall. TG1 becomes maximum and Q rapidly increases to 1.0. The character of these phases can be understood in part as consequences of the reciprocal regulatory influence of p27 and cyclin E and of the rate limiting functions of p27 at the restriction point and of cyclin E at the G1 to S transition.

  3. Hybrid Microcircuit Failure Rate Prediction

    Science.gov (United States)

    1978-04-01

    115 (0.00305) + 5 (0.018) + 2(0.0219)+ 2(0.0197) + [ 5(0.00015 + 142 (0.00162) + 0.1191] 1.0(1.0)1 1.o (2.14) - 1.22 E-5 References: 1. Himmel ...Capacitors Under Thermal Cycling Stresses," Pro- ceedings of Electronic Components Conference 1975. 5. Himmel , R.D., Scrapple, R.Y., Keistev, F., Hughes...IBM Components Division, "Reliability of Hybrid Microelec- tronicu," Hopewell Junction, NY 1973. 7. Himmel , R.P., Koudounaris, A., Keister, F.Z

  4. Quaternary phylogeography: the roots of hybrid zones.

    Science.gov (United States)

    Hewitt, Godfrey M

    2011-05-01

    The older history of hybrid zones is explored through consideration of recent advances in climatology, paleontology and phylogeography in the Late Cenozoic, particularly the Quaternary Period with its major climatic cycles. The fossil record shows that these ice ages and their nested millennial oscillations caused substantial changes in species distributions and with genetic evidence allows deduction of refugia and colonization routes in arctic, temperate, desert and tropical regions. The age of divergence between hybridizing lineages varies from the Late Pleistocene to the Late Miocene, implying much range change and varying selection on sister lineages. Hybridizing lineages in the Tropical and Temperate regions range in age from young to old, but those studied in the Arctic are no more than a few ice ages old and their refugial roots are not clear. Mid to low latitude regions often show parapatric patchworks of lineages and multiple refugia stable through many climatic oscillations. Particular hybrid zones may have formed more than once; while some expansions were not the same, producing reticulation and introgression in previous glacial cycles. Hybrid-zone roots are complex and deep, and considerations of their complexity can reveal evolutionary pathways of species. They are indeed windows on evolution.

  5. Americium/Curium Disposition Life Cycle Planning Study

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, W.N. [Westinghouse Savannah River Company, AIKEN, SC (United States); Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

    1998-04-30

    At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS).

  6. Effect of human papillomavirus on cell cycle-related proteins p16INK4A, p21waf1/cip1, p53 and cyclin D1 in sinonasal inverted papilloma and laryngeal carcinoma. An in situ hybridization study

    Directory of Open Access Journals (Sweden)

    Marian Danilewicz

    2011-04-01

    Full Text Available Human papillomavirus (HPV infection is implicated as an important risk factor in the development of head and neck cancers. Many studies focusing on the relationships between HPV infection and cell cycle proteins immunoexpression in laryngeal lesions have provided contradictory results. The aim of this study was to evaluate the relationships between HPV DNA presence and p16INK4a, p21waf1/cip1, p53 and cyclin D1 immunoexpression in heterogenous HPV-positive and HPV-negative groups of laryngeal cancers and inverted papillomas. The HPV DNA expression was detected using an in situ hybridization method and immunoexpression of p16INK4a, p21waf1/cip1, p53 and cyclin D1 using immunohistochemistry. The immunoexpression of p21waf1/ /cip1 and p53 proteins was lower in the HPV-positive group compared to the HPV-negative group, although only the difference of p53 staining was statistically significant. The immunoexpression of p16INK4a and cyclin D1 was significantly increased in the HPV-positive group compared to the HPV-negative group. The increased immunoexpression of p16INK4a and cyclin D1, and the lower immunoexpression of p21waf1/cip1 and p53 in the HPV-positive group compared to the HPV-negative group, supports the hypothesis that HPV may play an important role in cell cycle dysregulation. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 1, pp. 34–40

  7. Hydrological cycle.

    Science.gov (United States)

    Gonçalves, H C; Mercante, M A; Santos, E T

    2011-04-01

    The Pantanal hydrological cycle holds an important meaning in the Alto Paraguay Basin, comprising two areas with considerably diverse conditions regarding natural and water resources: the Plateau and the Plains. From the perspective of the ecosystem function, the hydrological flow in the relationship between plateau and plains is important for the creation of reproductive and feeding niches for the regional biodiversity. In general, river declivity in the plateau is 0.6 m/km while declivity on the plains varies from 0.1 to 0.3 m/km. The environment in the plains is characteristically seasonal and is home to an exuberant and abundant diversity of species, including some animals threatened with extinction. When the flat surface meets the plains there is a diminished water flow on the riverbeds and, during the rainy season the rivers overflow their banks, flooding the lowlands. Average annual precipitation in the Basin is 1,396 mm, ranging from 800 mm to 1,600 mm, and the heaviest rainfall occurs in the plateau region. The low drainage capacity of the rivers and lakes that shape the Pantanal, coupled with the climate in the region, produce very high evaporation: approximately 60% of all the waters coming from the plateau are lost through evaporation. The Alto Paraguay Basin, including the Pantanal, while boasting an abundant availability of water resources, also has some spots with water scarcity in some sub-basins, at different times of the year. Climate conditions alone are not enough to explain the differences observed in the Paraguay River regime and some of its tributaries. The complexity of the hydrologic regime of the Paraguay River is due to the low declivity of the lands that comprise the Mato Grosso plains and plateau (50 to 30 cm/km from east to west and 3 to 1.5 cm/km from north to south) as well as the area's dimension, which remains periodically flooded with a large volume of water.

  8. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  9. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  10. The Hybrid Museum: Hybrid Economies of Meaning

    DEFF Research Database (Denmark)

    Vestergaard, Vitus

    2013-01-01

    this article shows that there are two different museum mindsets where the second mindset leans towards participatory practices. It is shown how a museum can support a hybrid economy of meaning that builds on both a user generated economy of meaning and an institutional economy of meaning and adds value to both....... Such a museum is referred to as a hybrid museum....

  11. Hybridization with synthetic oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Szostak, J.W.; Stiles, J.I.; Tye, B.K.; Sherman, F.; Wu, R.

    1978-01-01

    Procedures are described for the use of synthetic oligonucleotides for Southern blot experiments and gene bank screening, and the effect of various mismatches on the efficiency of hybridization is demonstrated. The following topics are discussed: sensitivity vs. specificity, hybridization of a 12-mer to the lambda endolysin gene; hybridization of oligonucleotide probes to the E. coli lac operator; hybridization of synthetic probes to the CYC1 gene of yeast; and cloning eucaryotic genes. (HLW)

  12. Comportamento de variedades e híbridos de bananeira (Musa spp., em dois ciclos de produção no sudoeste da Bahia Behavior of banana varieties and hybrids (Musa spp., in two production cycle in the southwest of Bahia State

    Directory of Open Access Journals (Sweden)

    Sérgio Luiz Rodrigues Donato

    2006-04-01

    characterize and evaluate the behavior of 13 banana genotypes (varieties and hybrids AAA, AAAA, AAB and AAAB genomic groups, in two production cycles in southwest Bahia, using relevant phenotypic descriptors for the identification and selection of superior individuals. The Prata Anã and Pacovan (AAB, Grande Naine and Nanicão (AAA varieties and the hybrids PA42-44, Pacovan Ken, Japira, Preciosa and ST12-31 (AAAB and Ambrosia, Calipso, Bucaneiro and FHIA02 (AAAA, selected at Embrapa Cassava and Fruit Crops, were evaluated. The experimental design was in random blocks, with 13 treatments, five repetitions, 20 plants per plot, six useful and 3.00 m x 2.00 m spacing. The following characteristics were considered: Plant height, pseudostem perimeter, number of live leaves during flowering and harvest, number of days from planting to flowering and until harvest, bunch and hand weight, number of fruits, weight, length and diameter of fruit. Grande Naine, and Nanicão stood out for the characteristics of bunch and hand weight, number of fruits, fruit weight and length; the FHIA-02 hybrid presented greater fruit diameter in both production cycles and the earliest flowering and harvest in the second cycle; Calipso was the latest for harvest; ST12-31 was the tallest in height; the Prata Anã variety stood out for number of live leaves during flowering and harvest; the Prata type hybrids, PA42-44, Pacovan Ken, Preciosa and Japira, stood out for the parameters related to fruit quality when compared to its genitors Prata Anã and Pacovan, respectively; there was an increment of the parameters that reflected vegetative growth and yield from the first to the second production cycle for all genotypes evaluated.

  13. Simulation of hybrid solar power plants

    Science.gov (United States)

    Dieckmann, Simon; Dersch, Jürgen

    2017-06-01

    Hybrid solar power plants have the potential to combine advantages of two different technologies at the cost of increased complexity. The present paper shows the potential of the software greenius for the techno-economic evaluation of hybrid solar power plants and discusses two exemplary scenarios. Depreciated Concentrated Solar Power (CSP) plants based on trough technology can be retrofitted with solar towers in order to reach higher steam cycle temperatures and hence efficiencies. Compared to a newly built tower plant the hybridization of a depreciated trough plant causes about 30% lower LCOE reaching 104 /MWh. The second hybrid scenario combines cost-efficient photovoltaics with dispatchable CSP technology. This hybrid plant offers very high capacity factors up to 69% based on 100% load from 8am to 11pm. The LCOE of the hybrid plant are only slightly lower (174 vs. 186 /MWh) compared to the pure CSP plant because the capital expenditure for thermal storage and power block remains the same while the electricity output is much lower.

  14. A hybrid air conditioner driven by a hybrid solar collector

    Science.gov (United States)

    Al-Alili, Ali

    The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an

  15. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  16. A new hybrid electrochromic material: vanadium oxide/ eriochrome black T

    Science.gov (United States)

    Junior, L. F. R.; de Oliveira, R. S.; Ponzio, E. A.

    2015-03-01

    In this work, we describe the synthesis of a new hybrid material, which is consists of the eriochrome black T (sodium 1-[(1-hydroxynaphthcalen-2-yl-hydrazinylidene]-6-nitro-2- naphthol-4-sulfonate) and vanadium pentoxide xerogel using a melting sonoquenching technique. This hybrid material was apply in electrochromic electrodes. The hybrid material was characterized by X-ray difraction, FT-IR, AFM and spectroelectrochemically. The hybrid presented good reversibility and cyclability during 50 cycles studied, electrochromic efficiencies were about 50 cm2 C-1 (375 nm and 400 nm) and the ΔOD at 375 nm and 400 nm were 0.236 and 0.159 respectively wavelenghts. The response times were 0.7 to 3.3 s for 375 nm and 0.7 to 2.0 s for 400 nm. The hybrid is a potential material to be used in electrochromic applications.

  17. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  18. Real Time Energy Management Control Strategies for Hybrid Powertrains

    Science.gov (United States)

    Zaher, Mohamed Hegazi Mohamed

    In order to improve fuel efficiency and reduce emissions of mobile vehicles, various hybrid power-train concepts have been developed over the years. This thesis focuses on embedded control of hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real time energy management strategy for continuous operations. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, or the motion is driven by gravitational force, or load driven. There are three main concepts for regernerative energy storing devices in hybrid vehicles: electric, hydraulic, and flywheel. The real time control challenge is to balance the system power demand from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle, while making optimal use of the energy saving opportunities in a given operational, often repetitive cycle. In the worst case scenario, only engine is used and hybrid system completely disabled. A rule based control is developed and tuned for different work cycles and linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the machine and its position via GPS, and maps them to the gains.

  19. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China)], E-mail: yuhuaxu2004@163.com; Zhou Wuneng [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: wnzhou@163.com; Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2009-11-15

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  20. Hybrid Rocket Technology

    OpenAIRE

    Sankaran Venugopal; K K Rajesh; V. Ramanujachari

    2011-01-01

    With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems. Classical hybrids can be throttled for thrust tailoring, perform in-flight motor shutdown and restart. In classical hybrids, the fuel is stored in the form of a solid grain, requiring only half the feed system hardware of liquid bipropellant engines. The commonly used fuels are benign, nonto...

  1. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  3. Hybrid Sterility, Mouse

    OpenAIRE

    Forejt, J

    2013-01-01

    The review summarizes hybrid sterility as the best studied example of reproductive isolation between closely related species. On the model of infertile hybrids of two domestic mouse subspecies, Mus musculus musculus and Mus musculus domesticus, we have demonstrated interaction of hybrid sterility genes with epigenetic control of transcriptional inactivation of the X and Y sex chromosomes. This leads to the activation of pachytene checkpoint and finally results in the arrest of spermatogenesis.

  4. Managing hybrid marketing systems.

    Science.gov (United States)

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  5. Hybrid Warfare and Lawfare

    OpenAIRE

    Bachmann, Sascha-Dominik; Mosquera, Andres B Munoz

    2015-01-01

    Hybrid Warfare as a method of war is not new. The change today appears to be that Hybrid Warfare “has the potential to transform the strategic calculations of potential belligerents [it has become] increasingly sophisticated and deadly”. This short paper presents Hybrid Warfare and one of its methods, lawfare. For this, we provide a current, comprehensive definition of hybrid warfare and examine different areas where law has been/is being used as a method of war. This paper focuses on the fol...

  6. Hybrid FOSS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are continuing their efforts to further develop FOSS technologies. A hybrid FOSS technique (HyFOSS) employs conventional continuous grating...

  7. LASL bismuth sulfate thermochemical hydrogen cycle

    Energy Technology Data Exchange (ETDEWEB)

    Cox, K.E.; Jones, W.M.; Peterson, C.L.

    1980-01-01

    The LASL bismuth sulfate cycle is one of a generic class of solid sulfate cycles in which a metal sulfate is substituted for sulfuric acid in a hybrid (partly electrochemical) cycle. This technique avoids the serious materials and heat penalty problems associated with the handling of concentrated acid solutions, and if the electrolyzer is operated at acid concentrations below 50% it may, in principle, lead to a lower cell voltage with subsequent energy savings. Experiment verification of all steps in the cycle has been obtained, particularly for the decomposition of normal bismuth sulfate and lower bismuth oxysulfates. For the substance, Bi/sub 2/O/sub 3/ 2SO/sub 3/, an endothermic requirement of 172 kJ/mol was obtained, which is considerably less than that for other metal sulfate systems. A rotary kiln was used for continuous experiments and our results show decomposition of this compound to Bi/sub 2/O/sub 3/ SO/sub 3/ in under 8 minutes residence time at 1023 K. Preliminary analysis of the cycle's energy balance shows an overall thermal efficiency of greater than 50% when the maximum cycle reaction temperature is 1500 K. The cycle has potential for hydrogen production when coupled with an energy source such as solar or fusion energy.

  8. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2014-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  9. Essays on economic cycles

    NARCIS (Netherlands)

    Groot, de E.A. (Bert)

    2006-01-01

    Schumpeter’s line of thought of multiple economic cycles is further investigated. The existence of multiple cycles in economic variables is demonstrated. In basic innovations five different cycles are found. Multiple cycle structures are shown in various macro-economic variables from the United

  10. Recuperated atmosphere SOFC/gas turbine hybrid cycle

    Science.gov (United States)

    Lundberg, Wayne

    2010-08-24

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  11. Recuperated atmospheric SOFC/gas turbine hybrid cycle

    Science.gov (United States)

    Lundberg, Wayne

    2010-05-04

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  12. A Magnesium-Activated Carbon Hybrid Capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, HD; Shterenberg, I; Gofer, Y; Doe, RE; Fischer, CC; Ceder, G; Aurbach, D

    2013-12-11

    Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionic complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.

  13. Hybridization in geese

    NARCIS (Netherlands)

    Ottenburghs, Jente; Hooft, van Pim; Wieren, van Sipke E.; Ydenberg, Ronald C.; Prins, Herbert H.T.

    2016-01-01

    The high incidence of hybridization in waterfowl (ducks, geese and swans) makes this bird group an excellent study system to answer questions related to the evolution and maintenance of species boundaries. However, knowledge on waterfowl hybridization is biased towards ducks, with a large

  14. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  15. Hybrid Double Quantum Dots

    DEFF Research Database (Denmark)

    Sherman, D.; Yodh, J. S.; Albrecht, S. M.

    2016-01-01

    Epitaxial semiconductor-superconductor hybrid materials are an excellent basis for studying mesoscopic and topological superconductivity, as the semiconductor inherits a hard superconducting gap while retaining tunable carrier density. Here, we investigate double-quantum-dot devices made from InA...... that the individual dots host weakly hybridized Majorana modes....

  16. Hybrid Universities in Malaysia

    Science.gov (United States)

    Lee, Molly; Wan, Chang Da; Sirat, Morshidi

    2017-01-01

    Are Asian universities different from those in Western countries? Premised on the hypothesis that Asian universities are different because of hybridization between Western academic models and local traditional cultures, this paper investigates the hybrid characteristics in Malaysian universities resulting from interaction between contemporary…

  17. Three state-of-the-art individual electric and hybrid vehicle test reports, volume 2

    Science.gov (United States)

    1978-01-01

    Procedures used in determining the energy efficiency and economy of a gasoline-electric hybrid taxi, an electric passenger car, and an electric van are described. Tabular and graphic data show results of driving cycle and constant speed tests, energy distribution to various components, efficiency of the components, and, for the hybrid vehicle, the emissions.

  18. The hybrid BCI.

    Science.gov (United States)

    Pfurtscheller, Gert; Allison, Brendan Z; Brunner, Clemens; Bauernfeind, Gunther; Solis-Escalante, Teodoro; Scherer, Reinhold; Zander, Thorsten O; Mueller-Putz, Gernot; Neuper, Christa; Birbaumer, Niels

    2010-01-01

    Nowadays, everybody knows what a hybrid car is. A hybrid car normally has two engines to enhance energy efficiency and reduce CO2 output. Similarly, a hybrid brain-computer interface (BCI) is composed of two BCIs, or at least one BCI and another system. A hybrid BCI, like any BCI, must fulfill the following four criteria: (i) the device must rely on signals recorded directly from the brain; (ii) there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii) real time processing; and (iv) the user must obtain feedback. This paper introduces hybrid BCIs that have already been published or are in development. We also introduce concepts for future work. We describe BCIs that classify two EEG patterns: one is the event-related (de)synchronisation (ERD, ERS) of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP). Hybrid BCIs can either process their inputs simultaneously, or operate two systems sequentially, where the first system can act as a "brain switch". For example, we describe a hybrid BCI that simultaneously combines ERD and SSVEP BCIs. We also describe a sequential hybrid BCI, in which subjects could use a brain switch to control an SSVEP-based hand orthosis. Subjects who used this hybrid BCI exhibited about half the false positives encountered while using the SSVEP BCI alone. A brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS). Hybrid BCIs can also use one brain signal and a different type of input. This additional input can be an electrophysiological signal such as the heart rate, or a signal from an external device such as an eye tracking system.

  19. Solar Cycle 25: Another Moderate Cycle?

    Science.gov (United States)

    Cameron, R. H.; Jiang, J.; Schüssler, M.

    2016-06-01

    Surface flux transport simulations for the descending phase of Cycle 24 using random sources (emerging bipolar magnetic regions) with empirically determined scatter of their properties provide a prediction of the axial dipole moment during the upcoming activity minimum together with a realistic uncertainty range. The expectation value for the dipole moment around 2020 (2.5 ± 1.1 G) is comparable to that observed at the end of Cycle 23 (about 2 G). The empirical correlation between the dipole moment during solar minimum and the strength of the subsequent cycle thus suggests that Cycle 25 will be of moderate amplitude, not much higher than that of the current cycle. However, the intrinsic uncertainty of such predictions resulting from the random scatter of the source properties is considerable and fundamentally limits the reliability with which such predictions can be made before activity minimum is reached.

  20. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M.; Walkowicz, K.

    2012-09-01

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  1. Energy storage specification requirements for hybrid-electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Burke, A.F.

    1993-09-01

    A study has been made of energy storage unit requirements for hybrid-electric vehicles. The drivelines for these vehicles included both primary energy storage units and/or pulse power units. The primary energy storage units were sized to provide ``primary energy`` ranges up to 60 km. The total power capability of the drivelines were such that the vehicles had 0 to 100 km/h acceleration times of 10 to 12 s. The power density requirements for primary energy storage devices to be used in hybrid vehicles are much higher than that for devices to be used in electric vehicles. The energy density and power density requirements for pulse-power devices for hybrid vehicles, are not much different than those in an electric vehicle. The cycle life requirements for primary energy-storage units for hybrid vehicles are about double that for electric vehicles, because of the reduced size of the storage units in the hybrid vehicles. The cycle life for pulse-power devices for hybrid vehicles is about the same as for electric vehicles having battery load leveling. Because of the need for additional components in the hybrid driveline, the cost of the energy storage units in hybrid vehicles should be much less (at least a factor of two) than those in electric vehicles. There are no presently available energy storage units that meet all the specifications for hybrid vehicle applications, but ultracapacitors and bipolar lead-acid batteries are under development that have the potential for meeting them. If flywheel systems having a mechanical system energy density of 40 to 50 W{center_dot}h/kg and an electrical system power density of 2 to 3 kw/kg can be developed, they would have the potential of meeting specifications for primary storage and pulse power units.

  2. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  3. Cycling in Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Alexis Zander

    2013-01-01

    Full Text Available Introduction. Cycling can be an enjoyable way to meet physical activity recommendations and is suitable for older people; however cycling participation by older Australians is low. This qualitative study explored motivators, enablers, and barriers to cycling among older people through an age-targeted cycling promotion program. Methods. Seventeen adults who aged 50–75 years participated in a 12-week cycling promotion program which included a cycling skills course, mentor, and resource pack. Semistructured interviews at the beginning and end of the program explored motivators, enablers, and barriers to cycling. Results. Fitness and recreation were the primary motivators for cycling. The biggest barrier was fear of cars and traffic, and the cycling skills course was the most important enabler for improving participants’ confidence. Reported outcomes from cycling included improved quality of life (better mental health, social benefit, and empowerment and improved physical health. Conclusions. A simple cycling program increased cycling participation among older people. This work confirms the importance of improving confidence in this age group through a skills course, mentors, and maps and highlights additional strategies for promoting cycling, such as ongoing improvement to infrastructure and advertising.

  4. A Hybrid Imagination

    DEFF Research Database (Denmark)

    Jamison, Andrew; Christensen, Steen Hyldgaard; Botin, Lars

    contexts, or sites, for mixing scientific knowledge and technical skills from different fields and social domains into new combinations, thus fostering what the authors term a “hybrid imagination”. Such a hybrid imagination is especially important today, as a way to counter the competitive and commercial......” on the part of many a scientist and engineer and neglect the consequences - and a hybrid imagination, connecting scientific “facts” and technological “artifacts” with cultural understanding. The book concludes with chapters on the recent transformations in the modes of scientific and technological production...

  5. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  6. Hybrid Bloch brane

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, Elisama E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2017-02-15

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios. (orig.)

  7. Hybrid spiking models.

    Science.gov (United States)

    Izhikevich, Eugene M

    2010-11-13

    I review a class of hybrid models of neurons that combine continuous spike-generation mechanisms and a discontinuous 'after-spike' reset of state variables. Unlike Hodgkin-Huxley-type conductance-based models, the hybrid spiking models have a few parameters derived from the bifurcation theory; instead of matching neuronal electrophysiology, they match neuronal dynamics. I present a method of after-spike resetting suitable for hardware implementation of such models, and a hybrid numerical method for simulations of large-scale biological spiking networks.

  8. Investigation of a Novel Coaxial Power-Split Hybrid Powertrain for Mining Trucks

    Directory of Open Access Journals (Sweden)

    Weiwei Yang

    2018-01-01

    Full Text Available Due to the different working conditions and specification requirements of mining trucks when compared to commercial passenger vehicles, better fuel efficiency of mining trucks could lead to more significant economic benefits. Therefore, investigating a hybrid transmission system becomes essential. A coaxial power-split hybrid powertrain system for mining trucks is presented in this paper. The system is characterized as comprising an engine, a generator (MG1, a motor (MC2, two sets of planetary gears, and a clutch (CL1. There are six primary operation modes for the hybrid system including the electric motor mode, the engine mode, the hybrid electric mode, the hybrid and assist mode, the regenerative mode, and the stationary charging mode. The mathematical model of the coaxial power-split hybrid system is established according to the requirements of vehicle dynamic performance and fuel economy performance in a given driving cycle. A hybrid vehicle model based on a rule-based control strategy is established to evaluate the fuel economy. Compared with the Toyota Hybrid System (THS and the conventional mechanical vehicle system using a diesel engine, the simulation results based on an enterprise project indicate that the proposed hybrid system can enhance the vehicle’s fuel economy by 8.21% and 22.45%, respectively, during the given mining driving cycle. The simulation results can be used as a reference to study the feasibility of the proposed coaxial hybrid system whose full potential needs to be further investigated by adopting non-causal control strategies.

  9. Life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Thrane, Mikkel; Schmidt, Jannick Andresen

    2004-01-01

    The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards.......The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards....

  10. Menstrual Cycle Problems

    Science.gov (United States)

    ... Read MoreDepression in Children and TeensRead MoreBMI Calculator Menstrual Cycle ProblemsFrom missed periods to painful periods, menstrual cycle problems are common, but usually not serious. Follow ...

  11. Route-Based Control of Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  12. Experimental interspecific hybridization in Daphnia

    NARCIS (Netherlands)

    Schwenk, K.; Bijl, M.; Menken, S.B.J.

    2001-01-01

    Hybridization is a common phenomenon in Daphnia (Cladocera; Anomopoda); interspecific hybrids have been found between several species and hybrids are found in many European lakes. Although much information on the morphology, ecology and genetics of hybrids is available, little is known about the

  13. MSAT and cellular hybrid networking

    Science.gov (United States)

    Baranowsky, Patrick W., II

    Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.

  14. Cycling To Awareness.

    Science.gov (United States)

    Kozak, Stan

    1999-01-01

    Encourages environmental and outdoor educators to promote bicycling. In the community and the curriculum, cycling connects environmental issues, health and fitness, law and citizenship, appropriate technology, and the joy of being outdoors. Describes the Ontario Cycling Association's cycling strategy and its four components: school cycling…

  15. Hybrid plasmachemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  16. Hybrid adsorptive membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  17. Nitrous Paraffin Hybrid Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nitrous Oxide Paraffin Hybrid engine (N2OP) is a proposed technology designed to provide small launch vehicles with high specific impulse, indefinitely storable...

  18. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  19. Concept of hybrid embankment

    Directory of Open Access Journals (Sweden)

    Fukue Masaharu

    2015-06-01

    Full Text Available An innovative technique which is similar to a natural process, i.e., biogeochemical (carbonate diagenesis, is proposed to construct a hybrid embankment. In this study, the hybrid embankment is defined as a soil embankment which has a microbially induced framework structure of sand sheets and columns in the soft soil matrix. The sand materials are cemented with magnesium-calcite or dolomite, induced by ureolytic microbes. To design and construct hybrid embankments, fundamental problems, such as feasibility in terms of stability, geoenvironmental engineering practices, etc., are examined and discussed. It was shown that the hybrid embankment can be environmentally friendly and also can contribute solving technical and financial problems encountered in actual practice.

  20. Hybrid photonic crystal fiber

    National Research Council Canada - National Science Library

    Arismar Cerqueira S. Jr; F. Luan; C. M. B. Cordeiro; A. K. George; J. C. Knight

    2006-01-01

    We present a hybrid photonic crystal fiber in which a guided mode is confined simultaneously by modified total internal reflection from an array of air holes and antiresonant reflection from a line...

  1. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  2. Stable Hybrid Adaptive Control,

    Science.gov (United States)

    1982-07-01

    STABLE HYBRID ADAPTIVE CONTROL(U) YALE UNIV NEW HAVEN i/i CT CENTER FOR SYSTEMS SCIENCE K S NARENDRA ET AL. JUL 82 8286 Ne@04-76-C-8e7 UNCLASSIFIED...teasrallepsaaw1tflbe~ll b ydd Il"t 5 As is the comtanuous Case cistral to the stability analysis of the hybrid ~IVt* COnRol PO* IMare the sur Models

  3. The Solar Cycle

    Directory of Open Access Journals (Sweden)

    David H. Hathaway

    2010-03-01

    Full Text Available The Solar Cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. We examine a number of other solar activity indicators including the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores that vary in association with the sunspots. We examine the characteristics of individual solar cycles including their maxima and minima, cycle periods and amplitudes, cycle shape, and the nature of active latitudes, hemispheres, and longitudes. We examine long-term variability including the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev–Ohl Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double peaked maxima. We conclude with an examination of prediction techniques for the solar cycle.

  4. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Y. Shen; P. van den Bosch; Edwin Tazelaar; Bram Veenhuizen; T. Hofman

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  5. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Mourad, S.; Saakes, M.; Kluiters, C.E.; Schmal, D.; Have, P. ten

    1998-01-01

    A 80V bipolar lead-acid battery was constructed and tested using Hybrid Electric Vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7kW, equal to 1/5 of the total power profile required for the HEV studied, were run succesfully. Model calculations showed that the constructed 80V module,

  6. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module

  7. The Solar Cycle

    Directory of Open Access Journals (Sweden)

    David H. Hathaway

    2015-09-01

    Full Text Available The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev–Ohl (even-odd Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24.

  8. Analysis of fuel cell hybrid locomotives

    Science.gov (United States)

    Miller, Arnold R.; Peters, John; Smith, Brian E.; Velev, Omourtag A.

    Led by Vehicle Projects LLC, an international industry-government consortium is developing a 109 t, 1.2 MW road-switcher locomotive for commercial and military railway applications. As part of the feasibility and conceptual-design analysis, a study has been made of the potential benefits of a hybrid power plant in which fuel cells comprise the prime mover and a battery or flywheel provides auxiliary power. The potential benefits of a hybrid power plant are: (i) enhancement of transient power and hence tractive effort; (ii) regenerative braking; (iii) reduction of capital cost. Generally, the tractive effort of a locomotive at low speed is limited by wheel adhesion and not by available power. Enhanced transient power is therefore unlikely to benefit a switcher locomotive, but could assist applications that require high acceleration, e.g. subway trains with all axles powered. In most cases, the value of regeneration in locomotives is minimal. For low-speed applications such as switchers, the available kinetic energy and the effectiveness of traction motors as generators are both minimal. For high-speed heavy applications such as freight, the ability of the auxiliary power device to absorb a significant portion of the available kinetic energy is low. Moreover, the hybrid power plant suffers a double efficiency penalty, namely, losses occur in both absorbing and then releasing energy from the auxiliary device, which result in a net storage efficiency of no more than 50% for present battery technology. Capital cost in some applications may be reduced. Based on an observed locomotive duty cycle, a cost model shows that a hybrid power plant for a switcher may indeed reduce capital cost. Offsetting this potential benefit are the increased complexity, weight and volume of the power plant, as well as 20-40% increased fuel consumption that results from lower efficiency. Based on this analysis, the consortium has decided to develop a pure fuel cell road-switcher locomotive

  9. Polemological Paradigm of Hybrid War Research

    Directory of Open Access Journals (Sweden)

    Roman Dodonov

    2017-09-01

    Full Text Available This article is devoted to the methodological problems and manipulative mechanisms of hybrid warfare. Owing to the polemological (from πολέμιος — war and λόγος — study approach the authors managed to systematize and summarize the theories of war and peace, clarify contemporary western concepts of warfare, outline the specifi cs of the Russian view on the hybrid war concept, assess the signifi cance of information and manipulation technologies for hybrid wars, analyze a number of geopolitical and socio-cultural dimensions of modern hybrid wars. The polemology is a branch of science, which studies the nature of armed confl icts and wars, their role in time and space, cycles, intensity, scope, scale, and causative relations and their classifi cation. Polemology deals with the wars and armed confl icts of the past, present and future. Novel hybrid wars take a respective place among them. They involve using all available warfare, regular and irregular, cyber and those allowing for the use of weapons of mass destruction, and also information, psychological and propaganda war using the latest information and media technologies. According to the classical approach, the state is the only subject of military actions, but today its role has changed dramatically under the infl uence of other political and economic supranational and trans-border factors. For the purpose of studying wars and armed confl icts from the polemological perspective it means the need to focus on social changes in all the areas of human life, on considering various elements of the political, economic or even technological context, which infl uence the war as a social phenomenon.

  10. Numerical investigations of hybrid rocket engines

    Science.gov (United States)

    Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.

    2018-03-01

    Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.

  11. Hybrid Composite Cryogenic Tank Structure

    Science.gov (United States)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic

  12. Driving and engine cycles

    CERN Document Server

    Giakoumis, Evangelos G

    2017-01-01

    This book presents in detail the most important driving and engine cycles used for the certification and testing of new vehicles and engines around the world. It covers chassis and engine-dynamometer cycles for passenger cars, light-duty vans, heavy-duty engines, non-road engines and motorcycles, offering detailed historical information and critical review. The book also provides detailed examples from SI and diesel engines and vehicles operating during various cycles, with a focus on how the engine behaves during transients and how this is reflected in emitted pollutants, CO2 and after-treatment systems operation. It describes the measurement methods for the testing of new vehicles and essential information on the procedure for creating a driving cycle. Lastly, it presents detailed technical specifications on the most important chassis-dynamometer cycles around the world, together with a direct comparison of those cycles.

  13. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  14. Vuilleumier Cycle Cryogenic Refrigeration

    Science.gov (United States)

    1976-04-01

    changing pressure to produce a cooling effect is similar to that of the cold section of the Stirling cycle refrigerator , since the method by which the...AFFDL-TR-76-17 VUILLEUMIER CYCLE CRYOGENIC REFRIGERATION ENVIRONMENTAL CONTROL BRANCH 4 VEHICLE EQUIPMENT DIVISION APRIL 1976 TECHNICAL REPORT AFFDL...WORDS (Continue on reverse side if necessary and identify by block number) Cryogenic Refrigerator Vuilleumier Cycle 20. ABSTRACT (Continue on reverse

  15. [Cycling in Zagreb].

    Science.gov (United States)

    Matos, Stipan; Krapac, Ladislav; Krapac, Josip

    2007-01-01

    Cycling in Zagreb, as means of urban transport inside and outside the city, has a bright past, hazy presence but a promising future. Every day, aggressive citizens who lack urban traffic culture mistreat many cyclists but also many pedestrians. Sedentary way of living, unhealthy eating habits and inadequate recreation would surely be reduced if Zagreb had a network of cycling tracks (190 cm) or lanes (80 cm). Main city roads were constructed at the beginning of the 20th century. Today, the lack of cycling tracks is particularly evident in terms of missing connections between northern and southern parts of the city. Transportation of bikes in public vehicles, parking of bikes as well as cycling along the foot of the mountains Medvednica and Zumberacko gorje is not adequately organized. Better organization is necessary not only because of the present young generation but also because of the young who will shortly become citizens of the EU, where cycling is enormously popular. Cycling tourism is not known in Zagreb, partly due to inadequate roads. The surroundings of Zagreb are more suitable for cycling tourism and attractive brochures and tourist guides offer information to tourists on bikes. Professional, acrobatic and sports cycling do not have a tradition in Zagreb and in Croatia. The same holds true for recreational cycling and indoor exercise cycling. The authors discuss the impact of popularization of cycling using print and electronic media. The role of district and local self-government in the construction and improvement of traffic roads in Zagreb is very important. It is also significant for the implementation of legal regulations that must be obeyed by all traffic participants in order to protect cyclists, the most vulnerable group of traffic participants besides passengers. Multidisciplinary action of all benevolent experts would surely increase safety and pleasure of cycling in the city and its surroundings. This would also help reduce daily stress and

  16. The nitrogen cycle

    National Research Council Canada - National Science Library

    Stein, Lisa Y; Klotz, Martin G

    2016-01-01

    .... Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions...

  17. Edgeworth cycles revisited

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Joseph [MIT Sloan School of Management, 50 Memorial Drive, E52-447, Cambridge MA 02142 (United States); Muehlegger, Erich [John F. Kennedy School of Government, Harvard University, Mailbox 25, 79 JFK Street, Cambridge, MA 02138 (United States); Samphantharak, Krislert [Graduate School of International Relations and Pacific Studies, University of California at San Diego, 9500 Gilman Drive 1519, La Jolla, CA 92093 (United States)

    2010-05-15

    Some gasoline markets exhibit remarkable price cycles, where price spikes are followed by a series of small price declines: a pattern consistent with a model of Edgeworth cycles described by Maskin and Tirole. We extend the model and empirically test its predictions with a new dataset of daily station-level prices in 115 US cities. Consistent with the theory, and often in contrast with previous empirical work, we find the least and most concentrated markets are much less likely to exhibit cycling behavior both within and across cities; areas with more independent convenience-store gas stations are also more likely to cycle. (author)

  18. Explosive opening switch work at Westinghouse

    Science.gov (United States)

    Aivaliotis, E.; Peterhans, M.

    1989-01-01

    An explosive switch that commutated 315 kA into a resistor and a second version designed to switch up to 1 MA into an HPG (homopolar generator)-driven railgun system are presented. These switches are located very near the load and consist of a set of main busbars in a low-inductance configuration shorted by a thinner switch busbar. Linear-shaped charges are used to sever this switch busbar at several locations when a preselected current level is attained, commutating the current into the load. The feasibility of multishot explosive switches for electromagnetic-launch systems is also considered.

  19. Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

    KAUST Repository

    Korf, Kevin S.

    2014-06-23

    We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.

  20. Rapid-Cycling Bubble-Chamber, details

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Parts of the hydraulic expansion system of the Rapid-Cycling Bubble-Chamber (RCBC). RCBC was the largest of 3 rapid-cycling bubble-chambers (the others were LEBC and HOLEBC), used as target- and vertex-detectors within the European Hybrid Spectrometer (EHS) in the SPS North Area (EHN1). RCBC contained 250 l of liquid hydrogen and was located inside a 3 T superconducting magnet. It was designed for 30 expansions/s (100 times faster than BEBC), the system shown here allowed 50 expansions/s. RCBC operated from 1981 to 1983 for experiments NA21, NA22 and NA23 at a rate of 15 expansions/s, clocking up a total of over 4 million. In the rear, at left, is bearded Lucien Veillet; Augustin Didona is at the right. See also 8001009. The installation of the piston assembly in the RCBC chamber body is shown in the Annual Report 1980, p.65.

  1. Exercise responses during functional electrical stimulation cycling in individuals with spinal cord injury.

    Science.gov (United States)

    Hasnan, Nazirah; Ektas, Nalan; Tanhoffer, Aldre Izabel P; Tanhoffer, Ricardo; Fornusek, Che; Middleton, James W; Husain, Ruby; Davis, Glen M

    2013-06-01

    This study compared acute exercise responses during arm cranking, functional electrical stimulation (FES)-assisted leg cycling, and combined arm and leg ("hybrid") cycling in individuals with spinal cord injury during maximal and submaximal exercise. Nine male subjects with long-standing neurological lesions from C7 to T12 were recruited. All subjects performed arm crank ergometry (ACE), FES leg cycle exercise (FES-LCE), combined ACE + FES-LCE, and cycling on a hybrid FES tricycle (HYBRID). They were assessed for their peak exercise responses in all four modalities. Subsequently, their submaximal heart rates (HR), cardiac outputs (Q), stroke volumes (SV), and arteriovenous oxygen extractions (Ca-Cv)O2 were measured at 40%, 60%, and 80% of mode-specific V˙O2peak. Arm exercise alone and arm + leg exercise resulted in significantly higher V˙O2peak and HRpeak compared with FES-LCE (P spinal cord injury population.

  2. Accounting for the biogeochemical cycle of nitrogen in input-output life cycle assessment.

    Science.gov (United States)

    Singh, Shweta; Bakshi, Bhavik R

    2013-08-20

    Nitrogen is indispensable for sustaining human activities through its role in the production of food, animal feed, and synthetic chemicals. This has encouraged significant anthropogenic mobilization of reactive nitrogen and its emissions into the environment resulting in severe disruption of the nitrogen cycle. This paper incorporates the biogeochemical cycle of nitrogen into the 2002 input-output model of the U.S. economy. Due to the complexity of this cycle, this work proposes a unique classification of nitrogen flows to facilitate understanding of the interaction between economic activities and various flows in the nitrogen cycle. The classification scheme distinguishes between the mobilization of inert nitrogen into its reactive form, use of nitrogen in various products, and nitrogen losses to the environment. The resulting inventory and model of the US economy can help quantify the direct and indirect impacts or dependence of economic sectors on the nitrogen cycle. This paper emphasizes the need for methods to manage the N cycle that focus not just on N losses, which has been the norm until now, but also include other N flows for a more comprehensive view and balanced decisions. Insight into the N profile of various sectors of the 2002 U.S. economy is presented, and the inventory can also be used for LCA or Hybrid LCA of various products. The resulting model is incorporated in the approach of Ecologically-Based LCA and available online.

  3. Real-Time Energy Management Control for Hybrid Electric Powertrains

    Directory of Open Access Journals (Sweden)

    Mohamed Zaher

    2013-01-01

    Full Text Available This paper focuses on embedded control of a hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real-time energy management strategy. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in the opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, the motion is driven by gravitational force, or load driven. There are three main concepts for energy storing devices in hybrid vehicles: electric, hydraulic, and mechanical (flywheel. The real-time control challenge is to balance the system power demands from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle. In the worst-case scenario, only the engine is used and the hybrid system is completely disabled. A rule-based control algorithm is developed and is tuned for different work cycles and could be linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the work machine and its position via GPS and maps both of them to the gains.

  4. Personal Rotorcraft Design and Performance with Electric Hybridization

    Science.gov (United States)

    Snyder, Christopher A.

    2017-01-01

    Recent and projected improvements for more or all-electric aviation propulsion systems can enable greater personal mobility, while also reducing environmental impact (noise and emissions). However, all-electric energy storage capability is significantly less than present, hydrocarbon-fueled systems. A system study was performed exploring design and performance assuming hybrid propulsion ranging from traditional hydrocarbon-fueled cycles (gasoline Otto and diesel) to all-electric systems using electric motors generators, with batteries for energy storage and load leveling. Study vehicles were a conventional, single-main rotor (SMR) helicopter and an advanced vertical takeoff and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew); the design range for the VTOL aircraft was set to 150 miles (about one hour total flight). Search and rescue (SAR), loiter, and cruise-dominated missions were chosen to illustrate each vehicle and degree of hybrid propulsion strengths and weaknesses. The traditional, SMR helicopter is a hover-optimized design; electric hybridization was performed assuming a parallel hybrid approach by varying degree of hybridization. Many of the helicopter hybrid propulsion combinations have some mission capabilities that might be effective for short range or on-demand mobility missions. However, even for 30 year technology electrical components, all hybrid propulsion systems studied result in less available fuel, lower maximum range, and reduced hover and loiter duration than the baseline vehicle. Results for the VTOL aircraft were more encouraging. Series hybrid combinations reflective of near-term systems could improve range and loiter duration by 30. Advanced, higher performing series hybrid combinations could double or almost triple the VTOL aircrafts range and loiter duration. Additional details on the study assumptions and work performed are given, as well as suggestions for future study effort.

  5. Conditional Hybrid Nonclassicality

    Science.gov (United States)

    Agudelo, E.; Sperling, J.; Costanzo, L. S.; Bellini, M.; Zavatta, A.; Vogel, W.

    2017-09-01

    We derive and implement a general method to characterize the nonclassicality in compound discrete- and continuous-variable systems. For this purpose, we introduce the operational notion of conditional hybrid nonclassicality which relates to the ability to produce a nonclassical continuous-variable state by projecting onto a general superposition of discrete-variable subsystem. We discuss the importance of this form of quantumness in connection with interfaces for quantum communication. To verify the conditional hybrid nonclassicality, a matrix version of a nonclassicality quasiprobability is derived and its sampling approach is formulated. We experimentally generate an entangled, hybrid Schrödinger cat state, using a coherent photon-addition process acting on two temporal modes, and we directly sample its nonclassicality quasiprobability matrix. The introduced conditional quantum effects are certified with high statistical significance.

  6. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.

  7. Hybridization in geese: a review.

    Science.gov (United States)

    Ottenburghs, Jente; van Hooft, Pim; van Wieren, Sipke E; Ydenberg, Ronald C; Prins, Herbert H T

    2016-01-01

    The high incidence of hybridization in waterfowl (ducks, geese and swans) makes this bird group an excellent study system to answer questions related to the evolution and maintenance of species boundaries. However, knowledge on waterfowl hybridization is biased towards ducks, with a large knowledge gap in geese. In this review, we assemble the available information on hybrid geese by focusing on three main themes: (1) incidence and frequency, (2) behavioural mechanisms leading to hybridization, and (3) hybrid fertility. Hybridization in geese is common on a species-level, but rare on a per-individual level. An overview of the different behavioural mechanisms indicates that forced extra-pair copulations and interspecific nest parasisitm can both lead to hybridization. Other sources of hybrids include hybridization in captivity and vagrant geese, which may both lead to a scarcity of conspecifics. The different mechanisms are not mutually exclusive and it is currently not possible to discriminate between the different mechanisms without quantitative data. Most hybrid geese are fertile; only in crosses between distantly related species do female hybrids become sterile. This fertility pattern, which is in line with Haldane's Rule, may facilitate interspecific gene flow between closely related species. The knowledge on hybrid geese should be used, in combination with the information available on hybridization in ducks, to study the process of avian speciation.

  8. Analog and hybrid computing

    CERN Document Server

    Hyndman, D E

    2013-01-01

    Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl

  9. Hybrid least squares method

    Energy Technology Data Exchange (ETDEWEB)

    Nazareth, L.

    1976-01-01

    A hybrid algorithm is developed which blends two different approximations to the Hessian, the Levenberg--Marquardt approximation and Davidon's Optimally Conditioned Quasi-Newton approximation, through adaptively chosen parameters. The aim is to study how to combine effectively two different models of the function which are deduced from the available information. A particular implementation is discussed. Also test results and comparisons against the Levenberg--Marquardt and Davidon's Quasi-Newton method, which correspond to limiting cases of the hybrid algorithm.

  10. The hybrid BCI

    Directory of Open Access Journals (Sweden)

    Gert Pfurtscheller

    2010-04-01

    Full Text Available Nowadays, everybody knows what a hybrid car is. A hybrid car normally has 2 engines, its main purpose being to enhance energy efficiency and reduce CO2 output. Similarly, a typical hybrid brain-computer interface (BCI is also composed of 2 BCIs or at least one BCI and another system. Such a hybrid BCI, like any BCI, must fulfil the following four criteria: (i the device must rely on signals recorded directly from the brain; (ii there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii real time processing; and (iv the user must obtain feedback. This paper introduces some hybrid BCIs which have already been published or are currently in development or validation, and some concepts for future work. The BCIs described classify 2 EEG patterns: One is the event-related (desynchronisation (ERD, ERS of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP. The hybrid BCI can either have more than one input whereby the inputs are typically processed simultaneously or operate 2 systems sequentially, whereby the first system can act as a “brain switch”. In the case of self-paced operation of a SSVEP-based hand orthosis control with an motor imagery-based switch it was possible to reduce the rate of false positives during resting periods by about 50% compared to the SSVEP BCI alone. It is shown that such a brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS. Another interesting approach is a hybrid BCI with simultaneous operations of ERD- and SSVEP-based BCIs. Here it is important to prove the existing promising offline simulation results with online experiments. Hybrid BCIs can also use one brain signal and another input. Such an additional input can be a physiological signal like the heart rate but also a signal from an external device like, an eye gaze control system.

  11. Advanced Photonic Hybrid Materials

    Science.gov (United States)

    2015-07-01

    Rev. 8/98) Prescribed by ANSI Std. Z39.18 Advanced photonic hybrid materials    Final report from S. Parola, Laboratoire de  Chimie  ENS Lyon...Meeting, San Francisco, USA, April 2013.  ‐ Nanoparticules hybrides fluorescentes pour l’imagerie, S. Parola, GDR Imagerie,  Chimie  et Microscopie, Lyon

  12. Impulsive and hybrid dynamical systems stability, dissipativity, and control

    CERN Document Server

    Haddad, Wassim M; Nersesov, Sergey G

    2014-01-01

    This book develops a general analysis and synthesis framework for impulsive and hybrid dynamical systems. Such a framework is imperative for modern complex engineering systems that involve interacting continuous-time and discrete-time dynamics with multiple modes of operation that place stringent demands on controller design and require implementation of increasing complexity--whether advanced high-performance tactical fighter aircraft and space vehicles, variable-cycle gas turbine engines, or air and ground transportation systems. Impulsive and Hybrid Dynamical Systems goes beyond similar

  13. Lead-acid battery model for hybrid energy storage

    OpenAIRE

    BUTTERBACH, S; Vulturescu, Bogdan; FORGEZ, C; Coquery, Gérard; Friedrich, G

    2011-01-01

    This paper deals with the design of hybrid energy storage for an electric waste collection vehicle. The hybrid storage is made of lead-acid batteries and supercapacitors. A detailed lead-acid model is proposed in order to take into account the charge of the battery during regenerative braking. The vehicle was simulated on an urban driving cycle for a full working day. The reduction of the consumed energy due to an increased recovery capacity is outlined in this paper as a main benefit of the ...

  14. Universal cycle periods

    NARCIS (Netherlands)

    Groot, de E.A. (Bert); Franses, P.H.P.H.

    2009-01-01

    We present a meta-analysis of cycles in historical economic data. The literature on stochastic and deterministic cycles in variables such as the consumer price index, employment, interest rates, commodity prices, and GDP is huge and scattered, but our meta-analysis reveals various communalities. Our

  15. Stability through cycles

    NARCIS (Netherlands)

    Groot, de E.A. (Bert); Franses, P.H.P.H.

    2006-01-01

    Economic variables like GDP growth, employment, interest rates and consumption show signs of cyclical behavior. Many variables display multiple cycles, with lengths ranging in between 5 to even up to 100 years. We argue that multiple cycles can be associated with long-run stability of the economic

  16. Life Cycle Environmental Management

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Pedersen, Morten Als

    1996-01-01

    processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criteria from the life cycles of products and other company activities into the company management processes. This paper introduces the concept of LCEM as an important element...

  17. Teaching the Krebs Cycle.

    Science.gov (United States)

    Akeroyd, F. Michael

    1983-01-01

    Outlines a simple but rigorous treatment of the Krebs Cycle suitable for A-level Biology students. The importance of the addition of water molecules in various stages of the cycle is stressed as well as the removal of hydrogen atoms by the oxidizing enzymes. (JN)

  18. Rock Cycle Roulette.

    Science.gov (United States)

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  19. Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Hauschild, Michael Zwicky; Boulay, Anne-Marie

    2017-01-01

    This chapter is dedicated to the third phase of an LCA study, the Life Cycle Impact Assessment (LCIA) where the life cycle inventory’s information on elementary flows is translated into environmental impact scores. In contrast to the three other LCA phases, LCIA is in practice largely automated...

  20. Life cycle management (LCM)

    DEFF Research Database (Denmark)

    Remmen, Arne; Thrane, Mikkel

    2004-01-01

    The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels.......The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels....

  1. Seeing the Carbon Cycle

    Science.gov (United States)

    Drouin, Pamela; Welty, David J.; Repeta, Daniel; Engle-Belknap, Cheryl A.; Cramer, Catherine; Frashure, Kim; Chen, Robert

    2006-01-01

    In this article, the authors present a classroom experiment that was developed to introduce middle school learners to the carbon cycle. The experiment deals with transfer of CO[subscript 2] between liquid reservoirs and the effect CO[subscript 2] has on algae growth. It allows students to observe the influence of the carbon cycle on algae growth,…

  2. The carbon cycle revisited

    Science.gov (United States)

    Bolin, Bert; Fung, Inez

    1992-01-01

    Discussions during the Global Change Institute indicated a need to present, in some detail and as accurately as possible, our present knowledge about the carbon cycle, the uncertainties in this knowledge, and the reasons for these uncertainties. We discuss basic issues of internal consistency within the carbon cycle, and end by summarizing the key unknowns.

  3. Power Plant Cycling Costs

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  4. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-12-20

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  5. Effect of lower extremity functional electrical stimulation pulsed isometric contractions on arm cycling peak oxygen uptake in spinal cord injured individuals.

    Science.gov (United States)

    Brurok, Berit; Tørhaug, Tom; Karlsen, Trine; Leivseth, Gunnar; Helgerud, Jan; Hoff, Jan

    2013-03-01

    To compare peak oxygen uptake (VO2peak) between: (i) functional electrical stimulation lower extremity pulsed isometric muscle contractions combined with arm cycling (FES iso hybrid), (ii) functional electrical stimulation cycling combined with arm cycling (FES hybrid cycling), and (iii) arm cycling exercise (ACE) in individuals with spinal cord injury with level of injury above and below T6. Cross-over repeated measures design. METHODS/PARTICIPANTS: Individuals with spinal cord injury (n = 15) with level of injury between C4 and T12, were divided into groups; above (spinal cord injury - high, n = 8) and below (spinal cord injury - low, n = 7) T6 level. On separate days, VO2peak was compared between: (i) ACE, (ii) FES iso hybrid, and (iii) FES hybrid cycling. In the SCI-high group, FES iso hybrid increased VO2peak (17.6 (standard deviation (SD) 5.0) to 23.6 (SD 3.6) ml/kg/min; p = 0.001) and ventilation (50.4 (SD 20.8) to 58.2 (SD 20.7) l/min; p = 0.034) more than ACE. Furthermore, FES hybrid cycling resulted in a 6.8 ml/kg/min higher VO2peak (p = 0.001) and an 11.0 litres/minute (p = 0.001) higher ventilation. ACE peak workload was 10.5 W (p = 0.001) higher during FES hybrid cycling compared with ACE. In the spinal cord injury - low group, no significant differences were found between the modalities. VO2peak increased when ACE was combined with FES iso hybrid or FES hybrid cycling in persons with spinal cord injury above the T6 level. Portable FES may serve as a less resource-demanding alternative to stationary FES cycling, and may have important implications for exercise prescription for spinal cord injury.

  6. Thermoeconomic Evaluation of Integrated Solar Combined Cycle Systems (ISCCS

    Directory of Open Access Journals (Sweden)

    Javier Rodríguez Martín

    2014-07-01

    Full Text Available Three alternatives for integrating a solar field with the bottoming cycle of a combined cycle plant are modeled: parabolic troughs with oil at intermediate and low cycle pressures and Fresnel linear collectors at low cycle pressure. It is assumed that the plant will always operate at nominal conditions, using post-combustion during the hours of no solar resource. A thermoeconomic study of the operation of the plant throughout a year has been carried out. The energy and exergy efficiencies of the plant working in fuel only and hybrid modes are compared. The energy efficiencies obtained are very similar; slightly better for the fuel only mode. The exergy efficiencies are slightly better for hybrid operation than for fuel-only mode, due to the high exergy destruction associated with post-combustion. The values for solar electric efficiency are in line with those of similar studies. The economic study shows that the Fresnel hybridization alternative offers similar performance to the others at a significantly lower cost.

  7. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  8. Application of Hybrid Dynamical Theory to the Cardiovascular System

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2014-10-14

    In hybrid dynamical systems, the state evolves in continuous time as well as in discrete modes activated by internal conditions or by external events. In the recent years, hybrid systems modeling has been used to represent the dynamics of biological systems. In such systems, discrete behaviors might originate from unexpected changes in normal performance, e.g., a transition from a healthy to an abnormal condition. Simplifications, model assumptions, and/or modeled (and ignored) nonlinearities can be represented by sudden changes in the state. Modeling cardiovascular system (CVS), one of the most fascinating but most complex human physiological systems, with a hybrid approach, is the focus of this chapter. The hybrid property appears naturally in the CVS thanks to the presence of valves which, depending on their state (closed or open), divide the cardiac cycle into four phases. This chapter shows how hybrid models can be used for modeling the CVS. In addition, it describes a preliminary study on the detection of some cardiac anomalies based on the hybrid model and using the standard observer-based approach.

  9. Hybrid Personalization for Recommendations

    NARCIS (Netherlands)

    Herder, Eelco; Kärger, Philipp

    2008-01-01

    Herder, E., & Kärger, P. (2008). Hybrid Personalization for Recommendations. In J. Baumeister & M. Atzmüller, Proceedings of the 16th Workshop on Adaptivity and User Modeling in Interactive System, ABIS 2008 (pp. 20-25). October, 6-10, 2008, Würzburg, Germany: Universität Würzburg. Website with link

  10. Hybrid printed electronics

    NARCIS (Netherlands)

    Koetse, M.; Smits, E.; Rubingh, E.; Teunissen, P.; Kusters, R.; Abbel, R.; Brand, J. van den

    2016-01-01

    Although many electronic functionalities can be realized by printed or organic electronics, short-term marketable products often require robust, reproducible, and nondisturbing technologies. In this chapter we show how hybrid electronics, a combination of printed circuitry, thin-film electronics,

  11. Electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  12. Hybrid wars’ information component

    Directory of Open Access Journals (Sweden)

    T. A. Nevskaya

    2015-01-01

    Full Text Available The war of the new generation - hybrid war, the information component which is directed not so much on the direct destruction of the enemy, how to achieve the goals without warfare. Fighting in the information field is no less important than immediate military action.

  13. Rethinking Resources and Hybridity

    Science.gov (United States)

    Gonsalves, Allison J.; Seiler, Gale; Salter, Dana E.

    2011-01-01

    This review explores Alfred Schademan's "What does playing cards have to do with science? A resource-rich view of African American young men" by examining how he uses two key concepts--hybridity and resources--to propose an approach to science education that counters enduring deficit notions associated with this population. Our response to…

  14. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  15. Hybrid keyword search auctions

    KAUST Repository

    Goel, Ashish

    2009-01-01

    Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1. We show that risk-seeking advertisers will choose only a per-impression bid whereas risk-averse advertisers will choose only a per-click bid, and argue that both kind of advertisers arise naturally. Hence, the ability to bid in a hybrid fashion is important to account for the risk characteristics of the advertisers. 2. For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, we show that having the extra information from the advertisers in the form of a per-impression bid can result in significantly higher revenue. 3. An advertiser who believes that its click-probability is much higher than the auctioneer\\'s estimate can use per-impression bids to correct the auctioneer\\'s prior without incurring any extra cost. 4. The hybrid auction can allow the advertiser and auctioneer to implement complex dynamic programming strategies to deal with the uncertainty in the click-probability using the same basic auction. The per-click and per-impression bidding schemes can only be used to implement two extreme cases of these strategies. As Internet commerce matures, we need more sophisticated pricing models to exploit all the information held by each of the participants. We believe that hybrid auctions could be an important step in this direction. The

  16. Optimization methods applied to hybrid vehicle design

    Science.gov (United States)

    Donoghue, J. F.; Burghart, J. H.

    1983-01-01

    The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.

  17. Ants exhibit asymmetric hybridization in a mosaic hybrid zone.

    Science.gov (United States)

    Purcell, Jessica; Zahnd, Sacha; Athanasiades, Anouk; Türler, Rebecca; Chapuisat, Michel; Brelsford, Alan

    2016-10-01

    Research on hybridization between species provides unparalleled insights into the pre- and postzygotic isolating mechanisms that drive speciation. In social organisms, colony-level incompatibilities may provide additional reproductive barriers not present in solitary species, and hybrid zones offer an opportunity to identify these barriers. Here, we use genotyping-by-sequencing to sequence hundreds of markers in a hybrid zone between two socially polymorphic ant species, Formica selysi and Formica cinerea. We characterize the zone, determine the frequency of hybrid workers, infer whether hybrid queens or males are produced and investigate whether hybridization is influenced by colony social organization. We also compare cuticular hydrocarbon profiles and aggression levels between the two species. The hybrid zone exhibits a mosaic structure. The asymmetric distribution of hybrids skewed towards F. cinerea suggests a pattern of unidirectional nuclear gene flow from F. selysi into F. cinerea. The occurrence of backcrossed individuals indicates that hybrid queens and/or males are fertile, and the presence of the F. cinerea mitochondrial haplotype in 97% of hybrids shows that successful F1 hybrids will generally have F. cinerea mothers and F. selysi fathers. We found no evidence that social organization contributes to speciation, because hybrids occur in both single-queen and multiple-queen colonies. Strongly differentiated cuticular hydrocarbon profiles and heightened interspecific aggression further reveal that species recognition cues are both present and perceived. The discovery of fertile hybrids and asymmetrical gene flow is unusual in ants, and this hybrid zone will therefore provide an ideal system with which to investigate speciation in social insects. © 2016 John Wiley & Sons Ltd.

  18. Applied physiology of cycling.

    Science.gov (United States)

    Faria, I E

    1984-01-01

    Historically, the bicycle has evolved through the stages of a machine for efficient human transportation, a toy for children, a finely-tuned racing machine, and a tool for physical fitness development, maintenance and testing. Recently, major strides have been made in the aerodynamic design of the bicycle. These innovations have resulted in new land speed records for human powered machines. Performance in cycling is affected by a variety of factors, including aerobic and anaerobic capacity, muscular strength and endurance, and body composition. Bicycle races range from a 200m sprint to approximately 5000km. This vast range of competitive racing requires special attention to the principle of specificity of training. The physiological demands of cycling have been examined through the use of bicycle ergometers, rollers, cycling trainers, treadmill cycling, high speed photography, computer graphics, strain gauges, electromyography, wind tunnels, muscle biopsy, and body composition analysis. These techniques have been useful in providing definitive data for the development of a work/performance profile of the cyclist. Research evidence strongly suggests that when measuring the cyclist's aerobic or anaerobic capacity, a cycling protocol employing a high pedalling rpm should be used. The research bicycle should be modified to resemble a racing bicycle and the cyclist should wear cycling shoes. Prolonged cycling requires special nutritional considerations. Ingestion of carbohydrates, in solid form and carefully timed, influences performance. Caffeine appears to enhance lipid metabolism. Injuries, particularly knee problems which are prevalent among cyclists, may be avoided through the use of proper gearing and orthotics. Air pollution has been shown to impair physical performance. When pollution levels are high, training should be altered or curtailed. Effective training programmes simulate competitive conditions. Short and long interval training, blended with long

  19. Life Cycle Management

    DEFF Research Database (Denmark)

    Bey, Niki

    2017-01-01

    This chapter gives an overview of Life Cycle Management (LCM)—a discipline that deals with the managerial tasks related to practicing sustainable development in an organisation . Just as Life Cycle Assessment, LCM advocates the life cycle perspective , and it applies this perspective in decision......-making processes. The chapter shows that LCA can play a key role in LCM since LCA provides quantitative performance measurements. It also explains, which stakeholders need to be considered, how LCA and LCM relate, how LCA can be used to develop Key Performance Indicators, and addresses how LCM can be integrated...

  20. Political Budget Cycles

    DEFF Research Database (Denmark)

    Aaskoven, Lasse; Lassen, David Dreyer

    2017-01-01

    The political budget cycle—how elections affect government fiscal policy—is one of the most studied subjects in political economy and political science. The key theoretical question is whether incumbent governments can time or structure public finances in ways that improve their chances...... on political budget cycles have recently focused on conditions under which such cycles are likely to obtain. Much recent research focuses on subnational settings, allowing comparisons of governments in similar institutional environments, and a consensus on the presences of cycles in public finances......—and in the reporting of public finances—is beginning to emerge....

  1. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  2. Product Life Cycle Planning

    National Research Council Canada - National Science Library

    Walaszek, Jeffrey

    2003-01-01

    .... This phase of work was undertaken to: (1) provide guidelines, technical support, and planning approaches for researchers that result in realistic life cycle plans for products emerging from the RSM...

  3. The Rock Cycle

    Science.gov (United States)

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  4. Cycles in graphs

    CERN Document Server

    Alspach, BR

    1985-01-01

    This volume deals with a variety of problems involving cycles in graphs and circuits in digraphs. Leading researchers in this area present here 3 survey papers and 42 papers containing new results. There is also a collection of unsolved problems.

  5. Traffic Signal Cycle Lengths

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Traffic signal location list for the town of Chapel Hill. This data set includes light cycle information as well as as intersection information.The Town of Chapel...

  6. Life Cycle Costing.

    Science.gov (United States)

    McCraley, Thomas L.

    1985-01-01

    Life cycle costing establishes a realistic comparison of the cost of owning and operating products. The formula of initial cost plus maintenance plus operation divided by useful life identifies the best price over the lifetime of the product purchased. (MLF)

  7. Solar Cycle Prediction

    Directory of Open Access Journals (Sweden)

    Kristóf Petrovay

    2010-12-01

    Full Text Available A review of solar cycle prediction methods and their performance is given, including forecasts for cycle 24. The review focuses on those aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review is further restricted to the issue of predicting the amplitude (and optionally the epoch of an upcoming solar maximum no later than right after the start of the given cycle. Prediction methods form three main groups. Precursor methods rely on the value of some measure of solar activity or magnetism at a specified time to predict the amplitude of the following solar maximum. Their implicit assumption is that each numbered solar cycle is a consistent unit in itself, while solar activity seems to consist of a series of much less tightly intercorrelated individual cycles. Extrapolation methods, in contrast, are based on the premise that the physical process giving rise to the sunspot number record is statistically homogeneous, i.e., the mathematical regularities underlying its variations are the same at any point of time and, therefore, it lends itself to analysis and forecasting by time series methods. Finally, instead of an analysis of observational data alone, model based predictions use physically (more or less consistent dynamo models in their attempts to predict solar activity. In their overall performance during the course of the last few solar cycles, precursor methods have clearly been superior to extrapolation methods. Nevertheless, most precursor methods overpredicted cycle 23, while some extrapolation methods may still be worth further study. Model based forecasts have not yet had a chance to prove their skills. One method that has yielded predictions consistently in the right range during the past few solar cycles is that of K. Schatten et al., whose approach is mainly based on the polar field precursor. The incipient cycle 24 will probably mark the end of the Modern Maximum, with the Sun

  8. Menstrual Cycle: Basic Biology

    OpenAIRE

    Hawkins, Shannon M.; Matzuk, Martin M.

    2008-01-01

    The basic biology of the menstrual cycle is a complex, coordinated sequence of events involving the hypothalamus, anterior pituitary, ovary, and endometrium. The menstrual cycle with all its complexities can be easily perturbed by environmental factors such as stress, extreme exercise, eating disorders, and obesity. Furthermore, genetic influences such as fragile X premutations (Chapter X), X chromosome abnormalities (Chapter X), and galactose-1-phosphate uridyltransferase (GALT) point mutati...

  9. Quantifying the Adaptive Cycle.

    Directory of Open Access Journals (Sweden)

    David G Angeler

    Full Text Available The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011 data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  10. Quantifying the adaptive cycle

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  11. Aerodynamic design of electric and hybrid vehicles: A guidebook

    Science.gov (United States)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  12. Lamination residual strains and stresses in hybrid laminates

    Science.gov (United States)

    Daniel, I. M.; Liber, T.

    1977-01-01

    An investigation is conducted of the effects of hybridization on the magnitude of lamination residual stresses. Eight-ply graphite/Kevlar 49/epoxy and graphite/S-glass/epoxy laminates were studied. The same matrix resin was selected for all basic materials to ensure compatibility and uniform curing of the various plies. The specimens, with inserted strain gages and thermocouples, were subjected to curing and postcuring cycles in an autoclave. Subsequently, the specimens were subjected to a thermal cycle from room temperature to 444 K and down to room temperature. It was found that hydridizing reduces apparently residual strains and stresses in the graphite plies. However, these strains were not affected much by the type and degree of hybridization.

  13. The Power of Hybridization

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Programming languages always seem to do some things well but not others: Python punts when it comes to user interfaces, Java’s artificial complexity prevents rapid development and produces tangles, and it will be awhile before we see benefits from C++ concurrency work. The cognitive load of languages and their blind spots increases the cost of experimentation, impeding your ability to fail fast and iterate. If you use a single language to solve your problem, you are binding yourself to the worldview limitations and the mistakes made by the creator of that language. Consider increasing your wiggle room by crossing language boundaries, complementing a language that is powerful in one area with a different language powerful in another. Language hybridization can speed development to quickly discover your real problems, giving you more time to fix them. After making a case for hybridizing your thinking in general, I will present a number of simple examples; first showing the benefits of using other languages...

  14. Hybrid-secure MPC 

    DEFF Research Database (Denmark)

    Lucas, Christoph; Raub, Dominik; Maurer, Ueli

    2010-01-01

    in the universal composability (UC) framework (based on a network of secure channels, a broadcast channel, and a common reference string). It achieves the bound on the trade-off between robustness and privacy shown by Ishai et al. [CRYPTO'06] and Katz [STOC'07], the bound on fairness shown by Cleve [STOC'86...... of the adversary, without being aware of the actual adversarial setting. Thus, hybrid-secure MPC protocols allow for graceful degradation of security. We present a hybrid-secure MPC protocol that provides an optimal trade-off between IT robustness and computational privacy: For any robustness parameter ρ ... obtain one MPC protocol that is simultaneously IT secure with robustness for up to t ≤ ρ actively corrupted parties, IT secure with fairness (no robustness) for up to t

  15. COI NMSD Hybrid Mirror

    Science.gov (United States)

    Mehle, Greg; Stahl, Phil (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of the 1.6 meter hybrid mirror demonstrator for the NGST Mirror System Demonstrator (NMSD) program. The COI design approach for the NGST program combines the optical performance of glass, with the high specific stiffness capabilities of composite materials The foundation technologies being exploited in the development of the hybrid mirror focus upon precision Composite Materials for cryogenic operation, and non-contact optical processing (ion figuring) of the lightweight mirror surface. The NGST Mirror System Demonstrator (NMSD) has been designed and built by Composite Optics, Inc. (COI) with optical processing performed by SAGEM (REOSC). The sponsors of these efforts are the NASA Marshall and Goddard Space Flight Centers.

  16. Hybrid plasma modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; DeChant, Lawrence Justin.; Piekos, Edward Stanley; Pointon, Timothy David

    2009-02-01

    This report summarizes the work completed during FY2007 and FY2008 for the LDRD project ''Hybrid Plasma Modeling''. The goal of this project was to develop hybrid methods to model plasmas across the non-continuum-to-continuum collisionality spectrum. The primary methodology to span these regimes was to couple a kinetic method (e.g., Particle-In-Cell) in the non-continuum regions to a continuum PDE-based method (e.g., finite differences) in continuum regions. The interface between the two would be adjusted dynamically ased on statistical sampling of the kinetic results. Although originally a three-year project, it became clear during the second year (FY2008) that there were not sufficient resources to complete the project and it was terminated mid-year.

  17. The challenge of hybridization

    CERN Document Server

    Caccia, Massimo

    2000-01-01

    Hybridization of pixel detector systems has to satisfy tight requirements: high yield, long term reliability, mechanical stability, thermal compliance and robustness have to go together with low passive mass added to the system, radiation hardness, flexibility in the technology end eventually low cost. The current technologies for the interconnection of the front-end chips and the sensor are reviewed and compared, together with the solutions for the interface to the far-end electronics.

  18. Military Hybrid Vehicle Survey

    Science.gov (United States)

    2011-08-03

    III Composite 4.3% Integrated starter generator for engine shut down, regenerative braking and avoidance of inefficient engine operation [28]. FMTV...environment, establish a test procedure for evaluating the performance and create a validated simulation tool for evaluating system -level performance [5, 6...Electric  Future Tactical Truck Systems (FTTS) – Parallel Electric  Family Medium Tactical Vehicle (FMTV) – Hydraulic Hybrid  Family Medium

  19. Hybrid undulator numerical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Hairetdinov, A.H. [Kurchatov Institute, Moscow (Russian Federation); Zukov, A.A. [Solid State Physics Institute, Chernogolovka (Russian Federation)

    1995-12-31

    3D properties of the hybrid undulator scheme arc studied numerically using PANDIRA code. It is shown that there exist two well defined sets of undulator parameters which provide either maximum on-axis field amplitude or minimal higher harmonics amplitude of the basic undulator field. Thus the alternative between higher field amplitude or pure sinusoidal field exists. The behavior of the undulator field amplitude and harmonics structure for a large set of (undulator gap)/(undulator wavelength) values is demonstrated.

  20. Printed hybrid systems

    Science.gov (United States)

    Karioja, Pentti; Mäkinen, Jukka-Tapani; Keränen, Kimmo; Aikio, Janne; Alajoki, Teemu; Jaakola, Tuomo; Koponen, Matti; Keränen, Antti; Heikkinen, Mikko; Tuomikoski, Markus; Suhonen, Riikka; Hakalahti, Leena; Kopola, Pälvi; Hast, Jukka; Liedert, Ralf; Hiltunen, Jussi; Masuda, Noriyuki; Kemppainen, Antti; Rönkä, Kari; Korhonen, Raimo

    2012-04-01

    This paper presents research activities carried out at VTT Technical Research Centre of Finland in the field of hybrid integration of optics, electronics and mechanics. Main focus area in our research is the manufacturing of electronic modules and product structures with printed electronics, film-over-molding and polymer sheet lamination technologies and the goal is in the next generation of smart systems utilizing monolithic polymer packages. The combination of manufacturing technologies such as roll-to-roll -printing, injection molding and traditional component assembly is called Printed Hybrid Systems (PHS). Several demonstrator structures have been made, which show the potential of polymer packaging technology. One demonstrator example is a laminated structure with embedded LED chips. Element thickness is only 0.3mm and the flexible stack of foils can be bent in two directions after assembly process and was shaped curved using heat and pressure. The combination of printed flexible circuit boards and injection molding has also been demonstrated with several functional modules. The demonstrators illustrate the potential of origami electronics, which can be cut and folded to 3D shapes. It shows that several manufacturing process steps can be eliminated by Printed Hybrid Systems technology. The main benefits of this combination are small size, ruggedness and conformality. The devices are ideally suited for medical applications as the sensitive electronic components are well protected inside the plastic and the structures can be cleaned easily due to the fact that they have no joints or seams that can accumulate dirt or bacteria.

  1. Hybrid X-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Shelkovenko, T. A.; Pikuz, S. A.; Mishin, S. A.; Mingaleev, A. R. [Russian Academy of Sciences, P.N. Lebedev Physical Institute (Russian Federation); Tilikin, I. N. [Moscow Institute of Physics and Technology (Russian Federation); Knapp, P. F.; Cahill, A. D.; Hoyt, C. L.; Hammer, D. A. [Cornell University (United States)

    2012-05-15

    Results from experimental studies of a hybrid X-pinch with an initial configuration in the form of a high-current diode with conical tungsten electrodes spaced by 1-2 mm and connected to one another with 20- to 100-{mu}m-diameter wires are presented. The experiments were carried out at four facilities with a current amplitude from 200 to 1000 kA and front duration from 45 to 200 ns. It is shown that, in spite of their simpler configuration, hybrid X-pinches with a short rise time of the current pulse (50-100 ns) are highly competitive with standard X-pinches in the generated soft X-ray power and the formation of a single hot spot in them is much more stable, while hard X-ray emission is almost absent. The possibility of using hybrid X-pinches as soft X-ray sources for point projection X-ray imaging of plasma objects is considered.

  2. Hybrid BioMicromotors

    Science.gov (United States)

    Schwarz, Lukas; Medina-Sánchez, Mariana; Schmidt, Oliver G.

    2017-09-01

    Micromotors are devices that operate at the microscale and convert energy to motion. Many micromotors are microswimmers, i.e., devices that can move freely in a liquid at a low Reynolds number, where viscous drag dominates over inertia. Hybrid biomicromotors are microswimmers that consist of both biological and artificial components, i.e., one or several living microorganisms combined with one or many synthetic attachments. Initially, living microbes were used as motor units to transport synthetic cargo at the microscale, but this simple allocation has been altered and extended gradually, especially considering hybrid biomicromotors for biomedical in vivo applications, i.e., for non-invasive microscale operations in the body. This review focuses on these applications, where other properties of the microbial component, for example, the capability of chemotaxis, biosensing, and cell-cell interactions, have been exploited in order to realize tasks like localized diagnosis, drug delivery, or assisted fertilization in vivo. In the biohybrid approach, biological and artificially imposed functionalities act jointly through a microrobotic device that can be controlled or supervised externally. We review the development and state-of-the-art of such systems and discuss the mastery of current and future challenges in order to evolve hybrid biomicromotors from apt swimmers to adapted in vivo operators.

  3. Asymmetric Hybrid Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chumanov, George [Clemson Univ., SC (United States)

    2015-11-05

    Hybrid Nanoparticles (AHNs) are rationally-designed multifunctional nanostructures and novel building blocks for the next generation of advanced materials and devices. Nanoscale materials attract considerable interest because of their unusual properties and potential for practical applications. Most of the activity in this field is focused on the synthesis of homogeneous nanoparticles from metals, metal oxides, semiconductors, and polymers. It is well recognized that properties of nanoparticles can be further enhanced if they are made as hybrid structures. This program is concerned with the synthesis, characterization, and application of such hybrid structures termed AHNs. AHNs are composed of a homogeneous core and several caps of different materials deposited on its surface (Fig. 1). Combined properties of the core and the caps as well as new properties that arise from core-cap and cap-cap interactions render AHNs multifunctional. In addition, specific chemical reactivity of the caps enables directional self-assembly of AHNs into complex architectures that are not possible with only spherical nanoparticles.

  4. Energy storage devices for future hybrid electric vehicles

    Science.gov (United States)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  5. Lamination residual stresses in hybrid composites, part 1

    Science.gov (United States)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to study lamination residual stresses for various material and loading parameters. The effects of hybridization on residual stresses and residual properties after thermal cycling under load were determined in angle-ply graphite/Kevlar/epoxy and graphite/S-glass/epoxy laminates. Residual strains in the graphite plies are not appreciably affected by the type and number of hybridizing plies. Computed residual stresses at room temperature in the S-glass plies reach values up to seventy-five percent of the transverse strength of the material. Computed residual stresses in the graphite plies exceed the static strength by approximately ten percent. In the case of Kevlar plies, computed residual stresses far exceed the static strength indicating possible early failure of these plies. Static testing of the hybrids above indicates that failure is governed by the ultimate strain of the graphite plies. In thermally cycled hybrids, in general, residual moduli were somewhat lower and residual strengths were higher than initial values.

  6. Rapid Cycling and Its Treatment

    Science.gov (United States)

    ... Announcements Public Service Announcements Partnering with DBSA Rapid Cycling and its Treatment What is bipolar disorder? Bipolar ... to Depression and Manic Depression . What is rapid cycling? Rapid cycling is defined as four or more ...

  7. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  8. The Effect of Cycling Intensity on Cycling Economy During Seated and Standing Cycling.

    Science.gov (United States)

    Arkesteijn, Marco; Jobson, Simon; Hopker, James; Passfield, Louis

    2016-10-01

    Previous research has shown that cycling in a standing position reduces cycling economy compared with seated cycling. It is unknown whether the cycling intensity moderates the reduction in cycling economy while standing. The aim was to determine whether the negative effect of standing on cycling economy would be decreased at a higher intensity. Ten cyclists cycled in 8 different conditions. Each condition was either at an intensity of 50% or 70% of maximal aerobic power at a gradient of 4% or 8% and in the seated or standing cycling position. Cycling economy and muscle activation level of 8 leg muscles were recorded. There was an interaction between cycling intensity and position for cycling economy (P = .03), the overall activation of the leg muscles (P = .02), and the activation of the lower leg muscles (P = .05). The interaction showed decreased cycling economy when standing compared with seated cycling, but the difference was reduced at higher intensity. The overall activation of the leg muscles and the lower leg muscles, respectively, increased and decreased, but the differences between standing and seated cycling were reduced at higher intensity. Cycling economy was lower during standing cycling than seated cycling, but the difference in economy diminishes when cycling intensity increases. Activation of the lower leg muscles did not explain the lower cycling economy while standing. The increased overall activation, therefore, suggests that increased activation of the upper leg muscles explains part of the lower cycling economy while standing.

  9. REDUCING ENERGY CONSUMPTION BY PASSENGER CAR WITH USING OF NON-ELECTRICAL HYBRID DRIVE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Tomas Skrucany

    2017-03-01

    Full Text Available Not only electrical hybrid technology is used for drivetrain of passenger cars. Also other systems using non-electrical principles (hydraulic or air pressure, mechanical energy storage can be found in current vehicles. There is a quantification of the spared energy by using a hybrid vehicle in the paper. Driving cy-cle ECE 15 was chosen as a platform for simulation of driving resistances.

  10. A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids

    OpenAIRE

    Jing Li; Wei Wei; Ji Xiang

    2012-01-01

    In this paper, we develop a simple algorithm to determine the required number of generating units of wind-turbine generator and photovoltaic array, and the associated storage capacity for stand-alone hybrid microgrid. The algorithm is based on the observation that the state of charge of battery should be periodically invariant. The optimal sizing of hybrid microgrid is given in the sense that the life cycle cost of system is minimized while the given load power demand can be satisfied without...

  11. Concentrated Solar Power Gas Turbine Hybrid with Thermal Storage

    OpenAIRE

    Wallentinsen, Bård Sve

    2016-01-01

    Concentrated Solar Power (CSP) technology and shows promise for large-scale renewable electric power generation. CSP is suitable for development in conjunction with other technologies, and this thesis examines the combination of CSP technology with natural gas turbines in order to boost operating temperatures and efficiencies in a resulting solar hybrid gas turbine (SHGT) power plant. Thermal energy storage and a bottoming cycle are included in the design to increase both performance and rene...

  12. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fuel...... enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a Heat Recovery Steam Generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67......% are achieved which is considerably higher than the conventional Combined Cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel pre-reformer reactors are considered in this investigation....

  13. Helium process cycle

    Science.gov (United States)

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  14. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  15. Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Yan [Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190 (China); Liu, Guo-Ping [Faculty of Advanced Technology, University of Glamorgan (United Kingdom); Center for Control Theory and Guidance Technology, Harbin Institute of Technology (China)

    2009-07-15

    Hybrid electric vehicles powered by fuel cells have been focused for alternative powertrains due to their high efficiency and low emission. The relative engine sizing and power split strategy of different power sources have great effect in influencing the fuel economy. In this paper, for a given driving cycle, the overall efficiency of a fuel cell/battery hybrid vehicle is maximized by identifying the best degree of hybridization (DOH) and a power control strategy. Fuzzy logic is used in power distribution of the hybrid vehicle, where the optimized centers and widths of membership functions are found by optimization. Simulation results show that the optimally designed and controlled hybrid vehicle can provide good fuel economy and overall system efficiency. (author)

  16. Recent advances in the PV-CSP hybrid solar power technology

    Science.gov (United States)

    Ju, Xing; Xu, Chao; Han, Xue; Zhang, Hui; Wei, Gaosheng; Chen, Lin

    2017-06-01

    Photovoltaic - Concentrated Solar Power (PV-CSP) hybrid technology is considered to be an important future research trend in solar energy engineering. The development of the PV-CSP hybrid technology accelerates in recent years with the rapid maturation of photovoltaics (PV) and concentrated solar power (CSP). This paper presents the recent advances on PV-CSP technology, including different technologies based on new dispatch strategies, Organic Rankine Cycles, spectral beam filters and so on. The research status and the hybrid system performance of the recent researches are summarized, aimed to provide an extended recognition on the PV-CSP hybrid technology. The advantages and limitations of the hybrid system are concluded according to the researches reviewed.

  17. First-Order Hybrid Logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Hybrid logic is an extension of modal logic which allows us to refer explicitly to points of the model in the syntax of formulas. It is easy to justify interest in hybrid logic on applied grounds, with the usefulness of the additional expressive power. For example, when reasoning about time one...... often wants to build up a series of assertions about what happens at a particular instant, and standard modal formalisms do not allow this. What is less obvious is that the route hybrid logic takes to overcome this problem often actually improves the behaviour of the underlying modal formalism....... For example, it becomes far simpler to formulate proof-systems for hybrid logic, and completeness results can be proved of a generality that is simply not available in modal logic. That is, hybridization is a systematic way of remedying a number of known deficiencies of modal logic. First-order hybrid logic...

  18. 2D Organic-Inorganic Hybrid Thin Films for Flexible UV-Visible Photodetectors

    KAUST Repository

    Velusamy, Dhinesh Babu

    2017-02-13

    Flexible 2D inorganic MoS and organic g-CN hybrid thin film photodetectors with tunable composition and photodetection properties are developed using simple solution processing. The hybrid films fabricated on paper substrate show broadband photodetection suitable for both UV and visible light with good responsivity, detectivity, and reliable and rapid photoswitching characteristics comparable to monolayer devices. This excellent performance is retained even after the films are severely deformed at a bending radius of ≈2 mm for hundreds of cycles. The detailed charge transfer and separation processes at the interface between the 2D materials in the hybrid films are confirmed by femtosecond transient absorption spectroscopy with broadband capability.

  19. The global sulfur cycle

    Science.gov (United States)

    Sagan, D. (Editor)

    1985-01-01

    The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed.

  20. CO2 cycle

    Science.gov (United States)

    Titus, Timothy N.; Byrne, Shane; Colaprete, Anthony; Forget, Francois; Michaels, Timothy I.; Prettyman, Thomas H.

    2017-01-01

    This chapter discusses the use of models, observations, and laboratory experiments to understand the cycling of CO2 between the atmosphere and seasonal Martian polar caps. This cycle is primarily controlled by the polar heat budget, and thus the emphasis here is on its components, including solar and infrared radiation, the effect of clouds (water- and CO2-ice), atmospheric transport, and subsurface heat conduction. There is a discussion about cap properties including growth and regression rates, albedos and emissivities, grain sizes and dust and/or water-ice contamination, and curious features like cold gas jets and araneiform (spider-shaped) terrain. The nature of the residual south polar cap is discussed as well as its long-term stability and ability to buffer atmospheric pressures. There is also a discussion of the consequences of the CO2 cycle as revealed by the non-condensable gas enrichment observed by Odyssey and modeled by various groups.

  1. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  2. Graphene/MnO{sub 2} hybrid nanosheets as high performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Anjon Kumar, E-mail: Anjon.K.Mondal@student.uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Zhang, Xiaogang [College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Wang, Guoxiu, E-mail: Guoxiu.wang@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia)

    2014-01-15

    Graphene/MnO{sub 2} hybrid nanosheets were prepared by incorporating graphene and MnO{sub 2} nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO{sub 2} hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na{sub 2}SO{sub 4} electrolyte. We found that the graphene/MnO{sub 2} hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO{sub 2}) delivered the highest specific capacitance of 320 F g{sup −1}. Graphene/MnO{sub 2} hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO{sub 2} hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO{sub 2} ratios. • The graphene/MnO{sub 2} hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles.

  3. Revenue cycle management.

    Science.gov (United States)

    Manley, Ray; Satiani, Bhagwan

    2009-11-01

    With the widening gap between overhead expenses and reimbursement, management of the revenue cycle is a critical part of a successful vascular surgery practice. It is important to review the data on all the components of the revenue cycle: payer contracting, appointment scheduling, preregistration, registration process, coding and capturing charges, proper billing of patients and insurers, follow-up of accounts receivable, and finally using appropriate benchmarking. The industry benchmarks used should be those of peers in identical groups. Warning signs of poor performance are discussed enabling the practice to formulate a performance improvement plan.

  4. An Improved Multi-Evaporator Adsorption Desalination Cycle for GCC Countries

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-03-29

    In Gulf Cooperation Council (GCC) countries, cogeneration based desalination processes consume almost 25% of the total annual energy and it is increasing at 2.2% annually. The high fresh water demand is attributed to high gross domestic product (GDP) growth rate, 24%, and the high water languishes, more than 10%. Over the past two decades, GCC countries have spent tens of billion dollars to expand their present and planned desalination capacities. It is foreseeable that with business-as-usual scenario, the domestic oil consumption of Saudi Arabia may exceed its production capacity by 2040. Innovative and sustainable water production solutions are needed urgently for future water supplies without environment impact. In this paper, a hybrid desalination cycle is proposed by integrating multi cascaded-evaporators (CE) with an adsorption cycle (AD). In this new innovative cycle, AD desorbed vapors are supplied to the CE to exploit the latent condensation energy within the evaporators arranged in both pressures-temperatures cascaded manner to improves the performance ratio (PR) of the cycle. Hybrid cycle shows more than 10 folds water production improvement as compared to conventional AD cycle due to synergetic effect. This concept is demonstrated in a laboratory pilot plant using a 3 cascaded evaporators pilot and simulation of 8 evaporators hybrid cycle.

  5. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  6. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  7. Hybrid spectral CT reconstruction.

    Science.gov (United States)

    Clark, Darin P; Badea, Cristian T

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  8. Indexical Hybrid Tense Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin

    2012-01-01

    In this paper we explore the logic of now, yesterday, today and tomorrow by combining the semantic approach to indexicality pioneered by Hans Kamp [9] and refined by David Kaplan [10] with hybrid tense logic. We first introduce a special now nominal (our @now corresponds to Kamp’s original now...... operator N) and prove completeness results for both logical and contextual validity. We then add propositional constants to handle yesterday, today and tomorrow; our system correctly treats sentences like “Niels will die yesterday” as contextually unsatisfiable. Building on our completeness results for now......, we prove completeness for the richer language, again for both logical and contextual validity....

  9. From hybrid-media system to hybrid-media politicians

    DEFF Research Database (Denmark)

    Ørsten, Mark; Eberholst, Mads Kæmsgaard; Burkal, Rasmus

    2017-01-01

    An increasingly complex hybrid system of social- and traditional-news media surrounds Nordic election campaigns as politically experienced incumbents favour traditional news media, and younger, lesser-known candidates’ social media. Despite little evidence for hybrid-media politicians, politicians...

  10. Hybrid vehicle potential assessment. Volume 7: Hybrid vehicle review

    Science.gov (United States)

    Leschly, K. O.

    1979-01-01

    Review of hybrid vehicles built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes onroad hybrid passenger cars, trucks, vans, and buses.

  11. The Hybrid Advantage: Graduate Student Perspectives of Hybrid Education Courses

    Science.gov (United States)

    Hall, Sarah; Villareal, Donna

    2015-01-01

    Hybrid courses combine online and face-to-face learning environments. To organize and teach hybrid courses, instructors must understand the uses of multiple online learning tools and face-toface classroom activities to promote and monitor the progress of students. The purpose of this phenomenological study was to explore the perspectives of…

  12. Menstrual cycle pattern and fertility

    DEFF Research Database (Denmark)

    Kolstad, Henrik A.; Bonde, Jens Peter; Hjøllund, Niels Henrik

    1999-01-01

    To characterize how the menstrual cycle pattern relates to fertility regardless of potential biases caused by inappropriate coital timing during the menstrual cycle or early embryonal loss.......To characterize how the menstrual cycle pattern relates to fertility regardless of potential biases caused by inappropriate coital timing during the menstrual cycle or early embryonal loss....

  13. Educational Business Cycles

    DEFF Research Database (Denmark)

    Tepe, Markus; Vanhuysse, Pieter

    2009-01-01

    Strong institutional constraints and better-informed voters may lead re-election seeking incumbents to shift the use of political business cycle mechanisms away from monetary and fiscal policy towards other policy domains that are more easily manipulable, targetable, and timeable. We investigate...

  14. THE EUROPEAN BUSINESS CYCLE

    Directory of Open Access Journals (Sweden)

    Ignat Ion

    2009-05-01

    Full Text Available The construction of European Monetary Union has raised several questions about the existence of a common business cycle, a European one. The lack of cyclical synchronization would complicate the monetary and fiscal policies in the Union, being a negative

  15. Reasoning with Causal Cycles

    Science.gov (United States)

    Rehder, Bob

    2017-01-01

    This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…

  16. LIFE-CYCLE ASSESSMENT

    Science.gov (United States)

    Life Cycle Assessment, or LCA, is an environmental accounting and mangement approach that consider all the aspects of resource use and environmental releases associated with an industrial system from cradle-to-grave. Specifically, it is a holistic view of environmental interacti...

  17. The Degree Cycle

    DEFF Research Database (Denmark)

    Wood, Johanna

    2016-01-01

    The grammaticalization of the demonstratives this, that and thus are investigated with respect to their functions as degree adverbs using empirical data from dictionaries and historical and modern corpora. It is first argued that thus participates in the CP cycle. With respect to this and that...

  18. Educational Business Cycles

    DEFF Research Database (Denmark)

    Tepe, Markus; Vanhuysse, Pieter

    Strong institutional constraints and better-informed voters may lead re-election seeking incumbents to shift the use of political business cycle mechanisms away from monetary and fiscal policy towards other policy domains that are more easily manipulable, targetable, and timeable. We investigate...

  19. Econometric Business Cycle Research

    NARCIS (Netherlands)

    J. Tinbergen (Jan)

    1940-01-01

    textabstractAlso published in: G. Haberler (Ed.), Readings in Business Cycles Theory, Blakiston, Philadelphia, 1944, pp. 61-86, in: Adrian C. Darnell (Ed.), The History of Econometrics, Vol. 2, Edward Elgar, Aldershot, 1994, pp. 230-247 and in: David F. Hendry and Mary S. Morgan (Eds), The

  20. Assisted Cycling Tours

    Science.gov (United States)

    Hollingsworth, Jan Carter

    2008-01-01

    This article discusses Assisted Cycling Tours (ACT), a Westminster, Colorado based 501(c)3, non-profit that is offering the joy of bicycle tours in breathtaking, scenic locations to children and adults with developmental and physical disabilities and their families. ACT was founded by Bob Matter and his son David with a goal of opening up the…

  1. Mosquito Life Cycle

    Science.gov (United States)

    Knowing the stages of the mosquito's life will help you prevent mosquitoes around your home and help you choose the right pesticides for your needs, if you decide to use them. All mosquito species go through four distinct stages during their live cycle.

  2. Big Data and Cycling

    NARCIS (Netherlands)

    Romanillos, Gustavo; Zaltz Austwick, Martin; Ettema, Dick; De Kruijf, Joost

    2016-01-01

    Big Data has begun to create significant impacts in urban and transport planning. This paper covers the explosion in data-driven research on cycling, most of which has occurred in the last ten years. We review the techniques, objectives and findings of a growing number of studies we have classified

  3. The Pneumocystis life cycle

    Directory of Open Access Journals (Sweden)

    Cécile-Marie Aliouat-Denis

    2009-05-01

    Full Text Available First recognised as "schizonts" of Trypanosoma cruzi, Pneumocystis organisms are now considered as part of an early-diverging lineage of Ascomycetes. As no robust long-term culture model is available, most data on the Pneumocystis cell cycle have stemmed from ultrastructural images of infected mammalian lungs. Although most fungi developing in animals do not complete a sexual cycle in vivo, Pneumocystis species constitute one of a few exceptions. Recently, the molecular identification of several key players in the fungal mating pathway has provided further evidence for the existence of conjugation and meiosis in Pneumocystisorganisms. Dynamic follow-up of stage-to-stage transition as well as studies of stage-specific proteins and/or genes would provide a better understanding of the still hypothetical Pneumocystislife cycle. Although difficult to achieve, stage purification seems a reasonable way forward in the absence of efficient culture systems. This mini-review provides a comprehensive overview of the historical milestones leading to the current knowledge available on the Pneumocystis life cycle.

  4. Life Cycle Collection Management

    Directory of Open Access Journals (Sweden)

    Helen Shenton

    2003-09-01

    Full Text Available Life cycle collection management is a way of taking a long-term approach to the responsible stewardship of the British Library's collections and is one of the Library's strategic strands. It defines the different stages in a collection item's existence over time. These stages range from selection and acquisitions processing, cataloguing and press marking, through to preventive conservation, storage and retrieval. Life cycle collection management seeks to identify the costs of each stage in order to show the economic interdependencies between the phases over time. It thereby aims to demonstrate the long-term consequences of what the library takes into its collections, by making explicit the financial and other implications of decisions made at the beginning of the life cycle for the next 100 plus years. This paper describes the work over the past year at the British Library on this complex and complicated subject. It presents the emerging findings and suggests how it can be used for practical reasons (by individual curators and selectors and for economic, governance and political purposes. The paper describes the next steps in the project, for example, on a predictive data model. The British Library is seeking to benchmark itself against comparable organisations in this area. It intends to work with others on specific comparison for example, of life cycle costing of electronic and paper journals, as a prelude to eliding digital and 'traditional' formats.

  5. Apoptosis and cell cycle

    Directory of Open Access Journals (Sweden)

    Petrović Marija

    2014-01-01

    Full Text Available Apoptosis, a form of programmed cell death, is used to eliminate individual cells surrounded by normal cell population. It is a controlled way of cell death in which the cell actively participates by conducting precise, gene-regulated program of self-destruction, that is, cell 'suicide.' Active synthesis of macromolecules is necessary during this process. Death of individual cells is necessary to maintain a balance in living systems, so the process of apoptosis is continuously present in the body, which allows normal development, tissue homeostasis, and many other physiological processes. The molecular mechanisms that regulate apoptosis are functionally linked to other cellular mechanisms, such as control of the cell cycle, cell proliferation and differentiation, genomic stability and cellular metabolism. Damage to the DNA molecule, caused both spontaneously and under the influence of various chemical and physical agents, leads to the cell cycle arrest and activation of mechanisms that repair the damage. Depending on the type and extent of the damage, the cell either continues progression through the cell cycle, or activates the mechanisms that lead to apoptosis. Disturbances in the regulation of apoptosis and cell cycle present the molecular and biological basis of many diseases. Because of the importance of these processes during the development and progression of tumors, their use as biological markers is one of the main strategies in the formation of therapeutic approaches for the treatment of cancer.

  6. Privatization and nationalization cycles

    OpenAIRE

    Chang, Roberto; Hevia, Constantino; Loayza, Norman

    2009-01-01

    This paper studies the cycles of nationalization and privatization in resource-rich economies as a prime instance of unstable institutional reform. The authors discuss the available evidence on the drivers and consequences of privatization and nationalization, review the existing literature, and present illustrative case studies. This leads to the main contribution of the paper: a static a...

  7. Re-Cycling

    Science.gov (United States)

    Brown, Robert W.; Covault, Corbin E.

    2015-01-01

    An old comedy routine on Saturday Night Live by Father Guido Sarducci introduced a "Five-Minute University," because five minutes is all that's remembered after graduation anyway. In counterpoint, we discuss "cycling," a teaching method for memory enhancement. Our principal implementation consists of offering a simple version…

  8. The Science of Cycling

    Science.gov (United States)

    Crompton, Zoe; Daniels, Shelley

    2014-01-01

    Children are engaged by finding out about science in the real world (Harlen, 2010). Many children will be cyclists or will have seen or heard about the success of British cyclists in the Olympics and the Tour de France. This makes cycling a good hook to draw children into learning science. It is also a good cross-curricular topic, with strong…

  9. The Geologic Nitrogen Cycle

    Science.gov (United States)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  10. Analysis of hybrid viscous damper by real time hybrid simulations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Ou, Ge; Høgsberg, Jan Becker

    2016-01-01

    Results from real time hybrid simulations are compared to full numerical simulations for a hybrid viscous damper, composed of a viscous dashpot in series with an active actuator and a load cell. By controlling the actuator displacement via filtered integral force feedback the damping performance...... of the hybrid viscous damper is improved, while for pure integral force feedback the damper stroke is instead increased. In the real time hybrid simulations viscous damping is emulated by a bang-bang controlled Magneto-Rheological (MR) damper. The controller activates high-frequency modes and generates drift...... in the actuator displacement, and only a fraction of the measured damper force can therefore be used as input to the investigated integral force feedback in the real time hybrid simulations....

  11. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on

  12. Hybrid approaches to physiologic modeling and prediction

    Science.gov (United States)

    Olengü, Nicholas O.; Reifman, Jaques

    2005-05-01

    This paper explores how the accuracy of a first-principles physiological model can be enhanced by integrating data-driven, "black-box" models with the original model to form a "hybrid" model system. Both linear (autoregressive) and nonlinear (neural network) data-driven techniques are separately combined with a first-principles model to predict human body core temperature. Rectal core temperature data from nine volunteers, subject to four 30/10-minute cycles of moderate exercise/rest regimen in both CONTROL and HUMID environmental conditions, are used to develop and test the approach. The results show significant improvements in prediction accuracy, with average improvements of up to 30% for prediction horizons of 20 minutes. The models developed from one subject's data are also used in the prediction of another subject's core temperature. Initial results for this approach for a 20-minute horizon show no significant improvement over the first-principles model by itself.

  13. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  14. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Rönnkö, M.; Ravn, Anders Peter; Sere, K.

    2003-01-01

    In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time-derivatives in modell......In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time......-derivatives in modelling continuous-time dynamics. The generalized differential action has an intuitively appealing predicate transformer semantics, which we show to be both conjunctive and monotonic. In addition, we show that differential actions blend smoothly with conventional actions in action systems, even under...... parallel composition. Moreover, as the strength of the action system formalism is the support for stepwise development by refinement, we investigate refinement involving a differential action. We show that, due to the predicate transformer semantics, standard action refinement techniques apply also...

  15. Overview on hybrid propulsion

    Science.gov (United States)

    Calabro, M.

    2011-10-01

    Aside of research works, this historical survey shows propulsion units used by students for small satellites and for gas generation, or those for the Space Ship One, even if LOx/HTPB was studied and tested in large motors for its potential very low cost; however, this combination highlights a series of technical problems without any performance advantage over the existing LOx/Kerosene family and never been operational for ETO applications. The particularity of hybrid propulsion is to use the state-of-the-art of both liquids and solids; the only show stopper is the propellant itself. The past work focused on LOx/HTPB (selected for its low cost) appears to be a dead-end (combustion problems and global low performances resulting from a high level of residuals). The solution that appears through the past experience is the addition of hydrides to a binder (HTPB or other) or to a binder and a homogeneous fuel or a mixture of both, with or without others additives; within these solutions some will not present any manufacturing problem and some may have a low cost. Nevertheless, the studies of the following phases have to demonstrate the compatibility of the potential regression rate range with a high-performance global design of a hybrid Motor and the manufacturing at a reasonable cost of a hydride giving a high level of performances.

  16. Hybrid silicon ring lasers

    Science.gov (United States)

    Liang, Di; Fiorentino, Marco; Bowers, John E.; Beausoleil, Raymond G.

    2011-01-01

    Hybrid silicon platform provides a solution to integrate active components (lasers, amplifiers, photodetectors, etc.) with passive ones on the same silicon substrate, which can be used for building an optical interconnect system. Owing to the advantages in footprint, power consumption, and high-speed modulation, hybrid silicon microring lasers have been demonstrated as a potential candidate for on-chip silicon light source. In this paper we review the progress to improve the performance of recently demonstrated compact microring lasers with ring diameter of 50 μm. A simple approach to enhance optical mode and electron-hole recombination, which results in threshold reduction and efficiency improvement is developed. This is done by appropriately undercutting the multiple quantum well (MQW) region to force carriers to flow towards the outer edge of the microring for better gain/optical mode overlap. We observe a reduction of the threshold of over 20% and up to 80% output power enhancement. The model and the experimental results highlight the benefits, as well as the negative effects from excessive undercutting, including lower MQW confinement, higher modal loss and higher thermal impedance. A design rule for MQW undercutting is therefore provided. Application as on-chip optical interconnects is discussed from a system perspective.

  17. Hybrid microcircuit intraconnection processes

    Energy Technology Data Exchange (ETDEWEB)

    Bonham, H.B.

    1976-08-01

    Hybrid intraconnections join thin film networks and applique components into an electrically functional hybrid microcircuit (HMC). Applique components were intraconnected with thermocompression (TC) bonds to chromium/gold metallized thin film networks. The project determined critical processes, material parameters, quality criteria, and characterization techniques. The program began on July 1, 1970, and initial efforts consisted of organizing the development program and forecasting needed equipment and manpower. The total time schedule was then PERT-charted. Gold beam-lead devices, gold wire, and chromium/gold films had already been selected for these intraconnection technologies. Thermocompression bonding was developed to provide intraconnections between the HMC gold conductor metallization and gold beam-lead active devices, gold plated external leads, and gold terminated applique devices, such as capacitors. An optimum combination of bonding parameters based on the fundamental physics of the process was developed. This philosophy required bonding equipment to be thoroughly characterized so that the value of bonding parameters (such as force and temperature) indicated on the bonder could be translated into measurable values of the force and temperature within the bond zone.

  18. Fuel economy of hybrid fuel-cell vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  19. High Output Piezo/Triboelectric Hybrid Generator

    Science.gov (United States)

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-03-01

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA.cm-2, and average power density of ~4.44 mW.cm-2. The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics.

  20. Multilayer Approach for Advanced Hybrid Lithium Battery

    KAUST Repository

    Ming, Jun

    2016-06-06

    Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode -1 (vs the total mass of electrode) or 1866 mAh gs -1 (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs -1). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode -1 at 0.25C and 376 mAh gcathode -1 at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications. © 2016 American Chemical Society.

  1. Design Principles for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system -Hybrid Ventilation. ....... The hybrid ventilation concepts, design challenges and - principles are discussed and illustrated by four building examples....

  2. Electric-hybrid-vehicle simulation

    Science.gov (United States)

    Pasma, D. C.

    The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.

  3. PERFORMANCE OF PWANI HYBRID MAIZE

    African Journals Online (AJOL)

    1993-05-14

    May 14, 1993 ... ABSTRACT. New maize hybrids require specific agronomic recommendations, especially when currently available recommendations are for a low yield potential, open pollinated cultivar. A study was conducted to investigate the performance of a new maize cultivar, Pwani Hybrid I (PHI) at different nitrogen ...

  4. A new hybrid Christmas tree

    Science.gov (United States)

    William B. Critchfield

    1965-01-01

    A hybrid pine developed in the course of forest-tree improvement research. by the U. S. Forest Service has caught the interest of Christmas tree growers. It is a hybrid between two races of lodgepole pine (Pinus contorta) produced at the Institute of Forest Genetics at Placerville, California, and has some desirable attributes for use as a Christmas...

  5. DNA-based hybrid catalysis

    NARCIS (Netherlands)

    Rioz-Martínez, Ana; Roelfes, Gerard

    In the past decade, DNA-based hybrid catalysis has merged as a promising novel approach to homogeneous (asymmetric) catalysis. A DNA hybrid catalysts comprises a transition metal complex that is covalently or supramolecularly bound to DNA. The chiral microenvironment and the second coordination

  6. Hybrid Charmonium from Lattice QCD

    CERN Document Server

    Luo, X Q

    2006-01-01

    We review our recent results on the JPC = 0¡¡ exotic hybrid charmonium mass and JPC = 0¡+, 1¡¡ and 1++ nonexotic hybrid charmonium spectrum from anisotropic improved lattice QCD and discuss the relevance to the recent discovery of the Y(4260) state and future experimental search for other states.

  7. The governance of hybrid organisations

    DEFF Research Database (Denmark)

    Spear, Roger; Cornforth, Chris

    2010-01-01

    The focus of this chapter is on the governance of third sector organizations (TSOs) and the challenges that are raised by hybridity. In particular it will focus on the question how does hybridity affect governance structures and processes and the challenges that governing bodies face?...

  8. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  9. Detecting hybridization using ancient DNA

    Science.gov (United States)

    Schaefer, Nathan K.; Shapiro, Beth; Green, Richard E.

    2016-01-01

    It is well established that related species hybridize and that this can have varied but significant effects on speciation and environmental adaptation. It should therefore come as no surprise that hybridization is not limited to species that are alive today. In the last several decades, advances in technologies for recovering and sequencing DNA from fossil remains have enabled the assembly of high-coverage genome sequences for a growing diversity of organisms, including many that are extinct. Thanks to the development of new statistical approaches for detecting and quantifying admixture from genomic data, genomes from extinct populations have proven useful both in revealing previously unknown hybridization events and informing the study of hybridization between living organisms. Here, we review some of the key recent statistical innovations for detecting ancient hybridization using genome-wide sequence data, and discuss how these innovations have revised our understanding of human evolutionary history. PMID:26826668

  10. Biogas production from maize hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Oslaj, Matjaz; Mursec, Bogomir; Vindis, Peter [University of Maribor, Faculty of Agriculture and Life Sciences, Pivola 10, Maribor (Slovenia)

    2010-11-15

    There is an increasing world wide demand for energy crops and animal manures for biogas production. This research project was aimed at optimising anaerobic digestion of maize, using a laboratory digester, and finding out which maturity class of corn and which hybrid of a particular maturity class produces the highest rate of biogas and biomethane. Also the chemical composition of gases was studied. The corn hybrids of FAO 300 - FAO 400, FAO 400 - FAO 500 and FAO 500 - FAO 600 maturity class were tested. Experiments took place in the lab for 35 days within four series of experiments with four repetitions according to the method DIN 38 414. Results show that the highest maturity class of corn (FAO 400, FAO 500) increases the amount of biomethane. The greatest gain of biomethane per hectare according to maturity class is found with hybrids of FAO 400 (7768.4 Nm{sup 3} ha{sup -1}) and FAO 500 (7050.1 Nm{sup 3} ha{sup -1}) maturity class. Among the corn hybrids of maturity class FAO 300 - FAO 400, the hybrid PR38F70 gives the greatest production of biomethane per hectare (7646.2 Nm{sup 3} ha{sup -1}). Among the hybrids of maturity class FAO 400 - FAO 500, the greatest amount of biomethane was achieved by the hybrid PIXXIA (9440.6 Nm{sup 3} ha{sup -1}). Among the hybrids of maturity class FAO 500 - FAO 600 the hybrid CODISTAR (FAO 500) gives the highest production of biomethane (8562.7 Nm{sup 3} ha{sup -1}). Production of biomethane varied with corn hybrids from 50 to 60% of produced biogas. (author)

  11. Empirical fuel consumption and CO2 emissions of plug-in hybrid electric vehicles

    OpenAIRE

    Plötz, Patrick; Funke, Simon; Jochem, Patrick

    2017-01-01

    Plug-in hybrid electric vehicles (PHEVs) combine electric and conventional propulsion. Official fuel consumption values of PHEVs are based on standardized driving cycles, which show a growing discrepancy with real-world fuel consumption. However, no comprehensive empirical results on PHEV fuel consumption are available, and the discrepancy between driving cycle and empirical fuel consumption has been conjectured to be large for PHEV. Here, we analyze real-world fuel consumption data from 2,00...

  12. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    Science.gov (United States)

    Saakes, Michel; Kluiters, Edwin; Schmal, Dick; Mourad, Salem; ten Have, Peter T. J. H.

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module constructed, which is at the moment 2.5 times heavier than required for the HEV operation studied, can be optimised to meet the requirements.

  13. Development of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  14. Archaea in biogeochemical cycles.

    Science.gov (United States)

    Offre, Pierre; Spang, Anja; Schleper, Christa

    2013-01-01

    Archaea constitute a considerable fraction of the microbial biomass on Earth. Like Bacteria they have evolved a variety of energy metabolisms using organic and/or inorganic electron donors and acceptors, and many of them are able to fix carbon from inorganic sources. Archaea thus play crucial roles in the Earth's global geochemical cycles and influence greenhouse gas emissions. Methanogenesis and anaerobic methane oxidation are important steps in the carbon cycle; both are performed exclusively by anaerobic archaea. Oxidation of ammonia to nitrite is performed by Thaumarchaeota. They represent the only archaeal group that resides in large numbers in the global aerobic terrestrial and marine environments on Earth. Sulfur-dependent archaea are confined mostly to hot environments, but metal leaching by acidophiles and reduction of sulfate by anaerobic, nonthermophilic methane oxidizers have a potential impact on the environment. The metabolisms of a large number of archaea, in particular those dominating the subsurface, remain to be explored.

  15. Life Cycle Sustainability Dashboard

    DEFF Research Database (Denmark)

    Traverso, Marzia; Finkbeiner, Matthias; Jørgensen, Andreas

    2012-01-01

    One method to assess the sustainability performance of products is life cycle sustainability assessment (LCSA), which assesses product performance considering the environmental,economic, and social dimensions of the life cycle. The results of LCSA can be used to compare different products...... or to support decision making toward sustainable production and consumption. In both cases, LCSA results could be too disaggregated and consequently too difficult to understand and interpret by decision makers. As non-experts are usually the target audience of experts and scientists, and are also involved...... in decision-making processes, the necessity for a straightforward but comprehensive presentation of LCSA results is becoming strategically important. The implementation of the dashboard of sustainability proposed in this article offers a possible solution. An outstanding characteristic of the dashboard...

  16. Characteristics of track cycling.

    Science.gov (United States)

    Craig, N P; Norton, K I

    2001-01-01

    Track cycling events range from a 200 m flying sprint (lasting 10 to 11 seconds) to the 50 km points race (lasting approximately 1 hour). Unlike road cycling competitions where most racing is undertaken at submaximal power outputs, the shorter track events require the cyclist to tax maximally both the aerobic and anaerobic (oxygen independent) metabolic pathways. Elite track cyclists possess key physical and physiological attributes which are matched to the specific requirements of their events: these cyclists must have the appropriate genetic predisposition which is then maximised through effective training interventions. With advances in technology it is now possible to accurately measure both power supply and demand variables under competitive conditions. This information provides better resolution of factors that are important for training programme design and skill development.

  17. Carbon cycle makeover

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Kump, Lee R.

    2013-01-01

    In 1845, the French chemist and mining engineer Jacques-Joseph Ebelman figured out why Earth's atmosphere contains oxygen (1). Oxygen is produced by plants during photosynthesis, but almost all of this oxygen is used again in respiration. Ebelman reasoned that small amounts of organic matter rema...... geochemical cycle. But Earth is an old planet, and oxygen levels have changed through time (2). On page 540 of this issue, Schrag et al. (3) challenge the most commonly used geochemical approach to assess long-term changes in the coupled oxygen and carbon cycles....... remaining in sediments after respiration leave a residual of oxygen in the atmosphere. The source of oxygen to the atmosphere represented by organic matter burial is balanced by oxygen sinks associated with rock weathering and chemical reaction with volcanic gases. This is the long-term carbon and oxygen...

  18. Cycling and erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Ina Šibli

    2015-01-01

    Full Text Available Abstract: For many years medical studies have implicated bicycle riding is causing erectile dysfunction (ED in association with higher perineal pressure. This review focuses upon epidemiological studies assesing the impact of cycling on ED, pathogenesis of ED in cyclists  as well as on research considering changes of perineal pressure, hemodynamics, and nerve conduction when cycling. Investigestors were also interested in different saddle sizes, materials and geometry and also in the impact of saddle and riders position on changes to the perineum. Research on female cyclists is very limited but indicates similar genitourinary disorders as in male cyclists. We also review  research on preventative and therapeutic options regarding bicycle riding and ED.

  19. Assessing Cycling Participation in Australia

    Directory of Open Access Journals (Sweden)

    Chris Rissel

    2013-01-01

    Full Text Available Planning and evaluating cycling programs at a national or state level requires accurate measures of cycling participation. However, recent reports of cycling participation have produced very different estimates. This paper examines the reported rates of cycling in five recent population surveys of cycling. Three surveys (one national and two from Sydney asking respondents when they last rode a bicycle generated cycling participation (cycled in the past year estimates of 29.7%, 34.1% and 28.9%. Two other national surveys which asked participants to recall (unprompted any physical activity done for exercise, recreation or sport in the previous 12 months, estimated cycling in the past year as 11.1% and 6.5%. While unprompted recall of cycling as a type of physical activity generates lower estimates of cycling participation than specific recall questions, both assessment approaches produced similar patterns of cycling by age and sex with both approaches indicating fewer women and older adults cycling. The different question styles most likely explain the substantial discrepancies between the estimates of cycling participation. Some differences are to be expected due to sampling variability, question differences, and regional variation in cycling.

  20. [Microbial geochemical calcium cycle].

    Science.gov (United States)

    Zavarzin, G A

    2002-01-01

    The participation of microorganisms in the geochemical calcium cycle is the most important factor maintaining neutral conditions on the Earth. This cycle has profound influence on the fate of inorganic carbon, and, thereby, on the removal of CO2 from the atmosphere. The major part of calcium deposits was formed in the Precambrian, when prokaryotic biosphere predominated. After that, calcium recycling based on biogenic deposition by skeletal organisms became the main process. Among prokaryotes, only a few representatives, e.g., cyanobacteria, exhibit a special calcium function. The geochemical calcium cycle is made possible by the universal features of bacteria involved in biologically mediated reactions and is determined by the activities of microbial communities. In the prokaryotic system, the calcium cycle begins with the leaching of igneous rock predominantly through the action of the community of organotrophic organisms. The release of carbon dioxide to the soil air by organotrophic aerobes leads to leaching with carbonic acid and soda salinization. Under anoxic conditions, of major importance is the organic acid production by primary anaerobes (fermentative microorganisms). Calcium carbonate is precipitated by secondary anaerobes (sulfate reducers) and to a smaller degree by methanogens. The role of the cyanobacterial community in carbonate deposition is exposed by stromatolites, which are the most common organo-sedimentary Precambrian structures. Deposition of carbonates in cyanobacterial mats as a consequence of photoassimilation of CO2 does not appear to be a significant process. It is argued that carbonates were deposited at the boundary between the "soda continent", which emerged as a result of subaerial leaching with carbonic acid, and the ocean containing Ca2+. Such ecotones provided favorable conditions for the development of the benthic cyanobacterial community, which was a precursor of stromatolites.

  1. Unemployment and Business Cycles

    OpenAIRE

    Lawrence J. Christiano; Martin Eichenbaum; Mathias Trabandt

    2013-01-01

    We develop and estimate a general equilibrium search and matching model that accounts for key business cycle properties of macroeconomic aggregates, including labor market variables. In sharp contrast to leading New Keynesian models, we do not impose wage inertia. Instead we derive wage inertia from our specification of how firms and workers negotiate wages. Our model outperforms a variant of the standard New Keynesian Calvo sticky wage model. According to our estimated model, there is a crit...

  2. Skills, sunspots and cycles

    DEFF Research Database (Denmark)

    Busato, Francesco; Marchetti, Enrico

    This paper explores the ability of a class of one-sector,multi-input models to generate indeterminate equilibrium paths, andendogenous cycles, without relying on factors' hoarding. The modelpresents a novel theoretical economic mechanism that supportssunspot-driven expansions without requiring...... upward sloping labordemand schedules. Its distinctive characteristic is that the skillcomposition of aggregate labor demand drives expansionary i.i.d.demand shocks. Next, the model explains the labor market dynamicsfrom the supply side, while endogenizing the capital productivityresponse to changes...

  3. Injuries in Competitive Cycling.

    Science.gov (United States)

    Bohlmann, J T

    1981-05-01

    In brief: There are relatively few injuries in competitive cycling, and abrasions are the most common. In this study most injuries occurred to the left side of the cyclist, and most common causes were flat tires and colliding with other cyclists. The number of injuries decreased as the cyclist gained more experience. Preventive measures include keeping the bicycle in top mechanical condition, wearing strong, durable clothing and a helmet, and knowing how to fall.

  4. Centrifugal Gas Compression Cycle

    Science.gov (United States)

    Fultun, Roy

    2002-11-01

    A centrifuged gas of kinetic, elastic hard spheres compresses isothermally and without flow of heat in a process that reverses free expansion. This theorem follows from stated assumptions via a collection of thought experiments, theorems and other supporting results, and it excludes application of the reversible mechanical adiabatic power law in this context. The existence of an isothermal adiabatic centrifugal compression process makes a three-process cycle possible using a fixed sample of the working gas. The three processes are: adiabatic mechanical expansion and cooling against a piston, isothermal adiabatic centrifugal compression back to the original volume, and isochoric temperature rise back to the original temperature due to an influx of heat. This cycle forms the basis for a Thomson perpetuum mobile that induces a loop of energy flow in an isolated system consisting of a heat bath connectable by a thermal path to the working gas, a mechanical extractor of the gas's internal energy, and a device that uses that mechanical energy and dissipates it as heat back into the heat bath. We present a simple experimental procedure to test the assertion that adiabatic centrifugal compression is isothermal. An energy budget for the cycle provides a criterion for breakeven in the conversion of heat to mechanical energy.

  5. Hybrid Heat Exchangers

    Science.gov (United States)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  6. Nanoporous hybrid electrolytes

    KAUST Repository

    Schaefer, Jennifer L.

    2011-01-01

    Oligomer-suspended SiO2-polyethylene glycol nanoparticles are studied as porous media electrolytes. At SiO2 volume fractions, , bracketing a critical value y ≈ 0.29, the suspensions jam and their mechanical modulus increase by more than seven orders. For >y, the mean pore diameter is close to the anion size, yet the ionic conductivity remains surprisingly high and can be understood, at all , using a simple effective medium model proposed by Maxwell. SiO 2-polyethylene glycol hybrid electrolytes are also reported to manifest attractive electrochemical stability windows (0.3-6.3 V) and to reach a steady-state interfacial impedance when in contact with metallic lithium. © 2010 The Royal Society of Chemistry.

  7. Hybrid vehicle control

    Science.gov (United States)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  8. Multi effect desalination and adsorption desalination (MEDAD): A hybrid desalination method

    KAUST Repository

    Shahzad, Muhammad Wakil

    2014-11-01

    This paper presents an advanced desalination cycle that hybridizes a conventional multi-effect distillation (MED) and an emerging yet low-energy adsorption cycle (AD). The hybridization of these cycles, known as MED + AD or MEDAD in short, extends the limited temperature range of the MED, typically from 65 °C at top-brine temperature (TBT) to a low-brine temperature (LBT) of 40 °C to a lower LBT of 5 °C, whilst the TBT remains the same. The integration of cycles is achieved by having vapor uptake by the adsorbent in AD cycle, extracting from the vapor emanating from last effect of MED. By increasing the range of temperature difference (DT) of a MEDAD, its design can accommodate additional condensation-evaporation stages that capitalize further the energy transfer potential of expanding steam. Numerical model for the proposed MEDAD cycle is presented and compared with the water production rates of conventional and hybridized MEDs. The improved MEDAD design permits the latter stages of MED to operate below the ambient temperature, scavenging heat from the ambient air. The increase recovery of water from the seawater feed may lead to higher solution concentration within the latter stages, but the lower saturation temperatures of these stages mitigate the scaling and fouling effects. © 2014 Elsevier Ltd. All rights reserved.

  9. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  10. Terrestrial Carbon Cycle Variability.

    Science.gov (United States)

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2 , temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y -1 ) with respect to a large and uncertain background (123 +/- 4 Pg-C y -1 ), and

  11. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  12. Prospecting of popcorn hybrids for resistance to fall armyworm.

    Science.gov (United States)

    Crubelati-Mulati, N C S; Scapim, C A; Albuquerque, F A; Amaral Junior, A T; Vivas, M; Rodovalho, M A

    2014-08-26

    The fall armyworm, Spodoptera frugiperda, is the pest that causes the greatest economic losses for both common corn and popcorn crops, and the use of resistant plant genotypes is an important tool for integrated pest management. The goal of the present study was to evaluate the damage caused by S. frugiperda on single-cross popcorn hybrids under field conditions with natural infestation as well as to study the effect of 11 popcorn hybrids on the S. frugiperda life cycle under laboratory conditions. A completely randomized block design with 4 replicates was used for the field experiment, and a completely randomized design with 10 replicates was used for the laboratory experiment. In the field experiment, the damage caused by fall armyworm, grain yield, and popping expansion were quantified, and a diallel analysis was performed to select the best hybrids. For the laboratory experiment, caterpillars were obtained from laboratory cultures kept on an artificial diet and were fed with leaves from the 11 hybrids. Hybrids P7.0 x P9.4, P7.1 x P9.6, P7.2.0 x P9.3, P7.4.0 x P9.1 and P7.4.1 x P9.4 exhibited negative specific combining ability for injury by fall armyworm and positive specific combining ability for yield and popping expansion. In the laboratory experiment, the hybrids influenced the mean larval stage duration, mean larval mass, final larval mass, pupal stage duration, mean pupal mass, and adult longevity.

  13. Development of a highly efficient burnable poison matrix material for cycle lifetime extension

    Energy Technology Data Exchange (ETDEWEB)

    Tulenko, J.S. [Florida Univ., 202 Nuclear Science Center, Gainesville, FL (United States); Baney, R.H.; Pressley, L. [Florida Univ., Gainesville, FL (United States)

    2001-07-01

    The University of Florida (UF) is carrying out basic research on a new class of thermally stable boron containing materials that from early indications appear to have special properties that will greatly enhance the performance of Burnable Poison Rod Assemblies (BPRA(tm)s) and address one of the major disadvantages of the use of boron shims. The new class of polymer materials, poly-acetylenic carbonyl-siloxane, termed ''Carborane'', were developed by Dr. T. Keller of the Naval Research Laboratory (NRL). Dr. T. Keller is cooperating in this research effort. Other classes of boron containing polymer materials are also under review. Displacement of water by the boron shims incurs an ''end of cycle reactivity penalty'' since at the end of cycle the moderator coefficient is strongly negative. ''Carborane'' has the property of being able to contain a tailored amount of boron while maintaining an extremely high hydrogen content, and at the same time being extremely stable to high temperatures and to neutron irradiation. Tests run by the NRL have shown that ''Carborane'' is stable to about 1000 C. The high hydrogen and carbon content contained in the ''Carborane'' Polymer offsets the large fuel cycle reactivity penalty which occurs with current generation BPRA(tm)s, as a result of the reactivity loss resulting from the BPRA(tm)s displacement of moderator water in the guide tubes of Pressurized Water Reactor (PWR) assemblies. Current generation BPRA utilize B{sub 4}C in an Al{sub 2}O{sub 3} matrix. In an attempt to minimize the reactivity penalty from water displacement, Westinghouse has developed a costly annular BPRA, called the Wet Annular Burnable Absorber (WABA) assembly. This burnable poison rod design reduces the moderator displacement by 22% by the use of a central annular water hole. The ''Carborane'' matrix proposed by the University of Florida

  14. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Valero, O.J.

    1996-04-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  15. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  16. Orfej: New NS sunflower hybrid

    Directory of Open Access Journals (Sweden)

    Cvejić Sandra

    2010-01-01

    Full Text Available New sunflower hybrid Orfej was developed by breeding process in the Institute of Field and Vegetable Crops, Novi Sad. Hybrid has high yield potential, excellent seed quality, adaptive to grown in different agro-ecological conditions and highly resistant and tolerant to main diseases and vermin in the region. Hybrid is resistant to all races of downy mildew (Plasmopara halstedii and highly tolerant to root and stem forms of white rot (Sclerotinia sclerotiorum. This work shows the results of seed yield from the trials of the Department for plant variety registration and protection and the results of Small plot trials of the Institute of Field and Vegetable Crops.

  17. Hybrid Vehicle Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  18. Menstrual cycle pattern and fertility

    DEFF Research Database (Denmark)

    Kolstad, Henrik A.; Bonde, Jens Peter; Hjøllund, Niels Henrik

    1999-01-01

    OBJECTIVE: To characterize how the menstrual cycle pattern relates to fertility regardless of potential biases caused by inappropriate coital timing during the menstrual cycle or early embryonal loss. DESIGN: Prospective follow-up study. SETTING: Healthy couples recruited throughout Denmark...

  19. National Urea Cycle Disorders Foundation

    Science.gov (United States)

    ... INGESTING HIGH-PROTEIN FOODS AND PROTEIN SUPPLEMENTS FOR BODYBUILDING : Symptoms of urea cycle disorder went unrecognized as young mother, Meegan Hefford, prepared for a bodybuilding competition. Undiagnosed urea cycle disorders can be triggered ...

  20. Dynamic modelling and characterisation of a solid oxide fuel cell integrated in a gas turbine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thorud, Bjoern

    2005-07-01

    This thesis focuses on three main areas within the field of SOFC/GT-technology: 1) Development of a dynamic SOFC/GT model. 2) Model calibration and sensitivity study. 3) Assessment of the dynamic properties of a SOFC/GT power plant. The SOFC/GT model developed in this thesis describes a pressurised tubular Siemens Westinghouse-type SOFC, which is integrated in a gas turbine cycle. The process further includes a plate-fin recuperator for stack air preheating, a prereformer, an anode exhaust gas recycling loop for steam/carbon-ratio control, an afterburner and a shell-tube heat exchanger for air preheating. The fuel cell tube, the recuperator and the shell-tube heat exchanger are spatially distributed models. The SOFC model is further thermally integrated with the prereformer. The compressor and turbine models are based on performance maps as a general representation of the characteristics. In addition, a shaft model which incorporates moment of inertia is included to account for gas turbine transients. The SOFC model is calibrated against experimentally obtained data from a single-cell experiment performed on a Siemens Westinghouse tubular SOFC. The agreement between the model and the experimental results is good. The sensitivity study revealed that the degree of prereforming is of great importance with respect to the axial temperature distribution of the fuel cell. Types of malfunctions are discussed prior to the dynamic behaviour study. The dynamic study of the SOFC/GT process is performed by simulating small and large load changes according to three different strategies; 1) Load change at constant mean fuel cell temperature. 2) Load change at constant turbine inlet temperature. 3) Load change at constant shaft speed. Of these three strategies, the constant mean fuel cell temperature strategy appears to be the most rapid load change method. Furthermore, this strategy implies the lowest degree of thermal cycling, the smoothest fuel cell temperature distribution and

  1. Constitutive heterochromatin in chromosomes of duck hybrids and goose hybrids.

    Science.gov (United States)

    Wójcik, E; Smalec, E

    2017-01-01

    Constitutive heterochromatin is a highly condensed fraction of chromatin in chromosomes. It is characterized by a high degree of polymorphism. Heterochromatin is located in the centromeric, telomeric, and interstitial parts of chromosomes. We used the CBG ( C: banding using B: arium hydroxide by G: iemsa) staining technique to identify heterochromatin in chromosomes. Analysis of karyotypes of F1 hybrids resulting from intergeneric hybridization of ducks (A. platyrhynchos × C. moschata) and interspecific crosses of geese (A. anser × A. cygnoides) were used to compare the karyotypes of 2 species of duck and 2 species of geese, as well as to compare the hybrids with the parent species. The localization of C-bands and their size were determined. In the duck hybrid, greater amounts of heterochromatin were noted in the homologous chromosomes from the duck A. platyrhynchos than in the chromosomes from the duck C. moschata. In the goose hybrid more heterochromatin was observed in the homologous chromosomes from the goose A. cygnoides than in the chromosomes from the goose A. anser. Comparison of chromosomes from the duck hybrid with chromosomes of the ducks A. platyrhynchos and C. moschata revealed nearly twice as much constitutive heterochromatin in the chromosomes of the hybrid. When chromosomes from the goose hybrid were compared with those of the geese A. anser and A. cygnoides, differences in the average content of heterochromatin were observed on only a few chromosomes. © 2016 Poultry Science Association Inc.

  2. Avian predation pressure as a potential driver of periodical cicada cycle length

    Science.gov (United States)

    Walter E. Koenig; Andrew M. Liebhold

    2013-01-01

    The extraordinarily long life cycles, synchronous emergences at 13- or 17-year intervals, and complex geographic distribution of periodical cicadas (Magicicada spp.) in eastern North America are a long-standing evolutionary enigma. Although a variety of factors, including satiation of aboveground predators and avoidance of interbrood hybridization,...

  3. FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report

    Energy Technology Data Exchange (ETDEWEB)

    Barnitt, R.

    2011-01-01

    This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

  4. Modeling and Control of Cogeneration Power Plants: A Hybrid System Approach

    NARCIS (Netherlands)

    G. Ferrari-Trecate (Giancarlo); E. Gallestey (Eduardo); P. Letizia (Paolo); M. Spedicato (Matteo); M. Morari (Manfred); M. Antoine (Marc)

    2004-01-01

    textabstractIn this paper the short term scheduling optimization of a combined cycle power plant is accomplished by exploiting hybrid systems, i.e. systems evolving according to continuous dynamics, discrete dynamics, and logic rules. Discrete features of a power plant are, for instance, the

  5. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.

    Science.gov (United States)

    Bender, Frank A; Bosse, Thomas; Sawodny, Oliver

    2014-09-01

    Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Transcription termination in the plasmid/virus hybrid pSSVx from Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Contursi, Patrizia; Cannio, Raffaele; She, Qunxin

    2010-01-01

    The pSSVx from Sulfolobus islandicus, strain REY15/4, is a hybrid between a plasmid and a fusellovirus. A systematic study previously performed revealed the presence of nine major transcripts, the expression of which was differentially and temporally regulated over the growth cycle of S. islandic...

  7. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua

    2013-03-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. © 2012 Elsevier Ltd.

  8. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  9. Thermal Properties of Hybrid Carbon Nanotube/Carbon Fiber Polymer

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Luong, Hoa; Ratcliffe, James G.; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    Carbon fiber reinforced polymer (CFRP) composites possess many advantages for aircraft structures over conventional aluminum alloys: light weight, higher strength- and stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low thermal and electrical conductivities of CFRP composites are deficient in providing structural safety under certain operational conditions such as lightning strikes. One possible solution to these issues is to interleave carbon nanotube (CNT) sheets between conventional carbon fiber (CF) composite layers. However, the thermal and electrical properties of the orthotropic hybrid CNT/CF composites have not been fully understood. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel (Registered Trademark) IM7/8852 prepreg. The CNT sheets were infused with a 5% solution of a compatible epoxy resin prior to composite fabrication. Orthotropic thermal and electrical conductivities of the hybrid polymer composites were evaluated. The interleaved CNT sheets improved the in-plane thermal conductivity of the hybrid composite laminates by about 400% and the electrical conductivity by about 3 orders of magnitude.

  10. A high-voltage rechargeable magnesium-sodium hybrid battery

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yifei; An, Qinyou; Cheng, Yingwen; Liang, Yanliang; Ren, Yang; Sun, Cheng-Jun; Dong, Hui; Tang, Zhongjia; Li, Guosheng; Yao, Yan

    2017-04-01

    Growing global demand of safe and low-cost energy storage technology triggers strong interests in novel battery concepts beyond state-of-art Li-ion batteries. Here we report a high-voltage rechargeable Mg–Na hybrid battery featuring dendrite-free deposition of Mg anode and Na-intercalation cathode as a low-cost and safe alternative to Li-ion batteries for large-scale energy storage. A prototype device using a Na3V2(PO4)3 cathode, a Mg anode, and a Mg–Na dual salt electrolyte exhibits the highest voltage (2.60 V vs. Mg) and best rate performance (86% capacity retention at 10C rate) among reported hybrid batteries. Synchrotron radiation-based X-ray absorption near edge structure (XANES), atomic-pair distribution function (PDF), and high-resolution X-ray diffraction (HRXRD) studies reveal the chemical environment and structural change of Na3V2(PO4)3 cathode during the Na ion insertion/deinsertion process. XANES study shows a clear reversible shift of vanadium K-edge and HRXRD and PDF studies reveal a reversible two-phase transformation and V–O bond length change during cycling. The energy density of the hybrid cell could be further improved by developing electrolytes with a higher salt concentration and wider electrochemical window. This work represents a significant step forward for practical safe and low-cost hybrid batteries.

  11. GEOSS Water Cycle Integrator

    Science.gov (United States)

    Koike, Toshio; Lawford, Richard; Cripe, Douglas

    2013-04-01

    It is critically important to recognize and co-manage the fundamental linkages across the water-dependent domains; land use, including deforestation; ecosystem services; and food-, energy- and health-securities. Sharing coordinated, comprehensive and sustained observations and information for sound decision-making is a first step; however, to take full advantage of these opportunities, we need to develop an effective collaboration mechanism for working together across different disciplines, sectors and agencies, and thereby gain a holistic view of the continuity between environmentally sustainable development, climate change adaptation and enhanced resilience. To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the intergovernmental Group on Earth Observations (GEO) is implementing the Global Earth Observation System of Systems (GEOSS). A component of GEOSS now under development is the "GEOSS Water Cycle Integrator (WCI)", which integrates Earth observations, modeling, data and information, management systems and education systems. GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and inter-agency coordination in Asia and Africa, GEOSS

  12. Conceptual design and analysis of ITM oxy-combustion power cycles.

    Science.gov (United States)

    Mancini, N D; Mitsos, A

    2011-12-28

    Ion transport membrane (ITM)-based oxy-combustion systems could potentially provide zero-emissions power generation with a significantly reduced thermodynamic penalty compared to conventional carbon capture applications. This article investigates ITM-based oxy-combustion power cycles using an intermediate-fidelity model that captures the complex physical coupling between the two systems and accurately accounts for operational constraints. Coupled ITM-cycle simulation reveals hidden design challenges, facilitates the development of novel cycle concepts, and enables accurate assessment of new and existing power cycles. Simulations of various ITM-based zero and partial-emissions power cycles are performed using an intermediate-fidelity ITM model coupled to power cycle models created in ASPEN Plus®. The objectives herein are to analyze the prevalent ITM-based power cycle designs, develop novel design modifications, and evaluate the implementation of reactive ITMs. An assessment of the potential for these ITM power cycles to reduce both the thermodynamic penalty and reactor size associated with ITM air separation technology is conducted. The power cycle simulation and analysis demonstrate the various challenges associated with implementing reactive ITMs; hybridization (the use of both reactive and separation-only ITMs) is necessary in order to effectively utilize the advantages of reactive ITMs. The novel hybrid cycle developed herein displays the potential to reduce the size of the ITM compared to the best separation-only concept while maintaining a comparable First Law efficiency. Next, the merit of implementing partial-emissions cycles is explored based on a proposed linear-combination metric. The results indicate that the tradeoff between the main thermodynamic performance metrics efficiency and CO(2) emissions does not appear to justify the use of partial-emissions cycles.

  13. Hybridization and management of oak populations

    Science.gov (United States)

    Oliver Gailing

    2017-01-01

    Hybridization can result in the transfer of adaptations among species and may contribute to speciation processes. On the other hand, hybridization can also result in a loss of species diversity due to asymmetric gene flow between species (genetic swamping) and in low hybrid fitness. An understanding of the outcomes of interspecific hybridization is crucial for the...

  14. Compositional Modelling of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Strubbe, S.N.

    2005-01-01

    In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete

  15. Life Cycle Inventory Analysis

    DEFF Research Database (Denmark)

    Bjørn, Anders; Moltesen, Andreas; Laurent, Alexis

    2017-01-01

    of different sources. The output is a compiled inventory of elementary flows that is used as basis of the subsequent life cycle impact assessment phase. This chapter teaches how to carry out this task through six steps: (1) identifying processes for the LCI model of the product system; (2) planning......The inventory analysis is the third and often most time-consuming part of an LCA. The analysis is guided by the goal and scope definition, and its core activity is the collection and compilation of data on elementary flows from all processes in the studied product system(s) drawing on a combination...

  16. Elementary cycles of time

    Directory of Open Access Journals (Sweden)

    Dolce Donatello

    2013-09-01

    Full Text Available Elementary particles, i.e. the basic constituents of nature, are characterized by quantum recurrences in time. The flow of time of every physical system can be therefore decomposed in elementary cycles of time. This allows us to enforce the local nature of relativistic time, yielding interesting unified descriptions of fundamental aspects of modern physics, as shown in recent publications. Every particle can be regarded as a reference clock with time resolution of the order of the Compton time particle, many orders of magnitude more accurate than the atomic clocks. Here we report basic implications about the resulting notion of time.

  17. The software life cycle

    CERN Document Server

    Ince, Darrel

    1990-01-01

    The Software Life Cycle deals with the software lifecycle, that is, what exactly happens when software is developed. Topics covered include aspects of software engineering, structured techniques of software development, and software project management. The use of mathematics to design and develop computer systems is also discussed. This book is comprised of 20 chapters divided into four sections and begins with an overview of software engineering and software development, paying particular attention to the birth of software engineering and the introduction of formal methods of software develop

  18. Geomicrobiological cycling of antimony

    Science.gov (United States)

    Kulp, T. R.; Terry, L.; Dovick, M. A.; Braiotta, F.

    2013-12-01

    Microbiologically catalyzed oxidation and reduction of toxic metalloids (e.g., As, Se, and Te) generally proceeds much faster than corresponding abiotic reactions. These microbial transformations constitute biogeochemical cycles that control chemical speciation and environmental behavior of metalloids in aqueous environments. Particular progress has been made over the past two decades in documenting microbiological biotransformations of As, which include anaerobic respiratory reduction of As(V) to As(III), oxidation of As(III) to As(V) linked to chemoautotrophy or photoautotrophy, and cellular detoxification pathways. By contrast, microbial interactions with Sb, As's group 15 neighbor and a toxic element of emerging global concern, are poorly understood. Our work with sediment microcosms, enrichment cultures, and bacterial isolates suggests that prokaryotic metabolisms may be similarly important to environmental Sb cycling. Enrichment cultures and isolates from a Sb-contaminated mine site in Idaho exhibited Sb(V)-dependent heterotrophic respiration under anaerobic conditions and Sb(III)-dependent autotrophic growth in the presence of air. Live, anoxic cultures reduced 2 mM Sb(V) to Sb(III) within 5 d, while no activity occurred in killed controls. Sb(V) reduction was stimulated by lactate or acetate and was quantitatively coupled to the oxidation of lactate. The oxidation of radiolabeled 14C-acetate (monitored by GC-GPC) demonstrated Sb(V)-dependent oxidation to 14CO2, suggesting a dissimilatory process. Sb(V) dependent growth in cultures was demonstrated by direct counting. Microbiological reduction of Sb(V) also occurred in anerobic sediment microcosms from an uncontaminated suburban lake, but did not appear to be linked to growth and is interpreted as a mechanism of biological detoxification. Aerobic microcosms and cultures from the Idaho mine oxidized 2 mM Sb(III) to Sb(V) within 7 d and coupled this reaction to cell growth quantified by direct counting. An

  19. Artificial Photosynthesis: Hybrid Systems.

    Science.gov (United States)

    Ni, Yan; Hollmann, Frank

    Oxidoreductases are promising catalysts for organic synthesis. To sustain their catalytic cycles they require efficient supply with redox equivalents. Today classical biomimetic approaches utilizing natural electron supply chains prevail but artificial regeneration approaches bear the promise of simpler and more robust reaction schemes. Utilizing visible light can accelerate such artificial electron transport chains and even enable thermodynamically unfeasible reactions such as the use of water as reductant.This contribution critically summarizes the current state of the art in photoredoxbiocatalysis (i.e. light-driven biocatalytic oxidation and reduction reactions).

  20. Systems Analyses of Advanced Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.